WorldWideScience

Sample records for human human exploration

  1. Human assisted robotic exploration

    Science.gov (United States)

    Files, B. T.; Canady, J.; Warnell, G.; Stump, E.; Nothwang, W. D.; Marathe, A. R.

    2016-05-01

    In support of achieving better performance on autonomous mapping and exploration tasks by incorporating human input, we seek here to first characterize humans' ability to recognize locations from limited visual information. Such a characterization is critical to the design of a human-in-the-loop system faced with deciding whether and when human input is useful. In this work, we develop a novel and practical place-recognition task that presents humans with video clips captured by a navigating ground robot. Using this task, we find experimentally that human performance does not seem to depend on factors such as clip length or familiarity with the scene and also that there is significant variability across subjects. Moreover, we find that humans significantly outperform a state-of-the-art computational solution to this problem, suggesting the utility of incorporating human input in autonomous mapping and exploration techniques.

  2. Robotics for Human Exploration

    Science.gov (United States)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  3. Human Power Empirically Explored

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, A.J.

    2011-01-18

    Harvesting energy from the users' muscular power to convert this into electricity is a relatively unknown way to power consumer products. It nevertheless offers surprising opportunities for product designers; human-powered products function independently from regular power infrastructure, are convenient and can be environmentally and economically beneficial. This work provides insight into the knowledge required to design human-powered energy systems in consumer products from a scientific perspective. It shows the developments of human-powered products from the first introduction of the BayGen Freeplay radio in 1995 till current products and provides an overview and analysis of 211 human-powered products currently on the market. Although human power is generally perceived as beneficial for the environment, this thesis shows that achieving environmental benefit is only feasible when the environmental impact of additional materials in the energy conversion system is well balanced with the energy demands of the products functionality. User testing with existing products showed a preference for speeds in the range of 70 to 190 rpm for crank lengths from 32 to 95 mm. The muscular input power varied from 5 to 21 W. The analysis of twenty graduation projects from the Faculty of Industrial Design Engineering in the field of human-powered products, offers an interesting set of additional practice based design recommendations. The knowledge based approach of human power is very powerful to support the design of human-powered products. There is substantial potential for improvements in the domains energy conversion, ergonomics and environment. This makes that human power, when applied properly, is environmentally and economically competitive over a wider range of applications than thought previously.

  4. Human Power Empirically Explored

    NARCIS (Netherlands)

    Jansen, A.J.

    2011-01-01

    Harvesting energy from the users’ muscular power to convert this into electricity is a relatively unknown way to power consumer products. It nevertheless offers surprising opportunities for product designers; human-powered products function independently from regular power infrastructure, are conven

  5. Robots and Humans: Synergy in Planetary Exploration

    Science.gov (United States)

    Landis, Geoffrey A.

    2003-01-01

    How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

  6. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  7. Robotic Recon for Human Exploration

    Science.gov (United States)

    Deans, Matthew; Fong, Terry; Ford, Ken; Heldmann, Jennifer; Helper, Mark; Hodges, Kip; Landis, Rob; Lee, Pascal; Schaber, Gerald; Schmitt, Harrison H.

    2009-01-01

    Robotic reconnaissance has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon may increase crew productivity and reduce operational risk for exploration. However, additional research, development and field-testing is needed to mature robot and ground control systems, refine operational protocols, and specify detailed requirements. When the new lunar surface campaign begins around 2020, and before permanent outposts are established, humans will initially be on the Moon less than 10% of the time. During the 90% of time between crew visits, robots will be available to perform surface operations under ground control. Understanding how robotic systems can best address surface science needs, therefore, becomes a central issue Prior to surface missions, lunar orbiters (LRO, Kaguya, Chandrayyan-1, etc.) will map the Moon. These orbital missions will provide numerous types of maps: visible photography, topographic, mineralogical and geochemical distributions, etc. However, remote sensing data will not be of sufficient resolution, lighting, nor view angle, to fully optimize pre-human exploration planning, e.g., crew traverses for field geology and geophysics. Thus, it is important to acquire supplemental and complementary surface data. Robotic recon can obtain such data, using robot-mounted instruments to scout the surface and subsurface at resolutions and at viewpoints not achievable from orbit. This data can then be used to select locations for detailed field activity and prioritize targets to improve crew productivity. Surface data can also help identify and assess terrain hazards, and evaluate alternate routes to reduce operational risk. Robotic recon could be done months in advance, or be part of a continuing planning process during human missions.

  8. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  9. Human space exploration the next fifty years.

    Science.gov (United States)

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.

  10. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  11. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  12. Humanity in God's Image: An Interdisciplinary Exploration

    DEFF Research Database (Denmark)

    Welz, Claudia

    How can we, in our times, understand the biblical concept that human beings have been created in the image of an invisible God? This is a perennial but increasingly pressing question that lies at the heart of theological anthropology. Humanity in God's Image: An Interdisciplinary Exploration....... Claudia Welz offers an interdisciplinary exploration of theological and ethical 'visions' of the invisible. By analysing poetry and art, Welz exemplifies human self-understanding in the interface between the visual and the linguistic. The content of the imago Dei cannot be defined apart from the image...

  13. Robotic Follow-Up for Human Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Deans, Matthew C.; Adams, Byron; Allan, Mark; Altobelli, Martha; Bouyssounouse, Xavier; Cohen, Tamar; Flueckiger, Lorenzo; Garber, Joshua; Palmer, Elizabeth; Heggy, Essam; Jurgens, Frank; Kennedy, Tim; Kobayashi, Linda; Lee, Pascal; Lee, Susan Y.; Lees, David; Lundy, Mike; Park, Eric; Pedersen, Liam; Smith, Trey; To, Vinh; Utz, Hans; Wheeler, Dawn

    2010-01-01

    We are studying how "robotic follow-up" can improve future planetary exploration. Robotic follow-up, which we define as augmenting human field work with subsequent robot activity, is a field exploration technique designed to increase human productivity and science return. To better understand the benefits, requirements, limitations and risks associated with this technique, we are conducting analog field tests with human and robot teams at the Haughton Crater impact structure on Devon Island, Canada. In this paper, we discuss the motivation for robotic follow-up, describe the scientific context and system design for our work, and present results and lessons learned from field testing.

  14. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  15. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  16. Cryogenics and the Human Exploration of Mars

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  17. Graphical Visualization of Human Exploration Capabilities

    Science.gov (United States)

    Rodgers, Erica M.; Williams-Byrd, Julie; Arney, Dale C.; Simon, Matthew A.; Williams, Phillip A.; Barsoum, Christopher; Cowan, Tyler; Larman, Kevin T.; Hay, Jason; Burg, Alex

    2016-01-01

    NASA's pioneering space strategy will require advanced capabilities to expand the boundaries of human exploration on the Journey to Mars (J2M). The Evolvable Mars Campaign (EMC) architecture serves as a framework to identify critical capabilities that need to be developed and tested in order to enable a range of human exploration destinations and missions. Agency-wide System Maturation Teams (SMT) are responsible for the maturation of these critical exploration capabilities and help formulate, guide and resolve performance gaps associated with the EMC-identified capabilities. Systems Capability Organization Reporting Engine boards (SCOREboards) were developed to integrate the SMT data sets into cohesive human exploration capability stories that can be used to promote dialog and communicate NASA's exploration investments. Each SCOREboard provides a graphical visualization of SMT capability development needs that enable exploration missions, and presents a comprehensive overview of data that outlines a roadmap of system maturation needs critical for the J2M. SCOREboards are generated by a computer program that extracts data from a main repository, sorts the data based on a tiered data reduction structure, and then plots the data according to specified user inputs. The ability to sort and plot varying data categories provides the flexibility to present specific SCOREboard capability roadmaps based on customer requests. This paper presents the development of the SCOREboard computer program and shows multiple complementary, yet different datasets through a unified format designed to facilitate comparison between datasets. Example SCOREboard capability roadmaps are presented followed by a discussion of how the roadmaps are used to: 1) communicate capability developments and readiness of systems for future missions, and 2) influence the definition of NASA's human exploration investment portfolio through capability-driven processes. The paper concludes with a description

  18. Connecting Robots and Humans in Mars Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned

  19. Astrobiological benefits of human space exploration.

    Science.gov (United States)

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  20. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  1. Relational and Transcendental Humanism: Exploring the Consequences of a Thoroughly Pragmatic Humanism

    Science.gov (United States)

    Hansen, James T.

    2007-01-01

    The relational and transcendental elements of humanism are considered. Although the relational component of humanism is extraordinarily valuable, the author argues that the transcendental portion of humanism should be abandoned. The implications of a thoroughly pragmatic humanism are explored.

  2. Relational and Transcendental Humanism: Exploring the Consequences of a Thoroughly Pragmatic Humanism

    Science.gov (United States)

    Hansen, James T.

    2007-01-01

    The relational and transcendental elements of humanism are considered. Although the relational component of humanism is extraordinarily valuable, the author argues that the transcendental portion of humanism should be abandoned. The implications of a thoroughly pragmatic humanism are explored.

  3. Future Visions for Scientific Human Exploration

    Science.gov (United States)

    Garvin, James

    2005-01-01

    Today, humans explore deep-space locations such as Mars, asteroids, and beyond, vicariously here on Earth, with noteworthy success. However, to achieve the revolutionary breakthroughs that have punctuated the history of science since the dawn of the Space Age has always required humans as "the discoverers," as Daniel Boorstin contends in this book of the same name. During Apollo 17, human explorers on the lunar surface discovered the "genesis rock," orange glass, and humans in space revamped the optically crippled Hubble Space Telescope to enable some of the greatest astronomical discoveries of all time. Science-driven human exploration is about developing the opportunities for such events, perhaps associated with challenging problems such as whether we can identify life beyond Earth within the universe. At issue, however, is how to safely insert humans and the spaceflight systems required to allow humans to operate as they do best in the hostile environment of deep space. The first issue is minimizing the problems associated with human adaptation to the most challenging aspects of deep space space radiation and microgravity (or non-Earth gravity). One solution path is to develop technologies that allow for minimization of the exposure time of people to deep space, as was accomplished in Apollo. For a mission to the planet Mars, this might entail new technological solutions for in-space propulsion that would make possible time-minimized transfers to and from Mars. The problem of rapid, reliable in-space transportation is challenged by the celestial mechanics of moving in space and the so-called "rocket equation." To travel to Mars from Earth in less than the time fuel-minimizing trajectories allow (i.e., Hohmann transfers) requires an exponential increase in the amount of fuel. Thus, month-long transits would require a mass of fuel as large as the dry mass of the ISS, assuming the existence of continuous acceleration engines. This raises the largest technological

  4. Research on Human-Robot Joint System for Lunar Exploration

    Science.gov (United States)

    Zhang, Wei

    The lunar exploration in China is in progress. In order to reduce human workload and costs, and conduct researches more effectively and efficiently, human-robot joint systems are necessary for lunar exploration. The concept of human-robot joint system for lunar exploration is studied in this paper. The possible collaborative ways between human and robots and the collaborative activities which can be conducted for lunar exploration are discussed. Moreover, the preliminary configuration of a human-robot joint system is presented.

  5. Exploring Human Capital and Hybrid Entrepreneurship

    DEFF Research Database (Denmark)

    Klyver, Kim; Lomberg, Carina; Steffens, Paul

    2016-01-01

    An individual’s human capital affects their choice to become and entrepreneur and also their likely success as a nascent entrepreneur. This paper explores how hybrid employment—entrepreneur opportunities impact these dynamics. Drawing on insights from decision theory, we argue that an individual...... longitudinal dataset of individuals facing career transition as nascent entrepreneurs, job seekers or both, we find that while hybrid nascent entrepreneurship (trying to start a business while being employed) has a positive influence on outcomes, hybrid search (concurrent job search while trying to start...

  6. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  7. Understanding Predictability and Exploration in Human Mobility

    CERN Document Server

    Cuttone, Andrea; González, Marta C

    2016-01-01

    Predictive models for human mobility have important applications in many fields such as traffic control, ubiquitous computing and contextual advertisement. The predictive performance of models in literature varies quite broadly, from as high as 93% to as low as under 40%. In this work we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users for periods between 3 months and one year. We show that it is easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover we demonstrate how the temporal and spatial resolution of the data can have strong influence on the accuracy of prediction. Finally we uncover that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our abili...

  8. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  9. Human exploration and settlement of Mars - The roles of humans and robots

    Science.gov (United States)

    Duke, Michael B.

    1991-01-01

    The scientific objectives and strategies for human settlement on Mars are examined in the context of the Space Exploration Initiative (SEI). An integrated strategy for humans and robots in the exploration and settlement of Mars is examined. Such an effort would feature robotic, telerobotic, and human-supervised robotic phases.

  10. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    Science.gov (United States)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  11. Benefits of Microalgae for Human Space Exploration

    Science.gov (United States)

    Verrecchia, Angelique; Bebout, Brad M.; Murphy, Thomas

    2015-01-01

    Algae have long been known to offer a number of benefits to support long duration human space exploration. Algae contain proteins, essential amino acids, vitamins, and lipids needed for human consumption, and can be produced using waste streams, while consuming carbon dioxide, and producing oxygen. In comparison with higher plants, algae have higher growth rates, fewer environmental requirements, produce far less "waste" tissue, and are resistant to digestion and/or biodegradation. As an additional benefit, algae produce many components (fatty acids, H2, etc.) which are useful as biofuels. On Earth, micro-algae survive in many harsh environments including low humidity, extremes in temperature, pH, and as well as high salinity and solar radiation. Algae have been shown to survive inmicro-gravity, and can adapt to high and low light intensity while retaining their ability to perform nitrogen fixation and photosynthesis. Studies have demonstrated that some algae are resistant to the space radiation environment, including solar ultraviolet radiation. It remains to be experimentally demonstrated, however, that an algal-based system could fulfil the requirements for a space-based Bioregenerative Life Support System (BLSS) under comparable spaceflight power, mass, and environmental constraints. Two specific challenges facing algae cultivation in space are that (i) conventional growth platforms require large masses of water, which in turn require a large amount of propulsion fuel, and (ii) most nutrient delivery mechanisms (predominantly bubbling) are dependent on gravity. To address these challenges, we have constructed a low water biofilm based bioreactor whose operation is enabled by capillary forces. Preliminary characterization of this Surface Adhering BioReactor (SABR) suggests that it can serve as a platform for cultivating algae in space which requires about 10 times less mass than conventional reactors without sacrificing growth rate. Further work is necessary to

  12. Exploring Data in Human Resources Big Data

    Directory of Open Access Journals (Sweden)

    Adela BARA

    2016-01-01

    Full Text Available Nowadays, social networks and informatics technologies and infrastructures are constantly developing and affect each other. In this context, the HR recruitment process became complex and many multinational organizations have encountered selection issues. The objective of the paper is to develop a prototype system for assisting the selection of candidates for an intelligent management of human resources. Such a system can be a starting point for the efficient organization of semi-structured and unstructured data on recruitment activities. The article extends the research presented at the 14th International Conference on Informatics in Economy (IE 2015 in the scientific paper "Big Data challenges for human resources management".

  13. Exploring human inactivity in computer power consumption

    Science.gov (United States)

    Candrawati, Ria; Hashim, Nor Laily Binti

    2016-08-01

    Managing computer power consumption has become an important challenge in computer society and this is consistent with a trend where a computer system is more important to modern life together with a request for increased computing power and functions continuously. Unfortunately, previous approaches are still inadequately designed to handle the power consumption problem due to unpredictable workload of a system caused by unpredictable human behaviors. This is happens due to lack of knowledge in a software system and the software self-adaptation is one approach in dealing with this source of uncertainty. Human inactivity is handled by adapting the behavioral changes of the users. This paper observes human inactivity in the computer usage and finds that computer power usage can be reduced if the idle period can be intelligently sensed from the user activities. This study introduces Control, Learn and Knowledge model that adapts the Monitor, Analyze, Planning, Execute control loop integrates with Q Learning algorithm to learn human inactivity period to minimize the computer power consumption. An experiment to evaluate this model was conducted using three case studies with same activities. The result show that the proposed model obtained those 5 out of 12 activities shows the power decreasing compared to others.

  14. Morpheus: Advancing Technologies for Human Exploration

    Science.gov (United States)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael

    2012-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional

  15. Exploring Data in Human Resources Big Data

    OpenAIRE

    Adela BARA; Iuliana BOTHA; Anda BELCIU (VELICANU); Bogdan NEDELCU

    2016-01-01

    Nowadays, social networks and informatics technologies and infrastructures are constantly developing and affect each other. In this context, the HR recruitment process became complex and many multinational organizations have encountered selection issues. The objective of the paper is to develop a prototype system for assisting the selection of candidates for an intelligent management of human resources. Such a system can be a starting point for the efficient organization of semi-structured an...

  16. Interaction Challenges in Human-Robot Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  17. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    Science.gov (United States)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  18. Space Exploration as a Human Enterprise: The Scientific Interest

    Science.gov (United States)

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  19. Exploring the existence and potential underpinnings of dog-human and horse-human attachment bonds.

    Science.gov (United States)

    Payne, Elyssa; DeAraugo, Jodi; Bennett, Pauleen; McGreevy, Paul

    2016-04-01

    This article reviews evidence for the existence of attachment bonds directed toward humans in dog-human and horse-human dyads. It explores each species' alignment with the four features of a typical attachment bond: separation-related distress, safe haven, secure base and proximity seeking. While dog-human dyads show evidence of each of these, there is limited alignment for horse-human dyads. These differences are discussed in the light of the different selection paths of domestic dogs and horses as well as the different contexts in which the two species interact with humans. The role of emotional intelligence in humans as a potential mediator for human-animal relationships, attachment or otherwise, is also examined. Finally, future studies, which may clarify the interplay between attachment, human-animal relationships and emotional intelligence, are proposed. Such avenues of research may help us explore the concepts of trust and bonding that are often said to occur at the dog-human and horse-human interface.

  20. Exploring care for human service profession

    DEFF Research Database (Denmark)

    Høy, Bente

    2015-01-01

    maintain their dignity, it is important to explore, how dignity is maintained in such situations. Views of dignity and factors influencing dignity have been studied from both the nursing homes residents´ and the care providers´ perspective. However, little is known about how the residents’ experience...

  1. Human life support for advanced space exploration.

    Science.gov (United States)

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  2. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  3. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  4. Human exploration of space and power development

    Science.gov (United States)

    Cohen, Aaron

    The possible role of Solar Power Satellites (SPS) in advancing the goals of the Space Exploration Initiative is considered. Three approaches are examined: (1) the use of lunar raw materials to construct a large SPS in GEO, (2) the construction of a similar system on the lunar surface, and (3) a combination of (1) and (2). Emphasis is given to the mining of He-3 from the moon and its use by the SPS.

  5. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  6. DDESC: Dragon database for exploration of sodium channels in human

    Directory of Open Access Journals (Sweden)

    Radovanovic Aleksandar

    2008-12-01

    Full Text Available Abstract Background Sodium channels are heteromultimeric, integral membrane proteins that belong to a superfamily of ion channels. The mutations in genes encoding for sodium channel proteins have been linked with several inherited genetic disorders such as febrile epilepsy, Brugada syndrome, ventricular fibrillation, long QT syndrome, or channelopathy associated insensitivity to pain. In spite of these significant effects that sodium channel proteins/genes could have on human health, there is no publicly available resource focused on sodium channels that would support exploration of the sodium channel related information. Results We report here Dragon Database for Exploration of Sodium Channels in Human (DDESC, which provides comprehensive information related to sodium channels regarding different entities, such as "genes and proteins", "metabolites and enzymes", "toxins", "chemicals with pharmacological effects", "disease concepts", "human anatomy", "pathways and pathway reactions" and their potential links. DDESC is compiled based on text- and data-mining. It allows users to explore potential associations between different entities related to sodium channels in human, as well as to automatically generate novel hypotheses. Conclusion DDESC is first publicly available resource where the information related to sodium channels in human can be explored at different levels. This database is freely accessible for academic and non-profit users via the worldwide web http://apps.sanbi.ac.za/ddesc.

  7. Targeting Cislunar Near Rectilinear Halo Orbits for Human Space Exploration

    Science.gov (United States)

    Williams, Jacob; Lee, David E.; Whitley, Ryan J.; Bokelmann, Kevin A.; Davis, Diane C.; Berry, Christopher F.

    2017-01-01

    Part of the challenge of charting a human exploration space architecture is finding locations to stage missions to multiple destinations. To that end, a specific subset of Earth-Moon halo orbits, known as Near Rectilinear Halo Orbits (NRHOs) are evaluated. In this paper, a systematic process for generating full ephemeris based ballistic NRHOs is outlined, different size NRHOs are examined for their favorability to avoid eclipses, the performance requirements for missions to and from NRHOs are calculated, and disposal options are evaluated. Combined, these studies confirm the feasibility of cislunar NRHOs to enable human exploration in the cislunar proving ground.

  8. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near

  9. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  10. Role of Fundamental Physics in Human Space Exploration

    Science.gov (United States)

    Turyshev, Slava

    2004-01-01

    This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.

  11. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  12. A large human centrifuge for exploration and exploitation research

    NARCIS (Netherlands)

    J.J.W.A. van Loon; J.P. Baeyens; J. Berte; S. Blanc; L. ter Braak; K. Bok; J. Bos; R. Boyle; N. Bravenoer; M. Eekhoff; A. Chouker; G. Clement; P. Cras; E. Cross; M.A. Cusaud; M. De Angelis; C. de Dreu; T. Delavaux; R. Delfos; C. Poelma; P. Denise; D. Felsenberg; K. Fong; C. Fuller; S. Grillner; E. Groen; J. Harlaar; M. Heer; N. Heglund; H. Hinghofer-Szalkay; N. Goswami; M. Hughes-Fulford; S. Iwase; J.M. Karemaker; B. Langdahl; D. Linarsson; C. Lüthen; M. Monici; E. Mulder; M. Narici; P. Norsk; W. Paloski; G.K. Prisk; M. Rutten; P. Singer; D. Stegeman; A. Stephan; G.J.M. Stienen; P. Suedfeld; P. Tesch; O. Ullrich; R. van den Berg; P. Van de Heyning; A. Delahaye; J. Veyt; L. Vico; E. Woodward; L.R. Young; F. Wuyts

    2012-01-01

    This paper addresses concepts regarding the development of an Altered Gravity Platform (AGP) that will serve as a research platform for human space exploration. Space flight causes a multitude of physiological problems, many of which are due to gravity level transitions. Going from Earth’s gravity t

  13. Human collective intelligence under dual exploration-exploitation dilemmas.

    Directory of Open Access Journals (Sweden)

    Wataru Toyokawa

    Full Text Available The exploration-exploitation dilemma is a recurrent adaptive problem for humans as well as non-human animals. Given a fixed time/energy budget, every individual faces a fundamental trade-off between exploring for better resources and exploiting known resources to optimize overall performance under uncertainty. Colonies of eusocial insects are known to solve this dilemma successfully via evolved coordination mechanisms that function at the collective level. For humans and other non-eusocial species, however, this dilemma operates within individuals as well as between individuals, because group members may be motivated to take excessive advantage of others' exploratory findings through social learning. Thus, even though social learning can reduce collective exploration costs, the emergence of disproportionate "information scroungers" may severely undermine its potential benefits. We investigated experimentally whether social learning opportunities might improve the performance of human participants working on a "multi-armed bandit" problem in groups, where they could learn about each other's past choice behaviors. Results showed that, even though information scroungers emerged frequently in groups, social learning opportunities reduced total group exploration time while increasing harvesting from better options, and consequentially improved collective performance. Surprisingly, enriching social information by allowing participants to observe others' evaluations of chosen options (e.g., Amazon's 5-star rating system in addition to choice-frequency information had a detrimental impact on performance compared to the simpler situation with only the choice-frequency information. These results indicate that humans groups can handle the fundamental "dual exploration-exploitation dilemmas" successfully, and that social learning about simple choice-frequencies can help produce collective intelligence.

  14. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  15. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    Science.gov (United States)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  16. Comparison of Human Exploration Architecture and Campaign Approaches

    Science.gov (United States)

    Goodliff, Kandyce; Cirillo, William; Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary

    2015-01-01

    As part of an overall focus on space exploration, National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). In addition, various external organizations are studying options for beyond LEO exploration. Recent studies include NASA's Evolvable Mars Campaign and Design Reference Architecture (DRA) 5.0, JPL's Minimal Mars Architecture; the Inspiration Mars mission; the Mars One campaign; and the Global Exploration Roadmap (GER). Each of these potential exploration constructs applies unique methods, architectures, and philosophies for human exploration. It is beneficial to compare potential approaches in order to better understand the range of options available for exploration. Since most of these studies were conducted independently, the approaches, ground rules, and assumptions used to conduct the analysis differ. In addition, the outputs and metrics presented for each construct differ substantially. This paper will describe the results of an effort to compare and contrast the results of these different studies under a common set of metrics. The paper will first present a summary of each of the proposed constructs, including a description of the overall approach and philosophy for exploration. Utilizing a common set of metrics for comparison, the paper will present the results of an evaluation of the potential benefits, critical challenges, and uncertainties associated with each construct. The analysis framework will include a detailed evaluation of key characteristics of each construct. These will include but are not limited to: a description of the technology and capability developments required to enable the construct and the uncertainties associated with these developments; an analysis of significant operational and programmatic risks associated with that construct; and an evaluation of the extent to which exploration is enabled by the construct, including the destinations

  17. Micro-Logistics Analysis for Human Space Exploration

    Science.gov (United States)

    Cirillo, William; Stromgren, Chel; Galan, Ricardo

    2008-01-01

    Traditionally, logistics analysis for space missions has focused on the delivery of elements and goods to a destination. This type of logistics analysis can be referred to as "macro-logistics". While the delivery of goods is a critical component of mission analysis, it captures only a portion of the constraints that logistics planning may impose on a mission scenario. The other component of logistics analysis concerns the local handling of goods at the destination, including storage, usage, and disposal. This type of logistics analysis, referred to as "micro-logistics", may also be a primary driver in the viability of a human lunar exploration scenario. With the rigorous constraints that will be placed upon a human lunar outpost, it is necessary to accurately evaluate micro-logistics operations in order to develop exploration scenarios that will result in an acceptable level of system performance.

  18. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  19. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  20. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  1. Human haptic perception is interrupted by explorative stops of milliseconds.

    Science.gov (United States)

    Grunwald, Martin; Muniyandi, Manivannan; Kim, Hyun; Kim, Jung; Krause, Frank; Mueller, Stephanie; Srinivasan, Mandayam A

    2014-01-01

    The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these "explorative stops" (ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: (a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration. Five different Experiments were used. The first two Experiments were classical recognition tasks of unknown haptic stimuli (A) and of common objects (B). In Experiment C space-position information of angle legs had to be perceived and reproduced. For Experiments D and E the PHANToM haptic device was used for the exploration of virtual (D) and real (E) sunken reliefs. In each Experiment we observed explorative stops of different average durations. For Experiment A: 329.50 ms, Experiment B: 67.47 ms, Experiment C: 189.92 ms, Experiment D: 186.17 ms and Experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory.

  2. Human haptic perception is interrupted by explorative stops of milliseconds

    Directory of Open Access Journals (Sweden)

    Martin eGrunwald

    2014-04-01

    Full Text Available Introduction: The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these explorative stops (ES during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: a between mean exploration time and duration of ES, b between certain stimulus features and ES frequency, and c the duration of ES during the course of exploration. Methods: Five different experiments were used. The first two experiments were classical recognition tasks of unknown haptic stimuli (A and of common objects (B. In experiment C space-position information of angle legs had to be perceived and reproduced. For experiments D and E the PHANToM haptic device was used for the exploration of virtual (D and real (E sunken reliefs. Results: In each experiment we observed explorative stops of different average durations. For experiment A: 329.50 ms, experiment B: 67.47 ms, experiment C: 189.92 ms, experiment D: 186.17 ms and experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. Conclusions: We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory.

  3. Global Exploration Roadmap Derived Concept for Human Exploration of the Moon

    Science.gov (United States)

    Whitley, Ryan; Landgraf, Markus; Sato, Naoki; Picard, Martin; Goodliff, Kandyce; Stephenson, Keith; Narita, Shinichiro; Gonthier, Yves; Cowley, Aiden; Hosseini, Shahrzad; hide

    2017-01-01

    Taking advantage of the development of Mars-forward assets in cislunar space, a human lunar surface concept is proposed to maximize value for both lunar exploration and future deep space missions. The human lunar surface missions will be designed to build upon the cislunar activities that precede them, providing experience in planetary surface operations that cannot be obtained in cislunar space. To enable a five-mission limited campaign to the surface of the Moon, two new elements are required: a human lunar lander and a mobile surface habitat. The human lunar lander will have been developed throughout the cislunar phase from a subscale demonstrator and will consist of a descent module alongside a reusable ascent module. The reusable ascent module will be used for all five human lunar surface missions. Surface habitation, in the form of two small pressurized rovers, will enable 4 crew to spend up to 42 days on the lunar surface.

  4. Exploring host-microbiota interactions in animal models and humans.

    Science.gov (United States)

    Kostic, Aleksandar D; Howitt, Michael R; Garrett, Wendy S

    2013-04-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host-microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host-microbiota interactions and explore recent human microbiome studies.

  5. Integrated Network Architecture for Sustained Human and Robotic Exploration

    Science.gov (United States)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  6. Groundbreaking Mars Sample Return for Science and Human Exploration

    Science.gov (United States)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  7. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  8. Exploring human disease using the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R.; Tutaj, Marek; Petri, Victoria; Hayman, G. Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R.

    2016-01-01

    ABSTRACT Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases. PMID:27736745

  9. Mission Opportunities for Human Exploration of Nearby Planetary Bodies

    CERN Document Server

    Foster, Cyrus

    2016-01-01

    We characterize mission profiles for human expeditions to near-Earth asteroids, Venus, and Mars. Near-Earth objects (NEOs) are the closest destinations beyond cis-lunar space and present a compelling target with capabilities already under development by NASA and its partners. We present manned NEO mission options that would require between 90 days and one year. We next consider planetary flyby missions for Venus along the lines of plans that were first drafted during the Apollo program for human exploration of Venus. We also characterize a Mars flyby, and a double-flyby variant that would include close passes to both Venus and Mars. Finally, we consider orbital missions to Venus and Mars with capability for rendezvous with Phobos or Deimos. This would be a truly new class of mission for astronauts and could serve as a precursor to a human landing on Mars. We present launch opportunities, transit time, requisite {\\Delta}V, and approximate radiation environment parameters for each mission class. We find that {\\...

  10. 78 FR 42805 - NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting

    Science.gov (United States)

    2013-07-17

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration Operations Committee; Research... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the Human Exploration and Operations Committee (HEOC) of the NASA Advisory Council (NAC). This Subcommittee reports...

  11. Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots

    National Research Council Canada - National Science Library

    Yang, Xiping; Zhao, Zhiyuan; Lu, Shiwei

    2016-01-01

    Understanding human mobility patterns provides us with knowledge about human mobility in an urban context, which plays a critical role in urban planning, traffic management and the spread of disease...

  12. Teachers' Pedagogical Perspectives and Teaching Practices on Human Rights in Cyprus: An Empirical Exploration and Implications for Human Rights Education

    Science.gov (United States)

    Zembylas, Michalinos; Charalambous, Constadina; Charalambous, Panayiota

    2016-01-01

    This paper describes a qualitative study that explored the understandings of human rights, pedagogical perspectives and practices in human rights teaching of three Greek-Cypriot elementary teachers. The study revealed some significant challenges in human rights teaching that seemed to be common for all three participating teachers. First, all of…

  13. SLS-Derived Lab: Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2014-01-01

    Plans to send humans to Mars are in work and the launch system is being built. Are we ready? Robotic missions have successfully demonstrated transportation, entry, landing and surface operations but for human missions there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs) are the unanswered questions concerning long-duration exploration beyond low-earth-orbit. The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside earth's protective geo-magnetic field they cannot be resolved on the earth or on the International Space Station (ISS). Placing a laboratory at the relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 meter and 4.3 meter diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit Habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems, solutions are not obvious, and require integrated, iterative, and multi-disciplinary development. A lunar

  14. Cislunar Near Rectilinear Halo Orbit for Human Space Exploration

    Science.gov (United States)

    Whitley, Ryan; Martinez, Roland; Condon, Gerald; Williams, Jacob; Lee, David; Davis, Diane; Barton, Gregg; Bhatt, Sagar; Jang, Jiann-Woei; Clark, Fred; Hinkel, Heather

    2016-01-01

    In order to conduct sustained human exploration beyond Low Earth Orbit (LEO), spacecraft systems are designed to operate in a series of missions of increasing complexity. Regardless of the destination, Moon, Mars, asteroids or beyond, there is a substantial set of common objectives that must be met. Many orbit characterization studies have endeavored to evaluate the potential locations in cislunar space that are favorable for meeting common human exploration objectives in a stepwise approach. Multiple studies, by both NASA and other international space agencies, have indicated that Earth-­-moon libration point orbits are attractive candidates for staging operations in the proving ground and beyond. In particular, the Near Rectilinear Orbit (NRO) has been demonstrated to meet multi-­-mission and multi-­-destination architectural constraints. However, a human mission to a selected NRO presents a variety of new challenges for mission planning. While a growing number of robotic missions have completed successful operations to various specific libration point orbits, human missions have never been conducted to orbits of this class. Human missions have unique challenges that differ significantly from robotic missions, including a lower tolerance for mission risk and additional operational constraints that are associated only with human spacecraft. In addition, neither robotic nor human missions have been operated in the NRO regime specifically, and NROs exhibit dynamical characteristics that can differ significantly as compared to other halo orbits. Finally, multi-­-body orbits, such as libration point orbits, are identified to exist in a simplified orbit model known as the Circular Restricted Three Body Problem (CRTBP) and must then be re-­-solved in the full ephemeris model. As a result, the behavior of multi-­-body orbits cannot be effectively characterized within the classical two-­-body orbit dynamics framework more familiar to the human spaceflight community

  15. ENGINES: exploring single nucleotide variation in entire human genomes

    Directory of Open Access Journals (Sweden)

    Salas Antonio

    2011-04-01

    Full Text Available Abstract Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs, population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs, as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart

  16. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    Science.gov (United States)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  17. New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative

    Science.gov (United States)

    Mankins, John C.

    2000-01-01

    In FY 2001, NASA will undertake a new research and technology program supporting the goals of human exploration: the Human Exploration and Development of Space (HEDS) Exploration/Commercialization Technology Initiative (HTCI). The HTCI represents a new strategic approach to exploration technology, in which an emphasis will be placed on identifying and developing technologies for systems and infrastructures that may be common among exploration and commercial development of space objectives. A family of preliminary strategic research and technology (R&T) road maps have been formulated that address "technology for human exploration and development of space (THREADS). These road maps frame and bound the likely content of the HTCL Notional technology themes for the initiative include: (1) space resources development, (2) space utilities and power, (3) habitation and bioastronautics, (4) space assembly, inspection and maintenance, (5) exploration and expeditions, and (6) space transportation. This paper will summarize the results of the THREADS road mapping process and describe the current status and content of the HTCI within that framework. The paper will highlight the space resources development theme within the Initiative and will summarize plans for the coming year.

  18. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    Science.gov (United States)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  19. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  20. ISRU in the Context of Future European Human Mars Exploration

    Science.gov (United States)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  1. Human Exploration of the Solar System by 2100

    Science.gov (United States)

    Litchford, Ronald J.

    2017-01-01

    It has been suggested that the U.S., in concert with private entities and international partners, set itself on a course to accomplish human exploration of the solar system by the end of this century. This is a strikingly bold vision intended to revitalize the aspirations of HSF in service to the security, economic, and scientific interests of the nation. Solar system distance and time scales impose severe requirements on crewed space transportation systems, however, and fully realizing all objectives in support of this goal will require a multi-decade commitment employing radically advanced technologies - most prominently, space habitats capable of sustaining and protecting life in harsh radiation environments under zero gravity conditions and in-space propulsion technologies capable of rapid deep space transits with earth return, the subject of this paper. While near term mission destinations such as the moon and Mars can be accomplished with chemical propulsion and/or high power SEP, fundamental capability constraints render these traditional systems ineffective for solar system wide exploration. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, very long term HSF objectives for solar system wide exploration are examined in relation to the advanced propulsion technology solution landscape including foundational science, technical/engineering challenges, and developmental prospects.

  2. Integrating Human Factors into Crew Exploration Vehicle Design

    Science.gov (United States)

    Whitmore, Mihriban; Baggerman, Susan; Campbell, paul

    2007-01-01

    With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup

  3. Environmental effects of human exploration of the Moon

    Science.gov (United States)

    Mendell, Wendell

    Aerospace engineers use the term Environment to designate a set of externally imposed bound-ary conditions under which a device must operate. Although the parameters may be time-varying, the engineer thinks of the operating environment as being fixed. Any effect the device might have on the environment generally is neglected. In the case where the device is intended to measure the environment, its effect on the measured quantities must be considered. For example, a magnetometer aboard a spacecraft must be extended on a boom to minimize the disturbing influence of the spacecraft on the magnetic field, particularly if the field is weak. In contrast, Environment has taken on political and even ethical connotations in modern Western society, referring to human-induced alterations to those aspects of the terrestrial environment that are required for a healthy and productive life. The so-called Green Movement takes preservation of the environment as its mantra. Scientists are at the center of the debate on environmental issues. However, the concern of scientists over irreversible consequences of hu-man activity extend beyond ecology to preservation of cultural artifacts and to effects that alter the ability to conduct investigations such as light pollution in astronomy. The policy of Planetary Protection applied to science and exploration missions to other bodies in the solar system arises from the concern for deleterious effects in terrestrial ecology from hypothetical extraterrestrial life forms as well as overprints of extraterrestrial environments by terrestrial biology. Some in the scientific community are advocating extension of the planetary protection concept beyond exobiology to include fragile planetary environments by might be permanently altered by human activity e.g., the lunar exosphere. Beyond the scientific community, some environmentalists argue against any changes to the Moon at all, including formation of new craters or the alteration of the natural

  4. Exploring the intramolecular phosphorylation sites in human Chk2

    DEFF Research Database (Denmark)

    Olsen, Birgitte B; Larsen, Martin R; Boldyreff, Brigitte;

    2008-01-01

    A comparative biochemical analysis was performed using recombinant human protein kinase Chk2 (checkpoint kinase 2) expressed in bacteria and insect cells. Dephosphorylated, inactive, recombinant human Chk2 could be reactivated in a concentration-dependent manner. Despite distinct time....... Mass spectrometric analyses of human recombinant Chk2 isolated from bacteria and insect cells showed distinct differences. The number of phosphorylated residues in human recombinant Chk2 isolated from bacteria was 16, whereas in the case of the recombinant human Chk2 from insect cells it was 8. Except...... for phosphorylated amino acid T378 which was not found in the Chk2 isolated from bacteria, all other phosphorylated residues identified in human Chk2 from insect cells were present also in Chk2 from bacteria....

  5. Microbial Impact on Success of Human Exploration Missions

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark; Groves, T. O.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The purpose of this study is to identify microbiological risks associated with space exploration and identify potential countermeasures available. Identification of microbial risks associated with space habitation requires knowledge of the sources and expected types of microbial agents. Crew data along with environmental data from water, surfaces, air, and free condensate are utilized in risk examination. Data from terrestrial models are also used. Microbial risks to crew health include bacteria, fungi, protozoa, and viruses. Adverse effects of microbes include: infections, allergic reactions, toxin production, release of volatiles, food spoilage, plant disease, material degradation, and environmental contamination. Risk is difficult to assess because of unknown potential changes in microbes (e.g., mutation) and the human host (e.g., immune changes). Prevention of adverse microbial impacts is preferred over remediation. Preventative measures include engineering measures (e.g., air filtration), crew microbial screening, acceptability standards, and active verification by onboard monitoring. Microbiological agents are important risks to human health and performance during space flight and risks increase with mission duration. Acceptable risk level must be defined. Prevention must be given high priority. Careful screening of crewmembers and payloads is an important element of any risk mitigation plan. Improved quantitation of microbiological risks is a high priority.

  6. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  7. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  8. Human Outer Solar System Exploration via Q-Thruster Technology

    Science.gov (United States)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of

  9. Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots

    Directory of Open Access Journals (Sweden)

    Xiping Yang

    2016-07-01

    Full Text Available Understanding human mobility patterns provides us with knowledge about human mobility in an urban context, which plays a critical role in urban planning, traffic management and the spread of disease. Recently, the availability of large-scale human-sensing datasets enables us to analyze human mobility patterns and the relationships between humans and their living environments on an unprecedented spatial and temporal scale to improve decision-making regarding the quality of life of citizens. This study aims to characterize the urban spatial-temporal dynamic from the perspective of human mobility hotspots by using mobile phone location data. We propose a workflow to identify human convergent and dispersive hotspots that represent the status of human mobility in local areas and group these hotspots into different classes according to clustering their temporal signatures. To illustrate our proposed approach, a case study of Shenzhen, China, has been conducted. Six typical spatial-temporal patterns in the city are identified and discussed by combining the spatial distribution of these identified patterns with urban functional areas. The findings enable us to understand the human dynamics in a different area of the city, which can serve as a reference for urban planning and traffic management.

  10. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    Science.gov (United States)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  11. SLS-Derived Lab- Precursor to Deep Space Human Exploration

    Science.gov (United States)

    Griffin, Brand M.; Lewis, Ruthan; Eppler, Dean; Smitherman, David

    2015-01-01

    Plans to send humans to Mars are in the works and the launch system is being built. Are we ready? Transportation, entry, landing, and surface operations have been successfully demonstrated for robotic missions. However, for human missions, there are significant, potentially show-stopping issues. These issues, called Strategic Knowledge Gaps (SKGs), are the unanswered questions concerning long duration exploration Beyond low Earth Orbit (BEO). The gaps represent a risk of loss of life or mission and because they require extended exposure to the weightless environment outside of earth's protective geo-magnetic field, they cannot be resolved on Earth or on the International Space Station (ISS). Placing a laboratory at a relatively close and stable lunar Distant Retrograde Orbit (DRO) provides an accessible location with the requisite environmental conditions for conducting SKG research and testing mitigation solutions. Configurations comprised of multiple 3 m and 4.3 m diameter modules have been studied but the most attractive solution uses elements of the human Mars launch vehicle or Space Launch System (SLS) for a Mars proving ground laboratory. A shortened version of an SLS hydrogen propellant tank creates a Skylab-like pressure vessel that flies fully outfitted on a single launch. This not only offers significant savings by incorporating SLS pressure vessel development costs but avoids the expensive ISS approach using many launches with substantial on-orbit assembly before becoming operational. One of the most challenging SKGs is crew radiation protection; this is why SKG laboratory research is combined with Mars transit habitat systems development. Fundamentally, the two cannot be divorced because using the habitat systems for protection requires actual hardware geometry and material properties intended to contribute to shielding effectiveness. The SKGs are difficult problems. The solutions to these problems are not obvious; they require integrated, iterative

  12. A Quantitative ADME-base Tool for Exploring Human ...

    Science.gov (United States)

    Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It

  13. Exploration of Human Rights by Chinese Communist Pioneers

    Institute of Scientific and Technical Information of China (English)

    LU SHUANGXI

    2011-01-01

    The Communist Party of China (CPC) ascended the stage of history holding high the banner of human fights.From the moment of its establishment,the Party has inscribed manifestly on its banner the principle of striving for human fights for the public.

  14. A LARGE HUMAN CENTRIFUGE FOR EXPLORATION AND EXPLOITATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Jack J.W.A. van Loon

    2012-06-01

    Full Text Available This paper addresses concepts regarding the development of an Altered Gravity Platform (AGP that will serve as a research platform for human space exploration. Space flight causes a multitude of physiological problems, many of which are due to gravity level transitions. Going from Earth's gravity to microgravity generates fluid shifts, space motion sickness, cardiovascular deconditioning among other changes, and returning to a gravity environment again puts the astronauts under similar stressors. A prolonged stay in microgravity provokes additional deleterious changes such as bone loss, muscle atrophy and loss of coordination or specific psychological stresses. To prepare for future manned space exploration missions, a ground-based research test bed for validating countermeasures against the deleterious effects of g-level transitions is needed. The proposed AGP is a large rotating facility (diameter > 150 m, where gravity levels ranging from 1.1 to 1.5g are generated, covering short episodes or during prolonged stays of weeks or even months. On this platform, facilities are built where a crew of 6 to 8 humans can live autonomously. Adaptation from 1 g to higher g levels can be studied extensively and monitored continuously. Similarly, re-adaptation back to 1 g, after a prolonged period of altered g can also be investigated. Study of the physiological and psychological adaptation to changing g-levels will provide instrumental and predictive knowledge to better define the ultimate countermeasures that are needed for future successful manned space exploration missions to the Moon, Mars and elsewhere. The AGP initiative will allow scientific top experts in Europe and worldwide to investigate the necessary scientific, operational, and engineering inputs required for such space missions. Because so many different physiological systems are involved in adaptation to gravity levels, a multidisciplinary approach is crucial. One of the final and crucial

  15. Teaching exploration and practice of the human body structure course

    Institute of Scientific and Technical Information of China (English)

    Feng LI; Ming-feng CHEN; Wen-long DING

    2015-01-01

    In the 21 st century,the medical model has transformed from the biological model to the biopsycho-social medical model. The transformation of medical model raises higher requirements for the training of medical staff. Comprehensive promotion of the reform of medical education has become the consensus and trend,which breeds the integrated medical teaching that is based on modules and organ systems. As one of eight integrated modules,the human body structure course of Shanghai Jiao Tong University School of Medicine introduces morphological structures of normal human organs according to function systems( such as locomotor system,digestive system,angiological system,and nervous system) of human organs and parts of human body. This course endeavors to integrate theories with practices,contents of disciplines of basic medicine,and basic medicine with clinical medicine. The human body structure course combines basic medicine with clinical medicine and is an important part of medical science.

  16. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Science.gov (United States)

    2013-04-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Research... and fact-finding with respect to the research activities within the Human Exploration and Operations... Aeronautics and Space Administration (NASA) announces a meeting of the Research Subcommittee of the Human...

  17. Visual exploration and analysis of human-robot interaction rules

    Science.gov (United States)

    Zhang, Hui; Boyles, Michael J.

    2013-01-01

    We present a novel interaction paradigm for the visual exploration, manipulation and analysis of human-robot interaction (HRI) rules; our development is implemented using a visual programming interface and exploits key techniques drawn from both information visualization and visual data mining to facilitate the interaction design and knowledge discovery process. HRI is often concerned with manipulations of multi-modal signals, events, and commands that form various kinds of interaction rules. Depicting, manipulating and sharing such design-level information is a compelling challenge. Furthermore, the closed loop between HRI programming and knowledge discovery from empirical data is a relatively long cycle. This, in turn, makes design-level verification nearly impossible to perform in an earlier phase. In our work, we exploit a drag-and-drop user interface and visual languages to support depicting responsive behaviors from social participants when they interact with their partners. For our principal test case of gaze-contingent HRI interfaces, this permits us to program and debug the robots' responsive behaviors through a graphical data-flow chart editor. We exploit additional program manipulation interfaces to provide still further improvement to our programming experience: by simulating the interaction dynamics between a human and a robot behavior model, we allow the researchers to generate, trace and study the perception-action dynamics with a social interaction simulation to verify and refine their designs. Finally, we extend our visual manipulation environment with a visual data-mining tool that allows the user to investigate interesting phenomena such as joint attention and sequential behavioral patterns from multiple multi-modal data streams. We have created instances of HRI interfaces to evaluate and refine our development paradigm. As far as we are aware, this paper reports the first program manipulation paradigm that integrates visual programming

  18. Exploring the impact of climate on human longevity.

    Science.gov (United States)

    Robine, Jean-Marie; Herrmann, François R; Arai, Yasumichi; Willcox, D Craig; Gondo, Yasuyuki; Hirose, Nobuyoshi; Suzuki, Makoto; Saito, Yasuhiko

    2012-09-01

    The purpose of this study was to examine the impact of physical geographic factors and climate conditions on human longevity. The centenarian rate (CR) in 2005 was computed for Japan's 47 prefectures, whose geography and climate vary greatly. Several pathways, such as excess winter mortality, land use and agricultural production, possibly linking physical and climate factors with extreme longevity, were explored. The probability of becoming a centenarian varies significantly among the Japanese prefectures. In particular, the computation of CR(70) demonstrated that the actual probability for individuals 70 years old in 1975 of becoming centenarians in 2005 was 3 times higher, on average, in Okinawa, both for males and females, than in Japan as a whole. About three quarters of the variance in CR(70) for females and half for males is explained by the physical environment and land use, even when variations in the level of socio-economic status between prefectures are controlled. Our analysis highlighted two features which might have played an important role in the longevity observed in Okinawa. First, there is virtually no winter in Okinawa. For instance, the mean winter temperature observed in 2005 was 17.2°C. Second, today, there is almost no rice production in Okinawa compared to other parts of Japan. In the past, however, production was higher in Okinawa. If we consider that long term effects of harsh winters can contribute to the mortality differential in old age and if we consider that food availability in the first part of the 20th century was mainly dependent on local production, early 20th century birth cohorts in Okinawa clearly had different experiences in terms of winter conditions and in terms of food availability compared to their counterparts in other parts of Japan. This work confirms the impact of climate conditions on human longevity, but it fails to demonstrate a strong association between longevity and mountainous regions and/or air quality.

  19. Exploring the Cytoskeleton During Intracytoplasmic Sperm Injection in Humans

    Science.gov (United States)

    Rawe, Vanesa Y.; Chemes, Héctor

    Understanding the cellular events during fertilization in mammals is a major challenge that can contribute to the improvement of future infertility treatments in humans and reproductive performance in farm animals. Of special interest is the role of the oocyte and sperm cytoskeleton during the initial interaction between gametes. The aim of this chapter is to describe methods for studying cytoskeletal features during in vitro fertilization after intracytoplasmic sperm injection (ICSI) in humans. The following protocols will provide a detailed description of how to perform immunodetection and imaging of human eggs, zygotes, and sperm by fluorescence (confocal and epifluorescence) and electron microscopy.

  20. Human-Robot Site Survey and Sampling for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  1. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  2. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  3. Incremental Scheduling Engines for Human Exploration of the Cosmos

    Science.gov (United States)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.

  4. Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures

    Science.gov (United States)

    Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara

    2017-01-01

    presents the results of the analyses performed, the potential changes to mission architectures and campaigns that result, and the general trends that are more broadly applicable to any element design or mission planning for human exploration.

  5. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  6. [Affective computing--a mysterious tool to explore human emotions].

    Science.gov (United States)

    Li, Xin; Li, Honghong; Dou, Yi; Hou, Yongjie; Li, Changwu

    2013-12-01

    Perception, affection and consciousness are basic psychological functions of human being. Affection is the subjective reflection of different kinds of objects. The foundation of human being's thinking is constituted by the three basic functions. Affective computing is an effective tool of revealing the affectiveness of human being in order to understand the world. Our research of affective computing focused on the relation, the generation and the influent factors among different affections. In this paper, the affective mechanism, the basic theory of affective computing, is studied, the method of acquiring and recognition of affective information is discussed, and the application of affective computing is summarized as well, in order to attract more researchers into this working area.

  7. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  8. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  9. Exploring human breast milk composition by NMR-based metabolomics.

    Science.gov (United States)

    Praticò, Giulia; Capuani, Giorgio; Tomassini, Alberta; Baldassarre, Maria Elisabetta; Delfini, Maurizio; Miccheli, Alfredo

    2014-01-01

    Breast milk is a complex fluid evolutionarily adapted to satisfy the nutritional requirements of growing infants. In addition, milk biochemical and immunological components protect newborns against infective agents in the new environment. Human milk oligosaccharides, the third most abundant component of breast milk, are believed to modulate the microbiota composition, thus influencing a wide range of physiological processes of the infant. Human milk also contains a number of other bioactive compounds, the functional role of which has not yet been clearly elucidated. In this scenario, NMR-based metabolic profiling can provide a rapid characterisation of breast milk composition, thus allowing a better understanding of its nutritional properties.

  10. Exploring human brain lateralization with molecular genetics and genomics.

    Science.gov (United States)

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions. © 2015 New York Academy of Sciences.

  11. Exploring the Relevance of Holocaust Education for Human Rights Education

    Science.gov (United States)

    Eckmann, Monique

    2010-01-01

    Can Holocaust education be considered a tool for human rights education? If so, to what extent? These questions elicit discussions among a wide range of educators, and interest among politicians, educational planners, and ministries in charge of memorials. At first glance the obvious answer seems to be yes; both educators and students have strong…

  12. NASA Planetary Science Division Vision 2050 Through Human Exploration

    Science.gov (United States)

    Yun, P. Y.

    2017-02-01

    Next 34 years PSD should play the role of the 21st century-version Lewis and Clark expedition to gather critical information about carefully chosen target celestial bodies in our solar system. PSD missions and human missions will benefit each other.

  13. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    Science.gov (United States)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  14. 77 FR 6825 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Science.gov (United States)

    2012-02-09

    ... SPACE ADMINISTRATION NASA Advisory Council; Human Exploration and Operations Committee; Meeting AGENCY... Administration announces a meeting of the Human Exploration and Operations Committee of the NASA Advisory Council..., 300 E Street SW., Washington, DC 20546, 202-358-2245; bette.siegel@nasa.gov . SUPPLEMENTARY...

  15. The roles of humans and robots in exploring the solar system

    Science.gov (United States)

    Mendell, W. W.

    2004-07-01

    Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.

  16. Belonging, occupation, and human well-being: an exploration.

    Science.gov (United States)

    Hammell, Karen R Whalley

    2014-02-01

    Researchers identify the importance of belonging to human well-being and provide evidence-based support for occupation as a medium for expressing and achieving a sense of belonging and connectedness. The purpose of this article is to highlight the imperative for occupational therapy theory and practice to address occupations concerned with belonging needs. Dominant occupational therapy models emphasise doing self-care, productive, and leisure occupations, thereby ignoring occupations undertaken to contribute to the well-being of others, occupations that foster connections to nature and ancestors, collaborative occupations, and those valued for their social context and potential to strengthen social roles. Belonging, connectedness, and interdependence are positively correlated with human well-being, are prioritized by the majority of the world's people, and inform the meanings attributed to and derived from the occupations of culturally diverse people. If occupational therapy is to address meaningful occupations, attention should be paid to occupations concerned with belonging, connecting, and contributing to others.

  17. Boots on Mars: Earth Independent Human Exploration of Mars

    Science.gov (United States)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  18. Exploring possible human influences on the evolution of Darwin's finches.

    Science.gov (United States)

    De León, Luis Fernando; Raeymaekers, Joost A M; Bermingham, Eldredge; Podos, Jeffrey; Herrel, Anthony; Hendry, Andrew P

    2011-08-01

    Humans are an increasingly common influence on the evolution of natural populations. Potential arenas of influence include altered evolutionary trajectories within populations and modifications of the process of divergence among populations. We consider this second arena in the medium ground finch (Geospiza fortis) on Santa Cruz Island, Galápagos, Ecuador. Our study compared the G. fortis population at a relatively undisturbed site, El Garrapatero, to the population at a severely disturbed site, Academy Bay, which is immediately adjacent to the town of Puerto Ayora. The El Garrapatero population currently shows beak size bimodality that is tied to assortative mating and disruptive selection, whereas the Academy Bay population was historically bimodal but has lost this property in conjunction with a dramatic increase in local human population density. We here evaluate potential ecological-adaptive drivers of the differences in modality by quantifying relationships between morphology (beak and head dimensions), functional performance (bite force), and environmental characteristics (diet). Our main finding is that associations among these variables are generally weaker at Academy Bay than at El Garrapatero, possibly because novel foods are used at the former site irrespective of individual morphology and performance. These results are consistent with the hypothesis that the rugged adaptive landscapes promoting and maintaining diversification in nature can be smoothed by human activities, thus hindering ongoing adaptive radiation.

  19. Solar Power System Evaluated for the Human Exploration of Mars

    Science.gov (United States)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  20. Exploring Life Support Architectures for Evolution of Deep Space Human Exploration

    Science.gov (United States)

    Anderson, Molly S.; Stambaugh, Imelda C.

    2015-01-01

    Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.

  1. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    2009-12-01

    Full Text Available Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere

  2. Revolutionary Concepts of Radiation Shielding for Human Exploration of Space

    Science.gov (United States)

    Adams, J. H., Jr.; Hathaway, D. H.; Grugel, R. N.; Watts, J. W.; Parnell, T. A.; Gregory, J. C.; Winglee, R. M.

    2005-01-01

    This Technical Memorandum covers revolutionary ideas for space radiation shielding that would mitigate mission costs while limiting human exposure, as studied in a workshop held at Marshall Space Flight Center at the request of NASA Headquarters. None of the revolutionary new ideas examined for the .rst time in this workshop showed clear promise. The workshop attendees felt that some previously examined concepts were de.nitely useful and should be pursued. The workshop attendees also concluded that several of the new concepts warranted further investigation to clarify their value.

  3. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one...... or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific...... background weathering of P); global freshwater use (system change (

  4. The contamination impact of human exploration to a subterranean environment and the implications for further crewed space exploration

    Science.gov (United States)

    Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa

    2016-07-01

    The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.

  5. Exploration of Multifocal Rod Electroretinograms Recording in Human

    Institute of Scientific and Technical Information of China (English)

    Changzheng Chen; Lezheng Wu; De-Zheng Wu; Shixian Long; Jiongji Liang; Futian Jiang; Libing Jiang

    2002-01-01

    Purpose:To test the feasibility of recording rod multifocal electroretinograms (ERG) in humans and observe appropriate recording conditions.Methods: Multifocal rod ERG were recorded using a stimulus array of 61 equalsized hexagons in two normal subjects after the dark adaptation. Flashes were blue (W47B). Blank frames between two successive flashes of hexagons varied from 0 to 14. Length of the m-sequence, bandwidth, flash frequency, flash intensities and background intensities were changed to obtain appropriate recording conditions for the clinical use.Results:Multifocal rod ERG were clearly recordable and well formed. They had an early implicit time, very small negative wave and a late implicit time, large positive wave. The positive wave was bimodal, whose timing and waveform were similar to the full-field rod ERG. The local response amplitudes can be suppressed with increase in flash frequency or background intensity, decrease in flash intensity or the size of stimulus elements.Conclusions: Multifocal rod ERG can be recorded in human and can provide topographical maps of retinal function that have clinical usage. 212-1 m-sequence length, 3F blank frames and 3~ 300 Hz bandwidth were suggested to appropriate recording conditions.

  6. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Science.gov (United States)

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  7. Exploring Entrainment Patterns of Human Emotion in Social Media.

    Directory of Open Access Journals (Sweden)

    Saike He

    Full Text Available Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  8. Exploring the world of human development and reproduction.

    Science.gov (United States)

    Red-Horse, Kristy; Drake, Penelope M; Fisher, Susan

    2014-01-01

    Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation.

  9. Pesticides and human diabetes: a link worth exploring?

    Science.gov (United States)

    Swaminathan, K

    2013-11-01

    It is no exaggeration to claim that the 'diabetes epidemic' has become a 'runaway train' causing huge health and economic consequences, especially in the developing nations. Traditionally, the risk factors for diabetes have largely focused on genetics and lifestyle. Great emphasis is placed on lifestyle measures and finding novel pharmacological treatment options to combat diabetes, but there is increasing evidence linking environmental pollutants, especially pesticides, to the development of insulin resistance and Type 2 diabetes. Pesticide use has increased dramatically worldwide and the effects of pesticides on glucose metabolism are too significant for a possible diabetogenic link to be dismissed. The aim of this review article was to assess the links between pesticides and human diabetes with the goal of stimulating further research in this area. © 2013 The Author. Diabetic Medicine © 2013 Diabetes UK.

  10. Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA

  11. 391 Ways to Explore Arts and Humanities Careers: Classroom Activities in Dance, Music, Theater and Media, Visual Arts and Crafts, Writing, Humanities.

    Science.gov (United States)

    Hansen, Mary Lewis; And Others

    One of a series of 11 arts and humanities career exploration guides for grade 7-12 teachers, counselors, and students, this curriculum guide is intended to help teachers help students explore arts and humanities careers in regular grade 7-12 arts and humanities courses. Focus throughout the four sections is on augmenting, rather than replacing,…

  12. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Science.gov (United States)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  13. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Science.gov (United States)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  14. Peer-to-Peer Human-Robot Interaction for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  15. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    Science.gov (United States)

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  16. Seeking Asylum: Adolescents Explore the Crossroads of Human Rights Education and Cosmopolitan Critical Literacy

    Science.gov (United States)

    Dunkerly-Bean, Judith; Bean, Thomas; Alnajjar, Khaled

    2014-01-01

    The purpose of this study was to explore middle school (grade 6-8) students' understanding and interpretation of human rights issues with local and global implications as they engaged in the process of creating a film after reading print and multimedia texts and participating in human rights education activities. As the students explored…

  17. Seeking Asylum: Adolescents Explore the Crossroads of Human Rights Education and Cosmopolitan Critical Literacy

    Science.gov (United States)

    Dunkerly-Bean, Judith; Bean, Thomas; Alnajjar, Khaled

    2014-01-01

    The purpose of this study was to explore middle school (grade 6-8) students' understanding and interpretation of human rights issues with local and global implications as they engaged in the process of creating a film after reading print and multimedia texts and participating in human rights education activities. As the students explored…

  18. Crabby Interactions: Fifth Graders Explore Human Impact on the Blue Crab Population

    Science.gov (United States)

    Jeffery, Tonya D.; McCollough, Cherie A.; Moore, Kim

    2016-01-01

    This article describes a two-day lesson in which fifth-grade students took on the role of marine biology scientists, using their critical-thinking and problem-solving skills to explore human impact on the blue crab ecosystem. The purpose of "Crabby Interactions" was to help students understand the impact of human activities on the local…

  19. The Role of Lunar Development in Human Exploration of the Solar System

    Science.gov (United States)

    Mendell, Wendell W.

    1999-01-01

    Human exploration of the solar system can be said to have begun with the Apollo landings on the Moon. The Apollo Project was publicly funded with the narrow technical objective of landing human beings on the Moon. The transportation and life support systems were specialized technical designs, developed in a project management environment tailored to that objective. Most scenarios for future human exploration assume a similar long-term commitment of public funds to a narrowly focused project managed by a large, monolithic organization. Advocates of human exploration of space have not yet been successful in generating the political momentum required to initiate such a project to go to the Moon or to Mars. Alternative scenarios of exploration may relax some or all of the parameters of organizational complexity, great expense, narrow technical focus, required public funding, and control by a single organization. Development of the Moon using private investment is quite possibly a necessary condition for alternative scenarios to succeed.

  20. A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia

    Science.gov (United States)

    Gallegos, Z. E.; Newsom, H. E.

    2015-10-01

    This abstract highlights a previously unexplored area in the Hellas Planitia region of Mars. The exploration zone proposed offers scientifically compelling regions of interest, as well as abundant resources for reoccurring human missions.

  1. Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities

    OpenAIRE

    Aubert, André E.; André E. Larina, Irina; Momken, Iman; Blanc, Stéphane; White, Olivier; Prisk, Kim; Linnarsson, Dag

    2016-01-01

    International audience; The THESEUS project (Towards Human Exploration of Space: aEUropean Strategy) was initiated within the seventh FrameworkProgramme by the European Commission. This project aimed toprovide a cross-cutting, life science-based roadmap for Europe’sstrategy towards human exploration of space, especially for deepspace missions and its relevance to applications on Earth. Toaddress these challenges, relevance of space research on thecardiovascular system, the lungs and kidneys, ...

  2. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  3. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  4. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  5. HExpoChem: a systems biology resource to explore human exposure to chemicals

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian Gram

    2013-01-01

    of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical......Summary: Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development......–protein interactions have been enriched with a quality-scored human protein–protein interaction network, a protein–protein association network and a chemical–chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment...

  6. Taking a "Giant Tour" to Explore the Human Body

    Science.gov (United States)

    Davies, Dan

    2013-01-01

    Helping children to visualise what is inside them and how their bodies work can be a challenge, since teachers are often reliant on secondary sources or investigations that can only measure outward signs (such as pulse rate). Another way is to involve the children in an imaginative role-play exercise where they explore the insides of a…

  7. Organizational Effectiveness: Exploring What It Means in Human Resource Development

    Science.gov (United States)

    Abston, Kristie A.; Stout, Vickie J.

    2006-01-01

    The literature on organizational effectiveness was reviewed to explore the various definitions and terminology used as well as to identify the criteria, correlates, theories and/or models, and measurement/assessment methods. AHRD Conference Proceedings for 2004 and 2005 were analyzed for usage of the phrase. Results indicated that researchers and…

  8. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    Science.gov (United States)

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  9. Safety Characteristics in System Application Software for Human Rated Exploration

    Science.gov (United States)

    Mango, E. J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development.

  10. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  11. Supporting Human Activities - Exploring Activity-Centered Computing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Bardram, Jakob

    2002-01-01

    In this paper we explore an activity-centered computing paradigm that is aimed at supporting work processes that are radically different from the ones known from office work. Our main inspiration is healthcare work that is characterized by an extreme degree of mobility, many interruptions, ad...... objects. We also present an exploratory prototype design and first implementation and present some initial results from evaluations in a healthcare environment....

  12. Metrological analysis of the human foot: 3D multisensor exploration

    Science.gov (United States)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  13. Human relationships: an exploration of loneliness and touch.

    Science.gov (United States)

    Playfair, Catherine

    The aim of this article is to provide a cursory review of some of the literature relating to loneliness, existentialism and touch. With reference to the critical incident analysis (see Box 1), a reflection on the learning that has been achieved both intrapersonally and interpersonally will also be provided. A consideration of how exactly this experience of structured reflection may be used to enhance and develop practice will also be explored. The review will analyze the key concepts of loneliness, existentialism, the therapeutic relationship and touch within the realms of nursing practice, specifically in relation to death and dying. This article seeks to highlight the importance of having an understanding of loneliness in nursing, particularly when caring for patients who are dying.

  14. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES

  15. Retrospect to Human Deep Space Exploration History and Its Prospect in China

    Institute of Scientific and Technical Information of China (English)

    Ye Peijian; Peng Jing

    2006-01-01

    The definition, goal and impacts of deep space exploration are summarized. After a retrospect to past deep exploration activities of human being to date, both recent deep space missions and future missions in 5 years are also listed. There are also brief introductions about the future strategic plans of NASA, ESA,RAKA, JAXA and ISRO. Then authors analyze some important features of global deep space exploration scheme. Key technologies of deep space exploration are also determined. The status of China deep exploration plan is introduced including CE-1 lunar orbiter, the subsequent China Lunar Exploration Program, especially proposal for the second stage of China Lunar Exploration Program, Mars exploration program of China with Russia Kuafu mission, Hard X-Ray Modulated Telescope, Space Solar Telescope. At the end, some suggestions for China future deep space exploration are made.

  16. Human factors research as part of a Mars exploration analogue mission on Devon Island

    Science.gov (United States)

    Binsted, Kim; Kobrick, Ryan L.; Griofa, Marc Ó.; Bishop, Sheryl; Lapierre, Judith

    2010-06-01

    Human factors research is a critical element of space exploration as it provides insight into a crew's performance, psychology and interpersonal relationships. Understanding the way humans work in space-exploration analogue environments permits the development and testing of countermeasures for and responses to potential hazardous situations, and can thus help improve mission efficiency and safety. Analogue missions, such as the one described here, have plausible mission constraints and operational scenarios, similar to those that a real Mars crew would experience. Long duration analogue studies, such as those being conducted at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada, offer an opportunity to study mission operations and human factors in a semi-realistic environment, and contribute to the design of missions to explore the Moon and Mars. The FMARS XI Long Duration Mission (F-XI LDM) was, at four months, the longest designed analogue Mars mission conducted to date, and thus provides a unique insight into human factors issues for long-duration space exploration. Here, we describe the six human factors studies that took place during F-XI LDM, and give a summary of their results, where available. We also present a meta-study, which examined the impact of the human-factors research itself on crew schedule and workload. Based on this experience, we offer some lessons learnt: some aspects (perceived risk and crew motivation, for example) of analogue missions must be realistic for study results to be valid; human factors studies are time-consuming, and should be fully integrated into crew schedules; and crew-ground communication and collaboration under long-term exploration conditions can present serious challenges.

  17. Implementation of Safety and Human-Rating on Lockheed Martin's Crew Exploration Vehicle

    Science.gov (United States)

    Saemisch, Michael K.

    2005-12-01

    Lockheed Martin leads an industry and academic team to develop requirements and the design of NASA's Crew Exploration Vehicle (CEV) in support of the United States' Vision for Space Exploration. This paper discusses the safety and human-rating requirements, challenges, and approaches taken by the team focusing on safety and human-rating design decisions and trade- offs. Examples of these requirements are failure- tolerance, crew abort/escape, "design for minimum risk", computer-based control, all reviewed by a new NASA human-rating process. NASA allowed contractors freedom in the approaches they could pursue, which offered the opportunity for safety and human-rating goals to influence the basic concepts and major design decisions made early in the program, which drive the major safety features (and limitations) of the CEV project. The paper discusses the method developed by Lockheed Martin, HazComp, to evaluate hazards of proposed concept options, without the benefit of detailed design data used to provide a hazard-based "safety figure of merit" and substantiating data to the trade study decision process. The importance of a well- developed preliminary hazard analysis to support these evaluations is discussed. Major NASA safety and human-rating requirements and their evolution are also discussed along with issues, concerns and recommendations for future human space exploration safety requirements and safety focus.

  18. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  19. A Path to Planetary Protection Requirements for Human Exploration: A Literature Review and Systems Engineering Approach

    Science.gov (United States)

    Johnson, James E.; Conley, Cassie; Siegel, Bette

    2015-01-01

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literature review of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current 'state of knowledge'. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection.

  20. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    Science.gov (United States)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  1. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    Science.gov (United States)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; Dickson, J. T.; Elphic, R. C.; Eppler, D. B.; Fernandez-Remolar, D. C.; Head, J. W.; Helper, M.; Gruener, J. E.; Heldmann, J.; Hipkin, V.; Lane, M. D.; Levy, J.; Moersch, J.; Ori, G. G.; Peach, L.; Poulet, F.

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  2. Humanities data in R exploring networks, geospatial data, images, and text

    CERN Document Server

    Arnold, Taylor

    2015-01-01

    This pioneering book teaches readers to use R within four core analytical areas applicable to the Humanities: networks, text, geospatial data, and images. This book is also designed to be a bridge: between quantitative and qualitative methods, individual and collaborative work, and the humanities and social scientists. Exploring Humanities Data Types with R does not presuppose background programming experience. Early chapters take readers from R set-up to exploratory data analysis (continuous and categorical data, multivariate analysis, and advanced graphics with emphasis on aesthetics and facility). Everything is hands-on: networks are explained using U.S. Supreme Court opinions, and low-level NLP methods are applied to short stories by Sir Arthur Conan Doyle. The book’s data, code, appendix with 100 basic programming exercises and solutions, and dedicated website are valuable resources for readers. The methodology will have wide application in classrooms and self-study for the humanities, but also for use...

  3. The ambiguity of human ashes: Exploring encounters with cremated remains in the Netherlands

    NARCIS (Netherlands)

    Mathijssen, B.M.H.P.

    2016-01-01

    This article explores cremation and disposal practices in the Netherlands, focusing on the attitudes and experiences of bereaved Dutch people in relation to cremated remains. In academic and professional narratives, human ashes are commonly described as “important,” as “sacred,” and as a vehicle to

  4. Guides to Sustainable Connections? Exploring Human-Nature Relationships among Wilderness Travel Leaders

    Science.gov (United States)

    Grimwood, Bryan S. R.; Haberer, Alexa; Legault, Maria

    2015-01-01

    This paper explores and critically interprets the role wilderness travel may play in fostering environmental sustainability. The paper draws upon two qualitative studies that sought to understand human-nature relationships as experienced by different groups of wilderness travel leaders in Canada. According to leaders involved in the studies,…

  5. Shijun Ma: keeping on exploring new areas to meet the challenge of human and social demands

    Institute of Scientific and Technical Information of China (English)

    Le Kang; Ming Li

    2011-01-01

    @@ Professor Shijun Ma (1915-1991) is a renowned Chinese ecologist.Shijun, literally in Chinese, means the finest horse,which also perfectly describes his academic lifc 50 years of non-stop traveling and exploring new areas, from insects to human being, from experimental science to systematic science, from ecology to environmental science, and from nature to society.

  6. Human Body Explorations: Hands-On Investigations of What Makes Us Tick.

    Science.gov (United States)

    Kalumuck, Karen E.

    This book presents science activities on the human body with materials that can be purchased in a grocery store or pharmacy. Each activity includes an explorer and facilitator guide. Activities include: (1) "Naked Egg"; (2) "Cellular Soap Opera"; (3) "Acid in Your Stomach"; (4) "How Much Do You C?"; (5)…

  7. 76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Science.gov (United States)

    2011-10-13

    ... Status Space Launch System/Multi-Purpose Crew Vehicle Status Overall Human Exploration and Operations (HEO) Mission Directorate Status Status of Commercial Orbital Transportation Services and Commercial... will need to show valid, officially-issued picture identification such as a driver's license to...

  8. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    Science.gov (United States)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  9. Exploring the Strategic Role of Human Resource Development in Organizational Crisis Management

    Science.gov (United States)

    Wang, Jia; Hutchins, Holly M.; Garavan, Thomas N.

    2009-01-01

    Crisis management has been a largely overlooked territory in human resource development (HRD) despite the increasingly recognized impact of organizational crises on the individual and organizational performance. This article explores the strategic role of HRD in the context of organizational crisis management using Garavan's strategic HRD model as…

  10. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  11. Decision Analysis Methods Used to Make Appropriate Investments in Human Exploration Capabilities and Technologies

    Science.gov (United States)

    Williams-Byrd, Julie; Arney, Dale C.; Hay, Jason; Reeves, John D.; Craig, Douglas

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond Earth for extended periods of time. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Prudent investments in capability and technology developments, based on mission need, are critical for enabling a campaign of human exploration missions. There are a wide variety of capabilities and technologies that could enable these missions, so it is a major challenge for NASA's Human Exploration and Operations Mission Directorate (HEOMD) to make knowledgeable portfolio decisions. It is critical for this pioneering initiative that these investment decisions are informed with a prioritization process that is robust and defensible. It is NASA's role to invest in targeted technologies and capabilities that would enable exploration missions even though specific requirements have not been identified. To inform these investments decisions, NASA's HEOMD has supported a variety of analysis activities that prioritize capabilities and technologies. These activities are often based on input from subject matter experts within the NASA community who understand the technical challenges of enabling human exploration missions. This paper will review a variety of processes and methods that NASA has used to prioritize and rank capabilities and technologies applicable to human space exploration. The paper will show the similarities in the various processes and showcase instances were customer specified priorities force modifications to the process. Specifically

  12. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  13. Towards a developmental ethology: exploring Deleuze's contribution to the study of health and human development.

    Science.gov (United States)

    Duff, Cameron

    2010-11-01

    This article explores the work of French thinker Gilles Deleuze and argues for the application of his central ideas to the study of health and human development. Deleuze's work furnishes a host of ontological and epistemological resources for such analysis, ushering in new methods and establishing new objects of inquiry. Of principal interest are the inventive conceptualizations of affect, multiplicity and relationality that Deleuze proposes, and the novel reading of subjectivity that these concepts support. This article introduces a developmental ethology in exploring Deleuze's contributions to the study of human development and its varied courses and processes. Taken from a Deleuzean perspective, human development will be characterized as a discontinuous process of affective and relational encounters. It will be argued further that human development is advanced in the provision of new affective sensitivities and new relational capacities. This course is broadly consistent with existing approaches to human development--particularly those associated with Amartya Sen's capabilities model--with the considerable advantage of offering a more viable working theory of the ways in which developmental capacities are acquired, cultivated and maintained. A provisional research agenda consistent with this developmental ethology is offered by way of conclusion.

  14. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    Science.gov (United States)

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  15. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    Science.gov (United States)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  16. Development of Carbon Dioxide Removal Systems for NASA's Deep Space Human Exploration Missions 2016-2017

    Science.gov (United States)

    Knox, James C.

    2017-01-01

    NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.

  17. The Human Space Life Sciences Critical Path Roadmap Project: A Strategy for Human Space Flight through Exploration-Class Missions

    Science.gov (United States)

    Sawin, Charles F.

    1999-01-01

    The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.

  18. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  19. Can your country make you sick? Multi-level explorations of population health and human rights in a global perspective

    NARCIS (Netherlands)

    Witvliet, M.I.

    2013-01-01

    Research investigating health and human rights from a socio-epidemiological perspective is emerging. Still there is a noticeable paucity of research that empirically links population health to human rights concerns. In this thesis, three examples relevant to human rights are explored. We investigate

  20. Can your country make you sick? Multi-level explorations of population health and human rights in a global perspective

    NARCIS (Netherlands)

    Witvliet, M.I.

    2013-01-01

    Research investigating health and human rights from a socio-epidemiological perspective is emerging. Still there is a noticeable paucity of research that empirically links population health to human rights concerns. In this thesis, three examples relevant to human rights are explored. We investigate

  1. Robotic Reconnaissance Missions to Small Bodies and Their Potential Contributions to Human Exploration

    Science.gov (United States)

    Abell, P. A.; Rivkin, A. S.

    2015-01-01

    Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team

  2. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    Science.gov (United States)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; Lawrence, James; Seibert, Marc; Schier, Jim; Frank, Jeremy; Alexander, Leslie; Ruff, Gary; Soeder, Jim; Guinn, Joseph; Stafford, Matthew

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant

  3. Performance of humans vs. exploration algorithms on the Tower of London Test.

    Directory of Open Access Journals (Sweden)

    Eric Fimbel

    Full Text Available The Tower of London Test (TOL used to assess executive functions was inspired in Artificial Intelligence tasks used to test problem-solving algorithms. In this study, we compare the performance of humans and of exploration algorithms. Instead of absolute execution times, we focus on how the execution time varies with the tasks and/or the number of moves. This approach used in Algorithmic Complexity provides a fair comparison between humans and computers, although humans are several orders of magnitude slower. On easy tasks (1 to 5 moves, healthy elderly persons performed like exploration algorithms using bounded memory resources, i.e., the execution time grew exponentially with the number of moves. This result was replicated with a group of healthy young participants. However, for difficult tasks (5 to 8 moves the execution time of young participants did not increase significantly, whereas for exploration algorithms, the execution time keeps on increasing exponentially. A pre-and post-test control task showed a 25% improvement of visuo-motor skills but this was insufficient to explain this result. The findings suggest that naive participants used systematic exploration to solve the problem but under the effect of practice, they developed markedly more efficient strategies using the information acquired during the test.

  4. Exploring Human Mobility Patterns Based on Location Information of US Flights

    CERN Document Server

    Jiang, Bin

    2011-01-01

    A range of early studies have been conducted to illustrate human mobility patterns using different tracking data, such as dollar notes, cell phones and taxicabs. Here, we explore human mobility patterns based on massive tracking data of US flights. Both topological and geometric properties are examined in detail. We found that topological properties, such as traffic volume (between airports) and degree of connectivity (of individual airports), including both in- and outdegrees, follow a power law distribution but not a geometric property like travel lengths. The travel lengths exhibit an exponential distribution rather than a power law with an exponential cutoff as previous studies illustrated. We further simulated human mobility on the established topologies of airports with various moving behaviors and found that the mobility patterns are mainly attributed to the underlying binary topology of airports and have little to do with other factors, such as moving behaviors and geometric distances. Apart from the ...

  5. Human Mission to Asteroids in the Context of Future Space Exploration Studies .

    Science.gov (United States)

    Messidoro, P.; Fenoglio, F.; Pasquinelli, M.; Gottlieb, J.

    The final goal, for the foreseeable future, of the Human Exploration of the Solar System is to land a crew on the Mars Surface (and to bring it back). A wide array of capabilities has to be developed and demonstrated before attempting such a risky endeavor; intermediate steps are therefore needed, also to comply with budget constraints. Human missions to Near Earth Objects (NEOs) and specifically Asteroids (NEAs) are among the most suitable candidates, thanks to high scientific interest, good opportunities for testing technologies and crew operations, and to mature Earth protection capabilities. In the following, a review of existing NEA Human mission concepts is provided and a new one, characterized by the exploitation of Nuclear Thermal Propulsion to reduce overall lift-off mass, is proposed.

  6. NASA'S Solar System Exploration Research Virtual Institute: An international approach toward bringing science and human exploration together for mutual benefit

    Science.gov (United States)

    Schmidt, Gregory

    2016-07-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and

  7. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    Science.gov (United States)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not

  8. Saccades during visual exploration align hippocampal 3-8 Hz rhythms in human and non-human primates

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2013-08-01

    Full Text Available Visual exploration in primates depends on saccadic eye movements that cause alternations of neural suppression and enhancement. This modulation extends beyond retinotopic areas, and is thought to facilitate perception; yet saccades may also influence brain regions critical for forming memories of these exploratory episodes. The hippocampus, for example, shows oscillatory activity that is generally associated with encoding of information. Whether or how hippocampal oscillations are influenced by eye movements is unknown. We recorded the neural activity in the human and macaque hippocampus during visual scene search. Across species, saccadic eye movements were associated with a time-limited alignment of a low-frequency (3-8 Hz rhythm. The phase alignment depended on the task and not only on eye movements per se, and the frequency band was not a direct consequence of saccade rate. Hippocampal theta-frequency oscillations are produced by other mammals during repetitive exploratory behaviors, including whisking, sniffing, echolocation and locomotion. The present results may reflect a similar yet distinct primate homologue supporting active perception during exploration.

  9. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  10. Human cortical θ during free exploration encodes space and predicts subsequent memory.

    Science.gov (United States)

    Snider, Joseph; Plank, Markus; Lynch, Gary; Halgren, Eric; Poizner, Howard

    2013-09-18

    Spatial representations and walking speed in rodents are consistently related to the phase, frequency, and/or amplitude of θ rhythms in hippocampal local field potentials. However, neuropsychological studies in humans have emphasized the importance of parietal cortex for spatial navigation, and efforts to identify the electrophysiological signs of spatial navigation in humans have been stymied by the difficulty of recording during free exploration of complex environments. We resolved the recording problem and experimentally probed brain activity of human participants who were fully ambulant. On each of 2 d, electroencephalography was synchronized with head and body movement in 13 subjects freely navigating an extended virtual environment containing numerous unique objects. θ phase and amplitude recorded over parietal cortex were consistent when subjects walked through a particular spatial separation at widely separated times. This spatial displacement θ autocorrelation (STAcc) was quantified and found to be significant from 2 to 8 Hz within the environment. Similar autocorrelation analyses performed on an electrooculographic channel, used to measure eye movements, showed no significant spatial autocorrelations, ruling out eye movements as the source of STAcc. Strikingly, the strength of an individual's STAcc maps from day 1 significantly predicted object location recall success on day 2. θ was also significantly correlated with walking speed; however, this correlation appeared unrelated to STAcc and did not predict memory performance. This is the first demonstration of memory-related, spatial maps in humans generated during active spatial exploration.

  11. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee

    2001-12-01

    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  12. Exploring the human body space: A geographical information system based anatomical atlas

    Directory of Open Access Journals (Sweden)

    Antonio Barbeito

    2016-06-01

    Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.

  13. Restorative urban open space: Exploring the spatial configuration of human emotional fulfilment in urban open space

    OpenAIRE

    Thwaites, K.; Helleur, E.; Simkins, I.M.

    2005-01-01

    The capacity of outdoor settings to benefit human well being is well established by research. Examples of restorative settings can be found throughout history and are still applied today in health-care facilities, as healing or restorative gardens for the sick, but their wider significance in the urban public realm remains insufficiently explored. A conceptual framework for restorative urban open space based on mosaics of linked and nested spaces woven into the urban fabric is presented. The ...

  14. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    Science.gov (United States)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  15. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  16. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    Science.gov (United States)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  17. Vision of Space Exploration Possibilities and limits of a human space conquest.

    Science.gov (United States)

    Zelenyi, Lev

    Few generations of a schoolboys, which later become active and productive space researchers, have been brought up on a science fiction books. These books told us about travels to other Galaxies with velocities larger then velocity of light, meetings with friendly aliens (necessarily with communistic mentalities in Soviet Union books), star wars with ugly space monsters (in the western hemisphere books), etc. Beginning of Space age (4/10/1957) opened the door to a magic box, full of scientific discoveries, made mostly by robotic satellites and spacecraft. However, already the first human space trips clearly demonstrated that space is vigorously hostile to a human beings. Space medicine during the years since Gagarin flight, made an outstanding progress in supporting human presence at orbital stations, but the radiation hazards and problem of hypomagnetism are still opened and there is no visible path to their solution. So the optimistic slogan of 60-ies “Space is Our Place” is not supported by an almost half a century practice. Space never will be a comfortable place for soft and vulnerable humans? There is a general consensus that man will be on Mars during this century (or even its first part). This is very difficult but task it seems to be realistic after the significant advance of modern technologies will be made. But, is there any real need for humans to travel beyond the Mars orbit or to the inner regions of the Solar system? Will the age of Solar system exploration comes to its logical as it was described by Stanislav Lem in his famous book “Return from stars”? The author of this talk has more questions than answers, and thinks that PEX1 Panel on Exploration is just a right place to discuss these usually by passed topics.

  18. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  19. Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework.

    Science.gov (United States)

    Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G

    2016-08-02

    Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.

  20. NEEMO 15: Evaluation of human exploration systems for near-Earth asteroids

    Science.gov (United States)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2013-08-01

    The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on evaluating techniques for exploring near-Earth asteroids (NEAs). It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of "far-field survey" approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of objectives developed by the science team. These objectives were based on review and discussion of previous related marine science research, including previous marine science saturation missions conducted at the Aquarius habitat. AUV data were used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the "near-field survey" approach that is expected to be performed by a Multi-Mission Space Exploration Vehicle (MMSEV) during a human mission to a NEA before extravehicular activities (EVAs) are conducted. In addition to the science objectives that were pursued, the NEEMO 15 traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the "near-field survey" in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crew members, tools, and equipment that could be

  1. An alternative approach to solar system exploration providing safety of human mission to Mars.

    Science.gov (United States)

    Gitelson, J I; Bartsev, S I; Mezhevikin, V V; Okhonin, V A

    2003-01-01

    For systematic human Mars exploration, meeting crew safety requirements, it seems perspective to assemble into a spacecraft: an electrical rocket, a well-shielded long-term life support system, and a manipulator-robots operating in combined "presence effect" and "master-slave" mode. The electrical spacecraft would carry humans to the orbit of Mars, providing short distance (and low signal time delay) between operator and robot-manipulators, which are landed on the surface of the planet. Long-term hybrid biological and physical/chemical LSS could provide environment supporting human health and well being. Robot-manipulators operating in "presence effect" and "master-slave" mode exclude necessity of human landing on Martian surface decreasing the level of risk for crew. Since crewmen would not have direct contact with the Martian environment then the problem of mutual biological protection is essentially reduced. Lightweight robot-manipulators, without heavy life support systems and without the necessity of returning to the mother vessel, could be sent as scouts to different places on the planet surface, scanning the most interesting for exobiological research site. Some approximate estimations of electric spacecraft, long-term hybrid LSS, radiation protection and mission parameters are conducted and discussed. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. Exploring the Relationship between Human Capital Investment and Corporate Financial Performance of Jordanian Industrial Sectors

    Directory of Open Access Journals (Sweden)

    Faris Nasif ALSHUBIRI

    2013-12-01

    Full Text Available The revolution of globalization, computerization and information technology has entered to Jordanian market. This phenomenon requires company's attention of human element and the acquired knowledge, experience and the development of the so-called concept of intellectual capital.(IC In this study I used only the human capital as a part of IC. This study aims to exploring the relationship between human capital investment (HCI, and corporate financial performance. This study used an 11 industrial sectors listed of Amman Stock Exchange from 2005to 2011. Correlation analysis tests used in this study and the results indicate the high positive significant relationship between HCI and corporate financial performance related to, ROE , PTBV , log of sales , log of assets , DPS and ICR but no significant relationship between HCI and WCTO. The researcher recommends industrial companies to strengthen and stimulate the concept of human capital in the companies and the need for develop administrative innovation program. For future analysis may be used more sectors listed in market in addition used the all parts of intellectual capital related to structural and physical capital with corporate financial performance.

  3. Ubiquitous Geo-Sensing for Context-Aware Analysis: Exploring Relationships between Environmental and Human Dynamics

    Directory of Open Access Journals (Sweden)

    Euro Beinat

    2012-07-01

    Full Text Available Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC. The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges.

  4. A combined approach exploring gene function based on Worm-Human Orthology

    Directory of Open Access Journals (Sweden)

    Johnsen Robert

    2005-05-01

    Full Text Available Abstract Background Many aspects of the nematode Caenorhabditis elegans biology are conserved between invertebrates and vertebrates establishing this particular organism as an excellent genetic model. Because of its small size, large populations and self-fertilization of the hermaphrodite, functional predictions carried out by genetic modifications as well as RNAi screens, can be rapidly tested. Results In order to explore the function of a set of C. elegans genes of unknown function, as well as their potential functional roles in the human genome, we performed a phylogenetic analysis to select the most probable worm orthologs. A total of 13 C. elegans genes were subjected to down- regulation via RNAi and characterization of expression profiles using GFP strains. Previously unknown distinct expression patterns were observed for four of the analyzed genes, as well as four visible RNAi phenotypes. In addition, subcellular protein over-expression profiles of the human orthologs for seven out of the thirteen genes using human cells were also analyzed. Conclusion By combining a whole-organism approach using C. elegans with complementary experimental work done on human cell lines, this analysis extends currently available information on the selected set of genes.

  5. A combined approach exploring gene function based on Worm-Human Orthology

    Science.gov (United States)

    Tamas, Ivica; Hodges, Emily; Dessi, Patrick; Johnsen, Robert; Vaz Gomes, Ana

    2005-01-01

    Background Many aspects of the nematode Caenorhabditis elegans biology are conserved between invertebrates and vertebrates establishing this particular organism as an excellent genetic model. Because of its small size, large populations and self-fertilization of the hermaphrodite, functional predictions carried out by genetic modifications as well as RNAi screens, can be rapidly tested. Results In order to explore the function of a set of C. elegans genes of unknown function, as well as their potential functional roles in the human genome, we performed a phylogenetic analysis to select the most probable worm orthologs. A total of 13 C. elegans genes were subjected to down- regulation via RNAi and characterization of expression profiles using GFP strains. Previously unknown distinct expression patterns were observed for four of the analyzed genes, as well as four visible RNAi phenotypes. In addition, subcellular protein over-expression profiles of the human orthologs for seven out of the thirteen genes using human cells were also analyzed. Conclusion By combining a whole-organism approach using C. elegans with complementary experimental work done on human cell lines, this analysis extends currently available information on the selected set of genes. PMID:15877817

  6. Issues of exploration: human health and wellbeing during a mission to Mars

    Science.gov (United States)

    White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.

    2003-01-01

    Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  7. Exploring Visual Evidence of Human Impact on the Environment with Planetary-Scale Zoomable Timelapse Video

    Science.gov (United States)

    Sargent, R.; Egge, M.; Dille, P. S.; O'Donnell, G. D.; Herwig, C.

    2016-12-01

    Visual evidence ignites curiosity and inspires advocacy. Zoomable imagery and video on a planetary scale provides compelling evidence of human impact on the environment. Earth Timelapse places the observable impact of 30+ years of human activity into the hands of policy makers, scientists, and advocates, with fluidity and speed that supports inquiry and exploration. Zoomability enables compelling narratives and ready apprehension of environmental changes, connecting human-scale evidence to regional and ecosystem-wide trends and changes. Leveraging the power of Google Earth Engine, join us to explore 30+ years of Landset 30m RGB imagery showing glacial retreat, agricultural deforestation, irrigation expansion, and the disappearance of lakes. These narratives are enriched with datasets showing planetary forest gain/loss, annual cycles of agricultural fires, global changes in the health of coral reefs, trends in resource extraction, and of renewable energy development. We demonstrate the intuitive and inquiry-enabling power of these planetary visualizations, and provide instruction on how scientists and advocates can create and share or contribute visualizations of their own research or topics of interest.

  8. Hematopoietic Stem Cell Therapy as a Counter-Measure for Human Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Roach, A.-N.; Ramsahai, S.; Kim, B. C.; Fitzgerald, W.; Riley, D. A.; Gonda, S. R.

    2004-01-01

    Human exploration of deep space depends, in part, on our ability to counter severe/invasive disorders that astronauts experience in space environments. The known symptoms include hematological/cardiac abnormalities,bone and muscle losses, immunodeficiency, neurological disorders, and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, we have advanced a hypothesis that ome of the space-caused disorders maybe amenable to hematopoietis stem cell therapy(HSCT) so as to maintain promote human exploration of deep space. Using mouse models of human anemia beta-thaiassemia) as well as spaceflight (hindlimb unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, in the case of HSCT for muscle loss, the beta-galactosidese marked HSCs were detected in the hindlimbs of unloaded mouse following transplantation by -X-gal wholemaunt staining procedure. Histochemicaland physical analyses indicated structural contribution of HSCs to the muscle. HSCT for immunodeficiency was investigated ising beta-galactosidese gene-tagged Escherichia coli as the infectious agent. Results of the X-gal staining procedure indicated the rapeutic role of the HSCT. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  9. Using Pareto optimality to explore the topology and dynamics of the human connectome.

    Science.gov (United States)

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Betzel, Richard F; van den Heuvel, Martijn P; Griffa, Alessandra; Hagmann, Patric; Thiran, Jean-Philippe; Sporns, Olaf

    2014-10-05

    Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.

  10. Visual exploration patterns of human figures in action: an eye tracker study with art paintings.

    Science.gov (United States)

    Villani, Daniela; Morganti, Francesca; Cipresso, Pietro; Ruggi, Simona; Riva, Giuseppe; Gilli, Gabriella

    2015-01-01

    Art exploration is a complex process conditioned by factors at different levels and includes both basic visual principles and complex cognitive factors. The human figure is considered a critical factor attracting the attention in art painting. Using an eye-tracking methodology, the goal of this study was to explore different elements of the human figure performing an action (face and body parts in action) in complex social scenes characterized by different levels of social interaction between agents depicted in scenes (individual vs. social). The sample included 44 laypersons, and the stimuli consisted of 10 fine art paintings representing the figurative style of classical art. The results revealed different scanning patterns of the human figure elements related to the level of social interaction of agents depicted in the scene. The agents' face attracted eye movements in social interaction scenes while the agents' body parts attracted eye movements only when the agents were involved in individual actions. These processes were confirmed specifically in participants with high empathic abilities who became immediately fixated on faces to develop a mimetic engagement with other agents. Future studies integrating other measures would help confirm the results obtained and strengthen their implication for embodiment processes.

  11. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    Science.gov (United States)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  12. Robotic Missions to Small Bodies and Their Potential Contributions to Human Exploration and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andrew S.

    2015-01-01

    Introduction: Robotic missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration and planetary defense. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. These data can also be applied for gaining an understanding of pertinent small body physical characteristics that would also be beneficial for formulating future impact mitigation procedures. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the

  13. Exploring the Animal Turn: Human-animal relations in Science, Society and Culture

    OpenAIRE

    2014-01-01

    Animals' omnipresence in human society makes them both close to and ye tremarkably distant from humans. Human and animal lives have always been entangled, but the way we see and practice the relationships between humans and animals - as close, intertwined, or clearly separate - varies from time to time and between cultures, societies, and even situations. By putting these complex relationships in focus, this anthology investigates the ways in which human society deals with its co-existence wi...

  14. Exploring the implications of social change for human development: perspectives, issues and future directions.

    Science.gov (United States)

    Chen, Xinyin

    2015-02-01

    Researchers have investigated the implications of social change for human development from different perspectives. The studies published in this special section were conducted within Greenfield's theoretical framework (2009). The findings concerning links between specific sociodemographic features (e.g., commercial activities, schooling) and individual cognition and social behaviour are particularly interesting because they tap the underlying forces that drive human development. To further understand the issues in these studies and in the field, a pluralist-constructive perspective is discussed, which emphasises the integration of diverse values and practices in both Western and non-Western societies and its effects on the development of sophisticated competencies in individual adaptation to the changing global community. In addition, several issues are highlighted and some suggestions are provided for future explorations in this field.

  15. Macaques in farms and folklore: exploring the human-nonhuman primate interface in Sulawesi, Indonesia.

    Science.gov (United States)

    Riley, Erin P; Priston, Nancy E C

    2010-09-01

    The island of Sulawesi is an ecologically diverse and anthropogenically complex region in the Indonesian archipelago; it is home to multiple macaque species and a key locus of human-nonhuman primate interconnections. Here, we review the ethnoprimatology of Sulawesi by exploring two primary domains of the human-macaque interface: overlapping resource use and cultural perceptions of macaques. Crop raiding is the primary form of overlapping resource use. While the raiding of cacao plantations predominates in Central and South Sulawesi, subsistence crops (e.g., sweet potato and maize) are most vulnerable on Buton, Southeast Sulawesi. Despite this overlap levels of conflict are generally low, with farmers showing considerable tolerance. This tolerance can be explained by positive perceptions of the macaques despite their crop raiding behavior, and the finding that in some areas macaques figure prominently in local folklore, hence affording them protection. These findings provide some hope for the future management and conservation of these endemic macaques.

  16. An exploration in the will psychology of Otto Rank: human intentionality and individuality.

    Science.gov (United States)

    Isono, Masayo

    2012-12-01

    The author explores the meaning and the importance of the will in Rank's relation-based self-creative, self-constructive psychology and argues for the consideration of the concept of the will in psychoanalysis. The paper shows that Rank's concept of the will explains what gives a human being the impetus to choose an action, positive or negative. When validated by the other, this will, the power of intention, enables a person to create his/her unique individuality. The paper reviews Rank's definition of will and traces the evolution of his ideas of intentionality in his writings. Further, the author discusses how Rank attempts to capture the subtle movements of the human mind as suffused with struggles and dynamic interplay between external and internal forces.

  17. Effects of isolation and confinement on humans-implications for manned space explorations.

    Science.gov (United States)

    Pagel, J I; Choukèr, A

    2016-06-15

    Human psychology and physiology are significantly altered by isolation and confinement. In light of planned exploration class interplanetary missions, the related adverse effects on the human body need to be explored and defined as they have a large impact on a mission's success. Terrestrial space analogs offer an excellent controlled environment to study some of these stressors during a space mission in isolation without the complex environment of the International Space Station. Participants subjected to these space analog conditions can encounter typical symptoms ranging from neurocognitive changes, fatigue, misaligned circadian rhythm, sleep disorders, altered stress hormone levels, and immune modulatory changes. This review focuses on both the psychological and the physiological responses observed in participants of long-duration spaceflight analog studies, such as Mars500 or Antarctic winter-over. They provide important insight into similarities and differences encountered in each simulated setting. The identification of adverse effects from confinement allows not only the crew to better prepare for but also to design feasible countermeasures that will help support space travelers during exploration class missions in the future. Copyright © 2016 the American Physiological Society.

  18. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    Science.gov (United States)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; Bleacher, Jake; Gernhardt, Mike; Mueller, Rob; Sanders, Gerald; Watts, Kevin; Eigenbrode, Jen; Garry, Brent; Freeh, Joshua; Manzella, David; Hack, Kurt; Aranyos, Tom

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  19. Human See, Human Do.

    Science.gov (United States)

    Tomasello, Michael

    1997-01-01

    A human demonstrator showed human children and captive chimpanzees how to drag food or toys closer using a rakelike tool. One side of the rake was less efficient than the other for dragging. Chimps tried to reproduce results rather than methods while children imitated and used the more efficient rake side. Concludes that imitation leads to…

  20. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    Science.gov (United States)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  1. The ambiguity of human ashes: Exploring encounters with cremated remains in the Netherlands.

    Science.gov (United States)

    Mathijssen, Brenda

    2017-01-01

    This article explores cremation and disposal practices in the Netherlands, focusing on the attitudes and experiences of bereaved Dutch people in relation to cremated remains. In academic and professional narratives, human ashes are commonly described as "important," as "sacred," and as a vehicle to continue intense and physical relationships with the dead. Based on quantitative and qualitative data this article illustrates the ambiguity of such relationships. It highlights the diverse experiences, unexpected challenges, and moral obligations that can be evoked by the deceased's ashes, where the latter are seen as embedded in material practices and entangled in social relationships.

  2. Modern Gemini-Approach to Technology Development for Human Space Exploration

    Science.gov (United States)

    White, Harold

    2010-01-01

    In NASA's plan to put men on the moon, there were three sequential programs: Mercury, Gemini, and Apollo. The Gemini program was used to develop and integrate the technologies that would be necessary for the Apollo program to successfully put men on the moon. We would like to present an analogous modern approach that leverages legacy ISS hardware designs, and integrates developing new technologies into a flexible architecture This new architecture is scalable, sustainable, and can be used to establish human exploration infrastructure beyond low earth orbit and into deep space.

  3. A U.S. perspective on the human exploration and expansion on the planet Mars

    Science.gov (United States)

    Roberts, Barney B.; Connolly, John F.

    1992-01-01

    A NASA perspective on the human exploration of Mars is presented which is based on the fundamental background available from the many previous studies. A hypothetical architecture of the Mars surface system is described which represents the complete spectrum of envisioned activities. Using the Strategic Implementation Architecture it is possible to construct a thoughtful roadmap which would enable a logical and flexible evolution of missions. Based on that architecture a suite of Martian surface elements is proposed to provide increasing levels of capability to the maturing infrastructure.

  4. Experiments in socially guided exploration: lessons learned in building robots that learn with and without human teachers

    Science.gov (United States)

    Thomaz, Andrea; Breazeal, Cynthia

    2008-06-01

    We present a learning system, socially guided exploration, in which a social robot learns new tasks through a combination of self-exploration and social interaction. The system's motivational drives, along with social scaffolding from a human partner, bias behaviour to create learning opportunities for a hierarchical reinforcement learning mechanism. The robot is able to learn on its own, but can flexibly take advantage of the guidance of a human teacher. We report the results of an experiment that analyses what the robot learns on its own as compared to being taught by human subjects. We also analyse the video of these interactions to understand human teaching behaviour and the social dynamics of the human-teacher/robot-learner system. With respect to learning performance, human guidance results in a task set that is significantly more focused and efficient at the tasks the human was trying to teach, whereas self-exploration results in a more diverse set. Analysis of human teaching behaviour reveals insights of social coupling between the human teacher and robot learner, different teaching styles, strong consistency in the kinds and frequency of scaffolding acts across teachers and nuances in the communicative intent behind positive and negative feedback.

  5. Exploring an East~West Epistemological Convergence of Embodied Democracy in Education through Cultural Humanism in Confucius~Makiguchi~Dewey

    Science.gov (United States)

    He, Ming Fang

    2016-01-01

    This article explores an East~West epistemological convergence of embodied democracy in education through cultural humanism illuminated in five main themes in the works of John Dewey (1859-1952), Confucius (551-479 B.C.), and Tsunesaburo Makiguchi (1871-1944): "human-nature interconnection," "self-cultivation," "value…

  6. Exploring an East~West Epistemological Convergence of Embodied Democracy in Education through Cultural Humanism in Confucius~Makiguchi~Dewey

    Science.gov (United States)

    He, Ming Fang

    2016-01-01

    This article explores an East~West epistemological convergence of embodied democracy in education through cultural humanism illuminated in five main themes in the works of John Dewey (1859-1952), Confucius (551-479 B.C.), and Tsunesaburo Makiguchi (1871-1944): "human-nature interconnection," "self-cultivation," "value…

  7. Human Expeditions to Near-Earth Asteroids: An Update on NASA's Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Reeves, David; Drake, Bret; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth- Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a NEA using NASA s proposed exploration systems a compelling endeavor.

  8. Exploring the current application of professional competencies in human resource management in the South African context

    Directory of Open Access Journals (Sweden)

    Nico Schutte

    2015-03-01

    Full Text Available Orientation: Human research (HR practitioners have an important role to play in the sustainability and competitiveness of organisations. Yet their strategic contribution and the value they add remain unrecognised.Research purpose: The main objective of this research was to explore the extent to which HR practitioners are currently allowed to display HR competencies in the workplace, and whether any significant differences exist between perceived HR competencies, based on the respondents’ demographic characteristics.Motivation for the study: Limited empirical research exists on the extent to which HR practitioners are allowed to display key competencies in the South African workplace.Research approach, design, and method: A quantitative research approach was followed. A Human Resource Management Professional Competence Questionnaire was administered to HR practitioners and managers (N = 481.Main findings: The results showed that HR competencies are poorly applied in selected South African workplaces. The competencies that were indicated as having the poorest application were talent management, HR metrics, HR business knowledge, and innovation. The white ethic group experienced a poorer application of all human research management (HRM competencies compared to the black African ethnic group.Practical/managerial implications: The findings of the research highlighted the need for management to evaluate the current application of HR practices in the workplace and also the extent to which HR professionals are involved as strategic business partners.Contribution/value-add: This research highlights the need for the current application of HR competencies in South African workplaces to be improved.

  9. Exploring the Human Ecology of the Younger Dryas Extraterrestrial Impact Event

    Science.gov (United States)

    Kennett, D. J.; Erlandson, J. M.; Braje, T. J.; Culleton, B. J.

    2007-05-01

    Several lines of evidence now exist for a major extraterrestrial impact event in North America at 12.9 ka (the YDB). This impact partially destabilized the Laurentide and Cordilleran ice sheets, triggered abrupt Younger Dryas cooling and extensive wildfires, and contributed to megafaunal extinction. This event also occurred soon after the well established colonization of the Americas by anatomically modern humans. Confirmation of this event would represent the first near-time extraterrestrial impact with significant effects on human populations. These likely included widespread, abrupt human mortality, population displacement, migration into less effected or newly established habitats, loss of cultural traditions, and resource diversification in the face of the massive megafaunal extinction and population reductions in surviving animal populations. Ultimately, these transformations established the context for the special character of plant and animal domestication and the emergence of agricultural economies in North America. We explore the Late Pleistocene archaeological record in North America within the context of documented major biotic changes associated with the YDB in North America and of the massive ecological affects hypothesized for this event.

  10. Evidence from neuroimaging to explore brain plasticity in humans during an ultra-endurance burden

    Directory of Open Access Journals (Sweden)

    Perrey Stéphane

    2012-12-01

    Full Text Available Abstract Physical activity, likely through induction of neuroplasticity, is a promising intervention to promote brain health. In athletes it is clear that training can and does, by physiological adaptations, extend the frontiers of performance capacity. The limits of our endurance capacity lie deeply in the human brain, determined by various personal factors yet to be explored. The human brain, with its vast neural connections and its potential for seemingly endless behaviors, constitutes one of the final frontiers of medicine. In a recent study published in BMC Medicine, the TransEurope FootRace Project followed 10 ultra-endurance runners over around 4,500 km across Europe and recorded a large data collection of brain imaging scans. This study indicates that the cerebral atrophy amounting to a reduction of approximately 6% throughout the two months of the race is reversed upon follow-up. While this study will contribute to advances in the limits of human performance on the neurophysiological processes in sports scientists, it will also bring important understanding to clinicians about cerebral atrophy in people who are vulnerable to physical and psychological stress long term. See related research article http://www.biomedcentral.com/1741-7015/10/170

  11. Towards human exploration of space: The THESEUS review series on immunology research priorities

    DEFF Research Database (Denmark)

    Jean-Pol, Frippiat; Crucian, Brian E; de Quervain, Dominique

    2016-01-01

    to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent......Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able...... to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer...

  12. The University Rover Challenge: A competition highlighting Human and Robotic partnerships for exploration

    Science.gov (United States)

    Smith, Heather; Duncan, Andrew

    2016-07-01

    The University Rover Challenge began in 2006 with 4 American college teams competing, now in it's 10th year there are 63 teams from 12 countries registered to compete for the top rover designed to assist humans in the exploration of Mars. The Rovers compete aided by the University teams in four tasks (3 engineering and 1 science) in the Mars analog environment of the Utah Southern Desert in the United States. In this presentation we show amazing rover designs with videos demonstrating the incredible ingenuity, skill and determination of the world's most talented college students. We describe the purpose and results of each of the tasks: Astronaut Assistant, Rover Dexterity, Terrain maneuvering, and Science. We explain the evolution of the competition and common challenges faced by the robotic explorers

  13. Asteroid Redirect Mission - Next Major stepping-stone to Human Exploration of NEOs and beyond

    Science.gov (United States)

    Sanchez, Natalia

    2016-07-01

    In response to NASA's Asteroid Initiative, an Asteroid Redirect and Robotic Mission (ARRM) is being studied by a NASA cohort, led by JPL, to enable the capture a multi-ton boulder from the surface of a Near-Earth Asteroid and return it to cislunar space for subsequent human and robotic exploration. The mission would boost our understanding of NEOs and develop technological capabilities for Planetary Defense, shall a NEO come up on a collision course. The benefits of this mission can extend our capabilities to explore farther into space, as well as create a new commercial sector in Space Mining, which would make materials in Space available for our use. ARRM would leverage and advance current knowledge of higher-efficiency propulsion systems with a new Solar Electric Propulsion demonstration (similar to that on the Dawn spacecraft) to be incorporated into future Mars Missions.

  14. Posthumanism and somatechnologies: exploring the intimate relations between humans and technologies

    NARCIS (Netherlands)

    Dalibert, Lucie

    2014-01-01

    Recently, with the advent of technoscience, and especially the convergence of nanotechnology, biotechnology, information and communication technology and the cognitive sciences (NBIC), has come the prospect of human enhancement. Even though the latter – the technological enhancement of human beings

  15. Posthumanism and somatechnologies: exploring the intimate relations between humans and technologies

    NARCIS (Netherlands)

    Dalibert, Lucie

    2014-01-01

    Recently, with the advent of technoscience, and especially the convergence of nanotechnology, biotechnology, information and communication technology and the cognitive sciences (NBIC), has come the prospect of human enhancement. Even though the latter – the technological enhancement of human beings

  16. More Human than Human.

    Science.gov (United States)

    Lawrence, David

    2017-07-01

    Within the literature surrounding nonhuman animals on the one hand and cognitively disabled humans on the other, there is much discussion of where beings that do not satisfy the criteria for personhood fit in our moral deliberations. In the future, we may face a different but related problem: that we might create (or cause the creation of) beings that not only satisfy but exceed these criteria. The question becomes whether these are minimal criteria, or hierarchical, such that those who fulfill them to greater degree should be afforded greater consideration. This article questions the validity and necessity of drawing divisions among beings that satisfy the minimum requirements for personhood; considering how future beings-intelligent androids, synthezoids, even alternate-substrate sentiences-might fit alongside the "baseline" human. I ask whether these alternate beings ought to be considered different to us, and why this may or may not matter in terms of a notion of "human community." The film Blade Runner, concerned in large part with humanity and its key synthezoid antagonist Roy Batty, forms a framing touchstone for my discussion. Batty is stronger, faster, more resilient, and more intelligent than Homo sapiens. His exploits, far beyond the capability of normal humans, are contrasted with his frailty and transient lifespan, his aesthetic appreciation of the sights he has seen, and his burgeoning empathy. Not for nothing does his creator within the mythos term him "more human than human."

  17. Exploring tiny images: the roles of appearance and contextual information for machine and human object recognition.

    Science.gov (United States)

    Parikh, Devi; Zitnick, C Lawrence; Chen, Tsuhan

    2012-10-01

    Typically, object recognition is performed based solely on the appearance of the object. However, relevant information also exists in the scene surrounding the object. In this paper, we explore the roles that appearance and contextual information play in object recognition. Through machine experiments and human studies, we show that the importance of contextual information varies with the quality of the appearance information, such as an image's resolution. Our machine experiments explicitly model context between object categories through the use of relative location and relative scale, in addition to co-occurrence. With the use of our context model, our algorithm achieves state-of-the-art performance on the MSRC and Corel data sets. We perform recognition tests for machines and human subjects on low and high resolution images, which vary significantly in the amount of appearance information present, using just the object appearance information, the combination of appearance and context, as well as just context without object appearance information (blind recognition). We also explore the impact of the different sources of context (co-occurrence, relative-location, and relative-scale). We find that the importance of different types of contextual information varies significantly across data sets such as MSRC and PASCAL.

  18. BrainScope: interactive visual exploration of the spatial and temporal human brain transcriptome.

    Science.gov (United States)

    Huisman, Sjoerd M H; van Lew, Baldur; Mahfouz, Ahmed; Pezzotti, Nicola; Höllt, Thomas; Michielsen, Lieke; Vilanova, Anna; Reinders, Marcel J T; Lelieveldt, Boudewijn P F

    2017-06-02

    Spatial and temporal brain transcriptomics has recently emerged as an invaluable data source for molecular neuroscience. The complexity of such data poses considerable challenges for analysis and visualization. We present BrainScope: a web portal for fast, interactive visual exploration of the Allen Atlases of the adult and developing human brain transcriptome. Through a novel methodology to explore high-dimensional data (dual t-SNE), BrainScope enables the linked, all-in-one visualization of genes and samples across the whole brain and genome, and across developmental stages. We show that densities in t-SNE scatter plots of the spatial samples coincide with anatomical regions, and that densities in t-SNE scatter plots of the genes represent gene co-expression modules that are significantly enriched for biological functions. We also show that the topography of the gene t-SNE maps reflect brain region-specific gene functions, enabling hypothesis and data driven research. We demonstrate the discovery potential of BrainScope through three examples: (i) analysis of cell type specific gene sets, (ii) analysis of a set of stable gene co-expression modules across the adult human donors and (iii) analysis of the evolution of co-expression of oligodendrocyte specific genes over developmental stages. BrainScope is publicly accessible at www.brainscope.nl. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  20. Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine.

    Science.gov (United States)

    Holmstock, Nico; De Bruyn, Tom; Bevernage, Jan; Annaert, Pieter; Mols, Raf; Tack, Jan; Augustijns, Patrick

    2013-04-11

    Food can have a significant impact on the pharmacokinetics of orally administered drugs, as it may affect drug solubility as well as permeability. Since fed state conditions cannot easily be implemented in the presently available permeability tools, including the frequently used Caco-2 system, exploring food effects during drug development can be quite challenging. In this study, we investigated the effect of fasted and fed state conditions on the intestinal absorption of the HIV protease inhibitor indinavir using simulated and human intestinal fluids in the in situ intestinal perfusion technique in mice. Although the solubility of indinavir was 6-fold higher in fed state human intestinal fluids (FeHIF) as compared to fasted state HIF (FaHIF), the intestinal permeation of indinavir was 22-fold lower in FeHIF as compared to FaHIF. Dialysis experiments showed that only a small fraction of indinavir is accessible for absorption in FeHIF due to micellar entrapment, possibly explaining its low intestinal permeation. The presence of ritonavir, a known P-gp inhibitor, increased the intestinal permeation of indinavir by 2-fold in FaHIF, while there was no increase when using FeHIF. These data confirm that drug-food interactions form a complex interplay between solubility and permeability effects. The use of HIF in in situ intestinal perfusions holds great promise for biorelevant absorption evaluation as it allows to directly explore this complex solubility/permeability interplay on drug absorption.

  1. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  2. Building a framework to explore water-human interaction for sustainable agro ecosystems in US Midwest

    Science.gov (United States)

    Mishra, S. K.; Ding, D.; Rapolu, U.

    2012-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. On this context, this team has investigated connections among agriculture, policy, climate, land use/land cover, and water quality in Iowa over the past couple of years. To help explore these connections the team is developing a variety of cyber infrastructure tools that facilitate the collection, analysis and visualization of data, and the simulation of system dynamics. In an ongoing effort, the prototype system is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa in the US Midwest, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. The primary aim of this research is to understand the connections that exist among the agricultural and biofuel economy, land use/land cover change, and water quality. To help explore these connections an agent-based model (ABM) of land use change has been developed that simulates the decisions made by farmers given alternative assumptions about market forces, farmer characteristics, and water quality regulations. The SWAT model was used to simulate the impact of these decisions on the movement of sediment, nitrogen, and phosphorus across the landscape. The paper also demonstrate how through the use of this system researchers can, for example, search for scenarios that lead to desirable socio-economic outcomes as well as preserve water quantity and quality.

  3. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    Science.gov (United States)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  4. Human and Robotic Mission to Small Bodies: Mapping, Planning and Exploration

    Science.gov (United States)

    Neffian, Ara V.; Bellerose, Julie; Beyer, Ross A.; Archinal, Brent; Edwards, Laurence; Lee, Pascal; Colaprete, Anthony; Fong, Terry

    2013-01-01

    This study investigates the requirements, performs a gap analysis and makes a set of recommendations for mapping products and exploration tools required to support operations and scientific discovery for near- term and future NASA missions to small bodies. The mapping products and their requirements are based on the analysis of current mission scenarios (rendezvous, docking, and sample return) and recommendations made by the NEA Users Team (NUT) in the framework of human exploration. The mapping products that sat- isfy operational, scienti c, and public outreach goals include topography, images, albedo, gravity, mass, density, subsurface radar, mineralogical and thermal maps. The gap analysis points to a need for incremental generation of mapping products from low (flyby) to high-resolution data needed for anchoring and docking, real-time spatial data processing for hazard avoidance and astronaut or robot localization in low gravity, high dynamic environments, and motivates a standard for coordinate reference systems capable of describing irregular body shapes. Another aspect investigated in this study is the set of requirements and the gap analysis for exploration tools that support visualization and simulation of operational conditions including soil interactions, environment dynamics, and communications coverage. Building robust, usable data sets and visualisation/simulation tools is the best way for mission designers and simulators to make correct decisions for future missions. In the near term, it is the most useful way to begin building capabilities for small body exploration without needing to commit to specific mission architectures.

  5. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    Science.gov (United States)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  6. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    Science.gov (United States)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes

  7. [Humanized childbirth].

    Science.gov (United States)

    Kuo, Su-Chen

    2005-06-01

    Childbirth is a major event in a family. The expectant parent's perception of the childbirth experience influences his or her development as a parent. Making childbirth a positive and satisfying experience for women is the responsibility of health care providers. Women want to have physical and emotional privacy during labor and delivery, and to experience both in a friendly, comfortable environment. For women expected to undergo normal deliveries, humanized childbirth is one accessible approach. This article explores the definition and evolution of humanized childbirth and the care practice that it involves. It also explores birth plans and birth experiences, and the improvements necessary to routine labor practices to enable women to participate in decision making about their childbirth experiences. The author emphasizes that when health-care providers recognize the value of humanized childbirth and make changes accordingly, the dignity of women's childbirth experiences will be enhanced.

  8. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  9. Acute Meteorite Dust Exposure and Pulmonary Inflammation - Implications for Human Space Exploration

    Science.gov (United States)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    The previous manned missions to the Moon represent milestones of human ingenuity, perseverance, and intellectual curiosity. However, one of the major ongoing concerns is the array of hazards associated with lunar surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness [1-3]" (Figure 1). It was further reported that the allergic response to the dust worsened with each exposure [4]. The lack of gravity exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles [1]. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern [5]. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. Studies on the lunar highland regolith indicate that the dust is not only respirable but also reactive [2, 6-9], and previous studies concluded that it is moderately toxic; generating a greater response than titanium oxide but a lower response than quartz [6]. The presence of reactive oxygen species (ROS) on the surface of the dust has been implicated. However, there is actually little data related to physicochemical characteristics of particulates and pulmonary toxicity, especially as it relates to celestial dust exposure. As a direct response to this deficit, the present study evaluates the role of a particulate's innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. This highly interdisciplinary

  10. Pulmonary Inflammatory Responses To Acute Meteorite Dust Exposures - Implications For Human Space Exploration

    Science.gov (United States)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    The previous manned missions to the Moon represent milestones of human ingenuity, perseverance, and intellectual curiosity. However, one of the major ongoing concerns is the array of hazards associated with lunar surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness" (Figure 1). It was further reported that the allergic response to the dust worsened with each exposure. The lack of gravity exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. Studies on the lunar highland regolith indicate that the dust is not only respirable but also reactive, and previous studies concluded that it is moderately toxic; generating a greater response than titanium oxide but a lower response than quartz. The presence of reactive oxygen species (ROS) on the surface of the dust has been implicated. However, there is actually little data related to physicochemical characteristics of particulates and pulmonary toxicity, especially as it relates to celestial dust exposure. As a direct response to this deficit, the present study evaluates the role of a particulate's innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. This highly interdisciplinary study evaluates the relative

  11. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  12. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans.

    Science.gov (United States)

    Salazar, Vivian A; Arranz-Trullén, Javier; Navarro, Susanna; Blanco, Jose A; Sánchez, Daniel; Moussaoui, Mohammed; Boix, Ester

    2016-10-01

    Human antimicrobial RNases, which belong to the vertebrate RNase A superfamily and are secreted upon infection, display a wide spectrum of antipathogen activities. In this work, we examined the antifungal activity of the eosinophil RNase 3 and the skin-derived RNase 7, two proteins expressed by innate cell types that are directly involved in the host defense against fungal infection. Candida albicans has been selected as a suitable working model for testing RNase activities toward a eukaryotic pathogen. We explored the distinct levels of action of both RNases on yeast by combining cell viability and membrane model assays together with protein labeling and confocal microscopy. Site-directed mutagenesis was applied to ablate either the protein active site or the key anchoring region for cell binding. This is the first integrated study that highlights the RNases' dual mechanism of action. Along with an overall membrane-destabilization process, the RNases could internalize and target cellular RNA. The data support the contribution of the enzymatic activity for the antipathogen action of both antimicrobial proteins, which can be envisaged as suitable templates for the development of novel antifungal drugs. We suggest that both human RNases work as multitasking antimicrobial proteins that provide a first line immune barrier.

  13. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    Science.gov (United States)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  14. An Exploration of Human Nature and a Challenge Against Conventional Morality of American South

    Institute of Scientific and Technical Information of China (English)

    胡辉平

    2005-01-01

    文章通过对马克·吐温名著主题的分析,深刻探讨了马克·吐温对人的本性的探索和对美国南方传统道德的挑战,并进而提出了与现今社会紧密联系的人文关怀问题.%By analyzing the theme of Mark Twain's work The Adventures of Huckleberry Finn,we can learn that Mark Twain makes an exploration of human nature and a challenge against conventional morality in American South through the depiction of Huck's mental conflict, his final determination to help Jim acquire freedom as well as the friendship between Huck and Jim established during their escape journey down the Mississippi River.

  15. Preliminary System Analysis of In Situ Resource Utilization for Mars Human Exploration

    Science.gov (United States)

    Rapp, Donald; Andringa, Jason; Easter, Robert; Smith, Jeffrey H .; Wilson, Thomas; Clark, D. Larry; Payne, Kevin

    2005-01-01

    We carried out a system analysis of processes for utilization of Mars resources to support human exploration of Mars by production of propellants from indigenous resources. Seven ISRU processes were analyzed to determine mass. power and propellant storage volume requirements. The major elements of each process include C02 acquisition, chemical conversion, and storage of propellants. Based on a figure of merit (the ratio of the mass of propellants that must be brought from Earth in a non-ISRU mission to the mass of the ISRU system. tanks and feedstocks that must be brought from Earth for a ISRU mission) the most attractive process (by far); is one where indigenous Mars water is accessible and this is processed via Sabatier/Electrolysis to methane and oxygen. These processes are technically relatively mature. Other processes with positive leverage involve reverse water gas shift and solid oxide electrolysis.

  16. Capability and Technology Performance Goals for the Next Step in Affordable Human Exploration of Space

    Science.gov (United States)

    Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.

    2015-01-01

    The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.

  17. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  18. Desert RATS 2011: Human and robotic exploration of near-Earth asteroids

    Science.gov (United States)

    Abercromby, Andrew F. J.; Chappell, Steven P.; Gernhardt, Michael L.

    2013-10-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Space Exploration Vehicle (SEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA's integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either 0, 1, or 2 SEVs; 3 or 4 crewmembers; 1 of 2 different communications bandwidths; and a 50-second each-way communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a remote Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 50-second each-way communication latency to the field. Crews were composed of astronauts and professional field geologists. Teams of Mission Operations and Science experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, and Science teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one SEV and by including 4 versus 3 crewmembers in the NEA exploration architecture as measured by increased scientific data quality, EVA exploration time

  19. Exploring synergies between human rights and public health ethics: A whole greater than the sum of its parts

    Directory of Open Access Journals (Sweden)

    Nixon Stephanie

    2008-01-01

    Full Text Available Abstract Background The fields of human rights and public health ethics are each concerned with promoting health and elucidating norms for action. To date, however, little has been written about the contribution that these two justificatory frameworks can make together. This article explores how a combined approach may make a more comprehensive contribution to resolving normative health issues and to advancing a normative framework for global health action than either approach made alone. We explore this synergy by first providing overviews of public health ethics and of international human rights law relevant to health and, second, by articulating complementarities between human rights and public health ethics. Discussion We argue that public health ethics can contribute to human rights by: (a reinforcing the normative claims of international human rights law, (b strengthening advocacy for human rights, and (c bridging the divide between public health practitioners and human rights advocates in certain contemporary health domains. We then discuss how human rights can contribute to public health ethics by contributing to discourses on the determinants of health through: (a definitions of the right to health and the notion of the indivisibility of rights, (b emphasis on the duties of states to progressively realize the health of citizens, and (c recognition of the protection of human rights as itself a determinant of health. We also discuss the role that human rights can play for the emergent field of public health ethics by refocusing attention on the health and illness on marginalized individuals and populations. Summary Actors within the fields of public health, ethics and human rights can gain analytic tools by embracing the untapped potential for collaboration inherent in such a combined approach.

  20. Coordination of International Risk-Reduction Investigations by the Multilateral Human Research Panel for Exploration

    Science.gov (United States)

    Charles, John B.; Bogomolov, Valery V.

    2015-01-01

    Effective use of the unique capabilities of the International Space Station (ISS) for risk reduction on future deep space missions involves preliminary work in analog environments to identify and evaluate the most promising techniques, interventions and treatments. This entails a consolidated multinational approach to biomedical research both on ISS and in ground analogs. The Multilateral Human Research Panel for Exploration (MHRPE) was chartered by the five ISS partners to recommend the best combination of partner investigations on ISS for risk reduction in the relatively short time available for ISS utilization. MHRPE will also make recommendations to funding agencies for appropriate preparatory analog work. In 2011, NASA's Human Research Program (HRP) and the Institute of Biomedical Problems (IBMP) of the Russian Academy of Science, acting for MHRPE, developed a joint US-Russian biomedical program for the 2015 one-year ISS mission (1YM) of American and Russian crewmembers. This was to evaluate the possibilities for multilateral research on ISS. An overlapping list of 16 HRP, 9 IBMP, 3 Japanese, 3 European and 1 Canadian investigations were selected to address risk-reduction goals in 7 categories: Functional Performance, Behavioral Health, Visual Impairment, Metabolism, Physical Capacity, Microbial and Human Factors. MHRPE intends to build on this bilateral foundation to recommend more fully-integrated multilateral investigations on future ISS missions commencing after the 1YM. MHRPE has also endorsed an on-going program of coordinated research on 6-month, one-year and 6-week missions ISS expeditions that is now under consideration by ISS managers. Preparatory work for these missions will require coordinated and collaborative campaigns especially in the psychological and psychosocial areas using analog isolation facilities in Houston, Köln and Moscow, and possibly elsewhere. The multilateral Human Analogs research working group (HANA) is the focal point of those

  1. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  2. Human Development, Human Evolution.

    Science.gov (United States)

    Smillie, David

    One of the truly remarkable events in human evolution is the unprecedented increase in the size of the brain of "Homo" over a brief span of 2 million years. It would appear that some significant selective pressure or opportunity presented itself to this branch of the hominid line and caused a rapid increase in the brain, introducing a…

  3. Exploring cultural factors in human-robot interaction: A matter of personality?

    NARCIS (Netherlands)

    Weiss, Astrid; Evers, Vanessa

    2011-01-01

    This paper proposes an experimental study to investigate task-dependence and cultural-background dependence of the personality trait attribution on humanoid robots. In Human-Robot Interaction, as well as in Human-Agent Interaction research, the attribution of personality traits towards intelligent a

  4. Exploring human autonomy effectiveness: Project logic and its effects on individual autonomy

    NARCIS (Netherlands)

    D.R. Gasper (Des); M.R. Muñiz Castillo (Mirtha)

    2009-01-01

    textabstractWe have proposed elsewhere an alternative analytical framework for project evaluation and a criterion of ‘human autonomy effectiveness’ to examine the effects of aid projects on the lives, opportunities and capacities of participants (Muñiz Castillo & Gasper, 2009). A project is human-au

  5. Exploring cultural factors in human-robot interaction: A matter of personality?

    NARCIS (Netherlands)

    Weiss, Astrid; Evers, Vanessa

    2011-01-01

    This paper proposes an experimental study to investigate task-dependence and cultural-background dependence of the personality trait attribution on humanoid robots. In Human-Robot Interaction, as well as in Human-Agent Interaction research, the attribution of personality traits towards intelligent a

  6. Building "Bob": A Project Exploring the Human Body at Western Illinois University Preschool Center

    Science.gov (United States)

    Brouette, Scott

    2008-01-01

    When the children at Western Illinois University Preschool Center embarked on a study of human bodies, they decided to build a life-size model of a body, organ by organ from the inside out, to represent some of the things they were learning. This article describes the building of "Bob," the human body model, highlighting the children's…

  7. Social Robotic Experience and Media Communication Practices: An Exploration on the Emotional and Ritualized Human-technology-relations

    Directory of Open Access Journals (Sweden)

    Christine Linke

    2013-01-01

    Full Text Available This article approaches the subject of social robots by focusing on the emotional relations people establish with media and information and communication technology (ICTs in their everyday life. It examines human-technology-relation from a social studies point of view, seeking to raise questions that enable us to make a connection between the research on human relationships and the topic of human-technology relation, especially human-humanoid-relation. In order to explore the human-technology-relations, theoretical ideas of a mediatization of communication and of a ritual interaction order are applied. Ritual theory is particularly used to enable a focus on emotion as a significant dimension in analyzing social technologies. This explorative article refers to empirical findings regarding media communication practices in close relationships. It argues that following the developed approach regarding mediatized and ritualized relational practices, useful insights for a conceptualization of the human-social robot relation can be achieved. The article concludes with remarks regarding the challenge of an empirical approach to human-social robot-relations.

  8. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  9. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; Drake, B. G.; Friedensen, V. P.

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  10. Development of NASA's Small Fission Power System for Science and Human Exploration

    Science.gov (United States)

    Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2015-01-01

    Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.

  11. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; Fittje, Jim; Martini, Mike; Packard, Tom; McCurdy, Dave; Gyekenyesi, John

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other

  12. Cooperation and dialogical modeling for designing a safe Human space exploration mission to Mars

    Science.gov (United States)

    Grès, Stéphane; Tognini, Michel; Le Cardinal, Gilles; Zalila, Zyed; Gueydan, Guillaume

    2014-11-01

    This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.

  13. Scientific Investigations To Prepare For The Potential Human Exploration Of Mars

    Science.gov (United States)

    Hays, Lindsay; Beaty, David; Whitley, Ryan

    2016-07-01

    In order for human missions to the martian system to be successful and safe, we need a certain minimum set of knowledge. Comparison of what we need to know with what we already know defines what we refer to as "Strategic Knowledge Gaps (SKGs)". The SKG list needs to be the driving force behind the robotic precursor program. The Mars SKG list was first constructed by the Precursor Strategy Analysis Group (P-SAG) in 2012. It consisted of 17 SKGs that could be addressed by about 60 gap-filling activities (GFA). These GFAs were split into three groups based on where and how they could be carried out: requires a Mars flight/mission, addressed on Earth, or technology demonstration. Those GFAs that require a Mars mission were incorporated into the revision of the 2012 Goals Document of the Mars Exploration Program Analysis Group (MEPAG) as "investigations" under Goal IV: Prepare for Human Exploration. In 2015, MEPAG updated the Goals Document, and comparison of the 2012 and 2015 versions shows that significant and encouraging overall progress has been made on a number of the investigations. We note three specific kinds of changes: 1) Complete retirement of several investigations, 2) Decreased investigation priority based on partial progress, and 3) Addition of a few new investigations. Some of these changes are detailed below: Retired: • Simultaneous spectra of solar energetic particles in space and ion the surface • Spectra of galactic cosmic rays on the surface • Trace gas abundances • Determine traction/cohesion in martian regolith • Determine vertical variation in regolith • High spatial resolution maps of mineral composition and abundance • High spatial resolution maps of subsurface ice depth and concentration Decreased Priority: • Making long-term measurements of winds and wind directions (improvements in EDL technologies have decreased the importance of this measurement) • Profile the near-surface winds (improvements in EDL technologies have

  14. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    Science.gov (United States)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  15. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  16. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    Science.gov (United States)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  17. Strategies for Prospecting and Extracting Water on Mars for Long-Term Human Exploration

    Science.gov (United States)

    Rolley, R. J.; Saikia, S. J.

    2017-02-01

    We aim to develop a specific set of criteria to classify water reserves on Mars, and to design water prospecting and extraction systems for various human landing sites using a requirements-driven framework.

  18. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    Science.gov (United States)

    Stoker, C.; Davilla, A.; Davis, S.; Glass, B.; Gonzales, A.; Heldmann, J.; Karcz, J.; Lemke, L.; Sanders, G.

    2012-06-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  19. Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999

    Science.gov (United States)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.

  20. [Human functioning and disability: exploring the scope of the World Health Organization's international classification].

    Science.gov (United States)

    Sampaio, Rosana Ferreira; Luz, Madel Terezinha

    2009-03-01

    The theoretical discussion on disability is dichotomized according to the medical and social perspectives. The biomedical model focuses on impairment, disease, or physical abnormality and how these factors produce disability. The social approach suggests that the meaning of disability and impairment emerges from specific social and cultural contexts. The WHO created the International Classification of Functioning, Disability and Health (ICF), with a classification system and theoretical model based on the combination of the medical and social models and using a biopsychosocial approach to integrate the health dimensions. Despite the importance and immediacy of the ICF, some concepts were insufficiently detailed and justified and could lead to distinct interpretations. This essay proposes to describe the ICF model and analyze the scope of the biopsychosocial theory for exploring the relational nature of the 'disability' and 'impairment' categories, as well as the universal nature of the WHO proposal. One of the most positive aspects of the ICF is to highlight the interactive nature of disability and the division of the phenomenon into three dimensions, thus demonstrating the degree of complexity in the process of human functioning and disability.

  1. Exploring Codon Usage Patterns of Alternatively Spliced Genes in Human Chromosome 1

    Institute of Scientific and Technical Information of China (English)

    马飞; 庄永龙; 黄颖; 李衍达

    2004-01-01

    In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons.Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=-0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.

  2. Human Research Program (HRP) Exploration Medical Capability (ExMC) Standing Review Panel (SRP)

    Science.gov (United States)

    Cintron, Nitza; Dutson, Eric; Friedl, Karl; Hyman, William; Jemison, Mae; Klonoff, David

    2009-01-01

    The SRP believes strongly that regularly performed in-flight crew assessments are needed in order to identify a change in health status before a medical condition becomes clinically apparent. It is this early recognition in change that constitutes the foundation of the "occupational health model" expounded in the HRP Requirements Document as a key component of the HRP risk mitigation strategy that will enable its objective of "prevention and mitigation of human health and performance risks". A regular crew status examination of physiological and clinical performance is needed. This can be accomplished through instrumented monitoring of routine embedded tasks. The SRP recommends addition of a new gap to address this action under Category 3.0 Mitigate the Risk. This new gap is closely associated with Task 4.19 which addresses the lack of adequate biomedical monitoring capabilities for performing periodic clinical status evaluations and contingency medical monitoring. A corollary to these gaps is the critical emphasis on preventive medicine, not only during pre- and post-flight phases of a mission as is the current practice, but continued into the in-flight phases of exploration class missions.

  3. Exploring the martian moons a human mission to Deimos and Phobos

    CERN Document Server

    von Ehrenfried, Manfred “Dutch”

    2017-01-01

    This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billi...

  4. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  5. Metabolomic Approaches to Explore Chemical Diversity of Human Breast-Milk, Formula Milk and Bovine Milk.

    Science.gov (United States)

    Qian, Linxi; Zhao, Aihua; Zhang, Yinan; Chen, Tianlu; Zeisel, Steven H; Jia, Wei; Cai, Wei

    2016-12-17

    Although many studies have been conducted on the components present in human breast milk (HM), research on the differences of chemical metabolites between HM, bovine milk (BM) and formula milk (FM) is limited. This study was to explore the chemical diversity of HM, BM and FM by metabolomic approaches. GC-TOFMS and UPLC-QTOFMS were applied to investigate the metabolic compositions in 30 HM samples, 20 FM samples and 20 BM samples. Metabolite profiling identified that most of the non-esterified fatty acids, which reflected the hydrolysis of triglycerides, were much more abundant in HM than those in FM and BM, except for palmitic acid and stearic acid. The levels of tricarboxylic acid (TCA) intermediates were much higher in FM and BM than those in HM. Each type of milk also showed its unique composition of free amino acids and free carbohydrates. In conclusion, higher levels of non-esterified saturated fatty acids with aliphatic tails <16 carbons, monounsaturated fatty acids and polyunsaturated fatty acids and lower levels of TCA intermediates are characteristic of HM, as compared with FM and BM. The content of non-esterified fatty acids may reflect the hydrolysis of triglycerides in different milk types.

  6. Human rights

    NARCIS (Netherlands)

    Gaay Fortman, B. de

    2006-01-01

    Human rights reflect a determined effort to protect the dignity of each and every human being against abuse of power. This endeavour is as old as human history. What is relatively new is the international venture for the protection of human dignity through internationally accepted legal standards an

  7. Exploring resilience and mindfulness as preventative factors for psychological distress burnout and secondary traumatic stress among human service professionals.

    Science.gov (United States)

    Harker, Rachel; Pidgeon, Aileen M; Klaassen, Frances; King, Steven

    2016-06-08

    Human service professionals are concerned with the intervention and empowerment of vulnerable social populations. The human service industry is laden with employment-related stressors and emotionally demanding interactions, which can lead to deleterious effects, such as burnout and secondary traumatic stress. Little attention has been given to developing knowledge of what might enable human service workers to persist and thrive. Cultivating and sustaining resilience can buffer the impact of occupational stressors on human service professionals. One of the psychological factors associated with cultivating resilience is mindfulness. The aim of this current research is to improve our understanding of the relationship between resilience, mindfulness, burnout, secondary traumatic stress, and psychological distress among human service professionals. The current study surveyed 133 human service professionals working in the fields of psychology, social work, counseling, youth and foster care work to explore the predictive relationship between resilience, mindfulness, and psychological distress. The results showed that higher levels of resilience were a significant predictor of lower levels of psychological distress, burnout and secondary traumatic stress. In addition, higher levels of mindfulness were a significant predictor of lower levels of psychological distress and burnout. The findings suggest that cultivating resilience and mindfulness in human service professionals may assist in preventing psychological distress burnout and secondary traumatic stress. Limitations of this study are discussed together with implications for future research.

  8. Exploring Value Orientations toward the Human-Nature Relationship: A Comparison of Urban Youth in Minnesota, USA and Guangdong, China

    Science.gov (United States)

    Li, Jie; Ernst, Julie

    2015-01-01

    Research exploring urban youths' value orientations toward the human-nature relationship was conducted with 59 students from a school in Minneapolis, Minnesota (USA) and 51 students from a school in Guangzhou, Guangdong (China). Quantitative findings suggest that the majority of participants in both groups shared a similar value orientation,…

  9. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  10. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In references 1 through 9, a broad range of technological innovations are described and analyzed. Figures 1 depicts program planning for future human missions throughout the solar system which included lunar launched nuclear rockets, and future human settlements on the Moon. Figures 2 and 3 present the results for human Mercury missions, including LEO departure masses and round trip Mercury lander masses. Using in-situ resources, the missions become less burdensome to the LEO launch infrastructure. In one example using Mercury derived hydrogen, the LEO mass of the human Mercury missions can be reduced from 2,800 MT to 1,140 MT (Ref. 15). Additional analyses of staging options for human Mercury missions will be presented. Figures 4 shows an option for thermal control for long term in-space cryogenic storage and Figure 5 depicts the potentially deleterious elements emanating from Mercury that must be addressed, respectively. Updated analyses based on the visions presented will be presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear electric propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Human bases at Mercury may have to be resupplied from resources from regolith and water resources in permanently shadowed craters at its northern pole.

  11. Human Rights, Human Needs, Human Development, Human Security

    OpenAIRE

    Gasper, Des

    2009-01-01

    Human rights, human development and human security form increasingly important, partly interconnected, partly competitive and misunderstood ethical and policy discourses. Each tries to humanize a pre-existing and unavoidable major discourse of everyday life, policy and politics; each has emerged within the United Nations world; each relies implicitly on a conceptualisation of human need; each has specific strengths. Yet mutual communication, understanding and co-operation are deficient, espec...

  12. Telling the Human Story.

    Science.gov (United States)

    Richardson, Miles

    1987-01-01

    Proposes that one of the fundamental human attributes is telling stories. Explores the debate on whether Neanderthals possessed language ability. Discusses the role of the "human story" in teaching anthropology. (DH)

  13. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter.

  14. Development of Multifunctional Radiation Shielding Materials for Long Duration Human Exploration Beyond the Low Earth Orbit

    Science.gov (United States)

    Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.

    2007-01-01

    One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition

  15. Human Technology and Human Affects

    DEFF Research Database (Denmark)

    Fausing, Bent

    2009-01-01

    Human Technology and Human Affects  This year Samsung introduced a mobile phone with "Soul". It was made with a human touch and included itself a magical touch. Which function does technology and affects get in everyday aesthetics like this, its images and interactions included this presentation ...... often mentioned post-human condition....

  16. Repeated assessment of exploration and novelty seeking in the human behavioral pattern monitor in bipolar disorder patients and healthy individuals.

    Directory of Open Access Journals (Sweden)

    Arpi Minassian

    Full Text Available BACKGROUND: Exploration and novelty seeking are cross-species adaptive behaviors that are dysregulated in bipolar disorder (BD and are critical features of the illness. While these behaviors have been extensively quantified in animals, multivariate human paradigms of exploration are lacking. The human Behavioral Pattern Monitor (hBPM, a human version of the animal open field, identified a signature pattern of hyper-exploration in manic BD patients, but whether exploratory behavior changes with treatment is unknown. The objective of this study was to assess the sensitivity of the hBPM to changes in manic symptoms, a necessary step towards elucidating the neurobiology underlying BD. METHODOLOGY AND PRINCIPAL FINDINGS: Twelve acutely hospitalized manic BD subjects and 21 healthy volunteers were tested in the hBPM over three sessions; all subjects were retested one week after their first session and two weeks after their second session. Motor activity, spatial and entropic (degree of unpredictability patterns of exploration, and interactions with novel objects were quantified. Manic BD patients demonstrated greater motor activity, extensive and more unpredictable patterns of exploration, and more object interactions than healthy volunteers during all three sessions. Exploration and novelty-seeking slightly decreased in manic BD subjects over the three sessions as their symptoms responded to treatment, but never to the level of healthy volunteers. Among healthy volunteers, exploration did not significantly decrease over time, and hBPM measures were highly correlated between sessions. CONCLUSIONS/SIGNIFICANCE: Manic BD patients showed a modest reduction in symptoms yet still demonstrated hyper-exploration and novelty seeking in the hBPM, suggesting that these illness features may be enduring characteristics of BD. Furthermore, behavior in the hBPM is not subject to marked habituation effects. The hBPM can be reliably used in a repeated-measures design

  17. Metaphors to Drive By: Exploring New Ways to Guide Human-Robot Interaction

    Energy Technology Data Exchange (ETDEWEB)

    David J. Bruemmer; David I. Gertman; Curtis W. Nielsen

    2007-08-01

    Autonomous behaviors created by the research and development community are not being extensively utilized within energy, defense, security, or industrial contexts. This paper provides evidence that the interaction methods used alongside these behaviors may not provide a mental model that can be easily adopted or used by operators. Although autonomy has the potential to reduce overall workload, the use of robot behaviors often increased the complexity of the underlying interaction metaphor. This paper reports our development of new metaphors that support increased robot complexity without passing the complexity of the interaction onto the operator. Furthermore, we illustrate how recognition of problems in human-robot interactions can drive the creation of new metaphors for design and how human factors lessons in usability, human performance, and our social contract with technology have the potential for enormous payoff in terms of establishing effective, user-friendly robot systems when appropriate metaphors are used.

  18. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness.

  19. Both dog and human faces are explored abnormally by young children with autism spectrum disorders.

    Science.gov (United States)

    Guillon, Quentin; Hadjikhani, Nouchine; Baduel, Sophie; Kruck, Jeanne; Arnaud, Mado; Rogé, Bernadette

    2014-10-22

    When looking at faces, typical individuals tend to have a right hemispheric bias manifested by a tendency to look first toward the left visual hemifield. Here, we tested for the presence of this bias in young children with autism spectrum disorders (ASD) for both human and dog faces. We show that children with ASD do not show a left visual hemifield (right hemispheric) bias for human faces. In addition, we show that this effect extends to faces of dogs, suggesting that the absence of bias is not specific to human faces, but applies to all faces with the first-order configuration, pointing to an anomaly at an early stage of visual analysis of faces. The lack of right hemispheric dominance for face processing may reflect a more general disorder of cerebral specialization of social functions in ASD.

  20. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  1. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  2. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  3. Humanizing Architecture

    DEFF Research Database (Denmark)

    Toft, Tanya Søndergaard

    2015-01-01

    The article proposes the urban digital gallery as an opportunity to explore the relationship between ‘human’ and ‘technology,’ through the programming of media architecture. It takes a curatorial perspective when proposing an ontological shift from considering media facades as visual spectacles...... agency and a sense of being by way of dematerializing architecture. This is achieved by way of programming the symbolic to provide new emotional realizations and situations of enlightenment in the public audience. This reflects a greater potential to humanize the digital in media architecture....

  4. Humanizing Architecture

    DEFF Research Database (Denmark)

    Toft, Tanya Søndergaard

    2015-01-01

    The article proposes the urban digital gallery as an opportunity to explore the relationship between ‘human’ and ‘technology,’ through the programming of media architecture. It takes a curatorial perspective when proposing an ontological shift from considering media facades as visual spectacles...... agency and a sense of being by way of dematerializing architecture. This is achieved by way of programming the symbolic to provide new emotional realizations and situations of enlightenment in the public audience. This reflects a greater potential to humanize the digital in media architecture....

  5. Prostitution and Human Trafficking: A model-based exploration and policy analysis

    NARCIS (Netherlands)

    Kovari, A.; Pruyt, E.

    2012-01-01

    The meeting of the oldest profession with modern slavery is the topic of this paper. After a brief introduction to prostitution and prostitution-related human trafficking, this paper focuses on the Dutch policy debate. A System Dynamics simulation model related to the Dutch situation developed to ex

  6. Human security and access to water, sanitation, and hygiene: exploring the drivers and nexus

    NARCIS (Netherlands)

    P. Obani; J. Gupta

    2016-01-01

    Water security challenges are mostly covered in the literature on the food and energy nexus. This chapter however adopts a broader conception of water security in relation to lack of access to water, sanitation, and hygiene (WASH), and argues that the human rights approach could be instrumental in a

  7. Exploring School Ethos: An Investigation of Children's Human Rights in Two Secondary Institutions in Hong Kong

    Science.gov (United States)

    Lo, Yan Lam; Leung, Yan Wing; Yuen, Wai Wa

    2015-01-01

    From 2009 to 2011, the authors launched the Basic Law Education Project: Education for Human Rights and the Rule of Law in Hong Kong. This article focuses on a subset of the overarching data-set and discusses the findings that resulted from a comparative analysis of two participating schools. A survey was deployed to assess the extent to which a…

  8. Exploring human centred approaches in market research and product development - Three case studies

    NARCIS (Netherlands)

    Steen, M.; Koning, N. de; Pikaart, A.

    2004-01-01

    How can human centred approaches in market research and product development improve the process and results of innovation? Based on case studies two recommendations are formulated: 1) use a comprehensive view on man for studying people's behaviour, needs and wishes while they use products or service

  9. Exploring School Ethos: An Investigation of Children's Human Rights in Two Secondary Institutions in Hong Kong

    Science.gov (United States)

    Lo, Yan Lam; Leung, Yan Wing; Yuen, Wai Wa

    2015-01-01

    From 2009 to 2011, the authors launched the Basic Law Education Project: Education for Human Rights and the Rule of Law in Hong Kong. This article focuses on a subset of the overarching data-set and discusses the findings that resulted from a comparative analysis of two participating schools. A survey was deployed to assess the extent to which a…

  10. A Multicase Study: Exploring Human Resource Information System Implementation and Utilization in Multinational Corporations in Kenya

    Science.gov (United States)

    Nzyoka Yongo, Cyd W.

    2016-01-01

    Implementation and utilization of human resource information system (HRIS) though a very desirable prospect for many organizations, still remains a daunting task for many. This has been daunting because of prohibitive costs, security risks, top management resistance, employee attitudes, and so forth. Trends globally show that, organizations that…

  11. Exploring human centred approaches in market research and product development - Three case studies

    NARCIS (Netherlands)

    Steen, M.; Koning, N. de; Pikaart, A.

    2004-01-01

    How can human centred approaches in market research and product development improve the process and results of innovation? Based on case studies two recommendations are formulated: 1) use a comprehensive view on man for studying people's behaviour, needs and wishes while they use products or

  12. Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation.

    NARCIS (Netherlands)

    Munchau, A.; Bloem, B.R.; Irlbacher, K.; Trimble, M.R.; Rothwell, J.C.

    2002-01-01

    Connections between the premotor cortex and the primary motor cortex are dense and are important in the visual guidance of arm movements. We have shown previously that it is possible to engage these connections in humans and to measure the net amount of inhibition/facilitation from premotor to motor

  13. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  14. Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA.

    Science.gov (United States)

    Wong, Nicholas C; Ng, Jane; Hall, Nathan E; Lunke, Sebastian; Salmanidis, Marika; Brumatti, Gabriela; Ekert, Paul G; Craig, Jeffrey M; Saffery, Richard

    2013-07-01

    Illumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species.

  15. A Multicase Study: Exploring Human Resource Information System Implementation and Utilization in Multinational Corporations in Kenya

    Science.gov (United States)

    Nzyoka Yongo, Cyd W.

    2016-01-01

    Implementation and utilization of human resource information system (HRIS) though a very desirable prospect for many organizations, still remains a daunting task for many. This has been daunting because of prohibitive costs, security risks, top management resistance, employee attitudes, and so forth. Trends globally show that, organizations that…

  16. Human microbiomics

    OpenAIRE

    Rajendhran, J.; P. Gunasekaran

    2010-01-01

    The sequencing of the human genome has driven the study of human biology in a significant way and enabled the genome-wide study to elucidate the molecular basis of complex human diseases. Recently, the role of microbiota on human physiology and health has received much attention. The influence of gut microbiome (the collective genomes of the gut microbiota) in obesity has been demonstrated, which may pave the way for new prophylactic and therapeutic strategies such as bacteriotherapy. The sig...

  17. Human Smuggling

    NARCIS (Netherlands)

    Siegel - Rozenblit, Dina; Zaitch, Damian

    2014-01-01

    Human smuggling is based on a consensus between smuggler, smuggled, and his/her family (which usually guarantees or effectuates payment). However, unauthorized immigrants are violating immigration laws and human smugglers are profiting from enabling illegal immigration. Both human smuggling and its

  18. Development and Execution of Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration

    Science.gov (United States)

    Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.

    2013-01-01

    Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and

  19. Development and Execution of Autonomous Procedures Onboard the International Space Station to Support the Next Phase of Human Space Exploration

    Science.gov (United States)

    Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.

    2013-01-01

    Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and

  20. Clinical Tolerogenic Dendritic Cells: Exploring Therapeutic Impact on Human Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Brett Eugene Phillips

    2017-10-01

    Full Text Available Tolerogenic dendritic cell (tDC-based clinical trials for the treatment of autoimmune diseases are now a reality. Clinical trials are currently exploring the effectiveness of tDC to treat autoimmune diseases of type 1 diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS, and Crohn’s disease. This review will address tDC employed in current clinical trials, focusing on cell characteristics, mechanisms of action, and clinical findings. To date, the publicly reported human trials using tDC indicate that regulatory lymphocytes (largely Foxp3+ T-regulatory cell and, in one trial, B-regulatory cells are, for the most part, increased in frequency in the circulation. Other than this observation, there are significant differences in the major phenotypes of the tDC. These differences may affect the outcome in efficacy of recently launched and impending phase II trials. Recent efforts to establish a catalog listing where tDC converge and diverge in phenotype and functional outcome are an important first step toward understanding core mechanisms of action and critical “musts” for tDC to be therapeutically successful. In our view, the most critical parameter to efficacy is in vivo stability of the tolerogenic activity over phenotype. As such, methods that generate tDC that can induce and stably maintain immune hyporesponsiveness to allo- or disease-specific autoantigens in the presence of powerful pro-inflammatory signals are those that will fare better in primary endpoints in phase II clinical trials (e.g., disease improvement, preservation of autoimmunity-targeted tissue, allograft survival. We propose that pre-treatment phenotypes of tDC in the absence of functional stability are of secondary value especially as such phenotypes can dramatically change following administration, especially under dynamic changes in the inflammatory state of the patient. Furthermore, understanding the outcomes of different methods of cell delivery and sites

  1. Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie

    2016-01-01

    NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems evolved from those currently under development in support of the Asteroid Redirect Mission to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys the required stages for returning crew from Mars. While this changes the risk posture of the architecture, it provides mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 3000 days. This unique aspect to the concept

  2. Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie

    2016-01-01

    NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems, evolved from those currently under development in support of the Asteroid Redirect Mission (ARM), to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys to Mars orbit the stages required for returning crew from Mars. While this changes the risk posture of the architecture, it can provide some mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 2500 days. This

  3. Exploring Effective Decision Making through Human-Centered and Computational Intelligence Methods

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyungsik; Cook, Kristin A.; Shih, Patrick C.

    2016-06-13

    Decision-making has long been studied to understand a psychological, cognitive, and social process of selecting an effective choice from alternative options. Its studies have been extended from a personal level to a group and collaborative level, and many computer-aided decision-making systems have been developed to help people make right decisions. There has been significant research growth in computational aspects of decision-making systems, yet comparatively little effort has existed in identifying and articulating user needs and requirements in assessing system outputs and the extent to which human judgments could be utilized for making accurate and reliable decisions. Our research focus is decision-making through human-centered and computational intelligence methods in a collaborative environment, and the objectives of this position paper are to bring our research ideas to the workshop, and share and discuss ideas.

  4. Theoretical and practical exploration of vision building in human influenza pandemic prevention & control

    Institute of Scientific and Technical Information of China (English)

    PengKong; YanKong; XuJiang; XiaohuaWang

    2010-01-01

    This article introduced the vision building concept about human influenza pandemic prevention and control. Different visions were built by creating different shapes of building blocks which also represented different organizations and physical facilities, respectively. The around-view reflection is required to be developed in the process of building so as to search for the ideal pattern. The correlation of all sectors and systems are established to combine different kinds of things, from one family to another, from communities, towns, counties, cities, rural areas, provinces to the state to handle trivial problems. These training objectives have been successfully accomplished, which has not only enriched the knowledge about prevention and control of influenza pandemic between different departments but also clarified the roles and responsibility. It lays the firm foundation for next cooperation between different departments, and make a bridge for the objective and choice of channel over human influenza pandemic prevention and control.

  5. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  6. Beyond the income inequality hypothesis and human health: a worldwide exploration

    OpenAIRE

    Idrovo,Alvaro J.; Ruiz-Rodríguez,Myriam; Manzano-Patiño,Abigail P

    2010-01-01

    OBJECTIVE: To analyze whether the relationship between income inequality and human health is mediated through social capital, and whether political regime determines differences in income inequality and social capital among countries. METHODS: Path analysis of cross sectional ecological data from 110 countries. Life expectancy at birth was the outcome variable, and income inequality (measured by the Gini coefficient), social capital (measured by the Corruption Perceptions Index or generalized...

  7. Exploring emotions using invasive methods: review of 60 years of human intracranial electrophysiology.

    Science.gov (United States)

    Guillory, Sean A; Bujarski, Krzysztof A

    2014-12-01

    Over the past 60 years, human intracranial electrophysiology (HIE) has been used to characterize seizures in patients with epilepsy. Secondary to the clinical objectives, electrodes implanted intracranially have been used to investigate mechanisms of human cognition. In addition to studies of memory and language, HIE methods have been used to investigate emotions. The aim of this review is to outline the contribution of HIE (electrocorticography, single-unit recording and electrical brain stimulation) to our understanding of the neural representations of emotions. We identified 64 papers dating back to the mid-1950s which used HIE techniques to study emotional states. Evidence from HIE studies supports the existence of widely distributed networks in the neocortex, limbic/paralimbic regions and subcortical nuclei which contribute to the representation of emotional states. In addition, evidence from HIE supports hemispheric dominance for emotional valence. Furthermore, evidence from HIE supports the existence of overlapping neural areas for emotion perception, experience and expression. Lastly, HIE provides unique insights into the temporal dynamics of neural activation during perception, experience and expression of emotional states. In conclusion, we propose that HIE techniques offer important evidence which must be incorporated into our current models of emotion representation in the human brain. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Functional exploration of the human spinal cord during voluntary movement and somatosensory stimulation.

    Science.gov (United States)

    Summers, Paul E; Iannetti, Gian Domenico; Porro, Carlo A

    2010-10-01

    Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology. A striking weakness of many spinal fMRI studies is the use of small numbers of subjects and of time-points in the acquired functional image series. In addition, spinal fMRI is characterised by large physiological noise, while the recorded functional responses are poorly characterised. For all these reasons, spinal fMRI experiments risk having low statistical power, and few spinal fMRI studies have yielded physiologically relevant information. Thus, while available evidence indicates that spinal fMRI is feasible, we are only approaching the stage at which the technique can be considered to have been rigorously established as a viable means of noninvasively investigating spinal cord functioning in humans.

  9. Exploring the Role of Human Capital Management on Organizational Success: Evidence from Public Universities

    Directory of Open Access Journals (Sweden)

    Odunayo Paul SALAU

    2016-12-01

    Full Text Available The demand for higher education in Nigeria has been considered as not only an investment in human capital, but also a pre-requisite for economic development. Consequent upon the expansion of higher education in Nigeria, quite a number of institutions have suffered decay due to poor work environments, inadequate educational facilities and poor funding which have resulted into unabated brain drain, strike and turnover. However, the need to develop talents is no longer hidden, what remains controversial is knowing the best method for managing human capacity especially in Nigerian State owned universities. Thus, this study examined the relationship between human capital management and organizational success using three State owned universities in Southwest, Nigeria. These universities (Ekiti State University (EKSU, Lagos State University (LASU, Tai Solarin University of Education (TASUED were chosen for their uniqueness. Survey research design was adopted with 398 respondents (staff. Self-administered questionnaire was adopted and analyzed with the adoption of Structural Equation Modelling (SEM. However, the results indicated that adequate leadership practices; learning capacity; workforce optimization; knowledge accessibility; workplace culture and; mentorship are significant predictors of organizational success in higher education.

  10. Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families.

    Directory of Open Access Journals (Sweden)

    Kyle Ellrott

    2010-06-01

    Full Text Available The microbes that inhabit particular environments must be able to perform molecular functions that provide them with a competitive advantage to thrive in those environments. As most molecular functions are performed by proteins and are conserved between related proteins, we can expect that organisms successful in a given environmental niche would contain protein families that are specific for functions that are important in that environment. For instance, the human gut is rich in polysaccharides from the diet or secreted by the host, and is dominated by Bacteroides, whose genomes contain highly expanded repertoire of protein families involved in carbohydrate metabolism. To identify other protein families that are specific to this environment, we investigated the distribution of protein families in the currently available human gut genomic and metagenomic data. Using an automated procedure, we identified a group of protein families strongly overrepresented in the human gut. These not only include many families described previously but also, interestingly, a large group of previously unrecognized protein families, which suggests that we still have much to discover about this environment. The identification and analysis of these families could provide us with new information about an environment critical to our health and well being.

  11. In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications

    Science.gov (United States)

    Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.; hide

    2017-01-01

    Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.

  12. The Human Rights Situation for the LGBT community in Russia: Exploring the current lack of norm socialization

    OpenAIRE

    Eichner, Martina Frogner

    2013-01-01

    This thesis explores why norm socialization, as understood by Risse and Sikkink (1999), of human rights for the LGBT community has not taken place in Russia by looking at historically developed structures and actors in the Russian society and the European level regarding acceptance of the LGBT community. First, one key factor for this conclusion is the role of the Orthodox Church in Russia. The Russian Orthodox Church enjoys a subordinate position in Russia as a moral institution. In Russia, ...

  13. The Human Rights Situation for the LGBT community in Russia: Exploring the current lack of norm socialization

    OpenAIRE

    Eichner, Martina Frogner

    2013-01-01

    This thesis explores why norm socialization, as understood by Risse and Sikkink (1999), of human rights for the LGBT community has not taken place in Russia by looking at historically developed structures and actors in the Russian society and the European level regarding acceptance of the LGBT community. First, one key factor for this conclusion is the role of the Orthodox Church in Russia. The Russian Orthodox Church enjoys a subordinate position in Russia as a moral institution. In Russia, ...

  14. Human Rights/Human Needs.

    Science.gov (United States)

    Canning, Cynthia

    1978-01-01

    The faculty of Holy Names High School developed an interdisciplinary human rights program with school-wide activities focusing on three selected themes: the United Nations Universal Declaration of Human Rights, in conjunction with Human Rights Week; Food; and Women. This article outlines major program activities. (SJL)

  15. Elasticity in ecosystem services: exploring the variable relationship between ecosystems and human well-being

    Directory of Open Access Journals (Sweden)

    Tim M. Daw

    2016-06-01

    Full Text Available Although ecosystem services are increasingly recognized as benefits people obtain from nature, we still have a poor understanding of how they actually enhance multidimensional human well-being, and how well-being is affected by ecosystem change. We develop a concept of "ecosystem service elasticity" (ES elasticity that describes the sensitivity of human well-being to changes in ecosystems. ES Elasticity is a result of complex social and ecological dynamics and is context dependent, individually variable, and likely to demonstrate nonlinear dynamics such as thresholds and hysteresis. We present a conceptual framework that unpacks the chain of causality from ecosystem stocks through flows, goods, value, and shares to contribute to the well-being of different people. This framework builds on previous conceptualizations, but places multidimensional well-being of different people as the final element. This ultimately disaggregated approach emphasizes how different people access benefits and how benefits match their needs or aspirations. Applying this framework to case studies of individual coastal ecosystem services in East Africa illustrates a wide range of social and ecological factors that can affect ES elasticity. For example, food web and habitat dynamics affect the sensitivity of different fisheries ecosystem services to ecological change. Meanwhile high cultural significance, or lack of alternatives enhance ES elasticity, while social mechanisms that prevent access can reduce elasticity. Mapping out how chains are interlinked illustrates how different types of value and the well-being of different people are linked to each other and to common ecological stocks. We suggest that examining chains for individual ecosystem services can suggest potential interventions aimed at poverty alleviation and sustainable ecosystems while mapping out of interlinkages between chains can help to identify possible ecosystem service trade-offs and winners and

  16. A General Education Course in Cultural Astronomy: Exploring the Universe Through Human Eyes

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    Astronomy courses for non-science majors (often referred to as Astro 101) are the bread and butter of the general education service obligation of astronomy faculty and programs across the US. Their content has traditionally been a general survey of the solar system, stars and galaxies, or even the entire universe. However, because the audience is students who will not be continuing on in astronomy, there is actually no need to cover a broad range of specific topics. Rather, it is more important to concentrate on the scientific process, and hopefully leave the student with an understanding of the relevance of science in everyday life, regardless of his or her major. As a result, some faculty prefer a more interdisciplinary focus for their Astro 101 classes, for example courses on the search for extraterrestrial life. Another option for general education astronomy courses is what has become known as cultural astronomy. Cultural astronomy focuses on the ways in which astronomical knowledge and belief influences human behavior and social structures. Under this umbrella fall two important areas of study, archaeoastronomy (concentrating on ancient cultures) and enthoastronomy (focusing on extant cultures). Such interdisciplinary courses draw heavily upon archaeology, history, anthropology, art, and other fields more traditionally aligned with the humanities and social sciences than the natural sciences, and therefore can be attractive to students in these non-science majors. In such courses, students experience the “humanity” of science: the important connections between science and the human experience, and how experts in myriad fields contribute in meaningful ways to our understanding of how astronomical knowledge has been constructed and disseminated across time and space. This poster describes the content and pedagogy of a general education course in cultural astronomy for non-science majors that stresses hands-on and experiential learning, including the use of

  17. Minerva: User-Centered Science Operations Software Capability for Future Human Exploration

    Science.gov (United States)

    Deans, Matthew; Marquez, Jessica J.; Cohen, Tamar; Miller, Matthew J.; Deliz, Ivonne; Hillenius, Steven; Hoffman, Jeffrey; Lee, Yeon Jin; Lees, David; Norheim, Johannes; Lim, Darlene S. S.

    2017-01-01

    In June of 2016, the Biologic Analog Science Associated with Lava Terrains (BASALT) research project conducted its first field deployment, which we call BASALT-1. BASALT-1 consisted of a science-driven field campaign in a volcanic field in Idaho as a simulated human mission to Mars. Scientists and mission operators were provided a suite of ground software tools that we refer to collectively as Minerva to carry out their work. Minerva provides capabilities for traverse planning and route optimization, timeline generation and display, procedure management, execution monitoring, data archiving, visualization, and search. This paper describes the Minerva architecture, constituent components, use cases, and some preliminary findings from the BASALT-1 campaign.

  18. Options for the human exploration of Mars using Solar Electric propulsion

    Science.gov (United States)

    Gefert, Leon P.; Hack, Kurt J.; Kerslake, Thomas W.

    1999-01-01

    Solar Electric propulsion (SEP) is examined as a candidate transportation option for human missions to Mars. Focus is given to an Earth-escape staging concept. This concept uses a SEP system to transfer from low earth orbit (LEO) to a high-energy elliptical parking orbit (HEEPO) and a chemical propulsion system to transfer from the HEEPO to a hyperbolic escape trajectory. LEO to Earth escape performance of these combined transportation systems is comparable to that of a nuclear thermal rocket (NTR). As a result, a mass efficient non-nuclear transportation architecture with fast, 180 day, Earth-to-Mars piloted transit times is enabled.

  19. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-05-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with (/sup 3/H)yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells.

  20. Digital Humanities

    DEFF Research Database (Denmark)

    Brügger, Niels

    2016-01-01

    the humanities for decades, starting with research fields such as humanities computing or computational linguistics in the 1950s, and later new media studies and internet studies. The historical development of digital humanities has been characterized by a focus on three successive, but co-existing types......Digital humanities is an umbrella term for theories, methodologies, and practices related to humanities scholarship that use the digital computer as an integrated and essential part of its research and teaching activities. The computer can be used for establishing, finding, collecting......, and preserving material to study, as an object of study in its own right, as an analytical tool, or for collaborating, and for disseminating results. The term "digital humanities" was coined around 2001, and gained currency within academia in the following years. However, computers had been used within...

  1. Human Rights, Human Needs, Human Development, Human Security - Relationships between four international human discourses.

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2007-01-01

    markdownabstractAbstract: Human rights, human development and human security form increasingly important, partly interconnected, partly competitive and misunderstood ethical and policy discourses. Each tries to humanize a pre-existing and unavoidable major discourse of everyday life, policy and

  2. The Preliminary Exploration of Strategic Human Resource Management%战略人力资源管理初探

    Institute of Scientific and Technical Information of China (English)

    刘海凤

    2013-01-01

      战略人力资源管理在国内外企业发展中的重要性凸显,但我国企业管理人员对战略人力资源管理的认知尚未清晰。本文从战略人力资源管理研究的多样化视角中,选取战略人力资源管理的涵义和作用机制两大层面进行探索,为我国企业竞争优势的获取与保持、组织绩效的提升提供参考。%The strategic human resources management is important in the development of the enterprise at home and abroad, but our country enterprise managers have not been clear cognition to strategic human resource management. This paper, among the diversification views of strategic human resource management research, selects the meaning and mechanism of strategic human resource management two levels to explore, it will provide the reference for our country enterprise to obtain competitive advantage, and to improve organization performance.

  3. TelCoVis: Visual Exploration of Co-occurrence in Urban Human Mobility Based on Telco Data.

    Science.gov (United States)

    Wu, Wenchao; Xu, Jiayi; Zeng, Haipeng; Zheng, Yixian; Qu, Huamin; Ni, Bing; Yuan, Mingxuan; Ni, Lionel M

    2016-01-01

    Understanding co-occurrence in urban human mobility (i.e. people from two regions visit an urban place during the same time span) is of great value in a variety of applications, such as urban planning, business intelligence, social behavior analysis, as well as containing contagious diseases. In recent years, the widespread use of mobile phones brings an unprecedented opportunity to capture large-scale and fine-grained data to study co-occurrence in human mobility. However, due to the lack of systematic and efficient methods, it is challenging for analysts to carry out in-depth analyses and extract valuable information. In this paper, we present TelCoVis, an interactive visual analytics system, which helps analysts leverage their domain knowledge to gain insight into the co-occurrence in urban human mobility based on telco data. Our system integrates visualization techniques with new designs and combines them in a novel way to enhance analysts' perception for a comprehensive exploration. In addition, we propose to study the correlations in co-occurrence (i.e. people from multiple regions visit different places during the same time span) by means of biclustering techniques that allow analysts to better explore coordinated relationships among different regions and identify interesting patterns. The case studies based on a real-world dataset and interviews with domain experts have demonstrated the effectiveness of our system in gaining insights into co-occurrence and facilitating various analytical tasks.

  4. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  5. Human Rights and Human Nature

    Directory of Open Access Journals (Sweden)

    Vittorio Possenti

    2013-11-01

    Full Text Available There seems to be two different versions of human rights in Western tradition: say Rationalistic and Christian; the former adopted in revolutionary France, the latter highly developed in Renaissance Spain. Current relativistic criticisms attempt to deny the universality of human rights alleging that this theory has been created in Western countries or it has no strong justification, and therefore cannot have universal approach; but this objection can be dismissed with an alternative justification of human rights.

  6. Interplanetary outpost the human and technological challenges of exploring the outer planets

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    Water has been discovered on the Saturnian moon, Enceladus, and on Jupiter's moons, Europa, Ganymede, and Callisto. Where there is water, could there be life? Could this tantalizing possibility result in a manned mission to the outer planets? But how will such a mission be designed, what propulsion system will be used, and what hazards will the crewmembers face? Interplanetary Outpost describes step by step how the mission architecture will evolve, how crews will be selected and trained, and what the mission will entail from launch to landing. It addresses the effects that exteneded duration, radiation, communication, and isolation will have on the human body, and how not only performance but behavior might be affected.

  7. Exploring the putative self-binding property of the human farnesyltransferase alpha-subunit.

    Science.gov (United States)

    Hagemann, Anna; Müller, Grit; Manthey, Iris; Bachmann, Hagen Sjard

    2017-09-26

    Farnesylation is an important post-translational protein modification in eukaryotes. Farnesylation is performed by protein farnesyltransferase, a heterodimer composed of an α- (FTα) and a β-subunit. Recently, homo-dimerization of truncated rat and yeast FTα has been detected, suggesting a new role for FTα homodimers in signal transduction. We investigated the putative dimerization behaviour of human and rat FTα. Different in vitro and in vivo approaches revealed no self-dimerization and a presumably artificial formation of homo-trimers and higher homo-oligomers in vitro. Our study contributes to the clarification of the physiological features of FTase in different species and may be important for the ongoing development of FTase inhibitors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Exploring the trade-off between quality and fairness in human partner choice.

    Science.gov (United States)

    Raihani, Nichola J; Barclay, Pat

    2016-11-01

    Partner choice is an important force underpinning cooperation in humans and other animals. Nevertheless, the mechanisms individuals use to evaluate and discriminate among partners who vary across different dimensions are poorly understood. Generally, individuals are expected to prefer partners who are both able and willing to invest in cooperation but how do individuals prioritize the ability over willingness to invest when these characteristics are opposed to one another? We used a modified Dictator Game to tackle this question. Choosers evaluated partners varying in quality (proxied by wealth) and fairness, in conditions when wealth was relatively stable or liable to change. When both partners were equally fair (or unfair), choosers typically preferred the richer partner. Nevertheless, when asked to choose between a rich-stingy and a poor-fair partner, choosers prioritized fairness over wealth-with this preference being particularly pronounced when wealth was unstable. The implications of these findings for real-world partner choice are discussed.

  9. Exploring the trade-off between quality and fairness in human partner choice

    Science.gov (United States)

    Barclay, Pat

    2016-01-01

    Partner choice is an important force underpinning cooperation in humans and other animals. Nevertheless, the mechanisms individuals use to evaluate and discriminate among partners who vary across different dimensions are poorly understood. Generally, individuals are expected to prefer partners who are both able and willing to invest in cooperation but how do individuals prioritize the ability over willingness to invest when these characteristics are opposed to one another? We used a modified Dictator Game to tackle this question. Choosers evaluated partners varying in quality (proxied by wealth) and fairness, in conditions when wealth was relatively stable or liable to change. When both partners were equally fair (or unfair), choosers typically preferred the richer partner. Nevertheless, when asked to choose between a rich-stingy and a poor-fair partner, choosers prioritized fairness over wealth—with this preference being particularly pronounced when wealth was unstable. The implications of these findings for real-world partner choice are discussed. PMID:28018638

  10. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites.

    Science.gov (United States)

    Giannini, Giuseppe; Battistuzzi, Gianfranco

    2015-02-01

    A set of compounds, previously selected as potent Hsp90α inhibitors, has been studied on a panel of human parasites. 5-Aryl-3,4-isoxazolediamide derivatives (1) were active against two protozoa, Trypanosoma brucei rhodesiense and Plasmodium falciparum, with a good tolerability toward cytotoxicity on non-malignant L6 rat myoblast cell line, unlike the 1,5-diaryl,4-carboxamides-1,2,3-triazole derivatives (2) which, while showing a single-digit nM range activity against the same protozoa, were also highly cytotoxic on L6 cells. In a subsequent in vivo study, two isoxazolediamide derivatives, 1a and 1b, were very efficacious on the sleeping sickness-causing agent with a clear parasitaemia during treatment. These data, however, showed that not all protozoa are sensitive to Hsp90 inhibitors, as well as not all Hsp90 inhibitors are equally active on parasites.

  11. Revisiting the MDG’s: Exploring a Multidimensional Framework for Human Development

    Directory of Open Access Journals (Sweden)

    Nasir Khan

    2010-05-01

    Full Text Available With a standardized set of goals, and targets set in rates,proportions and percentages, an aggregated generalization marks theMillennium Development Goals (MDG’s. Obscuring the real entitlementdeficits, such an approach cloaks the multidimensionality of human suffering by ignoring distributional inequity and interpersonal diversities. The MDG’s, therefore, needs a revisiting within a broader informational space like the one envisaged by the capabilities approach (CA of Amartya Sen. The paper develops a framework for such an assessment, evaluates the outreach and effectiveness of the MDG’s within the framework, and taking it as a paradigm, outlines an alternative global agenda for humandevelopment in terms of CA.

  12. Human kapital

    DEFF Research Database (Denmark)

    Grosen, Anders; Nielsen, Peder Harbjerg

    2007-01-01

    finansiel og human kapital. Den traditionelle rådgivnings snævre synsvinkel kan føre til forkerte investeringsråd. Der skal derfor opfordres til, at de finansielle virksomheder i tilrettelæggelsen af deres rådgivning af private kunder systematisk inddrager den humane kapitals størrelse og karakteristika i...

  13. Human trichuriasis

    DEFF Research Database (Denmark)

    Betson, Martha; Søe, Martin Jensen; Nejsum, Peter

    2015-01-01

    Human trichuriasis is a neglected tropical disease which affects hundreds of millions of people worldwide and is particularly prevalent among children living in areas where sanitation is poor. This review examines the current knowledge on the taxonomy, genetics and phylogeography of human Trichuris...

  14. Think Human

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2013-01-01

    years' campaigns suggests that the theory of communication underlying the campaign has its basis in mechanical action rather than in human communication. The practice of 'Communication design' is investigated in relation to this metaphorical 'machine thinking' model of communication and contrasted...... with the human-centered theory of communication advocated by integrationism....

  15. Human evolution

    DEFF Research Database (Denmark)

    Llamas, Bastien; Willerslev, Eske; Orlando, Ludovic Antoine Alexandre

    2017-01-01

    , and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become...

  16. Think Human

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2013-01-01

    years' campaigns suggests that the theory of communication underlying the campaign has its basis in mechanical action rather than in human communication. The practice of 'Communication design' is investigated in relation to this metaphorical 'machine thinking' model of communication and contrasted...... with the human-centered theory of communication advocated by integrationism....

  17. Teaching humanism.

    Science.gov (United States)

    Stern, David T; Cohen, Jordan J; Bruder, Ann; Packer, Barbara; Sole, Allison

    2008-01-01

    As the "passion that animates authentic professionalism," humanism must be infused into medical education and clinical care as a central feature of medicine's professionalism movement. In this article, we discuss a current definition of humanism in medicine. We will also provide detailed descriptions of educational programs intended to promote humanism at a number of medical schools in the United States (and beyond) and identify the key factors that make these programs effective. Common elements of programs that effectively teach humanism include: (1) opportunities for students to gain perspective in the lives of patients; (2) structured time for reflection on those experiences; and (3) focused mentoring to ensure that these events convert to positive, formative learning experiences. By describing educational experiences that both promote and sustain humanism in doctors, we hope to stimulate the thinking of other medical educators and to disseminate the impact of these innovative educational programs to help the profession meet its obligation to provide the public with humanistic physicians.

  18. Results of the First Astronaut-Rover (ASRO) Field Experiment: Lessons and Directions for the Human Exploration of Mars

    Science.gov (United States)

    Cabrol, N. A.; Kosmo, J. J.; Trevino, R. C.; Thomas, H.; Eppler, D.; Bualat, M. G.; Baker, K.; Huber, E.; Sierhuis, M.; Grin, E. A.

    1999-01-01

    The first Astronaut-Rover Interaction field experiment (hereafter designated as the ASRO project) took place Feb. 22-27, 1999, in Silver Lake, Mojave Desert, CA. The ASRO project is the result of a joint project between NASA Ames Research Center and Johnson Space Center. In the perspective of the Human Exploration and Development of Space (HEDS) of the Solar System, this interaction - the astronaut and the rover as a complementary and interactive team - in the field is critical to assess but had never been tested before the Silver Lake experiment. Additional information is contained in the original extended abstract.

  19. Modular Growth NTR Space Transportation System for Future NASA Human Lunar, NEA and Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) is a proven, high thrust propulsion technology that has twice the specific impulse (I(sub sp) approx.900 s) of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - everything required for affordable human missions beyond LEO. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower IMLEO, versatile vehicle design, and growth potential. Furthermore, the NTR requires no large technology scale-ups since the smallest engine tested during the Rover program - the 25 klb(sub f) "Pewee" engine is sufficient for human Mars missions when used in a clustered engine configuration. The "Copernicus" crewed Mars transfer vehicle developed for DRA 5.0 was an expendable design sized for fast-conjunction, long surface stay Mars missions. It therefore has significant propellant capacity allowing a reusable "1-year" round trip human mission to a large, high energy near Earth asteroid (NEA) like Apophis in 2028. Using a "split mission" approach, Copernicus and its two key elements - a common propulsion stage and integrated "saddle truss" and LH2 drop tank assembly - configured as an Earth Return Vehicle / propellant tanker, can also support a short round trip (approx.18 month) / short orbital stay (60 days) Mars reconnaissance mission in the early 2030's before a landing is attempted. The same short stay orbital mission can be performed with an "all-up" vehicle by adding an "in-line" LH2 tank to Copernicus to supply the extra propellant needed for this higher energy, opposition-class mission. To transition to a

  20. From Human-Nature to Cultureplace in Education via an Exploration of Unity and Relation in the Work of Peirce and Dewey

    Science.gov (United States)

    Quay, John

    2017-01-01

    In outdoor education discourse the notion of relation is often employed to convey basic connections between humanity and nature as human-nature relationships, yet the sense of relation itself is rarely questioned. Drawing on the work of Peirce and Dewey, I explore the ramifications of a more nuanced understanding of relation, specifically how…

  1. Human Computation

    CERN Document Server

    CERN. Geneva

    2008-01-01

    What if people could play computer games and accomplish work without even realizing it? What if billions of people collaborated to solve important problems for humanity or generate training data for computers? My work aims at a general paradigm for doing exactly that: utilizing human processing power to solve computational problems in a distributed manner. In particular, I focus on harnessing human time and energy for addressing problems that computers cannot yet solve. Although computers have advanced dramatically in many respects over the last 50 years, they still do not possess the basic conceptual intelligence or perceptual capabilities...

  2. Practicing Humanities

    DEFF Research Database (Denmark)

    Gimmler, Antje

    2016-01-01

    In contemporary societies, the humanities are under constant pressure and have to justify their existence. In the ongoing debates, Humboldt’s ideals of ‘Bildung’ and ‘pure science’ are often used to justify the unique function of the humanities of ensuring free research and contributing to a vital...... philosophy. Contrary to Humboldt’s idea that the non-practical is the most practical in the long run, philosophical pragmatism recommends to the humanities to situate knowledge in practices and apply knowledge to practices....

  3. A Low-Cost, Low-Risk Mission Concept for the Return of Martian Atmospheric Dust: Relevance to Human Exploration of Mars

    Science.gov (United States)

    Wadhwa, M.; Leshin, L.; Clark, B.; Jones, S.; Jurewicz, A.; McLennan, S.; Mischna, M.; Ruff, S.; Squyres, S.; Westphal, A.

    2017-06-01

    We present a low-cost, low-risk mission concept for return of martian atmospheric dust. Such a mission would serve as a scientific, technological and operational pathfinder for future surface sample return and human exploration to Mars.

  4. Interview to Bill Gerstenmaier, NASA Human Exploration and Operations, on the occasion of the Spaceparts conference at CERN, on the 100th anniversary of the cosmic rays discovery

    CERN Multimedia

    2012-01-01

    Interview to Bill Gerstenmaier, NASA Human Exploration and Operations, on the occasion of the Spaceparts conference at CERN, on the 100th anniversary of the cosmic rays discovery. Gerstenmeier describes current science aboard the International Space Station (ISS).

  5. Exploring associations between gaze patterns and putative human mirror neuron system activity

    Directory of Open Access Journals (Sweden)

    Peter Hugh Donaldson

    2015-07-01

    Full Text Available The human mirror neuron system (MNS is hypothesised to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity, healthy right-handed participants aged 18-40 (n = 26 viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation (TMS. Motor-evoked potentials (MEPs recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze (PG and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  6. A Very Liquid Heaven: An exhibit exploring the human perception of stars

    Science.gov (United States)

    Crone, M. M.

    2004-12-01

    This year the Tang Teaching Museum and Art Gallery at Skidmore College is showing an exhibit about the human perception of stars, accompanied by a catalog, a speaker series, and an outreach program. The exhibit includes historical documents and atlases as well as work by a variety of artists and scientists. A Very Liquid Heaven opened with a performance of George Crumb's musical piece Makrokosmos III surrounded by original dance, theater, and video art. The title of the exhibit is inspired by Rene Descartes' 1644 text Principles of Philosophy, where he describes the earth as "surrounded on all sides by a very liquid heaven." Although Isaac Newton's laws of mechanics and gravity later discredited his specific hypothesis, in a sense Descartes was correct: astronomy has indeed revealed stars not as hard, fixed objects, but as pulsing plasmas, and interstellar space not as a pure void, but as diffuse clouds of atoms and molecules. This exhibit is made possible with support from Beverly P. and R. Lawrence St. Clair, the Nathalie Potter Voorhees '45 Memorial fund, and the Friends of the Tang.

  7. Exploring the Catalytic Mechanism of Human Glutamine Synthetase by Computer Simulations.

    Science.gov (United States)

    Issoglio, Federico M; Campolo, Nicolas; Zeida, Ari; Grune, Tilman; Radi, Rafael; Estrin, Dario A; Bartesaghi, Silvina

    2016-10-13

    Glutamine synthetase is an important enzyme that catalyzes the ATP-dependent formation of glutamine from glutamate and ammonia. In mammals, it plays a key role in preventing excitotoxicity in the brain and detoxifying ammonia in the liver. In plants and bacteria, it is fundamental for nitrogen metabolism, being critical for the survival of the organism. In this work, we show how the use of classical molecular dynamics simulations and multiscale quantum mechanics/molecular mechanics simulations allowed us to examine the structural properties and dynamics of human glutamine synthetase (HsGS), as well as the reaction mechanisms involved in the catalytic process with atomic level detail. Our results suggest that glutamine formation proceeds through a two-step mechanism that includes a first step in which the γ-glutamyl phosphate intermediate forms, with a 5 kcal/mol free energy barrier and a -8 kcal/mol reaction free energy, and then a second rate-limiting step involving the ammonia nucleophilic attack, with a free energy barrier of 19 kcal/mol and a reaction free energy of almost zero. A detailed analysis of structural features within each step exposed the relevance of the acid-base equilibrium related to protein residues and substrates in the thermodynamics and kinetics of the reactions. These results provide a comprehensive study of HsGS dynamics and establish the groundwork for further analysis regarding changes in HsGS activity, as occur in natural variants and post-translational modifications.

  8. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    Science.gov (United States)

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  9. Beyond the income inequality hypothesis and human health: a worldwide exploration.

    Science.gov (United States)

    Idrovo, Alvaro J; Ruiz-Rodríguez, Myriam; Manzano-Patiño, Abigail P

    2010-08-01

    To analyze whether the relationship between income inequality and human health is mediated through social capital, and whether political regime determines differences in income inequality and social capital among countries. Path analysis of cross sectional ecological data from 110 countries. Life expectancy at birth was the outcome variable, and income inequality (measured by the Gini coefficient), social capital (measured by the Corruption Perceptions Index or generalized trust), and political regime (measured by the Index of Freedom) were the predictor variables. Corruption Perceptions Index (an indirect indicator of social capital) was used to include more developing countries in the analysis. The correlation between Gini coefficient and predictor variables was calculated using Spearman's coefficients. The path analysis was designed to assess the effect of income inequality, social capital proxies and political regime on life expectancy. The path coefficients suggest that income inequality has a greater direct effect on life expectancy at birth than through social capital. Political regime acts on life expectancy at birth through income inequality. Income inequality and social capital have direct effects on life expectancy at birth. The "class/welfare regime model" can be useful for understanding social and health inequalities between countries, whereas the "income inequality hypothesis" which is only a partial approach is especially useful for analyzing differences within countries.

  10. Radiation measurements performed with active detectors relevant for human space exploration

    Directory of Open Access Journals (Sweden)

    Livio eNarici

    2015-12-01

    Full Text Available A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long duration mission planning in human spaceflight.Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former are easier to handle, cheaper, lighter and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station (ISS.To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool which allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  11. [Exploration on human blood type case in teaching practice of genetics].

    Science.gov (United States)

    Pi, Yan; Li, Xiao-Ying; Huai, Cong; Wang, Shi-Ming; Qiao, Shou-Yi; Lu, Da-Ru

    2013-08-01

    Blood type, which harbors abundant genetics meaning, is one of the most common phenotypes in human life. With the development of science and technology, its significance is unceasingly updated and new finding is increasingly emerging, which constantly attracts people to decipher the heredity mechanism of blood type. In addition to four main associated contents, i.e., Mendelian inheritance, genetic linkage, gene mutations, and chromosome abnormalities, the blood type case also covers many other aspects of the genetics knowledge. Based on the genetic knowledge context, we can interest the students and improve the teaching output in genetic teaching practice by combining with explaining ABO blood type case and heredity mechanism, expanding leucocyte groups, and introducing infrequent blood type such as Bombay blood, Rh and MN. By carrying out the related experimental teaching, we could drive the student to integrate theory with practice. In genetic experimental teaching, 80% of the students chose this optional experiment, molecular identification of ABO blood type, and it greatly interested them. Using appropriate blood type case in teaching related knowledge, organizing PPT exhi-bition and the debating discussion activities, it could provide opportunities for student to propose their own opinions, guide the student to thinking deeply, and develop their abilities to analyze and solve problem. Afterwards, students will gain in-depth comprehension about the fundamental knowledge of genetics.

  12. EXPLORING THE SAFE HUMAN MINDSET OF PRODUCTION LEADERS OF A PLATINUM MINE

    Directory of Open Access Journals (Sweden)

    N.J. Janse van Rensburg

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The aim of this research was to determine the safety mindset of managers, shift bosses, and miners as the production leaders in a South African platinum mine. The Safe Human Mindset Measuring Instrument (SHMI was administered among a purposive selected sample of managers, shift bosses and miners (N=106. Results showed significant differences between managers and miners in terms of relationship credibility, climate, trust, caring support, ownership, physical work environment, and attitude to safety. Significant differences were also found between managers and shift bosses in terms of trust and caring support, and between shift bosses and miners in terms of ownership. Practical implications are discussed and recommendations are made.

    AFRIKAANSE OPSOMMING: Die doel van die navorsing was om die houding van bestuurders, skofbestuurders en mynwerkers as produksieleiers in ’n Suid-Afrikaanse platinummyn ten opsigte van menslike veiligheid te bepaal. Die Veilige Menslike Houdingsinstrument is onder ’n doelbewuste steekproef van bestuurders, skofbestuurders en mynwerkers afgeneem (N=106. Die resultate het getoon dat betekenisvolle verskille bestaan tussen bestuurders en mynwerkers in terme van betroubare verhoudinge, klimaat, vertroue, ondersteuning, fisiese werks-omgewing, en houding ten opsigte van veiligheid. Betekenisvolle verskille is ook gevind tussen bestuurders en skofbestuurders in terme van vertroue en ondersteuning, en tussen skofbestuurders en mynwerkers in terme van eienaarskap. Praktiese implikasies word bespreek en aanbevelings gemaak.

  13. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  14. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  15. Human Toxicity

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter

    2015-01-01

    This chapter reviews the human toxicological impacts of chemicals and how to assess these impacts in life cycle impact assessment (LCIA), in order to identify key processes and pollutants. The complete cause-effect pathway – from emissions of toxic substances up to damages on human health...... on characterisation factors means that results should by default be reported and interpreted in log scales when comparing scenarios or substance contribution! We conclude by outlining future trends in human toxicity modelling for LCIA, with promising developments for (a) better estimates of degradation halflives, (b......) the inclusion of ionization of chemicals in human exposure including bioaccumulation, (c) metal speciation, (d) spatialised models to differentiate the variability associated with spatialisation from the uncertainty, and (e) the assessment of chemical exposure via consumer products and occupational settings...

  16. Human Toxicity

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter

    2015-01-01

    . The first section of this chapter outlines the complete cause-effect pathway, from emissions of toxic substances to intake by the population up to damages in terms of human health effects. Section 2 outlines the framework for assessing human toxicity in LCIA. Section 3 discusses the contributing substances......This chapter reviews the human toxicological impacts of chemicals and how to assess these impacts in life cycle impact assessment (LCIA), in order to identify key processes and pollutants. The complete cause-effect pathway – from emissions of toxic substances up to damages on human health...... – demonstrates the importance to account for both outdoor and indoor exposure, including consumer products. Analysing the variations in intake fraction (the fraction of the emitted or applied chemical that is taken in by the consumer and the general population), effect factor and characterisation factor across...

  17. Human influences

    NARCIS (Netherlands)

    Lanen, van H.A.J.; Kasparek, L.; Novicky, O.; Querner, E.P.; Fendeková, M.; Kupczyk, E.

    2004-01-01

    Human activities can cause drought, which was not previously reported (man-induced hydrological drought). Groundwater abstractions for domestic and industrial use are a well-known example of such an environmental change

  18. Human phantom

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    This human phantom has been received by CERN on loan from the State Committee of the USSR for the Utilization of Atomic Energy. It is used by the Health Physics Group to study personel radiation doses near the accelerators.

  19. Human expunction

    Science.gov (United States)

    Klee, Robert

    2017-10-01

    Thomas Nagel in `The Absurd' (Nagel 1971) mentions the future expunction of the human species as a `metaphor' for our ability to see our lives from the outside, which he claims is one source of our sense of life's absurdity. I argue that the future expunction (not to be confused with extinction) of everything human - indeed of everything biological in a terran sense - is not a mere metaphor but a physical certainty under the laws of nature. The causal processes by which human expunction will take place are presented in some empirical detail, so that philosophers cannot dismiss it as merely speculative. I also argue that appeals to anthropic principles or to forms of mystical cosmology are of no plausible avail in the face of human expunction under the laws of physics.

  20. Human babesiosis.

    Science.gov (United States)

    Rożej-Bielicka, Wioletta; Stypułkowska-Misiurewicz, Hanna; Gołąb, Elżbieta

    2015-01-01

    Babesiosis is an emerging parasitic, anthropo-zoonotic tick-borne disease, seldom diagnosed in humans. Caused by Protozoa, Babesia (also called Piroplasma) intraerytrocytic piriform microorganism. Infection of vertebrates is transmitted by ticks. Out of more than 100 Babesia species/genotypes described so far, only some were diagnosed in infected humans, mostly B. microti, B. divergens and B. venatorum (Babesia sp. EU1). Infection in humans is often asymptomatic or mild but is of a particular risk for asplenic individuals, those with congenital or acquired immunodeficiencies, and elderly. Infections transmitted with blood and blood products raise concerns in hemotherapy. Epidemiological situation of babesiosis varies around the world. In Europe, no increase in the number of cases was reported, but in the USA its prevalence is increasing and extension of endemic areas is observed. The aim of this publication is to describe the problems connected with the current epidemiological situation, diagnosis and treatment of human babesiosis with regard to clinical status of patients.

  1. Simulation of Human Plasma Concentrations of Thalidomide and Primary 5-Hydroxylated Metabolites Explored with Pharmacokinetic Data in Humanized TK-NOG Mice.

    Science.gov (United States)

    Nishiyama, Sayako; Suemizu, Hiroshi; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2015-11-16

    Plasma concentrations of thalidomide and primary 5-hydroxylated metabolites including 5,6-dihydroxythalidomide and glutathione (GSH) conjugate(s) were investigated in chimeric mice with highly "humanized" liver cells harboring cytochrome P450 3A5*1. Following oral administration of thalidomide (100 mg/kg), plasma concentrations of GSH conjugate(s) of 5-hydroxythalidomide were higher in humanized mice than in controls. Simulation of human plasma concentrations of thalidomide were achieved with a simplified physiologically based pharmacokinetic model in accordance with reported thalidomide concentrations. The results indicate that the pharmacokinetics in humans of GSH conjugate and/or catechol primary 5-hydroxylated thalidomide contributing in vivo activation can be estimated for the first time.

  2. Exploring the potential interference of estuarine sediment contaminants with the DNA repair capacity of human hepatoma cells.

    Science.gov (United States)

    Pinto, Miguel Ferreira; Louro, Henriqueta; Costa, Pedro M; Caeiro, Sandra; Silva, Maria João

    2015-01-01

    Estuaries may be reservoirs of a wide variety of pollutants, including mutagenic and carcinogenic substances that may impact on the ecosystem and human health. A previous study showed that exposure of human hepatoma (HepG2) cells to extracts from sediment samples collected in two areas (urban/industrial and riverine/agricultural) of an impacted estuary (Sado, Portugal), produced differential cytotoxic and genotoxic effects. Those effects were found to be consistent with levels and nature of sediment contamination. The present study aimed at evaluating whether the mixtures of contaminants contained in those extracts were able to modulate DNA repair capacity of HepG2 cells. The residual level of DNA damage was measured by the comet assay in cells exposed for 24 or 48 h to different extracts, after a short preexposure to a challenging concentration range of ethyl methanesulfonate (EMS), as a model alkylating agent. The results suggested that the mixture of contaminants present in the tested samples, besides a potential direct effect on the DNA molecule, may also interfere with DNA repair mechanisms in HepG2 cells, thus impairing their ability to deal with genotoxic stress and, possibly, facilitating accumulation of mutations. Humans are environmentally/occupationally exposed to mixtures rather than to single chemicals. Thus, the observation that estuarine contaminants induce direct and indirect DNA strand breakage in human cells, the latter through the impairment of DNA repair, raises additional concerns regarding potential hazards from exposure and the need to further explore these endpoints in the context of environmental risk assessment.

  3. Human energy

    OpenAIRE

    2010-01-01

    In the midst of big-oil record profits and growing debate on global warming, the Chevron Corporation launched its “Human Energy” public relations campaign. In television commercials and print advertisements, Chevron portrays itself as a compassionate entity striving to solve the planet’s energy crisis. Yet, the first term in this corporate oxymoron misleadingly reframes the significance of the second, suggesting that the corporation has a renewed focus. In depicting Chevron as a green/human o...

  4. Human Echolocation

    OpenAIRE

    Teng, Santani

    2013-01-01

    The use of active natural echolocation as a mobility aid for blind humans has received increased scientific and popular attention in recent years (Engber, 2006; Kreiser, 2006; NPR, 2011), in part due to a focus on several blind individuals who have developed remarkable expertise. However, perhaps surprisingly, the history of empirical human echolocation research is not much younger than the era of echolocation research (cf. Griffin, 1958). Nevertheless, compared to its bat and cetacean count...

  5. Exploring the acceptability of human papillomavirus self-sampling among Muslim immigrant women.

    Science.gov (United States)

    Lofters, Aisha K; Vahabi, Mandana; Fardad, Mitra; Raza, Afrah

    2017-01-01

    With appropriate screening (ie, the Papanicolaou [Pap] test), cervical cancer is highly preventable, and high-income countries, including Canada, have observed significant decreases in cervical cancer mortality. However, certain subgroups, including immigrants from countries with large Muslim populations, experience disparities in cervical cancer screening. Little is known about the acceptability of human papillomavirus (HPV) self-sampling as a screening strategy among Muslim immigrant women in Canada. This study assessed cervical cancer screening practices, knowledge and attitudes, and acceptability of HPV self-sampling among Muslim immigrant women. A convenience sample of 30 women was recruited over a 3-month period (June-August 2015) in the Greater Toronto Area. All women were between 21 and 69 years old, foreign-born, and self-identified as Muslim, and had good knowledge of English. Data were collected through a self-completed questionnaire. More than half of the participants falsely indicated that Pap tests may cause cervical infection, and 46.7% indicated that the test is an intrusion on privacy. The majority of women reported that they would be willing to try HPV self-sampling, and more than half would prefer this method to provider-administered sampling methods. Barriers to self-sampling included confidence in the ability to perform the test and perceived cost, and facilitators included convenience and privacy being preserved. The results demonstrate that HPV self-sampling may provide a favorable alternative model of care to the traditional provider-administered Pap testing. These findings add important information to the literature related to promoting cancer screening among women who are under or never screened for cervical cancer.

  6. Exploring the mechanism of interaction between sulindac and human serum albumin: Spectroscopic and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Ping; Hou, Ya-He [Department of Material Engineering, Xuzhou College of Industrial Technology, Xuzhou, Jiangsu 221140 (China); Wang, Li [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Zhang, Ye-Zhong, E-mail: zhangfluorescence@126.com [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Liu, Yi, E-mail: prof.liuyi@263.net [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2013-06-15

    In the present study, a combination of fluorescence, molecular modeling and circular dichroism (CD) approaches had been employed to investigate the interaction between sulindac and human serum albumin (HSA). Results of mechanism discussion demonstrated that the fluorescence quenching of HSA by sulindac was a static quenching procedure. Binding parameters calculated from the modified Stern–Volmer equation showed that sulindac bound to HSA with the binding affinities in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−18.58 kJ mol{sup −1}; ΔS=37.26 J mol{sup −1} K{sup −1}) obtained by the van′t Hoff equation revealed that hydrophobic forces played a leading role in the formation of sulindac–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments revealed a displacement of warfarin by sulindac, which indicated that the binding site of sulindac to HSA located in the sub-domain IIA (Sudlow′s site I). The molecular docking study confirmed the specific binding mode and binding site obtained by fluorescence and site marker competitive experiments. CD and three-dimensional fluorescence spectroscopy were used to investigate the changes of HSA secondary structure and microenvironment in the presence of sulindac. Alterations of HSA conformation were observed with the reduction of α-helix from 60.1% (free HSA) to 57.3%, manifesting a slight unfolding of the polypeptides of protein. -- Highlights: ► The quenching mechanism between sulindac and HSA is a static process. ► The binding of sulindac to HSA takes place in sub-domain IIA (Sudlow′s site I). ► The binding is spontaneous and hydrophobic force plays major role in stabilizing the complex. ► CD and 3-D fluorescence spectra prove the change of the microenvironment and conformation of HSA.

  7. Exploring the use of thermal infrared imaging in human stress research.

    Directory of Open Access Journals (Sweden)

    Veronika Engert

    Full Text Available High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints. Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle.

  8. A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration

    Science.gov (United States)

    Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert

    2016-01-01

    Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.

  9. Human ehrlichiosis

    Directory of Open Access Journals (Sweden)

    Đokić Milomir

    2006-01-01

    Full Text Available Background. Human ehrlichiosis is a newly recognized disease. It is a tick-borne disease caused by several bacterial species of the genhus Erlichia. These are small gram-negative pleomorphic cocci, that are obligatory intracellular bacteria. Tick Ixodes is the principle vector in Europe, and Amblyomma americanum in the United States. Bacterial organisms replicate in a tick, and are transmited from infected cells in a vector to the blood cells of animals or humans. Human ehrlichiosis is a name for a group of diseases caused by different species of Ehrlichia. One of them is the disease named human monocytic ehrlichiosis, caused by Ehrlichia chaffeensis, and the other is a human granulocytic ehrlichiosis caused by Anaplasma phagocytophilia. Case report. We reported a 23-year-old patient admitted for the clinical treatment with the symptoms of high febrility (above 40 °C, headache, vomiting, general weakness and exhaustion, but without data on a tick bite. The patient was treated with trimetoprim-sulfamethoxazole for a week when Ehrlichia chaffeensis was confirmed by the immunofluoroscence test, and the therapy contimed with doxacyclin. Conclusion. Human ehrlichiosis is also present in our country, so this disease should be considered everyday, especially in infectology practice.

  10. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  11. A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface

    Science.gov (United States)

    Gruener, John

    2012-01-01

    Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).

  12. Building and exploring an integrated human kinase network: global organization and medical entry points.

    Science.gov (United States)

    Colinge, Jacques; César-Razquin, Adrián; Huber, Kilian; Breitwieser, Florian P; Májek, Peter; Superti-Furga, Giulio

    2014-07-31

    Biological matter is organized in functional networks of different natures among which kinase-substrate and protein-protein interactions play an important role. Large public data collections allowed us to compile an important corpus of interaction data around human protein kinases. One of the most interesting observations analyzing this network is that coherence in kinase functional activity relies on kinase substrate interactions primarily and not on which protein complexes are formed around them. Further dissecting the two types of interactions at the level of kinase groups (CMGCs, Tyrosine kinases, etc.) we show a prevalence of intra-group interconnectivity, which we can naturally relate to current scenarios of evolution of biological networks. Tracking publication dates we observe high correlation of kinase interaction research focus with general kinase research. We find a similar bias in the targets of kinase inhibitors that feature high redundancy. Finally, intersecting kinase inhibitor specificity with sets of kinases located at specific positions in the kinase network, we propose alternative options for future therapeutic strategies using these compounds. Despite its importance for cellular regulation and the fact that protein kinases feature prominent targets of modern therapeutic approaches, the structure and logic of the global, integrated protein phosphorylation network have not been investigated intensively. To focus on the regulatory skeleton of the phosphorylation network, we contemplated a network consisting of kinases, their substrates, and publicly available physical protein interactions. Analysis of this network at multiple levels allowed establishing a series of interesting properties such as prevalence of kinase substrate interactions as opposed to general protein-protein interactions for establishing a holistic control over kinases activities. Kinases controlling many or a few only other kinases, in addition to non-kinases, were distributed in

  13. Exploring the acceptability of human papillomavirus self-sampling among Muslim immigrant women

    Directory of Open Access Journals (Sweden)

    Lofters AK

    2017-07-01

    Full Text Available Aisha K Lofters,1–4 Mandana Vahabi,5,6 Mitra Fardad,7 Afrah Raza8 1Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 2Department of Family and Community Medicine, University of Toronto, 3Department of Family and Community Medicine, St. Michael’s Hospital, 4Institute for Clinical Evaluative Sciences, 5Faculty of Community Services, Daphne Cockwell School of Nursing, 6Graduate Program in Immigration and Settlement Studies, Ryerson University, 7Faculty of Community Service, Daphne Cockwell School of Nursing, Ryerson University, Toronto, ON, Canada; 8University of Michigan Medical School, Ann Arbor, MI, USA Background: With appropriate screening (ie, the Papanicolaou [Pap] test, cervical cancer is highly preventable, and high-income countries, including Canada, have observed significant decreases in cervical cancer mortality. However, certain subgroups, including immigrants from countries with large Muslim populations, experience disparities in cervical cancer screening. Little is known about the acceptability of human papillomavirus (HPV self-sampling as a screening strategy among Muslim immigrant women in Canada. This study assessed cervical cancer screening practices, knowledge and attitudes, and acceptability of HPV self-sampling among Muslim immigrant women. Methods: A convenience sample of 30 women was recruited over a 3-month period (June–August 2015 in the Greater Toronto Area. All women were between 21 and 69 years old, foreign-born, and self-identified as Muslim, and had good knowledge of English. Data were collected through a self-completed questionnaire. Results: More than half of the participants falsely indicated that Pap tests may cause cervical infection, and 46.7% indicated that the test is an intrusion on privacy. The majority of women reported that they would be willing to try HPV self-sampling, and more than half would prefer this method to provider-administered sampling methods

  14. Safety Characteristics in System Application of Software for Human Rated Exploration Missions for the 8th IAASS Conference

    Science.gov (United States)

    Mango, Edward J.

    2016-01-01

    NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development. The GFAS system integrates the flight software packages of the Orion and SLS with the ground systems and launch countdown sequencers through the 'agile' software development process. A unique approach is needed to develop the GFAS project capabilities within this agile process. NASA has defined the software development process through a set of standards. The standards were written during the infancy of the so-called industry 'agile development' movement and must be tailored to adapt to the highly integrated environment of human exploration systems. Safety of the space systems and the eventual crew on board is paramount during the preparation of the exploration flight systems. A series of software safety characteristics have been incorporated into the development and certification efforts to ensure readiness for use and compatibility with the space systems. Three underlining factors in the exploration architecture require the GFAS system to be unique in its approach to ensure safety for the space systems, both the flight as well as the ground systems. The first are the missions themselves, which are exploration in nature, and go far beyond the comfort of low Earth orbit operations. The second is the current exploration

  15. Husbands' and Wives' Relative Earnings: Exploring Variation by Race, Human Capital, Labor Supply, and Life Stage

    Science.gov (United States)

    Winslow-Bowe, Sarah

    2009-01-01

    Whereas much research has explored the causes and consequences of the gender wage gap, far less has examined earnings differentials within marriage. This article contributes to this literature by utilizing the 2000 wave of the 1979 National Longitudinal Survey of Youth to examine variation in husbands' and wives' relative income by race/ethnicity,…

  16. Husbands' and Wives' Relative Earnings: Exploring Variation by Race, Human Capital, Labor Supply, and Life Stage

    Science.gov (United States)

    Winslow-Bowe, Sarah

    2009-01-01

    Whereas much research has explored the causes and consequences of the gender wage gap, far less has examined earnings differentials within marriage. This article contributes to this literature by utilizing the 2000 wave of the 1979 National Longitudinal Survey of Youth to examine variation in husbands' and wives' relative income by race/ethnicity,…

  17. Human Resource Strategic Management in NPOs: An Explorative Study on Managers' Psychosocial Training

    Science.gov (United States)

    Benevene, Paula; Cortini, Michela

    2010-01-01

    Purpose: This explorative research aims at examining the social representation of psychosocial training in NPOs managers. Design/methodology/approach: An adopted multiple research approach was adopted to analyse a corpus of qualitative data. A detailed semi-structured interview was administered to 122 senior managers of as many Italian NPOs.…

  18. Human Resource Strategic Management in NPOs: An Explorative Study on Managers' Psychosocial Training

    Science.gov (United States)

    Benevene, Paula; Cortini, Michela

    2010-01-01

    Purpose: This explorative research aims at examining the social representation of psychosocial training in NPOs managers. Design/methodology/approach: An adopted multiple research approach was adopted to analyse a corpus of qualitative data. A detailed semi-structured interview was administered to 122 senior managers of as many Italian NPOs.…

  19. [Human influenza].

    Science.gov (United States)

    Stock, Ingo

    2006-10-01

    Human influenza is one of the most common human infectious diseases, contributing to approximately one million deaths every year. In Germany, each year between 5.000 and 20.000 individuals die from severe influenza infections. In several countries, the morbidity and mortality of influenza is greatly underestimated. This is reflected by general low immunization rates. The emergence of avian influenza against the background of the scenario of a human influenza pandemic has revived public interest in the disease. According to the World Health Organisation, it is only the question on the beginning of a new influenza pandemic. The virus type of the new pandemic is still uncertain and it is also unclear, if a pandemic spread of the virus may be prevented by consistent controlling of avian influenza.

  20. Beyond Humanisms

    Directory of Open Access Journals (Sweden)

    Capurro, Rafael

    2012-01-01

    Full Text Available In the first part of this paper a short history of Western humanisms (Socrates, Pico della Mirandola, Descartes, Kant is presented. As far as these humanisms rest on a fixation of the ‘humanum’ they are metaphysical, although they might radically differ from each other. The second part deals with the present debate on trans- and posthumanism in the context of some breath-taking developments in science and technology.Angeletics, a theory of messengers and messages, intends to give an answer to the leading question of this paper, namely: ‘what does it mean to go beyond humanisms?’ The conclusion exposes briefly an ethics of hospitality and care from an angeletic perspective.

  1. Report of the Workshop on Biology-Based Technology to Enhance Human Well-Being and Function in Extended Space Exploration

    National Research Council Canada - National Science Library

    Steering Group for the Workshop on Biology-based Technology for Enhanced Space Exploration

    1998-01-01

    ... on Biology-based Technology to Enhance Human Well-being and Function in Extended Space Exploration Steering Group for the Workshop on Biology-based Technology for Enhanced Space Exploration Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington D.C. 1998 i Copyrighttr...

  2. Heavy ions, radioprotectors and genomic instability: implications for human space exploration.

    Science.gov (United States)

    Dziegielewski, Jaroslaw; Goetz, Wilfried; Baulch, Janet E

    2010-08-01

    The risk associated with space radiation exposure is unique from terrestrial radiation exposures due to differences in radiation quality, including linear energy transfer (LET). Both high- and low-LET radiations are capable of inducing genomic instability in mammalian cells, and this instability is thought to be a driving force underlying radiation carcinogenesis. Unfortunately, during space exploration, flight crews cannot entirely avoid radiation exposure. As a result, chemical and biological countermeasures will be an important component of successful extended missions such as the exploration of Mars. There are currently several radioprotective agents (radioprotectors) in use; however, scientists continue to search for ideal radioprotective compounds-safe to use and effective in preventing and/or reducing acute and delayed effects of irradiation. This review discusses the agents that are currently available or being evaluated for their potential as radioprotectors. Further, this review discusses some implications of radioprotection for the induction and/or propagation of genomic instability in the progeny of irradiated cells.

  3. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    Science.gov (United States)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  4. Exploring Organisational Commitment in the Police: Implications for Human Resource Strategy

    OpenAIRE

    Dick, Gavin P.M.; Metcalfe, Beverley

    2001-01-01

    Throughout the 1980s and 1990s organisation and management consultants have researched the concept of organisational commitment and report that highly committed employees are likely to be more effective, and be concerned with contributing to organisational improvement. Given the number of police reforms in the UK that are encouraging, forces to be more innovative, it is surprising that there have been few studies that have explored commitment amongst police officers. Using survey data (total ...

  5. NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration

    Science.gov (United States)

    Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher

    2016-01-01

    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be

  6. Developments in passive shielding for human explorations missions: the ROSSINI study

    Science.gov (United States)

    Giraudo, Martina; Lobascio, Cesare

    The aim of the “ROSSINI” (RadiatiOn Shielding by ISRU and INnovative materIals for EVA, vehicles and habitats) project, funded by the European Space Agency, is to investigate shielding materials to be used in deep space and planetary exploration. Simulants of materials that can be found on Moon and Mars planetary surfaces (e.g., regolith) and innovative materials rich in Hydrogen have been selected and tested with high energy (2.5 GeV) protons and 1 GeV/n Fe-56 ions (taken as representative of the whole GCR spectrum). Dose reduction, Bragg peak and neutron yield have been calculated on a subset of the irradiated targets. Geant4 Monte Carlo simulations through Geant4 Radiation Analysis for Space (GRAS) tools have been performed and compared to the obtained experimental data, to benchmark the computer codes. A simplified inflatable habitat for exploration missions has been defined choosing the innovative materials evaluated in the ROSSINI study. Monte Carlo simulations are ongoing (the project is to be concluded in early spring 2014) with the codes investigated, to compare the dose reduction resulting inside the simplified habitat with different shielding solutions.

  7. Human Rights, Human Needs, Human Development, Human Security : Relationships between four international 'human' discourses

    NARCIS (Netherlands)

    D.R. Gasper (Des)

    2007-01-01

    textabstractHuman rights, human development and human security form increasingly important, partly interconnected, partly competitive and misunderstood ethical and policy discourses. Each tries to humanize a pre-existing and unavoidable major discourse of everyday life, policy and politics; each

  8. Human Performance in Space

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    Human factors is a critical discipline for human spaceflight. Nearly every human factors research area is relevant to space exploration -- from the ergonomics of hand tools used by astronauts, to the displays and controls of a spacecraft cockpit or mission control workstation, to levels of automation designed into rovers on Mars, to organizational issues of communication between crew and ground. This chapter focuses more on the ways in which the space environment (especially altered gravity and the isolated and confined nature of long-duration spaceflight) affects crew performance, and thus has specific novel implications for human factors research and practice. We focus on four aspects of human performance: neurovestibular integration, motor control and musculo-skeletal effects, cognitive effects, and behavioral health. We also provide a sampler of recent human factors studies from NASA.

  9. Nothing Human

    Science.gov (United States)

    Wharram, C. C.

    2014-01-01

    In this essay C. C. Wharram argues that Terence's concept of translation as a form of "contamination" anticipates recent developments in philosophy, ecology, and translation studies. Placing these divergent fields of inquiry into dialogue enables us read Terence's well-known statement "I am a human being--I deem nothing…

  10. Human Trafficking

    Science.gov (United States)

    Wilson, David McKay

    2011-01-01

    The shadowy, criminal nature of human trafficking makes evaluating its nature and scope difficult. The U.S. State Department and anti-trafficking groups estimate that worldwide some 27 million people are caught in a form of forced servitude today. Public awareness of modern-day slavery is gaining momentum thanks to new abolitionist efforts. Among…

  11. Human waste

    NARCIS (Netherlands)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-01-01

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in

  12. Nothing Human

    Science.gov (United States)

    Wharram, C. C.

    2014-01-01

    In this essay C. C. Wharram argues that Terence's concept of translation as a form of "contamination" anticipates recent developments in philosophy, ecology, and translation studies. Placing these divergent fields of inquiry into dialogue enables us read Terence's well-known statement "I am a human being--I deem nothing…

  13. Practicing Humanities

    DEFF Research Database (Denmark)

    Gimmler, Antje

    2016-01-01

    and self-reflective democracy. Contemporary humanities have adopted a new orientation towards practices, and it is not clear how this fits with the ideals of ‘Bildung’ and ‘pure science’. A possible theoretical framework for this orientation towards practices could be found in John Dewey’s pragmatic...

  14. 人学对自我虚拟人性之探微%Exploration on Virtual Human Nature of Ego of Human Science

    Institute of Scientific and Technical Information of China (English)

    谢俊

    2012-01-01

    虚拟自我是人学研究之核心,是近年来活跃于人学界的主要概念之一。虚拟自我就其重要性而言,它不仅是自我的精神性表征,也是对自我虚拟人性的总结和概括。相信在不久的将来,虚拟自我一定会在痛苦境遇之中找到摆脱异化之路,并以芬芳之花朵绽放在人学百花园地。%The virtual ego is the core of human studies, at the same time it is one of the major concepts in human academia in recent years. As far as its importance is concerned, the virtual ego is not only the mental characterization of ego, but also the summary of the virtual human nature of the ego. In the future, the vir- tual ego will find a way out of alienation from the painful situation and will bloom in the human science gar- den with its fragrance.

  15. Exploring the significance of human mobility patterns in social link prediction

    KAUST Repository

    Alharbi, Basma Mohammed

    2014-01-01

    Link prediction is a fundamental task in social networks. Recently, emphasis has been placed on forecasting new social ties using user mobility patterns, e.g., investigating physical and semantic co-locations for new proximity measure. This paper explores the effect of in-depth mobility patterns. Specifically, we study individuals\\' movement behavior, and quantify mobility on the basis of trip frequency, travel purpose and transportation mode. Our hybrid link prediction model is composed of two modules. The first module extracts mobility patterns, including travel purpose and mode, from raw trajectory data. The second module employs the extracted patterns for link prediction. We evaluate our method on two real data sets, GeoLife [15] and Reality Mining [5]. Experimental results show that our hybrid model significantly improves the accuracy of social link prediction, when comparing to primary topology-based solutions. Copyright 2014 ACM.

  16. NASA Workshop on Technology for Human Robotic Exploration and Development of Space

    Science.gov (United States)

    Mankins, J. C.; Marzwell, N.; Mullins, C. A.; Christensen, C. B.; Howell, J. T.; O'Neil, D. A.

    2004-01-01

    Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.

  17. Integration of an Earth-Based Science Team During Human Exploration of Mars

    Science.gov (United States)

    Chappell, Steven P.; Beaton, Kara H.; Newton, Carolyn; Graff, Trevor G.; Young, Kelsey E.; Coan, David; Abercromby, Andrew F. J.; Gernhardt, Michael L.

    2017-01-01

    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. A mission was undertaken in 2016, NEEMO 21, at the Aquarius undersea research habitat. During the mission, the effects of varied oper-ations concepts with representative communication latencies as-sociated with Mars missions were studied. Six subjects were weighed out to simulate partial gravity and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) who provided input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys and marine-science-based sampling during saturation dives up to 4 hours in duration that simulated extravehicular activity (EVA) on Mars. A communication latency of 15 minutes in each direction between space and ground was simulated throughout the EVAs. Objective data included task completion times, total EVA time, crew idle time, translation time, ST assimilation time (defined as time available for the science team to discuss, to review and act upon data/imagery after they have been collected and transmitted to the ground). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. In addition, comments from both the crew and the ST were captured during the post-mission debrief. Here, we focus on the acceptability of the operations concepts studied and the capabilities most enhancing or enabling in the operations concept. The importance and challenges of designing EVA time-lines to account for the length of the task, level of interaction with the ground that is required/desired, and communication latency, are discussed.

  18. Exploring the human emotion of feeling cared for in the workplace.

    Science.gov (United States)

    Baggett, Margarita; Giambattista, Laura; Lobbestael, Linda; Pfeiffer, Judith; Madani, Catherina; Modir, Royya; Zamora-Flyr, Maria Magdalena; Davidson, Judy E

    2016-09-01

    To explore the emotion of feeling cared for in the workplace. The emotion of feeling cared for drives health-promoting behaviours. Feeling cared for is the end-product of caring, affecting practice, environment and outcomes. Identifying behaviours that lead to feeling cared for is the first step in promoting caring practices in leadership. A survey with open-ended questions was designed, validated and electronically distributed. Data from 35 responses were thematically analysed. Unit culture and leadership style affect caring capacity in the workplace. First level coding revealed two caring behaviour categories: recognition and support. Themes emerged aligned to Chapman's model of workplace appreciation: words of affirmation, receiving gifts, quality time and acts of service. The importance of being treated as a whole person was reported: being appreciated personally and professionally. Feeling cared for drives outcomes such as feeling valued, important, teamwork and organisational loyalty. This study generalises the applicability of Chapman's model developed for workplace appreciation in the health-care setting. Concrete examples of how leaders stimulate feeling cared for are provided. Caring leadership behaviours have the potential to improve retention, engagement, the healing environment and the capacity for caring for others. © 2016 John Wiley & Sons Ltd.

  19. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  20. Arousal regulation and affective adaptation to human responsiveness by a robot that explores and learns a novel environment

    Science.gov (United States)

    Hiolle, Antoine; Lewis, Matthew; Cañamero, Lola

    2014-01-01

    In the context of our work in developmental robotics regarding robot–human caregiver interactions, in this paper we investigate how a “baby” robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a “caregiver” to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a) the differences between two “idealized” robot profiles—a “needy” and an “independent” robot—in terms of their use of a caregiver as a means to regulate the “stress” (arousal) produced by the exploration and learning of a novel environment, and (b) the effects on the robot behaviors of two caregiving profiles varying in their responsiveness—“responsive” and “non-responsive”—to the regulatory requests of the robot. Going beyond previous work, in this paper we (a) assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (b) bring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to adapt its regulatory behavior along the “needy” and “independent” axis as a function of the varying responsiveness of the caregiver; and (c) analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot. PMID:24860492

  1. Arousal Regulation and Affective Adaptation to Human Responsiveness by a Robot that Explores and Learns a Novel Environment

    Directory of Open Access Journals (Sweden)

    Antoine eHiolle

    2014-05-01

    Full Text Available In the context of our work in developmental robotics regarding robot-human caregiver interactions, in this paper we investigate how a ``baby'' robot that explores and learns novel environments can adapt its affective regulatory behavior of soliciting help from a ``caregiver'' to the preferences shown by the caregiver in terms of varying responsiveness. We build on two strands of previous work that assessed independently (a the differences between two ``idealized'' robot profiles -- a ``needy'' and an ``independent'' robot -- in terms of their use of a caregiver as a means to regulate the ``stress'' (arousal produced by the exploration and learning of a novel environment, and (b the effects on the robot behaviors of two caregiving profiles varying in their responsiveness -- ``responsive'' and ``non-responsive'' -- to the regulatory requests of the robot. Going beyond previous work, in this paper we (a assess the effects that the varying regulatory behavior of the two robot profiles has on the exploratory and learning patterns of the robots; (bbring together the two strands previously investigated in isolation and take a step further by endowing the robot with the capability to textit{adapt/} its regulatory behavior along the ``needy'' and ``independent'' axis as a function of the varying responsiveness of the caregiver; and (c analyze the effects that the varying regulatory behavior has on the exploratory and learning patterns of the adaptive robot.

  2. "Everything Has to Die One Day:" Children's Explorations of the Meanings of Death in Human-Animal-Nature Relationships

    Science.gov (United States)

    Russell, Joshua

    2017-01-01

    Children's experiences of death are a potentially vital component of their developing sense of relatedness to non-human others and nature. Environmental education theory and practice would benefit from a broader understanding of how children view death and loss within ecological systems as well as within human-animal-nature relationships, but such…

  3. E-HRM: innovation or irritation? An exploration of web-based human resource management in large companies

    NARCIS (Netherlands)

    Ruel, Hubertus Johannes Maria; Bondarouk, Tatiana; Looise, Jan C.

    2004-01-01

    Human Resource Management (HRM of HR) executives are feeling pressured by the threat of a new development in recent years: Electronic Human Resource Management systems, also known as E-HRM. Consultants and other experts purport that this phenomenon will decrease the number of HRM employees, reduce

  4. "Everything Has to Die One Day:" Children's Explorations of the Meanings of Death in Human-Animal-Nature Relationships

    Science.gov (United States)

    Russell, Joshua

    2017-01-01

    Children's experiences of death are a potentially vital component of their developing sense of relatedness to non-human others and nature. Environmental education theory and practice would benefit from a broader understanding of how children view death and loss within ecological systems as well as within human-animal-nature relationships, but such…

  5. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    Science.gov (United States)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of unique flame retardant fibers for the specific requirements of different space programs. Three of these fibers have greatly contributed to the safety of all the space missions since the Apollo program. Beta alumina-silica microfiber developed for the outer layer of the space suit after the Apollo 1 fire is no longer used and has been replaced by other glass fibers. Expanded polytetrafluoroethylene (e-PTFE) fiber used in the current spacesuit is mostly known today through its trade mark Gore-Tex®. Polybenzimidazole (PBI) filament fiber used in many applications from the Apollo to the Space Shuttle program is no longer available. More recently, TOR"TM" copolymer of polyimide fiber developed during the space shuttle program to resist the atomic oxygen present in Low Earth Orbit has been barely used. The high cost and narrow range of aeronautical and aerospace applications have, however, led to a limited production of these fibers. Only fibers that found niche markets survived. Yet, deep space exploration will require more of these inherently flame retardant fibers than what is available today. There is a need for new flame retardant fabrics inside the space vehicles as well as a need for logistics reduction for long term space missions. Materials like modacrylic and polyimide are good candidates for future flame retardant aerospace fabrics. New fabrics must be developed for astronauts' clothing, as well as crew quarters and habitat. Therefore, both staple and filament fibers of various linear densities are needed for a three years mission to Mars.

  6. The Race to Nourish: Exploring resource equity in a coupled human coastline model

    Science.gov (United States)

    Williams, Z. C.; McNamara, D.; Murray, A.; Smith, M.

    2011-12-01

    Many coastal communities are faced with eroding shorelines due to gradients in the alongshore transport of sediment and rising sea level. These communities often employ a beach nourishment mitigation strategy to counter erosion from natural forces. These nourishment activities provide economic benefits in the form of protection from storms and enhanced recreation on the stabilized beach. Previous work has shown that economically optimal nourishment decisions indicate that rising nourishment costs can lead to more frequent nourishment. Given that the cost of nourishing is likely to rise as offshore sediment borrow sites become more scarce, this suggests a positive feedback whereby nourishment that dwindles offshore borrow sites causes more frequent nourishment. We explore the dynamics of this feedback in a coupled economic-coastline model and how resulting long term shoreline and economic patterns respond to forcing changes in the form of increased sea level rise and changing storminess along both a straight shoreline and a cuspate Carolina like shoreline. The economic model utilizes myopic manager agents that inform a community of the optimal nourishment interval based on the current cost of sand and locally observed erosion rate since the last nourishment episode. Communities nourish independently but can affect the erosion rate of adjacent communities through alongshore sediment transport dynamics. The coastline model tracks large-scale coastline change via alongshore sediment transport calculations and erosion due to rising sea level. Model experiments show that when the economic model is coupled to a flat coastline, the feedback in sand cost leads to resource inequity as communities that become caught in the feedback nourish frequently while adjacent communities maintain coastline position by "free riding" on these neighbor towns. Model experiments also show that on cuspate coastlines, the emergent cuspate features enhance the cost feedback and create unequal

  7. Human Rights in the Humanities

    Science.gov (United States)

    Harpham, Geoffrey

    2012-01-01

    Human rights are rapidly entering the academic curriculum, with programs appearing all over the country--including at Duke, Harvard, Northeastern, and Stanford Universities; the Massachusetts Institute of Technology; the Universities of Chicago, of Connecticut, of California at Berkeley, and of Minnesota; and Trinity College. Most of these…

  8. Human Rights in the Humanities

    Science.gov (United States)

    Harpham, Geoffrey

    2012-01-01

    Human rights are rapidly entering the academic curriculum, with programs appearing all over the country--including at Duke, Harvard, Northeastern, and Stanford Universities; the Massachusetts Institute of Technology; the Universities of Chicago, of Connecticut, of California at Berkeley, and of Minnesota; and Trinity College. Most of these…

  9. 物流企业人力资源建设初探%A Preliminary Exploration of Human Resources Construction of Logistics Enterprises

    Institute of Scientific and Technical Information of China (English)

    陈佳丽

    2014-01-01

    针对物流企业人力资源的特征,从人力资源规划、招聘与录用、培训开发、绩效考核和薪酬管理等角度探讨了物流企业人力资源建设问题。%In this paper, in view of the characteristics of the human resources of logistics enterprises, we explored the problems in the construction of the human resources system of the logistics enterprises from the aspects of human resources planning, recruitment and enrollment, training and development, performance evaluation, and payment management, etc.

  10. Digital Humanities

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørn

    2015-01-01

    Artiklen præsenterer først nogle generelle problemstillinger omkring Digital Humanities (DH) med det formål at undersøge dem nærmere i relation til konkrete eksempler på forskellige digitaliseringsmåder og ændringer i dokumentproduktion. I en nærmere afgrænsning vælger artiklen den tendens i DH...

  11. Human paleoneurology

    CERN Document Server

    2015-01-01

    The book presents an integrative review of paleoneurology, the study of endocranial morphology in fossil species. The main focus is on showing how computed methods can be used to support advances in evolutionary neuroanatomy, paleoanthropology and archaeology and how they have contributed to creating a completely new perspective in cognitive neuroscience. Moreover, thanks to its multidisciplinary approach, the book addresses students and researchers approaching human paleoneurology from different angles and for different purposes, such as biologists, physicians, anthropologists, archaeologists

  12. Digital Humanities

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørn

    2015-01-01

    Artiklen præsenterer først nogle generelle problemstillinger omkring Digital Humanities (DH) med det formål at undersøge dem nærmere i relation til konkrete eksempler på forskellige digitaliseringsmåder og ændringer i dokumentproduktion. I en nærmere afgrænsning vælger artiklen den tendens i DH...

  13. Branched-chain fatty acid composition of human milk and the impact of maternal diet: the Global Exploration of Human Milk (GEHM) Study.

    Science.gov (United States)

    Dingess, Kelly A; Valentine, Christina J; Ollberding, Nicholas J; Davidson, Barbara S; Woo, Jessica G; Summer, Suzanne; Peng, Yongmei M; Guerrero, M Lourdes; Ruiz-Palacios, Guillermo M; Ran-Ressler, Rinat R; McMahon, Robert J; Brenna, J Thomas; Morrow, Ardythe L

    2017-01-01

    An understudied component of the diet, branched-chain fatty acids (BCFAs) are distinctive saturated fatty acids that may have an important influence on health. Human-milk fatty acid composition is known to differ worldwide, but comparative data are lacking on BCFAs. We tested the hypotheses that concentrations of BCFAs in human milk differ between populations and are associated with maternal diet. We surveyed the BCFA composition of samples collected as part of a standardized, prospective study of human-milk composition. Mothers were enrolled from 3 urban populations with differing diets: Cincinnati, Ohio; Shanghai, China; and Mexico City, Mexico. Enrollment was limited to healthy mothers of term singleton infants. We undertook a cross-sectional analysis of milk from all women with samples at postpartum week 4 (n = 359; ∼120 women/site). Fatty acids were extracted from milk by using a modified Bligh-Dyer technique and analyzed by gas chromatography. Statistical analysis was performed by ANOVA and Tobit regression. For Cincinnati mothers, 24-h diet recalls were analyzed in relation to the individual BCFA concentrations measured in milk samples. Total BCFAs in milk differed by site, with the highest concentration in Cincinnati followed by Mexico City and Shanghai (mean ± SE: 7.90 ± 0.41, 6.10 ± 0.36, and 4.27 ± 0.25 mg/100 mL, respectively; P Milk concentrations of iso-14:0 and anteiso-15:0 were associated with maternal intake of dairy; iso-16:0 was associated with maternal intakes of dairy and beef. BCFA concentrations in milk at 4 wk postpartum differed between mothers from Cincinnati, Shanghai, and Mexico City. Variations in human-milk BCFAs are influenced by diet. The impact of BCFAs on infant health warrants investigation. © 2017 American Society for Nutrition.

  14. Human universe

    CERN Document Server

    Cox, Brian

    2014-01-01

    Human life is a staggeringly strange thing. On the surface of a ball of rock falling around a nuclear fireball in the blackness of a vacuum the laws of nature conspired to create a naked ape that can look up at the stars and wonder where it came from. What is a human being? Objectively, nothing of consequence. Particles of dust in an infinite arena, present for an instant in eternity. Clumps of atoms in a universe with more galaxies than people. And yet a human being is necessary for the question itself to exist, and the presence of a question in the universe - any question - is the most wonderful thing. Questions require minds, and minds bring meaning. What is meaning? I don't know, except that the universe and every pointless speck inside it means something to me. I am astonished by the existence of a single atom, and find my civilisation to be an outrageous imprint on reality. I don't understand it. Nobody does, but it makes me smile. This book asks questions about our origins, our destiny, and our place i...

  15. Getting the point across: exploring the effects of dynamic virtual humans in an interactive museum exhibit on user perceptions.

    Science.gov (United States)

    Rivera-Gutierrez, Diego; Ferdig, Rick; Li, Jian; Lok, Benjamin

    2014-04-01

    We have created “You, M.D.”, an interactive museum exhibit in which users learn about topics in public health literacy while interacting with virtual humans. You, M.D. is equipped with a weight sensor, a height sensor and a Microsoft Kinect that gather basic user information. Conceptually, You, M.D. could use this user information to dynamically select the appearance of the virtual humans in the interaction attempting to improve learning outcomes and user perception for each particular user. For this concept to be possible, a better understanding of how different elements of the visual appearance of a virtual human affects user perceptions is required. In this paper, we present the results of an initial user study with a large sample size (n =333) ran using You, M.D. The study measured users’ reactions based on the user’s gender and body-mass index (BMI) when facing virtual humans with BMI either concordant or discordant from the user’s BMI. The results of the study indicate that concordance between the users’ BMI and the virtual human’s BMI affects male and female users differently. The results also show that female users rate virtual humans as more knowledgeable than male users rate the same virtual humans.

  16. The psychology of humanness.

    Science.gov (United States)

    Haslam, Nick; Loughnan, Steve; Holland, Elise

    2013-01-01

    This chapter explores the ways in which the concept of "humanness" illuminates a wide and fascinating variety of psychological phenomena. After introducing the concept--everyday understandings of what it is to be human--we present a model of the diverse ways in which humanness can be denied to people. According to this model people may be perceived as lacking uniquely human characteristics, and thus likened to animals, or as lacking human nature, and thus likened to inanimate objects. Both of these forms of dehumanization occur with varying degrees of subtlety, from the explicit uses of derogatory animal metaphors, to stereotypes that ascribe lesser humanness or simpler minds to particular groups, to nonconscious associations between certain humans and nonhumans. After reviewing research on dehumanization through the lens of our model we examine additional topics that the psychology of humanness clarifies, notably the perception of nonhuman animals and the objectification of women. Humanness emerges as a concept that runs an integrating thread through a variety of research literatures.

  17. Human Capital, (Human) Capabilities and Higher Education

    Science.gov (United States)

    Le Grange, L.

    2011-01-01

    In this article I initiate a debate into the (de)merits of human capital theory and human capability theory and discuss implications of the debate for higher education. Human capital theory holds that economic growth depends on investment in education and that economic growth is the basis for improving the quality of human life. Human capable…

  18. Human Capital, (Human) Capabilities and Higher Education

    Science.gov (United States)

    Le Grange, L.

    2011-01-01

    In this article I initiate a debate into the (de)merits of human capital theory and human capability theory and discuss implications of the debate for higher education. Human capital theory holds that economic growth depends on investment in education and that economic growth is the basis for improving the quality of human life. Human capable…

  19. Human Factor Studies on a Mars Analogue During Crew 100b International Lunar Exploration Working Group EuroMoonMars Crew: Proposed New Approaches for Future Human Space and Interplanetary Missions.

    Science.gov (United States)

    Rai, Balwant; Kaur, Jasdeep

    2012-11-01

    Knowing the risks, costs, and complexities associated with human missions to Mars, analogue research can be a great (low-risk) tool for exploring the challenges associated with the preparation for living, operating, and undertaking research in interplanetary missions. Short-duration analogue studies, such as those being accomplished at the Mars Desert Research Station (MDRS), offer the chance to study mission operations and human factors in a simulated environment, and therefore contribute to exploration of the Moon and Mars in planned future missions. This article is based upon previously published articles, abstracts, and presentations by a series of independent authors, human factor studies performed on mars analogue station by Crew 100B. The MDRS Crew 100B performed studies over 15 days providing a unique insight into human factor issues in simulated short-duration Mars mission. In this study, 15 human factors were evaluated and analyzed by subjective and objective means, and from the summary of results it was concluded that optimum health of an individual and the crew as a whole is a necessity in order to encourage and maintain high performance and the satisfaction of project goals.

  20. The Global Discourse on Human Trafficking and the Construction of a Standard of Civilization: Explored through The CNN Freedom Project

    OpenAIRE

    Larsen, Line Liblik

    2014-01-01

    This thesis is an integrated research study in two study programs cultural encounters and global studies. The thesis performs a critical discourse analysis of a mass media humanitarian campaign called The CNN Freedom Project and the broader global discourse on human trafficking in which the campaign is situated. The complexity of the issue of human trafficking is owed to the plethora of competing and influential elements, where various definitions, understandings, statistics, and ideologies e...

  1. Technology Development for Human Exploration Beyond LEO in the New Millennium IAA-13-3 Strategies and Plans for Human Mars Missions

    Science.gov (United States)

    Larson, William E.; Lueck, Dale E.; Parrish, Clyde F.; Sanders, Gerald B.; Trevathan, Joseph R.; Baird, R. Scott; Simon, Tom; Peters, T.; Delgado, H. (Technical Monitor)

    2001-01-01

    As we look forward into the new millennium, the extension of human presence beyond Low-Earth Orbit (LEO) looms large in the plans of NASA. The Agency's Strategic Plan specifically calls out the need to identify and develop technologies for 100 and 1000-day class missions beyond LEO. To meet the challenge of these extended duration missions, it is important that we learn how to utilize the indigenous resources available to us on extraterrestrial bodies. This concept, known as In-Situ Resource Utilization (ISRU) can greatly reduce the launch mass & cost of human missions while reducing the risk. These technologies may also pave the way for the commercial development of space. While no specific target beyond LEO is identified in NASA's Strategic Plan, mission architecture studies have been on-going for the Moon, Mars, Near-Earth Asteroids and Earth/Moon & Earth/Sun Libration Points. As a result of these studies, the NASA Office of Space Flight (Code M) through the Johnson and Kennedy Space Centers, is leading the effort to develop ISRU technologies and systems to meet the current and future needs of human missions beyond LEO and on to Mars. This effort also receives support from the NASA Office of Biological and Physical Research (Code U), the Office of Space Science (Code S), and the Office of Aerospace Technology (Code R). This paper will present unique developments in the area of fuel and oxidizer production, breathing air production, water production, C02 collection, separation of atmospheric gases, and gas liquefaction and storage. A technology overview will be provided for each topic along with the results achieved to date, future development plans, and the mission architectures that these technologies support.

  2. Applying an agent-based model of agricultural terraces coupled with a landscape evolution model to explore the impact of human decision-making on terraced terrain

    Science.gov (United States)

    Glaubius, Jennifer

    2016-04-01

    Agricultural terraces impact landscape evolution as a result of long-term human-landscape interactions, including decisions regarding terrace maintenance and abandonment. Modeling simulations are often employed to examine the sensitivity of landscapes to various factors, such as rainfall and land cover. Landscape evolution models, erosion models, and hydrological models have all previously been used to simulate the impact of agricultural terrace construction on terrain evolution, soil erosion, and hydrological connectivity. Human choices regarding individual terraces have not been included in these models to this point, despite recent recognition that maintenance and abandonment decisions alter transport and storage patterns of soil and water in terraced terrain. An agent-based model of human decisions related to agricultural terraces is implemented based on a conceptual model of agricultural terrace life cycle stages created from a literature review of terracing impacts. The agricultural terracing agent-based model is then coupled with a landscape evolution model to explore the role of human decisions in the evolution of terraced landscapes. To fully explore this type of co-evolved landscape, human decision-making and its feedbacks must be included in landscape evolution models. Project results may also have implications for management of terraced terrain based on how human choices in these environments affect soil loss and land degradation.

  3. Human steroidogenesis

    DEFF Research Database (Denmark)

    Andersen, Claus Y; Ezcurra, Diego

    2014-01-01

    steroid concentrations cause alterations in endometrial development, affecting oocyte viability in assisted reproductive technology. Furthermore, it has been proposed that elevated progesterone levels have a negative effect on the reproductive outcome of COS. This may arise from an asynchrony between...... reviews current knowledge of the regulation of progesterone in the human ovary during the follicular phase and highlights areas where knowledge remains limited. In this review, we provide in-depth information outlining the regulation and function of gonadotropins in the complicated area of steroidogenesis...

  4. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome.

    Science.gov (United States)

    Bikel, Shirley; Valdez-Lara, Alejandra; Cornejo-Granados, Fernanda; Rico, Karina; Canizales-Quinteros, Samuel; Soberón, Xavier; Del Pozo-Yauner, Luis; Ochoa-Leyva, Adrián

    2015-01-01

    The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.

  5. The role of acquired immunity in the spread of human papillomavirus (HPV: explorations with a microsimulation model.

    Directory of Open Access Journals (Sweden)

    Suzette M Matthijsse

    Full Text Available BACKGROUND: Knowledge of the natural history of human papillomavirus (HPV, in particular the role of immunity, is crucial in estimating the (cost- effectiveness of HPV vaccination and cervical cancer screening strategies, because naturally acquired immunity after clearing an infection may already protect part of the risk population against new HPV infections. METHODS: We used STDSIM, an established stochastic microsimulation model, quantified to the Netherlands. We explored different assumptions regarding the natural history of HPV-16 and HPV-18, and estimated the transmission probabilities and durations of acquired immunity necessary to reproduce age-specific prevalence. RESULTS: A model without acquired immunity cannot reproduce the age-specific patterns of HPV. Also, it is necessary to assume a high degree of individual variation in the duration of infection and acquired immunity. According to the model estimates, on average 20% of women are immune for HPV-16 and 15% for HPV-18. After an HPV-16 infection, 50% are immune for less than 1 year, whereas 20% exceed 30 years. For HPV-18, up to 12% of the individuals are immune for less than 1 year, and about 50% over 30 years. Almost half of all women will never acquire HPV-16 or HPV-18. CONCLUSIONS: Acquired immunity likely plays a major role in HPV epidemiology, but its duration shows substantial variation. Combined with the lifetime risk, this explains to a large extent why many women will never develop cervical cancer.

  6. The precarious supply of physical therapists across Canada: exploring national trends in health human resources (1991 to 2005

    Directory of Open Access Journals (Sweden)

    Ricketts Thomas C

    2007-09-01

    Full Text Available Abstract Background Health Human Resource (HHR ratios are one measure of workforce supply, and are often expressed as a ratio in the number of health professionals to a sub-set of the population. In this study, we explore national trends in HHR among physical therapists (PTs across Canada. Methods National population data were combined with provincial databases of registered physical therapists in order to estimate the HHR ratio in 2005, and to establish trends between 1991 and 2005. Results The national HHR ratio was 4.3 PTs per 10,000 population in 1991, which increased to 5.0 by 2000. In 2005, the HHR ratios varied widely across jurisdictions; however, we estimate that the national average dropped to 4.8 PTs per 10,000. Although the trend in HHR between 1991 and 2005 suggests positive growth of 11.6%, we have found negative growth of 4.0% in the latter 5-years of this study period. Conclusion Demand for rehabilitation services is projected to escalate in the next decade. Identifying benchmarks or targets regarding the optimal number of PTs, along with other health professionals working within inter professional teams, is necessary to establish a stable supply of health providers to meet the emerging rehabilitation and mobility needs of an aging and increasingly complex Canadian population.

  7. Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Directory of Open Access Journals (Sweden)

    Leanne M. Hirshfield

    2014-01-01

    Full Text Available In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional near-infrared spectroscopy (fNIRS and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions.

  8. Leadership in a Humane Organization

    Science.gov (United States)

    Dimitrov, Danielle

    2015-01-01

    Purpose: The purpose of this paper is to explore the way leadership influences an organization to become humane through its features and behaviors; as well as the organizational circumstances in which humane leadership can be nurtured. The first empirical case study, in the fields of Human Resource Development (HRD) and hospitality management, to…

  9. Leadership in a Humane Organization

    Science.gov (United States)

    Dimitrov, Danielle

    2015-01-01

    Purpose: The purpose of this paper is to explore the way leadership influences an organization to become humane through its features and behaviors; as well as the organizational circumstances in which humane leadership can be nurtured. The first empirical case study, in the fields of Human Resource Development (HRD) and hospitality management, to…

  10. The science of unitary human beings and interpretive human science.

    Science.gov (United States)

    Reeder, F

    1993-01-01

    Natural science and human science are identified as the bases of most nursing theories and research programs. Natural science has been disclaimed by Martha Rogers as the philosophy of science that undergirds her work. The question remains, is the science of unitary human beings an interpretive human science? The author explores the works of Rogers through a dialectic with two human scientists' works. Wilhelm Dilthey's works represent the founding or traditional view, and Jurgen Habermas' works represent a contemporary, reconstructionist view. The ways Rogerian thought contributes to human studies but is distinct from traditional and reconstructionist human sciences are illuminated.

  11. NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting

  12. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  13. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  14. Human Toxocariasis

    Directory of Open Access Journals (Sweden)

    Mehmet Burak Selek

    2013-09-01

    Full Text Available Human toxocariasis is an parasitic infection caused by the ingestion of larvae of dog nematode Toxocara canis and less frequently of cat nematode T.cati. Toxocara eggs, shed to environment by infected dogs' and cats' droppings, become infective by embryonation. Humans, particularly children, can be infected by accidentally ingesting embryonated Toxocara eggs. Larvae hatch in the small intestine, penetrate the intestinal wall and migrate to other parts of body via the bloodstream. It is generally a benign, asymptomatic, and self-limiting disease, although migrating larvae can cause damage to tissues and organs, especially brain involvement can cause severe morbidity. The two main clinical presentations of toxocariasis are visceral larva migrans (VLM (a systemic disease caused by larval migration through major organs and ocular larva migrans (OLM (a disease limited to the eyes and optic nerves. There are also two less-severe syndromes which have recently been described, one mainly in children (covert toxocariasis and the other mainly in adults (common toxocariasis. Diagnosis is usually made by clinical signs/symptoms, epidemiological background of the patient and the use of immunological methods (ELISA or western-blot. On the other hand definitive diagnosis is much more challenging, since it requires the demonstration of larvae via biopsy or autopsy. Most cases of toxocariasis clear up without any treatment. VLM is primarily treated with antihelmintic drugs, such as; albendazole or mebendazole. Treatment of OLM is more difficult and usually consists of measures to prevent progressive damage to the eye like steroids. Laser photocoagulation and cryoretinopexy may also be used to treat severe cases. Since eradicating T.canis infection is difficult due to the complexity of its life cycle, prevention of toxocariasis is always preferred. Toxocara eggs have a strong protective layer which makes the eggs able to survive in the environment for months or

  15. Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.

    Science.gov (United States)

    Hinaut, Xavier; Petit, Maxime; Pointeau, Gregoire; Dominey, Peter Ford

    2014-01-01

    One of the principal functions of human language is to allow people to coordinate joint action. This includes the description of events, requests for action, and their organization in time. A crucial component of language acquisition is learning the grammatical structures that allow the expression of such complex meaning related to physical events. The current research investigates the learning of grammatical constructions and their temporal organization in the context of human-robot physical interaction with the embodied sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena. First, a recurrent network model is used in conjunction with this robotic platform to learn the mappings between grammatical forms and predicate-argument representations of meanings related to events, and the robot's execution of these events in time. Second, this learning mechanism functions in the inverse sense, i.e., in a language production mode, where rather than executing commanded actions, the robot will describe the results of human generated actions. Finally, we collect data from naïve subjects who interact with the robot via spoken language, and demonstrate significant learning and generalization results. This allows us to conclude that such a neural language learning system not only helps to characterize and understand some aspects of human language acquisition, but also that it can be useful in adaptive human-robot interaction.

  16. Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1994-07-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ~ 850-1000 seconds) and engine thrust-to-weight ratio (~ 3-10), the NTR can also be configured as a ``dual mode'' system capable of generating stage electrical power. At present, NASA is examining a variety of mission applications for the NTR ranging from an expendable, ``single burn'' trans-lunar injection (TLI) stage for NASA's ``First Lunar Outpost'' (FLO) mission to all propulsive, ``multi-burn,'' spacecraft supporting a ``split cargo/piloted sprint'' Mars mission architecture. Two ``proven'' solid core NTR concepts are examined -one based on NERVA (Nuclear Engine for Rocket Vehicle Application)-derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide ``twisted ribbon'' fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing ``aerobraked'' and ``all propulsive'' Mars vehicle concepts which are mass-, and volume-compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the ``aerobraked'' scenario, the 2010 piloted mission determines the size of the expendable trans-Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An ``all-propulsive'' Moon/Mars mission architecture is also described which uses common ``modular'' engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two ``standardized'' liquid hydrogen (LH2) tank sizes; and (3) ``dual mode'' NTR and refrigeration system technologies for long duration missions. The ``modular'' NTR approach can form the basis for a ``faster, safer, and cheaper'' space transportation system for tomorrow's piloted missions to the Moon and Mars.

  17. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  18. NATO Human View Architecture and Human Networks

    Science.gov (United States)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  19. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    Science.gov (United States)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    . The goals of this initial study were to i) test the cleanliness of reagents/supplies on orbit, ii) test the crew's ability to collect and process a sample in microgravity without contamination, iii) demonstrate nominal function of the LOCAD-PTS, and iv) provide a general survey of endotoxin within the ISS. The surface sites varied greatly in terms of their frequency-of-use and material texture/composition; from relatively smooth aluminum, to fabric, to the room temperature vulcanizing (RTV) rubber of a Extravehicular Mobility Unit (EMU) spacesuit. Results showed that: i) the swabbing kits and reagents remained clean on orbit, ii) the crew could collect and process a sample without contamination, and iii) the LOCAD-PTS functioned nominally in > 99% of the 55 tests completed. We will present detailed results of the survey of endotoxin on ISS surfaces. These results and technology are important in the near-term - by providing an extra tool in the toolbox for ISS microbial monitoring. They are also important in the longer term as valuable preparation for human exploration of the Moon and Mars. One of the proposed science goals for the human exploration of Mars will be to detect and characterize any indigenous biological molecules that may exist on the Martian surface. To achieve that goal, the crew must have the technology available onboard to differentiate indigenous biology from any terrestrial biological material brought to Mars by the spacecraft and crew (termed 'forward contamination'). The LAL assay is already one of the official methods used by NASA's planetary protection program to certify cleanliness of interplanetary robotic spacecraft prior to launch; and therefore endotoxin is a good marker of forward contamination (as well as other microbial molecules detectable with LOCAD-PTS e.g. box-1, 3-glucan and lipoteichoic acid). Furthermore, the distribution and abundance of these molecules on the ISS provides a good indicator of what to expect on the Crew

  20. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    Science.gov (United States)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    . The goals of this initial study were to i) test the cleanliness of reagents/supplies on orbit, ii) test the crew's ability to collect and process a sample in microgravity without contamination, iii) demonstrate nominal function of the LOCAD-PTS, and iv) provide a general survey of endotoxin within the ISS. The surface sites varied greatly in terms of their frequency-of-use and material texture/composition; from relatively smooth aluminum, to fabric, to the room temperature vulcanizing (RTV) rubber of a Extravehicular Mobility Unit (EMU) spacesuit. Results showed that: i) the swabbing kits and reagents remained clean on orbit, ii) the crew could collect and process a sample without contamination, and iii) the LOCAD-PTS functioned nominally in > 99% of the 55 tests completed. We will present detailed results of the survey of endotoxin on ISS surfaces. These results and technology are important in the near-term - by providing an extra tool in the toolbox for ISS microbial monitoring. They are also important in the longer term as valuable preparation for human exploration of the Moon and Mars. One of the proposed science goals for the human exploration of Mars will be to detect and characterize any indigenous biological molecules that may exist on the Martian surface. To achieve that goal, the crew must have the technology available onboard to differentiate indigenous biology from any terrestrial biological material brought to Mars by the spacecraft and crew (termed 'forward contamination'). The LAL assay is already one of the official methods used by NASA's planetary protection program to certify cleanliness of interplanetary robotic spacecraft prior to launch; and therefore endotoxin is a good marker of forward contamination (as well as other microbial molecules detectable with LOCAD-PTS e.g. box-1, 3-glucan and lipoteichoic acid). Furthermore, the distribution and abundance of these molecules on the ISS provides a good indicator of what to expect on the Crew

  1. Archaea on human skin.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin.

  2. Human memory search

    NARCIS (Netherlands)

    Davelaar, E.J.; Raaijmakers, J.G.W.; Hills, T.T.; Robbins, T.W.; Todd, P.M.

    2012-01-01

    The importance of understanding human memory search is hard to exaggerate: we build and live our lives based on what whe remember. This chapter explores the characteristics of memory search, with special emphasis on the use of retrieval cues. We introduce the dependent measures that are obtained

  3. Lessons in Human Relations.

    Science.gov (United States)

    Glenn, Joanne Lozar

    2003-01-01

    Explores the importance of relationship literacy--the ability to create good relationships with others--in the next economy and offers perspectives on how business education instructors can help students develop and improve their human relations skills for business success. (Author/JOW)

  4. Ubiquitous Human Computing

    OpenAIRE

    Zittrain, Jonathan L.

    2008-01-01

    Ubiquitous computing means network connectivity everywhere, linking devices and systems as small as a thumb tack and as large as a worldwide product distribution chain. What could happen when people are so readily networked? This short essay explores issues arising from two possible emerging models of ubiquitous human computing: fungible networked brainpower and collective personal vital sign monitoring.

  5. Cellular respiration: replicating in vivo systems biology for in vitro exploration of human exposome, microbiome, and disease pathogenesis biomarkers

    Science.gov (United States)

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The ex...

  6. One Medicine One Science: a framework for exploring challenges at the intersection of animals, humans, and the environment.

    Science.gov (United States)

    Travis, Dominic A; Sriramarao, P; Cardona, Carol; Steer, Clifford J; Kennedy, Shaun; Sreevatsan, Srinand; Murtaugh, Michael P

    2014-12-01

    Characterizing the health consequences of interactions among animals, humans, and the environment in the face of climatic change, environmental disturbance, and expanding human populations is a critical global challenge in today's world. Exchange of interdisciplinary knowledge in basic and applied sciences and medicine that includes scientists, health professionals, key sponsors, and policy experts revealed that relevant case studies of monkeypox, influenza A, tuberculosis, and HIV can be used to guide strategies for anticipating and responding to new disease threats such as the Ebola and Chickungunya viruses, as well as to improve programs to control existing zoonotic diseases, including tuberculosis. The problem of safely feeding the world while preserving the environment and avoiding issues such as antibiotic resistance in animals and humans requires cooperative scientific problem solving. Food poisoning outbreaks resulting from Salmonella growing in vegetables have demonstrated the need for knowledge of pathogen evolution and adaptation in developing appropriate countermeasures for prevention and policy development. Similarly, pesticide use for efficient crop production must take into consideration bee population declines that threaten the availability of the two-thirds of human foods that are dependent on pollination. This report presents and weighs the objective merits of competing health priorities and identifies gaps in knowledge that threaten health security, to promote discussion of major public policy implications such that they may be decided with at least an underlying platform of facts. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  7. Unsupervised explorative data analysis of normal human leukocytes and BCR/ABL positive leukemic cells mid-infrared spectra

    NARCIS (Netherlands)

    Bellisola, G.; Bolomini-Vittori, M.; Cinque, G.; Dumas, P.; Fiorini, Z.; Laudanna, C.; Mirenda, M.; Sandt, C.; Silvestri, G.; Tomasello, L.; Vezzalini, M.; Wehbe, K.; Sorio, C.

    2015-01-01

    We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived p

  8. Influence of oxygen in the cultivation of human mesenchymal stem cells in simulated microgravity: an explorative study

    NARCIS (Netherlands)

    S. Versari; J. Klein-Nulend; J. van Loon; S. Bradamante

    2013-01-01

    Previous studies indicated that human Adipose Tissue-derived Mesenchymal Stem Cells (AT-MSCs) cultured in simulated microgravity (sim-μg) in standard laboratory incubators alter their proliferation and differentiation. Recent studies on the stem cell (SC) niches and the influence of oxygen on SC pro

  9. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine

    NARCIS (Netherlands)

    Claesson, M.J.; O'Sullivan, O.; Wang, Q.; Nikkilä, J.; Marchesi, J.R.; Smidt, H.; Vos, de W.M.; Ross, R.P.; O'Toole, P.W.

    2009-01-01

    BACKGROUND: Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods

  10. Cellular respiration: replicating in vivo systems biology for in vitro exploration of human exposome, microbiome, and disease pathogenesis biomarkers

    Science.gov (United States)

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The ex...

  11. The role of acquired immunity in the spread of human papillomavirus (HPV): explorations with a microsimulation model

    NARCIS (Netherlands)

    Matthijsse, S.M.; Rosmalen, J. van; Hontelez, J.A.; Bakker, R; Kok, I.M. de; Ballegooijen, M. van; Vlas, S.J. de

    2015-01-01

    BACKGROUND: Knowledge of the natural history of human papillomavirus (HPV), in particular the role of immunity, is crucial in estimating the (cost-) effectiveness of HPV vaccination and cervical cancer screening strategies, because naturally acquired immunity after clearing an infection may already

  12. The role of acquired immunity in the spread of human papillomavirus (HPV): explorations with a microsimulation model

    NARCIS (Netherlands)

    Matthijsse, S.M.; Rosmalen, J. van; Hontelez, J.A.; Bakker, R; Kok, I.M. de; Ballegooijen, M. van; Vlas, S.J. de

    2015-01-01

    BACKGROUND: Knowledge of the natural history of human papillomavirus (HPV), in particular the role of immunity, is crucial in estimating the (cost-) effectiveness of HPV vaccination and cervical cancer screening strategies, because naturally acquired immunity after clearing an infection may already

  13. [Human papillomaviruses].

    Science.gov (United States)

    Gross, G

    2003-10-01

    Human papillomaviruses (HPV) infect exclusively the basal cells of the skin and of mucosal epithelia adjacent to the skin such as the mouth, the upper respiratory tract, the lower genital tract and the anal canal. HPV does not lead to a viremia. Basically there are three different types of HPV infection: Clinically visible lesions, subclinical HPV infections and latent HPV infections. Distinct HPV types induce morphologically and prognostically different clinical pictures. The most common HPV associated benign tumor of the skin is the common wart. Infections of the urogenitoanal tract with specific HPV-types are recognised as the most frequent sexually transmitted viral infections. So-called "high-risk" HPV-types (HPV16, 18 and others) are regarded by the world health organisation as important risk-factors for the development of genital cancer (mainly cervical cancer), anal cancer and upper respiratory tract cancer in both genders. Antiviral substances with a specific anti-HPV effect are so far unknown. Conventional therapies of benign skin warts and of mucosal warts are mainly nonspecific. They comprise tissue-destroying therapies such as electrocautery, cryotherapy and laser. In addition cytotoxic substances such as podophyllotoxin and systemic therapy with retinoids are in use. Systemically and topically administered immunotherapies represent a new approach for treatment. Both interferons and particularly the recently developed imiquimod, an interferon-alpha and cytokine-inductor lead to better results and are better tolerated then conventional therapies. HPV-specific vaccines have been developed in the last 5 years and will be used in future for prevention and treatment of benign and malignant HPV-associated tumors of the genitoanal tract in both sexes.

  14. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  15. Ethical aspects of creating human-nonhuman chimeras capable of human gamete production and human pregnancy.

    Science.gov (United States)

    Palacios-González, César

    2015-01-01

    In this paper I explore some of the moral issues that could emerge from the creation of human-nonhuman chimeras (HNH-chimeras) capable of human gamete production and human pregnancy. First I explore whether there is a cogent argument against the creation of HNH-chimeras that could produce human gametes. I conclude that so far there is none, and that in fact there is at least one good moral reason for producing such types of creatures. Afterwards I explore some of the moral problems that could emerge from the fact that a HNH-chimera could become pregnant with a human conceptus. I focus on two sets of problems: problems that would arise by virtue of the fact that a human is gestated by a nonhuman creature, and problems that would emerge from the fact that such pregnancies could affect the health of the HNH-chimera.

  16. A WORLD BEYOND HUMAN

    Directory of Open Access Journals (Sweden)

    David Abram

    2013-12-01

    Full Text Available From an initial project to investigate the relationship between magic and traditional medicine as practiced by shamans in Southern rural Asia, the focus of attention gradually shifted to an awareness of the negotiation traditional medicine people or shamans exert between the human community and the larger community of beings. This attentiveness to a more-than-human world does not occur at a supernatural domain above nature or inside her personal self but is the result of the shaman’s special ability to project her consciousness horizontally to other forms of sensibility with which human existence is interwoven. The ecological function of the shaman is to maintain a constant balance between what is taken and what is given from the human community to the larger community. The spirits of indigenous cultures are not defined in opposition to materiality but are essentially those modes of intelligence or awareness that do not possess a human form. By exploring different landscapes, and the sensibility living in them, a new sensitivity is awoken that allows for communication with those intelligences. However, the drowning of these other voices in Western culture, which reduces otherness to an object, creates an uneasiness that is hardly perceived except as an inability to interact with anything more-than-human and its dire consequences in the form of “civilization’s” destructive behavior.

  17. Human migraine models

    DEFF Research Database (Denmark)

    Iversen, Helle Klingenberg

    2001-01-01

    The need for experimental models is obvious. In animal models it is possible to study vascular responses, neurogenic inflammation, c-fos expression etc. However, the pathophysiology of migraine remains unsolved, why results from animal studies not directly can be related to the migraine attack......, which is a human experience. A set-up for investigations of experimental headache and migraine in humans, has been evaluated and headache mechanisms explored by using nitroglycerin and other headache-inducing agents. Nitric oxide (NO) or other parts of the NO activated cascade seems to be responsible...

  18. Human Environmental Disease Network

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants for diverse human disorders. However, the relationships between diseases based on chemical exposure have been rarely studied...... by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration on systems biology and chemical toxicology using chemical contaminants information...

  19. Handbook of human computation

    CERN Document Server

    Michelucci, Pietro

    2013-01-01

    This volume addresses the emerging area of human computation, The chapters, written by leading international researchers, explore existing and future opportunities to combine the respective strengths of both humans and machines in order to create powerful problem-solving capabilities. The book bridges scientific communities, capturing and integrating the unique perspective and achievements of each. It coalesces contributions from industry and across related disciplines in order to motivate, define, and anticipate the future of this exciting new frontier in science and cultural evolution. Reade

  20. Post-human Viewing

    DEFF Research Database (Denmark)

    Blaagaard, Bolette

    2013-01-01

    to become part of a global cultural flow, thus calling into question the physical connection between viewer and image. This article analyses what happens to that connection when not only the image but also the physical body is mediated and challenged in post-human relations, and examines the ensuing ethical...... implications. The author takes photojournalism and, in particular, mobile phone footage as a starting point for an exploration of the (post-human) body as evidence and sign of authenticity in the modern age of digital communications and journalism....

  1. Explore, Understand, Share and Show How: Four ways to use hermeneutic phenomenology to inspire human-centred creativity in engineering design

    DEFF Research Database (Denmark)

    Coxon, Ian Robert

    2014-01-01

    At our engineering research centre we have been applying hermeneutic phenomenology in a broad spectrum of projects for understanding everyday human experience. Through our work, we have experimented with and explored creative ways to 'get into' the lives of participants within the health, pharmac......At our engineering research centre we have been applying hermeneutic phenomenology in a broad spectrum of projects for understanding everyday human experience. Through our work, we have experimented with and explored creative ways to 'get into' the lives of participants within the health...... (as best we can), understanding hidden 'meaning structures' contained within them at the most primordial level, and communicating these insights experientially are the goals that drive us. In this paper we share some examples of how we have combined design thinking with hermeneutic phenomenology...

  2. Using large-scale public health data to explore the evolutionary biology of human pregnancy and child bearing

    DEFF Research Database (Denmark)

    Hollegaard, Birgitte

    . Consequently, research has increasingly focused on the underlying causes of disease, shaped by human evolution. Evolutionary medicine is a relatively new field, specifically bridging the gap between conventional medicine and evolutionary biology: Instead of asking how we get sick, we can apply evolutionary...... explanations for this phenomenon. This thesis demonstrates how taking an evolutionary perspective can help us to better understand important aspects of health and medicine that remain opaque, using the specific example of pregnancy-related conditions....

  3. Rapid Biochemical Analysis on the International Space Station (ISS): Preparing for Human Exploration of the Moon and Mars

    Science.gov (United States)

    Maule, J.; Morris, Heather; Monaco, L.; Steele, A.; Wainwright, N.

    2008-01-01

    . The goals of this initial study were to i) test the cleanliness of reagents/supplies on orbit, ii) test the crew's ability to collect and process a sample in microgravity without contamination, iii) demonstrate nominal function of the LOCAD-PTS, and iv) provide a general survey of endotoxin within the ISS. The surface sites varied greatly in terms of their frequency-of-use and material texture/composition; from relatively smooth aluminum, to fabric, to the room temperature vulcanizing (RTV) rubber of a Extravehicular Mobility Unit (EMU) spacesuit. Results showed that: i) the swabbing kits and reagents remained clean on orbit, ii) the crew could collect and process a sample without contamination, and iii) the LOCAD-PTS functioned nominally in > 99% of the 55 tests completed. We will present detailed results of the survey of endotoxin on ISS surfaces. These results and technology are important in the near-term - by providing an extra tool in the toolbox for ISS microbial monitoring. They are also important in the longer term as valuable preparation for human exploration of the Moon and Mars. One of the proposed science goals for the human exploration of Mars will be to detect and characterize any indigenous biological molecules that may exist on the Martian surface. To achieve that goal, the crew must have the technology available onboard to differentiate indigenous biology from any terrestrial biological material brought to Mars by the spacecraft and crew (termed 'forward contamination'). The LAL assay is already one of the official methods used by NASA's planetary protection program to certify cleanliness of interplanetary robotic spacecraft prior to launch; and therefore endotoxin is a good marker of forward contamination (as well as other microbial molecules detectable with LOCAD-PTS e.g. box-1, 3-glucan and lipoteichoic acid). Furthermore, the distribution and abundance of these molecules on the ISS provides a good indicator of what to expect on the Crew

  4. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  5. Human Development Report 1991: Financing Human Development

    OpenAIRE

    United Nations Development Programme, UNDP

    1991-01-01

    Lack of political commitment rather than financial resources is often the real barrier to human development. This is the main conclusion of Human Development Report 1991 - the second in a series of annual reports on the subject.

  6. Social cognition in humans

    DEFF Research Database (Denmark)

    Frith, Christopher; Frith, Uta

    2007-01-01

    We review a diversity of studies of human social interaction and highlight the importance of social signals. We also discuss recent findings from social cognitive neuroscience that explore the brain basis of the capacity for processing social signals. These signals enable us to learn about...... the world from others, to learn about other people, and to create a shared social world. Social signals can be processed automatically by the receiver and may be unconsciously emitted by the sender. These signals are non-verbal and are responsible for social learning in the first year of life. Social...... signals can also be processed consciously and this allows automatic processing to be modulated and overruled. Evidence for this higher-level social processing is abundant from about 18 months of age in humans, while evidence is sparse for non-human animals. We suggest that deliberate social signalling...

  7. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    The people of Earth require, by the middle of the 21st century, a new source of commercial power that is sustainable, clean, reliable, low in cost ( 2 kWe/person or > 20 TWe) than now (1, 2). The Lunar Solar Power (LSP) System appears to be the only reasonable option (2, 3). The Moon dependably receives 13,000 TWs of solar power. The LSP System consists of pairs of power bases located on opposite limbs of the Moon as seen from Earth. The power bases collect the solar energy and convert it to beams of microwaves. The microwaves are delivered directly to moonward-facing receivers on Earth or indirectly through relay satellites in orbit about Earth. To achieve low cost, the power bases are made primarily of local lunar materials by machines, facilities, and people deployed from Earth. Hundreds to thousands of people will be required on the Moon, in cis-lunar space, and operating tele-robotically from Earth to construct the full scale LSP System. Models indicate that power sales on Earth can easily support the required people, their regular transport between the Earth and Moon, and provide the required return on investment to develop the LSP System (4, 5). Construction of the LSP System, even at an early stage, creates fundamentally new wealth and capabilities supportive of rapid growth of human activities within the inner solar system. A factor of ten increase in global Earth-to-orbit transport will be required in the demonstration phase. Launch cost of 5,000 /kg is acceptable. Lower cost transport decreases the upfront cost of the LSP System but is not critical to the cost of energy from the mature LSP. Logistic and assembly facilities in orbit about the Earth and Moon will be required that are at least a factor of ten large than planned for the full scale International Space Station. Transport must be provided between the Earth and the Moon of hundreds, possibly thousands, of workers. Production machinery will be available that can build fundamentally new

  8. The golden triangle of human dignity: human security, human development and human rights

    NARCIS (Netherlands)

    Gaay Fortman, B. de

    2004-01-01

    The success or failure of processes of democratization cannot be detached from processes of development related to the aspirations of people at the grassroots. Human rights, in a more theoretical terminology, require human development in order to enhance human security.

  9. Humanizing science education

    Science.gov (United States)

    Donnelly, James F.

    2004-09-01

    This paper argues that the diverse curriculum reform agendas associated with science education are strongly and critically associated with the educational characteristics of the humanities. The article begins with a survey of interpretations of the distinctive contribution which the humanities make to educational purposes. From this survey four general characteristics of the humanities are identified: an appeal to an autonomous self with the right and capacity to make independent judgements and interpretations; indeterminacy in the subject matter of these judgements and interpretations; a focus on meaning, in the context of human responses, actions, and relationships, and especially on the ethical, aesthetic, and purposive; and finally, the possibility of commonality in standards of judgement and interpretation, under conditions of indeterminacy. Inquiry and science technology and society (STS) orientated curriculum development agendas within science education are explored in the light of this analysis. It is argued that the four characteristics identified are central to the educational purposes of these and other less prominent modes of curriculum development in science, though not unproblematically so. In the light of this discussion the prognosis and challenges for science curriculum development are explored.

  10. Interactive exploration of the vulnerability of the human infrastructure: an approach using simultaneous display of similar locations

    Science.gov (United States)

    Ceré, Raphaël; Kaiser, Christian

    2015-04-01

    Currently, three quarters of the Swiss population is living in urban areas. The total population is still increasing, and urbanized space is increasing event faster. Consequently, the intensity of use has decreased but the exposure of the urban space to natural events has grown along with the cost related to the impact of hazards. In line with this fact, during the 20th century there has been a noticeable increase of natural disasters accompanied by the rapid increase of the world population, leading to higher costs. Additionally to the fact that more people are exposed to natural hazards, the value of goods globally has increased more than proportionally. Consequently, the vulnerability of urban space is, more than ever before, a major issue for socio-economic development. Here, vulnerability is defined as the potential human loss or loss of infrastructure caused by a hazardous event. It encompasses factors of urban infrastructure, population and the environment, which increase the susceptibility of a location to the impact of hazards. This paper describes a novel method for improving the interactive use of exploratory data analysis in the context of minimizing vulnerability and disaster risk by prevention or mitigation. This method is used to assess the similarity between different locations with respect to several characteristics relevant to vulnerability at different scales, allowing for automatic display of multiple locations similar to the one under investigation by an expert. Visualizing vulnerability simultaneously for several locations allows for analyzing and comparing of metric characteristics between multiple places and at different scales. The interactivity aspect is also useful for understanding vulnerability patterns and it facilitates disaster risk management and decisions on global preventive measures in urban spaces. Metrics for vulnerability assessment can be extracted from extensive geospatial datasets such as high-resolution digital elevation

  11. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms.

  12. Using large-scale public health data to explore the evolutionary biology of human pregnancy and child bearing

    DEFF Research Database (Denmark)

    Hollegaard, Birgitte

    . Consequently, research has increasingly focused on the underlying causes of disease, shaped by human evolution. Evolutionary medicine is a relatively new field, specifically bridging the gap between conventional medicine and evolutionary biology: Instead of asking how we get sick, we can apply evolutionary...... by the mother's blood pressure increasing to a harmful level, but the etiology of the disease has remained unknown. Preeclampsia is detrimental to both the mother and offspring, and should in theory therefore have been removed by natural selection. I looked into evolutionary explanations for this, specifically...

  13. NutriChem 2.0: exploring the effect of plant-based foods on human health and drug efficacy

    DEFF Research Database (Denmark)

    Ni, Yueqiong; Jensen, Kasper; Kouskoumvekaki, Eirini

    2017-01-01

    NutriChem is a database generated by text mining of 21 million MEDLINE abstracts that links plant-based foods with their small molecule components and human health effect. In this new, second release of NutriChem (NutriChem 2.0) we have integrated information on overlapping protein targets between...... FDA-approved drugs and small compounds in plant-based foods, which may have implications on drug pharmacokinetics and pharmacodynamics. NutriChem 2.0 contains predicted interactions between 428 drugs and 339 foods, supported by 107 jointly targeted proteins. Chemical bioactivity data were integrated...

  14. Human-machine interactions

    Science.gov (United States)

    Forsythe, J. Chris; Xavier, Patrick G.; Abbott, Robert G.; Brannon, Nathan G.; Bernard, Michael L.; Speed, Ann E.

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  15. Life after a Humanities Degree

    Science.gov (United States)

    Masola, Athambile

    2016-01-01

    This article explores the experiences of a humanities graduate after leaving the academy. The author considers her own education in light of the historical changes in South Africa's education system. The article is a personal account of the questions and challenges encountered in choosing a humanities degree in a context where a tertiary education…

  16. The Metadiscourse of Renaissance Humanism

    DEFF Research Database (Denmark)

    2016-01-01

    The case studies in this volume explore the Renaissance humanists' metadiscourse on translation, letter writing, Biblical criticism, poetry, and Latin grammar and composition. Especially, the papers examine the role played by metadiscourse in the dissemination of Renaissance humanism, and how...

  17. Exploring personality traits related to dopamine D2/3 receptor availability in striatal subregions of humans.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Chung, Jun Ku; Gerretsen, Philip; Nakajima, Shinichiro; Plitman, Eric; Iwata, Yusuke; Wilson, Alan; Graff-Guerrero, Ariel

    2016-04-01

    While several studies have examined how particular personality traits are related to dopamine D2/3 receptor (D2/3R) availability in the striatum of humans, few studies have reported how multiple traits measured in the same persons are differentially related to D2/3R availability in different striatal sub-regions. We examined how personality traits measured with the Karolinska Scales of Personality are related to striatal D2/3R availability measured with [(11)C]-raclopride in 30 healthy humans. Based on previous the literature, five personality traits were hypothesized to be most likely related to D2/3R availability: impulsiveness, monotony avoidance, detachment, social desirability, and socialization. We found self-reported impulsiveness was negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. After controlling for age and gender, monotony avoidance was also negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. Socialization was positively correlated with D2/3R availability in the ventral striatum and putamen. After controlling for age and gender, the relationship between socialization and D2/3R availability in these regions survived correction for multiple comparisons (p-threshold=.003). Thus, within the same persons, different personality traits are differentially related to in vivo D2/3R availability in different striatal sub-regions.

  18. Exploring the Role of Humans and Climate over the Balkan Landscape: 500 Years of Vegetational History of Serbia

    Science.gov (United States)

    Kulkarni, Charuta; Peteet, Dorothy; Boger, Rebecca; Heusser, Linda

    2016-01-01

    We present the first, well-dated, high-resolution record of vegetation and landscape change from Serbia, which spans the past 500 years. Biological proxies (pollen, spores, and charcoal), geochemical analysis through X-ray Fluorescence (XRF), and a detailed chronology based on AMS C-14 dating from a western Serbian sinkhole core suggest complex woodland-grassland dynamics and strong erosional signals throughout the Little Ice Age (LIA). An open landscape with prominent steppe vegetation (e.g. Poaceae, Chenopodiaceae) and minor woodland exists during 1540-1720 CE (early LIA), while the late LIA (1720-1850 CE) in this record shows higher tree percentages possibly due to increased moisture availability. The post LIA Era (1850-2012 CE) brings a disturbed type of vegetation with the presence of weedy genera and an increase in regional woodland. Anthropogenic indicators for agricultural, pastoral and fire practices in the region together attest to the dominant role of humans in shaping this Balkan landscape throughout the interval. The changing nature of human interference, potentially as a response to underlying climatic transitions, is evident through large-scale soil depletion resulting from grazing and land clearance during the early LIA and stabilization of arable lands during the late and post-LIA eras.

  19. Exploring the role of humans and climate over the Balkan landscape: 500 years of vegetational history of Serbia

    Science.gov (United States)

    Kulkarni, Charuta; Peteet, Dorothy; Boger, Rebecca; Heusser, Linda

    2016-07-01

    We present the first, well-dated, high-resolution record of vegetation and landscape change from Serbia, which spans the past 500 years. Biological proxies (pollen, spores, and charcoal), geochemical analysis through X-ray Fluorescence (XRF), and a detailed chronology based on AMS 14C dating from a western Serbian sinkhole core suggest complex woodland-grassland dynamics and strong erosional signals throughout the Little Ice Age (LIA). An open landscape with prominent steppe vegetation (e.g. Poaceae, Chenopodiaceae) and minor woodland exists during 1540-1720 CE (early LIA), while the late LIA (1720-1850 CE) in this record shows higher tree percentages possibly due to increased moisture availability. The post LIA Era (1850-2012 CE) brings a disturbed type of vegetation with the presence of weedy genera and an increase in regional woodland. Anthropogenic indicators for agricultural, pastoral and fire practices in the region together attest to the dominant role of humans in shaping this Balkan landscape throughout the interval. The changing nature of human interference, potentially as a response to underlying climatic transitions, is evident through large-scale soil depletion resulting from grazing and land clearance during the early LIA and stabilization of arable lands during the late and post-LIA eras.

  20. Some Implications of Human-Structure Interaction

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2013-01-01

    On structures, humans may be active which may cause structural vibrations as human activity can excite structural vibration modes. However, humans may also be passive (sitting or standing on the structure). The paper addresses this subject and explores the implications of having passive humans pr...