WorldWideScience

Sample records for human hox clusters

  1. Extensive polycistronism and antisense transcription in the mammalian Hox clusters.

    Directory of Open Access Journals (Sweden)

    Gaëll Mainguy

    Full Text Available The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70% have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb. This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering.

  2. Zebrafish hox clusters and vertebrate genome evolution.

    Science.gov (United States)

    Amores, A; Force, A; Yan, Y L; Joly, L; Amemiya, C; Fritz, A; Ho, R K; Langeland, J; Prince, V; Wang, Y L; Westerfield, M; Ekker, M; Postlethwait, J H

    1998-11-27

    HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven hox clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobe-finned fishes but before the teleost radiation. Thus, teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.

  3. Chordate Hox and ParaHox gene clusters differ dramatically in their repetitive element content.

    Science.gov (United States)

    Osborne, Peter W; Ferrier, David E K

    2010-02-01

    The ParaHox and Hox gene clusters control aspects of animal anterior-posterior development and are related as paralogous evolutionary sisters. Despite this relationship, it is not clear if the clusters operate in similar ways, with similar constraints. To compare clusters, we examined the transposable-element (TE) content of amphioxus and mammalian ParaHox and Hox clusters. Chordate Hox clusters are known to be largely devoid of TEs, possibly due to gene regulation and constraints on clustering in these animals. Here, we describe several novel amphioxus TEs and show that the amphioxus ParaHox cluster is a hotspot for TE insertion. TE contents of mammalian ParaHox loci are at background levels, in stark contrast to chordate Hox clusters. This marks a significant difference between Hox and ParaHox clusters. The presence of so many potentially disruptive elements implies selection constrains these ParaHox clusters as they have not dispersed despite 500 My of evolution for each lineage.

  4. Hox cluster genomics in the horn shark, Heterodontus francisci.

    Science.gov (United States)

    Kim, C B; Amemiya, C; Bailey, W; Kawasaki, K; Mezey, J; Miller, W; Minoshima, S; Shimizu, N; Wagner, G; Ruddle, F

    2000-02-15

    Reconstructing the evolutionary history of Hox cluster origins will lead to insights into the developmental and evolutionary significance of Hox gene clusters in vertebrate phylogeny and to their role in the origins of various vertebrate body plans. We have isolated two Hox clusters from the horn shark, Heterodontus francisci. These have been sequenced and compared with one another and with other chordate Hox clusters. The results show that one of the horn shark clusters (HoxM) is orthologous to the mammalian HoxA cluster and shows a structural similarity to the amphioxus cluster, whereas the other shark cluster (HoxN) is orthologous to the mammalian HoxD cluster based on cluster organization and a comparison with noncoding and Hox gene-coding sequences. The persistence of an identifiable HoxA cluster over an 800-million-year divergence time demonstrates that the Hox gene clusters are highly integrated and structured genetic entities. The data presented herein identify many noncoding sequence motifs conserved over 800 million years that may function as genetic control motifs essential to the developmental process.

  5. Molecular evolution of the HoxA cluster in the three major gnathostome lineages.

    Science.gov (United States)

    Chiu, Chi-hua; Amemiya, Chris; Dewar, Ken; Kim, Chang-Bae; Ruddle, Frank H; Wagner, Günter P

    2002-04-16

    The duplication of Hox clusters and their maintenance in a lineage has a prominent but little understood role in chordate evolution. Here we examined how Hox cluster duplication may influence changes in cluster architecture and patterns of noncoding sequence evolution. We sequenced the entire duplicated HoxAa and HoxAb clusters of zebrafish (Danio rerio) and extended the 5' (posterior) part of the HoxM (HoxA-like) cluster of horn shark (Heterodontus francisci) containing the hoxa11 and hoxa13 orthologs as well as intergenic and flanking noncoding sequences. The duplicated HoxA clusters in zebrafish each house considerably fewer genes and are dramatically shorter than the single HoxA clusters of human and horn shark. We compared the intergenic sequences of the HoxA clusters of human, horn shark, zebrafish (Aa, Ab), and striped bass and found extensive conservation of noncoding sequence motifs, i.e., phylogenetic footprints, between the human and horn shark, representing two of the three gnathostome lineages. These are putative cis-regulatory elements that may play a role in the regulation of the ancestral HoxA cluster. In contrast, homologous regions of the duplicated HoxAa and HoxAb clusters of zebrafish and the HoxA cluster of striped bass revealed a striking loss of conservation of these putative cis-regulatory sequences in the 3' (anterior) segment of the cluster, where zebrafish only retains single representatives of group 1, 3, 4, and 5 (HoxAa) and group 2 (HoxAb) genes and in the 5' part of the clusters, where zebrafish retains two copies of the group 13, 11, and 9 genes, i.e., AbdB-like genes. In analyzing patterns of cis-sequence evolution in the 5' part of the clusters, we explicitly looked for evidence of complementary loss of conserved noncoding sequences, as predicted by the duplication-degeneration-complementation model in which genetic redundancy after gene duplication is resolved because of the fixation of complementary degenerative mutations. Our

  6. Composition and genomic organization of arthropod Hox clusters

    Directory of Open Access Journals (Sweden)

    Ryan M. Pace

    2016-05-01

    Full Text Available Abstract Background The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum. Results In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes. Conclusions The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to

  7. Elephant Shark (Callorhinchus Milii) Provides Insights into the Evolution of Hox Gene Clusters in Gnathostomes

    National Research Council Canada - National Science Library

    Vydianathan Ravi; Kevin Lam; Boon-Hui Tay; Alice Tay; Sydney Brenner; Byrappa Venkatesh

    2009-01-01

    ...., 2 rounds of wholegenome duplication during the early evolution of vertebrates). Comparisons of noncoding sequences of the elephant shark and human Hox clusters have identified a large number of conserved noncoding elements (CNEs...

  8. Hox cluster organization in the jawless vertebrate Petromyzon marinus.

    Science.gov (United States)

    Force, Allan; Amores, Angel; Postlethwait, John H

    2002-04-15

    Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.

  9. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis.

    Science.gov (United States)

    Koh, Esther G L; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V; Brenner, Sydney; Venkatesh, Byrappa

    2003-02-01

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.

  10. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  11. Shadow enhancers flanking the HoxB cluster direct dynamic Hox expression in early heart and endoderm development.

    Science.gov (United States)

    Nolte, Christof; Jinks, Tim; Wang, Xinghao; Martinez Pastor, María Teresa; Krumlauf, Robb

    2013-11-01

    The products of Hox genes function in assigning positional identity along the anterior-posterior body axis during animal development. In mouse embryos, Hox genes located at the 3' end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3' flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3' proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during

  12. Phylogeny of the Insect Homeobox Gene (Hox) Cluster

    Institute of Scientific and Technical Information of China (English)

    Sangeeta Dhawan; K. P. Gopinathan

    2005-01-01

    The homeobox (Hox) genes form an evolutionarily conserved family encoding transcription factors that play major roles in segmental identity and organ specification across species. The canonical grouping of Hox genes present in the HOM-C cluster of Drosophila or related clusters in other organisms includes eight "typical" genes,which are localized in the order labial (lab), proboscipedia (pb), Deformed (Dfd),Sex combs reduced ( Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominalA (abdA), and AbdominalB (AbdB). The members of Hox cluster are expressed in a distinct anterior to posterior order in the embryo. Analysis of the relatedness of different members of the Hox gene cluster to each other in four evolutionarily diverse insect taxa revealed that the loci pb/Dfd and AbdB, which are farthest apart in linkage, had a high degree of evolutionary relatedness, indicating that pb/Dfd type anterior genes and AbdB are closest to the ancestral anterior and posterior Hox genes, respectively. The greater relatedness of other posterior genes Ubx and abdA to the more anterior genes such as Antp and Scr suggested that they arose by gene duplications in the more anterior members rather than the posterior AbdB.

  13. No more than 14: the end of the amphioxus Hox cluster

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The Hox gene cluster has been a key paradigm for a generation of developmental and evolutionary biologists. Since its discovery in the mid-1980's, the identification, genomic organization, expression, colinearity, and regulation of Hox genes have been immediate targets for study in any new model organism, and metazoan genome projects always refer to the structure of the particular Hox cluster(s. Since the early 1990's, it has been dogma that vertebrate Hox clusters are composed of thirteen paralogous groups. Nonetheless, we showed that in the otherwise prototypical cephalochordate amphioxus (Branchiostoma floridae, the Hox cluster contains a fourteenth Hox gene, and very recently, a 14th Hox paralogous group has been found in the coelacanth and the horn shark, suggesting that the amphioxus cluster was anticipating the finding of Hox 14 in some vertebrate lineages. In view of the pivotal place that amphioxus occupies in vertebrate evolution, we thought it of considerable interest to establish the limits of its Hox gene cluster, namely resolution of whether more Hox genes are present in the amphioxus cluster (e.g., Hox 15. Using two strategies, here we report the completion and characterization of the Hox gene content of the single amphioxus Hox cluster, which encompasses 650 kb from Hox1 to Evx. Our data have important implications for the primordial Hox gene cluster of chordates: the prototypical nature of the single amphioxus Hox cluster makes it unlikely that additional paralogous groups will be found in any chordate lineage. We suggest that 14 is the end.

  14. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    OpenAIRE

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen, Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, Kevin J.; Hood, Leroy

    2005-01-01

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and...

  15. Primitive duplicate Hox clusters in the European eel's genome.

    Directory of Open Access Journals (Sweden)

    Christiaan V Henkel

    Full Text Available The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758 have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire.

  16. Evolution of coding and non-coding genes in HOX clusters of a marsupial

    Directory of Open Access Journals (Sweden)

    Yu Hongshi

    2012-06-01

    Full Text Available Abstract Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.

  17. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited.

    Science.gov (United States)

    Byrne, Maria; Martinez, Pedro; Morris, Valerie

    2016-01-01

    Echinodermata is a large phylum of marine invertebrates characterized by an adult, pentameral body plan. This morphology is clearly derived as all members of Deuterostomia (the superphylum to which they belong) have a bilateral body plan. The origin of the pentameral plan has been the subject of intense debate. It is clear that the ancestor of Echinodermata had a bilateral plan but how this ancestor transformed its body "architecture" in such a drastic manner is not clear. Data from the fossil record and ontogeny are sparse and, so far, not very informative. The sequencing of the sea urchin genome a decade ago opened the possibility that the pentameral body plan was a consequence of a broken Hox cluster and a series of papers dwelt on the putative relationship between Hox gene arrangements in the chromosomes and the origin of pentamery. This relationship, sound as it was, is challenged by the revelation that the sea star HOX cluster is, in fact, intact, thus falsifying the hypothesis of a direct relationship between HOX cluster arrangement and the origin of the pentameral body plan. Here, we explore the relationship between Hox gene arrangements and echinoderm body "architecture," the expression of Hox genes in development and alternative scenarios for the origin of pentamery, with putative roles for signaling centers in generating multiple axes.

  18. Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology.

    Science.gov (United States)

    Neijts, Roel; Amin, Shilu; van Rooijen, Carina; Deschamps, Jacqueline

    2017-02-15

    Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in the gradual colinear activation of the Hox clusters. We found that Hox temporally colinear expression is severely affected in epiblast stem cells derived from Cdx null embryos. We demonstrate that after initiation of 3' Hox gene transcription, Cdx activity is crucial for H3K27ac deposition and for accessibility of cis-regulatory elements around the central - or 'trunk' - Hox genes. We thereby identify a Cdx-responsive segment of HoxA, immediately 5' to the recently defined regulatory domain orchestrating initial transcription of the first Hox gene. We propose that this partition of HoxA into a Wnt-driven 3' part and the newly found Cdx-dependent middle segment of the cluster, forms a structural fundament of Hox colinearity of expression. Subsequently to initial Wnt-induced activation of 3' Hox genes, Cdx transcription factors would act as crucial effectors for activating central Hox genes, until the last gene of the cluster arrests the process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The HOX-5 and surfeit gene clusters are linked in the proximal portion of mouse chromosome 2.

    Science.gov (United States)

    Stubbs, L; Huxley, C; Hogan, B; Evans, T; Fried, M; Duboule, D; Lehrach, H

    1990-04-01

    Using an interspecies backcross, we have mapped the HOX-5 and surfeit (surf) gene clusters within the proximal portion of mouse chromosome 2. While the HOX-5 cluster of homeobox-containing genes has been localized to chromosome 2, bands C3-E1, by in situ hybridization, its more precise position relative to the genes and cloned markers of chromosome 2 was not known. Surfeit, a tight cluster of at least six highly conserved "housekeeping" genes, has not been previously mapped in mouse, but has been localized to human chromosome 9q, a region of the human genome with strong homology to proximal mouse chromosome 2. The data presented here place HOX-5 in the vicinity of the closely linked set of developmental mutations rachiterata, lethargic, and fidget and place surf close to the proto-oncogene Abl, near the centromere of chromosome 2.

  20. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  1. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  2. Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters.

    Science.gov (United States)

    Zhang, Huixian; Ravi, Vydianathan; Tay, Boon-Hui; Tohari, Sumanty; Pillai, Nisha E; Prasad, Aravind; Lin, Qiang; Brenner, Sydney; Venkatesh, Byrappa

    2017-08-22

    ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxβ, and Cdxβ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.

  3. Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors.

    Science.gov (United States)

    Suzuki, M; Tanaka, M; Iwase, T; Naito, Y; Sugimura, H; Kino, I

    1993-07-15

    A human ovarian yolk sac tumor cDNA library was screened for homeobox genes with an oligonucleotide probe under low stringent condition. Three homeobox genes were isolated, two of which were identified as HHO.c1 and HB24. The third was highly homologous with the mouse Hox-8 gene and was designated as HOX-8. Studies on RNAs from 25 human tumor tissues and cell lines showed that the profile of HOX-8 expression was different from those of HHO.c1 and HB24. The expression of HOX-8 was not detected in hematopoietic tumor cells, in which HHO.c1 and HB24 were highly expressed. HOX-8 was expressed at higher levels in a variety of tumors of epithelial origin than in their corresponding normal tissues more frequently than HHO.c1 and HB24. All three homeobox genes were highly expressed in a yolk sac tumor, an immature tumor of gonadal origin. These results suggest that HOX-8 plays a more important role in human tumors of epithelial origin than those of hematopoietic origin.

  4. MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    Andrew G Hoss

    2014-02-01

    Full Text Available Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington's disease (HD. MicroRNAs (miRNAs represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9 of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p up-regulated in HD at genome-wide significance (FDR q-value<0.05. Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C. Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as

  5. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Directory of Open Access Journals (Sweden)

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  6. Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms.

    Science.gov (United States)

    Long, Suzanne; Martinez, Pedro; Chen, Wei-Chung; Thorndyke, Michael; Byrne, Maria

    2003-11-01

    Is the extreme derivation of the echinoderm body plan reflected in a derived echinoderm Hox genotype? Building on previous work, we exploited the sequence conservation of the homeobox to isolate putative orthologues of several Hox genes from two asteroid echinoderms. The 5-peptide motif (LPNTK) diagnostic of PG4 Hox genes was identified immediately downstream of one of the partial homeodomains from Patiriella exigua. This constitutes the first unequivocal report of a PG4 Hox gene orthologue from an echinoderm. Subsequent screenings identified genes of both PG4 and PG4/5 in Asterias rubens. Although in echinoids only a single gene (PG4/5) occupies these two contiguous cluster positions, we conclude that the ancestral echinoderm must have had the complete deuterostome suite of medial Hox genes, including orthologues of both PG4 and PG4/5 (=PG5). The reported absence of PG4 in the HOX cluster of echinoids is therefore a derived state, and the ancestral echinoderm probably had a HOX cluster not dissimilar to that of other deuterostomes. Modification of the ancestral deuterostome Hox genotype may not have been required for evolution of the highly derived echinoderm body plan.

  7. Identification of Hox genes and rearrangements within the single homeobox (Hox) cluster (192.8 kb) of the cyclopoid copepod (Paracyclopina nana).

    Science.gov (United States)

    Kim, Hui-Su; Kim, Bo-Mi; Lee, Bo-Young; Souissi, Sami; Park, Heum Gi; Lee, Jae-Seong

    2016-03-01

    We report the first identification of the entire complement of the eight typical homeobox (hox) genes (lab, pb, Dfd, scr, antp, ubx, Abd-A, and Abd-B) and the ftz gene in a 192.8 kb region in the cyclopoid copepod Paracyclopina nana. A Hox3 gene ortholog was not present in the P. nana hox gene cluster, while the P. nana Dfd gene was transcribed in the opposite direction to the Daphnia pulex Dfd gene, but in the same direction as the Dfd genes of the fruit fly Drosophila melanogaster and red flour beetle Tribolium castaneum. The location of the lab and pb genes was switched in the P. nana hox cluster, while the order of the remaining hox genes was generally conserved with those of other arthropods. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.

  8. Extremely slow rate of evolution in the HOX cluster revealed by comparison between Tanzanian and Indonesian coelacanths.

    Science.gov (United States)

    Higasa, Koichiro; Nikaido, Masato; Saito, Taro L; Yoshimura, Jun; Suzuki, Yutaka; Suzuki, Hikoyu; Nishihara, Hidenori; Aibara, Mitsuto; Ngatunga, Benjamin P; Kalombo, Hassan W J; Sugano, Sumio; Morishita, Shinichi; Okada, Norihiro

    2012-09-01

    Coelacanths are known as "living fossils" because their morphology has changed very little from that in the fossil record. To elucidate why coelacanths have evolved so slowly is thus of primary importance in evolutionary biology. In the present study, we determined the entire sequence of the HOX cluster of the Tanzanian coelacanth (Latimeria chalumnae) and compared it with that of the Indonesian coelacanth (L. menadoensis), which was available in the literature. The most intriguing result was the extremely small genetic divergence between the two coelacanths. The synonymous divergence of the HOX coding region between the two coelacanths was estimated to be 0.07%, which is ~11-fold smaller than that of human-chimp. When we applied the estimated divergence time of the two coelacanths of 6 million years ago (MYA) and 30 MYA, which were proposed in independent mitochondrial DNA analyses, the synonymous substitution rate of the coelacanth HOX cluster was estimated to be ~11-fold and 56-fold smaller than that of human-chimp, respectively. Thus, the present study implies that the reduction of the nucleotide substitution rate in coelacanth HOX genes may account for the conservation of coelacanth morphology during evolution.

  9. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish.

    Science.gov (United States)

    Amores, Angel; Suzuki, Tohru; Yan, Yi-Lin; Pomeroy, Jordan; Singer, Amy; Amemiya, Chris; Postlethwait, John H

    2004-01-01

    The pufferfish skeleton lacks ribs and pelvic fins, and has fused bones in the cranium and jaw. It has been hypothesized that this secondarily simplified pufferfish morphology is due to reduced complexity of the pufferfish Hox complexes. To test this hypothesis, we determined the genomic structure of Hox clusters in the Southern pufferfish Spheroides nephelus and interrogated genomic databases for the Japanese pufferfish Takifugu rubripes (fugu). Both species have at least seven Hox clusters, including two copies of Hoxb and Hoxd clusters, a single Hoxc cluster, and at least two Hoxa clusters, with a portion of a third Hoxa cluster in fugu. Results support genome duplication before divergence of zebrafish and pufferfish lineages, followed by loss of a Hoxc cluster in the pufferfish lineage and loss of a Hoxd cluster in the zebrafish lineage. Comparative analysis shows that duplicate genes continued to be lost for hundreds of millions of years, contrary to predictions for the permanent preservation of gene duplicates. Gene expression analysis in fugu embryos by in situ hybridization revealed evolutionary change in gene expression as predicted by the duplication-degeneration-complementation model. These experiments rule out the hypothesis that the simplified pufferfish body plan is due to reduction in Hox cluster complexity, and support the notion that genome duplication contributed to the radiation of teleosts into half of all vertebrate species by increasing developmental diversification of duplicate genes in daughter lineages.

  10. The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication.

    Science.gov (United States)

    Kuraku, Shigehiro; Meyer, Axel

    2009-01-01

    Hox genes are known to specify spatial identities along the anterior-posterior axis during embryogenesis. In vertebrates and most other deuterostomes, they are arranged in sets of uninterrupted clusters on chromosomes, and are in most cases expressed in a "colinear" fashion, in which genes closer to the 3-end of the Hox clusters are expressed earlier and more anteriorly and genes close to the 5-end of the clusters later and more posteriorly. In this review, we summarize the current understanding of how Hox gene clusters have been modified from basal lineages of deuterostomes to diverse taxa of vertebrates. Our parsimony reconstruction of Hox cluster architecture at various stages of vertebrate evolution highlights that the variation in Hox cluster structures among jawed vertebrates is mostly due to secondary lineage-specific gene losses and an additional genome duplication that occurred in the actinopterygian stem lineage, the teleost-specific genome duplication (TSGD).

  11. Comparative analyses of vertebrate posterior HoxD clusters reveal atypical cluster architecture in the caecilian Typhlonectes natans

    Directory of Open Access Journals (Sweden)

    Amemiya Chris T

    2010-11-01

    Full Text Available Abstract Background The posterior genes of the HoxD cluster play a crucial role in the patterning of the tetrapod limb. This region is under the control of a global, long-range enhancer that is present in all vertebrates. Variation in limb types, as is the case in amphibians, can probably not only be attributed to variation in Hox genes, but is likely to be the product of differences in gene regulation. With a collection of vertebrate genome sequences available today, we used a comparative genomics approach to study the posterior HoxD cluster of amphibians. A frog and a caecilian were included in the study to compare coding sequences as well as to determine the gain and loss of putative regulatory sequences. Results We sequenced the posterior end of the HoxD cluster of a caecilian and performed comparative analyses of this region using HoxD clusters of other vertebrates. We determined the presence of conserved non-coding sequences and traced gains and losses of these footprints during vertebrate evolution, with particular focus on amphibians. We found that the caecilian HoxD cluster is almost three times larger than its mammalian counterpart. This enlargement is accompanied with the loss of one gene and the accumulation of repeats in that area. A similar phenomenon was observed in the coelacanth, where a different gene was lost and expansion of the area where the gene was lost has occurred. At least one phylogenetic footprint present in all vertebrates was lost in amphibians. This conserved region is a known regulatory element and functions as a boundary element in neural tissue to prevent expression of Hoxd genes. Conclusion The posterior part of the HoxD cluster of Typhlonectes natans is among the largest known today. The loss of Hoxd-12 and the expansion of the intergenic region may exert an influence on the limb enhancer, by having to bypass a distance seven times that of regular HoxD clusters. Whether or not there is a correlation with the

  12. Characterization of the human HOX 7 cDNA and identification of polymorphic markers.

    Science.gov (United States)

    Padanilam, B J; Stadler, H S; Mills, K A; McLeod, L B; Solursh, M; Lee, B; Ramirez, F; Buetow, K H; Murray, J C

    1992-09-01

    cDNA clones for a human HOX 7 gene obtained with homologous clones of Drosophila were used in human gene mapping studies. The human cDNA clone was isolated from a library constructed from human embryonic craniofacial material. The sequence of the cDNA demonstrates significant homology with mouse HOX 7. A search for RFLPs identified MboII and BstEII variants. A CA dinucleotide repeat with 5 alleles was also identified and allowed placement of HOX 7 into a defined linkage map. Evidence for linkage disequilibrium was found with markers tested. These results place the human HOX 7 gene in a defined position on 4p.

  13. Effect of increased HoxB4 on human megakaryocytic development

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yiming [Department of Pathology, The Ohio State University, Columbus, OH (United States); Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH (United States); Sullenbarger, Brent [Department of Pathology, The Ohio State University, Columbus, OH (United States); Lasky, Larry C., E-mail: Lasky.4@osu.edu [Department of Pathology, The Ohio State University, Columbus, OH (United States); Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH (United States)

    2010-07-30

    Research highlights: {yields} HoxB4 overexpression in human TF1 cells increased the expression of CD61 and CD41a. {yields} HoxB4 fusion protein enhanced megakaryocytic development of CD34{sup +} cord blood cells. {yields} Ectopic HoxB4 increased Tpo receptor expression and decreased c-Myb expression. {yields} HoxB4 RNA silencing increased c-Myb expression and decreased Fli-1 expression. -- Abstract: In order to produce clinically useful quantities of platelets ex vivo we may need to firstly enhance early self-renewal of hematopoietic stem cells (HSCs) and/or megakaryocyte (Mk) progenitors. The homeodomain transcription factor HoxB4 has been shown to be an important regulator of stem cell renewal and hematopoiesis; however, its effect on megakaryopoiesis is unclear. In this study, we investigated the effect of HoxB4 overexpression or RNA silencing on megakaryocytic development in the human TF1 progenitor cell line; we then used recombinant tPTD-HoxB4 fusion protein to study the effect of exogenous HoxB4 on megakaryocytic development of human CD34 positively-selected cord blood cells. We found that ectopic HoxB4 in TF1 cells increased the antigen expression of CD61and CD41a, increased the gene expression of thrombopoietin receptor (TpoR), Scl-1, Cyclin D1, Fog-1 and Fli-1 while it decreased c-Myb expression. HoxB4 RNA silencing in TF1 cells decreased the expression of CD61 and CD41a and decreased Fli-1 expression while it increased the expression of c-Myb. Recombinant tPTD-HoxB4 fusion protein increased the percentages and absolute numbers of CD41a and CD61 positive cells during megakaryocytic differentiation of CD34 positively-selected cord blood cells and increased the numbers of colony-forming unit-megakaryocyte (CFU-Mk). Adding tPTD-HoxB4 fusion protein increased the gene expression of TpoR, Cyclin D1, Fog-1 and Fli-1 while it inhibited c-Myb expression. Our data suggest that increased HoxB4 enhanced early megakaryocytic development in human TF1 cells and CD34

  14. Expression of HOX C homeobox genes in lymphoid cells.

    Science.gov (United States)

    Lawrence, H J; Stage, K M; Mathews, C H; Detmer, K; Scibienski, R; MacKenzie, M; Migliaccio, E; Boncinelli, E; Largman, C

    1993-08-01

    The class I homeobox genes located in four clusters in mammalian genomes (HOX A, HOX B, HOX C, and HOX D) appear to play a major role in fetal development. Previous surveys of homeobox gene expression in human leukemic cell lines have shown that certain HOX A genes are expressed only in myeloid cell lines, whereas HOX B gene expression is largely restricted to cells with erythroid potential. We now report a survey of the expression patterns of 9 homeobox genes from the HOX C locus in a panel of 24 human and 7 murine leukemic cell lines. The most striking observation is the lymphoid-specific pattern of expression of HOX C4, located at the 3' end of the locus. A major transcript of 1.9 kilobases is observed in both T-cell and B-cell lines. HOX C4 expression is also detected in normal human marrow and peripheral blood lymphocytes, but not in mature granulocytes or monocytes. HOX C8 is also expressed in human lymphoid cells but is expressed in other blood cell types as well. However, the HOX C8 transcript pattern is lineage specific. These data, in conjunction with earlier findings, suggest that homeobox gene expression influences lineage determination during hematopoiesis.

  15. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    Science.gov (United States)

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues.

  16. Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome.

    Science.gov (United States)

    Amemiya, Chris T; Powers, Thomas P; Prohaska, Sonja J; Grimwood, Jane; Schmutz, Jeremy; Dickson, Mark; Miyake, Tsutomu; Schoenborn, Michael A; Myers, Richard M; Ruddle, Francis H; Stadler, Peter F

    2010-02-23

    The living coelacanth is a lobe-finned fish that represents an early evolutionary departure from the lineage that led to land vertebrates, and is of extreme interest scientifically. It has changed very little in appearance from fossilized coelacanths of the Cretaceous (150 to 65 million years ago), and is often referred to as a "living fossil." An important general question is whether long-term stasis in morphological evolution is associated with stasis in genome evolution. To this end we have used targeted genome sequencing for acquiring 1,612,752 bp of high quality finished sequence encompassing the four HOX clusters of the Indonesian coelacanth Latimeria menadoensis. Detailed analyses were carried out on genomic structure, gene and repeat contents, conserved noncoding regions, and relative rates of sequence evolution in both coding and noncoding tracts. Our results demonstrate conclusively that the coelacanth HOX clusters are evolving comparatively slowly and that this taxon should serve as a viable outgroup for interpretation of the genomes of tetrapod species.

  17. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs.

    Directory of Open Access Journals (Sweden)

    Soizik Berlivet

    Full Text Available HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs. We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet "DNA loops". Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates.

  18. Definition of the transcriptional activation domains of three human HOX proteins depends on the DNA-binding context.

    Science.gov (United States)

    Viganò, M A; Di Rocco, G; Zappavigna, V; Mavilio, F

    1998-11-01

    Hox proteins control developmental patterns and cell differentiation in vertebrates by acting as positive or negative regulators of still unidentified downstream target genes. The homeodomain and other small accessory sequences encode the DNA-protein and protein-protein interaction functions which ultimately dictate target recognition and functional specificity in vivo. The effector domains responsible for either positive or negative interactions with the cell transcriptional machinery are unknown for most Hox proteins, largely due to a lack of physiological targets on which to carry out functional analysis. We report the identification of the transcriptional activation domains of three human Hox proteins, HOXB1, HOXB3, and HOXD9, which interact in vivo with the autoregulatory and cross-regulatory enhancers of the murine Hoxb-1 and human HOXD9 genes. Activation domains have been defined both in a homologous context, i.e., within a HOX protein binding as a monomer or as a HOX-PBX heterodimer to the specific target, and in a heterologous context, after translocation to the yeast Gal4 DNA-binding domain. Transfection analysis indicates that activation domains can be identified in different regions of the three HOX proteins depending on the context in which they interact with the DNA target. These results suggest that Hox proteins may be multifunctional transcriptional regulators, interacting with different cofactors and/or components of the transcriptional machinery depending on the structure of their target regulatory elements.

  19. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation.

    Directory of Open Access Journals (Sweden)

    Laura Ferguson

    2014-10-01

    Full Text Available Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina plus a caddisfly outgroup (Glyphotaelius pellucidus to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths. Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria, with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.

  20. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation.

    Science.gov (United States)

    Ferguson, Laura; Marlétaz, Ferdinand; Carter, Jean-Michel; Taylor, William R; Gibbs, Melanie; Breuker, Casper J; Holland, Peter W H

    2014-10-01

    Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.

  1. Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology

    NARCIS (Netherlands)

    Neijts, Roel; Amin, Shilu; van Rooijen, Carina; Deschamps, Jacqueline

    2017-01-01

    Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in

  2. Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology

    NARCIS (Netherlands)

    Neijts, Roel; Amin, Shilu; van Rooijen, Carina; Deschamps, Jacqueline

    2016-01-01

    Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in

  3. Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology

    NARCIS (Netherlands)

    Neijts, Roel; Amin, Shilu; van Rooijen, Carina; Deschamps, Jacqueline

    2016-01-01

    Cdx and Hox transcription factors are important regulators of axial patterning and are required for tissue generation along the vertebrate body axis. Cdx genes have been demonstrated to act upstream of Hox genes in midgestation embryos. Here, we investigate the role of Cdx transcription factors in t

  4. A general scenario of Hox gene inventory variation among major sarcopterygian lineages

    Directory of Open Access Journals (Sweden)

    Wang Chaolin

    2011-01-01

    Full Text Available Abstract Background Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. Results We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. Conclusions Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with

  5. HOX gene analysis in the osteogenic differentiation of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Song Wha Chae

    2008-01-01

    Full Text Available Human bone marrow-derived mesenchymal stem cells (hMSCs have the capacity to differentiate into osteoblasts during osteogenesis. Several studies attempted to identify osteogenesis-related genes in hMSCs. Although HOX genes are known to play a pivotal role in skeletogenesis, their function in the osteogenesis of hMSCs has not yet been investigated in detail. Our aim was to characterize the expression of 37 HOX genes by multiplex RT-PCR to identify the ones most probably involved in osteogenic differentiation. The results showed that the expression patterns of four HOX genes were altered during this process. In particular, the expression levels of HOXC13 and HOXD13 were dramatically changed. Real-time PCR and Western blot analysis were performed in order to further analyze the expression of HOXC13 and HOXD13 . The qRT-PCR results showed that transcription of HOXC13 was up-regulated by up to forty times, whereas that of HOXD13 was down-regulated by approximately five times after osteogenic differentiation. The Western blot results for the HOXC13 and HOXD13 proteins also corresponded well with the real-time PCR result. These findings suggest that HOXC13 and HOXD13 might be involved in the osteogenic differentiation of hMSCs.

  6. Are Cirripedia hopeful monsters? Cytogenetic approach and evidence for a Hox gene cluster in the cirripede crustacean Sacculina carcini.

    Science.gov (United States)

    Géant, Elodie; Mouchel-Vielh, Emmanuèle; Coutanceau, Jean-Pierre; Ozouf-Costaz, Catherine; Deutsch, Jean S

    2006-01-01

    The "hopeful monster" has haunted evolutionary thinking since Richard Goldschmidt coined the phrase in 1933. The phrase is directly related to genetic mechanisms in development and evolution. Cirripedes are peculiar crustaceans in that they all lack abdomens as adults. In a previous study aimed at describing the repertoire of Hox genes of the Cirripedia, we failed to isolate the abdominal-A gene in three species representative of all three cirripede orders. To address the question of whether the cirripede ancestor could have been a "hopeful monster" arising from a rearrangement of the Hox complex, we have performed a cytogenetic analysis of the Hox complex of the cirripede Sacculina carcini. We present here molecular and cytogenetic evidence for the grouping of the Hox genes on a single chromosome. This is the first direct evidence reported for the grouping of Hox genes on the same chromosome in a non-insect arthropod species.

  7. Hox genes from the Polystomatidae (Platyhelminthes, Monogenea).

    Science.gov (United States)

    Badets, Mathieu; Verneau, Olivier

    2009-11-01

    Hox genes form a multigenic family that play a fundamental role during the early stages of development. They are organised in a single cluster and share a 60 amino acid conserved sequence that corresponds to the DNA binding domain, i.e. the homeodomain. Sequence conservation in this region has allowed investigators to explore Hox diversity in the metazoan lineages. Within parasitic flatworms only homeobox sequences of parasite species from the Cestoda and Digenea have been reported. In the present study we surveyed species of the Polyopisthocotylea (Monogenea) in order to clarify Hox identification and diversification processes in the neodermatan lineage. From cloning of degenerative PCR products of the central region of the homeobox, we report one ParaHox and 25 new Hox sequences from 10 species of the Polystomatidae and one species of the Diclidophoridae, which extend Hox gene diversity from 46 to 72 within Neodermata. Hox sequences from the Polyopisthocotylea were annotated and classified from sequence alignments and Bayesian inferences of 178 Hox, ParaHox and related gene families recovered from all available parasitic platyhelminths and other bilaterian taxa. Our results are discussed in the light of the recent Hox evolutionary schemes. They may provide new perspectives to study the transition from turbellarians to parasitic flatworms with complex life-cycles and outline the first steps for evolutionary developmental biological approaches within platyhelminth parasites.

  8. Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members.

    Science.gov (United States)

    Feiner, Nathalie; Ericsson, Rolf; Meyer, Axel; Kuraku, Shigehiro

    2011-11-15

    Bilaterian Hox genes play pivotal roles in the specification of positional identities along the anteroposterior axis. Particularly in vertebrates, their regulation is tightly coordinated by tandem arrays of genes [paralogy groups (PGs)] in four gene clusters (HoxA-D). Traditionally, the uninterrupted Hox cluster (Hox1-14) of the invertebrate chordate amphioxus was regarded as an archetype of the vertebrate Hox clusters. In contrast to Hox1-13 that are globally regulated by the "Hox code" and are often phylogenetically conserved, vertebrate Hox14 members were only recently revealed to be present in an African lungfish, a coelacanth, chondrichthyans and a lamprey, and decoupled from the Hox code. In this study we performed a PCR-based search of Hox14 members from diverse vertebrates, and identified one in the Australian lungfish, Neoceratodus forsteri. Based on a molecular phylogenetic analysis, this gene was designated NfHoxA14. Our real-time RT-PCR suggested its hindgut-associated expression, previously observed also in cloudy catshark HoxD14 and lamprey Hox14α. It is likely that this altered expression scheme was established before the Hox cluster quadruplication, probably at the base of extant vertebrates. To investigate the origin of vertebrate Hox14, by including this sarcopterygian Hox14 member, we performed focused phylogenetic analyses on its relationship with other vertebrate posterior Hox PGs (Hox9-13) as well as amphioxus posterior Hox genes. Our results confirmed the hypotheses previously proposed by other studies that vertebrate Hox14 does not have any amphioxus ortholog, and that none of 1-to-1 pairs of vertebrate and amphioxus posterior Hox genes, based on their relative location in the clusters, is orthologous. © 2011 Wiley Periodicals, Inc.

  9. Comprehensive expression profiling of highly homologous 39 hox genes in 26 different human adult tissues by the modified systematic multiplex RT-pCR method reveals tissue-specific expression pattern that suggests an important role of chromosomal structure in the regulation of hox gene expression in adult tissues.

    Science.gov (United States)

    Yamamoto, Miyako; Takai, Daisaku; Yamamoto, Fumiya; Yamamoto, Fumiichiro

    2003-01-01

    Homeobox genes play a crucial role as molecular address labels in early embryogenesis by conferring cell fate and establishing regional identity in tissues. Homeobox gene expression is not restricted to the early development, but it is also observed in the differentiated cells in adult tissues. To have a better understanding of the functionality of homeobox gene expression in adult tissues in physiological and pathological phenomena, it is important to determine the expression profiles of Hox genes. We established a system to study the expression of 39 human Hox genes by the modified Systematic Multiplex RT-PCR method. Using this system, we have systematically examined their expression in 26 different adult tissues. The results showed tissue-specific differential expression. They also revealed that the posterior tissues generally express more Hox genes than the anterior tissues and that the genes located centrally in the Hox Gene Complexes are expressed in more tissues than the genes located at the 5' or 3' end of the complexes. Instead of similar expression patterns among paralogous genes, we found that several neighboring Hox genes on the same chromosomes exhibited similar tissue-specific expression pattern, which may suggest that the regulation of Hox gene expression may be more dependent on chromosomal structure in adult tissues.

  10. Evolution of anterior Hox regulatory elements among chordates

    Directory of Open Access Journals (Sweden)

    Natale Alfonso

    2011-11-01

    Full Text Available Abstract Background The Hox family of transcription factors has a fundamental role in segmentation pathways and axial patterning of embryonic development and their clustered organization is linked with the regulatory mechanisms governing their coordinated expression along embryonic axes. Among chordates, of particular interest are the Hox paralogous genes in groups 1-4 since their expression is coupled to the control of regional identity in the anterior nervous system, where the highest structural diversity is observed. Results To investigate the degree of conservation in cis-regulatory components that form the basis of Hox expression in the anterior nervous system, we have used assays for transcriptional activity in ascidians and vertebrates to compare and contrast regulatory potential. We identified four regulatory sequences located near the CiHox1, CiHox2 and CiHox4 genes of the ascidian Ciona intestinalis which direct neural specific domains of expression. Using functional assays in Ciona and vertebrate embryos in combination with sequence analyses of enhancer fragments located in similar positions adjacent to Hox paralogy group genes, we compared the activity of these four Ciona cis-elements with a series of neural specific enhancers from the amphioxus Hox1-3 genes and from mouse Hox paralogous groups 1-4. Conclusions This analysis revealed that Kreisler and Krox20 dependent enhancers critical in segmental regulation of the hindbrain appear to be specific for the vertebrate lineage. In contrast, neural enhancers that function as Hox response elements through the action of Hox/Pbx binding motifs have been conserved during chordate evolution. The functional assays reveal that these Hox response cis-elements are recognized by the regulatory components of different and extant species. Together, our results indicate that during chordate evolution, cis-elements dependent upon Hox/Pbx regulatory complexes, are responsible for key aspects of

  11. MiR-10 represses HoxB1a and HoxB3a in zebrafish.

    Directory of Open Access Journals (Sweden)

    Joost M Woltering

    Full Text Available BACKGROUND: The Hox genes are involved in patterning the anterior-posterior axis. In addition to the protein coding Hox genes, the miR-10, miR-196 and miR-615 families of microRNA genes are conserved within the vertebrate Hox clusters. The members of the miR-10 family are located at positions associated with Hox-4 paralogues. No function is yet known for this microRNA family but the genomic positions of its members suggest a role in anterior-posterior patterning. METHODOLOGY/PRINCIPAL FINDINGS: Using sensor constructs, overexpression and morpholino knockdown, we show in Zebrafish that miR-10 targets HoxB1a and HoxB3a and synergizes with HoxB4 in the repression of these target genes. Overexpression of miR-10 also induces specific phenotypes related to the loss of function of these targets. HoxB1a and HoxB3a have a dominant hindbrain expression domain anterior to that of miR-10 but overlap in a weaker expression domain in the spinal cord. In this latter domain, miR-10 knockdown results in upregulation of the target genes. In the case of a HoxB3a splice variant that includes miR-10c within its primary transcript, we show that the microRNA acts in an autoregulatory fashion. CONCLUSIONS/SIGNIFICANCE: We find that miR-10 acts to repress HoxB1a and HoxB3a within the spinal cord and show that this repression works cooperatively with HoxB4. As with the previously described interactions between miR-196 and HoxA7 and Hox-8 paralogues, the target genes are located in close proximity to the microRNA. We present a model in which we postulate a link between the clustering of Hox genes and post-transcriptional gene regulation. We speculate that the high density of transcription units and enhancers within the Hox clusters places constraints on the precision of the transcriptional control that can be achieved within these clusters and requires the involvement of post-transcriptional gene silencing to define functional domains of genes appropriately.

  12. 鱼类Hox基因簇结构、表达和进化方面研究进展%A Review of Composition, Expression, and Evolution in Fish Hox Gene Cluster

    Institute of Scientific and Technical Information of China (English)

    耿波; 孙效文

    2012-01-01

    Hox基因(horneobox genes,同源异型盒基因)是一类含有同源框、参与动物早期胚胎发育的关键基因。其在胚胎发育中的表达水平对组织和器官的形成有重要的调控作用。脊索动物如文昌鱼(Branchiostoma floridae)有1个Hox基因簇,包括15个基因;哺乳动物有4个基因簇,各含有约13个Hox基因,位于4条染色体上;硬骨鱼类的连锁群更多,如斑马鱼(拉丁名)基因组中有7个Hox基因连锁群。分析不同鱼类的同源框基因家族(Homobox gene familv,Hox)的结构组成,揭示Hox基因家族在不同进化时间的进化动态和规律,以更好地阐释在新基因形成、物种分化以及维持遗传系统稳定性等作用,探讨DNA序列的同源性和不同物种间的亲缘关系,这对于保护生物多样性,尤其是遗传多样性、揭示生物进化历程及其机理具有参考意义。%The Hox genes as a large family of DNA-binding transcription factors are organized into clusters that are strikingly collinear with their spatial and temporal expression patterns, with each cluster containing no more than 13 different genes, and that appear to play key roles in the body plans of a wide range of metazoan species. The genes order in the cluster is highly conserved through a long evolution terms, suggesting a selective pressure on the entire cluster. A single Hox cluster containing 15 Hox genes is found in chor- date such as amphioxus (Branchiostomafloridae), four Hox clusters distributing on 4 chromosomes are shown in mammals and more than four Hox clusters ray in teleosts, 7 Hox clusters being in zebrafish. Study on Hox genes of fishes will help to understand the evolu- tionary dynamics and patterns of Hox genes family in the short, medium and long evolutionary time, and to explain the formation of new genes, species and genetic differentiation to maintain system stability and other aspects of the role. Therefore, evaluation of DNA

  13. Hox in frogs : xenopus reveals novel functions for vertebrate hoz genes

    NARCIS (Netherlands)

    Bardine, Nabila

    2008-01-01

    Hox genes are a very important family of transcription factors during development of vertebrate and invertebrates. This family of genes contains up to 39 Hox gene members organized in 4 clusters in the genome. The main function of Hox genes is the establishment of the anteroposterior axis of the emb

  14. Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb.

    Science.gov (United States)

    Neufeld, Stanley J; Wang, Fan; Cobb, John

    2014-11-01

    The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb.

  15. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Roxane Chiori

    Full Text Available BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

  16. Hox gene duplications correlate with posterior heteronomy in scorpions.

    Science.gov (United States)

    Sharma, Prashant P; Schwager, Evelyn E; Extavour, Cassandra G; Wheeler, Ward C

    2014-10-07

    The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions.

  17. An insight into the phylogenetic history of HOX linked gene families in vertebrates

    Directory of Open Access Journals (Sweden)

    Grzeschik Karl-Heinz

    2007-11-01

    Full Text Available Abstract Background The human chromosomes 2q, 7, 12q and 17q show extensive intra-genomic homology, containing duplicate, triplicate and quadruplicate paralogous regions centered on the HOX gene clusters. The fact that two or more representatives of different gene families are linked with HOX clusters is taken as evidence that these paralogous gene sets might have arisen from a single chromosomal segment through block or whole chromosome duplication events. This would imply that the constituent genes including the HOX clusters reflect the architecture of a single ancestral block (before vertebrate origin where all of these genes were linked in a single copy. Results In the present study we have employed the currently available set of protein data for a wide variety of vertebrate and invertebrate genomes to analyze the phylogenetic history of 11 multigene families with three or more of their representatives linked to human HOX clusters. A topology comparison approach revealed four discrete co-duplicated groups: group 1 involves the genes from GLI, HH, INHB, IGFBP (cluster-1, and SLC4A families; group 2 involves ERBB, ZNFN1A, and IGFBP (cluster-2 gene families; group 3 involves the HOX clusters and the SP gene family; group 4 involves the integrin beta chain and myosine light chain families. The distinct genes within each co-duplicated group share the same evolutionary history and are duplicated in concert with each other, while the constituent genes of two different co-duplicated groups may not share their evolutionary history and may not have duplicated simultaneously. Conclusion We conclude that co-duplicated groups may themselves be remnants of ancient small-scale duplications (involving chromosomal segments or gene-clusters which occurred at different time points during chordate evolution. Whereas the recent combination of genes from distinct co-duplicated groups on different chromosomal regions (human chromosomes 2q, 7, 12q, and 17q is

  18. ParaHox genes in pancreatic cell cultures: effects on the insulin promoter regulation

    Directory of Open Access Journals (Sweden)

    Anna Rosanas-Urgell, Jordi Garcia-Fernàndez, Gemma Marfany

    2008-01-01

    Full Text Available The gene encoding PDX1 (pancreatic duodenum homeobox 1, the main transcription factor regulating the glucose-dependent transactivation of the insulin promoter in pancreatic β-cells, clusters with two closely related homeobox genes (Gsh1 and Cdx2/3, all of them belonging to the ParaHox gene family. The ParaHox gene evolutionary history in the vertebrate lineage involved duplications of the cluster and subsequent loss of some members, so that eventually, the human and murine genomes contain only 6 ParaHox genes. The crucial role of PDX1 in pancreas development, beta-cell formation and insulin transcription regulation has long been established. There is some data on CDX2/3 function in α-cells, but remarkably, nothing is known on the role of the other ParaHox genes, which are also expressed in the endocrine pancreas. Homeobox transcription factors that belong to the same family show high conservation of the homeodomain and share similar target sites and oligomeric partners, and thus may act redundantly, synergistically or antagonistically on the same promoters. Therefore, we explored the effects of the Parahox proteins (GSH1, GSH2, CDX1, CDX2/3 and CDX4 on the regulation of the insulin promoter in transfected α- and β- cultured cell lines at different glucose concentrations and compared them to those of PDX1. Noticeably, several ParaHox transcription factors are able to transactivate or inhibit the insulin promoter, depending on the cell type and glucose concentration, thus suggesting their possible participation in the regulation of similar target genes, such as insulin, either by silencing or activating them, in the absence of PDX1.

  19. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    Directory of Open Access Journals (Sweden)

    Gerardo Botti

    2013-11-01

    Full Text Available Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13 in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers.

  20. Hox and ParaHox Genes in Evolution, Development and Genomics

    Institute of Scientific and Technical Information of China (English)

    David E.K. Ferrier

    2011-01-01

    @@ The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom.

  1. Hox genes and evolution [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Steven M. Hrycaj

    2016-05-01

    Full Text Available Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan.

  2. HOX Gene Promoter Prediction and Inter-genomic Comparison: An Evo-Devo Study

    Directory of Open Access Journals (Sweden)

    Marla A. Endriga

    2010-10-01

    Full Text Available Homeobox genes direct the anterior-posterior axis of the body plan in eukaryotic organisms. Promoter regions upstream of the Hox genes jumpstart the transcription process. CpG islands found within the promoter regions can cause silencing of these promoters. The locations of the promoter regions and the CpG islands of Homeo sapiens sapiens (human, Pan troglodytes (chimpanzee, Mus musculus (mouse, and Rattus norvegicus (brown rat are compared and related to the possible influence on the specification of the mammalian body plan. The sequence of each gene in Hox clusters A-D of the mammals considered were retrieved from Ensembl and locations of promoter regions and CpG islands predicted using Exon Finder. The predicted promoter sequences were confirmed via BLAST and verified against the Eukaryotic Promoter Database. The significance of the locations was determined using the Kruskal-Wallis test. Among the four clusters, only promoter locations in cluster B showed significant difference. HOX B genes have been linked with the control of genes that direct the development of axial morphology, particularly of the vertebral column bones. The magnitude of variation among the body plans of closely-related species can thus be partially attributed to the promoter kind, location and number, and gene inactivation via CpG methylation.

  3. An Overview of Hox Genes in Lophotrochozoa: Evolution and Functionality

    Directory of Open Access Journals (Sweden)

    Marco Barucca

    2016-03-01

    Full Text Available Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which show a wide morphological diversity. Despite that the works summarized in this review emphasize the fragmentary nature of the data available regarding the presence and expression of Hox genes, they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan ancestor is still a question of debate. The data presented here suggest that at least nine genes were present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few species belonging to Annelida and Mollusca.

  4. HOX gene complement and expression in the planarian Schmidtea mediterranea

    Directory of Open Access Journals (Sweden)

    Ko W. Currie

    2016-03-01

    Full Text Available Abstract Background Freshwater planarians are well known for their regenerative abilities. Less well known is how planarians maintain spatial patterning in long-lived adult animals or how they re-pattern tissues during regeneration. HOX genes are good candidates to regulate planarian spatial patterning, yet the full complement or genomic clustering of planarian HOX genes has not yet been described, primarily because only a few have been detectable by in situ hybridization, and none have given morphological phenotypes when knocked down by RNAi. Results Because the planarian Schmidtea mediterranea (S. mediterranea is unsegmented, appendage less, and morphologically simple, it has been proposed that it may have a simplified HOX gene complement. Here, we argue against this hypothesis and show that S. mediterranea has a total of 13 HOX genes, which represent homologs to all major axial categories, and can be detected by whole-mount in situ hybridization using a highly sensitive method. In addition, we show that planarian HOX genes do not cluster in the genome, yet 5/13 have retained aspects of axially restricted expression. Finally, we confirm HOX gene axial expression by RNA deep-sequencing 6 anterior–posterior “zones” of the animal, which we provide as a dataset to the community to discover other axially restricted transcripts. Conclusions Freshwater planarians have an unappreciated HOX gene complexity, with all major axial categories represented. However, we conclude based on adult expression patterns that planarians have a derived body plan and their asexual lifestyle may have allowed for large changes in HOX expression from the last common ancestor between arthropods, flatworms, and vertebrates. Using our in situ method and axial zone RNAseq data, it should be possible to further understand the pathways that pattern the anterior–posterior axis of adult planarians.

  5. Hox genes and study of Hox genes in crustacean

    Institute of Scientific and Technical Information of China (English)

    HOU Lin; CHEN Zhijuan; XU Mingyu; LIN Shengguo; WANG Lu

    2004-01-01

    Homeobox genes have been discovered in many species. These genes are known to play a major role in specifying regional identity along the anterior-posterior axis of animals from a wide range of phyla.The products of the homeotic genes are a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in metazoans. Crustacean, presenting a variety of body plans not encountered in any other class or phylum of the Metazoa, has been shown to possess a single set of homologous Hox genes like insect. The ancestral crustacean Hox gene complex comprised ten genes: eight homologous to the hometic Hox genes and two related to nonhomeotic genes presented within the insect Hox complexes. The crustacean in particular exhibits an abundant diversity segment specialization and tagmosis. This morphological diversity relates to the Hox genes. In crustacean body plan, different Hox genes control different segments and tagmosis.

  6. Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos

    NARCIS (Netherlands)

    Neijts, Roel; Amin, Shilu; van Rooijen, Carina; Tan, Sander; Creyghton, Menno P; de Laat, Wouter; Deschamps, Jacqueline

    2016-01-01

    Sequential 3'-to-5' activation of the Hox gene clusters in early embryos is a most fascinating issue in developmental biology. Neither the trigger nor the regulatory elements involved in the transcriptional initiation of the 3'-most Hox genes have been unraveled in any organism. We demonstrate that

  7. Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos

    NARCIS (Netherlands)

    Neijts, R.; Amin, Shilu; Van Rooijen, E. M H C; Tan, Sander; Creyghton, Menno P.; De Laat, Wouter|info:eu-repo/dai/nl/169934497; Deschamps, Jacqueline

    2016-01-01

    Sequential 3′-to-5′ activation of the Hox gene clusters in early embryos is a most fascinating issue in developmental biology. Neither the trigger nor the regulatory elements involved in the transcriptional initiation of the 3′-most Hox genes have been unraveled in any organism. We demonstrate that

  8. Towards Resolving the Enigma of HOX Gene Collinearity

    Science.gov (United States)

    Papageorgiou, Spyros

    2014-12-01

    The development of normal patterns along the primary and secondary vertebrate axes depends on the regularity of the early HOX gene expressions. During the initial developmental stages these expressions form a sequential pattern of partially overlapping domains along the anterior-posterior axis of the embryo in coincidence with the 3' to 5' order of the genes in the chromosome (spatial collinearity). In addition, the HOX genes are activated one after the other in the same 3' to 5' order (temporal collinearity). Genetic engineering experiments were performed in order explore the mechanism responsible for these remarkable collinearity phenomena. Several biomolecular models were proposed explaining some of the experimental findings. A biophysical model has been also proposed which is based on the hypothesis that physical forces are created which act on the Hox cluster. This cluster is initially inactive, located inside the chromosome territory. The physical forces translocate sequentially the Hox genes one after the other from inside the chromosome territory towards the interchromosome domain where they are activated in the area of the transcription factories. The above biophysical model mechanism has been strongly supported by recent experimental evidence and some evolutionary considerations. In this model realization, pulling forces are created between the `negatively' charged Hox cluster and its `positively' charged chromatin environment.

  9. SNPs and Hox gene mapping in Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Biffali Elio

    2008-01-01

    Full Text Available Abstract Background The tunicate Ciona intestinalis (Enterogona, Ascidiacea, a major model system for evolutionary and developmental genetics of chordates, harbours two cryptic species. To assess the degree of intra- and inter-specific genetic variability, we report the identification and analysis of C. intestinalis SNP (Single Nucleotide Polymorphism markers. A SNP subset was used to determine the genetic distance between Hox-5 and -10 genes. Results DNA fragments were amplified from 12 regions of C. intestinalis sp. A. In total, 128 SNPs and 32 one bp indels have been identified within 8 Kb DNA. SNPs in coding regions cause 4 synonymous and 12 non-synonymous substitutions. The highest SNP frequency was detected in the Hox5 and Hox10 intragenic regions. In C. intestinalis, these two genes have lost their archetypal topology within the cluster, such that Hox10 is located between Hox4 and Hox5. A subset of the above primers was used to perform successful amplification in C. intestinalis sp. B. In this cryptic species, 62 SNPs were identified within 3614 bp: 41 in non-coding and 21 in coding regions. The genetic distance of the Hox-5 and -10 loci, computed combining a classical backcross approach with the application of SNP markers, was found to be 8.4 cM (Haldane's function. Based on the physical distance, 1 cM corresponds to 39.5 Kb. Linkage disequilibrium between the aforementioned loci was calculated in the backcross generation. Conclusion SNPs here described allow analysis and comparisons within and between C. intestinalis cryptic species. We provide the first reliable computation of genetic distance in this important model chordate. This latter result represents an important platform for future studies on Hox genes showing deviations from the archetypal topology.

  10. Investigating Bimodal Clustering in Human Mobility

    CERN Document Server

    Bagrow, James P; 10.1109/CSE.2009.283

    2009-01-01

    We apply a simple clustering algorithm to a large dataset of cellular telecommunication records, reducing the complexity of mobile phone users' full trajectories and allowing for simple statistics to characterize their properties. For the case of two clusters, we quantify how clustered human mobility is, how much of a user's spatial dispersion is due to motion between clusters, and how spatially and temporally separated clusters are from one another.

  11. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja

    2014-10-30

    Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.

  12. Genomic organisation of the seven ParaHox genes of coelacanths

    OpenAIRE

    Mulley, John F; Holland, Peter WH

    2013-01-01

    Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In coelacanths and cartilaginous fish, an additional ParaHox gene exists—Pdx2—that dates back to the genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations, revealing that fiv...

  13. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation.

    Science.gov (United States)

    Acemel, Rafael D; Tena, Juan J; Irastorza-Azcarate, Ibai; Marlétaz, Ferdinand; Gómez-Marín, Carlos; de la Calle-Mustienes, Elisa; Bertrand, Stéphanie; Diaz, Sergio G; Aldea, Daniel; Aury, Jean-Marc; Mangenot, Sophie; Holland, Peter W H; Devos, Damien P; Maeso, Ignacio; Escrivá, Hector; Gómez-Skarmeta, José Luis

    2016-03-01

    The HoxA and HoxD gene clusters of jawed vertebrates are organized into bipartite three-dimensional chromatin structures that separate long-range regulatory inputs coming from the anterior and posterior Hox-neighboring regions. This architecture is instrumental in allowing vertebrate Hox genes to pattern disparate parts of the body, including limbs. Almost nothing is known about how these three-dimensional topologies originated. Here we perform extensive 4C-seq profiling of the Hox cluster in embryos of amphioxus, an invertebrate chordate. We find that, in contrast to the architecture in vertebrates, the amphioxus Hox cluster is organized into a single chromatin interaction domain that includes long-range contacts mostly from the anterior side, bringing distant cis-regulatory elements into contact with Hox genes. We infer that the vertebrate Hox bipartite regulatory system is an evolutionary novelty generated by combining ancient long-range regulatory contacts from DNA in the anterior Hox neighborhood with new regulatory inputs from the posterior side.

  14. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  15. Hox in hair growth and development

    Science.gov (United States)

    Awgulewitsch, Alexander

    2003-05-01

    The evolutionarily conserved Hox gene family of transcriptional regulators has originally been known for specifying positional identities along the longitudinal body axis of bilateral metazoans, including mouse and man. It is believed that subsequent to this archaic role, subsets of Hox genes have been co-opted for patterning functions in phylogenetically more recent structures, such as limbs and epithelial appendages. Among these, the hair follicle is of particular interest, as it is the only organ undergoing cyclical phases of regression and regeneration during the entire life span of an organism. Furthermore, the hair follicle is increasingly capturing the attention of developmental geneticists, as this abundantly available miniature organ mimics key aspects of embryonic patterning and, in addition, presents a model for studying organ renewal. The first Hox gene shown to play a universal role in hair follicle development is Hoxc13, as both Hoxc13-deficient and overexpressing mice exhibit severe hair growth and patterning defects. Differential gene expression analyses in the skin of these mutants, as well as in vitro DNA binding studies performed with potential targets for HOXC13 transcriptional regulation in human hair, identified genes encoding hair-specific keratins and keratin-associated proteins (KAPs) as major groups of presumptive Hoxc13 downstream effectors in the control of hair growth. The Hoxc13 mutant might thus serve as a paradigm for studying hair-specific roles of Hoxc13 and other members of this gene family, whose distinct spatio-temporally restricted expression patterns during hair development and cycling suggest discrete functions in follicular patterning and hair cycle control. The main conclusion from a discussion of these potential roles vis-à-vis current expression data in mouse and man, and from the perspective of the results obtained with the Hoxc13 transgenic models, is that members of the Hox family are likely to fulfill essential roles

  16. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  17. HoxPred: automated classification of Hox proteins using combinations of generalised profiles

    Directory of Open Access Journals (Sweden)

    Leyns Luc

    2007-07-01

    Full Text Available Abstract Background Correct identification of individual Hox proteins is an essential basis for their study in diverse research fields. Common methods to classify Hox proteins focus on the homeodomain that characterise homeobox transcription factors. Classification is hampered by the high conservation of this short domain. Phylogenetic tree reconstruction is a widely used but time-consuming classification method. Results We have developed an automated procedure, HoxPred, that classifies Hox proteins in their groups of homology. The method relies on a discriminant analysis that classifies Hox proteins according to their scores for a combination of protein generalised profiles. 54 generalised profiles dedicated to each Hox homology group were produced de novo from a curated dataset of vertebrate Hox proteins. Several classification methods were investigated to select the most accurate discriminant functions. These functions were then incorporated into the HoxPred program. Conclusion HoxPred shows a mean accuracy of 97%. Predictions on the recently-sequenced stickleback fish proteome identified 44 Hox proteins, including HoxC1a only found so far in zebrafish. Using the Uniprot databank, we demonstrate that HoxPred can efficiently contribute to large-scale automatic annotation of Hox proteins into their paralogous groups. As orthologous group predictions show a higher risk of misclassification, they should be corroborated by additional supporting evidence. HoxPred is accessible via SOAP and Web interface http://cege.vub.ac.be/hoxpred/. Complete datasets, results and source code are available at the same site.

  18. The Hox gene complement of acoel flatworms, a basal bilaterian clade.

    Science.gov (United States)

    Cook, Charles E; Jiménez, Eva; Akam, Michael; Saló, Emili

    2004-01-01

    Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.

  19. A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Keys, David N.; Lee, Byung-in; Di Gregorio, Anna; Harafuji, Naoe; Detter, Chris; Wang, Mei; Kahsai, Orsalem; Ahn, Sylvia; Arellano, Andre; Zhang, Quin; Trong, Stephan; Doyle, Sharon A.; Satoh, Noriyuki; Satou, Yutaka; Saiga, Hidetoshi; Christian, Allen; Rokhsar, Dan; Hawkins, Trevor L.; Levine, Mike; Richardson, Paul

    2005-01-05

    A screen for the systematic identification of cis-regulatory elements within large (>100 kb) genomic domains containing Hox genes was performed by using the basal chordate Ciona intestinalis. Randomly generated DNA fragments from bacterial artificial chromosomes containing two clusters of Hox genes were inserted into a vector upstream of a minimal promoter and lacZ reporter gene. A total of 222 resultant fusion genes were separately electroporated into fertilized eggs, and their regulatory activities were monitored in larvae. In sum, 21 separable cis-regulatory elements were found. These include eight Hox linked domains that drive expression in nested anterior-posterior domains of ectodermally derived tissues. In addition to vertebrate-like CNS regulation, the discovery of cis-regulatory domains that drive epidermal transcription suggests that C. intestinalis has arthropod-like Hox patterning in the epidermis.

  20. The Hox complex - an interview with Denis Duboule. Interviewed by Richardson, Michael K.

    Science.gov (United States)

    Duboule, Denis

    2009-01-01

    Denis Duboule is one of the most influential and highly-cited scientists in developmental biology. Born in Geneva in 1955, he holds dual Swiss and French nationality. His undergraduate studies in biology at the University of Geneva included research on mouse embryology. He later learned molecular techniques in the laboratory of Pierre Chambon, becoming a major player in characterising the newly-discovered vertebrate Hox genes. He helped discover their genomic clustering, realising that they had arisen by trans duplication. With Gaunt and Sharpe, he proposed that vertebrate Hox clusters might show spatial colinearity, and subsequently extended this concept to the timing of gene activation (temporal colinearity). Along with the Krumlauf laboratory, he reported the structural and functional conservation of the homeotic systems in flies and vertebrates. His lab was the first to describe nested patterns of Hox gene expression in the developing mouse limb, and later showed that digit-associated Hoxd gene expression was lacking in zebrafish paired fin development. His concept of phylotypic progression helps explain major evolutionary developmental phenomena in terms of Hox gene regulatory networks. His research helped reveal that the genital tubercle may, like the limb, be patterned by Hox genes. His lab developed targeted meiotic recombination (TAMERE), using it to make profound advances in our understanding of Hox gene regulation. Remote enhancers linked to digit patterning have been uncovered, together with a likely mechanism for colinearity. Denis lives in Geneva with his wife Brigitte Galliot, also a scientist, with their four children.

  1. Comprehensive analysis of Hox gene expression in the amphipod crustacean Parhyale hawaiensis.

    Science.gov (United States)

    Serano, Julia M; Martin, Arnaud; Liubicich, Danielle M; Jarvis, Erin; Bruce, Heather S; La, Konnor; Browne, William E; Grimwood, Jane; Patel, Nipam H

    2016-01-01

    Hox genes play crucial roles in establishing regional identity along the anterior-posterior axis in bilaterian animals, and have been implicated in generating morphological diversity throughout evolution. Here we report the identification, expression, and initial genomic characterization of the complete set of Hox genes from the amphipod crustacean Parhyale hawaiensis. Parhyale is an emerging model system that is amenable to experimental manipulations and evolutionary comparisons among the arthropods. Our analyses indicate that the Parhyale genome contains a single copy of each canonical Hox gene with the exception of fushi tarazu, and preliminary mapping suggests that at least some of these genes are clustered together in the genome. With few exceptions, Parhyale Hox genes exhibit both temporal and spatial colinearity, and expression boundaries correlate with morphological differences between segments and their associated appendages. This work represents the most comprehensive analysis of Hox gene expression in a crustacean to date, and provides a foundation for functional studies aimed at elucidating the role of Hox genes in arthropod development and evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mesenchymal stem cells from different organs are characterized by distinct topographic Hox codes.

    Science.gov (United States)

    Ackema, Karin B; Charité, Jeroen

    2008-10-01

    Mesenchymal stem cells (MSC) are multipotent cells found as part of the stromal compartment of the bone marrow and in many other organs. They can be identified in vitro as CFU-F (colony forming unit-fibroblast) based on their ability to form adherent colonies of fibroblast-like cells in culture. MSC expanded in vitro retain characteristics appropriate to their tissue of origin. This is reflected in their propensity for differentiating towards specific lineages, and their capacity to generate, upon retransplantation in vivo, a stroma supporting typical lineages of hematopoietic cells. Hox genes encode master regulators of regional specification and organ development in the embryo and are widely expressed in the adult. We investigated whether they could be involved in determining tissue-specific properties of MSC. Hox gene expression profiles of individual CFU-F colonies derived from various organs and anatomical locations were generated, and the relatedness between these profiles was determined using hierarchical cluster analysis. This revealed that CFU-F have characteristic Hox expression signatures that are heterogeneous but highly specific for their anatomical origin. The topographic specificity of these Hox codes is maintained during differentiation, suggesting that they are an intrinsic property of MSC. Analysis of Hox codes of CFU-F from vertebral bone marrow suggests that MSC originate over a large part of the anterioposterior axis, but may not originate from prevertebral mesenchyme. These data are consistent with a role for Hox proteins in specifying cellular identity of MSC.

  3. Hox genes and the parasitic flatworms: new opportunities, challenges and lessons from the free-living.

    Science.gov (United States)

    Olson, P D

    2008-03-01

    Research into the roles played by Hox and related homeotic gene families in the diverse and complex developmental programmes exhibited by parasitic flatworms (Platyhelminthes) can hardly be said to have begun, and thus presents considerable opportunity for new research. Although featured in some of the earliest screens for homeotic genes outside Drosophila and mice, surveys in parasitic flatworms are few in number and almost nothing is yet known of where or when the genes are expressed during ontogeny. This contrasts sharply with a significant body of literature concerning Hox genes in free-living flatworms which have long served as models for the study of regeneration and the maintenance of omnipotent cell lines. Nevertheless, available information suggests that the complement of Hox genes and other classes of homeobox-containing genes in parasitic flatworms is typical of their free-living cousins and of other members of the Lophotrochozoa. Recent work on Schistosoma combined with information on Hox gene expression in planarians indicates that at least some disruption of the clustered genomic arrangement of the genes, as well as of the strict spatial and temporal colinear patterns of expression typical in other groups, may be characteristic of flatworms. However, available data on the genomic arrangement and expression of flatworm Hox genes is so limited at present that such generalities are highly tenuous. Moreover, a basic underlying pattern of colinearity is still observed in their spatial expression patterns making them suitable as cell or region-specific markers. I discuss a number of fundamental developmental questions and some of the challenges to addressing them in relation to each of the major parasitic lineages. In addition, I present newly characterized Hox genes from the model tapeworm Hymenolepis and analyze these by Bayesian inference together with >100 Hox and ParaHox homeodomains of flatworms and select lophotrochozoan taxa, providing a

  4. HOX genes: Major actors in resistance to selective endocrine response modifiers.

    Science.gov (United States)

    Jin, Kideok; Sukumar, Saraswati

    2016-04-01

    Long term treatment with therapies aimed at blocking the estrogen- (ER) or androgen receptor (AR) action often leads to the development of resistance to selective modulators of the estrogen receptor (SERMs) in ERα-positive breast cancer, or of the androgen receptor (SARMs) in AR-positive prostate cancer. Many underlying molecular events that confer resistance are known, but a unifying theme is yet to be revealed. Receptor tyrosine kinases (RTKs) such EGFR, ERBB2 and IGF1R are major mediators that can directly alter cellular response to the SERM, tamoxifen, but the mechanisms underlying increased expression of RTKs are not clear. A number of HOX genes and microRNAs and non-coding RNAs residing in the HOX cluster, have been identified as important independent predictors of endocrine resistant breast cancer. Recently, convincing evidence has accumulated that several members belonging to the four different HOX clusters contribute to endocrine therapy resistant breast cancer, but the mechanisms remain obscure. In this article, we have reviewed recent progress in understanding of the functioning of HOX genes and regulation of their expression by hormones. We also discuss, in particular, the contributions of several members of the HOX gene family to endocrine resistant breast cancer.

  5. HOX genes in the skin

    Institute of Scientific and Technical Information of China (English)

    YANG Mei; LI Qing-feng; ZHANG Feng

    2010-01-01

    @@ Deep skin wounds heal by scar formation with a loss of its original appearance, structure and function.However, when the same damage occurs to the skin of an early gestational fetus, complete regeneration can be observed. Despite significant research in the field of skin regeneration, many mysteries remain, such as the loss of wound healing ability with maturity, the differences in healing at different parts of the body, and the presence of hypertrophic scars and keloids in some races but not in others. The finding of HOX genes in the skin provides new explanations to these conundrums.

  6. Extreme conservation of noncoding DNA near HoxD complex of vertebrates

    Directory of Open Access Journals (Sweden)

    Tripathi Anshuman

    2004-10-01

    Full Text Available Abstract Background Homeotic gene complexes determine the anterior-posterior body axis in animals. The expression pattern and function of hox genes along this axis is colinear with the order in which they are organized in the complex. This 'chromosomal organization and functional correspondence' is conserved in all bilaterians investigated. Genomic sequences covering the HoxD complex from several vertebrate species are now available. This offers a comparative genomics approach to identify conserved regions linked to this complex. Although the molecular basis of 'colinearity' of Hox complexes is not yet understood, it is possible that there are control elements within or in the proximity of these complexes that establish and maintain the expression patterns of hox genes in a coordinated fashion. Results We have compared DNA sequence flanking the HoxD complex of several primate, rodent and fish species. This analysis revealed an unprecedented conservation of non-coding DNA sequences adjacent to the HoxD complex from fish to human. Stretches of hundreds of base pairs in a 7 kb region, upstream of HoxD complex, show 100% conservation across the vertebrate species. Using PCR primers from the human sequence, these conserved regions could be amplified from other vertebrate species, including other mammals, birds, reptiles, amphibians and fish. Our analysis of these sequences also indicates that starting from the conserved core regions, more sequences have been added on and maintained during evolution from fish to human. Conclusion Such a high degree of conservation in the core regions of this 7 kb DNA, where no variation occurred during ~500 million years of evolution, suggests critical function for these sequences. We suggest that such sequences are likely to provide molecular handle to gain insight into the evolution and mechanism of regulation of associated gene complexes.

  7. Hox genes in the parasitic platyhelminthes Mesocestoides corti, Echinococcus multilocularis, and Schistosoma mansoni: evidence for a reduced Hox complement.

    Science.gov (United States)

    Koziol, Uriel; Lalanne, Ana I; Castillo, Estela

    2009-02-01

    Little is known about the Hox gene complement in parasitic platyhelminthes (Neodermata). With the aim of identifying Hox genes in this group we performed two independent strategies: we performed a PCR survey with degenerate primers directed to the Hox homeobox in the cestode Mesocestoides corti, and we searched genomic assemblies of Echinococcus multilocularis and Schistosoma mansoni. We identified two Hox genes in M. corti, seven in E. multilocularis, and nine in S. mansoni (including five previously reported). The affinities of these sequences, and other previously reported Hox sequences from flatworms, were determined according to phylogenetic analysis, presence of characteristic parapeptide sequences, and unusual intron positions. Our results suggest that the last common ancestor of triclads and neodermatans had a Hox gene complement of at least seven genes, and that this was probably derived by gene loss from a larger ancestral Hox complement in lophotrochozoans.

  8. Individualization as driving force of clustering phenomena in humans.

    Directory of Open Access Journals (Sweden)

    Michael Mäs

    Full Text Available One of the most intriguing dynamics in biological systems is the emergence of clustering, in the sense that individuals self-organize into separate agglomerations in physical or behavioral space. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is the clustering of opinions in human populations, particularly when opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing continuous opinion formation models predict "monoculture" in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness has not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cascades that inevitably lead to monoculture, while larger noise disrupts opinion clusters and results in rampant individualism without any social structure. Our solution to the puzzle builds on recent empirical research, combining the integrative tendencies of social influence with the disintegrative effects of individualization. A key element of the new computational model is an adaptive kind of noise. We conduct computer simulation experiments demonstrating that with this kind of noise a third phase besides individualism and monoculture becomes possible, characterized by the formation of metastable clusters with diversity between and consensus within clusters. When clusters are small, individualization tendencies are too weak to prohibit a fusion of clusters. When clusters grow too large, however, individualization increases in strength, which promotes their splitting. In summary, the new model can explain cultural clustering in

  9. A ChIP-on-chip tiling array approach detects functional histone-free regions associated with boundaries at vertebrate HOX genes

    Directory of Open Access Journals (Sweden)

    Surabhi Srivastava

    2014-12-01

    Full Text Available Hox genes impart segment identity to body structures along the anterior–posterior axis and are crucial for proper development. A unique feature of the Hox loci is the collinearity between the gene position within the cluster and its spatial expression pattern along the body axis. However, the mechanisms that regulate collinear patterns of Hox gene expression remain unclear, especially in higher vertebrates. We recently identified novel histone-free regions (HFRs that can act as chromatin boundary elements demarcating successive murine Hox genes and help regulate their precise expression domains (Srivastava et al., 2013. In this report, we describe in detail the ChIP-chip analysis strategy associated with the identification of these HFRs. We also provide the Perl scripts for HFR extraction and quality control analysis for this custom designed tiling array dataset.

  10. A ChIP-on-chip tiling array approach detects functional histone-free regions associated with boundaries at vertebrate HOX genes.

    Science.gov (United States)

    Srivastava, Surabhi; Sowpati, Divya Tej; Garapati, Hita Sony; Puri, Deepika; Dhawan, Jyotsna; Mishra, Rakesh K

    2014-12-01

    Hox genes impart segment identity to body structures along the anterior-posterior axis and are crucial for proper development. A unique feature of the Hox loci is the collinearity between the gene position within the cluster and its spatial expression pattern along the body axis. However, the mechanisms that regulate collinear patterns of Hox gene expression remain unclear, especially in higher vertebrates. We recently identified novel histone-free regions (HFRs) that can act as chromatin boundary elements demarcating successive murine Hox genes and help regulate their precise expression domains (Srivastava et al., 2013). In this report, we describe in detail the ChIP-chip analysis strategy associated with the identification of these HFRs. We also provide the Perl scripts for HFR extraction and quality control analysis for this custom designed tiling array dataset.

  11. Refined physical map of the human PAX2/HOX11/NFKB2 cancer gene region at 10q24 and relocalization of the HPV6AI1 viral integration site to 14q13.3-q21.1

    Directory of Open Access Journals (Sweden)

    Kahn Tomas

    2003-03-01

    Full Text Available Abstract Background Chromosome band 10q24 is a gene-rich domain and host to a number of cancer, developmental, and neurological genes. Recurring translocations, deletions and mutations involving this chromosome band have been observed in different human cancers and other disease conditions, but the precise identification of breakpoint sites, and detailed characterization of the genetic basis and mechanisms which underlie many of these rearrangements has yet to be resolved. Towards this end it is vital to establish a definitive genetic map of this region, which to date has shown considerable volatility through time in published works of scientific journals, within different builds of the same international genomic database, and across the differently constructed databases. Results Using a combination of chromosome and interphase fluorescent in situ hybridization (FISH, BAC end-sequencing and genomic database analysis we present a physical map showing that the order and chromosomal orientation of selected genes within 10q24 is CEN-CYP2C9-PAX2-HOX11-NFKB2-TEL. Our analysis has resolved the orientation of an otherwise dynamically evolving assembly of larger contigs upstream of this region, and in so doing verifies the order and orientation of a further 9 cancer-related genes and GOT1. This study further shows that the previously reported human papillomavirus type 6a DNA integration site HPV6AI1 does not map to 10q24, but that it maps at the interface of chromosome bands 14q13.3-q21.1. Conclusions This revised map will allow more precise localization of chromosome rearrangements involving chromosome band 10q24, and will serve as a useful baseline to better understand the molecular aetiology of chromosomal instability in this region. In particular, the relocation of HPV6AI1 is important to report because this HPV6a integration site, originally isolated from a tonsillar carcinoma, was shown to be rearranged in other HPV6a-related malignancies

  12. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described.

  13. Evolution of the Hox gene complex from an evolutionary ground state.

    Science.gov (United States)

    Gehring, Walter J; Kloter, Urs; Suga, Hiroshi

    2009-01-01

    In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes

  14. The genetics of murine Hox loci: TAMERE, STRING, and PANTHERE to engineer chromosome variants.

    Science.gov (United States)

    Tschopp, Patrick; Duboule, Denis

    2014-01-01

    Following their duplications at the base of the vertebrate clade, Hox gene clusters underwent remarkable sub- and neo-functionalization events. Many of these evolutionary innovations can be associated with changes in the transcriptional regulation of their genes, where an intricate relationship between the structure of the gene cluster and the architecture of the surrounding genomic landscape is at play. Here, we report on a portfolio of in vivo genome engineering strategies in mice, which have been used to probe and decipher the genetic and molecular underpinnings of the complex regulatory mechanisms implemented at these loci.

  15. The food, GI tract functionality and human health cluster

    NARCIS (Netherlands)

    Mattila-Sandholm, T.; Blaut, M.; Daly, C.; Vuyst, de L.; Dore, J.; Gibson, G.; Goossens, H.; Knorr, D.; Lucas, J.; Lahteenmaki, L.; Mercenier, A.M.E.; Saarela, M.; Shanahan, F.; Vos, de W.M.

    2002-01-01

    The Food, GI-tract Functionality and Human Health (PROEUHEALTH) Cluster brings together eight complementary, multicentre interdisciplinary research projects. All have the common aim of improving the health and quality of life of European comsumers. The collaboration involves 64 different research gr

  16. Divergent role of the Hox gene Antennapedia in spiders is responsible for the convergent evolution of abdominal limb repression.

    Science.gov (United States)

    Khadjeh, Sara; Turetzek, Natascha; Pechmann, Matthias; Schwager, Evelyn E; Wimmer, Ernst A; Damen, Wim G M; Prpic, Nikola-Michael

    2012-03-27

    Evolution often results in morphologically similar solutions in different organisms, a phenomenon known as convergence. However, there is little knowledge of the processes that lead to convergence at the genetic level. The genes of the Hox cluster control morphology in animals. They may also be central to the convergence of morphological traits, but whether morphological similarities also require similar changes in Hox gene function is disputed. In arthropods, body subdivision into a region with locomotory appendages ("thorax") and a region with reduced appendages ("abdomen") has evolved convergently in several groups, e.g., spiders and insects. In insects, legs develop in the expression domain of the Hox gene Antennapedia (Antp), whereas the Hox genes Ultrabithorax (Ubx) and abdominal-A mediate leg repression in the abdomen. Here, we show that, unlike Antp in insects, the Antp gene in the spider Achaearanea tepidariorum represses legs in the first segment of the abdomen (opisthosoma), and that Antp and Ubx are redundant in the following segment. The down-regulation of Antp in A. tepidariorum leads to a striking 10-legged phenotype. We present evidence from ectopic expression of the spider Antp gene in Drosophila embryos and imaginal tissue that this unique function of Antp is not due to changes in the Antp protein, but likely due to divergent evolution of cofactors, Hox collaborators or target genes in spiders and flies. Our results illustrate an interesting example of convergent evolution of abdominal leg repression in arthropods by altering the role of distinct Hox genes at different levels of their action.

  17. Fat accumulation in differentiated brown adipocytes is linked with expression of Hox genes.

    Science.gov (United States)

    Singh, Smita; Rajput, Yudhishthir S; Barui, Amit K; Sharma, Rajan; Datta, Tirtha K

    2016-03-01

    Homeobox (Hox) genes are involved in body plan of embryo along the anterior-posterior axis. Presence of several Hox genes in white adipose tissue (WAT) and brown adipose tissue (BAT) is indicative of involvement of Hox genes in adipogenesis. We propose that differentiation inducing agents viz. isobutyl-methyl-xanthine (IBMX), indomethacin, dexamethasone (DEX), triiodothyronine (T3) and insulin may regulate differentiation in brown adipose tissue through Hox genes. In vitro culture of brown fat stromalvascular fraction (SVF) in presence or absence of differentiation inducing agents was used for establishing relationship between fat accumulation in differentiated adipocytes and expression of Hox genes. Relative expression of Pref1, UCP1 and Hox genes was determined in different stages of adipogenesis. Presence or absence of IBMX, indomethacin and DEX during differentiation of proliferated pre-adipocytes resulted in marked differences in expression of Hox genes and lipid accumulation. In presence of these inducing agents, lipid accumulation as well as expression of HoxA1, HoxA5, HoxC4 &HoxC8 markedly enhanced. Irrespective of presence or absence of T3, insulin down regulates HoxA10. T3 results in over expression of HoxA5, HoxC4 and HoxC8 genes, whereas insulin up regulates expression of only HoxC8. Findings suggest that accumulation of fat in differentiated adipocytes is linked with expression of Hox genes.

  18. 猪繁殖候选基因HoxA10的克隆及表达分析%Cloning and expression analysis of HoxA10,a candidate gene influencing reproduction traits in pigs

    Institute of Scientific and Technical Information of China (English)

    周晓宁; 方梅霞; 何小梅; 聂庆华; 张细权

    2011-01-01

    同源异形盒A10基因(Homeobox 10 gene,HoxA10)是Hox基因家族中重要一员,与子宫形态的发生,生育期子宫内膜的周期性形态发育密切相关,是与猪繁殖性状相关的重要候选基因.以长白猪为材料,采用RT-PCR方法,克隆了猪HoxA10基因,并用Real-Time PCR测定该基因在猪各组织器官中的表达.结果表明,从猪子宫组织中克隆获得HoxA10基因cDNA长538 bp,包括1个285 bp的开放阅读框,编码合成94个氨基酸残基,与人和小鼠的HoxA序列同源性分别为98.9%和97.9%;在猪各组织中,前肌是HoxA10基因表达量最高的组织,其次为肾、子宫、后肌、输卵管、大肠、腹脂等组织,在垂体、大脑、小脑、丘脑、卵巢、肺、胃、小肠、背肌、背膘中,HoxA10的表达很低或基本无表达.%As a key member of Hox gene family, the Homeobox A1O gene (HoxA1O) is an important candidate gene influencing reproduction traits in pigs, which plays important roles in embryonic development and cell differentiation. In this paper, HoxA1O gene was cloned from a Landrace pig by RT-PCR, and different tissues from the pig were tested by real-time PCR to determine the tissue-specific expression pattern of HoxA1O. Results showed that the cloned HoxA1OcDNA of pig was 538 bp long, and it contained an open reading frame (ORF) of 285 bp encoding a peptide of 94 amino acid residues which showed 98.9% and 97.9% sequence identity to that of human and mouse respectively. In all tested pig tissues, HoxA1O expressed predominantly in forward leg muscle, followed by kidney, uterus, back leg muscle, oviduct,large intestine and abdominal fat. And little or no Expression of HoxA1O was detected in hypothalamus, cerebrum,cerebellum, thalamus, ovary, lung, stomach, small intestine, dorsal muscles and back fat.

  19. Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing.

    Science.gov (United States)

    Kmita, M; Kondo, T; Duboule, D

    2000-12-01

    Mammalian Hox genes are clustered at four genomic loci. During development, neighbouring genes are coordinately regulated by global enhancer sequences, which control multiple genes at once, as exemplified by the expression of series of contiguous Hoxd genes in either limbs or gut. The link between vertebrate Hox gene transcription and their clustered distribution is poorly understood. Experimental and comparative approaches have revealed that various mechanisms, such as gene clustering or global enhancer sequences, might have constrained this genomic organization and stabilized it throughout evolution. To understand what restricts the effect of a particular enhancer to a precise set of genes, we generated a loxP/Cre-mediated targeted inversion within the HoxD cluster. Mice carrying the inversion showed a reciprocal re-assignment of the limb versus gut regulatory specificities, suggesting the presence of a silencer element with a unidirectional property. This polar silencer appears to limit the number of genes that respond to one type of regulation and thus indicates how separate regulatory domains may be implemented within intricate gene clusters.

  20. Loss of Bloom syndrome protein destabilizes human gene cluster architecture.

    Science.gov (United States)

    Killen, Michael W; Stults, Dawn M; Adachi, Noritaka; Hanakahi, Les; Pierce, Andrew J

    2009-09-15

    Bloom syndrome confers strong predisposition to malignancy in multiple tissue types. The Bloom syndrome patient (BLM) protein defective in the disease biochemically functions as a Holliday junction dissolvase and human cells lacking functional BLM show 10-fold elevated rates of sister chromatid exchange. Collectively, these phenomena suggest that dysregulated mitotic recombination drives the genomic instability underpinning the development of cancer in these individuals. Here we use physical analysis of the highly repeated, highly self-similar human ribosomal RNA gene clusters as sentinel biomarkers for dysregulated homologous recombination to demonstrate that loss of BLM protein function causes a striking increase in spontaneous molecular level genomic restructuring. Analysis of single-cell derived sub-clonal populations from wild-type human cell lines shows that gene cluster architecture is ordinarily very faithfully preserved under mitosis, but is so unstable in cell lines derived from BLMs as to make gene cluster architecture in different sub-clonal populations essentially unrecognizable one from another. Human cells defective in a different RecQ helicase, the WRN protein involved in the premature aging Werner syndrome, do not exhibit the gene cluster instability (GCI) phenotype, indicating that the BLM protein specifically, rather than RecQ helicases generally, holds back this recombination-mediated genomic instability. An ataxia-telangiectasia defective cell line also shows elevated rDNA GCI, although not to the extent of BLM defective cells. Genomic restructuring mediated by dysregulated recombination between the abundant low-copy repeats in the human genome may prove to be an important additional mechanism of genomic instability driving the initiation and progression of human cancer.

  1. Evolution of homeobox gene clusters in animals: the Giga-cluster and primary versus secondary clustering.

    Directory of Open Access Journals (Sweden)

    David Ellard Keith Ferrier

    2016-04-01

    Full Text Available The Hox gene cluster has been a major focus in evolutionary developmental biology. This is because of its key role in patterning animal development and widespread examples of changes in Hox genes being linked to the evolution of animal body plans and morphologies. Also, the distinctive organisation of the Hox genes into genomic clusters in which the order of the genes along the chromosome corresponds to the order of their activity along the embryo, or during a developmental process, has been a further source of great interest. This is known as Colinearity, and it provides a clear link between genome organisation and the regulation of genes during development, with distinctive changes marking evolutionary transitions. The Hox genes are not alone, however. The homeobox genes are a large super-class, of which the Hox genes are only a small subset, and an ever-increasing number of further gene clusters besides the Hox are being discovered. This is of great interest because of the potential for such gene clusters to help understand major evolutionary transitions, both in terms of changes to development and morphology as well as evolution of genome organisation. However, there is uncertainty in our understanding of homeobox gene cluster evolution at present. This relates to our still rudimentary understanding of the dynamics of genome rearrangements and evolution over the evolutionary timescales being considered when we compare lineages from across the animal kingdom. A major goal is to deduce whether particular instances of clustering are primary (conserved from ancient ancestral clusters or secondary (reassortment of genes into clusters in lineage-specific fashion. The following summary of the various instances of homeobox gene clusters in animals, and the hypotheses about their evolution, provides a framework for the future resolution of this uncertainty.

  2. Individualization as driving force of clustering phenomena in humans

    CERN Document Server

    Mäs, Michael; Helbing, Dirk

    2010-01-01

    One of the most intriguing dynamics in biological systems is the emergence of clustering, the self-organization into separated agglomerations of individuals. Several theories have been developed to explain clustering in, for instance, multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of fish, and animal herds. A persistent puzzle, however, is clustering of opinions in human populations. The puzzle is particularly pressing if opinions vary continuously, such as the degree to which citizens are in favor of or against a vaccination program. Existing opinion formation models suggest that "monoculture" is unavoidable in the long run, unless subsets of the population are perfectly separated from each other. Yet, social diversity is a robust empirical phenomenon, although perfect separation is hardly possible in an increasingly connected world. Considering randomness did not overcome the theoretical shortcomings so far. Small perturbations of individual opinions trigger social influence cas...

  3. Clusters of adaptive evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Laura B. Scheinfeldt

    2011-09-01

    Full Text Available Considerable work has been devoted to identifying regions of the human genome that have been subjected to recent positive selection. Although detailed follow-up studies of putatively selected regions are critical for a deeper understanding of human evolutionary history, such studies have received comparably less attention. Recently, we have shown that ALMS1 has been the target of recent positive selection acting on standing variation in Eurasian populations. Here, we describe a careful follow-up analysis of genetic variation across the ALMS1 region, which unexpectedly revealed a cluster of substrates of positive selection. Specifically, through the analysis of SNP data from the HapMap and HGDP-CEPH samples as well sequence data from the region, we find compelling evidence for three independent and distinct signals of recent positive selection across this 3 Mb region surrounding ALMS1. Moreover, we analyzed the HapMap data to identify other putative clusters of independent selective events and conservatively discovered 19 additional clusters of adaptive evolution. This work has important implications for the interpretation of genome-scans for positive selection in humans and more broadly contributes to a better understanding of how recent positive selection has shaped genetic variation across the human genome.

  4. Distinct mechanisms for opposite functions of homeoproteins Cdx2 and HoxB7 in double-strand break DNA repair in colon cancer cells.

    Science.gov (United States)

    Soret, Christine; Martin, Elisabeth; Duluc, Isabelle; Dantzer, Françoise; Vanier, Marie; Gross, Isabelle; Freund, Jean-Noël; Domon-Dell, Claire

    2016-05-01

    Homeobox genes, involved in embryonic development and tissues homeostasis in adults, are often deregulated in cancer, but their relevance in pathology is far from being fully elucidated. In colon cancers, we report that the homeoproteins HoxB7 and Cdx2 exhibit different heterogeneous patterns, Cdx2 being localized in moderately altered neoplasic glands in contrast to HoxB7 which predominates in poorly-differentiated areas; they are coexpressed in few cancer cells. In human colon cancer cells, both homeoproteins interact with the DNA repair factor KU70/80, but functional studies reveal opposite effects: HoxB7 stimulates DNA repair and cell survival upon etoposide treatment, whereas Cdx2 inhibits both processes. The stimulatory effect of HoxB7 on DNA repair requires the transactivation domain linked to the homeodomain involved in the interaction with KU70/80, whereas the transactivation domain of Cdx2 is dispensable for its inhibitory function, which instead needs the homeodomain to interact with KU70/80 and the C-terminal domain. Thus, HoxB7 and Cdx2 respectively use transcription-dependent and -independent mechanisms to stimulate and inhibit DNA repair. In addition, in cells co-expressing both homeoproteins, Cdx2 lessens DNA repair activity through a novel mechanism of inhibition of the transcriptional function of HoxB7, whereby Cdx2 forms a molecular complex with HoxB7 and prevents it to recognize its target in the chromatin. These results point out the complex interplay between the DSB DNA repair activity and the homeoproteins HoxB7 and Cdx2 in colon cancer cells, making the balance between these factors a determinant and a potential indicator of the efficacy of genotoxic drugs.

  5. Analysis of the DNA-binding profile and function of TALE homeoproteins reveals their specialization and specific interactions with Hox genes/proteins.

    Science.gov (United States)

    Penkov, Dmitry; Mateos San Martín, Daniel; Fernandez-Díaz, Luis C; Rosselló, Catalina A; Torroja, Carlos; Sánchez-Cabo, Fátima; Warnatz, H J; Sultan, Marc; Yaspo, Marie L; Gabrieli, Arianna; Tkachuk, Vsevolod; Brendolan, Andrea; Blasi, Francesco; Torres, Miguel

    2013-04-25

    The interactions of Meis, Prep, and Pbx1 TALE homeoproteins with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA-binding sequences, Prep associating mostly with promoters and housekeeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless coregulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. During evolution, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination.

  6. Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia

    Directory of Open Access Journals (Sweden)

    Steiner Gerhard

    2010-07-01

    Full Text Available Abstract Background Presence of all three ParaHox genes has been described in deuterostomes and lophotrochozoans, but to date one of these three genes, Xlox has not been reported from any ecdysozoan taxa and both Xlox and Gsx are absent in nematodes. There is evidence that the ParaHox genes were ancestrally a single chromosomal cluster. Colinear expression of the ParaHox genes in anterior, middle, and posterior tissues of several species studied so far suggest that these genes may be responsible for axial patterning of the digestive tract. So far, there are no data on expression of these genes in molluscs. Results We isolated the complete coding sequences of the three Gibbula varia ParaHox genes, and then tested their expression in larval and postlarval development. In Gibbula varia, the ParaHox genes participate in patterning of the digestive tract and are expressed in some cells of the neuroectoderm. The expression of these genes coincides with the gradual formation of the gut in the larva. Gva-Gsx patterns potential neural precursors of cerebral ganglia as well as of the apical sensory organ. During larval development this gene is involved in the formation of the mouth and during postlarval development it is expressed in the precursor cells involved in secretion of the radula, the odontoblasts. Gva-Xolx and Gva-Cdx are involved in gut patterning in the middle and posterior parts of digestive tract, respectively. Both genes are expressed in some ventral neuroectodermal cells; however the expression of Gva-Cdx fades in later larval stages while the expression of Gva-Xolx in these cells persists. Conclusions In Gibbula varia the ParaHox genes are expressed during anterior-posterior patterning of the digestive system. This colinearity is not easy to spot during early larval stages because the differentiated endothelial cells within the yolk permanently migrate to their destinations in the gut. After torsion, Gsx patterns the mouth and foregut

  7. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

    Directory of Open Access Journals (Sweden)

    Steven E Weicksel

    Full Text Available Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors. However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.

  8. Establishment of Hox vertebral identities in the embryonic spine precursors.

    Science.gov (United States)

    Iimura, Tadahiro; Denans, Nicolas; Pourquié, Olivier

    2009-01-01

    The vertebrate spine exhibits two striking characteristics. The first one is the periodic arrangement of its elements-the vertebrae-along the anteroposterior axis. This segmented organization is the result of somitogenesis, which takes place during organogenesis. The segmentation machinery involves a molecular oscillator-the segmentation clock-which delivers a periodic signal controlling somite production. During embryonic axis elongation, this signal is displaced posteriorly by a system of traveling signaling gradients-the wavefront-which depends on the Wnt, FGF, and retinoic acid pathways. The other characteristic feature of the spine is the subdivision of groups of vertebrae into anatomical domains, such as the cervical, thoracic, lumbar, sacral, and caudal regions. This axial regionalization is controlled by a set of transcription factors called Hox genes. Hox genes exhibit nested expression domains in the somites which reflect their linear arrangement along the chromosomes-a property termed colinearity. The colinear disposition of Hox genes expression domains provides a blueprint for the regionalization of the future vertebral territories of the spine. In amniotes, Hox genes are activated in the somite precursors of the epiblast in a temporal colinear sequence and they were proposed to control their progressive ingression into the nascent paraxial mesoderm. Consequently, the positioning of the expression domains of Hox genes along the anteroposterior axis is largely controlled by the timing of Hox activation during gastrulation. Positioning of the somitic Hox domains is subsequently refined through a crosstalk with the segmentation machinery in the presomitic mesoderm. In this review, we focus on our current understanding of the embryonic mechanisms that establish vertebral identities during vertebrate development.

  9. Psychophysiological responses to pain identify reproducible human clusters.

    Science.gov (United States)

    Farmer, Adam D; Coen, Steven J; Kano, Michiko; Paine, Peter A; Shwahdi, Mustafa; Jafari, Jafar; Kishor, Jessin; Worthen, Sian F; Rossiter, Holly E; Kumari, Veena; Williams, Steven C R; Brammer, Michael; Giampietro, Vincent P; Droney, Joanne; Riley, Julia; Furlong, Paul L; Knowles, Charles H; Lightman, Stafford L; Aziz, Qasim

    2013-11-01

    Pain is a ubiquitous yet highly variable experience. The psychophysiological and genetic factors responsible for this variability remain unresolved. We hypothesised the existence of distinct human pain clusters (PCs) composed of distinct psychophysiological and genetic profiles coupled with differences in the perception and the brain processing of pain. We studied 120 healthy subjects in whom the baseline personality and anxiety traits and the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype were measured. Real-time autonomic nervous system parameters and serum cortisol were measured at baseline and after standardised visceral and somatic pain stimuli. Brain processing reactions to visceral pain were studied in 29 subjects using functional magnetic resonance imaging (fMRI). The reproducibility of the psychophysiological responses to pain was assessed at year. In group analysis, visceral and somatic pain caused an expected increase in sympathetic and cortisol responses and activated the pain matrix according to fMRI studies. However, using cluster analysis, we found 2 reproducible PCs: at baseline, PC1 had higher neuroticism/anxiety scores (P ≤ 0.01); greater sympathetic tone (Ppain, less stimulus was tolerated (P ≤ 0.01), and there was an increase in parasympathetic tone (P ≤ 0.05). The 5-HTTLPR short allele was over-represented (P ≤ 0.005). PC2 had the converse profile at baseline and during pain. Brain activity differed (P ≤ 0.001); greater activity occurred in the left frontal cortex in PC1, whereas PC2 showed greater activity in the right medial/frontal cortex and right anterior insula. In health, 2 distinct reproducible PCs exist in humans. In the future, PC characterization may help to identify subjects at risk for developing chronic pain and may reduce variability in brain imaging studies.

  10. Related genetics mechanisms of "Hox" function in mammalian limb and gut development

    OpenAIRE

    Zacchetti, Giovanna

    2008-01-01

    Durant le développement de vertébrés, les gènes "Hox" sont exprimés de manière colinéaire au niveau de l'axe principal du corps et des membres. La coordination, spatiale et temporelle, de l'expression des gènes qui appartiennent aux complexes "HoxA", "HoxB", "HoxC" et "HoxD" contribue à la spécification des régions du corps, suite à l'activité différentielle de facteurs de transcription homeotiques produits par chacun des 39 gènes "Hox". Jusqu'à présent la fonction des gènes "HoxA" et "HoxD" ...

  11. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  12. Topographic patterns of vascular disease: HOX proteins as determining factors?

    Institute of Scientific and Technical Information of China (English)

    Richard; P; Visconti; Alexander; Awgulewitsch

    2015-01-01

    Steadily increasing evidence supports the idea that genetic diversities in the vascular bed are, in addition to hemodynamic influences, a major contributing factor in determining region-specific cardiovascular disease susceptibility. Members of the phylogenetically highly conserved Hox gene family of developmental regulators have to be viewed as prime candidates for determining these regional genetic differences in the vasculature. During embryonic patterning, the regionally distinct and precisely choreographed expression patterns of HOX transcription factors are essential for the correct specification of positional identities. Apparently, these topographic patterns are to some degree retained in certain adult tissues, including the circulatory system. While an understanding of the functional significance of these localized Hox activities in adult blood vessels is only beginning to emerge, an argument can be made for a role of Hox genes in the maintenance of vessel wall homeostasis and functional integrity on the one hand, and in regulating the development and progression of regionally restricted vascular pathologies, on the other. Initial functional studies in animal models, as well as data from clinical studies provide some level of support for this view. The data suggest that putative genetic regulatory networks of Hox-dependent cardiovascular disease processes include genes of diverse functional categories(extracellular matrix remodeling, transmembrane signaling, cell cycle control, inflammatory response, transcriptional control, etc.), as potential targets in both vascular smooth muscle and endothelial cells, as well as cell populations residing in the adventitia.

  13. HoxBlinc RNA recruits Set1/MLL complexes to activate Hox gene expression patterns and mesoderm lineage development

    Science.gov (United States)

    Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Nao; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming

    2015-01-01

    Summary Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulating hoxb gene pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated KD or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb gene expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages. PMID:26725110

  14. HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene Expression Patterns and Mesoderm Lineage Development

    Directory of Open Access Journals (Sweden)

    Changwang Deng

    2016-01-01

    Full Text Available Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2–b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages.

  15. Hox genes: choreographers in neural development, architects of circuit organization.

    Science.gov (United States)

    Philippidou, Polyxeni; Dasen, Jeremy S

    2013-10-02

    The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.

  16. Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus.

    Directory of Open Access Journals (Sweden)

    Betty M Booker

    2016-03-01

    Full Text Available The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing.

  17. Visual field map clusters in human frontoparietal cortex.

    Science.gov (United States)

    Mackey, Wayne E; Winawer, Jonathan; Curtis, Clayton E

    2017-06-19

    The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher-order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field modeling, we map and characterize the topographic organization of several regions in human frontoparietal cortex. We discover representations of both polar angle and eccentricity that are organized into clusters, similar to visual cortex, where multiple gradients of polar angle of the contralateral visual field share a confluent fovea. This is striking because neural activity in frontoparietal cortex is believed to reflect higher-order cognitive functions rather than external sensory processing. Perhaps the spatial topography in frontoparietal cortex parallels the retinotopic organization of sensory cortex to enable an efficient interface between perception and higher-order cognitive processes. Critically, these visual maps constitute well-defined anatomical units that future studies of frontoparietal cortex can reliably target.

  18. Reptin and Pontin function antagonistically with PcG and TrxG complexes to mediate Hox gene control

    Science.gov (United States)

    Diop, Soda Balla; Bertaux, Karine; Vasanthi, Dasari; Sarkeshik, Ali; Goirand, Benjamin; Aragnol, Denise; Tolwinski, Nicholas S; Cole, Michael D; Pradel, Jacques; Yates, John R; Mishra, Rakesh K; Graba, Yacine; Saurin, Andrew J

    2008-01-01

    Pontin (Pont) and Reptin (Rept) are paralogous ATPases that are evolutionarily conserved from yeast to human. They are recruited in multiprotein complexes that function in various aspects of DNA metabolism. They are essential for viability and have antagonistic roles in tissue growth, cell signalling and regulation of the tumour metastasis suppressor gene, KAI1, indicating that the balance of Pont and Rept regulates epigenetic programmes critical for development and cancer progression. Here, we describe Pont and Rept as antagonistic mediators of Drosophila Hox gene transcription, functioning with Polycomb group (PcG) and Trithorax group proteins to maintain correct patterns of expression. We show that Rept is a component of the PRC1 PcG complex, whereas Pont purifies with the Brahma complex. Furthermore, the enzymatic functions of Rept and Pont are indispensable for maintaining Hox gene expression states, highlighting the importance of these two antagonistic factors in transcriptional output. PMID:18259215

  19. Human motion tracking using mean shift clustering and discrete cosine transform

    Science.gov (United States)

    Islam, M. M.; Alam, M. S.

    2007-04-01

    Human motion tracking is an active area of research in computer vision and machine intelligence. It has many applications in video surveillance and human-computer interface. Most of the existing algorithms track multiple humans in a given image. This paper proposes a detection approach which can track a specific person from a crowded environment. Mean shift clustering algorithm is employed in the difference image to get the candidate cluster which is found to converge within few iterations. The number of clusters and the cluster centers are automatically derived by mode seeking with the mean shift procedure. Discrete cosine transform is applied to each cluster and to the known target to extract features of the clusters and the target. To get the target cluster from a given image, Mahalanobis distance is measured between each transformed candidate cluster and the target. The cluster with the minimum distance is taken as the desired target. Tracking is carried out by updating the cluster parameters over time using the mean shift procedure.

  20. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    In vitro studies with human cell lines have demonstrated that the death receptor Fas plays a role in ultraviolet (UV)-induced apoptosis. The purpose of the present study was to investigate the relation between Fas expression and apoptosis as well as clustering of Fas in human epidermis after...... clustering has a functional significance. Our results ar in accordance with previous findings from in vitro studies, and suggest that Fas is activated in vivo in human epidermis after UVB exposure....

  1. A Simple Model of Hox Genes: Bone Morphology Demonstration

    Science.gov (United States)

    Shmaefsky, Brian

    2008-01-01

    Visual demonstrations of abstract scientific concepts are effective strategies for enhancing content retention (Shmaefsky 2004). The concepts associated with gene regulation of growth and development are particularly complex and are well suited for teaching with visual models. This demonstration provides a simple and accurate model of Hox gene…

  2. Anterior Hox Genes in Cardiac Development and Great Artery Patterning

    Directory of Open Access Journals (Sweden)

    Brigitte Laforest

    2014-03-01

    Full Text Available During early development, the heart tube grows by progressive addition of progenitor cells to the arterial and venous poles. These cardiac progenitor cells, originally identified in 2001, are located in the splanchnic mesoderm in a region termed the second heart field (SHF. Since its discovery, our view of heart development has been refined and it is well established that perturbation in the addition of SHF cells results in a spectrum of congenital heart defects. We have previously shown that anterior Hox genes, including Hoxb1, Hoxa1 and Hoxa3, are expressed in distinct subdomains of the SHF that contribute to atrial and subpulmonary myocardium. It is well known that Hox proteins exert their function through interaction with members of the TALE family, including Pbx and Meis factors. The expression profile of Pbx and Meis factors overlaps with that of anterior Hox factors in the embryonic heart, and recent data suggest that they may interact together during cardiac development. This review aims to bring together recent findings in vertebrates that strongly suggest an important function for Hox, Pbx and Meis factors in heart development and disease.

  3. Hox genes and regional patterning of the vertebrate body plan

    NARCIS (Netherlands)

    Mallo, M.; Wellik, D.M.; Deschamps, J.

    2010-01-01

    Several decades have passed since the discovery of Hox genes in the fruit fly Drosophila melanogaster. Their unique ability to regulate morphologies along the anteroposterior (AP) axis (Lewis, 1978) earned them well-deserved attention as important regulators of embryonic development. Phenotypes due

  4. Segmental variations in the patterns of somatic muscles: what roles for Hox?

    Science.gov (United States)

    Enriquez, Jonathan; Vincent, Alain

    2010-01-01

    Textbook drawings of human anatomy illustrate the diversity of body muscles that are essential for coordinated movements. The genetic and molecular bases of this muscle diversity remain, however, largely unknown. The rather simple Drosophila larval musculature--every (hemi)-segment of the Drosophila larva contains about 30 different somatic muscles, each composed of a single multinucleate syncitial fibre--makes it an ideal model to study this process. Each muscle displays its own identity which can be described as its specific position and orientation with respect to the dorso-ventral (D/V) and antero-posterior (A/P) axes, size (number of nuclei), attachment sites to the epidermis and innervations. Muscle specification is a multi-step process. Each muscle is seeded by a founder cell (FC). FCs display the unique property of being able to undergo multiple rounds of fusion with fusion competent myoblasts (FCMs). The current view is that muscle identity reflects the expression by each FC of a specific combination of "identity" transcription factors (iTFs) (reviews by [4, 5]). The transcriptional identity is propagated from the FC to nuclei of FCM recruited by the growing myofibre during the fusion process. FCs are born from the asymmetric division of progenitor cells which are themselves selected by Notch (N)-mediated lateral inhibition from promuscular clusters (equivalence groups of cells) specified at fixed positions within the somatic mesoderm; see Fig.2). The abdominal (A) A2 to A7 segments of the Drosophila embryo present the same muscle pattern, the thoracic (T) T2-T3 and A1 segments show variations of this pattern and the first thoracic segment (T1) and the eighth abdominal segment (A8) present fewer and more diversified muscles. While it is has long been shown that this diversification of the muscle pattern is determined by the autonomous function of homeotic genes in the mesoderm, the step at which segment-specific information carried by Hox proteins is

  5. Role of Hox genes in stem cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Anne Seifert; David F Werheid; Silvana M Knapp; Edda Tobiasch

    2015-01-01

    Hox genes are an evolutionary highly conserved genefamily. They determine the anterior-posterior body axisin bilateral organisms and influence the developmentalfate of cells. Embryonic stem cells are usually devoidof any Hox gene expression, but these transcriptionfactors are activated in varying spatial and temporalpatterns defining the development of various bodyregions. In the adult body, Hox genes are among othersresponsible for driving the differentiation of tissuestem cells towards their respective lineages in order torepair and maintain the correct function of tissues andorgans. Due to their involvement in the embryonic andadult body, they have been suggested to be useable forimproving stem cell differentiations in vitro and in vivo .In many studies Hox genes have been found as drivingfactors in stem cell differentiation towards adipogenesis,in lineages involved in bone and joint formation, mainlychondrogenesis and osteogenesis, in cardiovascularlineages including endothelial and smooth muscle celldifferentiations, and in neurogenesis. As life expectancyis rising, the demand for tissue reconstruction continuesto increase. Stem cells have become an increasinglypopular choice for creating therapies in regenerativemedicine due to their self-renewal and differentiationpotential. Especially mesenchymal stem cells are usedmore and more frequently due to their easy handlingand accessibility, combined with a low tumorgenicityand little ethical concerns. This review therefore intendsto summarize to date known correlations betweennatural Hox gene expression patterns in body tissuesand during the differentiation of various stem cellstowards their respective lineages with a major focus onmesenchymal stem cell differentiations. This overviewshall help to understand the complex interactions of Hoxgenes and differentiation processes all over the bodyas well as in vitro for further improvement of stem celltreatments in future regenerative medicine approaches.

  6. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins.

    Science.gov (United States)

    Merabet, Samir; Mann, Richard S

    2016-06-01

    Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.

  7. HoxA Genes and the Fin-to-Limb Transition in Vertebrates

    Directory of Open Access Journals (Sweden)

    João Leite-Castro

    2016-02-01

    Full Text Available HoxA genes encode for important DNA-binding transcription factors that act during limb development, regulating primarily gene expression and, consequently, morphogenesis and skeletal differentiation. Within these genes, HoxA11 and HoxA13 were proposed to have played an essential role in the enigmatic evolutionary transition from fish fins to tetrapod limbs. Indeed, comparative gene expression analyses led to the suggestion that changes in their regulation might have been essential for the diversification of vertebrates’ appendages. In this review, we highlight three potential modifications in the regulation and function of these genes that may have boosted appendage evolution: (1 the expansion of polyalanine repeats in the HoxA11 and HoxA13 proteins; (2 the origin of +a novel long-non-coding RNA with a possible inhibitory function on HoxA11; and (3 the acquisition of cis-regulatory elements modulating 5’ HoxA transcription. We discuss the relevance of these mechanisms for appendage diversification reviewing the current state of the art and performing additional comparative analyses to characterize, in a phylogenetic framework, HoxA11 and HoxA13 expression, alanine composition within the encoded proteins, long-non-coding RNAs and cis-regulatory elements.

  8. The role of Hox genes during vertebrate limb development.

    Science.gov (United States)

    Zakany, Jozsef; Duboule, Denis

    2007-08-01

    The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed.

  9. TALE factors poise promoters for activation by Hox proteins.

    Science.gov (United States)

    Choe, Seong-Kyu; Ladam, Franck; Sagerström, Charles G

    2014-01-27

    Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.

  10. Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables-sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample-on the "clusteredness" of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.

  11. Clines, clusters, and the effect of study design on the inference of human population structure.

    Science.gov (United States)

    Rosenberg, Noah A; Mahajan, Saurabh; Ramachandran, Sohini; Zhao, Chengfeng; Pritchard, Jonathan K; Feldman, Marcus W

    2005-12-01

    Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables--sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample--on the "clusteredness" of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.

  12. Clines, clusters, and the effect of study design on the inference of human population structure.

    Directory of Open Access Journals (Sweden)

    Noah A Rosenberg

    2005-12-01

    Full Text Available Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables--sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample--on the "clusteredness" of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.

  13. Bayesian History Reconstruction of Complex Human Gene Clusters on a Phylogeny

    CERN Document Server

    Vinař, Tomáš; Song, Giltae; Siepel, Adam

    2009-01-01

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. Improved understanding of these clusters is of utmost importance, since they have been shown to be the source of evolutionary innovation, and have been linked to multiple diseases, including HIV and a variety of cancers. Previously, Zhang et al. (2008) developed an algorithm for reconstructing parsimonious evolutionary histories of such gene clusters, using only human genomic sequence data. In this paper, we propose a probabilistic model for the evolution of gene clusters on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate that our method will be useful in analyzing these valuable new data sets.

  14. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone.

    Science.gov (United States)

    van de Ven, Cesca; Bialecka, Monika; Neijts, Roel; Young, Teddy; Rowland, Jennifer E; Stringer, Emma J; Van Rooijen, Carina; Meijlink, Frits; Nóvoa, Ana; Freund, Jean-Noel; Mallo, Moises; Beck, Felix; Deschamps, Jacqueline

    2011-08-01

    Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.

  15. Human population structure detection via multilocus genotype clustering

    Directory of Open Access Journals (Sweden)

    Starmer Joshua

    2007-06-01

    Full Text Available Abstract Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.

  16. Morphology cluster and prediction of growth of human brain pyramidal neurons

    Institute of Scientific and Technical Information of China (English)

    Chao Yu; Zengxin Han; Wencong Zeng; Shenquan Liu

    2012-01-01

    Predicting neuron growth is valuable to understand the morphology of neurons, thus it is helpful in the research of neuron classification. This study sought to propose a new method of predicting the growth of human neurons using 1 907 sets of data in human brain pyramidal neurons obtained from the website of NeuroMorpho.Org. First, we analyzed neurons in a morphology field and used an expectation-maximization algorithm to specify the neurons into six clusters. Second, naive Bayes classifier was used to verify the accuracy of the expectation-maximization algorithm. Experiment results proved that the cluster groups here were efficient and feasible. Finally, a new method to rank the six expectation-maximization algorithm clustered classes was used in predicting the growth of human pyramidal neurons.

  17. Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos

    NARCIS (Netherlands)

    Young, Teddy; Rowland, Jennifer Elizabeth; van de Ven, Cesca; Bialecka, Monika; Novoa, Ana; Carapuco, Marta; van Nes, Johan; de Graaff, Wim; Duluc, Isabelle; Freund, Jean-Noel; Beck, Felix; Mallo, Moises; Deschamps, Jacqueline

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant

  18. Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos

    NARCIS (Netherlands)

    Young, Teddy; Rowland, Jennifer Elizabeth; van de Ven, Cesca; Bialecka, Monika; Novoa, Ana; Carapuco, Marta; van Nes, Johan; de Graaff, Wim; Duluc, Isabelle; Freund, Jean-Noel; Beck, Felix; Mallo, Moises; Deschamps, Jacqueline

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenoty

  19. Toward a new twist in Hox and TALE DNA-binding specificity.

    Science.gov (United States)

    Merabet, Samir; Lohmann, Ingrid

    2015-02-09

    Hox proteins gain specificity by interacting with TALE-class cofactors. In a recent issue of Cell and in this issue of Developmental Cell, Crocker et al. (2015) and Amin et al. (2015), respectively, demonstrate that non-canonical Hox/TALE binding sequences play a major role in the regionalized regulation of target gene expression in vivo.

  20. Evidence of duplicated Hox genes in the most recent common ancestor of extant scorpions.

    Science.gov (United States)

    Sharma, Prashant P; Santiago, Marc A; González-Santillán, Edmundo; Monod, Lionel; Wheeler, Ward C

    2015-01-01

    Scorpions (order Scorpiones) are unusual among arthropods, both for the extreme heteronomy of their bauplan and for the high gene family turnover exhibited in their genomes. These phenomena appear to be correlated, as two scorpion species have been shown to possess nearly twice the number of Hox genes present in most arthropods. Segmentally offset anterior expression boundaries of a subset of Hox paralogs have been shown to correspond to transitions in segmental identities in the scorpion posterior tagmata, suggesting that posterior heteronomy in scorpions may have been achieved by neofunctionalization of Hox paralogs. However, both the first scorpion genome sequenced and the developmental genetic data are based on exemplars of Buthidae, one of 19 families of scorpions. It is therefore not known whether Hox paralogy is limited to Buthidae or widespread among scorpions. We surveyed 24 high throughput transcriptomes and the single whole genome available for scorpions, in order to test the prediction that Hox gene duplications are common to the order. We used gene tree parsimony to infer whether the paralogy was consistent with a duplication event in the scorpion common ancestor. Here we show that duplicated Hox genes in non-buthid scorpions occur in six of the ten Hox classes. Gene tree topologies and parsimony-based reconciliation of the gene trees are consistent with a duplication event in the most recent common ancestor of scorpions. These results suggest that a Hox paralogy, and by extension the model of posterior patterning established in a buthid, can be extended to non-Buthidae scorpions.

  1. Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    Science.gov (United States)

    Fox, Nicholas G.; Das, Deepika; Chakrabarti, Mrinmoy; Lindahl, Paul A.; Barondeau, David P.

    2015-01-01

    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. In vitro assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) Biochemistry 54, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex. PMID:26016518

  2. Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters

    Science.gov (United States)

    Lopez, Ana D.; Kayali, Ayse G.; Hayek, Alberto; King, Charles C.

    2014-01-01

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells. PMID:24895054

  3. Isolation, culture, and imaging of human fetal pancreatic cell clusters.

    Science.gov (United States)

    Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C

    2014-05-18

    For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.

  4. Glimpse into Hox and tale regulation of cell differentiation and reprogramming.

    Science.gov (United States)

    Cerdá-Esteban, Nuria; Spagnoli, Francesca M

    2014-01-01

    During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming.

  5. [Recent advances of studies on abnormal HOX gene in myelodysplastic syndromes and its molecular mechanisms].

    Science.gov (United States)

    Xie, Xin-Yan; Shao, Zong-Hong

    2015-02-01

    HOX gene encodes a group of homeodomain transcription factors which are highly conserved. The caudal-type homeobox (CDX) , ten-eleven translocation (TET) genes and polycomb group (PcG) , trithorax group (TrxG) proteins act as upstream regulators of HOX genes that manipulate the targeted gene expression through genetic and epigenetic mechanisms. The abnormal expression of HOX genes and their fusions contribute to myelodysplastic syndromes (MDS) pathogenesis. Aberrant DNA methylation and NUP98-HOX translocation serve as molecular mediators of dysfunction in MDS which can be used for the evaluation of biology and therapy. This article provides an overview of recent advances of studies on HOX gene and its abnormal molecular mechanisms, as well as potential correlation with MDS.

  6. Reduction of unusual iron-sulfur clusters in the H2-sensing regulatory Ni-Fe hydrogenase from Ralstonia eutropha H16.

    Science.gov (United States)

    Buhrke, Thorsten; Löscher, Simone; Lenz, Oliver; Schlodder, Eberhard; Zebger, Ingo; Andersen, Lars K; Hildebrandt, Peter; Meyer-Klaucke, Wolfram; Dau, Holger; Friedrich, Bärbel; Haumann, Michael

    2005-05-20

    The regulatory Ni-Fe hydrogenase (RH) from Ralstonia eutropha functions as a hydrogen sensor. The RH consists of the large subunit HoxC housing the Ni-Fe active site and the small subunit HoxB containing Fe-S clusters. The heterolytic cleavage of H(2) at the Ni-Fe active site leads to the EPR-detectable Ni-C state of the protein. For the first time, the simultaneous but EPR-invisible reduction of Fe-S clusters during Ni-C state formation was demonstrated by changes in the UV-visible absorption spectrum as well as by shifts of the iron K-edge from x-ray absorption spectroscopy in the wild-type double dimeric RH(WT) [HoxBC](2) and in a monodimeric derivative designated RH(stop) lacking the C-terminal 55 amino acids of HoxB. According to the analysis of iron EXAFS spectra, the Fe-S clusters of HoxB pronouncedly differ from the three Fe-S clusters in the small subunits of crystallized standard Ni-Fe hydrogenases. Each HoxBC unit of RH(WT) seems to harbor two [2Fe-2S] clusters in addition to a 4Fe species, which may be a [4Fe-3S-3O] cluster. The additional 4Fe-cluster was absent in RH(stop). Reduction of Fe-S clusters in the hydrogen sensor RH may be a first step in the signal transduction chain, which involves complex formation between [HoxBC](2) and tetrameric HoxJ protein, leading to the expression of the energy converting Ni-Fe hydrogenases in R. eutropha.

  7. Analysis of the DNA-Binding Profile and Function of TALE Homeoproteins Reveals Their Specialization and Specific Interactions with Hox Genes/Proteins

    Directory of Open Access Journals (Sweden)

    Dmitry Penkov

    2013-04-01

    Full Text Available The interactions of Meis, Prep, and Pbx1 TALE homeoproteins with Hox proteins are essential for development and disease. Although Meis and Prep behave similarly in vitro, their in vivo activities remain largely unexplored. We show that Prep and Meis interact with largely independent sets of genomic sites and select different DNA-binding sequences, Prep associating mostly with promoters and housekeeping genes and Meis with promoter-remote regions and developmental genes. Hox target sequences associate strongly with Meis but not with Prep binding sites, while Pbx1 cooperates with both Prep and Meis. Accordingly, Meis1 shows strong genetic interaction with Pbx1 but not with Prep1. Meis1 and Prep1 nonetheless coregulate a subset of genes, predominantly through opposing effects. Notably, the TALE homeoprotein binding profile subdivides Hox clusters into two domains differentially regulated by Meis1 and Prep1. During evolution, Meis and Prep thus specialized their interactions but maintained significant regulatory coordination.

  8. The Histone Methyltransferase Gene Absent, Small, or Homeotic Discs-1 Like Is Required for Normal Hox Gene Expression and Fertility in Mice1

    Science.gov (United States)

    Brinkmeier, Michelle L.; Geister, Krista A.; Jones, Morgan; Waqas, Meriam; Maillard, Ivan; Camper, Sally A.

    2015-01-01

    Chromatin remodeling influences gene expression in developing and adult organisms. Active and repressive marks of histone methylation dictate the embryonic expression boundaries of developmentally regulated genes, including the Hox gene cluster. Drosophila ash1 (absent, small or homeotic discs 1) gene encodes a histone methyltransferase essential for regulation of Hox gene expression that interacts genetically with other members of the trithorax group (TrxG). While mammalian members of the mixed lineage leukemia (Mll) family of TrxG genes have roles in regulation of Hox gene expression, little is known about the expression and function of the mammalian ortholog of the Drosophila ash1 gene, Ash1-like (Ash1l). Here we report the expression of mouse Ash1l gene in specific structures within various organs and provide evidence that reduced Ash1l expression has tissue-specific effects on mammalian development and adult homeostasis. Mutants exhibit partially penetrant postnatal lethality and failure to thrive. Surviving mutants have growth insufficiency, skeletal transformations, and infertility associated with developmental defects in both male and female reproductive organs. Specifically, expression of Hoxa11 and Hoxd10 are altered in the epididymis of Ash1l mutant males and Hoxa10 is reduced in the uterus of Ash1l mutant females. In summary, we show that the histone methyltransferase Ash1l is important for the development and function of several tissues and for proper expression of homeotic genes in mammals. PMID:26333994

  9. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters.

    Science.gov (United States)

    Van Hoof, Dennis; Mendelsohn, Adam D; Seerke, Rina; Desai, Tejal A; German, Michael S

    2011-05-01

    Pancreatic β-cells function optimally when clustered in islet-like structures. However, nutrient and oxygen deprivation limits the viability of cells at the core of excessively large clusters. Hence, production of functional β-cells from human embryonic stem cells (hESCs) for patients with diabetes would benefit from the growth and differentiation of these cells in size-controlled aggregates. In this study, we controlled cluster size by seeding hESCs onto glass cover slips patterned by the covalent microcontact-printing of laminin in circular patches of 120 μm in diameter. These were used as substrates to grow and differentiate hESCs first into SOX17-positive/SOX7-negative definitive endoderm, after which many clusters released and formed uniformly sized three-dimensional clusters. Both released clusters and those that remained attached differentiated into HNF1β-positive primitive gut tube-like cells with high efficiency. Further differentiation yielded pancreatic endoderm-like cells that co-expressed PDX1 and NKX6.1. Controlling aggregate size allows efficient production of uniformly-clustered pancreatic endocrine precursors for in vivo engraftment or further in vitro maturation.

  10. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    Science.gov (United States)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the

  11. A THREE-STEP SPATIAL-TEMPORAL-SEMANTIC CLUSTERING METHOD FOR HUMAN ACTIVITY PATTERN ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Huang

    2016-06-01

    Full Text Available How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time to four dimensions (space, time and semantics. More specifically, not only a location and time that people stay and spend are collected, but also what people “say” for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The

  12. Functional Investigation of a Cotton Fiber HOX Gene

    Institute of Scientific and Technical Information of China (English)

    GUAN Xue-ying; SHANGGUAN Xiao-xia; WANG Shui; WANG Ling-jian; CHEN Xiao-ya

    2008-01-01

    @@ Most of the plant homeodomain-containing proteins play important roles in regulating cell differentiation and organ development,and Arabidopsis GLABRA2 (GL2),a member of the class IV homeodomain-Leucine zipper (HD-ZIP) proteins,is a trichome and non-root hair cell regulator.We have analyzed several cotton homeodomain-containing proteins that belong to the class IV HD-ZIP family.One of them,GaHOX1,shows a high sequence identity to Arabidopsis GL2 (95% in the homeodomain and 64% overall).

  13. Social and Spatial Clustering of People at Humanity's Largest Gathering

    CERN Document Server

    Barnett, Ian; Onnela, Jukka-Pekka

    2016-01-01

    Macroscopic behavior of scientific and societal systems results from the aggregation of microscopic behaviors of their constituent elements, but connecting the macroscopic with the microscopic in human behavior has traditionally been difficult. Manifestations of homophily, the notion that individuals tend to interact with others who resemble them, have been observed in many small and intermediate size settings. However, whether this behavior translates to truly macroscopic levels, and what its consequences may be, remains unknown. Here, we use call detail records (CDRs) to examine the population dynamics and manifestations of social and spatial homophily at a macroscopic level among the residents of 23 states of India at the Kumbh Mela, a 3-month-long Hindu festival. We estimate that the festival was attended by 61 million people, making it the largest gathering in the history of humanity. While we find strong overall evidence for both types of homophily for residents of different states, participants from lo...

  14. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease

    Directory of Open Access Journals (Sweden)

    Tracey A. Rouault

    2012-03-01

    Full Text Available Iron-sulfur (Fe-S clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA, ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease.

  15. Applying of hierarchical clustering to analysis of protein patterns in the human cancer-associated liver.

    Directory of Open Access Journals (Sweden)

    Natalia A Petushkova

    Full Text Available There are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the training dataset is not available the task can be to mine for presence of meaningful groups (clusters of samples and to explore underlying data structure (unsupervised learning.We investigated the proteomic profiles of the cytosolic fraction of human liver samples using two-dimensional electrophoresis (2DE. Samples were resected upon surgical treatment of hepatic metastases in colorectal cancer. Unsupervised hierarchical clustering of 2DE gel images (n = 18 revealed a pair of clusters, containing 11 and 7 samples. Previously we used the same specimens to measure biochemical profiles based on cytochrome P450-dependent enzymatic activities and also found that samples were clearly divided into two well-separated groups by cluster analysis. It turned out that groups by enzyme activity almost perfectly match to the groups identified from proteomic data. Of the 271 reproducible spots on our 2DE gels, we selected 15 to distinguish the human liver cytosolic clusters. Using MALDI-TOF peptide mass fingerprinting, we identified 12 proteins for the selected spots, including known cancer-associated species.Our results highlight the importance of hierarchical cluster analysis of proteomic data, and showed concordance between results of biochemical and proteomic approaches. Grouping of the human liver samples and/or patients into differing clusters may provide insights into possible molecular mechanism of drug metabolism and creates a rationale for personalized treatment.

  16. Cluster of infections caused by methicillin-resistant Staphylococcus pseudintermedius in humans in a tertiary hospital.

    Science.gov (United States)

    Starlander, Gustaf; Börjesson, Stefan; Grönlund-Andersson, Ulrika; Tellgren-Roth, Christian; Melhus, Asa

    2014-08-01

    The dog-associated Staphylococcus pseudintermedius is a rare pathogen in humans. Here we describe a cluster of infections caused by the methicillin-resistant S. pseudintermedius clone ST71-J-t02-II-III. It involved four elderly patients at a tertiary hospital. Three patients had wound infections, and the strain had a tendency to cause bullous skin lesions.

  17. HOx Radical Behavior in Urban, Biogenic and Mixed Environments

    Science.gov (United States)

    Cantrell, C. A.; Mauldin, L.; Schardt, N.; Mukherjee, A. D.

    2014-12-01

    The importance of HOx radicals in tropospheric chemistry is well-recognized. These roles include control of the lifetimes of a wide variety of trace gases, and control of photochemical ozone formation. The continued advance in understanding comes from laboratory investigations and field observations especially as part of comprehensive measurement campaigns. We participated in two recent observational campaigns aboard the NSF/NCAR C-130 aircraft platform: NOMADSS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks) and FRAPPE (Front Range Atmospheric Pollution and Photochemistry Experiment). During these studies, a wide varieties of air masses were sampled ranging from fresh urban to rural both without and without biogenic influence to marine, and including the impacts of emissions from oil and gas extraction and animal production. Among the wide variety of parameters and species related to tropospheric chemistry that were measured, our group made observations of HOx and related species: OH, HO2, HO2+RO2, H2SO4, and stabilized Criegee intermediates (sCIs) using selected ion chemical ionization mass spectrometry. The paper discusses the functional dependence of these species on other measures of the chemical environment (e.g. NO, VOCs, j-values) as well as comparison of model estimates with the observations.

  18. Molecular insights into the origin of the Hox-TALE patterning system.

    Science.gov (United States)

    Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir

    2014-03-18

    Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox-TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001.

  19. The evolution of HoxD-11 expression in the bird wing: insights from Alligator mississippiensis.

    Directory of Open Access Journals (Sweden)

    Alexander O Vargas

    Full Text Available BACKGROUND: Comparative morphology identifies the digits of the wing of birds as 1,2 and 3, but they develop at embryological positions that become digits 2, 3 and 4 in other amniotes. A hypothesis to explain this is that a homeotic frame shift of digital identity occurred in the evolution of the bird wing, such that digits 1,2 and 3 are developing from embryological positions 2, 3 and 4. Digit 1 of the mouse is the only digit that shows no late expression of HoxD-11. This is also true for the anterior digit of the bird wing, suggesting this digit is actually a digit 1. If this is the case, we can expect closer relatives of birds to show no HoxD-11 expression only in digit 1. To test this prediction we investigate HoxD-11 expression in crocodilians, the closest living relatives of birds. METHODOLOGY/PRINCIPAL FINDINGS: Using degenerate primers we cloned a 606 nucleotide fragment of exon 1 of the alligator HoxD-11 gene and used it for whole-mount in-situ detection in alligator embryos. We found that in the pentadactyl forelimbs of alligator, as in the mouse, late expression of HoxD-11 is absent only in digit 1. CONCLUSIONS/SIGNIFICANCE: The ancestral condition for amniotes is that late-phase HoxD-11 expression is absent only in digit 1. The biphalangeal morphology and lack of HoxD-11 expression of the anterior digit of the wing is like digit 1 of alligator and mouse, but its embryological position as digit 2 is derived. HoxD-11 expression in alligator is consistent with the hypothesis that both digit morphology as well as HoxD-11 expression are shifted towards posterior in the bird wing.

  20. The Evolution of HoxD-11 Expression in the Bird Wing: Insights from Alligator mississippiensis

    Science.gov (United States)

    Vargas, Alexander O.; Kohlsdorf, Tiana; Fallon, John F.; VandenBrooks, John; Wagner, Günter P.

    2008-01-01

    Background Comparative morphology identifies the digits of the wing of birds as 1,2 and 3, but they develop at embryological positions that become digits 2, 3 and 4 in other amniotes. A hypothesis to explain this is that a homeotic frame shift of digital identity occurred in the evolution of the bird wing, such that digits 1,2 and 3 are developing from embryological positions 2, 3 and 4. Digit 1 of the mouse is the only digit that shows no late expression of HoxD-11. This is also true for the anterior digit of the bird wing, suggesting this digit is actually a digit 1. If this is the case, we can expect closer relatives of birds to show no HoxD-11 expression only in digit 1. To test this prediction we investigate HoxD-11 expression in crocodilians, the closest living relatives of birds. Methodology/Principal Findings Using degenerate primers we cloned a 606 nucleotide fragment of exon 1 of the alligator HoxD-11 gene and used it for whole-mount in-situ detection in alligator embryos. We found that in the pentadactyl forelimbs of alligator, as in the mouse, late expression of HoxD-11 is absent only in digit 1. Conclusions/Significance The ancestral condition for amniotes is that late-phase HoxD-11 expression is absent only in digit 1. The biphalangeal morphology and lack of HoxD-11 expression of the anterior digit of the wing is like digit 1 of alligator and mouse, but its embryological position as digit 2 is derived. HoxD-11 expression in alligator is consistent with the hypothesis that both digit morphology as well as HoxD-11 expression are shifted towards posterior in the bird wing. PMID:18833328

  1. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system.

    Science.gov (United States)

    Hutlet, Bertrand; Theys, Nicolas; Coste, Cécile; Ahn, Marie-Thérèse; Doshishti-Agolli, Konstantin; Lizen, Benoît; Gofflot, Françoise

    2016-04-01

    Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.

  2. Spatio-temporal clusters of incident human brucellosis cases in Ecuador.

    Science.gov (United States)

    Ron, Lenin; Benitez, Washington; Speybroeck, Niko; Ron, Jorge; Saegerman, Claude; Berkvens, Dirk; Abatih, Emmanuel

    2013-06-01

    This study aimed to determine whether variations in the incidence of reported cases of human brucellosis in Ecuador were clustered in space and time. In addition, the effects of cattle and small ruminant population density and other socio-economic factors on the incidence were investigated. Significant space-time clusters were found in the northern and southern highlands and parts of Ecuadorian Amazonia. Customs of people, cattle, goat and sheep population density appeared to influence the incidence of brucellosis. In this study, the incidence of reported cases of human brucellosis was found to be higher in the highlands (sierra) and in municipalities near Peru and Colombia. The results of this study highlight the need for prevention and control measures aimed at abating the incidence of brucellosis among livestock and humans.

  3. Altered transmission of HOX and apoptotic SNPs identify a potential common pathway for clubfoot.

    Science.gov (United States)

    Ester, Audrey R; Weymouth, Katelyn S; Burt, Amber; Wise, Carol A; Scott, Allison; Gurnett, Christina A; Dobbs, Matthew B; Blanton, Susan H; Hecht, Jacqueline T

    2009-12-01

    Clubfoot is a common birth defect that affects 135,000 newborns each year worldwide. It is characterized by equinus deformity of one or both feet and hypoplastic calf muscles. Despite numerous study approaches, the cause(s) remains poorly understood although a multifactorial etiology is generally accepted. We considered the HOXA and HOXD gene clusters and insulin-like growth factor binding protein 3 (IGFBP3) as candidate genes because of their important roles in limb and muscle morphogenesis. Twenty SNPs from the HOXA and HOXD gene clusters and 12 SNPs in IGFBP3 were genotyped in a sample composed of non-Hispanic white and Hispanic multiplex and simplex families (discovery samples) and a second sample of non-Hispanic white simplex trios (validation sample). Four SNPs (rs6668, rs2428431, rs3801776, and rs3779456) in the HOXA cluster demonstrated altered transmission in the discovery sample, but only rs3801776, located in the HOXA basal promoter region, showed altered transmission in both the discovery and validation samples (P = 0.004 and 0.028). Interestingly, HOXA9 is expressed in muscle during development. An SNP in IGFBP3, rs13223993, also showed altered transmission (P = 0.003) in the discovery sample. Gene-gene interactions were identified between variants in HOXA, HOXD, and IGFBP3 and with previously associated SNPs in mitochondrial-mediated apoptotic genes. The most significant interactions were found between CASP3 SNPS and variants in HOXA, HOXD, and IGFBP3. These results suggest a biologic model for clubfoot in which perturbation of HOX and apoptotic genes together affect muscle and limb development, which may cause the downstream failure of limb rotation into a plantar grade position.

  4. Clustering of the human skeletal muscle fibers using linear programming and angular Hilbertian metrics.

    Science.gov (United States)

    Neji, Radhouène; Besbes, Ahmed; Komodakis, Nikos; Deux, Jean-François; Maatouk, Mezri; Rahmouni, Alain; Bassez, Guillaume; Fleury, Gilles; Paragios, Nikos

    2009-01-01

    In this paper, we present a manifold clustering method fo the classification of fibers obtained from diffusion tensor images (DTI) of the human skeletal muscle. Using a linear programming formulation of prototype-based clustering, we propose a novel fiber classification algorithm over manifolds that circumvents the necessity to embed the data in low dimensional spaces and determines automatically the number of clusters. Furthermore, we propose the use of angular Hilbertian metrics between multivariate normal distributions to define a family of distances between tensors that we generalize to fibers. These metrics are used to approximate the geodesic distances over the fiber manifold. We also discuss the case where only geodesic distances to a reduced set of landmark fibers are available. The experimental validation of the method is done using a manually annotated significant dataset of DTI of the calf muscle for healthy and diseased subjects.

  5. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions.

    Science.gov (United States)

    Di, Zhiyong; Yu, Yao; Wu, Yingliang; Hao, Pei; He, Yawen; Zhao, Huabin; Li, Yixue; Zhao, Guoping; Li, Xuan; Li, Wenxin; Cao, Zhijian

    2015-06-01

    Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.

  6. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    King, Paul W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ratzloff, Michael W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mulder, David W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lubner, Carolyn E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brown, Katherine A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilker, Molly B. [University of Colorado; Hamby, Hayden [University of Colorado; Dukovic, Gordana [University of Colorado

    2017-08-29

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe->CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The Hox->HredH+ reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol-1 and a ~2.5-fold kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the Hox->HredH+ step of catalytic proton reduction in CaI proceeds by a proton-dependent process.

  7. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry.

    Science.gov (United States)

    Bridwell-Rabb, Jennifer; Fox, Nicholas G; Tsai, Chi-Lin; Winn, Andrew M; Barondeau, David P

    2014-08-05

    Iron-sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe-S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe-S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe-S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich's ataxia. Previous in vitro results revealed a role for human FXN in activating the cysteine desulfurase and Fe-S cluster biosynthesis activities of the Fe-S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe-S clusters. Additional mutagenesis, enzyme kinetic, UV-visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe-S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe-S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe-S cluster biosynthesis.

  8. Hox Proteins Display a Common and Ancestral Ability to Diversify Their Interaction Mode with the PBC Class Cofactors

    Science.gov (United States)

    Hudry, Bruno; Remacle, Sophie; Delfini, Marie-Claire; Rezsohazy, René; Graba, Yacine; Merabet, Samir

    2012-01-01

    Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX). This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC) assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes. PMID:22745600

  9. Hox proteins display a common and ancestral ability to diversify their interaction mode with the PBC class cofactors.

    Directory of Open Access Journals (Sweden)

    Bruno Hudry

    Full Text Available Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX. This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes.

  10. TRA-1/GLI controls the expression of the Hox gene lin-39 during C. elegans vulval development.

    Science.gov (United States)

    Szabó, Emese; Hargitai, Balázs; Regos, Agnes; Tihanyi, Borbála; Barna, János; Borsos, Eva; Takács-Vellai, Krisztina; Vellai, Tibor

    2009-06-15

    The vulva of the Caenorhabditis elegans hermaphrodite develops from a subset of six vulval precursor cells (VPCs) by the combined effect of the Ras, Wingless and Notch signaling cascades, and of three redundant synMuv (synthetic Multivulva) pathways grouped into classes A, B and C. Here we show that signaling via the GLI- (Glioma-associated protein) like transcription factor TRA-1, which is the terminal regulator of the C. elegans sex determination cascade, is a newly discovered pathway specifying vulval cell fates. We found that TRA-1 accumulates in, and regulates the fusion process of, cells (including the VPCs and hypodermal cells) involved in vulval patterning. TRA-1 also influenced the expression of the Hox gene lin-39, a central regulator of vulval development. Furthermore, inactivation of tra-1, which transforms animals with hermaphrodite-specific karyotype into males, promoted vulval induction in synMuv A, but not in synMuv B, mutant background. This implies that TRA-1 interacts with the class B synMuv genes, many of which are involved in chromatin-mediated transcriptional repression of cell proliferation. These results may help to understand how compromised GLI activity in humans leads to cancer. Together, we suggest that the GLI protein family involved in several key developmental processes in both invertebrates and vertebrates regulates somatic cell fates through influencing, at least in part, the expression of specific Hox genes.

  11. CONVERSION RATES OF SURFACE HOx RADICALS IN BEIJING CITY

    Institute of Scientific and Technical Information of China (English)

    REN Xin-rong; WANG Li-xin; WANG Hui-xiang; MIAO Guo-fang

    2004-01-01

    Surface OH radical concentration in Beijing City was measured by impregnated filter trapping technique-high performance liquid chromatography (IFT-HPLC). The observed concentration of OH radical showed obvious diurnal and seasonal variations, with maximum readings at noon or afternoon, ~80×106OH/cm3 in summer and ~20×106-40×106OH/cm3 in fall. On the basis of measured data, the reaction rates related to the photochemical process of Hox (OH+HO2) were derived and characteristics of atmospheric chemical processes in the city were analyzed. The results showed that conversion rates of atmospheric OH and HO2 in the summer of Beijing City were air of the city mainly originated from the photolysis of the gaseous HNO2, and the main sink of OH were the photochemical reactions with VOCs, NO2, HCHO and CO. It was different from the clean area.

  12. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.

    Science.gov (United States)

    Head, Jason J; Polly, P David

    2015-04-02

    Hox genes regulate regionalization of the axial skeleton in vertebrates, and changes in their expression have been proposed to be a fundamental mechanism driving the evolution of new body forms. The origin of the snake-like body form, with its deregionalized pre-cloacal axial skeleton, has been explained as either homogenization of Hox gene expression domains, or retention of standard vertebrate Hox domains with alteration of downstream expression that suppresses development of distinct regions. Both models assume a highly regionalized ancestor, but the extent of deregionalization of the primaxial domain (vertebrae, dorsal ribs) of the skeleton in snake-like body forms has never been analysed. Here we combine geometric morphometrics and maximum-likelihood analysis to show that the pre-cloacal primaxial domain of elongate, limb-reduced lizards and snakes is not deregionalized compared with limbed taxa, and that the phylogenetic structure of primaxial morphology in reptiles does not support a loss of regionalization in the evolution of snakes. We demonstrate that morphometric regional boundaries correspond to mapped gene expression domains in snakes, suggesting that their primaxial domain is patterned by a normally functional Hox code. Comparison of primaxial osteology in fossil and modern amniotes with Hox gene distributions within Amniota indicates that a functional, sequentially expressed Hox code patterned a subtle morphological gradient along the anterior-posterior axis in stem members of amniote clades and extant lizards, including snakes. The highly regionalized skeletons of extant archosaurs and mammals result from independent evolution in the Hox code and do not represent ancestral conditions for clades with snake-like body forms. The developmental origin of snakes is best explained by decoupling of the primaxial and abaxial domains and by increases in somite number, not by changes in the function of primaxial Hox genes.

  13. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates.

    Science.gov (United States)

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2014-10-23

    A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.

  14. Clustering self-organizing maps (SOM) method for human papillomavirus (HPV) DNA as the main cause of cervical cancer disease

    Science.gov (United States)

    Bustamam, A.; Aldila, D.; Fatimah, Arimbi, M. D.

    2017-07-01

    One of the most widely used clustering method, since it has advantage on its robustness, is Self-Organizing Maps (SOM) method. This paper discusses the application of SOM method on Human Papillomavirus (HPV) DNA which is the main cause of cervical cancer disease, the most dangerous cancer in developing countries. We use 18 types of HPV DNA-based on the newest complete genome. By using open-source-based program R, clustering process can separate 18 types of HPV into two different clusters. There are two types of HPV in the first cluster while 16 others in the second cluster. The analyzing result of 18 types HPV based on the malignancy of the virus (the difficultness to cure). Two of HPV types the first cluster can be classified as tame HPV, while 16 others in the second cluster are classified as vicious HPV.

  15. Retrieval and Clustering from a 3D Human Database based on Body and Head Shape

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper, we describe a framework for similarity based retrieval and clustering from a 3D human database. Our technique is based on both body and head shape representation and the retrieval is based on similarity of both of them. The 3D human database used in our study is the CAESAR anthropometric database which contains approximately 5000 bodies. We have developed a web-based interface for specifying the queries to interact with the retrieval system. Our approach performs the similarity based retrieval in a reasonable amount of time and is a practical approach.

  16. Rice Homeobox Transcription Factor HOX1a Positively Regulates Gibberellin Responses by Directly Suppressing EL1

    Institute of Scientific and Technical Information of China (English)

    Bi-Qing Wen; Mei-Qing Xing; Hua Zhang Cheng Dai; Hong-Wei Xue

    2011-01-01

    Homeobox transcription factors are involved in various aspects of plant development,including maintenance of the biosynthesis and signaling pathways of different hormones.However,few direct targets of homeobox proteins have been identified.We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response,indicating a positive effect of HOX1a in GA signaling.HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity.In addition,HOX1a suppresses the transcription of early flowering1 (EL1),a negative regulator of GA signaling,and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling.These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1,providing informative hints on the study of GA signaling.

  17. MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord

    Science.gov (United States)

    Li, Chung-Jung; Hong, Tian; Tung, Ying-Tsen; Yen, Ya-Ping; Hsu, Ho-Chiang; Lu, Ya-Lin; Chang, Mien; Nie, Qing; Chen, Jun-An

    2017-03-01

    The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.

  18. Japanese medaka Hox paralog group 2: insights into the evolution of Hox PG2 gene composition and expression in the Osteichthyes.

    Science.gov (United States)

    Davis, Adam; Scemama, Jean-Luc; Stellwag, Edmund J

    2008-12-15

    Hox paralog group 2 (PG2) genes function to specify the development of the hindbrain and pharyngeal arch-derived structures in the Osteichthyes. In this article, we describe the cDNA cloning and embryonic expression analysis of Japanese medaka (Oryzias latipes) Hox PG2 genes. We show that there are only two functional canonical Hox genes, hoxa2a and b2a, and that a previously identified hoxa2b gene is a transcribed pseudogene, psihoxa2b. The functional genes, hoxa2a and b2a, were expressed in developing rhombomeres and pharyngeal arches in a manner that was relatively well conserved compared with zebrafish (Danio rerio) but differed significantly from orthologous striped bass (Morone saxatilis) and Nile tilapia (Oreochromis niloticus) genes, which, we suggest, may be owing to effects of post-genome duplication loss of a Hox PG2 gene in the medaka and zebrafish lineages. psihoxa2b was expressed at readily detectable levels in several noncanonical Hox expression domains, including the ventral aspect of the neural tube, the pectoral fin buds and caudal-most region of the embryonic trunk, indicative that regulatory control elements needed for spatio-temporal expression have diverged from their ancestral counterparts. Comparative expression analyses showed medaka hoxa2a and b2a expression in the 2nd pharyngeal arch (PA2) beyond the onset of chondrogenesis, which, according to previous hypotheses, suggests these genes function redundantly as selector genes of PA2 identity. We conclude that Hox PG2 gene composition and expression have diverged significantly during osteichthyan evolution and that this divergence in teleosts may be related to lineage-dependent differential gene loss following an actinopterygian-specific whole genome duplication.

  19. Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains.

    Science.gov (United States)

    Vinagre, Tânia; Moncaut, Natalia; Carapuço, Marta; Nóvoa, Ana; Bom, Joana; Mallo, Moisés

    2010-04-20

    Hox genes are essential for the patterning of the axial skeleton. Hox group 10 has been shown to specify the lumbar domain by setting a rib-inhibiting program in the presomitic mesoderm (PSM). We have now produced mice with ribs in every vertebra by ectopically expressing Hox group 6 in the PSM, indicating that Hox genes are also able to specify the thoracic domain. We show that the information provided by Hox genes to specify rib-containing and rib-less areas is first interpreted in the myotome through the regional-specific control of Myf5 and Myf6 expression. This information is then transmitted to the sclerotome by a system that includes FGF and PDGF signaling to produce vertebrae with or without ribs at different axial levels. Our findings offer a new perspective of how Hox genes produce global patterns in the axial skeleton and support a redundant nonmyogenic role of Myf5 and Myf6 in rib formation.

  20. Faithful expression of the human 5q31 cytokine cluster intransgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Dee A.; Wang, Zhi-En; Symula, Derek J.; McArthur, CliffordJ.; Rubin, Edward M.; Frazer, Kelly A.; Locksley, Richard M.

    1999-12-03

    ILs 4,5, and 13, cardinal cytokines produced by Th2 cells,are coordinately expressed and clustered in the 150-kb syntenic regions on mouse chromosome 11 and human chromosome 5q31. We analyzed two sets of human yeast artificial chromosome transgenic mice that contained the5931cytokines to assess whether conserved sequences required for their coordinate and cell-specific regulation are contained within the cytokine cluster itself. Human Il-4, IL-13, and Il-5 were expressed under Th2, but not Th1, conditions in vitro. Each of these cytokines was produced during infection with Nippostrongylus brasiliensis, a Th2 inducing stimulus, and human Il-4 was generated after activation of NK T cells in vivo.Consistently fewer cells produced the endogenous mouse cytokines in transgenic than in control mice, suggesting competition for stable expression between the mouse and human genes. These data imply the existence of both conserved trans-activating factors and cis-regulatory elements that underlie the coordinate expression and lineage specificity of the type 2 ctyokine genes in lymphocytes.

  1. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications.

    Science.gov (United States)

    Zákány, J; Fromental-Ramain, C; Warot, X; Duboule, D

    1997-12-09

    The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose-response is observed in the morphogenesis of the penian bone, the baculum, which further suggests that digits and external genitalia share this genetic control mechanism. A progressive reduction in the dose of Hox gene products led first to ectrodactyly, then to olygodactyly and adactyly. Interestingly, this transition between the pentadactyl to the adactyl formula went through a step of polydactyly. We propose that in the distal appendage of polydactylous short-digited ancestral tetrapods, such as Acanthostega, the HoxA complex was predominantly active. Subsequent recruitment of the HoxD complex contributed to both reductions in digit number and increase in digit length. Thus, transition through a polydactylous limb before reaching and stabilizing the pentadactyl pattern may have relied, at least in part, on asynchronous and independent changes in the regulation of HoxA and HoxD gene complexes.

  2. Organization of the human keratin type II gene cluster at 12q13

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.J.; LeBlanc-Straceski, J.; Krauter, K. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1994-12-01

    Keratin proteins constitute intermediate filaments and are the major differentiation products of mammalian epithelial cells. The epithelial keratins are classified into two groups, type I and type II, and one member of each group is expressed in a given epithelial cell differentiation stage. Mutations in type I and type II keratin genes have now been implicated in three different human genetic disorders, epidermolysis bullosa simplex, epidermolytic hyperkeratosis, and epidermolytic palmoplantar keratoderma. Members of the type I keratins are mapped to human chromosome 17, and the type II keratin genes are mapped to chromosome 12. To understand the organization of the type II keratin genes on chromosome 12, we isolated several yeast artificial chromosomes carrying these keratin genes and examined them in detail. We show that eight already known type II keratin genes are located in a cluster at 12q13, and their relative organization reflects their evolutionary relationship. We also determined that a type I keratin gene, KRT8, is located next to its partner, KRT18, in this cluster. Careful examination of the cluster also revealed that there may be a number of additional keratin genes at this locus that have not been described previously. 41 refs., 3 figs., 1 tab.

  3. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria.

    Science.gov (United States)

    Jans, Daniel C; Wurm, Christian A; Riedel, Dietmar; Wenzel, Dirk; Stagge, Franziska; Deckers, Markus; Rehling, Peter; Jakobs, Stefan

    2013-05-28

    The mitochondrial inner membrane organizing system (MINOS) is a conserved large hetero-oligomeric protein complex in the mitochondrial inner membrane, crucial for the maintenance of cristae morphology. MINOS has been suggested to represent the core of an extended protein network that controls mitochondrial function and structure, and has been linked to several human diseases. The spatial arrangement of MINOS within mitochondria is ill-defined, however. Using super-resolution stimulated emission depletion (STED) microscopy and immunogold electron microscopy, we determined the distribution of three known human MINOS subunits (mitofilin, MINOS1, and CHCHD3) in mammalian cells. Super-resolution microscopy revealed that all three subunits form similar clusters within mitochondria, and that MINOS is more abundant in mitochondria around the nucleus than in peripheral mitochondria. At the submitochondrial level, mitofilin, a core MINOS subunit, is preferentially localized at cristae junctions. In primary human fibroblasts, mitofilin labeling uncovered a regularly spaced pattern of clusters arranged in parallel to the cell growth surfaces. We suggest that this array of MINOS complexes might explain the observed phenomenon of largely horizontally arranged cristae junctions that connect the inner boundary membrane to lamellar cristae. The super-resolution images demonstrate an unexpectedly high level of regularity in the nanoscale distribution of the MINOS complex in human mitochondria, supporting an integrating role of MINOS in the structural organization of the organelle.

  4. Cluster-cluster clustering

    Science.gov (United States)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  5. Cluster-cluster clustering

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.

    1985-08-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references.

  6. Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins.

    Science.gov (United States)

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-12-07

    Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.

  7. Cluster analysis for identifying sub-groups and selecting potential discriminatory variables in human encephalitis

    Directory of Open Access Journals (Sweden)

    Crowcroft Natasha S

    2010-12-01

    Full Text Available Abstract Background Encephalitis is an acute clinical syndrome of the central nervous system (CNS, often associated with fatal outcome or permanent damage, including cognitive and behavioural impairment, affective disorders and epileptic seizures. Infection of the central nervous system is considered to be a major cause of encephalitis and more than 100 different pathogens have been recognized as causative agents. However, a large proportion of cases have unknown disease etiology. Methods We perform hierarchical cluster analysis on a multicenter England encephalitis data set with the aim of identifying sub-groups in human encephalitis. We use the simple matching similarity measure which is appropriate for binary data sets and performed variable selection using cluster heatmaps. We also use heatmaps to visually assess underlying patterns in the data, identify the main clinical and laboratory features and identify potential risk factors associated with encephalitis. Results Our results identified fever, personality and behavioural change, headache and lethargy as the main characteristics of encephalitis. Diagnostic variables such as brain scan and measurements from cerebrospinal fluids are also identified as main indicators of encephalitis. Our analysis revealed six major clusters in the England encephalitis data set. However, marked within-cluster heterogeneity is observed in some of the big clusters indicating possible sub-groups. Overall, the results show that patients are clustered according to symptom and diagnostic variables rather than causal agents. Exposure variables such as recent infection, sick person contact and animal contact have been identified as potential risk factors. Conclusions It is in general assumed and is a common practice to group encephalitis cases according to disease etiology. However, our results indicate that patients are clustered with respect to mainly symptom and diagnostic variables rather than causal agents

  8. Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera).

    Science.gov (United States)

    Angelini, David R; Liu, Paul Z; Hughes, Cynthia L; Kaufman, Thomas C

    2005-11-15

    Studies in genetic model organisms such as Drosophila have demonstrated that the homeotic complex (Hox) genes impart segmental identity during embryogenesis. Comparative studies in a wide range of other insect taxa have shown that the Hox genes are expressed in largely conserved domains along the anterior-posterior body axis, but whether they are performing the same functions in different insects is an open question. Most of the Hox genes have been studied functionally in only a few holometabolous insects that undergo metamorphosis. Thus, it is unclear how the Hox genes are functioning in the majority of direct-developing insects and other arthropods. To address this question, we used a combination of RNAi and in situ hybridization to reveal the expression, functions, and regulatory interactions of the Hox genes in the milkweed bug Oncopeltus fasciatus. Our results reveal many similarities and some interesting differences compared to Drosophila. We find that the gene Antennapedia is required for the identity of all three thoracic segments, while Ultrabithorax, abdominal-A and Abdominal-B cooperate to pattern the abdomen. The three abdominal genes exhibit posterior prevalence like in Drosophila, but apparently via some post-transcriptional mechanism. The functions of the head genes proboscipedia, Deformed, and Sex combs reduced were shown previously, and here we find that the complex temporal expression of pb in the labium is like that of other insects, but its regulatory relationship with Scr is unique. Overall, our data reveal that the evolution of insect Hox genes has included many small changes within general conservation of expression and function, and that the milkweed bug provides a useful model for understanding the roles of Hox genes in a direct-developing insect.

  9. Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States

    Directory of Open Access Journals (Sweden)

    DeGroote John P

    2009-07-01

    Full Text Available Abstract Background West Nile virus (WNV is a vector-borne illness that can severely affect human health. After introduction on the East Coast in 1999, the virus quickly spread and became established across the continental United States. However, there have been significant variations in levels of human WNV incidence spatially and temporally. In order to quantify these variations, we used Kulldorff's spatial scan statistic and Anselin's Local Moran's I statistic to uncover spatial clustering of human WNV incidence at the county level in the continental United States from 2002–2008. These two methods were applied with varying analysis thresholds in order to evaluate sensitivity of clusters identified. Results The spatial scan and Local Moran's I statistics revealed several consistent, important clusters or hot-spots with significant year-to-year variation. In 2002, before the pathogen had spread throughout the country, there were significant regional clusters in the upper Midwest and in Louisiana and Mississippi. The largest and most consistent area of clustering throughout the study period was in the Northern Great Plains region including large portions of Nebraska, South Dakota, and North Dakota, and significant sections of Colorado, Wyoming, and Montana. In 2006, a very strong cluster centered in southwest Idaho was prominent. Both the spatial scan statistic and the Local Moran's I statistic were sensitive to the choice of input parameters. Conclusion Significant spatial clustering of human WNV incidence has been demonstrated in the continental United States from 2002–2008. The two techniques were not always consistent in the location and size of clusters identified. Although there was significant inter-annual variation, consistent areas of clustering, with the most persistent and evident being in the Northern Great Plains, were demonstrated. Given the wide variety of mosquito species responsible and the environmental conditions they

  10. Observation and modelling of HOx radicals in a boreal forest

    Directory of Open Access Journals (Sweden)

    K. Hens

    2014-08-01

    Full Text Available Measurements of OH and HO2 radicals were conducted in a pine-dominated forest in southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS and laser-induced fluorescence (LIF, indicating small systematic disagreement, OHLIF / OHCIMS = (1.31 ± 0.14. Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem–atmosphere interface. Comprehensive measurements including observations of many volatile organic compounds (VOCs and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model. Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady-state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one-third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod. / OHobs. = 1.00 ± 0.16, while HO2 mixing ratios are significantly under-predicted (HO2mod. / HO2obs. = 0.3 ± 0.2, and simulated OH reactivity does not match the observed OH reactivity. The simultaneous under-prediction of HO2 and OH reactivity in periods in which OH concentrations were simulated realistically suggests that the missing OH reactivity is an unaccounted-for source of HO2. Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity

  11. Taenia solium cysticercosis hotspots surrounding tapeworm carriers: clustering on human seroprevalence but not on seizures.

    Directory of Open Access Journals (Sweden)

    Andres G Lescano

    Full Text Available Neurocysticercosis accounts for 30%-50% of all late-onset epilepsy in endemic countries. We assessed the clustering patterns of Taenia solium human cysticercosis seropositivity and seizures around tapeworm carriers in seven rural communities in Peru.The presence of T. solium-specific antibodies was defined as one or more positive bands in the enzyme-linked immunoelectrotransfer blot (EITB. Neurocysticercosis-related seizures cases were diagnosed clinically and had positive neuroimaging or EITB.Eleven tapeworm carriers were identified by stool microscopy. The seroprevalence of human cysticercosis was 24% (196/803. Seroprevalence was 21% >50 m from a carrier and increased to 32% at 1-50 m (p = 0.047, and from that distance seroprevalence had another significant increase to 64% at the homes of carriers (p = 0.004. Seizure prevalence was 3.0% (25/837 but there were no differences between any pair of distance ranges (p = 0.629, Wald test 2 degrees of freedom.We observed a significant human cysticercosis seroprevalence gradient surrounding current tapeworm carriers, although cysticercosis-related seizures did not cluster around carriers. Due to differences in the timing of the two outcomes, seroprevalence may reflect recent T. solium exposure more accurately than seizure frequency.

  12. A Human Activity Recognition System Based on Dynamic Clustering of Skeleton Data

    Science.gov (United States)

    Manzi, Alessandro; Dario, Paolo; Cavallo, Filippo

    2017-01-01

    Human activity recognition is an important area in computer vision, with its wide range of applications including ambient assisted living. In this paper, an activity recognition system based on skeleton data extracted from a depth camera is presented. The system makes use of machine learning techniques to classify the actions that are described with a set of a few basic postures. The training phase creates several models related to the number of clustered postures by means of a multiclass Support Vector Machine (SVM), trained with Sequential Minimal Optimization (SMO). The classification phase adopts the X-means algorithm to find the optimal number of clusters dynamically. The contribution of the paper is twofold. The first aim is to perform activity recognition employing features based on a small number of informative postures, extracted independently from each activity instance; secondly, it aims to assess the minimum number of frames needed for an adequate classification. The system is evaluated on two publicly available datasets, the Cornell Activity Dataset (CAD-60) and the Telecommunication Systems Team (TST) Fall detection dataset. The number of clusters needed to model each instance ranges from two to four elements. The proposed approach reaches excellent performances using only about 4 s of input data (~100 frames) and outperforms the state of the art when it uses approximately 500 frames on the CAD-60 dataset. The results are promising for the test in real context. PMID:28492486

  13. Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation.

    Science.gov (United States)

    Mai, Thach; Zan, Hong; Zhang, Jinsong; Hawkins, J Seth; Xu, Zhenming; Casali, Paolo

    2010-11-26

    Estrogen enhances antibody and autoantibody responses through yet to be defined mechanisms. It has been suggested that estrogen up-regulates the expression of activation-induced cytosine deaminase (AID), which is critical for antibody class switch DNA recombination (CSR) and somatic hypermutation (SHM), through direct activation of this gene. AID, as we have shown, is induced by the HoxC4 homeodomain transcription factor, which binds to a conserved HoxC4/Oct site in the AICDA/Aicda promoter. Here we show that estrogen-estrogen receptor (ER) complexes do not directly activate the AID gene promoter in B cells undergoing CSR. Rather, they bind to three evolutionarily conserved and cooperative estrogen response elements (EREs) we identified in the HOXC4/HoxC4 promoter. By binding to these EREs, ERs synergized with CD154 or LPS and IL-4 signaling to up-regulate HoxC4 expression, thereby inducing AID and CSR without affecting B cell proliferation or plasmacytoid differentiation. Estrogen administration in vivo significantly potentiated CSR and SHM in the specific antibody response to the 4-hydroxy-3-nitrophenylacetyl hapten conjugated with chicken γ-globulin. Ablation of HoxC4 (HoxC4(-/-)) abrogated the estrogen-mediated enhancement of AID gene expression and decreased CSR and SHM. Thus, estrogen enhances AID expression by activating the HOXC4/HoxC4 promoter and inducing the critical AID gene activator, HoxC4.

  14. Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters.

    Science.gov (United States)

    Akam, M

    1998-01-01

    Significant changes have occurred in the developmental role of Hox genes, even within groups of arthropods that already have complex body plans and many different segment types. This is hard to reconcile with the 'selector gene' model for Hox gene function. Selector genes act as stable binary switches that direct lineages of cells to adopt alternative developmental fates. This model suggests that the regulation of selector genes can only evolve through mutations that alter the identity of whole developmental compartments -in the case of Hox genes, whole segments. Once segments have evolved distinct morphology and function, such mutations will result in dramatic homeotic transformations that are unlikely to be tolerated by natural selection. Thus we would expect the developmental role of these "master control genes" to become frozen as body plans become more complex. I argue for a revised model for the role and regulation of the Hox genes. This provides alternative mechanisms for evolutionary change, that may lead to incremental changes in segment morphology. The summation of such changes over long periods of time would result in differences in Hox gene function between taxa comparable to the effects of gross homeotic mutations, without the need to invoke the selective advantage of hopeful monsters.

  15. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology.

    Science.gov (United States)

    Böhmer, Christine; Werneburg, Ingmar

    2017-08-21

    The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.

  16. Using Complementary Learning Clusters in Studying Literature to Enhance Students' Medical Humanities Literacy, Critical Thinking, and English Proficiency.

    Science.gov (United States)

    Liao, Hung-Chang; Wang, Ya-Huei

    2016-04-01

    This study examined whether students studying literature in complementary learning clusters would show more improvement in medical humanities literacy, critical thinking skills, and English proficiency compared to those in conventional learning clusters. Ninety-three students participated in the study (M age = 18.2 years, SD = 0.4; 36 men, 57 women). A quasi-experimental design was used over 16 weeks, with the control group (n = 47) working in conventional learning clusters and the experimental group (n = 46) working in complementary learning clusters. Complementary learning clusters were those in which individuals had complementary strengths enabling them to learn from and offer assistance to other cluster members, hypothetically facilitating the learning process. Measures included the Medical Humanities Literacy Scale, Critical Thinking Disposition Assessment, English proficiency tests, and Analytic Critical Thinking Scoring Rubric. The results showed that complementary learning clusters have the potential to improve students' medical humanities literacy, critical thinking skills, and English proficiency.

  17. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates.

    Science.gov (United States)

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2016-06-01

    Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression. © 2016 WILEY Periodicals, Inc.

  18. Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine

    Science.gov (United States)

    Guerreiro, Isabel; Nunes, Andreia; Woltering, Joost M.; Casaca, Ana; Nóvoa, Ana; Vinagre, Tânia; Hunter, Margaret E.; Duboule, Denis; Mallo, Moisés

    2013-01-01

    Patterning of the vertebrate skeleton requires the coordinated activity of Hox genes. In particular, Hox10 proteins are essential to set the transition from thoracic to lumbar vertebrae because of their rib-repressing activity. In snakes, however, the thoracic region extends well into Hox10-expressing areas of the embryo, suggesting that these proteins are unable to block rib formation. Here, we show that this is not a result of the loss of rib-repressing properties by the snake proteins, but rather to a single base pair change in a Hox/Paired box (Pax)-responsive enhancer, which prevents the binding of Hox proteins. This polymorphism is also found in Paenungulata, such as elephants and manatees, which have extended rib cages. In vivo, this modified enhancer failed to respond to Hox10 activity, supporting its role in the extension of rib cages. In contrast, the enhancer could still interact with Hoxb6 and Pax3 to promote rib formation. These results suggest that a polymorphism in the Hox/Pax-responsive enhancer may have played a role in the evolution of the vertebrate spine by differently modulating its response to rib-suppressing and rib-promoting Hox proteins.

  19. Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine.

    Science.gov (United States)

    Guerreiro, Isabel; Nunes, Andreia; Woltering, Joost M; Casaca, Ana; Nóvoa, Ana; Vinagre, Tânia; Hunter, Margaret E; Duboule, Denis; Mallo, Moisés

    2013-06-25

    Patterning of the vertebrate skeleton requires the coordinated activity of Hox genes. In particular, Hox10 proteins are essential to set the transition from thoracic to lumbar vertebrae because of their rib-repressing activity. In snakes, however, the thoracic region extends well into Hox10-expressing areas of the embryo, suggesting that these proteins are unable to block rib formation. Here, we show that this is not a result of the loss of rib-repressing properties by the snake proteins, but rather to a single base pair change in a Hox/Paired box (Pax)-responsive enhancer, which prevents the binding of Hox proteins. This polymorphism is also found in Paenungulata, such as elephants and manatees, which have extended rib cages. In vivo, this modified enhancer failed to respond to Hox10 activity, supporting its role in the extension of rib cages. In contrast, the enhancer could still interact with Hoxb6 and Pax3 to promote rib formation. These results suggest that a polymorphism in the Hox/Pax-responsive enhancer may have played a role in the evolution of the vertebrate spine by differently modulating its response to rib-suppressing and rib-promoting Hox proteins.

  20. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

    Directory of Open Access Journals (Sweden)

    Shriver Mark D

    2005-06-01

    Full Text Available Abstract Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification 12. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification 345. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican, we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.

  1. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  2. Predicting novel histopathological microlesions in human epileptic brain through transcriptional clustering.

    Science.gov (United States)

    Dachet, Fabien; Bagla, Shruti; Keren-Aviram, Gal; Morton, Andrew; Balan, Karina; Saadat, Laleh; Valyi-Nagy, Tibor; Kupsky, William; Song, Fei; Dratz, Edward; Loeb, Jeffrey A

    2015-02-01

    Although epilepsy is associated with a variety of abnormalities, exactly why some brain regions produce seizures and others do not is not known. We developed a method to identify cellular changes in human epileptic neocortex using transcriptional clustering. A paired analysis of high and low spiking tissues recorded in vivo from 15 patients predicted 11 cell-specific changes together with their 'cellular interactome'. These predictions were validated histologically revealing millimetre-sized 'microlesions' together with a global increase in vascularity and microglia. Microlesions were easily identified in deeper cortical layers using the neuronal marker NeuN, showed a marked reduction in neuronal processes, and were associated with nearby activation of MAPK/CREB signalling, a marker of epileptic activity, in superficial layers. Microlesions constitute a common, undiscovered layer-specific abnormality of neuronal connectivity in human neocortex that may be responsible for many 'non-lesional' forms of epilepsy. The transcriptional clustering approach used here could be applied more broadly to predict cellular differences in other brain and complex tissue disorders.

  3. Cardiomyocyte Clusters Derived from Human Embryonic Stem Cells Share Similarities with Human Heart Tissue

    Institute of Scientific and Technical Information of China (English)

    Julia Asp; Daniella Steel; Marianne Jonsson; Caroline Améen; Kerstin Dahlenborg; Anders Jeppsson; Anders Lindahl; Peter Sartipy

    2010-01-01

    @@ Cardiotoxicity testing is a key activity in the pharmaceutical industry in order to detect detrimental effects of new drugs.A reliable human in vitro model would both be beneficial in selection of lead compounds and be important for reducing animal experimentation.

  4. CTDGFinder: A Novel Homology-Based Algorithm for Identifying Closely Spaced Clusters of Tandemly Duplicated Genes.

    Science.gov (United States)

    Ortiz, Juan F; Rokas, Antonis

    2017-01-01

    Closely spaced clusters of tandemly duplicated genes (CTDGs) contribute to the diversity of many phenotypes, including chemosensation, snake venom, and animal body plans. CTDGs have traditionally been identified subjectively as genomic neighborhoods containing several gene duplicates in close proximity; however, CTDGs are often highly variable with respect to gene number, intergenic distance, and synteny. This lack of formal definition hampers the study of CTDG evolutionary dynamics and the discovery of novel CTDGs in the exponentially growing body of genomic data. To address this gap, we developed a novel homology-based algorithm, CTDGFinder, which formalizes and automates the identification of CTDGs by examining the physical distribution of individual members of families of duplicated genes across chromosomes. Application of CTDGFinder accurately identified CTDGs for many well-known gene clusters (e.g., Hox and beta-globin gene clusters) in the human, mouse and 20 other mammalian genomes. Differences between previously annotated gene clusters and our inferred CTDGs were due to the exclusion of nonhomologs that have historically been considered parts of specific gene clusters, the inclusion or absence of genes between the CTDGs and their corresponding gene clusters, and the splitting of certain gene clusters into distinct CTDGs. Examination of human genes showing tissue-specific enhancement of their expression by CTDGFinder identified members of several well-known gene clusters (e.g., cytochrome P450s and olfactory receptors) and revealed that they were unequally distributed across tissues. By formalizing and automating CTDG identification, CTDGFinder will facilitate understanding of CTDG evolutionary dynamics, their functional implications, and how they are associated with phenotypic diversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  5. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Directory of Open Access Journals (Sweden)

    Lu Liang

    Full Text Available Bats and cetaceans (i.e., whales, dolphins, porpoises are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii and cetaceans (represented by Tursiops truncatus for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  6. A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta.

    Directory of Open Access Journals (Sweden)

    Danielle M de Jong

    Full Text Available Regeneration, the ability to replace lost tissues and body parts following traumatic injury, occurs widely throughout the animal tree of life. Regeneration occurs either by remodeling of pre-existing tissues, through addition of new cells by cell division, or a combination of both. We describe a staging system for posterior regeneration in the annelid, Capitella teleta, and use the C. teleta Hox gene code as markers of regional identity for regenerating tissue along the anterior-posterior axis. Following amputation of different posterior regions of the animal, a blastema forms and by two days, proliferating cells are detected by EdU incorporation, demonstrating that epimorphosis occurs during posterior regeneration of C. teleta. Neurites rapidly extend into the blastema, and gradually become organized into discrete nerves before new ganglia appear approximately seven days after amputation. In situ hybridization shows that seven of the ten Hox genes examined are expressed in the blastema, suggesting roles in patterning the newly forming tissue, although neither spatial nor temporal co-linearity was detected. We hypothesized that following amputation, Hox gene expression in pre-existing segments would be re-organized to scale, and the remaining fragment would express the complete suite of Hox genes. Surprisingly, most Hox genes display stable expression patterns in the ganglia of pre-existing tissue following amputation at multiple axial positions, indicating general stability of segmental identity. However, the three Hox genes, CapI-lox4, CapI-lox2 and CapI-Post2, each shift its anterior expression boundary by one segment, and each shift includes a subset of cells in the ganglia. This expression shift depends upon the axial position of the amputation. In C. teleta, thoracic segments exhibit stable positional identity with limited morphallaxis, in contrast with the extensive body remodeling that occurs during regeneration of some other annelids

  7. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Science.gov (United States)

    Liang, Lu; Shen, Yong-Yi; Pan, Xiao-Wei; Zhou, Tai-Cheng; Yang, Chao; Irwin, David M; Zhang, Ya-Ping

    2013-01-01

    Bats and cetaceans (i.e., whales, dolphins, porpoises) are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii) and cetaceans (represented by Tursiops truncatus) for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  8. A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta.

    Science.gov (United States)

    de Jong, Danielle M; Seaver, Elaine C

    2016-01-01

    Regeneration, the ability to replace lost tissues and body parts following traumatic injury, occurs widely throughout the animal tree of life. Regeneration occurs either by remodeling of pre-existing tissues, through addition of new cells by cell division, or a combination of both. We describe a staging system for posterior regeneration in the annelid, Capitella teleta, and use the C. teleta Hox gene code as markers of regional identity for regenerating tissue along the anterior-posterior axis. Following amputation of different posterior regions of the animal, a blastema forms and by two days, proliferating cells are detected by EdU incorporation, demonstrating that epimorphosis occurs during posterior regeneration of C. teleta. Neurites rapidly extend into the blastema, and gradually become organized into discrete nerves before new ganglia appear approximately seven days after amputation. In situ hybridization shows that seven of the ten Hox genes examined are expressed in the blastema, suggesting roles in patterning the newly forming tissue, although neither spatial nor temporal co-linearity was detected. We hypothesized that following amputation, Hox gene expression in pre-existing segments would be re-organized to scale, and the remaining fragment would express the complete suite of Hox genes. Surprisingly, most Hox genes display stable expression patterns in the ganglia of pre-existing tissue following amputation at multiple axial positions, indicating general stability of segmental identity. However, the three Hox genes, CapI-lox4, CapI-lox2 and CapI-Post2, each shift its anterior expression boundary by one segment, and each shift includes a subset of cells in the ganglia. This expression shift depends upon the axial position of the amputation. In C. teleta, thoracic segments exhibit stable positional identity with limited morphallaxis, in contrast with the extensive body remodeling that occurs during regeneration of some other annelids, planarians and acoel

  9. Genotypic characterisation and cluster analysis of Campylobacter jejuni isolates from domestic pets, human clinical cases and retail food

    Directory of Open Access Journals (Sweden)

    Acke Els

    2011-03-01

    Full Text Available Abstract The genetic similarity of Campylobacter jejuni isolates from pets, compared to human clinical cases and retail food isolates collected in Ireland over 2001-2006 was investigated by cluster analysis of pulsed-field gel electrophoresis (PFGE fingerprinting profiles. Comparison of the PFGE profiles of 60 pet isolates and 109 human isolates revealed that seven (4.1% profiles were grouped in clusters including at least one human and one pet C. jejuni isolate. In total six (1.6% of 60 pet and 310 food profiles were in clusters with at least one food and one pet C. jejuni isolate. The detection of only a small number of genetically indistinguishable isolates by PFGE profile cluster analysis from pets and from humans with enteritis in this study suggests that pets are unlikely to be an important reservoir for human campylobacteriosis in Ireland. However, genetically indistinguishable isolates were detected and C. jejuni from pets may circulate and may contribute to clinical infections in humans. In addition, contaminated food fed to pets may be a potential source of Campylobacter infection in pets, which may subsequently pose a risk to humans.

  10. On the "ozone deficit problem": what are Ox and HOx catalytic cycles for ozone depletion hiding?

    Science.gov (United States)

    Varandas, António J C

    2002-05-17

    Studies on the role of vibrational excitation in the reactants for the O2 + O2, OH + O2, and HO2 + O2 reactions show that they can be important sources of ozone in the stratosphere, particularly at conditions of local thermodynamic disequilibrium. The results suggest that the Ox and HOx cycles commonly viewed as catalytic sinks of ozone may actually lead to its production, and hence help to clarify the "ozone deficit problem". This paper also presents an explanation for the general overestimation of the OH abundance in the upper stratosphere and lower mesosphere through standard HOx chemistry.

  11. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper.

    Science.gov (United States)

    Wang, Zhe; Yuan, Lihong; Rossiter, Stephen J; Zuo, Xueguo; Ru, Binghua; Zhong, Hui; Han, Naijian; Jones, Gareth; Jepson, Paul D; Zhang, Shuyi

    2009-03-01

    The homeobox (Hox) genes Hoxd12 and Hoxd13 control digit patterning and limb formation in tetrapods. Both show strong expression in the limb bud during embryonic development, are highly conserved across vertebrates, and show mutations that are associated with carpal, metacarpal, and phalangeal deformities. The most dramatic evolutionary reorganization of the mammalian limb has occurred in cetaceans (whales, dolphins, and porpoises), in which the hind limbs have been lost and the forelimbs have evolved into paddle-shaped flippers. We reconstructed the phylogeny of digit patterning in mammals and inferred that digit number has changed twice in the evolution of the cetacean forelimb. First, the divergence of the early cetaceans from their even-toed relatives coincided with the reacquisition of the pentadactyl forelimb, whereas the ancestors of tetradactyl baleen whales (Mysticeti) later lost a digit again. To test whether the evolution of the cetacean forelimb is associated with positive selection or relaxation of Hoxd12 and Hoxd13, we sequenced these genes in a wide range of mammals. In Hoxd12, we found evidence of Darwinian selection associated with both episodes of cetacean forelimb reorganization. In Hoxd13, we found a novel expansion of a polyalanine tract in cetaceans compared with other mammals (17/18 residues vs. 14/15 residues, respectively), lengthening of which has previously been shown to be linked to synpolydactyly in humans and mice. Both genes also show much greater sequence variation among cetaceans than across other mammalian lineages. Our results strongly implicate 5'HoxD genes in the modulation of digit number, web forming, and the high morphological diversity of the cetacean manus.

  12. Hierarchical Clustering Multi-Task Learning for Joint Human Action Grouping and Recognition.

    Science.gov (United States)

    Liu, An-An; Su, Yu-Ting; Nie, Wei-Zhi; Kankanhalli, Mohan

    2017-01-01

    This paper proposes a hierarchical clustering multi-task learning (HC-MTL) method for joint human action grouping and recognition. Specifically, we formulate the objective function into the group-wise least square loss regularized by low rank and sparsity with respect to two latent variables, model parameters and grouping information, for joint optimization. To handle this non-convex optimization, we decompose it into two sub-tasks, multi-task learning and task relatedness discovery. First, we convert this non-convex objective function into the convex formulation by fixing the latent grouping information. This new objective function focuses on multi-task learning by strengthening the shared-action relationship and action-specific feature learning. Second, we leverage the learned model parameters for the task relatedness measure and clustering. In this way, HC-MTL can attain both optimal action models and group discovery by alternating iteratively. The proposed method is validated on three kinds of challenging datasets, including six realistic action datasets (Hollywood2, YouTube, UCF Sports, UCF50, HMDB51 & UCF101), two constrained datasets (KTH & TJU), and two multi-view datasets (MV-TJU & IXMAS). The extensive experimental results show that: 1) HC-MTL can produce competing performances to the state of the arts for action recognition and grouping; 2) HC-MTL can overcome the difficulty in heuristic action grouping simply based on human knowledge; 3) HC-MTL can avoid the possible inconsistency between the subjective action grouping depending on human knowledge and objective action grouping based on the feature subspace distributions of multiple actions. Comparison with the popular clustered multi-task learning further reveals that the discovered latent relatedness by HC-MTL aids inducing the group-wise multi-task learning and boosts the performance. To the best of our knowledge, ours is the first work that breaks the assumption that all actions are either

  13. Individual predisposition, household clustering and risk factors for human infection with Ascaris lumbricoides: new epidemiological insights.

    Directory of Open Access Journals (Sweden)

    Martin Walker

    Full Text Available BACKGROUND: Much of our current understanding of the epidemiology of Ascaris lumbricoides infections in humans has been acquired by analyzing worm count data. These data are collected by treating infected individuals with anthelmintics so that worms are expelled intact from the gastrointestinal tract. Analysis of such data established that individuals are predisposed to infection with few or many worms and members of the same household tend to harbor similar numbers of worms. These effects, known respectively as individual predisposition and household clustering, are considered characteristic of the epidemiology of ascariasis. The mechanisms behind these phenomena, however, remain unclear. In particular, the impact of heterogeneous individual exposures to infectious stages has not been thoroughly explored. METHODOLOGY/PRINCIPAL FINDINGS: Bayesian methods were used to fit a three-level hierarchical statistical model to A. lumbricoides worm counts derived from a three-round chemo-expulsion study carried out in Dhaka, Bangladesh. The effects of individual predisposition, household clustering and household covariates of the numbers of worms per host (worm burden were considered simultaneously. Individual predisposition was found to be of limited epidemiological significance once household clustering had been accounted for. The degree of intra-household variability among worm burdens was found to be reduced by approximately 58% when household covariates were included in the model. Covariates relating to decreased affluence and quality of housing construction were associated with a statistically significant increase in worm burden. CONCLUSIONS/SIGNIFICANCE: Heterogeneities in the exposure of individuals to infectious eggs have an important role in the epidemiology of A. lumbricoides infection. The household covariates identified as being associated with worm burden provide valuable insights into the source of these heterogeneities although above all

  14. Human paraoxonase gene cluster overexpression alleviates angiotensin II-induced cardiac hypertrophy in mice.

    Science.gov (United States)

    Pei, Jian-Fei; Yan, Yun-Fei; Tang, Xiaoqiang; Zhang, Yang; Cui, Shen-Shen; Zhang, Zhu-Qin; Chen, Hou-Zao; Liu, De-Pei

    2016-11-01

    Cardiac hypertrophy is the strongest predictor of the development of heart failure, and anti-hypertrophic treatment holds the key to improving the clinical syndrome and increasing the survival rates for heart failure. The paraoxonase (PON) gene cluster (PC) protects against atherosclerosis and coronary artery diseases. However, the role of PC in the heart is largely unknown. To evaluate the roles of PC in cardiac hypertrophy, transgenic mice carrying the intact human PON1, PON2, and PON3 genes and their flanking sequences were studied. We demonstrated that the PC transgene (PC-Tg) protected mice from cardiac hypertrophy induced by Ang II; these mice had reduced heart weight/body weight ratios, decreased left ventricular wall thicknesses and increased fractional shortening compared with wild-type (WT) control. The same protective tendency was also observed with an Apoe (-/-) background. Mechanically, PC-Tg normalized the disequilibrium of matrix metalloproteinases (MMPs)/tissue inhibitors of MMPs (TIMPs) in hypertrophic hearts, which might contribute to the protective role of PC-Tg in cardiac fibrosis and, thus, protect against cardiac remodeling. Taken together, our results identify a novel anti-hypertrophic role for the PON gene cluster, suggesting a possible strategy for the treatment of cardiac hypertrophy through elevating the levels of the PON gene family.

  15. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  16. Molecular cloning and characterization of the human beta-like globin gene cluster.

    Science.gov (United States)

    Fritsch, E F; Lawn, R M; Maniatis, T

    1980-04-01

    The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.

  17. Chemistry of hydrogen oxide radicals (HOx in the Arctic troposphere in spring

    Directory of Open Access Journals (Sweden)

    L. Jaeglé

    2010-07-01

    Full Text Available We use observations from the April 2008 NASA ARCTAS aircraft campaign to the North American Arctic, interpreted with a global 3-D chemical transport model (GEOS-Chem, to better understand the sources and cycling of hydrogen oxide radicals (HOx≡H+OH+peroxy radicals and their reservoirs (HOy≡HOx+peroxides in the springtime Arctic atmosphere. We find that a standard gas-phase chemical mechanism overestimates the observed HO2 and H2O2 concentrations. Computation of HOx and HOy gas-phase chemical budgets on the basis of the aircraft observations also indicates a large missing sink for both. We hypothesize that this could reflect HO2 uptake by aerosols, favored by low temperatures and relatively high aerosol loadings, through a mechanism that does not produce H2O2. We implemented such an uptake of HO2 by aerosol in the model using a standard reactive uptake coefficient parameterization with γ(HO2 values ranging from 0.02 at 275 K to 0.5 at 220 K. This successfully reproduces the concentrations and vertical distributions of the different HOx species and HOy reservoirs. HO2 uptake by aerosol is then a major HOx and HOy sink, decreasing mean OH and HO2 concentrations in the Arctic troposphere by 32% and 31% respectively. Better rate and product data for HO2 uptake by aerosol are needed to understand this role of aerosols in limiting the oxidizing power of the Arctic atmosphere.

  18. Long Noncoding RNAs in Development: Solidifying the Lncs to Hox Gene Regulation

    Directory of Open Access Journals (Sweden)

    Jeremy S. Dasen

    2013-10-01

    Full Text Available Long noncoding RNAs (lncRNAs are pervasively expressed in mammals, although their functions during development remain poorly understood. In this issue of Cell Reports, Delpretti et al. and Li et al. suggest essential roles for lncRNAs in coordinating Hox gene expression.

  19. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles.

    Science.gov (United States)

    Lapotko, Dmitri O; Lukianova, Ekaterina; Oraevsky, Alexander A

    2006-07-01

    Previously reported studies on laser nano-thermolysis of cancerous cells demonstrated insufficient efficacy and specificity of malignant cell damage. Safety, that is, absence of damage to normal cells in the course of the laser thermolysis was also low due to less than optimal protocol of cancer cell targeting with nanoparticles (NP). The objective of this study was two-fold: to optimize NP targeting to real tumor (human) cells and to better understand physical mechanisms of cell damage for improved control of the laser ablation. We have suggested (1) two-stage targeting method to form clusters of light-absorbing gold NPs selectively in target cells, and (2) the cell damage mechanism through laser-induced generation of vapor bubbles around NP clusters. Experimental investigation of laser nano-thermolysis of leukemia cells was performed using 30 nm spherical gold nanoparticles as a light absorbing agent, and photothermal and fluorescent microscopies as well as flow cytometry as methods to monitor microbubble formation and resulting damage of leukemia cells in human bone marrow specimens. NP clusters were formed and visualized using fluorescence microscopy at cell membranes and in cytoplasm of B-lymphoblasts. Laser irradiation of cells (532 nm, 10 nanoseconds, 0.6 J/cm2) induced microbubbles selectively in leukemia cells with large clusters, but not in cells with single NPs or small clusters. Quantitative analysis demonstrated that only 0.1%-1.5% of tumor cells and 77%-84% of normal bone marrow cells survived laser pulse. Two-stage cell targeting method permits formation of NP clusters selectively in diagnosis-specific tumor cells. The clusters serve as effective sources of photothermally-induced microbubbles, which kill individual target cells after a single laser pulse. The laser fluence threshold for generation of microbubbles is inversely proportional to the volume of NP clusters. (c) 2006 Wiley-Liss, Inc.

  20. Quantitative expression of the homeobox and integrin genes in human gastric carcinoma.

    Science.gov (United States)

    Rossi Degl'Innocenti, Duccio; Castiglione, Francesca; Buccoliero, Anna Maria; Bechi, Paolo; Taddei, Gian Luigi; Freschi, Giancarlo; Taddei, Antonio

    2007-10-01

    The homeobox (HOX) genes are a large family of regulator genes involved in the control of developmental processes and cell differentiation. The HOX genes encode transcription factors, and an increasing number of studies have shown that these genes may be implicated in the growth and the progression of many types of tumours. The present study investigated the expression of the HOX and integrin genes and their relationships in gastric carcinoma. We analyzed the RNA expression of 13 HOX genes from HOXA, C and D clusters and alphaV, alpha5 and alpha8 integrin genes in 24 gastric cancer samples by quantitative real-time PCR. The results showed that the HOXA2 gene and the alpha8 integrin gene had a lower expression in tumour samples than in normal gastric mucosas. The comparison between the HOX and integrin genes showed that HOXA2 and alphaV integrin expression presented the same trend in 83% of the samples. Moreover, in cancer samples that expressed the HOXD11 gene, the expression of alphaV integrin was lower with respect to normal mucosas. The different roles of HOX and integrin genes in gastric carcinoma remain to be fully elucidated. These findings suggest that the HOX genes may play a critical role in the genesis, maintenance and diffusion of gastric carcinoma.

  1. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  2. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

    Directory of Open Access Journals (Sweden)

    Markus Uhrig

    Full Text Available Alzheimer's disease (AD is characterized by neuronal degeneration and cell loss. Abeta(42, in contrast to Abeta(40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Abeta(40 and Abeta(42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Abeta(40 and Abeta(42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2 and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Abeta(42/Abeta(40 ratio. Importantly however, an increased Abeta(42/Abeta(40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Abeta(42/Abeta(40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Abeta(42/Abeta(40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes.

  3. The RNA-binding protein ELAV regulates Hox RNA processing, expression and function within the Drosophila nervous system.

    Science.gov (United States)

    Rogulja-Ortmann, Ana; Picao-Osorio, Joao; Villava, Casandra; Patraquim, Pedro; Lafuente, Elvira; Aspden, Julie; Thomsen, Stefan; Technau, Gerhard M; Alonso, Claudio R

    2014-05-01

    The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation.

  4. The enterobacterial common antigen-like gene cluster of Haemophilus ducreyi contributes to virulence in humans.

    Science.gov (United States)

    Banks, Keith E; Fortney, Kate R; Baker, Beth; Billings, Steven D; Katz, Barry P; Munson, Robert S; Spinola, Stanley M

    2008-06-01

    Haemophilus ducreyi 35000HP contains a cluster of homologues of genes required for the synthesis of enterobacterial common antigen (ECA), suggesting that H. ducreyi may express a putative ECA-like glycoconjugate. WecA initiates the synthesis of ECA by transferring N-acetylglucosamine to undecaprenyl-P, to form lipid I. A wecA mutant (35000HPwecA) was constructed, and 5 volunteers were inoculated at 3 sites with fixed doses of 35000HP on one arm and at 3 sites with varying doses of 35000HPwecA on the other arm. 35000HPwecA caused pustules to form at 3 sites inoculated with a dose 2.5-fold higher than that of 35000HP. However, at sites inoculated with similar doses of 35000HP and 35000HPwecA, pustules developed at 46.7% (95% confidence interval [CI], 23.3%-70.0%) of 15 parent-strain sites and at 8.3% (95% CI, 0.01%-23.6%) of 12 mutant-strain sites (P = .013). Thus, the expression of wecA contributes to the ability of H. ducreyi to cause pustules in humans.

  5. e-Cluster Building and Using for Nuclear Industry Human Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jung Hoon; Suh, Jang Soo [Nuclear Power Education Institute, KHNP, Ulsan (Korea, Republic of)

    2009-10-15

    In line with its industry support policy, KHNP provides training courses for small and medium sized companies within the nuclear sector. The courses cover three main areas; technical development, market expansion and human resource and finance. They are provided in traditional classroom settings and on-line. Employees from small and medium sized companies can take any of the available courses according to company and individual training and development requirements. While the training and development opportunities serve a role in the growth and development of skills and capabilities industry-wide, KHNP also sees the involvement of a wide range of nuclear industry participants in the program as a means of developing a safety consensus that addresses both operational and social safety concerns. The purpose of this paper is to outline the successes of the KHNP industry training support program to date and to propose the development of an e-Cluster model. This model envisages the development of a nuclear industry. It will provide a means for sharing information and developing and maintaining industry-wide technical, management and safety standards.

  6. Iron-sulfur cluster biosynthesis: functional characterization of the N- and C-terminal domains of human NFU.

    Science.gov (United States)

    Liu, Yushi; Qi, Wenbin; Cowan, J A

    2009-02-10

    Human NFU (also known as HIRIP5) has been implicated in cellular iron-sulfur cluster biosynthesis. Bacterial and yeast forms are smaller than the human protein and are homologous to the C-terminal domain of the latter. This C-terminal domain contains a pair of redox active cysteines and demonstrates thioredoxin-like activity by mediating persulfide bond cleavage of sulfur-loaded NifS (an IscS-type protein), the sulfide donor for [2Fe-2S] cluster assembly on ISU-type scaffold proteins. Herein, the affinity of full-length human NFU and the individual N- and C-terminal domains for sulfide donor and cluster scaffold proteins is assessed. The influence of the N-terminal domain on C-terminal NFU binding to NifS and persulfide reductase activity is also examined. Only the C-terminal domain is required for persulfide reductase activity, while complex formation of NifS with full-length NFU is similar to that of the C-terminal domain alone (K(D) approximately 9.7 +/- 0.7 and 10.1 +/- 0.6 microM, respectively). There is negligible affinity between the isolated C- and N-terminal domains, while the N-terminal domain has negligible affinity for either sulfide donor or cluster scaffold proteins. The temperature dependence of the binding enthalpy for formation of the complex between NifS and the C-terminal domain of NFU yields a change in molar heat capacity (DeltaC(p) approximately 138 cal mol(-1) K(-1)) that suggests bonding at the protein-protein interface is dominated by electrostatic interactions. This is consistent with electrostatic potential maps for bacterial homologues of the N- and C-terminal domains of human NFU, which most likely reflect the structural characteristics expected for full-length human NFU.

  7. HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: towards inferring the core transcriptional regulators of decidual genes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    Full Text Available BACKGROUND: During the menstrual cycle, the ovarian steroid hormones estrogen and progesterone control a dramatic transcriptional reprogramming of endometrial stromal cells (ESCs leading to a receptive state for blastocyst implantation and the establishment of pregnancy. A key marker gene of this decidualization process is the prolactin gene. Several transcriptional regulators have been identified that are essential for decidualization of ESCs, including the Hox genes HoxA-10 and HoxA-11, and the forkhead box gene FOXO1A. While previous studies have identified downstream target genes for HoxA-10 and FOXO1A, the role of HoxA-11 in decidualization has not been investigated. Here, we show that HoxA-11 is required for prolactin expression in decidualized ESC. While HoxA-11 alone is a repressor on the decidual prolactin promoter, it turns into an activator when combined with FOXO1A. Conversely, HoxA-10, which has been previously shown to associate with FOXO1A to upregulate decidual IGFBP-1 expression, is unable to upregulate PRL expression when co-expressed with FOXO1A. By co-immunoprecipitation and chromatin immunoprecipitation, we demonstrate physical association of HoxA-11 and FOXO1A, and binding of both factors to an enhancer region (-395 to -148 relative to the PRL transcriptional start site of the decidual prolactin promoter. Because FOXO1A is induced upon decidualization, it serves to assemble a decidual-specific transcriptional complex including HoxA-11. These data highlight cooperativity between numerous transcription factors to upregulate PRL in differentiating ESC, and suggest that this core set of transcription factors physically and functionally interact to drive the expression of a gene battery upregulated in differentiated ESC. In addition, the functional non-equivalence of HoxA-11 and HoxA-10 with respect to PRL regulation suggests that these transcription factors regulate distinct sets of target genes during decidualization.

  8. Polymer models of the hierarchical folding of the Hox-B chromosomal locus

    Science.gov (United States)

    Annunziatella, Carlo; Chiariello, Andrea M.; Bianco, Simona; Nicodemi, Mario

    2016-10-01

    As revealed by novel technologies, chromosomes in the nucleus of mammalian cells have a complex spatial organization that serves vital functional purposes. Here we use models from polymer physics to identify the mechanisms that control their three-dimensional spatial organization. In particular, we investigate a model of the Hox-B locus, an important genomic region involved in embryo development, to expose the principles regulating chromatin folding and its complex behaviors in mouse embryonic stem cells. We reconstruct with high accuracy the pairwise contact matrix of the Hox-B locus as derived by Hi-C experiments and investigate its hierarchical folding dynamics. We trace back the observed behaviors to general scaling properties of polymer physics.

  9. Regulation of number and size of digits by posterior Hox genes: A dose-dependent mechanism with potential evolutionary implications

    OpenAIRE

    Zákány, József; Fromental-Ramain, Catherine; Warot, Xavier; Duboule, Denis

    1997-01-01

    The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose–response is o...

  10. Regulation of number and size of digits by posterior Hox genes: A dose-dependent mechanism with potential evolutionary implications

    Science.gov (United States)

    Zákány, József; Fromental-Ramain, Catherine; Warot, Xavier; Duboule, Denis

    1997-01-01

    The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose–response is observed in the morphogenesis of the penian bone, the baculum, which further suggests that digits and external genitalia share this genetic control mechanism. A progressive reduction in the dose of Hox gene products led first to ectrodactyly, then to olygodactyly and adactyly. Interestingly, this transition between the pentadactyl to the adactyl formula went through a step of polydactyly. We propose that in the distal appendage of polydactylous short-digited ancestral tetrapods, such as Acanthostega, the HoxA complex was predominantly active. Subsequent recruitment of the HoxD complex contributed to both reductions in digit number and increase in digit length. Thus, transition through a polydactylous limb before reaching and stabilizing the pentadactyl pattern may have relied, at least in part, on asynchronous and independent changes in the regulation of HoxA and HoxD gene complexes. PMID:9391088

  11. Hox C6 expression during development and regeneration of forelimbs in larval Notophthalmus viridescens.

    Science.gov (United States)

    Khan, P A; Tsilfidis, C; Liversage, R A

    1999-06-01

    A central theme concerning the epimorphic regenerative potential of urodele amphibian appendages is that limb regeneration in the adult parallels larval limb development. Results of previous research have led to the suggestion that homeobox containing genes are "re-expressed" during the epimorphic regeneration of forelimbs of adult Notophthalmus viridescens in patterns which retrace larval limb development. However, to date no literature exists concerning expression patterns of any homeobox containing genes during larval development of this species. The lack of such information has been a hindrance in exploring the similarities as well as differences which exist between limb regeneration in adults and limb development in larvae. Here we report the first such results of the localization of Hox C6 (formerly, NvHBox-1) in developing and regenerating forelimbs of N. viridescens larvae as demonstrated by whole-mount in situ hybridization. Inasmuch as the pattern of Hox C6 expression is similar in developing forelimb buds of larvae and epimorphically regenerating forelimb blastemata of both adults and larvae, our results support the paradigm that epimorphic regeneration in adult newts parallels larval forelimb development. However, in contrast with observations which document the presence of Hox C6 in both intact, as well as regenerating hindlimbs and tails of adult newts, our results reveal no such Hox C6 expression during larval development of hindlimbs or the tail. As such, our findings indicate that critical differences in larval hindlimb and tail development versus adult expression patterns of this gene in these two appendages may be due primarily to differences in gene regulation as opposed to gene function. Thus, the apparent ability of urodeles to regulate genes in such a highly co-ordinated fashion so as to replace lost, differentiated, appendicular structures in adult animals may assist, at least in part, in better elucidating the phenomenon of epimorphic

  12. Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila HOX genes.

    OpenAIRE

    Casares, F.; Calleja, M.; Sánchez-Herrero, E

    1996-01-01

    In Drosophila, the Ultrabithorax, abdominal-A and Abdominal-B HOX genes of the bithorax complex determine the identity of part of the thorax and the whole abdomen. Either the absence of these genes or their ectopic expression transform segments into the identity of different ones along the antero-posterior axis. Here we show that misexpression of Ultrabithorax, abdominal-A and, to some extent, Abdominal-B genes cause similar transformations in some of the fruitfly appendages: antennal tissue ...

  13. JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade.

    Directory of Open Access Journals (Sweden)

    Pedro B Pinto

    2015-07-01

    Full Text Available Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the organ forms. Very little is known about the steps leading from the early specification of the cells that form the organ primordium to the moment when a robust gene network is in place. Here we study in detail how a Hox protein induces during early embryogenesis a simple organogenetic cascade that matures into a complex gene network through the activation of feedback and feed forward interaction loops. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B. Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modular cis regulatory element integrates the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. We describe how a Hox induced genetic cascade transforms into a robust gene network during organogenesis due to the repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our results show that in this network STAT functions not just as a direct transcription factor, but also acts as a "counter-repressor", uncovering a novel mode for STAT directed transcriptional regulation.

  14. JAK/STAT and Hox Dynamic Interactions in an Organogenetic Gene Cascade

    Science.gov (United States)

    Pinto, Pedro B.; Espinosa-Vázquez, Jose Manuel; Rivas, María Luísa; Hombría, James Castelli-Gair

    2015-01-01

    Organogenesis is controlled by gene networks activated by upstream selector genes. During development the gene network is activated stepwise, with a sequential deployment of successive transcription factors and signalling molecules that modify the interaction of the elements of the network as the organ forms. Very little is known about the steps leading from the early specification of the cells that form the organ primordium to the moment when a robust gene network is in place. Here we study in detail how a Hox protein induces during early embryogenesis a simple organogenetic cascade that matures into a complex gene network through the activation of feedback and feed forward interaction loops. To address how the network organization changes during development and how the target genes integrate the genetic information it provides, we analyze in Drosophila the induction of posterior spiracle organogenesis by the Hox gene Abdominal-B (Abd-B). Initially, Abd-B activates in the spiracle primordium a cascade of transcription factors and signalling molecules including the JAK/STAT signalling pathway. We find that at later stages STAT activity feeds back directly into Abd-B, initiating the transformation of the Hox cascade into a gene-network. Focusing on crumbs, a spiracle downstream target gene of Abd-B, we analyze how a modular cis regulatory element integrates the dynamic network information set by Abd-B and the JAK/STAT signalling pathway during development. We describe how a Hox induced genetic cascade transforms into a robust gene network during organogenesis due to the repeated interaction of Abd-B and one of its targets, the JAK/STAT signalling cascade. Our results show that in this network STAT functions not just as a direct transcription factor, but also acts as a "counter-repressor", uncovering a novel mode for STAT directed transcriptional regulation. PMID:26230388

  15. Clustering of cardiovascular risk factors mimicking the human metabolic syndrome X in eNOS null mice.

    OpenAIRE

    Cook, S; Hugli, O; Egli, M; Vollenweider, P.; Burcelin, R.; Nicod, P; Thorens, B.; Scherrer, U

    2003-01-01

    AIMS/HYPOTHESIS: The metabolic syndrome comprises a clustering of cardiovascular risk factors but the underlying mechanism is not known. Mice with targeted disruption of endothelial nitric oxide synthase (eNOS) are hypertensive and insulin resistant. We wondered, whether eNOS deficiency in mice is associated with a phenotype mimicking the human metabolic syndrome. METHODS AND RESULTS: In addition to arterial pressure and insulin sensitivity (euglycaemic hyperinsulinaemic clamp), we measured t...

  16. The C. elegans hox gene lin-39 controls cell cycle progression during vulval development.

    Science.gov (United States)

    Roiz, Daniel; Escobar-Restrepo, Juan Miguel; Leu, Philipp; Hajnal, Alex

    2016-10-01

    Cell fate specification during organogenesis is usually followed by a phase of cell proliferation to produce the required number of differentiated cells. The Caenorhabditis elegans vulva is an excellent model to study how cell fate specification and cell proliferation are coordinated. The six vulval precursor cells (VPCs) are born at the first larval stage, but they arrest in the G1 phase of the cell cycle until the beginning of the third larval stage, when their fates are specified and the three proximal VPCs proliferate to generate 22 vulval cells. An epidermal growth factor (EGF) signal from the gonadal anchor cell combined with lateral DELTA/NOTCH signaling between the VPCs determine the primary (1°) and secondary (2°) fates, respectively. The hox gene lin-39 plays a key role in integrating these spatial patterning signals and in maintaining the VPCs as polarized epithelial cells. Using a fusion-defective eff-1(lf) mutation to keep the VPCs polarized, we find that VPCs lacking lin-39 can neither activate lateral NOTCH signaling nor proliferate. LIN-39 promotes cell cycle progression through two distinct mechanisms. First, LIN-39 maintains the VPCs competent to proliferate by inducing cdk-4 cdk and cye-1 cyclinE expression via a non-canonical HOX binding motif. Second, LIN-39 activates in the adjacent VPCs the NOTCH signaling pathway, which promotes VPC proliferation independently of LIN-39. The hox gene lin-39 is therefore a central node in a regulatory network coordinating VPC differentiation and proliferation.

  17. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

    Directory of Open Access Journals (Sweden)

    Maria Di Bonito

    Full Text Available Rhombomeres (r contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN, and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.

  18. Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

    Science.gov (United States)

    Di Bonito, Maria; Narita, Yuichi; Avallone, Bice; Sequino, Luigi; Mancuso, Marta; Andolfi, Gennaro; Franzè, Anna Maria; Puelles, Luis; Rijli, Filippo M; Studer, Michèle

    2013-01-01

    Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.

  19. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    Full Text Available Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.

  20. Quantitative analysis of individual hepatocyte growth factor receptor clusters in influenza A virus infected human epithelial cells using localization microscopy.

    Science.gov (United States)

    Wang, Qiaoyun; Dierkes, Rüdiger; Kaufmann, Rainer; Cremer, Christoph

    2014-04-01

    In this report, we applied a special localization microscopy technique (Spectral Precision Distance/Spatial Position Determination Microscopy/SPDM) to quantitatively analyze the effect of influenza A virus (IAV) infection on the spatial distribution of individual HGFR (Hepatocyte Growth Factor Receptor) proteins on the membrane of human epithelial cells at the single molecule resolution level. We applied this SPDM method to Alexa 488 labeled HGFR proteins with two different ligands. The ligands were either HGF (Hepatocyte Growth Factor), or IAV. In addition, the HGFR distribution in a control group of mock-incubated cells without any ligands was investigated. The spatial distribution of 1×10(6) individual HGFR proteins localized in large regions of interest on membranes of 240 cells was quantitatively analyzed and found to be highly non-random. Between 21% and 24% of the HGFR molecules were located in 44,304 small clusters with an average diameter of 54nm. The mean density of HGFR molecule signals per individual cluster was very similar in control cells, in cells with ligand only, and in IAV infected cells, independent of the incubation time. From the density of HGFR molecule signals in the clusters and the diameter of the clusters, the number of HGFR molecule signals per cluster was estimated to be in the range between 4 and 11 (means 5-6). This suggests that the membrane bound HGFR clusters form small molecular complexes with a maximum diameter of few tens of nm, composed of a relatively low number of HGFR molecules. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Selective inhibition of class switching to IgG and IgE by recruitment of the HoxC4 and Oct-1 homeodomain proteins and Ku70/Ku86 to newly identified ATTT cis-elements.

    Science.gov (United States)

    Schaffer, András; Kim, Edmund C; Wu, Xiaoping; Zan, Hong; Testoni, Lucia; Salamon, Szilvia; Cerutti, Andrea; Casali, Paolo

    2003-06-20

    Immunoglobulin (Ig) class switching is central to the maturation of the antibody response as IgG, IgA, and IgE are endowed with more diverse biological effector functions than IgM. It is induced upon engagement of CD40 on B lymphocytes by CD40L expressed by activated CD4+ T cells and exposure of B cells to T cell-secreted cytokines including interleukin-4 and transforming growth factor-beta. It begins with germ line IH-CH transcription and unfolds through class switch DNA recombination (CSR). We show here that the HoxC4 and Oct-1 homeodomain proteins together with the Ku70/Ku86 heterodimer bind as a complex to newly identified switch (S) regulatory ATTT elements (SREs) in the Igamma and Iepsilon promoters and downstream regions to dampen basal germ line Igamma-Cgamma and Iepsilon-Cepsilon transcriptions and repress CSR to Cgamma and Cepsilon. This mechanism is inactive in the Calpha1/Calpha2 loci because of the lack of SREs in the Ialpha1/Ialpha2 promoters. Accordingly, in resting human IgM+IgD+ B cells, HoxC4, Oct-1, and Ku70/Ku86 can be readily identified as bound to the Igamma and Iepsilon promoters but not the Ialpha1/Ialpha2 promoters. CD40 signaling dissociates the HoxC4.Oct-1. Ku complex from the Igamma and Iepsilon promoter SREs, thereby relieving the IH-CH transcriptional repression and allowing CSR to unfold. Dissociation of HoxC4.Oct-1. Ku from DNA is hampered by CD153 engagement, a CD40-signaling inhibitor. Thus, these findings outline a HoxC4.Oct-1. Ku-dependent mechanism of selective regulation of class switching to IgG and IgE and further suggest distinct co-evolution and shared CSR activation pathways in the Cgamma and Cepsilon as opposed to the Calpha1/Calpha2 loci.

  2. Experimental activation of the sphenopalatine ganglion provokes cluster-like attacks in humans

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Barløse, Mads; Guo, Song

    2013-01-01

    BackgroundHigh frequency (HF) stimulation of the sphenopalatine ganglion (SPG) is an emerging abortive treatment for cluster headache (CH) attacks. HF SPG stimulation is thought to exert its effect by physiologically blocking parasympathetic outflow. We hypothesized that low frequency (LF) SPG...... separate days. We recorded headache characteristics and autonomic symptoms during and after stimulation.ResultsSix patients completed the study. Three out of six patients (50%) reported ipsilateral cluster-like attacks during or within 30 min of LF SPG stimulation. These cluster-like attacks were all...... stimulation may activate the SPG, causing increased parasympathetic outflow and thereby provoking cluster attacks in CH patients.MethodsIn a double-blind randomized cross-over study, seven CH patients implanted with an SPG neurostimulator were randomly allocated to receive HF or LF stimulation for 3 min on 2...

  3. Involvement of gene methylation changes in the differentiation of human amniotic epithelial cells into islet-like cell clusters.

    Science.gov (United States)

    Peng, Lin; Wang, Jian; Lu, Guangxiu

    2014-09-01

    Insulin-dependent diabetes results from destruction of the insulin-producing β-cells of the pancreas. Islet cell transplantation is a promising cure for diabetes. Here, we induced human amniotic epithelial cells (hAECs) to differentiate into islet-like cell clusters by nicotinamide plus betacellulin in vitro, and further investigated the DNA methylation status by a Nimble MeDIP microarray before and after cell differentiation to shed light on the molecular mechanisms of this differentiation. In addition, 5-Aza-2'-deoxycytidine was used to investigate whether the differentiation of hAECs into islet-like cells occurred through demethylation. Purified hAECs (CK18(+)/E-cadherin(+)/CD29(+)/CD90(-)/CD34(-)/CD45(-)) were isolated from human amnia. After induction, hAECs were found to be insulin positive and sensitive to glucose, indicating successful induction to islet-like cells. The methylation status of cell cytoskeleton-related genes was down-regulated and that of negative regulation of cell adhesion-related genes was up-regulated. The methylation status of pancreas development-related genes such as HNF1α and DGAT1 was decreased in hAECs after induction. After brief demethylation, INS gene expression was up-regulated in islet-like cell clusters, suggesting that DNA methylation changes were associated with the differentiation of hAECs into islet-like cell clusters.

  4. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    Science.gov (United States)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  5. Reverse Genetic Analysis of Transcription FactorOsHox9, a Member of Homeobox Family, in Rice

    Institute of Scientific and Technical Information of China (English)

    AI Li-ping; SHEN Ao; GAO Zhi-chao; LI Zheng-long; SUN Qiong-lin; LI Ying-ying; LUAN Wei-jiang

    2014-01-01

    Homeobox transcription factors participate in the growth and development of plants by regulating cell differentiation, morphogenesis and environmental signal response. To reveal the functions of these transcription factors in rice, we constructed the RNAi vectors ofOsHox9, a member of homeobox family, and analyzed the function ofOsHox9 using reverse genetics. The plant height and tillering number of RNAi transgenic plants decreased compared with those of wild-type plants. Reverse transcription-polymerase chain reaction analysis showed thatOsHox9 expression reduced in the transgenic plants with phenotypic variance, whereas that in the transgenic plants without phenotypic variance was similar to that in the wild-type plants. This result suggests that the phenotypes of the transgenic plants were caused by RNAi effects. The tissue-specificity ofOsHox9 expression indicated that it was expressed in different organs, with high expression in stem apical meristem and young panicles. Subcelular location ofOsHox9 demonstrated that it was localized on the cell membrane.

  6. Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Directory of Open Access Journals (Sweden)

    Marina E. Singarete

    2015-09-01

    Full Text Available Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes.

  7. Conservation and phylogeny of a novel family of non-Hox genes of the Antp class in Demospongiae (porifera).

    Science.gov (United States)

    Richelle-Maurer, Evelyn; Boury-Esnault, Nicole; Itskovich, Valeria B; Manuel, Michaël; Pomponi, Shirley A; Van de Vyver, Gisèle; Borchiellini, Carole

    2006-08-01

    A survey across the most basal animal phylum, the Porifera, for the presence of homeobox-containing genes led to the isolation of 24 partial or complete homeobox sequences from 21 sponge species distributed in 15 families and 6 orders of Demospongiae. All the new sequences shared a high identity/similarity with EmH-3 (Ephydatia muelleri), a non-Hox gene from the Antp class. The Demox sequences, EmH-3, and related homeodomains formed a well-supported clade with no true affinity with any known bilaterian family, including the Tlx/Hox11 family, suggesting that the EmH-3 family of genes, comprising 31 members, represents a novel family of non-Hox genes, called the Demox family, widespread among Demospongiae. The presence of the Tlx/Hox11 specific signature in the Demox family and common regulatory elements suggested that the Demox and Tlx/Hox11 families are closely related. In the phylogenetic analyses, freshwater Haplosclerida appeared as monophyletic, and Haplosclerida and Halichondrida as polyphyletic, with a clade comprising Agelas species and Axinella corrugata. As for their expression, high levels of Demox transcripts were found in adult tissues. Our data add to the number of published poriferan homeobox sequences and provide independent confirmation of the current Demospongiae phylogenies.

  8. Molecular evolution of HoxA13 and the multiple origins of limbless morphologies in amphibians and reptiles

    Science.gov (United States)

    Singarete, Marina E.; Grizante, Mariana B.; Milograna, Sarah R.; Nery, Mariana F.; Kin, Koryu; Wagner, Günter P.; Kohlsdorf, Tiana

    2015-01-01

    Developmental processes and their results, morphological characters, are inherited through transmission of genes regulating development. While there is ample evidence that cis-regulatory elements tend to be modular, with sequence segments dedicated to different roles, the situation for proteins is less clear, being particularly complex for transcription factors with multiple functions. Some motifs mediating protein-protein interactions may be exclusive to particular developmental roles, but it is also possible that motifs are mostly shared among different processes. Here we focus on HoxA13, a protein essential for limb development. We asked whether the HoxA13 amino acid sequence evolved similarly in three limbless clades: Gymnophiona, Amphisbaenia and Serpentes. We explored variation in ω (dN/dS) using a maximum-likelihood framework and HoxA13sequences from 47 species. Comparisons of evolutionary models provided low ω global values and no evidence that HoxA13 experienced relaxed selection in limbless clades. Branch-site models failed to detect evidence for positive selection acting on any site along branches of Amphisbaena and Gymnophiona, while three sites were identified in Serpentes. Examination of alignments did not reveal consistent sequence differences between limbed and limbless species. We conclude that HoxA13 has no modules exclusive to limb development, which may be explained by its involvement in multiple developmental processes. PMID:26500429

  9. Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function.

    Directory of Open Access Journals (Sweden)

    María Luisa Rivas

    Full Text Available Extradenticle (Exd and Homothorax (Hth function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC cofactors can modulate Abd-B like posterior Hox genes during development.

  10. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry....... Clustering of Fas was from skin biopsied. Soluble FasL in suction blister fluid was quantified by ELISA. Flow cytometric analysis demonstrated increased expression intensity of Fas after irradiation, with 1.6-,2.2- and 2.7-fold increased median expression at 24, 48 and 72 h after irradiation, respectively (n...... of soluble FasL in suction blister fluid from UVB-irradiated skin did not differ from those in unirradiated skin (n=5). Confocal laser scanning microscopy showed a rapid clustering of Fas within 30 min after irradiation. A simultaneous clustering of the adapter signalling protein FADD suggested that Fas...

  11. Mapping of the {alpha}{sub 4} subunit gene (GABRA4) to human chromosome 4 defines an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 1} gene cluster: Further evidence that modern GABA{sub a} receptor gene clusters are derived from an ancestral cluster

    Energy Technology Data Exchange (ETDEWEB)

    McLean, P.J.; Farb, D.H.; Russek, S.J. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-04-10

    We demonstrated previously that an {alpha}{sub 1}-{beta}{sub 2}-{gamma}{sub 2} gene cluster of the {gamma}-aminobutyric acid (GABA{sub A}) receptor is located on human chromosome 5q34-q35 and that an ancestral {alpha}-{beta}-{gamma} gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the {alpha}{sub 4} gene (GABRA4) maps to human chromosome 4p14-q12, defining a cluster comprising the {alpha}{sub 2}, {alpha}{sub 4}, {beta}{sub 1}, and {gamma}{sub 1} genes. The existence of an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 2} cluster on chromosome 4 and an {alpha}{sub 1}-{alpha}{sub 6}-{beta}{sub 2}-{gamma}{sub 2} cluster on chromosome 5 provides further evidence that the number of ancestral GABA{sub A} receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the {alpha} gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of a subunit should be located on human chromosome 15q11-q13 within an {alpha}{sub 5}-{alpha}{sub x}-{beta}{sub 3}-{gamma}{sub 3} gene cluster at the locus for Angelman and Prader-Willi syndromes. 34 refs., 6 figs., 1 tab.

  12. Genetic k-Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China

    Directory of Open Access Journals (Sweden)

    Weihua Zeng

    2013-06-01

    Full Text Available Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k-means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster.

  13. Understanding the Impact of Human Mobility Patterns on Taxi Drivers’ Profitability Using Clustering Techniques: A Case Study in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Hasan A. H. Naji

    2017-06-01

    Full Text Available Taxi trajectories reflect human mobility over the urban roads’ network. Although taxi drivers cruise the same city streets, there is an observed variation in their daily profit. To reveal the reasons behind this issue, this study introduces a novel approach for investigating and understanding the impact of human mobility patterns (taxi drivers’ behavior on daily drivers’ profit. Firstly, a K-means clustering method is adopted to group taxi drivers into three profitability groups according to their driving duration, driving distance and income. Secondly, the cruising trips and stopping spots for each profitability group are extracted. Thirdly, a comparison among the profitability groups in terms of spatial and temporal patterns on cruising trips and stopping spots is carried out. The comparison applied various methods including the mash map matching method and DBSCAN clustering method. Finally, an overall analysis of the results is discussed in detail. The results show that there is a significant relationship between human mobility patterns and taxi drivers’ profitability. High profitability drivers based on their experience earn more compared to other driver groups, as they know which places are more active to cruise and to stop and at what times. This study provides suggestions and insights for taxi companies and taxi drivers in order to increase their daily income and to enhance the efficiency of the taxi industry.

  14. Mapping Diversity of Publication Patterns in the Social Sciences and Humanities: An Approach Making Use of Fuzzy Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Frederik T. Verleysen

    2016-11-01

    Full Text Available Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship. Design/methodology/approach: In a follow-up to the hard partitioning clustering by Verleysen and Weeren in 2016, we now propose the complementary use of fuzzy cluster analysis, making use of a membership coefficient to study gradual differences between publication styles among authors within a scholarly discipline. The analysis of the probability density function of the membership coefficient allows to assess the distribution of publication styles within and between disciplines. Findings: As an illustration we analyze 1,828 productive authors affiliated in Flanders, Belgium. Whereas a hard partitioning previously identified two broad publication styles, an international one vs. a domestic one, fuzzy analysis now shows gradual differences among authors. Internal diversity also varies across disciplines and can be explained by researchers' specialization and dissemination strategies. Research limitations: The dataset used is limited to one country for the years 2000-2011; a cognitive classification of authors may yield a different result from the affiliation-based classification used here. Practical implications: Our method is applicable to other bibliometric and research evaluation contexts, especially for the social sciences and humanities in non-Anglophone countries. Originality/value: The method proposed is a novel application of cluster analysis to the field of bibliometrics. Applied to publication patterns at the author level in the social sciences and humanities, for the first time it systematically documents intra-disciplinary diversity.

  15. Hox genes pattern the anterior-posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea).

    Science.gov (United States)

    Hiebert, Laurel S; Maslakova, Svetlana A

    2015-04-11

    The pilidium larva is a novel body plan that arose within a single clade in the phylum Nemertea - the Pilidiophora. While the sister clade of the Pilidiophora and the basal nemerteans develop directly, pilidiophorans have a long-lived planktotrophic larva with a body plan distinctly different from that of the juvenile. Uniquely, the pilidiophoran juvenile develops inside the larva from several discrete rudiments. The orientation of the juvenile with respect to the larval body varies within the Pilidiophora, which suggests that the larval and juvenile anteroposterior (AP) axes are patterned differently. In order to gain insight into the evolutionary origins of the pilidium larva and the mechanisms underlying this implied axial uncoupling, we examined the expression of the Hox genes during development of the pilidiophoran Micrura alaskensis. We identified sequences of nine Hox genes and the ParaHox gene caudal through a combination of transcriptome analysis and molecular cloning, and determined their expression pattern during development using in situ hybridization in whole-mounted larvae. We found that Hox genes are first expressed long after the pilidium is fully formed and functional. The Hox genes are expressed in apparently overlapping domains along the AP axis of the developing juvenile in a subset of the rudiments that give rise to the juvenile trunk. Hox genes are not expressed in the larval body at any stage of development. While the Hox genes pattern the juvenile pilidiophoran, the pilidial body, which appears to be an evolutionary novelty, must be patterned by some mechanism other than the Hox genes. Although the pilidiophoran juvenile develops from separate rudiments with no obvious relationship to the embryonic formation of the larva, the Hox genes appear to exhibit canonical expression along the juvenile AP axis. This suggests that the Hox patterning system can maintain conserved function even when widely decoupled from early polarity established in the

  16. Directed neural differentiation of mouse embryonic stem cells is a sensitive system for the identification of novel Hox gene effectors.

    Science.gov (United States)

    Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina

    2011-01-01

    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox

  17. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans.

    Directory of Open Access Journals (Sweden)

    Matthew P Josephson

    Full Text Available Directed neuroblast and neuronal migration is important in the proper development of nervous systems. In C. elegans the bilateral Q neuroblasts QR (on the right and QL (on the left undergo an identical pattern of cell division and differentiation but migrate in opposite directions (QR and descendants anteriorly and QL and descendants posteriorly. EGL-20/Wnt, via canonical Wnt signaling, drives the expression of MAB-5/Hox in QL but not QR. MAB-5 acts as a determinant of posterior migration, and mab-5 and egl-20 mutants display anterior QL descendant migrations. Here we analyze the behaviors of QR and QL descendants as they begin their anterior and posterior migrations, and the effects of EGL-20 and MAB-5 on these behaviors. The anterior and posterior daughters of QR (QR.a/p after the first division immediately polarize and begin anterior migration, whereas QL.a/p remain rounded and non-migratory. After ~1 hour, QL.a migrates posteriorly over QL.p. We find that in egl-20/Wnt, bar-1/β-catenin, and mab-5/Hox mutants, QL.a/p polarize and migrate anteriorly, indicating that these molecules normally inhibit anterior migration of QL.a/p. In egl-20/Wnt mutants, QL.a/p immediately polarize and begin migration, whereas in bar-1/β-catenin and mab-5/Hox, the cells transiently retain a rounded, non-migratory morphology before anterior migration. Thus, EGL-20/Wnt mediates an acute inhibition of anterior migration independently of BAR-1/β-catenin and MAB-5/Hox, and a later, possible transcriptional response mediated by BAR-1/β-catenin and MAB-5/Hox. In addition to inhibiting anterior migration, MAB-5/Hox also cell-autonomously promotes posterior migration of QL.a (and QR.a in a mab-5 gain-of-function.

  18. CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution.

    Science.gov (United States)

    Martin, Arnaud; Serano, Julia M; Jarvis, Erin; Bruce, Heather S; Wang, Jennifer; Ray, Shagnik; Barker, Carryn A; O'Connell, Liam C; Patel, Nipam H

    2016-01-11

    Crustaceans possess a diverse array of specialized limbs. Although shifts in Hox gene expression domains have been postulated to play a role in generating this limb diversity, little functional data have been provided to understand the precise roles of Hox genes during crustacean development. We used a combination of CRISPR/Cas9-targeted mutagenesis and RNAi knockdown to decipher the function of the six Hox genes expressed in the developing mouth and trunk of the amphipod Parhyale hawaiensis. These experimentally manipulated animals display specific and striking homeotic transformations. We found that abdominal-A (abd-A) and Abdominal-B (Abd-B) are required for proper posterior patterning, with knockout of Abd-B resulting in an animal with thoracic type legs along what would have been an abdomen, and abd-A disruption generating a simplified body plan characterized by a loss of specialization in both abdominal and thoracic appendages. In the thorax, Ubx is necessary for gill development and for repression of gnathal fate, and Antp dictates claw morphology. In the mouth, Scr and Antp confer the part-gnathal, part-thoracic hybrid identity of the maxilliped, and Scr and Dfd prevent antennal identity in posterior head segments. Our results allow us to define the role Hox genes play in specifying each appendage type in Parhyale, including the modular nature by which some appendages are patterned by Hox gene inputs. In addition, we define how changes in Hox gene expression have generated morphological differences between crustacean species. Finally, we also highlight the utility of CRISPR/Cas9-based somatic mutagenesis in emerging model organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Designing Inhibitors against HOX domain mutations of PDX-1 and studying its association in Diabetes

    Directory of Open Access Journals (Sweden)

    Allam Appa Rao

    2012-03-01

    Full Text Available Type 1 diabetes mellitus was formally known as IDDM, type I, or juvenile onset diabetes. Type 1 DM can occur at any age. In this study,we analyzed the involvement of HOX domain of PDX-1 protein.The homeodomain transcription factor, pancreas duodenum homeobox (PDX-1, encoded by PDX-1 gene, which is a transcriptional activator of several genes, including insulin, somatostatin, glucokinase, islet amyloid polypeptide, and glucose transporter type 2 and essential for pancreas development, insulin production, and glucose homeostasis.[1,13]. HOX domain has a length of 63aa and control developmental patterns and cell differentiation in vertebrates by acting positive or negative regulators[4,9,16]. Different approached had been applied to identify the mutational hot spot region of HOX domain and calculate mutational frequency of the amino acids which resides in the hotspot region. Binding site of the domain had been identified and found that THR208, GLN246 ,VAL247, ASN253 involved in interaction with ligand. Potential Inhibitors had been screened on the basis of various criteria and bioactivity score had been calculated. Energy optimization was done by applying AMBER force field and steepest descent method. Docking was performed by CCDC GOLD, Molegro, HEX, and Argus lab to find the best potent inhibitor and increase the accuracy of the docking process. Sitagliptin showed satisfactory result on both docking and bioactivity analysis. It showed a GOLD fitness score of 49.8386 and had a moldock score of -122.919 with a ligand efficiency -4.33692. Compound had a bioactivity score of 0.56 for protease inhibitor. Sitagliptin showed good binding affinity to the target, which helps to work the pancreas in proper way and to secret insulin.

  20. MicroRNA 302/367 Cluster Effectively Facilitates Direct Reprogramming from Human Fibroblasts into Functional Neurons.

    Science.gov (United States)

    Zhou, Chen; Gu, Hongfeng; Fan, Rong; Wang, Bei; Lou, Jueren

    2015-12-01

    Recent studies suggest that mature somatic cells can be reprogrammed to become induced pluripotent stem cells by overexpressing specific transcription factors or microRNAs (miRNAs). Theoretically, this technique could provide a wide array of cells for therapeutics. However, the process of redifferentiation after cell reprogramming to pluripotency is inefficient and time restricted. We proposed that the differentiation of somatic cells into specific cells of another germ layer can be induced and accelerated with appropriate miRNAs and culture conditions. In human fibroblasts, we found that overexpression of pluripotency stem cell-specific miRNA-302/367 cluster, together with two other neuron-specific miRNAs (miRNA-9/9* and miRNA-124) induced fibroblasts conversion into neurons. The cells assumed neuron morphology, were positive for several neuron markers, and exhibited neuronal membrane potential feature. Moreover, concentrated expression of synaptic markers were observed in these cells in vitro and in vivo in nude mice brain, suggesting possible connectivity. To achieve efficient reprogramming, miRNA-302/367 cluster, miRNA-9/9*, and miRNA-124 were all required. The combination of the proved pluripotency-inducing miRNA-302/367 cluster and cell-specific miRNAs provides a unique strategy for one-step cellular conversion that could have important implications for studies of neuron development and neurological disease therapy.

  1. Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster.

    Science.gov (United States)

    Wang, Li; Di, Li-Jun; Lv, Xiang; Zheng, Wei; Xue, Zheng; Guo, Zhi-Chen; Liu, De-Pei; Liang, Chi-Chuan

    2009-01-01

    Matrix attachment regions (MARs) are important in chromatin organization and gene regulation. Although it is known that there are a number of MAR elements in the beta-globin gene cluster, it is unclear that how these MAR elements are involved in regulating beta-globin genes expression. Here, we report the identification of a new MAR element at the LCR (locus control region) of human beta-globin gene cluster and the detection of the inter-MAR association within the beta-globin gene cluster. Also, we demonstrate that SATB1, a protein factor that has been implicated in the formation of network like higher order chromatin structures at some gene loci, takes part in beta-globin specific inter-MAR association through binding the specific MARs. Knocking down of SATB1 obviously reduces the binding of SATB1 to the MARs and diminishes the frequency of the inter-MAR association. As a result, the ACH establishment and the alpha-like globin genes and beta-like globin genes expressions are affected either. In summary, our results suggest that SATB1 is a regulatory factor of hemoglobin genes, especially the early differentiation genes at least through affecting the higher order chromatin structure.

  2. Segmentation and Labelling of Human Spine MR Images Using Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Jiyo.S.Athertya

    2016-04-01

    Full Text Available Computerized medical image segmentation is a challe nging area because of poor resolution and weak contrast. The predominantly used conventio nal clustering techniques and the thresholding methods suffer from limitations owing to their heavy dependence on user interactions. Uncertainties prevalent in an image c annot be captured by these techniques. The performance further deteriorates when the images ar e corrupted by noise, outliers and other artifacts. The objective of this paper is to develo p an effective robust fuzzy C- means clustering for segmenting vertebral body from magnetic resonan ce images. The motivation for this work is that spine appearance, shape and geometry measureme nts are necessary for abnormality detection and thus proper localisation and labellin g will enhance the diagnostic output of a physician. The method is compared with Otsu thresho lding and K-means clustering to illustrate the robustness. The reference standard for validation was the annot ated images from the radiologist, and the Dice coefficient and Hausdorff distance measures were used to evaluate the segmentation.

  3. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses.

    Science.gov (United States)

    Pride, David T; Salzman, Julia; Relman, David A

    2012-09-01

    Explorations of human microbiota have provided substantial insight into microbial community composition; however, little is known about interactions between various microbial components in human ecosystems. In response to the powerful impact of viral predation, bacteria have acquired potent defences, including an adaptive immune response based on the clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas system. To improve our understanding of the interactions between bacteria and their viruses in humans, we analysed 13 977 streptococcal CRISPR sequences and compared them with 2 588 172 virome reads in the saliva of four human subjects over 17 months. We found a diverse array of viruses and CRISPR spacers, many of which were specific to each subject and time point. There were numerous viral sequences matching CRISPR spacers; these matches were highly specific for salivary viruses. We determined that spacers and viruses coexist at the same time, which suggests that streptococcal CRISPR/Cas systems are under constant pressure from salivary viruses. CRISPRs in some subjects were just as likely to match viral sequences from other subjects as they were to match viruses from the same subject. Because interactions between bacteria and viruses help to determine the structure of bacterial communities, CRISPR-virus analyses are likely to provide insight into the forces shaping the human microbiome.

  4. Australian human and parrot Chlamydia psittaci strains cluster within the highly virulent 6BC clade of this important zoonotic pathogen

    Science.gov (United States)

    Branley, James; Bachmann, Nathan L.; Jelocnik, Martina; Myers, Garry S. A.; Polkinghorne, Adam

    2016-01-01

    Chlamydia psittaci is an avian pathogen and zoonotic agent of atypical pneumonia. The most pathogenic C. psittaci strains cluster into the 6BC clade, predicted to have recently emerged globally. Exposure to infected parrots is a risk factor with limited evidence also of an indirect exposure risk. Genome sequencing was performed on six Australian human and a single avian C. psittaci strain isolated over a 9 year period. Only one of the five human patients had explicit psittacine contact. Genomics analyses revealed that the Australian C. psittaci strains are remarkably similar, clustering tightly within the C. psittaci 6BC clade suggested to have been disseminated by South America parrot importation. Molecular clock analysis using the newly sequenced C. psittaci genomes predicted the emergence of the 6BC clade occurring approximately 2,000 years ago. These findings reveal the potential for an Australian natural reservoir of C. psittaci 6BC strains. These strains can also be isolated from seriously ill patients without explicit psittacine contact. The apparent recent and global spread of C. psittaci 6BC strains raises important questions over how this happened. Further studies may reveal whether the dissemination of this important zoonotic pathogen is linked to Australian parrot importation rather than parrots from elsewhere. PMID:27488134

  5. Dissection of cis-regulatory elements in the C. elegans Hox gene egl-5 promoter.

    Science.gov (United States)

    Teng, Yingqi; Girard, Lisa; Ferreira, Henrique B; Sternberg, Paul W; Emmons, Scott W

    2004-12-15

    Hox genes are highly conserved segmental identity genes well known for their complex expression patterns and divergent targets. Here we present an analysis of cis-regulatory elements in the Caenorhabditis elegans Hox gene egl-5, which is expressed in multiple tissues in the posterior region of the nematode. We have utilized phylogenetic footprinting to efficiently identify cis-regulatory elements and have characterized these with gfp reporters and tissue-specific rescue experiments. We have found that the complex expression pattern of egl-5 is the cumulative result of the activities of multiple tissue or local region-specific activator sequences that are conserved both in sequence and near-perfect order in the related nematode Caenorhabditis briggsae. Two conserved regulatory blocks analyzed in detail contain multiple sites for both positively and negatively acting factors. One of these regions may promote activation of egl-5 in certain cells via the Wnt pathway. Positively acting regions are repressed in inappropriate tissues by additional negative pathways acting at other sites within the promoter. Our analysis has allowed us to implicate several new regulatory factors significant to the control of egl-5 expression.

  6. Hox genes define distinct progenitor sub-domains within the second heart field

    Science.gov (United States)

    Bertrand, Nicolas; Roux, Marine; Ryckebüsch, Lucile; Niederreither, Karen; Dollé, Pascal; Moon, Anne; Capecchi, Mario; Zaffran, Stéphane

    2011-01-01

    Much of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and OFT myocardium whereas the posterior region gives rise to the atria. We have previously shown that Retinoic Acid (RA) signal participates to this patterning. We now show that Hoxb1, Hoxa1, and Hoxa3, as downstream RA targets, are expressed in distinct sub-domains within the SHF. Our genetic lineage tracing analysis revealed that Hoxb1, Hoxa1 and Hoxa3-expressing cardiac progenitor cells contribute to both atria and the inferior wall of the OFT, which subsequently gives rise to myocardium at the base of pulmonary trunk. By contrast to Hoxb1Cre, the contribution of Hoxa1-enhIII-Cre and Hoxa3Cre-labeled cells is restricted to the distal regions of the OFT suggesting that proximo-distal patterning of the OFT is related to SHF sub-domains characterized by combinatorial Hox genes expression. Manipulation of RA signaling pathways showed that RA is required for the correct deployment of Hox-expressing SHF cells. This report provides new insights into the regulatory gene network in SHF cells contributing to the atria and sub-pulmonary myocardium. PMID:21385575

  7. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    Directory of Open Access Journals (Sweden)

    Samir Merabet

    2011-10-01

    Full Text Available Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA, we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  8. Hox6 genes modulate in vitro differentiation of mESCs to insulin-producing cells.

    Science.gov (United States)

    Larsen, Brian M; Marty-Santos, Leilani; Newman, Micaleah; Lukacs, Derek T; Spence, Jason R; Wellik, Deneen M

    2016-10-01

    The differentiation of glucose-responsive, insulin-producing cells from ESCs in vitro is promising as a cellular therapy for the treatment of diabetes, a devastating and common disease. Pancreatic β-cells are derived from the endoderm in vivo and therefore most current protocols attempt to generate a pure population of first endoderm, then pancreas epithelium, and finally insulin-producing cells. Despite this, differentiation protocols result in mixed populations of cells that are often poorly defined, but also contain mesoderm. Using an in vitro mESC-to-β cell differentiation protocol, we show that expression of region-specific Hox genes is induced. We also show that the loss of function of the Hox6 paralogous group, genes expressed only in the mesenchyme of the pancreas (not epithelium), affect the differentiation of insulin-producing cells in vitro. This work is consistent with the important role for these mesoderm-specific factors in vivo and highlights contribution of supporting mesenchymal cells in in vitro differentiation.

  9. Measuring Human Performance on Clustering Problems: Some Potential Objective Criteria and Experimental Research Opportunities

    Science.gov (United States)

    Brusco, Michael J.

    2007-01-01

    The study of human performance on discrete optimization problems has a considerable history that spans various disciplines. The two most widely studied problems are the Euclidean traveling salesperson problem and the quadratic assignment problem. The purpose of this paper is to outline a program of study for the measurement of human performance on…

  10. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    Allen, Hana Lango; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segre, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Maegi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Asa; Zillikens, M. Carola; Feitosa, Mary F.; Esko, Tonu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltan; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R. B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; Koenig, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Mueller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J. C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpelaeinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Pare, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietilainen, Kirsi H.; Pouta, Anneli; Riddertrale, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G. Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; vVan Meurs, Joyce B. J.; Aben, Katja K.; Ardlie, Kristin G.; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kahonen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimaki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Toenjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Gronberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G. Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Ines; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L. Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Ritta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Voelzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Schadt, H. -Erich; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, Andre G.; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J. F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Goncalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N.

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions

  11. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    H.L. Allen; K. Estrada Gil (Karol); G. Lettre (Guillaume); S.I. Berndt (Sonja); F. Rivadeneira Ramirez (Fernando); C.J. Willer (Cristen); A.U. Jackson (Anne); S. Vedantam (Sailaja); S. Raychaudhuri (Soumya); T. Ferreira (Teresa); A.R. Wood (Andrew); R.J. Weyant (Robert); A.V. Segrè (Ayellet); E.K. Speliotes (Elizabeth); E. Wheeler (Eleanor); N. Soranzo (Nicole); J.H. Park; J. Yang (Joanna); D.F. Gudbjartsson (Daniel); N.L. Heard-Costa (Nancy); J.C. Randall (Joshua); L. Qi (Lu); A.V. Smith (Albert Vernon); R. Mägi (Reedik); T. Pastinen (Tomi); L. Liang (Liming); I.M. Heid (Iris); J. Luan; G. Thorleifsson (Gudmar); T.W. Winkler (Thomas); M.E. Goddard (Michael); K.S. Lo; C. Palmer (Cameron); T. Workalemahu (Tsegaselassie); Y.S. Aulchenko (Yurii); A. Johansson (Åsa); M.C. Zillikens (Carola); M.F. Feitosa (Mary Furlan); T. Esko (Tõnu); T. Johnson (Toby); S. Ketkar (Shamika); P. Kraft (Peter); M. Mangino (Massimo); I. Prokopenko (Inga); D. Absher (Devin); E. Albrecht (Eva); F.D.J. Ernst (Florian); N.L. Glazer (Nicole); C. Hayward (Caroline); J.J. Hottenga (Jouke Jan); K.B. Jacobs (Kevin); J.W. Knowles (Joshua); Z. Kutalik (Zoltán); K.L. Monda (Keri); O. Polasek (Ozren); M. Preuss (Michael); N.W. Rayner (Nigel William); N.R. Robertson (Neil); V. Steinthorsdottir (Valgerdur); J.P. Tyrer (Jonathan); B.F. Voight (Benjamin); F. Wiklund (Fredrik); J. Xu (Jianfeng); J.H. Zhao; D.R. Nyholt (Dale); N. Pellikka (Niina); M. Perola (Markus); J.R.B. Perry (John); I. Surakka (Ida); M.L. Tammesoo; E.L. Altmaier (Elizabeth); N. Amin (Najaf); T. Aspelund (Thor); T. Bhangale (Tushar); G. Boucher (Gabrielle); D.I. Chasman (Daniel); C. Chen (Constance); L. Coin (Lachlan); M.N. Cooper (Matthew); A.L. Dixon (Anna); Q. Gibson (Quince); E. Grundberg (Elin); K. Hao (Ke); M.J. Junttila (Juhani); R.C. Kaplan (Robert); J. Kettunen (Johannes); I.R. König (Inke); T. Kwan (Tony); R.W. Lawrence (Robert); D.F. Levinson (Douglas); M. Lorentzon (Mattias); B. McKnight (Barbara); A.D. Morris (Andrew); M. Müller (Martina); J.S. Ngwa; S. Purcell (Shaun); S. Rafelt (Suzanne); R.M. Salem (Rany); E. Salvi (Erika); S. Sanna (Serena); J. Shi (Jianxin); U. Sovio (Ulla); J.R. Thompson (John); M.C. Turchin (Michael); L. Vandenput (Liesbeth); D.J. Verlaan (Dominique); V. Vitart (Veronique); C.C. White (Charles); A. Ziegler (Andreas); P. Almgren (Peter); A.J. Balmforth (Anthony); H. Campbell (Harry); L. Citterio (Lorena); A. de Grandi (Alessandro); A. Dominiczak (Anna); J. Duan (Jubao); P. Elliott (Paul); R. Elosua (Roberto); J.G. Eriksson (Johan); N.B. Freimer (Nelson); E.J.C. Geus (Eco); N. Glorioso (Nicola); S. Haiqing (Shen); A.L. Hartikainen; A.S. Havulinna (Aki); A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); T. Illig (Thomas); A. Jula (Antti); E. Kajantie (Eero); T.O. Kilpeläinen (Tuomas); M. Koiranen (Markku); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); J. Laitinen (Jaana); J. Liu (Jianjun); M.L. Lokki; A. Marusic (Ana); A. Maschio; T. Meitinger (Thomas); A. Mulas (Antonella); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); A. Petersmann (Astrid); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); A. Pouta (Anneli); M. Ridderstråle (Martin); J.I. Rotter (Jerome); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); C.O. Schmidt (Carsten Oliver); J. Sinisalo (Juha); J.H. Smit (Jan); H.M. Stringham (Heather); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); L. Zagato (Laura); L. Zgaga (Lina); P. Zitting (Paavo); H. Alavere (Helene); M. Farrall (Martin); W.L. McArdle (Wendy); M. Nelis (Mari); M.J. Peters (Marjolein); S. Ripatti (Samuli); J.B.J. van Meurs (Joyce); K.K.H. Aben (Katja); J.S. Beckmann (Jacques); J.P. Beilby (John); R.N. Bergman (Richard); S.M. Bergmann (Sven); F.S. Collins (Francis); D. Cusi (Daniele); M. den Heijer (Martin); G. Eiriksdottir (Gudny); P.V. Gejman (Pablo); A.S. Hall (Alistair); A. Hamsten (Anders); H.V. Huikuri (Heikki); C. Iribarren (Carlos); M. Kähönen (Mika); J. Kaprio (Jaakko); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); T. Kocher (Thomas); L.J. Launer (Lenore); T. Lehtimäki (Terho); O. Melander (Olle); T.H. Mosley (Thomas); A.W. Musk (Arthur); M.S. Nieminen (Markku); C.J. O'Donnell (Christopher); C. Ohlsson (Claes); B.A. Oostra (Ben); O. Raitakari (Olli); P.M. Ridker (Paul); J.D. Rioux (John); A. Rissanen (Aila); C. Rivolta (Carlo); H. Schunkert (Heribert); A.R. Shuldiner (Alan); D.S. Siscovick (David); M. Stumvoll (Michael); A. Tönjes (Anke); J. Tuomilehto (Jaakko); G.J. van Ommen (Gert); J. Viikari (Jorma); A.C. Heath (Andrew); N.G. Martin (Nicholas); G.W. Montgomery (Grant); M.A. Province (Mike); M.H. Kayser (Manfred); A.M. Arnold (Alice); L.D. Atwood (Larry); E.A. Boerwinkle (Eric); S.J. Chanock (Stephen); P. Deloukas (Panagiotis); C. Gieger (Christian); H. Grönberg (Henrik); A.T. Hattersley (Andrew); C. Hengstenberg (Christian); W. Hoffman (Wolfgang); G.M. Lathrop (Mark); V. Salomaa (Veikko); S. Schreiber (Stefan); M. Uda (Manuela); D. Waterworth (Dawn); A.F. Wright (Alan); T.L. Assimes (Themistocles); I. Barroso (Inês); A. Hofman (Albert); K.L. Mohlke (Karen); D.I. Boomsma (Dorret); M. Caulfield (Mark); L.A. Cupples (Adrienne); C.S. Fox (Caroline); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); T.B. Harris (Tamara); R.B. Hayes (Richard); M.R. Järvelin; V. Mooser (Vincent); P. Munroe (Patricia); W.H. Ouwehand (Willem); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); T. Quertermous (Thomas); I. Rudan (Igor); N.J. Samani (Nilesh); T.D. Spector (Timothy); H. Völzke (Henry); H. Watkins (Hugh); J.F. Wilson (James); L. Groop (Leif); T. Haritunians (Talin); F.B. Hu (Frank); A. Metspalu (Andres); K.E. North (Kari); D. Schlessinger; N.J. Wareham (Nick); D.J. Hunter (David); J.R. O´Connell; D.P. Strachan (David); H.E. Wichmann (Heinz Erich); I.B. Borecki (Ingrid); C.M. van Duijn (Cock); E.E. Schadt (Eric); U. Thorsteinsdottir (Unnur); L. Peltonen (Leena Johanna); A.G. Uitterlinden (André); P.M. Visscher (Peter); N. Chatterjee (Nilanjan); J. Erdmann (Jeanette); R.J.F. Loos (Ruth); M. Boehnke (Michael); M.I. McCarthy (Mark); E. Ingelsson (Erik); C.M. Lindgren (Cecilia); G.R. Abecasis (Gonçalo); K. Stefansson (Kari); T.M. Frayling (Timothy); J.N. Hirschhorn (Joel); K.G. Ardlie (Kristin); M.N. Weedon (Michael)

    2010-01-01

    textabstractMost common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small

  12. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    DEFF Research Database (Denmark)

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions...

  13. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    Allen, Hana Lango; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segre, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Maegi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Asa; Zillikens, M. Carola; Feitosa, Mary F.; Esko, Tonu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltan; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R. B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; Koenig, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Mueller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J. C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpelaeinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Pare, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietilainen, Kirsi H.; Pouta, Anneli; Riddertrale, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G. Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; vVan Meurs, Joyce B. J.; Aben, Katja K.; Ardlie, Kristin G.; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kahonen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimaki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Toenjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Gronberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G. Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Ines; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L. Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Ritta; Mooser, Vincent; Munroe, Patricia B.

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions

  14. Evaluation of p53, HoxD10, and E-Cadherin Status in Breast Cancer and Correlation with Histological Grade and Other Prognostic Factors

    Directory of Open Access Journals (Sweden)

    Preethi Sekar

    2014-01-01

    Full Text Available Background. Study of tumor molecular characteristics is necessary to understand both the risk of breast cancer recurrence and the response to therapy. Aims. To evaluate p53, HoxD10, and E-cadherin status in breast cancer and to correlate with histological grade and other prognostic factors. Material and Methods. The study was conducted in 60 cases of invasive ductal carcinoma NOS with 20 cases belonging to each grade and evaluation of p53 was done by IHC and that of HoxD10 and E Cadherin status by PCR and correlation was done with histological grade and other prognostic factors. Result. p53 expression was seen in 71.67% (43/60 of the tumors. HoxD10 gene was downregulated in 46.67% (28/60 of the tumors. p53 overexpression and lower HoxD10 mRNA levels showed statistically significant association higher histological grade of the tumor (P<0.05. CDH1 gene mutation was seen in 60% (15/25 of the tumors. No significant association was found between p53 expression, HoxD10 gene, CDH1 gene mutation, and other prognostic factors. Conclusion. p53 over expression and lower HoxD10 mRNA levels were found to be significantly associated with higher grade tumours. This suggests that p53 and HoxD10 gene play an important tumor suppressor role and the loss of which results in breast cancer progression.

  15. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus.

    Science.gov (United States)

    Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J

    2016-10-01

    Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.

  16. The Cluster [Re6Se8I6]3− Induces Low Hemolysis of Human Erythrocytes in Vitro: Protective Effect of Albumin

    Science.gov (United States)

    Rojas-Mancilla, Edgardo; Oyarce, Alexis; Verdugo, Viviana; Zheng, Zhiping; Ramírez-Tagle, Rodrigo

    2015-01-01

    The cluster Re6Se8I63− has been shown to induce preferential cell death of a hepatic carcinoma cell line, thus becoming a promising anti-cancer drug. Whether this cluster induces acute hemolysis or if it interacts with albumin remains unclear. The effect of acute exposure of human red blood cells to different concentrations of the cluster with and without albumin is described. Red blood cells from healthy donors were isolated, diluted at 1% hematocrit and exposed to the cluster (25–150 µM) at 37 °C, under agitation. Hemolysis and morphology were analyzed at 1 and 24 h. The potential protection of 0.1% albumin was also evaluated. Exposition to therapeutic doses of the cluster did not induce acute hemolysis. Similar results were observed following 24 h of exposition, and albumin slightly reduced hemolysis levels. Furthermore, the cluster induced alteration in the morphology of red blood cells, and this was prevented by albumin. Together, these results indicate that the cluster Re6Se8I63− is not a hemolytic component and induces moderate morphological alterations of red blood cells at high doses, which are prevented by co-incubation with albumin. In conclusion, the cluster Re6Se8I63− could be intravenously administered in animals at therapeutic doses for in vivo studies. PMID:25590300

  17. The Cluster [Re6Se8I6]3− Induces Low Hemolysis of Human Erythrocytes in Vitro: Protective Effect of Albumin

    Directory of Open Access Journals (Sweden)

    Edgardo Rojas-Mancilla

    2015-01-01

    Full Text Available The cluster Re6Se8I63− has been shown to induce preferential cell death of a hepatic carcinoma cell line, thus becoming a promising anti-cancer drug. Whether this cluster induces acute hemolysis or if it interacts with albumin remains unclear. The effect of acute exposure of human red blood cells to different concentrations of the cluster with and without albumin is described. Red blood cells from healthy donors were isolated, diluted at 1% hematocrit and exposed to the cluster (25–150 µM at 37 °C, under agitation. Hemolysis and morphology were analyzed at 1 and 24 h. The potential protection of 0.1% albumin was also evaluated. Exposition to therapeutic doses of the cluster did not induce acute hemolysis. Similar results were observed following 24 h of exposition, and albumin slightly reduced hemolysis levels. Furthermore, the cluster induced alteration in the morphology of red blood cells, and this was prevented by albumin. Together, these results indicate that the cluster Re6Se8I63− is not a hemolytic component and induces moderate morphological alterations of red blood cells at high doses, which are prevented by co-incubation with albumin. In conclusion, the cluster Re6Se8I63− could be intravenously administered in animals at therapeutic doses for in vivo studies.

  18. A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Zhongying Zhao

    2010-09-01

    Full Text Available MicroRNAs (miRNAs have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes.

  19. [Expression of HoxB5, SPC and AQP5 in neonatal rats with hyperoxia-induced chronic lung disease].

    Science.gov (United States)

    Xu, Wei; Fu, Jian-Hua; Xue, Xin-Dong

    2009-01-01

    Alveolar epithelium impairment is one of pathological changes associated with chronic lung disease (CLD). Hoxb5 is one of the few homeobox genes strongly expressed in the developing lung. This study investigated the expression of HoxB5, SPC and AQP5 in rats with CLD in order to explore the role of Hoxb-5 in impairment and reparation of alveolar epithelium. Eighty neonatal rats were randomly exposed to hyperoxia (model group) or to room air (control group) (n=40 each). The CLD model was induced by hyperoxia exposure. The expression of HoxB5, SPC and AQP5 protein and mRNA in the lung tissue was detected by immunohistochemistry and RT-PCR 1, 3, 7, 14 and 21 days after exposure. In the model group HoxB5 expression significantly decreased 7, 14 and 21 days after hyperoxia exposure. SPC expression decreased 3 days after hyperoxia exposure but increased significantly 7, 14 and 21 days after hyperoxia exposure as compared to the control group. AQP5 expression was progressively reduced with prolonged hyperoxia exposure. Hyperoxia exposure may lead to alveolar epithelial cell (AEC) damage in neonatal rats. The increased SPC expression and decreased AQP5 expression suggested that the ability of differentiation and transformation of AECII into AECI decreased in neonatal rats with CLD. The decreased HoxB5 expression following hyperoxia exposure might contribute to a decreased ability of differentiation of AECII.

  20. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

    Directory of Open Access Journals (Sweden)

    Gupta Manoj K

    2010-09-01

    Full Text Available Abstract Background Functional and molecular integrity of cardiomyocytes (CMs derived from induced pluripotent stem (iPS cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs microdissected from differentiating human iPS cells and embryonic stem (ES cells. Results Hierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes. Conclusions These data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.

  1. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton.

    Science.gov (United States)

    Creuzet, Sophie; Couly, Gérard; Vincent, Christine; Le Douarin, Nicole M

    2002-09-01

    Diencephalic, mesencephalic and metencephalic neural crest cells are skeletogenic and derive from neural folds that do not express Hox genes. In order to examine the influence of Hox gene expression on skull morphogenesis, expression of Hoxa2, Hoxa3 and Hoxb4 in conjunction with that of the green fluorescent protein has been selectively targeted to the Hox-negative neural folds of the avian embryo prior to the onset of crest cell emigration. Hoxa2 expression precludes the development of the entire facial skeleton. Transgenic Hoxa2 embryos such as those from which the Hox-negative domain of the cephalic neural crest has been removed have no upper or lower jaws and no frontonasal structures. Embryos subjected to the forced expression of Hoxa3 and Hoxb4 show severe defects in the facial skeleton but not a complete absence of facial cartilage. Hoxa3 prevents the formation of the skeleton derived from the first branchial arch, but allows the development (albeit reduced) of the nasal septum. Hoxb4, by contrast, hampers the formation of the nasal bud-derived skeleton, while allowing that of a proximal (but not distal) segment of the lower jaw. The combined effect of Hoxa3 and Hoxb4 prevents the formation of facial skeletal structures, comparable with Hoxa2. None of these genes impairs the formation of neural derivatives of the crest. These results suggest that over the course of evolution, the absence of Hox gene expression in the anterior part of the chordate embryo was crucial in the vertebrate phylum for the development of a face, jaws and brain case, and, hence, also for that of the forebrain.

  2. Triple immunoglobulin gene knockout transchromosomic cattle: bovine lambda cluster deletion and its effect on fully human polyclonal antibody production.

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsushita

    Full Text Available Towards the goal of producing fully human polyclonal antibodies (hpAbs or hIgGs in transchromosomic (Tc cattle, we previously reported that Tc cattle carrying a human artificial chromosome (HAC comprising the entire unrearranged human immunoglobulin (Ig heavy-chain (hIGH, kappa-chain (hIGK, and lambda-chain (hIGL germline loci produced physiological levels of hIgGs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, were homozygously inactivated (bIGHM-/-, bIGHML1-/-; double knockouts or DKO. However, because endogenous bovine immunoglobulin light chain loci are still intact, the light chains are produced both from the hIGK and hIGL genomic loci on the HAC and from the endogenous bovine kappa-chain (bIGK and lambda-chain (bIGL genomic loci, resulting in the production of fully hIgGs (both Ig heavy-chains and light-chains are of human origin: hIgG/hIgκ or hIgG/hIgλ and chimeric hIgGs (Ig heavy-chains are of human origin while the Ig light-chains are of bovine origin: hIgG/bIgκ or hIgG/bIgλ. To improve fully hIgG production in Tc cattle, we here report the deletion of the entire bIGL joining (J and constant (C gene cluster (bIGLJ1-IGLC1 to bIGLJ5-IGLC5 by employing Cre/loxP mediated site-specific chromosome recombination and the production of triple knockout (bIGHM-/-, bIGHML1-/- and bIGL-/-; TKO Tc cattle. We further demonstrate that bIGL cluster deletion greatly improves fully hIgGs production in the sera of TKO Tc cattle, with 51.3% fully hIgGs (hIgG/hIgκ plus hIgG/hIgλ.

  3. Identification of a genetic cluster influencing memory performance and hippocampal activity in humans.

    Science.gov (United States)

    de Quervain, Dominique J-F; Papassotiropoulos, Andreas

    2006-03-14

    Experimental work in animals has shown that memory formation depends on a cascade of molecular events. Here we show that variability of human memory performance is related to variability in genes encoding proteins of this signaling cascade, including the NMDA and metabotrobic glutamate receptors, adenylyl cyclase, CAMKII, PKA, and PKC. The individual profile of genetic variability in these signaling molecules correlated significantly with episodic memory performance (P < 0.00001). Moreover, functional MRI during memory formation revealed that this genetic profile correlated with activations in memory-related brain regions, including the hippocampus and parahippocampal gyrus. The present study indicates that genetic variability in the human homologues of memory-related signaling molecules contributes to interindividual differences in human memory performance and memory-related brain activations.

  4. Health and Human Rights in Chin State, Western Burma: A Population-Based Assessment Using Multistaged Household Cluster Sampling

    Science.gov (United States)

    Sollom, Richard; Richards, Adam K.; Parmar, Parveen; Mullany, Luke C.; Lian, Salai Bawi; Iacopino, Vincent; Beyrer, Chris

    2011-01-01

    Background The Chin State of Burma (also known as Myanmar) is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. Methods and Findings Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs) were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%–94.1%) reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project) definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. Conclusions Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary PMID:21346799

  5. Health and human rights in Chin State, Western Burma: a population-based assessment using multistaged household cluster sampling.

    Directory of Open Access Journals (Sweden)

    Richard Sollom

    Full Text Available BACKGROUND: The Chin State of Burma (also known as Myanmar is an isolated ethnic minority area with poor health outcomes and reports of food insecurity and human rights violations. We report on a population-based assessment of health and human rights in Chin State. We sought to quantify reported human rights violations in Chin State and associations between these reported violations and health status at the household level. METHODS AND FINDINGS: Multistaged household cluster sampling was done. Heads of household were interviewed on demographics, access to health care, health status, food insecurity, forced displacement, forced labor, and other human rights violations during the preceding 12 months. Ratios of the prevalence of household hunger comparing exposed and unexposed to each reported violation were estimated using binomial regression, and 95% confidence intervals (CIs were constructed. Multivariate models were done to adjust for possible confounders. Overall, 91.9% of households (95% CI 89.7%-94.1% reported forced labor in the past 12 months. Forty-three percent of households met FANTA-2 (Food and Nutrition Technical Assistance II project definitions for moderate to severe household hunger. Common violations reported were food theft, livestock theft or killing, forced displacement, beatings and torture, detentions, disappearances, and religious and ethnic persecution. Self reporting of multiple rights abuses was independently associated with household hunger. CONCLUSIONS: Our findings indicate widespread self-reports of human rights violations. The nature and extent of these violations may warrant investigation by the United Nations or International Criminal Court. Please see later in the article for the Editors' Summary.

  6. Combinatorial clustering of residue position subsets predicts inhibitor affinity across the human kinome.

    Directory of Open Access Journals (Sweden)

    Drew H Bryant

    Full Text Available The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity. The Combinatorial Clustering Of Residue Position Subsets (ccorps method, introduced here, provides a semi-supervised learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, ccorps is applied to the problem of identifying structural features of the kinase atp binding site that are informative of inhibitor binding. ccorps is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38 kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, ccorps is shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting points for the development of highly specific kinase inhibitors.

  7. Combinatorial clustering of residue position subsets predicts inhibitor affinity across the human kinome.

    Science.gov (United States)

    Bryant, Drew H; Moll, Mark; Finn, Paul W; Kavraki, Lydia E

    2013-01-01

    The protein kinases are a large family of enzymes that play fundamental roles in propagating signals within the cell. Because of the high degree of binding site similarity shared among protein kinases, designing drug compounds with high specificity among the kinases has proven difficult. However, computational approaches to comparing the 3-dimensional geometry and physicochemical properties of key binding site residue positions have been shown to be informative of inhibitor selectivity. The Combinatorial Clustering Of Residue Position Subsets (ccorps) method, introduced here, provides a semi-supervised learning approach for identifying structural features that are correlated with a given set of annotation labels. Here, ccorps is applied to the problem of identifying structural features of the kinase atp binding site that are informative of inhibitor binding. ccorps is demonstrated to make perfect or near-perfect predictions for the binding affinity profile of 8 of the 38 kinase inhibitors studied, while only having overall poor predictive ability for 1 of the 38 compounds. Additionally, ccorps is shown to identify shared structural features across phylogenetically diverse groups of kinases that are correlated with binding affinity for particular inhibitors; such instances of structural similarity among phylogenetically diverse kinases are also shown to not be rare among kinases. Finally, these function-specific structural features may serve as potential starting points for the development of highly specific kinase inhibitors.

  8. Implementation of hybrid clustering based on partitioning around medoids algorithm and divisive analysis on human Papillomavirus DNA

    Science.gov (United States)

    Arimbi, Mentari Dian; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    Data clustering can be executed through partition or hierarchical method for many types of data including DNA sequences. Both clustering methods can be combined by processing partition algorithm in the first level and hierarchical in the second level, called hybrid clustering. In the partition phase some popular methods such as PAM, K-means, or Fuzzy c-means methods could be applied. In this study we selected partitioning around medoids (PAM) in our partition stage. Furthermore, following the partition algorithm, in hierarchical stage we applied divisive analysis algorithm (DIANA) in order to have more specific clusters and sub clusters structures. The number of main clusters is determined using Davies Bouldin Index (DBI) value. We choose the optimal number of clusters if the results minimize the DBI value. In this work, we conduct the clustering on 1252 HPV DNA sequences data from GenBank. The characteristic extraction is initially performed, followed by normalizing and genetic distance calculation using Euclidean distance. In our implementation, we used the hybrid PAM and DIANA using the R open source programming tool. In our results, we obtained 3 main clusters with average DBI value is 0.979, using PAM in the first stage. After executing DIANA in the second stage, we obtained 4 sub clusters for Cluster-1, 9 sub clusters for Cluster-2 and 2 sub clusters in Cluster-3, with the BDI value 0.972, 0.771, and 0.768 for each main cluster respectively. Since the second stage produce lower DBI value compare to the DBI value in the first stage, we conclude that this hybrid approach can improve the accuracy of our clustering results.

  9. Interplay between structure and magnetism in HoxPr1-x alloys. 1. Neutron scattering

    DEFF Research Database (Denmark)

    Goff, J.P.; Bryn-Jacobsen, C.; McMorrow, D.F.

    1998-01-01

    The structural and the magnetic ordering in thin-film HoxPr1-x alloys have been studied using neutron-and x-ray-diffraction techniques. As the concentration of Ho decreases the alloys adopt hexagonal-close-packed (hcp), Sm, and double hexagonal-close-packed (dhcp) crystal structures. The results...... show enhanced occupation of the cubic sites by Pr in the Sm and dhcp phases. The magnetic behavior is found to be very different in the three crystalline phases. The hcp samples form basal-plane spirals and the alloys with the Sm structure form a commensurate magnetic structure with the same...... periodicity as the magnetic order on the hexagonal sites in Sm metal, but the moments are confined to the basal plane. At low temperatures both Ho and Pr are found to adopt their full saturation moments in these phases. A Pr thin film is found to order with a similar magnetic structure to bulk Pr. However...

  10. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence.

    Science.gov (United States)

    Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S

    2015-12-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.

  11. miR-210 Targets Iron-Sulfur Cluster Scaffold Homologue in Human Trophoblast Cell Lines

    Science.gov (United States)

    Lee, Deug-Chan; Romero, Roberto; Kim, Jung-Sun; Tarca, Adi L.; Montenegro, Daniel; Pineles, Beth L.; Kim, Ernest; Lee, JoonHo; Kim, Sun Young; Draghici, Sorin; Mittal, Pooja; Kusanovic, Juan Pedro; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Kim, Chong Jai

    2011-01-01

    This study was performed to assess the biological significance of miR-210 in preeclampsia and small-for-gestational-age (SGA) pregnancies. Placental miR-210 expression was evaluated by quantitative RT-PCR (RT-qPCR) in the following groups: i) appropriate-for-gestational-age pregnancies (n = 72), ii) preeclampsia (n = 52), iii) SGA (n = 66), and iv)preeclampsia with SGA (n = 31). The effects of hypoxia (1% O2) on miR-210 and iron-sulfur cluster scaffold homologue (ISCU) expressions and miR-210 binding to ISCU 3′ UTR were examined in Swan 71 and BeWo cell lines. Perls' reaction (n = 229) and electron microscopy (n = 3) were conducted to verify siderosis of trophoblasts. miR-210 expression was increased in preeclampsia and SGA cases and was decreased with birth weight and gestational age. In both cell lines, miR-210 was induced by hypoxia, whereas ISCU expression was decreased. The luciferase assay confirmed miR-210 binding to ISCU mRNA 3′ UTR. RNA interference knockdown of ISCU expression in Swan 71, but not in BeWo, cells resulted in autophagosomal and siderosomal iron accumulation and a fourfold decrease of Matrigel invasion (P = 0.004). Placental ISCU expression was decreased in preeclampsia (P = 0.002) and SGA (P = 0.002) cases. Furthermore, hemosiderin-laden trophoblasts were more frequent in the placental bed of preterm preeclampsia and/or SGA births than in control cases (48.7% versus 17.9%; P = 0.004). Siderosis of interstitial trophoblasts is a novel pathological feature of preeclampsia and SGA. The findings herein suggest that ISCU down-regulation by miR-210 perturbing trophoblast iron metabolism is associated with defective placentation. PMID:21801864

  12. Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers

    Directory of Open Access Journals (Sweden)

    Parker Hugo J

    2011-12-01

    Full Text Available Abstract Background Gene regulation through cis-regulatory elements plays a crucial role in development and disease. A major aim of the post-genomic era is to be able to read the function of cis-regulatory elements through scrutiny of their DNA sequence. Whilst comparative genomics approaches have identified thousands of putative regulatory elements, our knowledge of their mechanism of action is poor and very little progress has been made in systematically de-coding them. Results Here, we identify ancient functional signatures within vertebrate conserved non-coding elements (CNEs through a combination of phylogenetic footprinting and functional assay, using genomic sequence from the sea lamprey as a reference. We uncover a striking enrichment within vertebrate CNEs for conserved binding-site motifs of the Pbx-Hox hetero-dimer. We further show that these predict reporter gene expression in a segment specific manner in the hindbrain and pharyngeal arches during zebrafish development. Conclusions These findings evoke an evolutionary scenario in which many CNEs evolved early in the vertebrate lineage to co-ordinate Hox-dependent gene-regulatory interactions that pattern the vertebrate head. In a broader context, our evolutionary analyses reveal that CNEs are composed of tightly linked transcription-factor binding-sites (TFBSs, which can be systematically identified through phylogenetic footprinting approaches. By placing a large number of ancient vertebrate CNEs into a developmental context, our findings promise to have a significant impact on efforts toward de-coding gene-regulatory elements that underlie vertebrate development, and will facilitate building general models of regulatory element evolution.

  13. Evolution of a derived protein-protein interaction between HoxA11 and Foxo1a in mammals caused by changes in intramolecular regulation.

    Science.gov (United States)

    Brayer, Kathryn J; Lynch, Vincent J; Wagner, Günter P

    2011-08-09

    Current models of developmental evolution suggest changes in gene regulation underlie the evolution of morphology. Despite the fact that protein complexes regulate gene expression, the evolution of regulatory protein complexes is rarely studied. Here, we investigate the evolution of a protein-protein interaction (PPI) between Homeobox A11 (HoxA11) and Forkhead box 01A (Foxo1a). Using extant and "resurrected" ancestral proteins, we show that the physical interaction between HoxA11 and Foxo1a originated in the mammalian stem lineage. Functional divergence tests and coimmunoprecipitation with heterologous protein pairs indicate that the evolution of interaction was attributable to changes in HoxA11, and deletion studies demonstrate that the interaction interface is located in the homeodomain region of HoxA11. However, there are no changes in amino acid sequence in the homeodomain region during this time period, indicating that the origin of the derived PPI was attributable to changes outside the binding interface. We infer that the amino acid substitutions in HoxA11 altered Foxo1a's access to the conserved binding interface at the HoxA11 homeodomain. We also found an expansion in the number of paired Hox/Fox binding sites in the genomes of mammalian lineage species suggesting the complex has a biological function. Our data indicate that the physical interaction between HoxA11 and Foxo1a evolved through noninterface changes that facilitate the PPI, which prevents inappropriate interactions, rather than through the evolution of a novel binding interface. We speculate that evolutionary changes of intramolecular regulation have limited pleiotropic effects compared with changes to interaction domains themselves.

  14. γδβ-thalassaemias 1 and 2 are the result of a 100 kpb deletion in the human β-globin cluster.

    NARCIS (Netherlands)

    R. Taramelli; D. Kioussis; E. Vanin; K. Bartram; J. Groffen; J. Hurst; F.G. Grosveld (Frank)

    1986-01-01

    textabstractThe DNA spanning two large deletions in the human beta-globin gene cluster (gamma beta-thalassaemia 1 and 2) has been cloned by cosmid cloning and chromosomal walking. The entire region was mapped and analyzed for the presence of repetitive sequences. The results show that the affected

  15. Toward the 21st Century: Preparing Proactive Visionary Transformational Leaders for Building Learning Communities. Human Resource Development. Tampa Cluster. Winter 1994.

    Science.gov (United States)

    Groff, Warren H.

    This document describes the Tampa Cluster human resources development (HRD) seminar that was conducted as part of Nova University's distance education program in higher education (PHE). Discussed first are HRD in the agricultural and business industrial eras and changing HRD practices/needs, Nova University's PHE and HRD program, the proceedings…

  16. Data Resources for Biodemographic Studies on Familial Clustering of Human Longevity

    Directory of Open Access Journals (Sweden)

    1999-09-01

    Full Text Available The main cause that hampered many previous biodemographic studies of human longevity is the lack of appropriate data. At the same time, many existing data resources (millions of genealogical records are under-utilized, because their very existence is not widely known, let alone the quality and scientific value of these data sets are not yet validated. The purpose of this work is to review the data resources that could be used in familial studies of human longevity. This is an extended and supplemented version of the previous study made by the authors upon the request of the National Institute on Aging (1998 NIH Professional Service Contract. The review describes: (1 data resources developed for biodemographic studies, (2 data collected in the projects on historical demography, (3 data resources for long lived individuals and their families, (4 publicly available computerized genealogical data resources, (5 published genealogical and family history data. The review also contains the description of databases developed by the participants of the Research Workshops "Genes, Genealogies, and Longevity" organized by the Max Planck Institute for Demographic Research.

  17. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    Science.gov (United States)

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  18. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  19. Relationship between a common variant in the fatty acid desaturase (FADS) cluster and eicosanoid generation in humans.

    Science.gov (United States)

    Hester, Austin G; Murphy, Robert C; Uhlson, Charis J; Ivester, Priscilla; Lee, Tammy C; Sergeant, Susan; Miller, Leslie R; Howard, Timothy D; Mathias, Rasika A; Chilton, Floyd H

    2014-08-08

    Dramatic shifts in the Western diet have led to a marked increase in the dietary intake of the n-6 polyunsaturated fatty acid (PUFA), linoleic acid (LA). Dietary LA can then be converted to arachidonic acid (ARA) utilizing three enzymatic steps. Two of these steps are encoded for by the fatty acid desaturase (FADS) cluster (chromosome 11, 11q12.2-q13) and certain genetic variants within the cluster are highly associated with ARA levels. However, no study to date has examined whether these variants further influence pro-inflammatory, cyclooxygenase and lipoxygenase eicosanoid products. This study examined the impact of a highly influential FADS SNP, rs174537 on leukotriene, HETE, prostaglandin, and thromboxane biosynthesis in stimulated whole blood. Thirty subjects were genotyped at rs174537 (GG, n = 11; GT, n = 13; TT, n = 6), a panel of fatty acids from whole serum was analyzed, and precursor-to-product PUFA ratios were calculated as a marker of the capacity of tissues (particularly the liver) to synthesize long chain PUFAs. Eicosanoids produced by stimulated human blood were measured by LC-MS/MS. We observed an association between rs174537 and the ratio of ARA/LA, leukotriene B4, and 5-HETE but no effect on levels of cyclooxygenase products. Our results suggest that variation at rs174537 not only impacts the synthesis of ARA but the overall capacity of whole blood to synthesize 5-lipoxygenase products; these genotype-related changes in eicosanoid levels could have important implications in a variety of inflammatory diseases.

  20. Measuring human rights violations in a conflict-affected country: results from a nationwide cluster survey in Central African Republic

    Directory of Open Access Journals (Sweden)

    Roberts Les

    2011-03-01

    Full Text Available Abstract Background Measuring human rights violations is particularly challenging during or after armed conflict. A recent nationwide survey in the Central African Republic produced estimates of rates of grave violations against children and adults affected by armed conflict, using an approach known as the "Neighborhood Method". Methods In June and July, 2009, a random household survey was conducted based on population estimates from the 2003 national census. Clusters were assigned systematically proportional to population size. Respondents in randomly selected households were interviewed regarding incidents of killing, intentional injury, recruitment into armed groups, abduction, sexual abuse and rape between January 1, 2008 and the date of interview, occurring in their homes' and those of their three closest neighbors. Results Sixty of the selected 69 clusters were surveyed. In total, 599 women were interviewed about events in 2,370 households representing 13,669 persons. Estimates of annual rates of each violation occurring per 1000 people in each of two strata are provided for children between the ages of five and 17, adults 18 years of age and older and the entire population five years and older, along with a combined and weighted national rate. The national rates for children age five to 17 were estimated to be 0.98/1000/year (95% CI: 0.18 - 1.78 for recruitment, 2.56/1000/year (95% CI: 1.50 - 3.62 for abduction, 1.13/1000/year (95% CI: 0.33 - 1.93 for intentional injury, 10.72/1000 girls/year (95% CI: 7.40 - 14.04 for rape, and 4.80/1000 girls/year (95% CI: 2.61 - 6.00 for sexual abuse. No reports of any violation against a person under the age of five were recorded and there were no reports of rape or sexual abuse of males. No children were reported to have been killed during the recall period. Rape and abduction were the most frequently reported events. Conclusions The population-based figures greatly augment existing information on

  1. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Yu L

    2014-12-01

    Full Text Available Lan Yu, Xiaoli Wang, Da Zhu, Wencheng Ding, Liming Wang, Changlin Zhang, Xiaohui Jiang, Hui Shen, Shujie Liao, Ding Ma, Zheng Hu, Hui Wang Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China Abstract: High-risk human papillomavirus (HPV, especially HPV16, is considered a main causative agent of cervical cancer. Upon HPV infection, the viral oncoprotein E6 disrupts the host tumor-suppressor protein p53, thus promoting malignant transformation of normal cervical cells. Here, we used the newly developed programmable ribonucleic acid-guided clustered regularly interspaced short palindromic repeat (CRISPR/Cas system to disrupt the HPV16 E6 gene. We showed that HPV16 E6 deoxyribonucleic acid was cleaved at specific sites, leading to apoptosis and growth inhibition of HPV16-positive SiHa and CaSki cells, but not HPV-negative C33A or human embryonic kidney 293 cells. We also observed downregulation of the E6 protein and restoration of the p53 protein. These data proved that the HPV16 E6 ribonucleic acid-guided CRISPR/Cas system might be an effective therapeutic agent in treating HPV infection-related cervical malignancy. Keywords: CRISPR/Cas system, E6, p53, SiHa, CaSki, cervical cancer

  2. The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells.

    Science.gov (United States)

    Nguyen, Minh Thu; Kraft, Beatrice; Yu, Wenqi; Demircioglu, Dogan Doruk; Demicrioglu, Dogan Doruk; Hertlein, Tobias; Burian, Marc; Schmaler, Mathias; Boller, Klaus; Bekeredjian-Ding, Isabelle; Ohlsen, Knut; Schittek, Birgit; Götz, Friedrich

    2015-06-01

    All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor.

  3. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species

    OpenAIRE

    2004-01-01

    This article, the first in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on GasKinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Ox, HOx, NOx and SOx species, which were last published in 1997, and were updated on the IUPAC website in late 2001. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and five appendi...

  4. A core human microbiome as viewed through 16S rRNA sequence clusters.

    Directory of Open Access Journals (Sweden)

    Susan M Huse

    Full Text Available We explore the microbiota of 18 body sites in over 200 individuals using sequences amplified V1-V3 and the V3-V5 small subunit ribosomal RNA (16S hypervariable regions as part of the NIH Common Fund Human Microbiome Project. The body sites with the greatest number of core OTUs, defined as OTUs shared amongst 95% or more of the individuals, were the oral sites (saliva, tongue, cheek, gums, and throat followed by the nose, stool, and skin, while the vaginal sites had the fewest number of OTUs shared across subjects. We found that commonalities between samples based on taxonomy could sometimes belie variability at the sub-genus OTU level. This was particularly apparent in the mouth where a given genus can be present in many different oral sites, but the sub-genus OTUs show very distinct site selection, and in the vaginal sites, which are consistently dominated by the Lactobacillus genus but have distinctly different sub-genus V1-V3 OTU populations across subjects. Different body sites show approximately a ten-fold difference in estimated microbial richness, with stool samples having the highest estimated richness, followed by the mouth, throat and gums, then by the skin, nasal and vaginal sites. Richness as measured by the V1-V3 primers was consistently higher than richness measured by V3-V5. We also show that when such a large cohort is analyzed at the genus level, most subjects fit the stool "enterotype" profile, but other subjects are intermediate, blurring the distinction between the enterotypes. When analyzed at the finer-scale, OTU level, there was little or no segregation into stool enterotypes, but in the vagina distinct biotypes were apparent. Finally, we note that even OTUs present in nearly every subject, or that dominate in some samples, showed orders of magnitude variation in relative abundance emphasizing the highly variable nature across individuals.

  5. Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds.

    Science.gov (United States)

    Nisius, Britta; Göller, Andreas H; Bajorath, Jürgen

    2009-01-01

    Blockade of the human ether-a-go-go related gene potassium channel is regarded as a major cause of drug toxicity and associated with severe cardiac side-effects. A variety of in silico models have been reported to aid in the identification of compounds blocking the human ether-a-go-go related gene channel. Herein, we present a classification approach for the detection of diverse human ether-a-go-go related gene blockers that combines cluster analysis of training data, feature selection and support vector machine learning. Compound learning sets are first divided into clusters of similar molecules. For each cluster, independent support vector machine models are generated utilizing preselected MACCS structural keys as descriptors. These models are combined to predict human ether-a-go-go related gene inhibition of our large compound data set with consistent experimental measurements (i.e. only patch clamp measurements on mammalian cell lines). Our combined support vector machine model achieves a prediction accuracy of 85% on this data set and performs better than alternative methods used for comparison. We also find that structural keys selected on the basis of statistical criteria are associated with molecular substructures implicated in human ether-a-go-go related gene channel binding.

  6. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Liu, Xin; O' Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  7. Militarization, human rights violations and community responses as determinants of health in southeastern Myanmar: results of a cluster survey.

    Science.gov (United States)

    Davis, William W; Mullany, Luke C; Schissler, Matt; Albert, Saw; Beyrer, Chris

    2015-01-01

    The Myanmar army and ethnic armed groups agreed to a preliminary ceasefire in 2012, but a heavy military presence remains in southeastern Myanmar. Qualitative data suggested this militarization can result in human rights abuses in the absence of armed engagements between the parties, and that rural ethnic civilians use a variety of self-protection strategies to avoid these abuses or reduce their negative impacts. We used data from a household survey to determine prevalence of select self-protection activities and to examine exposure to armed groups, human rights violations and self-protection activities as determinants of health in southeastern Myanmar. Data collected from 463 households via a two-stage cluster survey of conflict-affected areas in eastern Myanmar in January 2012, were analyzed using logistic regression models to identify associations between exposure to state and non-state armed groups, village self-protection, human rights abuses and health outcomes. Close proximity to a military base was associated with human rights abuses (PRR 1.30, 95 % CI: 1.14-1.48), inadequate food production (PRR 1.08, 95 % CI: 1.03-1.13), inability to access health care (PRR 1.29, 95 % CI: 1.04-1.60) and diarrhea (PRR 1.15, 95 % CI: 1.05-1.27. Direct exposure to armed groups was associated with household hunger (PRR1.71, 95 % CI: 1.30-2.23). Among households that reported no human rights abuses, risk of household hunger (PRR 5.64, 95 % CI: 1.88-16.91), inadequate food production (PRR 1.95, 95 % CI: 1.11-3.41) and diarrhea (PRR 2.53, 95 % CI: 1.45-4.42) increased when neighbors' households reported experiencing human rights abuses. Households in villages that reported negotiating with the Myanmar army had lower risk of human rights violations (PRR 0.91, 95 % CI: 0.85-0.98), household hunger (PRR 0.85, 95 % CI: 0.74-0.96), inadequate food production (PRR 0.93, 95 % CI:0.89-0.98) and diarrhea (PRR 0.89, 95 % CI:0.82-0.97). Stratified analysis suggests that self

  8. The function of Hox and appendage-patterning genes in the development of an evolutionary novelty, the Photuris firefly lantern.

    Science.gov (United States)

    Stansbury, Matthew S; Moczek, Armin P

    2014-05-01

    Uncovering the mechanisms underlying the evolution of novel traits is a central challenge in biology. The lanterns of fireflies are complex traits that lack even remote homology to structures outside luminescent beetle families. Representing unambiguous novelties by the strictest definition, their developmental underpinnings may provide clues to their origin and offer insights into the mechanisms of innovation in developmental evolution. Lanterns develop within the context of abdominal Hox expression domains, and we hypothesized that lantern formation may be instructed in part by these highly conserved transcription factors. We show that transcript depletion of Abdominal-B in Photuris fireflies results in extensive disruption of the adult lantern, suggesting that the evolution of adult lanterns involved the acquisition of a novel regulatory role for this Hox gene. Using the same approach, we show that the Hox gene abdominal-A may control important secondary aspects of lantern development. Lastly, we hypothesized that lantern evolution may have involved the recruitment of dormant abdominal appendage-patterning domains; however, transcript depletion of two genes, Distal-less and dachshund, suggests that they do not contribute to lantern development. Our results suggest that complex novelties can arise within the confines of ancestral regulatory landscapes through acquisition of novel targets without compromising ancestral functions.

  9. The application of heterogeneous cluster grouping to reflective writing for medical humanities literature study to enhance students' empathy, critical thinking, and reflective writing.

    Science.gov (United States)

    Liao, Hung-Chang; Wang, Ya-Huei

    2016-09-02

    To facilitate interdisciplinary collaboration and to make connections between patients' diseases and their social/cultural contexts, the study examined whether the use of heterogeneous cluster grouping in reflective writing for medical humanities literature acquisition could have positive effects on medical university students in terms of empathy, critical thinking, and reflective writing. A 15-week quasi-experimental design was conducted to investigate the learning outcomes. After conducting cluster algorithms, heterogeneous learning clusters (experimental group; n = 43) and non-heterogeneous learning clusters (control group; n = 43) were derived for a medical humanities literature study. Before and after the intervention, an Empathy Scale in Patient Care (ES-PC), a critical thinking disposition assessment (CTDA-R), and a reflective writing test were administered to both groups. The findings showed that on the empathy scale, significant differences in the "behavioral empathy," "affective empathy," and overall sections existed between the post-test mean scores of the experimental group and those of the control group, but such differences did not exist in "intelligent empathy." Regarding critical thinking, there were significant differences in "systematicity and analyticity," "skepticism and well-informed," "maturity and skepticism," and overall sections. As for reflective writing, significant differences existed in "ideas," "voice and point of view," "critical thinking and representation," "depth of reflection on personal growth," and overall sections, but not in "focus and context structure" and "language and conventions." This study outlined an alternative for using heterogeneous cluster grouping in reflective writing about medical humanities literature to facilitate interdisciplinary cooperation to provide more humanizing medical care.

  10. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.; Sutherland, B.; Bennett, P. V.; Cutter, N. C.; Sutherland, J. C.

    2011-06-01

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF) followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.

  11. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    Science.gov (United States)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  12. Genome sequence of a diabetes-prone rodent reveals a mutation hotspot around the ParaHox gene cluster

    DEFF Research Database (Denmark)

    Hargreaves, Adam D.; Zhou, Long; Christensen, Josef

    2017-01-01

    Pdx1 has been grossly affected by GC-biased mutation, leading to the highest divergence observed for this gene across the Bilateria. In addition to genomic insights into restricted caloric intake in a desert species, the discovery of a localized chromosomal region subject to elevated mutation suggests...

  13. Class I Homeobox Genes, "The Rosetta Stone of the Cell Biology", in the Regulation of Cardiovascular Development.

    Science.gov (United States)

    Procino, Alfredo

    2016-01-01

    Class I homeobox genes (Hox in mice and HOX in humans), encode for 39 transcription factors and display a unique genomic network organization mainly involved in the regulation of embryonic development and in the cell memory program. The HOX network controls the aberrant epigenetic modifications involving in the cell memory program. In details, the HOX cluster plays a crucial role in the generation and evolution of several diseases: congenic malformation, oncogenesis, metabolic processes and deregulation of cell cycle. In this review, I discussed about the role of HOX gene network in the control of cardiovascular development.

  14. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization.

    Science.gov (United States)

    Land, T; Rouault, T A

    1998-12-01

    Iron-sulfur clusters are prosthetic groups that are required for the function of numerous enzymes in the cell, including enzymes important in respiration, photosynthesis, and nitrogen fixation. Here we report cloning of the human homolog of NifS, a cysteine desulfurase that is proposed to supply the inorganic sulfur in iron-sulfur clusters. In human cells, different forms of NifS that localize either to mitochondria or to the cytosol and nucleus are synthesized from a single transcript through initiation at alternative inframe AUGs, and initiation site selection varies according to the pH of the medium or cytosol. Thus, a novel form of translational regulation permits rapid redistribution of NifS proteins into different compartments of the cell in response to changes in metabolic status.

  15. The human met-ase gene (GZMM): Structure, sequence, and close physical linkage to the serine protease gene cluster on 19p13.3

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, D.; Zimmer, M.; Wekerle, H. [Max-Planck-Institut fuer Psychiatrie, Martinsried (Germany)] [and others

    1994-12-01

    Cosmid clones containing the genes for the human and murine natural killer cell serine protease Met-ase (gene symbol GZMM; granzyme M) were identified by screening human and murine cosmid libraries with rat Met-ase (RNIK-Met-1) cDNA. The human gene has a size of 7.5 kb and an exon-intron structure identical to that of serine protease genes located on human chromosomes 5q11-q12, 14q11.2, and 19p13.3 that are expressed by lymphocytes, mast cells, or myelomonocyte precursors. Using cosmid DNA as a probe for fluorescence in situ hybridization, we identified the chromosomal position of human Met-ase as 19p13.3. Interphase studies with two differentially labeled probes for Met-ase and the azurocidin (AZU1), proteinase 3 (PRTN3), and neutrophil elastase (ELA2) gene cluster revealed that the distance of Met-ase from this gene cluster is in the range of 200 to 500 kb. Using differentially labeled mouse cosmid probes, we also mapped the murine gene for Met-ase to chromosomal band 10C, close to the gene for lamin B2. Thus, the Met-ase, AZU1, PRTN3, and ELA2 genes fall into an established region of homology between mouse chromosomal band 10C and human 19p13.3. 35 refs., 4 figs.

  16. Drosophila Hox and sex-determination genes control segment elimination through EGFR and extramacrochetae activity.

    Directory of Open Access Journals (Sweden)

    David Foronda

    Full Text Available The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7 in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change.

  17. Proneural and abdominal Hox inputs synergize to promote sensory organ formation in the Drosophila abdomen.

    Science.gov (United States)

    Gutzwiller, Lisa M; Witt, Lorraine M; Gresser, Amy L; Burns, Kevin A; Cook, Tiffany A; Gebelein, Brian

    2010-12-15

    The atonal (ato) proneural gene specifies a stereotypic number of sensory organ precursors (SOP) within each body segment of the Drosophila ectoderm. Surprisingly, the broad expression of Ato within the ectoderm results in only a modest increase in SOP formation, suggesting many cells are incompetent to become SOPs. Here, we show that the SOP promoting activity of Ato can be greatly enhanced by three factors: the Senseless (Sens) zinc finger protein, the Abdominal-A (Abd-A) Hox factor, and the epidermal growth factor (EGF) pathway. First, we show that expression of either Ato alone or with Sens induces twice as many SOPs in the abdomen as in the thorax, and do so at the expense of an abdomen-specific cell fate: the larval oenocytes. Second, we demonstrate that Ato stimulates abdominal SOP formation by synergizing with Abd-A to promote EGF ligand (Spitz) secretion and secondary SOP recruitment. However, we also found that Ato and Sens selectively enhance abdominal SOP development in a Spitz-independent manner, suggesting additional genetic interactions between this proneural pathway and Abd-A. Altogether, these experiments reveal that genetic interactions between EGF-signaling, Abd-A, and Sens enhance the SOP-promoting activity of Ato to stimulate region-specific neurogenesis in the Drosophila abdomen.

  18. Resenha da obra "Libros en galego de onte e hoxe para a nenez e a mocidade"

    Directory of Open Access Journals (Sweden)

    Sharlene Davantel Valarini

    2016-10-01

    Full Text Available A obra “Libros en galego de onte e hoxe para a nenez e a mocidade” constitui-se como o volume 26 da coleção “Materiais didácticos”, do Instituto de Ciências da Educação, da Universidade de Santiago de Compostela, organizada pelas professoras e pesquisadoras Isabel Mociño González e Blanca-Ana Roig Rechou. Em sua essência, reúne resenhas e outros textos sobre obras infantis e juvenis traduzidas ou por traduzir para a língua galega publicados no período de 2010 a 2015 no jornal “El correo galego”, de Santiago de Compostela. O objetivo da obra é apresentar livros estrangeiros que tragam avanços para o sistema literário da Galícia, principalmente, na formação do jovem leitor. É indicada para mediadores de leitura, professores, bibliotecários e pais, constituindo-se em uma contribuição para a divulgação da Literatura Infantil e Juvenil, visto que tanto as obras revisitadas (tidas como clássicas quanto as mais atuais se encontram apresentadas e discutidas ao longo dos textos que compõem a obra, formando um panorama das publicações mais contundentes.

  19. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... A cluster headache begins as a severe, sudden headache. The headache commonly strikes 2 to 3 hours after you fall ...

  20. Cluster Forests

    CERN Document Server

    Yan, Donghui; Jordan, Michael I

    2011-01-01

    Inspired by Random Forests (RF) in the context of classification, we propose a new clustering ensemble method---Cluster Forests (CF). Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure $\\kappa$. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis shows that the $\\kappa$ criterion is shown to grow each local clustering in a desirable way---it is "noise-resistant." A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.

  1. Star Clusters

    OpenAIRE

    Gieles, M.

    1993-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of stars and star clusters. These complexes share similar properties with giant molecular clouds, from which they are formed. Many (70%) of the young clusters will not survive the fist 10 Myr, due to t...

  2. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver.

    Directory of Open Access Journals (Sweden)

    Timothy D Howard

    Full Text Available Levels of omega-6 (n-6 and omega-3 (n-3, long chain polyunsaturated fatty acids (LcPUFAs such as arachidonic acid (AA; 20:4, n-6, eicosapentaenoic acid (EPA; 20:5, n-3 and docosahexaenoic acid (DHA; 22:6, n-3 impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1 are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs such as LA (18:2, n-6 to AA and α-linolenic acid (ALA, 18:3, n-3 to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids. FADS1 and FADS2 lie head-to-head (5' to 5' in a cluster configuration on chromosome 11 (11q12.2. There is considerable linkage disequilibrium (LD in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼ 15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95 × 10(-46 in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.

  3. Demographic characterization and spatial cluster analysis of human Salmonella 1,4,[5],12:i:- infections in Portugal: A 10year study.

    Science.gov (United States)

    Seixas, R; Nunes, T; Machado, J; Tavares, L; Owen, S P; Bernardo, F; Oliveira, M

    2017-06-30

    Salmonella 1,4,[5],12:i:- is presently considered one of the major serovars responsible for human salmonellosis worldwide. Due to its recent emergence, studies assessing the demographic characterization and spatial epidemiology of salmonellosis 1,4,[5],12:i:- at local- or country-level are lacking. In this study, a analysis was conducted over a 10year period, from 2000 to the first quarter of 2011 at the Portuguese National Laboratory in Portugal mainland, with a total of 215 Salmonella 1,4,[5],12:i:- serotyped isolates obtained from human infections by a passive surveillance system. Data regarding source, year and month of sampling, gender, age, district and municipality of the patients were registered. Descriptive statistical analysis and a spatial scan statistic combined with a geographic information system were employed to characterize the epidemiology and identify spatial clusters. Results showed that most districts have reports of Salmonella 1,4,[5],12:i:-, with a higher number of cases at the Portuguese coastland, including districts like Porto (n=60, 27.9%), Lisboa (n=29, 13.5%) and Aveiro (n=28, 13.0%). An increased incidence was observed in the period from 2004 to 2011 and most infections occurred during May and October. Spatial analysis revealed 4 clusters of higher than expected infection rates. Three were located in the north of Portugal, including two at the coastland (Cluster 1 [RR=3.58, p≤0.001] and 4 [RR=10.42 p≤0.230]), and one at the countryside (Cluster 3 [RR=17.76, p≤0.001]). A larger cluster was detected involving the center and south of Portugal (Cluster 2 [RR=4.85, p≤0.001]). The present study was elaborated with data provided by a passive surveillance system, which may originate an underestimation of disease burden. However, this is the first report describing the incidence and the distribution of areas with higher risk of infection in Portugal, revealing that Salmonella 1,4,[5],12:i:- displayed a significant geographic clustering

  4. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    Science.gov (United States)

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and

  5. The expression of HoxB5 and SPC in neonatal rat lung after exposure to fluoxetine.

    Science.gov (United States)

    Taghizadeh, Razieh; Taghipour, Zahra; Karimi, Akbar; Shamsizadeh, Ali; Taghavi, Mohammad Mohsen; Shariati, Mahdi; Shabanizadeh, Ahmad; Jafari Naveh, Hamid Reza; Bidaki, Reza; Aminzadeh, Fariba

    2016-01-01

    Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development. Thirty pregnant Wistar rats (weighing 200-250 g) were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method. Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group (P<0.05). Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant (P<0.05). Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development. According to the upregulated expression of HoxB5 concerning histological findings, results of the present study showed that fluoxetine can influence lung growth and may in turn lead to delay in lung development. So establishment of studies to identify the effects of antidepressant drugs during pregnancy is deserved.

  6. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  7. The expression of HoxB5 and SPC in neonatal rat lung at exposure to fluoxetine

    Directory of Open Access Journals (Sweden)

    Taghizadeh R

    2016-11-01

    Full Text Available Razieh Taghizadeh,1 Zahra Taghipour,2 Akbar Karimi,1 Ali Shamsizadeh,3 Mohammad Mohsen Taghavi,2 Mahdi Shariati,2 Ahmad Shabanizadeh,2 Hamid Reza Jafari Naveh,2 Reza Bidaki,4 Fariba Aminzadeh51Department of Biology, Payame Noor University, Isfahan, Iran; 2Department of Anatomy, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; 3Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; 4Shahid Sadoughi University of Medical Sciences, Yazd, Iran; 5Rafsanjan University of Medical Sciences, Rafsanjan, IranObjective: Approximately 10% of pregnant women suffer from pregnancy-associated depression. Fluoxetine, as a selective serotonin reuptake inhibitor, is being employed as a therapy for depressive disorders. The present study aimed to determine the effects of fluoxetine on neonatal lung development.Methods: Thirty pregnant Wistar rats (weighing 200–250 g were treated daily with 7 mg/kg fluoxetine from gestation day 0 to gestation day 21, via gavage. The control group received a similar volume of distilled water only. Following delivery, the newborns and their lungs were immediately weighed in both of the groups. The right lung was fixed for histological assessments while the left lung was used for evaluation of the expression of SPC and HoxB5 by the real-time polymerase chain reaction method.Results: Results have indicated that even though the body weight and the number of neonatal rats in both groups were the same, the lung weight of neonates exposed to fluoxetine was significantly different compared to the control group (P<0.05. Expression of both genes was increased, nonetheless, only elevation of HoxB5 was significant (P<0.05. Histological studies demonstrated that lung tissue in the fluoxetine treatment group morphologically appears to be similar to the pseudoglandular phase, whereas the control group lungs experienced more development.Conclusion: According to the upregulated expression of HoxB5 concerning

  8. Transcriptional repression of Hox genes by C. elegans HP1/HPL and H1/HIS-24.

    Directory of Open Access Journals (Sweden)

    Maja Studencka

    2012-09-01

    Full Text Available Elucidation of the biological role of linker histone (H1 and heterochromatin protein 1 (HP1 in mammals has been difficult owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1 homologues (HPL-1 and HPL-2 and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C. elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5, which are involved in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24 specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in C. elegans males.

  9. Hox gene expression leads to differential hind leg development between honeybee castes.

    Directory of Open Access Journals (Sweden)

    Ana Durvalina Bomtorin

    Full Text Available Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx, whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  10. Hox gene expression leads to differential hind leg development between honeybee castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  11. Sodium butyrate promotes generation of human induced pluripotent stem cells through induction of the miR302/367 cluster.

    Science.gov (United States)

    Zhang, Zhonghui; Wu, Wen-Shu

    2013-08-15

    Small molecules (SM) can greatly enhance the efficiency of induced pluripotent stem (iPS) cell generation, but the mechanisms by which they act have not been fully explored. We show here that an SM cocktail (NaB, PD03259, and SB431542) significantly promotes iPS cell generation from human fibroblasts, and NaB is more potent than the other two common histone deacetylase inhibitors (valproic acid and Trichostatin A) in promoting cellular reprogramming. Our data indicate that the SM cocktail substantially upregulates the miR302/367 cluster expression by increasing the stability and transcriptional level of this microRNA (miRNA) cluster in a manner dependent on the four defined transcription factors (TFs). Among the four TFs, Oct4 in particular appears to be required for the induction of the miR302/367 cluster by the SM cocktail. We also found that NaB alone can enhance the TFs-dependent upregulation of the miR302/367 cluster. Using a promoter reporter assay, we show that the SM cocktail remarkably enhanced the transcriptional activity of the four TFs in the miR302/367 promoter. Notably, attenuation of miRNA302/367 using a miRZip impairs the ability of the SM cocktail in promoting reprogramming. Collectively, these findings suggest that the SM cocktail promotes reprogramming at least partly through the induction of the miR302/367 cluster expression. Further insights into this process may pave the way for the generation of iPS cells using only SM cocktails.

  12. Clusters of ancestrally related genes that show paralogy in whole or in part are a major feature of the genomes of humans and other species.

    Directory of Open Access Journals (Sweden)

    Michael B Walker

    Full Text Available Arrangements of genes along chromosomes are a product of evolutionary processes, and we can expect that preferable arrangements will prevail over the span of evolutionary time, often being reflected in the non-random clustering of structurally and/or functionally related genes. Such non-random arrangements can arise by two distinct evolutionary processes: duplications of DNA sequences that give rise to clusters of genes sharing both sequence similarity and common sequence features and the migration together of genes related by function, but not by common descent. To provide a background for distinguishing between the two, which is important for future efforts to unravel the evolutionary processes involved, we here provide a description of the extent to which ancestrally related genes are found in proximity.Towards this purpose, we combined information from five genomic datasets, InterPro, SCOP, PANTHER, Ensembl protein families, and Ensembl gene paralogs. The results are provided in publicly available datasets (http://cgd.jax.org/datasets/clustering/paraclustering.shtml describing the extent to which ancestrally related genes are in proximity beyond what is expected by chance (i.e. form paraclusters in the human and nine other vertebrate genomes, as well as the D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae genomes. With the exception of Saccharomyces, paraclusters are a common feature of the genomes we examined. In the human genome they are estimated to include at least 22% of all protein coding genes. Paraclusters are far more prevalent among some gene families than others, are highly species or clade specific and can evolve rapidly, sometimes in response to environmental cues. Altogether, they account for a large portion of the functional clustering previously reported in several genomes.

  13. Whole-genome sequencing of Campylobacter jejuni isolated from Danish routine human stool samples reveals surprising degree of clustering

    DEFF Research Database (Denmark)

    Joensen, K G; Kuhn, K G; Müller, L

    2017-01-01

    ; one which had not been identified through the existing surveillance system. CONCLUSIONS: Using WGS, we show that Campylobacter case clustering and even outbreaks appear to occur more frequently than previously assumed, providing important new insight into the relatively poorly understood epidemiology...... of the most important cause of bacterial gastroenteritis in the industrialized world....

  14. Mutations in paralogous Hox genes result in overlapping homeotic transformations of the axial skeleton: evidence for unique and redundant function.

    Science.gov (United States)

    Horan, G S; Kovàcs, E N; Behringer, R R; Featherstone, M S

    1995-05-01

    Hoxd-4 (previously known as Hox-4.2 and -5.1) is a mouse homeobox-containing gene homologous to the Drosophila homeotic gene Deformed. During embryogenesis, Hoxd-4 is expressed in the presumptive hindbrain and spinal cord, prevertebrae, and other tissues. In the adult, Hoxd-4 transcripts are expressed predominantly in the testis and kidney, and to a lesser extent in intestine and heart. To understand the role of Hoxd-4 during mouse embryogenesis, we generated Hoxd-4 mutant mice. Mice heterozygous or homozygous for the Hoxd-4 mutation exhibit homeotic transformations of the second cervical vertebrae (C2) to the first cervical vertebrae (C1) and malformations of the neural arches of C1 to C3 and of the basioccipital bone. The phenotype was incompletely penetrant and showed variable expressivity on both an F2 hybrid and 129 inbred genetic background. The mutant phenotype was detected in the cartilaginous skeleton of 14.5-day (E14.5) mutant embryos but no apparent differences were detected in the somites of E9.5 mutant embryos, suggesting that the abnormalities develop after E9.5 perhaps during or after resegmentation of the somites to form the prevertebrae. These results suggest that Hoxd-4 plays a role in conferring position information along the anteroposterior axis in the skeleton. The phenotypic similarities and differences between Hoxd-4 and previously reported Hoxa-4 and Hoxb-4 mutant mice suggest that Hox gene paralogs have both redundant and unique functions.

  15. DEFECTS IN CERVICAL VERTEBRAE IN BORIC ACID-EXPOSED RAT EMBRYOS ARE ASSOCIATED WITH ANTERIOR SHIFTS OF HOX GENE EXPRESSION DOMAINS

    Science.gov (United States)

    Defects in cervical vertebrae in boric acid-exposed rat embryos are associated with anterior shifts of hox gene expression domainsNathalie Wery,1 Michael G. Narotsky,2 Nathalie Pacico,1 Robert J. Kavlock,2 Jacques J. Picard,1 AND Francoise Gofflot,1*1Unit of Developme...

  16. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone

    NARCIS (Netherlands)

    van de Ven, C.; Bialecka, M.; Neijts, R.; Young, T.; Rowland, J.E.; Stringer, E.J.; van Rooijen, C.R.; Meijlink, F.; Novoa, A.; Freund, J.N.; Mallo, M.; Beck, F.; Deschamps, J.

    2011-01-01

    Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation

  17. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  18. Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene

    Directory of Open Access Journals (Sweden)

    M. E. Jenkin

    2010-03-01

    Full Text Available Recently reported model-measurement discrepancies for the concentrations of the HOx radical species (OH and HO2 in locations characterized by high emission rates of isoprene have indicated possible deficiencies in the representation of OH recycling and formation in isoprene mechanisms currently employed in numerical models; particularly at low levels of NOx. Using version 3.1 of the Master Chemical Mechanism (MCM v3.1 as a base mechanism, the sensitivity of the system to a number of detailed mechanistic changes is examined for a wide range of NOx levels, using a simple box model. These studies place emphasis on processes for which experimental or theoretical evidence has been reported in the peer-reviewed literature, in addition to examining the impact of an intrinsic simplification in the MCM v3.1 chemistry. Although all the considered mechanistic changes lead to simulated increases in the concentrations of OH at low NOx levels, the greatest impact is achieved by implementation of a recently postulated mechanism involving isomerisation of the δ-hydroxyalkenyl peroxy radical isomers, formed from the sequential addition of OH and O2 to isoprene. In conjunction with necessary rapid photolysis of the resultant hydroperoxyaldehyde products, this mechanism yields approximately a factor of three increase in the simulated OH concentration at low NOx, and is the only considered mechanism which achieves enhancements which approach those necessary to explain the reported model-measurement discrepancies. Combination of all the considered mechanistic changes has an effect which is approximately additive, yielding an overall enhancement of about a factor of 3.2 in the simulated OH concentration at the lowest NOx input rate considered, with the simulated mean NOx mixing ratios at this input rate being 42 ppt and 29 ppt with the base case and modified mechanisms respectively. A parameterized representation of the mechanistic changes is optimized and

  19. Reviewing evidence for systematic transcriptional deletions, nucleotide exchanges, and expanded codons, and peptide clusters in human mitochondria.

    Science.gov (United States)

    Seligmann, Hervé

    2017-10-01

    Polymerization sometimes transforms sequences by (a) systematic deletions of mono-, dinucleotides after trinucleotides, or (b) 23 systematic nucleotide exchanges (9 symmetric, XY, e.g. GT, 14 asymmetric, X > Y > Z > X, e.g. A > G > T > A), producing del- and swinger RNAs. Some peptides correspond to del- and swinger RNA translations, also according to tetracodons, codons expanded by a silent nucleotide. Here new analyzes assume different proteolytic patterns, partially alleviating false negative peptide detection biases, expanding noncanonical mitoproteome profiles. Mito-genomic, -transcriptomic and -proteomic evidence for noncanonical transcriptions and translations are reviewed and clusters of del- and swinger peptides (also along tetracodons) are described. Noncanonical peptide clusters indicate regulated expression of cryptically encoded mitochondrial protein coding genes. These candidate noncanonical proteins don't resemble known proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A systemized approach to investigate Ca2+ synchronization in clusters of human induced pluripotent stem-cell derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Aled R Jones

    2016-01-01

    Full Text Available Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB versus ‘on plate’ culture on spontaneous activity and regional Ca2+ synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca2+ spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca2+ synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (> 2 weeks. The maintenance of all spontaneously active IPS-CM clusters under ‘on plate’ culture conditions promoted the progressive reduction in regional Ca2+ synchronization and the loss of spontaneous Ca2+ spiking. Raising the extracellular [Ca2+] surrounding these quiescent IPS-CM clusters from approximately 0.4 to 1.8 mM unmasked discrete behaviours typified by either a long-lasting Ca2+ elevation that returned to baseline or b persistent, large-amplitude Ca2+ oscillations around an increased cytoplasmic [Ca2+]. The different responses of IPS-CM to elevated extracellular [Ca2+] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation.

  1. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  2. Identification of paralogous HERV-K LTRs on human chromosomes 3, 4, 7 and 11 in regions containing clusters of olfactory receptor genes.

    Science.gov (United States)

    Nadezhdin, E V; Lebedev, Y B; Glazkova, D V; Bornholdt, D; Arman, I P; Grzeschik, K H; Hunsmann, G; Sverdlov, E D

    2001-07-01

    A locus harboring a human endogenous retroviral LTR (long terminal repeat) was mapped on the short arm of human chromosome 7 (7p22), and its evolutionary history was investigated. Sequences of two human genome fragments that were homologous to the LTR-flanking sequences were found in human genome databases: (1) an LTR-containing DNA fragment from region 3p13 of the human genome, which includes clusters of olfactory receptor genes and pseudogenes; and (2) a fragment of region 21q22.1 lacking LTR sequences. PCR analysis demonstrated that LTRs with highly homologous flanking sequences could be found in the genomes of human, chimp, gorilla, and orangutan, but were absent from the genomes of gibbon and New World monkeys. A PCR assay with a primer set corresponding to the sequence from human Chr 3 allowed us to detect LTR-containing paralogous sequences on human chromosomes 3, 4, 7, and 11. The divergence times for the LTR-flanking sequences on chromosomes 3 and 7, and the paralogous sequence on chromosome 21, were evaluated and used to reconstruct the order of duplication events and retroviral insertions. (1) An initial duplication event that occurred 14-17 Mya and before LTR insertion - produced two loci, one corresponding to that located on Chr 21, while the second was the ancestor of the loci on chromosomes 3 and 7. (2) Insertion of the LTR (most probably as a provirus) into this ancestral locus took place 13 Mya. (3) Duplication of the LTR-containing ancestral locus occurred 11 Mya, forming the paralogous modern loci on Chr 3 and 7.

  3. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia in the Cnidaria and Protostomia

    Directory of Open Access Journals (Sweden)

    Mazza Maureen E

    2010-07-01

    Full Text Available Abstract Background Homeobox genes are a superclass of transcription factors with diverse developmental regulatory functions, which are found in plants, fungi and animals. In animals, several Antennapedia (ANTP-class homeobox genes reside in extremely ancient gene clusters (for example, the Hox, ParaHox, and NKL clusters and the evolution of these clusters has been implicated in the morphological diversification of animal bodyplans. By contrast, similarly ancient gene clusters have not been reported among the other classes of homeobox genes (that is, the LIM, POU, PRD and SIX classes. Results Using a combination of in silico queries and phylogenetic analyses, we found that a cluster of three PRD-class homeobox genes (Homeobrain (hbn, Rax (rx and Orthopedia (otp is present in cnidarians, insects and mollusks (a partial cluster comprising hbn and rx is present in the placozoan Trichoplax adhaerens. We failed to identify this 'HRO' cluster in deuterostomes; in fact, the Homeobrain gene appears to be missing from the chordate genomes we examined, although it is present in hemichordates and echinoderms. To illuminate the ancestral organization and function of this ancient cluster, we mapped the constituent genes against the assembled genome of a model cnidarian, the sea anemone Nematostella vectensis, and characterized their spatiotemporal expression using in situ hybridization. In N. vectensis, these genes reside in a span of 33 kb with the same gene order as previously reported in insects. Comparisons of genomic sequences and expressed sequence tags revealed the presence of alternative transcripts of Nv-otp and two highly unusual protein-coding polymorphisms in the terminal helix of the Nv-rx homeodomain. A population genetic survey revealed the Rx polymorphisms to be widespread in natural populations. During larval development, all three genes are expressed in the ectoderm, in non-overlapping territories along the oral-aboral axis, with distinct

  4. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  5. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  6. The implementation of hybrid clustering using fuzzy c-means and divisive algorithm for analyzing DNA human Papillomavirus cause of cervical cancer

    Science.gov (United States)

    Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.

  7. Interplay between structure and magnetism in HoxPr1-x alloys. 2. Resonant x-ray magnetic scattering

    DEFF Research Database (Denmark)

    Vigliante, A.; Christensen, M.J.; Hill, J.P.;

    1998-01-01

    X-ray-scattering techniques have been used to study the crystal and magnetic structures of HoxPr1-x alloys in the form of thin films. Three distinct crystal structures are found as a function of concentration x, each of which has a characteristic magnetic structure. For x greater than or equal to 0.......6 a hexagonal-close-packed phase is found with the magnetic moments ordered in a basal-plane helix, whereas for 0.4 less than or equal to x... hexagonal-close-packed and remain nonmagnetic down to the lowest temperatures studied. Using x-ray magnetic resonance scattering techniques, we demonstrate that a small, static spin-density wave is induced within the alloy 5d band at both the Pr and Ho sites in both of the magnetically ordered phases...

  8. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts.

    Science.gov (United States)

    Cenci, Caterina; Gould, Alex P

    2005-09-01

    The Drosophila central nervous system is generated by stem-cell-like progenitors called neuroblasts. Early in development, neuroblasts switch through a temporal series of transcription factors modulating neuronal fate according to the time of birth. At later stages, it is known that neuroblasts switch on expression of Grainyhead (Grh) and maintain it through many subsequent divisions. We report that the function of this conserved transcription factor is to specify the regionalised patterns of neurogenesis that are characteristic of postembryonic stages. In the thorax, Grh prolongs neural proliferation by maintaining a mitotically active neuroblast. In the abdomen, Grh terminates neural proliferation by regulating the competence of neuroblasts to undergo apoptosis in response to Abdominal-A expression. This study shows how a factor specific to late-stage neural progenitors can regulate the time at which neural proliferation stops, and identifies mechanisms linking it to the Hox axial patterning system.

  9. Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006

    Science.gov (United States)

    Lu, K. D.; Rohrer, F.; Holland, F.; Fuchs, H.; Brauers, T.; Oebel, A.; Dlugi, R.; Hu, M.; Li, X.; Lou, S. R.; Shao, M.; Zhu, T.; Wahner, A.; Zhang, Y. H.; Hofzumahaus, A.

    2014-05-01

    Nighttime HOx chemistry was investigated in two ground-based field campaigns (PRIDE-PRD2006 and CAREBEIJING2006) in summer 2006 in China by comparison of measured and modeled concentration data of OH and HO2. The measurement sites were located in a rural environment in the Pearl River Delta (PRD) under urban influence and in a suburban area close to Beijing, respectively. In both locations, significant nighttime concentrations of radicals were observed under conditions with high total OH reactivities of about 40-50 s-1 in PRD and 25 s-1 near Beijing. For OH, the nocturnal concentrations were within the range of (0.5-3) × 106 cm-3, implying a significant nighttime oxidation rate of pollutants on the order of several ppb per hour. The measured nighttime concentration of HO2 was about (0.2-5) × 108 cm-3, containing a significant, model-estimated contribution from RO2 as an interference. A chemical box model based on an established chemical mechanism is capable of reproducing the measured nighttime values of the measured peroxy radicals and kOH, but underestimates in both field campaigns the observed OH by about 1 order of magnitude. Sensitivity studies with the box model demonstrate that the OH discrepancy between measured and modeled nighttime OH can be resolved, if an additional ROx production process (about 1 ppb h-1) and additional recycling (RO2 → HO2 → OH) with an efficiency equivalent to 1 ppb NO is assumed. The additional recycling mechanism was also needed to reproduce the OH observations at the same locations during daytime for conditions with NO mixing ratios below 1 ppb. This could be an indication that the same missing process operates at day and night. In principle, the required primary ROx source can be explained by ozonolysis of terpenoids, which react faster with ozone than with OH in the nighttime atmosphere. However, the amount of these highly reactive biogenic volatile organic compounds (VOCs) would require a strong local source, for which

  10. Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene

    Directory of Open Access Journals (Sweden)

    R. G. Derwent

    2010-09-01

    Full Text Available Recently reported model-measurement discrepancies for the concentrations of the HOx radical species (OH and HO2 in locations characterized by high emission rates of isoprene have indicated possible deficiencies in the representation of OH recycling and formation in isoprene mechanisms currently employed in numerical models; particularly at low levels of NOx. Using version 3.1 of the Master Chemical Mechanism (MCM v3.1 as a base mechanism, the sensitivity of the system to a number of detailed mechanistic changes is examined for a wide range of NOx levels, using a simple box model. The studies consider sensitivity tests in relation to three general areas for which experimental and/or theoretical evidence has been reported in the peer-reviewed literature, as follows: (1 implementation of propagating channels for the reactions of HO2 with acyl and β-oxo peroxy radicals with HO2, with support from a number of studies; (2 implementation of the OH-catalysed conversion of isoprene-derived hydroperoxides to isomeric epoxydiols, as characterised by Paulot et al.~(2009a; and (3 implementation of a mechanism involving respective 1,5 and 1,6 H atom shift isomerisation reactions of the β-hydroxyalkenyl and cis-δ-hydroxyalkenyl peroxy radical isomers, formed from the sequential addition of OH and O2 to isoprene, based on the theoretical study of Peeters et al. (2009. All the considered mechanistic changes lead to simulated increases in the concentrations of OH, with (1 and (2 resulting in respective increases of up to about 7% and 16%, depending on the level of NOx. (3 is found to have potentially much greater impacts, with enhancements in OH concentrations of up to a factor of about 3.3, depending on the level of NOx, provided the (crucial rapid photolysis of the hydroperoxy-methyl-butenal products of the cis-δ-hydroxyalkenyl peroxy radical isomerisation reactions is represented, as also postulated by Peeters et al.~(2009. Additional tests suggest that

  11. Triple Immunoglobulin Gene Knockout Transchromosomic Cattle: Bovine Lambda Cluster Deletion and Its Effect on Fully Human Polyclonal Antibody Production

    OpenAIRE

    Hiroaki Matsushita; Akiko Sano; Hua Wu; Jin-An Jiao; Poothappillai Kasinathan; Eddie J. Sullivan; Zhongde Wang; Yoshimi Kuroiwa

    2014-01-01

    Towards the goal of producing fully human polyclonal antibodies (hpAbs or hIgGs) in transchromosomic (Tc) cattle, we previously reported that Tc cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin (Ig) heavy-chain (hIGH), kappa-chain (hIGK), and lambda-chain (hIGL) germline loci produced physiological levels of hIgGs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, were homozygously inactivated (bIGHM−/− , bIGHM...

  12. Triple Immunoglobulin Gene Knockout Transchromosomic (Tc) Cattle: Bovine Lambda Cluster Deletion and its Effect on Fully Human Polyclonal Antibody Production

    OpenAIRE

    Matsushita, H.; Sano, A.; Wu, H.; J. Jiao; Kasinathan, P.; Sullivan, E. J.; Wang, Zhongde; Kuroiwa, K

    2014-01-01

    Towards the goal of producing fully human polyclonal antibodies (hpAbs or hIgGs) in transchromosomic (Tc) cattle, we previously reported that Tc cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin (Ig) heavy-chain (hIGH), kappa-chain (hIGK), and lambda-chain (hIGL) germline loci produced physiological levels of hIgGs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, were homozygously inactivated (bIGHM-/-, bIGHML...

  13. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex

    Directory of Open Access Journals (Sweden)

    Blomert Leo

    2010-02-01

    Full Text Available Abstract Background Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI studies propose the (posterior superior temporal cortex (STC as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent versus nonmatching (incongruent multisensory inputs. Here, we used fMR-adaptation (fMR-A in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs. We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. Results The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. Conclusions These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for

  14. Clustered regression with unknown clusters

    CERN Document Server

    Barman, Kishor

    2011-01-01

    We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization u...

  15. Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells.

    Directory of Open Access Journals (Sweden)

    Jussi Ryynänen

    Full Text Available Genome-wide analysis of vitamin D receptor (VDR binding sites in THP-1 human monocyte-like cells highlighted the interleukin 8 gene, also known as chemokine CXC motif ligand 8 (CXCL8. CXCL8 is a chemotactic cytokine with important functions during acute inflammation as well as in the context of various cancers. The nine genes of the CXCL cluster and the strong VDR binding site close to the CXCL8 gene are insulated from neighboring genes by CCCTC-binding factor (CTCF binding sites. Only CXCL8, CXCL6 and CXCL1 are expressed in THP-1 cells, but all three are up-regulated primary 1,25-dihydroxyvitamin D3 (1,25(OH2D3 target genes. Formaldehyde-assisted isolation of regulatory elements sequencing analysis of the whole CXCL cluster demonstrated 1,25(OH2D3-dependent chromatin opening exclusively for the VDR binding site. In differentiated THP-1 cells the CXCL8 gene showed a 33-fold higher basal expression, but is together with CXCL6 and CXCL1 still a primary 1,25(OH2D3 target under the control of the same genomic VDR binding site. In summary, both in undifferentiated and differentiated THP-1 cells the genes CXCL8, CXCL6 and CXCL1 are under the primary control of 1,25(OH2D3 and its receptor VDR. Our observation provides further evidence for the immune-related functions of vitamin D.

  16. A cluster of human T-cell lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis in Jujuy, Argentina.

    Science.gov (United States)

    Biglione, Mirna M; Pizarro, Manuel; Puca, Alberto; Salomón, Horacio E; Berría, Maria I

    2003-04-01

    Compared with other regions in Argentina, greater human T-cell lymphotropic virus type I (HTLV-I) seroprevalence has been reported in Jujuy Province, where it reaches 2.32% in the general population, so that a search for HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) cases deserved to be carried out. Accordingly, a clinically diagnosed and serologically confirmed cluster of cases in 1 man and 10 women, including 2 sisters, is described here. Most patients (9/11) were born in Cochinoca Department, located in an Andes highland area called Puna Jujeña, situated at more that 3400 m above sea level. No history of risk factors was disclosed, except for a single transfusion in 1 patient. In contrast to the Andean region of Bolivia, where high HTLV-I seroprevalence is in part attributable to Japanese immigrants, the Jujuy population mainly consists of aborigines, mestizos, and European descendants. Therefore, the long-term presence of virus in Jujuy natives may be taken for granted. Considering the HAM/TSP cluster described here plus previously reported isolated cases in neighboring Salta Province, we speculate that the Puna Jujeña region and regions in that vicinity would be a microepidemic focus of disease. To determine the role of possible pathogenic cofactors such as geographic, ethnic, genetic, and cultural features, further pertinent surveys are required in subtropical northwestern Argentina.

  17. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  18. Cluster analysis of human and animal pathogenic Microsporum species and their teleomorphic states, Arthroderma species, based on the DNA sequences of nuclear ribosomal internal transcribed spacer 1.

    Science.gov (United States)

    Makimura, K; Tamura, Y; Murakami, A; Kano, R; Nakamura, Y; Hasegawa, A; Uchida, K; Yamaguchi, H

    2001-01-01

    We performed a cluster analysis of human and animal pathogenic Microsporum species and their teleomorphic states, Arthroderma species, including A. otae-related species (M. canis, M. audouinii, M. distortum, M. equinum, M. langeronii, and M. ferrugineum) and M. gypseum complex (A. fulvum, A. gypseum, and A. incurvatum) using DNA sequences of nuclear ribosomal internal transcribed spacer 1 (ITS1). The dendrogram showed the members of A. otae-related species to be monophyletic and to construct an extremely closely related cluster with a long horizontal branch. This ITS1-homologous group of A. otae was organized in 6 unique genotypes, while sequences of the members of the ITS1-homologous group of M. gypseum complex are more diverse. This ITS1-based database of Microsporum species and their teleomorphic states will provide a useful and reliable species identification system: it is time-saving (takes two to three days), accurate and applicable even to strains with atypical morphological features or in a non-culturable state.

  19. Subspace clustering through attribute clustering

    Institute of Scientific and Technical Information of China (English)

    Kun NIU; Shubo ZHANG; Junliang CHEN

    2008-01-01

    Many recently proposed subspace clustering methods suffer from two severe problems. First, the algorithms typically scale exponentially with the data dimensionality or the subspace dimensionality of clusters. Second, the clustering results are often sensitive to input parameters. In this paper, a fast algorithm of subspace clustering using attribute clustering is proposed to over-come these limitations. This algorithm first filters out redundant attributes by computing the Gini coefficient. To evaluate the correlation of every two non-redundant attributes, the relation matrix of non-redundant attributes is constructed based on the relation function of two dimensional united Gini coefficients. After applying an overlapping clustering algorithm on the relation matrix, the candidate of all interesting subspaces is achieved. Finally, all subspace clusters can be derived by clustering on interesting subspaces. Experiments on both synthesis and real datasets show that the new algorithm not only achieves a significant gain of runtime and quality to find subspace clusters, but also is insensitive to input parameters.

  20. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate

    DEFF Research Database (Denmark)

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong

    2012-01-01

    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other...... regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs......) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1-6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1-6 HCVcc...

  1. HuCNS-SC Human NSCs Fail to Differentiate, Form Ectopic Clusters, and Provide No Cognitive Benefits in a Transgenic Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Samuel E. Marsh

    2017-02-01

    Full Text Available Transplantation of neural stem cells (NSCs can improve cognition in animal models of Alzheimer's disease (AD. However, AD is a protracted disorder, and prior studies have examined only short-term effects. We therefore used an immune-deficient model of AD (Rag-5xfAD mice to examine long-term transplantation of human NSCs (StemCells Inc.; HuCNS-SCs. Five months after transplantation, HuCNS-SCs had engrafted and migrated throughout the hippocampus and exhibited no differences in survival or migration in response to β-amyloid pathology. Despite robust engraftment, HuCNS-SCs failed to terminally differentiate and over a quarter of the animals exhibited ectopic human cell clusters within the lateral ventricle. Unlike prior short-term experiments with research-grade HuCNS-SCs, we also found no evidence of improved cognition, no changes in brain-derived neurotrophic factor, and no increase in synaptic density. These data, while disappointing, reinforce the notion that individual human NSC lines need to be carefully assessed for efficacy and safety in appropriate long-term models.

  2. RNA Amplification Protocol Leads to Biased Polymerase Chain Reaction Results Especially for Low-Copy Transcripts of Human Bone Marrow-Derived Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Carolin Coenen

    Full Text Available The amplification of RNA is becoming increasingly important, as often only limited amounts of cells are available for gene expression analysis. In this study, the gene expression profile of the 39 human homeobox (HOX genes was analyzed in bone marrow-derived multipotent stromal cells (BM-MSCs by reverse transcription (RT- and quantitative polymerase chain reaction (qPCR. For further unlimited gene expression analysis, Whole Transcriptome Amplification (WTA was used to amplify RNA from human BM-MSCs. However, WTA led to biased RT- and qPCR results, and even non-detectability of HOX transcripts compared to non-amplified BM-MSC samples which instead revealed transcription. It is important to note that the same RNA of the respective human BM-MSC line was used for normal cDNA synthesis by standard reverse transcription (non-amplified RT samples and for cDNA synthesis by WTA (amplified WTA samples. On this account, the different RT- and qPCR results were unexpected applying WTA. The significantly reduced detection of HOX transcripts after WTA has been demonstrated for numerous BM-MSC lines (n = 26 by RT-PCR analysis. Furthermore, undetectable HOX transcripts meaning HOX transcripts of human BM-MSCs that were detected after normal cDNA synthesis, but were no longer detectable after WTA, were consistently observed by qPCR analysis. Finally, qPCR experiments revealed a possible explanation for the differences between amplified and non-amplified BM-MSC samples: an inverse correlation between the biased qPCR results and the low expression level of the respective HOX gene. The PCR analysis of high-copy transcripts like GAPDH or RPL13A revealed unchanged qPCR results after WTA compared to corresponding non-amplified BM-MSC samples. In contrast, WTA led to biased qPCR results for medium-copy HOX transcripts, and even non-detectability of low-copy HOX transcripts of human BM-MSCs resulting in false negative RT- and qPCR data applying WTA.

  3. JAK3 maps to human chromosome 19p12 within a cluster of protooncogenes and transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, S.M.G.; Gordon, L.A.; Mohrenweiser, H.W. [Lawrence Livermore National Lab., CA (United States); Lai, Koon Siew [Univ. of North Carolina, Chapel Hill, NC (United States)] [and others

    1997-07-01

    The gene for the most recently discoverd member of a family of cytoplasmic tyrosine kinases, JAK3, was mapped to human chromosome 19p12 using polymerase chain reaction. JAK3 plays a role in the interleukin (IL)-2 signaling pathway that regulates T and B lymphocyte development and proliferation. 20 refs., 1 fig.

  4. Toward the 21st Century: Preparing Proactive Visionary Transformational Leaders for Building Learning Communities. Human Resource Development. Phoenix Cluster.

    Science.gov (United States)

    Groff, Warren H.

    This document describes the human resources development (HRD) seminar that has been part of Nova University's nontraditional practitioner-oriented, problem-solving, field-based doctoral program in higher education since 1990. Discussed first are HRD in the agricultural and business industrial eras and changing HRD practices/needs in the context of…

  5. Clustering, Randomness, and Regularity: Spatial Distributions and Human Performance on the Traveling Salesperson Problem and Minimum Spanning Tree Problem

    Science.gov (United States)

    Dry, Matthew J.; Preiss, Kym; Wagemans, Johan

    2012-01-01

    We investigated human performance on the Euclidean Traveling Salesperson Problem (TSP) and Euclidean Minimum Spanning Tree Problem (MST-P) in regards to a factor that has previously received little attention within the literature: the spatial distributions of TSP and MST-P stimuli. First, we describe a method for quantifying the relative degree of…

  6. Synthesis and Electrical Properties of New Solid State Electrolyte Materials Ce6-xHoxMoO15-δ(0.0≤x≤1.2)

    Institute of Scientific and Technical Information of China (English)

    ZHOU De-feng; XIA Yan-jie; MENG Jian

    2009-01-01

    Ce6-xHoxMoO15-δ(0.0≤x≤1.2) was synthesized by modified sol-gel method and characterized by diffe-rential X-ray diffraction(XRD), Raman, and X-ray photoelectron spectroscopy(XPS) methods. The oxide ionic con-ductivity of the samples was investigated by AC impedance spectroscopy. It shows that all the samples are single phase with a cubic fluorite structure. The solid solution Ce6-xHoxMoO15-δ(x=0.6) was detected to be the best con-ducting phase with the highest conductivity(σt=1.05×10-2 S/cm) at 800 ℃ and the lowest activation energy(Ea=1.09eV). These properties suggest that this kind of material has a potential application in intermediate-low temperature solid oxide fuel cells.

  7. Regulation of the Caenorhabditis elegans posterior Hox gene egl-5 by microRNA and the polycomb-like gene sop-2.

    Science.gov (United States)

    Zhang, Hongjie; Emmons, Scott W

    2009-03-01

    In Caenorhabditis elegans, the domains of Hox gene expression are controlled by the novel global regulatory gene sop-2. We identified a region located 3' of the Hox gene egl-5 that promotes ectopic expression of an egl-5 reporter gene in a sop-2 mutant. SOP-2 could directly block positive regulatory factors acting in this region, or it could block their expression. We identified three possible miRNA binding sites within the egl-5 3' untranslated region (UTR). Cognate microRNAs are expressed in relevant tissues and can block egl-5 expression when expressed from a transgene. Mutation of the putative binding sites in the egl-5 3'UTR resulted in a modest degree of misexpression of a minimal egl-5 reporter gene, suggesting that microRNAs may contribute to the tight restriction of egl-5 expression to particular cell lineages.

  8. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  9. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David

    2011-01-01

    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitional and hierarchical settings, characterising the precise conditions under which such algorithms react to weights, and classifying clustering methods into three broad categories: weight-responsive, weight-considering, and weight-robust. Our analysis raises several interesting questions and can be directly mapped to the classical unweighted setting.

  10. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  11. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen.

    Directory of Open Access Journals (Sweden)

    Anne Gründel

    Full Text Available The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen.

  12. Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site.

    Science.gov (United States)

    Starostenko, Lidia V; Rechkunova, Nadejda I; Lebedeva, Natalia A; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Lavrik, Olga I

    2014-12-01

    The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced intercalated (+)-cis-BPDE-dG adduct (BP lesion) by a BER system. Oligonucleotides with single uracil residue in the certain position were annealed with complementary oligonucleotides bearing either a cis- or trans-BP adduct. Digestion with uracil DNA glycosylase was utilized to generate an AP site which was then hydrolyzed by APE1, and the resulting gap was processed by X-family DNA polymerases β (Polβ) and λ (Polλ), or Y-family polymerase ι (Polι). By varying reaction conditions, namely, Mg2+/Mn2+ replacement/combination and ionic strength decrease, we found that under certain conditions both Polβ and Polι can catalyze lesion bypass across both cis- and trans-BP adducts in the presence of physiological dNTP concentrations. Polβ and Polι catalyze gap filling trans-lesion synthesis in an error prone manner. By contrast, Polλ selectively introduced the correct dCTP opposite the modified dG in the case of cis-BP-dG adduct only, and did not bypass the stereoisomeric trans-adduct under any of the conditions examined. The results suggest that Polλ is a specialized polymerase that can process these kinds of lesions.

  13. An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity.

    Directory of Open Access Journals (Sweden)

    Ulrika Nordström

    2006-07-01

    Full Text Available The link between extrinsic signaling, progenitor cell specification and neuronal subtype identity is central to the developmental organization of the vertebrate central nervous system. In the hindbrain and spinal cord, distinctions in the rostrocaudal identity of progenitor cells are associated with the generation of different motor neuron subtypes. Two fundamental classes of motor neurons, those with dorsal (dMN and ventral (vMN exit points, are generated over largely non-overlapping rostrocaudal domains of the caudal neural tube. Cdx and Hox genes are important determinants of the rostrocaudal identity of neural progenitor cells, but the link between early patterning signals, neural Cdx and Hox gene expression, and the generation of dMN and vMN subtypes, is unclear. Using an in vitro assay of neural differentiation, we provide evidence that an early Wnt-based program is required to interact with a later retinoic acid- and fibroblast growth factor-mediated mechanism to generate a pattern of Cdx and Hox profiles characteristic of hindbrain and spinal cord progenitor cells that prefigure the generation of vMNs and dMNs.

  14. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  15. Human Lin28 Forms a High-Affinity 1:1 Complex with the 106~363 Cluster miRNA miR-363.

    Science.gov (United States)

    Peters, Daniel T; Fung, Herman K H; Levdikov, Vladimir M; Irmscher, Tobias; Warrander, Fiona C; Greive, Sandra J; Kovalevskiy, Oleg; Isaacs, Harry V; Coles, Mark; Antson, Alfred A

    2016-09-13

    Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein-RNA complex are unknown. Characterization of human Lin28's interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with a 1:1 stoichiometry and with a similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model in which the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions.

  16. Human Lin28 Forms a High-Affinity 1:1 Complex with the 106~363 Cluster miRNA miR-363

    Science.gov (United States)

    2016-01-01

    Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein–RNA complex are unknown. Characterization of human Lin28’s interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with a 1:1 stoichiometry and with a similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model in which the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions. PMID:27559824

  17. Characterization of a cluster of oncogenic mutations in E6 of a human papillomavirus 83 variant isolated from a high-grade squamous intraepithelial lesion.

    Science.gov (United States)

    Cannavo, Isabelle; Benchetrit, Maxime; Loubatier, Céline; Michel, Gregory; Lemichez, Emmanuel; Giordanengo, Valérie

    2011-10-01

    We previously isolated human papillomavirus 83 (HPV83m) from a cervical smear. Sequence analysis of E6 and E7 proteins highlighted five mutations located in the second putative zinc-finger region of E6 (E6m), an important domain for protein-protein or protein-DNA interactions. Here, we show that E6m of HPV83m can trigger human primary cell proliferation and anchorage-independent growth properties, similarly to E6 of HPV16, a high-risk HPV (HR-HPV). Interestingly, we demonstrate that, in contrast to E6 of HPV16, E6m corrupts neither p53 stability nor telomerase activity, but acts as a specific modulator of the transcriptional machinery. By studying E6m reversion mutants, we confirmed the importance of the second zinc-finger domain in triggering the observed upregulation of cell growth and of the transcriptional machinery. Reversion of these mutations in E6m (to yield strain E6r) fully abolished the oncogenic potential of E6m, transforming the phenotype of E6 from a high-risk to a low-risk phenotype. Importantly, our data define the importance of a cluster of mutations in the second zinc finger of E6m in increasing the oncogenic potential of HPV83.

  18. Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS

    Directory of Open Access Journals (Sweden)

    J. H. Crawford

    2012-08-01

    Full Text Available The hydroxyl (OH and hydroperoxyl (HO2 radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by ultraviolet (UV light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ for the LIF instrument, ±65% (2σ for the SI-CIMS instrument, and ±50% (2σ for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 104 cm−3 with a correlation coefficient r2 = 0.72 for OH, and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol−1 with a correlation coefficient r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some

  19. Multiplex genotype determination at a DNA sequence polymorphism cluster in the human immunoglobulin heavy-chain region

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Hood, L. [California Institute of Technology, Pasadena, CA (United States)

    1995-03-20

    We have developed a method for multilocus genotype determination. The method involves using restriction fragment length polymorphisms (RFLPs) for allele discrimination. If a polymorphism is not an RFLP, it is converted into an RFLP during the polymerase chain reaction (PCR). After amplification and restriction enzyme digestion, samples are analyzed by sequential gel loading during electrophoresis. The efficiency of this method was demonstrated by determining the genotypes of 108 semen samples at seven DNA sequence polymorphic sites identified in the human immunoglobulin heavy-chain variable region. It was shown that more than 1000 PCR products could be easily analyzed per day per investigator. To show the reliability of this method, some of the typing results were confirmed by DNA sequence analysis. By computer simulation, most (98%) polymorphisms were shown to be natural or convertible (by changing 1 bp close to or next to each polymorphic site) RFLPs for the commercially available 4-base cutters. 47 refs., 4 figs., 3 tabs.

  20. Convex Clustering: An Attractive Alternative to Hierarchical Clustering

    Science.gov (United States)

    Chen, Gary K.; Chi, Eric C.; Ranola, John Michael O.; Lange, Kenneth

    2015-01-01

    The primary goal in cluster analysis is to discover natural groupings of objects. The field of cluster analysis is crowded with diverse methods that make special assumptions about data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical clustering is the dominant clustering method in bioinformatics. Biologists find the trees constructed by hierarchical clustering visually appealing and in tune with their evolutionary perspective. Hierarchical clustering operates on multiple scales simultaneously. This is essential, for instance, in transcriptome data, where one may be interested in making qualitative inferences about how lower-order relationships like gene modules lead to higher-order relationships like pathways or biological processes. The recently developed method of convex clustering preserves the visual appeal of hierarchical clustering while ameliorating its propensity to make false inferences in the presence of outliers and noise. The solution paths generated by convex clustering reveal relationships between clusters that are hidden by static methods such as k-means clustering. The current paper derives and tests a novel proximal distance algorithm for minimizing the objective function of convex clustering. The algorithm separates parameters, accommodates missing data, and supports prior information on relationships. Our program CONVEXCLUSTER incorporating the algorithm is implemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several biological examples illustrate the strengths of convex clustering and the ability of the proximal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.edu/software/ PMID:25965340

  1. Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells

    DEFF Research Database (Denmark)

    Terp, Mikkel G; Olesen, Kristina A; Christensen, Eva Arnspang

    2013-01-01

    -linking of CD73, because both whole IgG anti-CD73 AD2 mAb and Fab' fragments thereof exhibited this effect. Ex vivo treatment of different breast cancer cell lines with anti-CD73 AD2 mAb before i.v. injection into mice inhibited extravasation/colonization of circulating tumor cells and significantly reduced...... internalization and metastasis inhibition. Furthermore, anti-CD73 AD2 mAb inhibited development of metastasis in a spontaneous animal model of human metastatic breast cancer. Our study shows that some anti-CD73 mAbs cause cell-surface clustering of CD73 followed by internalization, thus inhibiting the ability...... another anticancer mechanism of anti-CD73 Abs and show that an anti-CD73 mAb (AD2) inhibits metastasis formation by a mechanism independent of CD73 catalytic activity and inhibition of primary tumor growth. This mechanism involves clustering and internalization of CD73, but does not require cross...

  2. Evidence for clustered mannose as a new ligand for hyaluronan-binding protein (HABP1) from human fibroblasts

    Indian Academy of Sciences (India)

    Rajeev Kumar; Nirupam Roy Choudhury; Dinakar M Salunke; K Datta

    2001-09-01

    We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.

  3. A Familial Cluster of Human Brucellosis Attributable to Contact with Imported Infected Goats in Shuyang, Jiangsu Province, China, 2013.

    Science.gov (United States)

    Tan, Zhongming; Huang, Yong; Liu, Genyan; Zhou, Weizhong; Xu, Xilou; Zhang, Zibing; Shen, Qing; Tang, Fenyang; Zhu, Yefei

    2015-10-01

    Brucellosis remains a serious public health issue in developing countries, including China. On August 8, 2013, four cases of brucellosis from one extended family were reported at Shuyang County, Jiangsu Province, China. Active case finding was performed to identify the source and the risk factors of the infection and to prevent additional cases. Multiple-locus variable number tandem repeat analysis (MLVA) was used for molecular subtyping analysis. Six people from two extended families met the case definition for brucellosis infection; four were blood culture positive for Brucella melitensis biotype 3. Four additional family members were found seropositive by using a serological test. Isolates from the four patients were indistinguishable by MLVA profiling, displaying a unique type for Jiangsu Province. Field epidemiological data combined with MLVA genotyping supported a common source of the isolates from the different patients. We recommend stronger reinforcement measures for animal quarantine practices, enhanced cooperation with veterinary service organizations, and implementation of measures that strengthen public education on brucellosis to prevent further human outbreaks in Jiangsu Province.

  4. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    .g. sustainability or quality of life. The purpose of this paper is to explore how and to what extent public sector interventions that aim at forcing cluster development in industries can support sustainable development as defined in the Brundtland tradition and more recently elaborated in such concepts as eco......, Portugal and New Zealand have adopted the concept. Public sector interventions that aim to support cluster development in industries most often focus upon economic policy goals such as enhanced employment and improved productivity, but rarely emphasise broader societal policy goals relating to e...... to the automotive sector in Wales. Specifically, the paper evaluates the "Accelerates" programme initiated by the Welsh Development Agency and elaborates on how and to what extent the Accelerate programme supports the development of a sustainable automotive industry cluster. The Accelerate programme was set up...

  5. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation.

    Science.gov (United States)

    Zhu, Zijue; Li, Chong; Yang, Shi; Tian, Ruhui; Wang, Junlong; Yuan, Qingqing; Dong, Hui; He, Zuping; Wang, Shengyue; Li, Zheng

    2016-01-12

    Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted.

  6. Re-programming of C. elegans male epidermal precursor fates by Wnt, Hox, and LIN-12/Notch activities.

    Science.gov (United States)

    Yu, Hui; Seah, Adeline; Sternberg, Paul W

    2010-09-01

    In Caenorhabditiselegans males, different subsets of ventral epidermal precursor (Pn.p) cells adopt distinct fates in a position-specific manner: three posterior cells, P(9-11).p, comprise the hook sensillum competence group (HCG) with three potential fates (1 degrees , 2 degrees , or 3 degrees ), while eight anterior cells, P(1-8).p, fuse with the hyp7 epidermal syncytium. Here we show that activation of the canonical BAR-1 beta-catenin pathway of Wnt signaling alters the competence of P(3-8).p and specifies ectopic HCG-like fates. This fate transformation requires the Hox gene mab-5. In addition, misexpression of mab-5 in P(1-8).p is sufficient to establish HCG competence among these cells, as well as to generate ectopic HCG fates in combination with LIN-12 or EGF signaling. While increased Wnt signaling induces predominantly 1 degrees HCG fates, increased LIN-12 or EGF signaling in combination with MAB-5 overexpression promotes 2 degrees HCG fates in anterior Pn.p cells, suggesting distinctive functions of Wnt, LIN-12, and EGF signaling in specification of HCG fates. Lastly, wild-type mab-5 function is necessary for normal P(9-11).p fate specification, indicating that regulation of ectopic HCG fate formation revealed in anterior Pn.p cells reflect mechanisms of pattern formation during normal hook development.

  7. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla

    Directory of Open Access Journals (Sweden)

    Baxevanis Andreas D

    2007-12-01

    Full Text Available Abstract The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less specialized along their primary body axis. As such, they present an attractive outgroup from which to investigate how evolutionary changes in the genetic toolkit may have contributed to the emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa. Specifically, we examine these data in the context of how they may explain the evolutionary development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians. Open peer review Reviewed by Pierre Pontarotti, Gáspár Jékely, and L Aravind. For the full reviews, please go to the Reviewers' comments section.

  8. Large magnetocaloric effect of HoxEr1-xNi (0 ≤ x ≤ 1) compounds

    Science.gov (United States)

    Zheng, X. Q.; Zhang, B.; Wu, H.; Hu, F. X.; Huang, Q. Z.; Shen, B. G.

    2016-10-01

    A secondary magnetic transition (spin reorientation transition) below Curie temperature in ErNi was observed via different characterization techniques. Ho-substitution for Er atoms has a great impact on the magnetic property and magnetocaloric effect. The two magnetic transitions change close to each other with 10% of Ho-substitution at the Er site. It is also found that 10% of Ho-substitution contributes up to ˜14.9% of enhancement on the maximal magnetic entropy change (ΔSM) and ˜21.9% of enhancement on the maximal adiabatic temperature change (ΔTad). The maximum value of ΔSM and ΔTad for Ho0.1Er0.9Ni compound is as high as 34 J/kg K and 8.9 K, respectively, under a field change of 0-5 T. The relationship between the maximal ΔSM and the refrigerant temperature width (δTFWHM) for HoxEr1-xNi (0 ≤ x ≤ 1) compounds is analyzed. The enhancement of MCE for Ho0.1Er0.9Ni compound is considered to be resulted from the tendency of merging of spin reorientation transition and ferromagnetic to paramagnetic transition.

  9. The influence of cloud chemistry on HOx and NOx in the Marine Boundary Layer: a 1-D modelling study

    Directory of Open Access Journals (Sweden)

    F. J. Dentener

    2001-10-01

    Full Text Available A 1-D marine stratocumulus cloud model has been supplemented with a comprehensive and up-to-date aqueous phase chemical mechanism for the purpose of assessing the impact that the presence of clouds and aerosols has on gas phase HOx, NOx and O3 budgets in the marine boundary layer. The simulations presented here indicate that cloud may act as a heterogeneous source of HONOg via the conversion of HNO4(g at moderate pH (~4.5. The photolysis of nitrate (NO3- has also been found to contribute to this simulated increase in HONOg by ~5% and also acts as a minor source of NO2(g. The effect of introducing deliquescent aerosol on the simulated increase of HONOg is negligible. The most important consequences of this elevation in HONOg are that, in the presence of cloud, gas phase concentrations of NOx species increase by a factor of 2, which minimises the simulated decrease in O3(g, and results in a regeneration of OHg. This partly compensates for the removal of OHg by direct phase transfer into the cloud and has important implications regarding the oxidising capacity of the marine boundary layer. The findings presented here also suggest that previous modelling studies, which neglect the heterogeneous HNO4(g reaction cycle, may have over-estimated the role of clouds as a sink for OHg and O3(gin unpolluted oceanic regions, by ~10% and ~2%, respectively.

  10. Health and human rights in eastern Myanmar after the political transition: a population-based assessment using multistaged household cluster sampling.

    Directory of Open Access Journals (Sweden)

    Parveen Kaur Parmar

    Full Text Available Myanmar transitioned to a nominally civilian parliamentary government in March 2011. Qualitative reports suggest that exposure to violence and displacement has declined while international assistance for health services has increased. An assessment of the impact of these changes on the health and human rights situation has not been published.Five community-based organizations conducted household surveys using two-stage cluster sampling in five states in eastern Myanmar from July 2013-September 2013. Data was collected from 6, 178 households on demographics, mortality, health outcomes, water and sanitation, food security and nutrition, malaria, and human rights violations (HRV. Among children aged 6-59 months screened, the prevalence of global acute malnutrition (representing moderate or severe malnutrition was 11.3% (8.0-14.7. A total of 250 deaths occurred during the year prior to the survey. Infant deaths accounted for 64 of these (IMR 94.2; 95% CI 66.5-133.5 and there were 94 child deaths (U5MR 141.9; 95% CI 94.8-189.0. 10.7% of households (95% CI 7.0-14.5 experienced at least one HRV in the past year, while four percent reported 2 or more HRVs. Household exposure to one or more HRVs was associated with moderate-severe malnutrition among children (14.9 vs. 6.8%; prevalence ratio 2.2, 95% CI 1.2-4.2. Household exposure to HRVs was associated with self-reported fair or poor health status among respondents (PR 1.3; 95% CI 1.1-1.5.This large survey of health and human rights demonstrates that two years after political transition, vulnerable populations of eastern Myanmar are less likely to experience human rights violations compared to previous surveys. However, access to health services remains constrained, and risk of disease and death remains higher than the country as a whole. Efforts to address these poor health indicators should prioritize support for populations that remain outside the scope of most formal government and donor programs.

  11. Genomic characterization of echovirus 6 causing aseptic meningitis in Hokkaido, Japan: a novel cluster in the nonstructural protein coding region of human enterovirus B.

    Science.gov (United States)

    Miyoshi, Masahiro; Komagome, Rika; Ishida, Setsuko; Nagano, Hideki; Takahashi, Kenichi; Okano, Motohiko

    2013-04-01

    We determined four complete nucleotide sequences of echovirus 6 (E6) isolated from an epidemic of aseptic meningitis (AM) in Hokkaido, Japan, in 2011. Phylogenetic analysis of the genes encoding viral capsid protein 1 revealed that the strains were closely related to E6 strains isolated in China in recent years, but they were distantly related to E6 strains isolated from patients with AM in Osaka Prefecture, Japan, in 2011. The genes encoding the viral protease and RNA-dependent RNA polymerase (3CD) were closely related to those of several non-E6 strains of the species Human enterovirus B isolated in China, South Korea, and Australia from 1999 to 2010, resulting in a novel cluster in the phylogenetic tree. These results suggest that the incidence of AM in Japan in 2011 was caused by at least two lineages of E6 strains, and a lineage of the 3CD gene was interspersed among different serotypic strains isolated in Western Pacific countries.

  12. Calodium hepaticum: household clustering transmission and the finding of a source of human spurious infection in a community of the Amazon region.

    Directory of Open Access Journals (Sweden)

    Alessandra Queiroga Gonçalves

    Full Text Available BACKGROUND: Calodium hepaticum (syn. Capillaria hepatica is a worldwide helminth parasite of which several aspects of transmission still remain unclear. In the Amazon region, the mechanism of transmission based on the ingestion of eggs present in the liver of wild mammals has been suggested as the cause of the spurious infections described. We performed an epidemiological investigation to determine the incidence, risk of spurious infection and the dynamics of transmission of C. hepaticum in a community of the Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Stool samples of 135 individuals, two dog feces and liver tissue from a peccary (captured and eaten by the residents were analyzed by conventional microscopy. Dog feces were collected from the gardens of households presenting human cases of spurious C. hepaticum infections. Community practices and feeding habits related to the transmission of the parasite were investigated. The individual incidence of spurious infection was 6.7% (95% CI: 2.08-11.24. Cases of spurious infection were observed in 7.5% of the families and the household incidence was from 50% to 83.3%. The risk of spurious infection was 10-fold greater in persons consuming the liver of wild mammals (p = 0.02. The liver tissue of a peccary and one feces sample of a dog presented eggs of C. hepaticum. The consumption of the infected liver was the cause of the spurious infections reported in one household. CONCLUSIONS/SIGNIFICANCE: This is the first identification of a source of spurious infection by C. hepaticum in humans and we describe a high rate of incidence in household clusters related to game liver alimentary habits. The finding of a dog feces contaminating peridomiciliary ground suggests the risk of new infections. We conclude that the mechanism of transmission based on the ingestion of liver is important for the dynamics of transmission of C. hepaticum in the studied area.

  13. Lead exposure induces changes in 5-hydroxymethylcytosine clusters in CpG islands in human embryonic stem cells and umbilical cord blood.

    Science.gov (United States)

    Sen, Arko; Cingolani, Pablo; Senut, Marie-Claude; Land, Susan; Mercado-Garcia, Adriana; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O; Ruden, Douglas M

    2015-01-01

    Prenatal exposure to neurotoxicants such as lead (Pb) may cause stable changes in the DNA methylation (5mC) profile of the fetal genome. However, few studies have examined its effect on the DNA de-methylation pathway, specifically the dynamic changes of the 5-hydroxymethylcytosine (5hmC) profile. Therefore, in this study, we investigate the relationship between Pb exposure and 5mC and 5hmC modifications during early development. To study the changes in the 5hmC profile, we use a novel modification of the Infinium™ HumanMethylation450 assay (Illumina, Inc.), which we named HMeDIP-450K assay, in an in vitro human embryonic stem cell model of Pb exposure. We model Pb exposure-associated 5hmC changes as clusters of correlated, adjacent CpG sites, which are co-responding to Pb. We further extend our study to look at Pb-dependent changes in high density 5hmC regions in umbilical cord blood DNA from 48 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohort. For our study, we randomly selected umbilical cord blood from 24 male and 24 female children from the 1st and 4th quartiles of Pb levels. Our data show that Pb-associated changes in the 5hmC and 5mC profiles can be divided into sex-dependent and sex-independent categories. Interestingly, differential 5mC sites are better markers of Pb-associated sex-dependent changes compared to differential 5hmC sites. In this study we identified several 5hmC and 5mC genomic loci, which we believe might have some potential as early biomarkers of prenatal Pb exposure.

  14. PDZ-domain containing-2 (PDZD2) drives the maturity of human fetal pancreatic progenitor-derived islet-like cell clusters with functional responsiveness against membrane depolarization.

    Science.gov (United States)

    Leung, Kwan Keung; Suen, Po Man; Lau, Tse Kin; Ko, Wing Hung; Yao, Kwok Ming; Leung, Po Sing

    2009-09-01

    We recently reported the isolation and characterization of a population of pancreatic progenitor cells (PPCs) from early trimester human fetal pancreata. The PPCs, being the forerunners of adult pancreatic cell lineages, were amenable to growth and differentiation into insulin-secreting islet-like cell clusters (ICCs) upon stimulation by adequate morphogens. Of note, a novel morphogenic factor, PDZ-domain containing-2 (PDZD2) and its secreted form (sPDZD2) were ubiquitously expressed in the PPCs. Our goals for this study were to evaluate the potential role of sPDZD2 in stimulating PPC differentiation and to establish the optimal concentration for such stimulation. We found that 10(-9)M sPDZD2 promoted PPC differentiation, as evidenced by the upregulation of the pancreatic endocrine markers (PDX-1, NGN3, NEURO-D, ISL-1, NKX 2.2, NKX 6.1) and INSULIN mRNA. Inhibited endogenous production of sPDZD2 suppressed expression of these factors. Secreted PDZD2 treatment significantly elevated the C-peptide content of the ICCs and increased the basal rate of insulin secretion. However, they remained unresponsive to glucose stimulation, reflected by a minimal increase in GLUT-2 and GLUCOKINASE mRNA expression. Interestingly, sPDZD2 treatment induced increased expression of the L-type voltage-gated calcium channel (Ca(v)1.2) in the ICCs, triggering calcium ion influx under KCl stimulation and conferring an ability to secrete insulin in response to KCl. Pancreatic progenitor cells from 10- and 13-week fetal pancreata showed peak expression of endogenous sPDZD2, implying that sPDZD2 has a specific role in islet development during the first trimester. In conclusion, our data suggest that sPDZD2 promotes functional maturation of human fetal PPC-derived ICCs, thus enhancing its transplanting potentials.

  15. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...

  16. Autocrine/Paracrine Human Growth Hormone-stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer.

    Science.gov (United States)

    Zhang, Weijie; Qian, Pengxu; Zhang, Xiao; Zhang, Min; Wang, Hong; Wu, Mingming; Kong, Xiangjun; Tan, Sheng; Ding, Keshuo; Perry, Jo K; Wu, Zhengsheng; Cao, Yuan; Lobie, Peter E; Zhu, Tao

    2015-05-29

    Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.

  17. Correlation clusters in the accumulation of metals in human scalp hair: effects of age, community of residence, and abundances of metals in air and water supplies.

    Science.gov (United States)

    Moon, J; Davison, A J; Smith, T J; Fadl, S

    1988-06-15

    Scalp hair samples taken from 122 children and 27 adults from three native Indian villages in northern Alberta, Canada were analyzed for 32 metals, in an attempt to trace industrial pollution into the human population. One of the villages has been exposed since 1967 to increased levels of several metals due to its proximity to the world's first two oil sands petroleum extraction plants (Suncor and Syncrude), which release large amounts of metals into the environment. Metal-enriched particulates are emitted at a rate of 547-780 kg h-1 for Suncor, and 713-1067 kg h-1 for Syncrude. To test the hypothesis that hair content reflected accumulation of environmental metals, water and aerometric samples were collected and analyzed for their metal content. These analyses demonstrated that elevated levels of nine metals in hair from children in one of the control villages (Garden River) are (with the exception of Al) correlated with increased levels of metals in water and air. Moreover, increased levels of Cu, but lowest levels of all other metals were found in hair and environmental samples from one control village (Fort Chipewyan). Correlation matrices for metals in the hair samples revealed three sets of highly intercorrelated metals ('correlation clusters'): (i) Pb/Cd; (ii) Al/V/Fe; (iii) Ca/Mg/Sr/Ba. These groups of metals were significantly intercorrelated (r greater than 0.6, p less than 0.001) in the total population, and in both children and adults, or both males and females, as well as when the population was compared according to community of residence. The robustness of the clusters is particularly noteworthy in view of large differences in the proportions and absolute amounts of the various metals in hair from children in the three villages. Plots of metal levels in hair as a function of age of subject reveal a dramatic decrease in concentrations of Al, V, and Fe during the first years of life. The high levels of Al and V in hair from very young children may

  18. Quotients of cluster categories

    OpenAIRE

    Jorgensen, Peter

    2007-01-01

    Higher cluster categories were recently introduced as a generalization of cluster categories. This paper shows that in Dynkin types A and D, half of all higher cluster categories are actually just quotients of cluster categories. The other half can be obtained as quotients of 2-cluster categories, the "lowest" type of higher cluster categories. Hence, in Dynkin types A and D, all higher cluster phenomena are implicit in cluster categories and 2-cluster categories. In contrast, the same is not...

  19. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  20. Modelling simulations of NOx and HOx in the middle and upper atmosphere using a 3D Whole Atmosphere Community Climate Model with D region ion-neutral chemistry

    Science.gov (United States)

    Feng, W.; Plane, J. M. C.; Kovacs, T.; Chipperfield, M.; Marsh, D. R.; Smith, A. K.; Verronen, P. T.; Newnham, D.; Clilverd, M. A.

    2016-12-01

    In the middle and upper atmosphere, the distributions of odd nitrogen NOx (NO, NO2) and odd hydrogen HOx (OH, HO2) are controlled by transport processes and chemistry. Energetic particle precipitation (of protons and electrons) produces NOx and HOx through ion-molecule chemistry, and this can play an important role in the chemistry of the mesosphere. There is also increasing evidence that the descent of NOx can destroy stratospheric O3 at high latitudes. Therefore, it is crucial to understand the importance of their production/loss rates, horizontal/vertical transport to advance our knowledge in the evolution of NOx and HOx as well as other related chemical species (e.g. HNO3, ClNO3, O and O3). Recently, we have developed a new coupled ion-neutral chemical model for the ionospheric D region (altitudes 50 - 90 km) based on the Sodankylä Ion and neutral Chemistry (SIC) model and 3D Whole Atmosphere Community Climate Model (WACCM), termed WACCM-SIC (Kovacs et al., 2016). An extra 306 ion-neutral and ion-recombination reactions of neutral species, positive and negative ions, and electrons have been added to the standard chemistry in WACCM. WACCM-SIC simulations have been performed to explore the relative contributions to mesospheric NO from auroral and medium energetic electrons, during the period 2013-2015. The modelled simulations are also compared with the available satellite measurements (e.g., temperature, O, H, and O3 from SABER, and NO from AIM) and ground-based microwave radiometer observations of mesospheric NO at Halley station (75oS). The interannual and inter-hemisphere differences will also be discussed.

  1. Nonautonomous Roles of MAB-5/Hox and the Secreted Basement Membrane Molecule SPON-1/F-Spondin in Caenorhabditis elegans Neuronal Migration.

    Science.gov (United States)

    Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A

    2016-08-01

    Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration.

  2. Cluster randomization and political philosophy.

    Science.gov (United States)

    Chwang, Eric

    2012-11-01

    In this paper, I will argue that, while the ethical issues raised by cluster randomization can be challenging, they are not new. My thesis divides neatly into two parts. In the first, easier part I argue that many of the ethical challenges posed by cluster randomized human subjects research are clearly present in other types of human subjects research, and so are not novel. In the second, more difficult part I discuss the thorniest ethical challenge for cluster randomized research--cases where consent is genuinely impractical to obtain. I argue that once again these cases require no new analytic insight; instead, we should look to political philosophy for guidance. In other words, the most serious ethical problem that arises in cluster randomized research also arises in political philosophy.

  3. Cluster Radioactivity

    Science.gov (United States)

    Poenaru, Dorin N.; Greiner, Walter

    One of the rare examples of phenomena predicted before experimental discovery, offers the opportunity to introduce fission theory based on the asymmetric two center shell model. The valleys within the potential energy surfaces are due to the shell effects and are clearly showing why cluster radioactivity was mostly detected in parent nuclei leading to a doubly magic lead daughter. Saddle point shapes can be determined by solving an integro-differential equation. Nuclear dynamics allows us to calculate the half-lives. The following cluster decay modes (or heavy particle radioactivities) have been experimentally confirmed: 14C, 20O, 23F, 22,24-26Ne, 28,30Mg, 32,34Si with half-lives in good agreement with predicted values within our analytical superasymmetric fission model. The preformation probability is calculated as the internal barrier penetrability. An universal curve is described and used as an alternative for the estimation of the half-lives. The macroscopic-microscopic method was extended to investigate two-alpha accompanied fission and true ternary fission. The methods developed in nuclear physics are also adapted to study the stability of deposited atomic clusters on the planar surfaces.

  4. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling.

    Directory of Open Access Journals (Sweden)

    Marc J Geisen

    2008-06-01

    Full Text Available The pontine neurons (PN represent a major source of mossy fiber projections to the cerebellum. During mouse hindbrain development, PN migrate tangentially and sequentially along both the anteroposterior (AP and dorsoventral (DV axes. Unlike DV migration, which is controlled by the Netrin-1/Dcc attractive pathway, little is known about the molecular mechanisms guiding PN migration along the AP axis. Here, we show that Hoxa2 and Hoxb2 are required both intrinsically and extrinsically to maintain normal AP migration of subsets of PN, by preventing their premature ventral attraction towards the midline. Moreover, the migration defects observed in Hoxa2 and Hoxb2 mutant mice were phenocopied in compound Robo1;Robo2, Slit1;Slit2, and Robo2;Slit2 knockout animals, indicating that these guidance molecules act downstream of Hox genes to control PN migration. Indeed, using chromatin immunoprecipitation assays, we further demonstrated that Robo2 is a direct target of Hoxa2 in vivo and that maintenance of high Robo and Slit expression levels was impaired in Hoxa2 mutant mice. Lastly, the analysis of Phox2b-deficient mice indicated that the facial motor nucleus is a major Slit signaling source required to prevent premature ventral migration of PN. These findings provide novel insights into the molecular control of neuronal migration from transcription factor to regulation of guidance receptor and ligand expression. Specifically, they address the question of how exposure to multiple guidance cues along the AP and DV axes is regulated at the transcriptional level and in turn translated into stereotyped migratory responses during tangential migration of neurons in the developing mammalian brain.

  5. Nonlinear functional connectivity network recovery in the human brain with mutual connectivity analysis (MCA): convergent cross-mapping and non-metric clustering

    Science.gov (United States)

    Wismüller, Axel; Abidin, Anas Z.; D'Souza, Adora M.; Wang, Xixi; Hobbs, Susan K.; Leistritz, Lutz; Nagarajan, Mahesh B.

    2015-03-01

    We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

  6. Korelasi Jumlah Cluster of Differentiation 4 dengan Jenis Bakteri Penyebab Infeksi Paru dari Kultur Bilasan Bronkoalveolar pada Pasien Human Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Melindah

    2016-03-01

    Full Text Available Bacterial lung infection is the leading cause of morbidity and mortality of patients with human immunodeficiency virus (HIV/acquired immunodeficiency syndrome (AIDS. HIV infection causes immune system dysfunction, which is manifested by decreased cluster of differentiation 4 (CD4 cell counts. The purpose of this study was to determine the correlation between CD4 cell counts and the type of bacteria that caused lung infection from cultured washing of bronchoalveolar lavage in HIV patients in Dr. Hasan Sadikin Hospital Bandung. This was an observational analytic study with a cross-sectional design. Subjects were collected from November 2011 to October 2013 in Internal Departement Dr. Hasan Sadikin Hospital Bandung. There were 39 subjects enrolled with the average age of patients was 32 years. The median CD4 cell counts was 18 (range, 0–190 cell/mm3. The type of gram-negative rods bacteria was 29/39 samples and gram-positive cocci was 10/39 samples. Most species were Pseudomonas aeruginosa 11/39 samples, Klebsiella pneumoniae 11/39 samples and Streptococcus viridans 10/39 samples. Statistical analysis based on a point biserial correlation showed weak (r=0.232 and no significant correlation between CD4 cell counts and the type of bacteria (p>0.05. The weak correlation was the smaller the number of CD4 cell counts, the greater possibility of the gram-negative rod bacteria being the cause of the infection. This study concluded that there is only a weak and no correlation between the number of CD4 cell counts and the type of bacteria causing the lung infection obtained from bronchoalveolar lavage in patients with HIV in Dr. Hasan Sadikin Hospital Bandung.

  7. Making headway: the roles of Hox genes and neural crest cells in craniofacial development.

    Science.gov (United States)

    Trainor, Paul A

    2003-04-14

    Craniofacial development is an extraordinarily complex process requiring the orchestrated integration of multiple specialized tissues such as the surface ectoderm, neural crest, mesoderm, and pharyngeal endoderm in order to generate the central and peripheral nervous systems, axial skeleton, musculature, and connective tissues of the head and face. How do the characteristic facial structures develop in the appropriate locations with their correct shapes and sizes, given the widely divergent patterns of cell movements that occur during head development? The patterning information could depend upon localized interactions between the epithelial and mesenchymal tissues or alternatively, the developmental program for the characteristic facial structures could be intrinsic to each individual tissue precursor. Understanding the mechanisms that control vertebrate head development is an important issue since craniofacial anomalies constitute nearly one third of all human congenital defects. This review discusses recent advances in our understanding of neural crest cell patterning and the dynamic nature of the tissue interactions that are required for normal craniofacial development.

  8. An Automatic Clustering Technique for Optimal Clusters

    CERN Document Server

    Pavan, K Karteeka; Rao, A V Dattatreya; 10.5121/ijcsea.2011.1412

    2011-01-01

    This paper proposes a simple, automatic and efficient clustering algorithm, namely, Automatic Merging for Optimal Clusters (AMOC) which aims to generate nearly optimal clusters for the given datasets automatically. The AMOC is an extension to standard k-means with a two phase iterative procedure combining certain validation techniques in order to find optimal clusters with automation of merging of clusters. Experiments on both synthetic and real data have proved that the proposed algorithm finds nearly optimal clustering structures in terms of number of clusters, compactness and separation.

  9. The ancient mammalian KRAB zinc finger gene cluster on human chromosome 8q24.3 illustrates principles of C2H2 zinc finger evolution associated with unique expression profiles in human tissues

    Directory of Open Access Journals (Sweden)

    Ding Guohui

    2010-03-01

    Full Text Available Abstract Background Expansion of multi-C2H2 domain zinc finger (ZNF genes, including the Krüppel-associated box (KRAB subfamily, paralleled the evolution of tetrapodes, particularly in mammalian lineages. Advances in their cataloging and characterization suggest that the functions of the KRAB-ZNF gene family contributed to mammalian speciation. Results Here, we characterized the human 8q24.3 ZNF cluster on the genomic, the phylogenetic, the structural and the transcriptome level. Six (ZNF7, ZNF34, ZNF250, ZNF251, ZNF252, ZNF517 of the seven locus members contain exons encoding KRAB domains, one (ZNF16 does not. They form a paralog group in which the encoded KRAB and ZNF protein domains generally share more similarities with each other than with other members of the human ZNF superfamily. The closest relatives with respect to their DNA-binding domain were ZNF7 and ZNF251. The analysis of orthologs in therian mammalian species revealed strong conservation and purifying selection of the KRAB-A and zinc finger domains. These findings underscore structural/functional constraints during evolution. Gene losses in the murine lineage (ZNF16, ZNF34, ZNF252, ZNF517 and potential protein truncations in primates (ZNF252 illustrate ongoing speciation processes. Tissue expression profiling by quantitative real-time PCR showed similar but distinct patterns for all tested ZNF genes with the most prominent expression in fetal brain. Based on accompanying expression signatures in twenty-six other human tissues ZNF34 and ZNF250 revealed the closest expression profiles. Together, the 8q24.3 ZNF genes can be assigned to a cerebellum, a testis or a prostate/thyroid subgroup. These results are consistent with potential functions of the ZNF genes in morphogenesis and differentiation. Promoter regions of the seven 8q24.3 ZNF genes display common characteristics like missing TATA-box, CpG island-association and transcription factor binding site (TFBS modules. Common TFBS

  10. Making Headway: The Roles of Hox Genes and Neural Crest Cells in Craniofacial Development

    Directory of Open Access Journals (Sweden)

    Paul A. Trainor

    2003-01-01

    Full Text Available Craniofacial development is an extraordinarily complex process requiring the orchestrated integration of multiple specialized tissues such as the surface ectoderm, neural crest, mesoderm, and pharyngeal endoderm in order to generate the central and peripheral nervous systems, axial skeleton, musculature, and connective tissues of the head and face. How do the characteristic facial structures develop in the appropriate locations with their correct shapes and sizes, given the widely divergent patterns of cell movements that occur during head development? The patterning information could depend upon localized interactions between the epithelial and mesenchymal tissues or alternatively, the developmental program for the characteristic facial structures could be intrinsic to each individual tissue precursor. Understanding the mechanisms that control vertebrate head development is an important issue since craniofacial anomalies constitute nearly one third of all human congenital defects. This review discusses recent advances in our understanding of neural crest cell patterning and the dynamic nature of the tissue interactions that are required for normal craniofacial development.

  11. Strengthening health human resources and improving clinical outcomes through an integrated guideline and educational outreach in resource-poor settings: a cluster-randomized trial

    Directory of Open Access Journals (Sweden)

    Burciul Barry

    2010-12-01

    Full Text Available Abstract Background In low-income countries, only about a third of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS patients eligible for anti-retroviral treatment currently receive it. Providing decentralized treatment close to where patients live is crucial to a faster scale up, however, a key obstacle is limited health system capacity due to a shortage of trained health-care workers and challenges of integrating HIV/AIDS care with other primary care services (e.g. tuberculosis, malaria, respiratory conditions. This study will test an adapted primary care health care worker training and guideline intervention, Practical Approach to Lung Health and HIV/AIDS Malawi (PALM PLUS, on staff retention and satisfaction, and quality of patient care. Methods/Design A cluster-randomized trial design is being used to compare usual care with a standardized clinical guideline and training intervention, PALM PLUS. The intervention targets middle-cadre health care workers (nurses, clinical officers, medical assistants in 30 rural primary care health centres in a single district in Malawi. PALM PLUS is an integrated, symptom-based and user-friendly guideline consistent with Malawian national treatment protocols. Training is standardized and based on an educational outreach approach. Trainers will be front-line peer healthcare workers trained to provide outreach training and support to their fellow front-line healthcare workers during focused (1-2 hours, intermittent, interactive sessions on-site in health centers. Primary outcomes are health care worker retention and satisfaction. Secondary outcomes are clinical outcomes measured at the health centre level for HIV/AIDS, tuberculosis, prevention-of-mother-to-child-transmission of HIV and other primary care conditions. Effect sizes and 95% confidence intervals for outcomes will be presented. Assessment of outcomes will occur at 1 year post- implementation. Discussion The PALM PLUS trial

  12. Heterogeneous production and loss of HOx by airborne TiO2 particles and implications for climate change mitigation strategies

    Science.gov (United States)

    Moon, D. R.; Heard, D. E.; Ingham, T.; Chipperfield, M.; Seakins, P. W.; Baeza Romero, M. T. T.; Taverna, G. S.

    2016-12-01

    It is suggested that injection of TiO2 particles into the stratosphere to back-scatter solar radiation maybe an effective measure to mitigate the effects of global warming. TiO2 particles are well suited to this application because of their high refractive index.1 However, the effect of such a measure on stratospheric chemistry is not fully understood. HO2 is a key atmospheric species in both the troposphere and the stratosphere and is responsible for 40% of ozone destruction in the lower stratosphere.2 In addition to this, application of TiO2 coatings to surfaces within the urban environment are used to abate ambient levels of NO2 and for their self-cleaning properties. This study investigates the heterogeneous reaction between airborne sub-micron TiO2 particles and HO2 radicals using an aerosol flow tube and the FAGE (fluorescence assay by gas expansion) technique to monitor HO2 uptake. The dependence of the uptake coefficient (γHO2) to relative humidity (RH) has been determined. Experiments performed in dark conditions at the most stratospherically relevant RH (11.1%) determined γHO2 = (2.08 ± 0.11) × 10-2. A positive dependence of γHO2 with RH was observed which showed a correlation between γHO2 and the number of monolayers of water adsorbed on the particle surface. Experiments illuminated with near-UV light (365 nm) were performed and showed significant production of HO2 from the aerosols into the gas phase. The concentrations were dependent on light flux, RH and total particle surface area. While the production of HOx in the gas phase has been observed close to TiO2 surfaces in the presence of H2O23,4 it is believed that this phenomena has not been observed from airborne TiO2 particles and parameterized in this way before. Emissions of HO2 from the surface of TiO2 particles in the stratosphere could rule out the application of TiO2 particles for use within solar-radiation management schemes. The TOMCAT 3-D chemical transport model was used to predict

  13. Epigenetic Alterations in Density Selected Human Spermatozoa for Assisted Reproduction.

    Directory of Open Access Journals (Sweden)

    Bolan Yu

    Full Text Available Epidemiological evidence indicates that assisted reproductive technologies (ART may be associated with several epigenetic diseases such as Beckwith-Wiedemann syndrome (BWS or Silver-Russell syndrome (SRS. Selection of sperm by density-gradients in ART has improved DNA integrity and sperm quality; however, epigenetic alterations associated with this approach are largely unknown. In the present study, we investigated DNA methylation and histone retention profiles in raw sperm and selected sperm derived from the same individual and separated by using density-gradients. Results from a study group consisting of 93 males demonstrated that both global DNA methylation and histone retention levels decreased in density selected sperm. Compared to unselected raw sperm, histone transition rates decreased by an average of 27.2% in selected sperm, and the global methylation rate was 3.8% in unselected sperm and 3.3% in the selected sperm. DNA methylation and histone retention location profiling analyses suggested that these alterations displayed specific location patterns in the human genome. Changes in the pattern of hypomethylation largely occurred in transcriptional factor gene families such as HOX, FOX, and GATA. Histone retention increased in 67 genes, whereas it was significantly clustered in neural development-related gene families, particularly the olfactory sensor gene family. Although a causative relationship could not be established, the results of the present study suggest the possibility that sperm with good density also possess unique epigenetic profiles, particularly for genes involved in neural and olfactory development. As increasing evidence demonstrates that epigenetics plays a key role in embryonic development and offspring growth characteristics, the specific epigenetic alterations we observed in selected sperm may influence the transcriptional process and neural development in embryos.

  14. Heavy hitters via cluster-preserving clustering

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nelson, Jelani; Nguyen, Huy L.

    2016-01-01

    , providing correctness whp. In fact, a simpler version of our algorithm for p = 1 in the strict turnstile model answers queries even faster than the "dyadic trick" by roughly a log n factor, dominating it in all regards. Our main innovation is an efficient reduction from the heavy hitters to a clustering...... problem in which each heavy hitter is encoded as some form of noisy spectral cluster in a much bigger graph, and the goal is to identify every cluster. Since every heavy hitter must be found, correctness requires that every cluster be found. We thus need a "cluster-preserving clustering" algorithm......, that partitions the graph into clusters with the promise of not destroying any original cluster. To do this we first apply standard spectral graph partitioning, and then we use some novel combinatorial techniques to modify the cuts obtained so as to make sure that the original clusters are sufficiently preserved...

  15. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss.

    Science.gov (United States)

    Benton, Miles C; Johnstone, Alice; Eccles, David; Harmon, Brennan; Hayes, Mark T; Lea, Rod A; Griffiths, Lyn; Hoffman, Eric P; Stubbs, Richard S; Macartney-Coxson, Donia

    2015-01-22

    Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3' untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity.

  16. Identification and characterization of a cluster of transcription start sites located in the E6 ORF of human papillomavirus type 16

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Hansen, Christina N

    2003-01-01

    -transformed cells. In contrast to malignant HPV types, non-malignant HPV types have separate promoters driving the expression of E6 and E7. Experiments have shown that the translation of E7 is more efficient from monocistronic than bicistronic transcripts encoding both E6 and E7. Here, identification...... is consistent with the finding of multiple transcription start sites. Furthermore, it is shown that proteins from HeLa and SiHa nuclear cell extracts bind to the two regions at nt 291-314 and 388-411, and that these two regions influence transcription activity in a cell type-dependent manner....... of a cluster of transcription start sites located in the E6 ORF of HPV-16 is presented. Transcripts from this region contain the E7 ORF as the first reading frame. The cluster consists of multiple transcription start sites located around nt 441. Additional transcription start sites were identified in a cluster...

  17. TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC.

    Science.gov (United States)

    Zhao, Zhi-Ning; Bai, Jiu-Xu; Zhou, Qiang; Yan, Bo; Qin, Wei-Wei; Jia, Lin-Tao; Meng, Yan-Ling; Jin, Bo-Quan; Yao, Li-Bo; Wang, Tao; Yang, An-Gang

    2012-01-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to decrease proliferation and increase apoptosis in different cancer cells. A significant number of genes have been identified as potential effectors responsible for the anti-tumor function of HDAC inhibitor. However, the molecular mechanisms of these HDAC inhibitors in this process remain largely undefined. In the current study, we searched for microRNAs (miRs) that were affected by HDAC inhibitor trichostatin (TSA) and investigated their effects in endometrial cancer (EMC) cells. Our data showed that TSA significantly inhibited the growth of EMC cells and induced their apoptosis. Among the miRNAs that altered in the presence of TSA, the miR-106b-93-25 cluster, together with its host gene MCM7, were obviously down-regulated in EMC cells. p21 and BIM, which were identified as target genes of miR-106b-93-25 cluster, increased in TSA treated tumor cells and were responsible for cell cycle arrest and apoptosis. We further identified MYC as a regulator of miR-106b-93-25 cluster and demonstrated its down-regulation in the presence of TSA resulted in the reduction of miR-106b-93-25 cluster and up-regulation of p21 and BIM. More important, we found miR-106b-93-25 cluster was up-regulated in clinical EMC samples in association with the overexpression of MCM7 and MYC and the down-regulation of p21 and BIM. Thus our studies strongly indicated TSA inhibited EMC cell growth and induced cell apoptosis and cell cycle arrest at least partially through the down-regulation of the miR-106b-93-25 cluster and up-regulation of it's target genes p21 and BIM via MYC.

  18. Autonomous Clustering Using Rough Set Theory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper proposes a clustering technique that minimizes the need for subjective human intervention and is based on elements of rough set theory (RST). The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease. The results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency.

  19. HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

    Science.gov (United States)

    Peng, Z.; Day, D. A.; Stark, H.; Li, R.; Lee-Taylor, J.; Palm, B. B.; Brune, W. H.; Jimenez, J. L.

    2015-11-01

    model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O3, O2, and H2O and reactions of OH and HO2 with themselves or with some abundant species, i.e., O3 and H2O2. OHexp calculated from direct integration and estimated from SO2 decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OHexp. However, in the models with RTDs, OHexp estimated from SO2 is systematically lower than directly integrated OHexp in the case of significant SO2 consumption. We thus recommended using OHexp estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HOx-recycling vs. destructive external OH reactivity only leads to small changes in OHexp under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OHexp due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OHexp from measured O3 consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O3 concentrations in OFR254 experiments. This study contributes to establishing a firm and systematic understanding of the gas-phase HOx and Ox chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.

  20. Cluster headache

    Directory of Open Access Journals (Sweden)

    Ducros Anne

    2008-07-01

    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  1. Expression of Hox, Cdx, and Six3/6 genes in the hoplonemertean Pantinonemertes californiensis offers insight into the evolution of maximally indirect development in the phylum Nemertea.

    Science.gov (United States)

    Hiebert, Laurel S; Maslakova, Svetlana A

    2015-01-01

    Maximally indirect development via a pilidium larva is unique to the pilidiophoran clade of phylum Nemertea. All other nemerteans have more or less direct development. The origin of pilidial development with disjunct invaginated juvenile rudiments and catastrophic metamorphosis remains poorly understood. While basal members of the phylum, the Palaeonemertea, do not appear to have ever had a pilidium, certain similarity exists in the development of the Pilidiophora and the sister clade, the Hoplonemertea. It is unclear whether this similarity represents the homology and whether pilidial development evolved before or after pilidiophorans diverged from hoplonemerteans. To gain insight into these questions, we examined the expression of Hox, Cdx, and Six3/6 genes in the development of the hoplonemertean Pantinonemertes californiensis and expression of Six3/6 in the pilidium of Micrura alaskensis. To further characterize the function of larval structures showing expression of these genes, we examined the serotonergic nervous system and cell proliferation in P. californiensis. We show that Hox and Cdx genes, which pattern the pilidial imaginal discs giving rise to the juvenile trunk, are expressed in paired posterior epidermal invaginations in P. californiensis larvae. We also show that Six3/6 patterns both the pilidial cephalic discs, which give rise to the juvenile head, and a pair of anterior epidermal invaginations in hoplonemertean development. We show that anterior invaginations in larval P. californiensis are associated with a pair of serotonergic neurons, and thus may have a role in the development of the juvenile nervous system. This is similar to the role of cephalic discs in pilidiophoran development. Finally, we show that four zones of high cell proliferation correspond to the paired invaginations in P. californiensis, suggesting that these invaginations may play a similar role in the development of the hoplonemertean juvenile to the role of imaginal discs in

  2. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  3. Family cluster of Mayaro fever, Venezuela.

    Science.gov (United States)

    Torres, Jaime R; Russell, Kevin L; Vasquez, Clovis; Barrera, Roberto; Tesh, Robert B; Salas, Rosalba; Watts, Douglas M

    2004-07-01

    A cluster of protracted migratory polyarthritis involving four adult family members occurred in January 2000 after a brief overnight outing in a rural area of Venezuela. Laboratory testing demonstrated Mayaro virus as the cause of the cluster. These results documented the first human cases of Mayaro virus in Venezuela.

  4. Family Cluster of Mayaro Fever, Venezuela

    OpenAIRE

    Jaime R. Torres; Russell, Kevin L; Vasquez, Clovis; Robert B Tesh; Salas, Rosalba; Watts, Douglas M.

    2004-01-01

    A cluster of protracted migratory polyarthritis involving four adult family members occurred in January 2000 after a brief overnight outing in a rural area of Venezuela. Laboratory testing demonstrated Mayaro virus as the cause of the cluster. These results documented the first human cases of Mayaro virus in Venezuela.

  5. Clustering and Community Detection with Imbalanced Clusters

    OpenAIRE

    Aksoylar, Cem; Qian, Jing; Saligrama, Venkatesh

    2016-01-01

    Spectral clustering methods which are frequently used in clustering and community detection applications are sensitive to the specific graph constructions particularly when imbalanced clusters are present. We show that ratio cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced cluster sizes since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to de...

  6. clusterProfiler: an R package for comparing biological themes among gene clusters.

    Science.gov (United States)

    Yu, Guangchuang; Wang, Li-Gen; Han, Yanyan; He, Qing-Yu

    2012-05-01

    Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.

  7. Cluster headaches.

    Science.gov (United States)

    Ryan, R E; Ryan, R E

    1989-12-01

    The patient with cluster headaches will be afflicted with the most severe type of pain that one will encounter. If the physician can do something to help this patient either by symptomatic or, more importantly, prophylactic treatment, he or she will have a most thankful patient. This type of headache is seen most frequently in men, and occurs in a cyclic manner. During an acute cycle, the patient will experience a daily type of pain that may occur many times per day. The pain is usually unilateral and may be accompanied by unilateral lacrimation, conjunctivitis, and clear rhinorrhea. Prednisone is the first treatment we employ. Patients are seen for follow-up approximately twice a week, and their medication is lowered in an appropriate manner, depending on their response to the treatment. Regulation of dosage has to be individualized, and when one reaches the lower dose such as 5 to 10 mg per day, the drug may have to be tapered more slowly, or even maintained at that level for a period of time to prevent further recurrence of symptoms. We frequently will use an intravenous histamine desensitization technique to prevent further attacks. We will give the patient an ergotamine preparation to use for symptomatic relief. As these patients often have headaches during the middle of the night, we will place the patient on a 2-mg ergotamine preparation to take prior to going to bed in the evening. This often works in a prophylactic nature, and prevents the nighttime occurrence of a headache. We believe that following these principles to make the accurate diagnosis and institute the proper therapy will help the practicing otolaryngologist recognize and treat patients suffering from this severe pain.

  8. Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

    DEFF Research Database (Denmark)

    Kar, Siddhartha P; Tyrer, Jonathan P; Li, Qiyuan

    2015-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified...... identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P ... (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. CONCLUSION: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. IMPACT: Network analysis...

  9. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and {beta}{sub 1}-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, N.; Beinke, C.; Beuningen, D. van [Inst. of Radiobiology, German Armed Forces, Munich (Germany); Plasswilm, L. [Dept. of Radiation Oncology, Univ. Hospital Basel (Swaziland)

    2004-03-01

    Background and purpose: interactions of cells with a substratum, especially extracellular matrix proteins, initiate clustering of integrin receptors in the cell membrane. This process represents the initial step for the activation of signaling pathways regulating survival, proliferation, differentiation, adhesion, and migration, and could, furthermore, be important for cellular resistance-mediating mechanisms against radiation or cytotoxic drugs. The lack of data elucidating the impact of irradiation or cytotoxic drugs on this important phenomenon led to this study on human A549 lung cancer cells in vitro. Material and methods: the human lung carcinoma cell line A549 grown on polystyrene or fibronectin (FN) was irradiated with 0-8 Gy or treated with cisplatin (0.1-50 {mu}M), paclitaxel (0.1-50 nM), or mitomycin (0.1-50 {mu}M). Colony formation assays, immunofluorescence staining in combination with activation of integrin clustering using anti-{beta}{sub 1}-integrin antibodies (K20), and Western blotting for tyrosine phosphorylation under treatment of cells with the IC{sub 50} for irradiation (2 Gy; IC{sub 50} = 2.2 Gy), cisplatin (2 {mu}M), paclitaxel (5 nM), or mitomycin (7 {mu}M) were performed. Results: attachment of cells to FN resulted in a significantly reduced radio- and chemosensitivity compared to polystyrene. The clustering of {beta}{sub 1}-integrins examined by immunofluorescence staining was only stimulated by irradiation, cisplatin, paclitaxel, or mitomycin in case of cell attachment to FN. By contrast, tyrosine phosphorylation, as one of the major events following {beta}{sub 1}-integrin clustering, showed a 3.7-fold, FN-related enhancement, and treatment of cells with the IC{sub 50} of radiation, cisplatin, paclitaxel, or mitomycin showed a substratum-dependent induction. Conclusion: for the first time, a strong influence of irradiation and a variety of cytotoxic drugs on the clustering of {beta}{sub 1}-integrins could be shown. This event is a

  10. An alternative interpretation of cellular 'selfish spermatogonial selection'-clusters in the human testis indicates the need for 3-D-analyses.

    Science.gov (United States)

    Pohl, E; Gromoll, J; Kliesch, S; Wistuba, J

    2016-03-01

    The 'selfish spermatogonial selection'- model was proposed to explain the paternal age effect (PAE) of some congenital disorders associated with point mutations in male germ cells. According to this, spermatogonia carrying pathogenic mutations gain a selection advantage over non-mutated spermatogonia which leads to an increased number of mutated spermatogonia and consequently spermatozoa over time. Recently, an immunohistochemical approach using the premeiotic marker melanoma antigen family A4 (MAGE A4) was undertaken by the Wilkie group to confirm the presence of microclones of putatively mutated spermatogonia in testes of elderly men. The objective of our study was the age-dependent assessment of testes from men with normal spermatogenesis using MAGE A4 immunohistochemistry to identify and corroborate cellular clusters indicative for 'selfish spermatogonial selection' in our cohort. We analyzed testicular tissues obtained from men with normal spermatogenesis assigned to three age groups [(1) 28.8 ± 2.7 years; (2) 48.1 ± 1 years; (3) 71.9 ± 6.8 years, n/group = 8]. We could detect very similar distribution patterns of MAGE A4-positive cells and the presence of several types of microclusters as reported previously. However, these cellular clusters, indicative for clonal expansion, were not only present in testes from elderly men but also in those from age group 1 and 2. Using graphical three-dimensional modelling, we identified that cross-section directions e.g. longitudinal sections might provoke misleading interpretation of spermatogonial clusters, in particular when the tissue processing is limited. Thus, appropriate fixation and embedding is needed for reliable analysis of testicular sections. We therefore propose a more careful interpretation of such spermatogonial clusters and recommend a 3-D analysis to unequivocally determine 'selfish spermatogonial selection'-manifestations.

  11. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head.

    Science.gov (United States)

    Hughes, C L; Kaufman, T C

    2000-09-01

    Insects have evolved a large variety of specialized feeding strategies, with a corresponding variability in mouthpart morphology. We have, however, little understanding of the developmental mechanisms that underlie this diversity. Until recently it was difficult to perform any analysis of gene function outside of the genetic model insects Drosophila melanogaster and Tribolium castaneum. In this paper, we report the use of dsRNA-mediated interference (RNAi) to dissect gene function in the development of the milkweed bug Oncopeltus fasciatus, which has specialized suctorial mouthparts. The Hox genes Deformed (Dfd), proboscipedia (pb) and Sex combs reduced (Scr) have previously been shown to be expressed in the gnathal appendages of this species. Strikingly, the milkweed bug was found to have an unusual expression pattern of pb. Here, by analyzing single and combination RNAi depletions, we find that Dfd, pb and Scr are used in the milkweed bug to specify the identity of the mouthparts. The exact roles of the genes, however, are different from what is known in the two genetic model insects. The maxillary appendages in the bug are determined by the activities of the genes Dfd and Scr, rather than Dfd and pb as in the fly and beetle. The mandibular appendages are specified by Dfd, but their unique morphology in Oncopeltus suggests that Dfd's target genes are different. As in flies and beetles, the labium is specified by the combined activities of pb and Scr, but again, the function of pb appears to be different. Additionally, the regulatory control of pb by the other two genes seems to be different in the bug than in either of the other species. These novelties in Hox function, expression pattern and regulatory relationships may have been important for the evolution of the unique Hemipteran head.

  12. The Adult Body Plan of Indirect Developing Hemichordates Develops by Adding a Hox-Patterned Trunk to an Anterior Larval Territory.

    Science.gov (United States)

    Gonzalez, Paul; Uhlinger, Kevin R; Lowe, Christopher J

    2017-01-09

    Many animals are indirect developers with distinct larval and adult body plans [1]. The molecular basis of differences between larval and adult forms is often poorly understood, adding a level of uncertainty to comparative developmental studies that use data from both indirect and direct developers. Here we compare the larval and adult body plans of an indirect developing hemichordate, Schizocardium californicum [2]. We describe the expression of 27 transcription factors with conserved roles in deuterostome ectodermal anteroposterior (AP) patterning in developing embryos, tornaria larvae, and post-metamorphic juveniles and show that the tornaria larva of S. californicum is transcriptionally similar to a truncated version of the adult. The larval ectoderm has an anterior molecular signature, while most of the trunk, defined by the expression of hox1-7, is absent. Posterior ectodermal activation of Hox is initiated in the late larva prior to metamorphosis, in preparation for the transition to the adult form, in which the AP axis converges on a molecular architecture similar to that of the direct developing hemichordate Saccoglossus kowalevskii. These results identify a molecular correlate of a major difference in body plan between hemichordate larval and adult forms and confirm the hypothesis that deuterostome larvae are "swimming heads" [3]. This will allow future comparative studies with hemichordates to take into account molecular differences caused by early life history evolution within the phylum. Additionally, comparisons with other phyla suggest that a delay in trunk development is a feature of indirect development shared across distantly related phyla. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Factorial PD-Clustering

    CERN Document Server

    Tortora, Cristina; Summa, Mireille Gettler

    2011-01-01

    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factorial PD-clustering make a linear transformation of original variables into a reduced number of orthogonal ones using a common criterion with PD-Clustering. It is demonstrated that Tucker 3 decomposition allows to obtain this transformation. Factorial PD-clustering makes alternatively a Tucker 3 decomposition and a PD-clustering on transformed data until convergence. This method could significantly improve the algorithm performance and allows to work with large dataset, to improve the stability and the robustness of the method.

  14. Targeted Inhibition of the miR-199a/214 Cluster by CRISPR Interference Augments the Tumor Tropism of Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Hypoxic Condition

    Science.gov (United States)

    Xu, Xuehu; An, Xiuli; Wang, Shu

    2016-01-01

    The human induced pluripotent stem cell (hiPSC) provides a breakthrough approach that helps overcoming ethical and allergenic challenges posed in application of neural stem cells (NSCs) in targeted cancer gene therapy. However, the tumor-tropic capacity of hiPSC-derived NSCs (hiPS-NSCs) still has much room to improve. Here we attempted to promote the tumor tropism of hiPS-NSCs by manipulating the activity of endogenous miR-199a/214 cluster that is involved in regulation of hypoxia-stimulated cell migration. We first developed a baculovirus-delivered CRISPR interference (CRISPRi) system that sterically blocked the E-box element in the promoter of the miR-199a/214 cluster with an RNA-guided catalytically dead Cas9 (dCas9). We then applied this CRISPRi system to hiPS-NSCs and successfully suppressed the expression of miR-199a-5p, miR-199a-3p, and miR-214 in the microRNA gene cluster. Meanwhile, the expression levels of their targets related to regulation of hypoxia-stimulated cell migration, such as HIF1A, MET, and MAPK1, were upregulated. Further migration assays demonstrated that the targeted inhibition of the miR-199a/214 cluster significantly enhanced the tumor tropism of hiPS-NSCs both in vitro and in vivo. These findings suggest a novel application of CRISPRi in NSC-based tumor-targeted gene therapy. PMID:27965712

  15. Targeted Inhibition of the miR-199a/214 Cluster by CRISPR Interference Augments the Tumor Tropism of Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Hypoxic Condition

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2016-01-01

    Full Text Available The human induced pluripotent stem cell (hiPSC provides a breakthrough approach that helps overcoming ethical and allergenic challenges posed in application of neural stem cells (NSCs in targeted cancer gene therapy. However, the tumor-tropic capacity of hiPSC-derived NSCs (hiPS-NSCs still has much room to improve. Here we attempted to promote the tumor tropism of hiPS-NSCs by manipulating the activity of endogenous miR-199a/214 cluster that is involved in regulation of hypoxia-stimulated cell migration. We first developed a baculovirus-delivered CRISPR interference (CRISPRi system that sterically blocked the E-box element in the promoter of the miR-199a/214 cluster with an RNA-guided catalytically dead Cas9 (dCas9. We then applied this CRISPRi system to hiPS-NSCs and successfully suppressed the expression of miR-199a-5p, miR-199a-3p, and miR-214 in the microRNA gene cluster. Meanwhile, the expression levels of their targets related to regulation of hypoxia-stimulated cell migration, such as HIF1A, MET, and MAPK1, were upregulated. Further migration assays demonstrated that the targeted inhibition of the miR-199a/214 cluster significantly enhanced the tumor tropism of hiPS-NSCs both in vitro and in vivo. These findings suggest a novel application of CRISPRi in NSC-based tumor-targeted gene therapy.

  16. Possibilistic Exponential Fuzzy Clustering

    Institute of Scientific and Technical Information of China (English)

    Kiatichai Treerattanapitak; Chuleerat Jaruskulchai

    2013-01-01

    Generally,abnormal points (noise and outliers) cause cluster analysis to produce low accuracy especially in fuzzy clustering.These data not only stay in clusters but also deviate the centroids from their true positions.Traditional fuzzy clustering like Fuzzy C-Means (FCM) always assigns data to all clusters which is not reasonable in some circumstances.By reformulating objective function in exponential equation,the algorithm aggressively selects data into the clusters.However noisy data and outliers cannot be properly handled by clustering process therefore they are forced to be included in a cluster because of a general probabilistic constraint that the sum of the membership degrees across all clusters is one.In order to improve this weakness,possibilistic approach relaxes this condition to improve membership assignment.Nevertheless,possibilistic clustering algorithms generally suffer from coincident clusters because their membership equations ignore the distance to other clusters.Although there are some possibilistic clustering approaches that do not generate coincident clusters,most of them require the right combination of multiple parameters for the algorithms to work.In this paper,we theoretically study Possibilistic Exponential Fuzzy Clustering (PXFCM) that integrates possibilistic approach with exponential fuzzy clustering.PXFCM has only one parameter and not only partitions the data but also filters noisy data or detects them as outliers.The comprehensive experiments show that PXFCM produces high accuracy in both clustering results and outlier detection without generating coincident problems.

  17. Structures of Mn clusters

    Indian Academy of Sciences (India)

    Tina M Briere; Marcel H F Sluiter; Vijay Kumar; Yoshiyuki Kawazoe

    2003-01-01

    The geometries of several Mn clusters in the size range Mn13–Mn23 are studied via the generalized gradient approximation to density functional theory. For the 13- and 19-atom clusters, the icosahedral structures are found to be most stable, while for the 15-atom cluster, the bcc structure is more favoured. The clusters show ferrimagnetic spin configurations.

  18. Dissolution of Globular Clusters

    OpenAIRE

    Baumgardt, Holger

    2006-01-01

    Globular clusters are among the oldest objects in galaxies, and understanding the details of their formation and evolution can bring valuable insight into the early history of galaxies. This review summarises the current knowledge about the dissolution of star clusters and discusses the implications of star cluster dissolution for the evolution of the mass function of star cluster systems in galaxies.

  19. Clustering of correlated networks

    OpenAIRE

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  20. Contextualizing the Cluster

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    This dissertation examines the case of the palm oil cluster in Malaysia and Indonesia, today one of the largest agricultural clusters in the world. My analysis focuses on the evolution of the cluster from the 1880s to the 1970s in order to understand how it helped these two countries to integrate......-researched topic in the cluster literature – the emergence of clusters, their governance and institutional change, and competition between rival cluster locations – through the case of the Southeast Asian palm oil cluster....

  1. Contextualizing the Cluster

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    This dissertation examines the case of the palm oil cluster in Malaysia and Indonesia, today one of the largest agricultural clusters in the world. My analysis focuses on the evolution of the cluster from the 1880s to the 1970s in order to understand how it helped these two countries to integrate......-researched topic in the cluster literature – the emergence of clusters, their governance and institutional change, and competition between rival cluster locations – through the case of the Southeast Asian palm oil cluster....

  2. Power Evaluation of Focused Cluster Tests.

    Science.gov (United States)

    Puett, Rc; Lawson, Ab; Clark, Ab; Hebert, Jr; Kulldorff, M

    2010-09-01

    Many statistical tests have been developed to assess the significance of clusters of disease located around known sources of environmental contaminants, also known as focused disease clusters. The majority of focused-cluster tests were designed to detect a particular spatial pattern of clustering, one in which the disease cluster centers around the pollution source and declines in a radial fashion with distance. However, other spatial patterns of environmentally related disease clusters are likely given that the spatial dispersion patterns of environmental contaminants, and thus human exposure, depend on a number of factors (i.e., meteorology and topography). For this study, data were simulated with five different spatial patterns of disease clusters, reflecting potential pollutant dispersion scenarios: 1) a radial effect decreasing with increasing distance, 2) a radial effect with a defined peak and decreasing with distance, 3) a simple angular effect, 4) an angular effect decreasing with increasing distance and 5) an angular effect with a defined peak and decreasing with distance. The power to detect each type of spatially distributed disease cluster was evaluated using Stone's Maximum Likelihood Ratio Test, Tango's Focused Test, Bithell's Linear Risk Score Test, and variations of the Lawson-Waller Score Test. Study findings underscore the importance of considering environmental contaminant dispersion patterns, particularly directional effects, with respect to focused-cluster test selection in cluster investigations. The effect of extra variation in risk also is considered, although its effect is not substantial in terms of the power of tests.

  3. The application of heterogeneous cluster grouping to reflective writing for medical humanities literature study to enhance students' empathy, critical thinking, and reflective writing

    National Research Council Canada - National Science Library

    Liao, Hung-Chang; Wang, Ya-Huei

    2016-01-01

    ... grouping in reflective writing for medical humanities literature acquisition could have positive effects on medical university students in terms of empathy, critical thinking, and reflective writing...

  4. Clustering in analytical chemistry.

    Science.gov (United States)

    Drab, Klaudia; Daszykowski, Michal

    2014-01-01

    Data clustering plays an important role in the exploratory analysis of analytical data, and the use of clustering methods has been acknowledged in different fields of science. In this paper, principles of data clustering are presented with a direct focus on clustering of analytical data. The role of the clustering process in the analytical workflow is underlined, and its potential impact on the analytical workflow is emphasized.

  5. Personalized microbial network inference via co-regularized spectral clustering

    NARCIS (Netherlands)

    Imangaliyev, S.; Keijser, B.; Crielaard, W.; Tsivtsivadze, E.

    2015-01-01

    We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster

  6. Personalized microbial network inference via co-regularized spectral clustering

    NARCIS (Netherlands)

    Imangaliyev, S.; Keijser, B.J.; Crielaard, W.; Tsivtsivadze, E.; Zheng, H.; Hu, X.; Berrar, D.; Wang, Y.; Dubitzky, W.; Hao, J.K.; Cho, K.H.; Gilbert, D.

    2014-01-01

    We use Human Microbiome Project (HMP) cohort [1] to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster we discovered, we co

  7. Personalized microbial network inference via co-regularized spectral clustering

    NARCIS (Netherlands)

    Imangaliyev, S.; Keijser, B.; Crielaard, W.; Tsivtsivadze, E.

    2015-01-01

    We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster

  8. ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer.

    Directory of Open Access Journals (Sweden)

    Quanlu Duan

    Full Text Available BACKGROUND: Recent studies have emphasized causative links between microRNAs (miRNAs deregulation and tumor development. In hepatocellular carcinoma (HCC, more and more miRNAs were identified as diagnostic and prognostic cancer biomarkers, as well as additional therapeutic tools. This study aimed to investigate the functional significance and regulatory mechanism of the miR-199a2/214 cluster in HCC progression. METHODS AND FINDINGS: In this study, we showed that miR-214, as well as miR-199a-3p and miR-199a-5p levels were significantly reduced in the majority of examined 23 HCC tissues and HepG2 and SMMC-7721 cell lines, compared with their nontumor counterparts. To further explore the role of miR-214 in hepatocarcinogenesis, we disclosed that the ER stress-induced pro-survival factor XBP-1 is a target of miR-214 by using western blot assay and luciferase reporter assay. Re-expression of miR-214 in HCC cell lines (HepG2 and SMMC-7721 inhibited proliferation and induced apoptosis. Furthermore, ectopic expression of miR-214 dramatically suppressed the ability of HCC cells to form colonies in vitro and to develop tumors in a subcutaneous xenotransplantation model of the BALB/c athymic nude mice. Moreover, reintroduction of XBP-1s attenuated miR-214-mediated suppression of HCC cells proliferation, colony and tumor formation. To further understand the mechanism of the miR-199a/214 cluster down-expression in HCC, we found that thapsigargin (TG and tunicamycin (TM or hypoxia-induced unfolded protein response (UPR suppresses the expression of the miR-199a/214 cluster in HCC cells. By promoter analysis of the miR-199a2/214 gene, we conjectured NFκB as a potential negative regulator. We further found that UPR and LPS-induced NFκB activation suppressed miR-199a2/214 transcription, and this suppression was reversed by NFκB inhibition in HCC cells. CONCLUSIONS: Our study suggest that modulation of miR-214 levels may provide a new therapeutic approach for

  9. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    Science.gov (United States)

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  10. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level

    National Research Council Canada - National Science Library

    Despres, Jordane; Forano, Evelyne; Lepercq, Pascale; Comtet-Marre, Sophie; Jubelin, Gregory; Chambon, Christophe; Yeoman, Carl J; Berg Miller, Margaret E; Fields, Christopher J; Martens, Eric; Terrapon, Nicolas; Henrissat, Bernard; White, Bryan A; Mosoni, Pascale

    2016-01-01

    .... In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Bacteroides xylanisolvens XB1A...

  11. Xylan degradation by the human gut Bacteroides xylanisolvens XB1AT involves two distinct gene clusters that are linked at the transcriptional level

    National Research Council Canada - National Science Library

    Despres, Jordane; Forano, Evelyne; Lepercq, Pascale; Comtet-Marre, Sophie; Jubelin, Gregory; Chambon, Christophe; Yeoman, Carl J; Berg Miller, Margaret E; Fields, Christopher J; Martens, Eric; Terrapon, Nicolas; Henrissat, Bernard; White, Bryan A; Mosoni, Pascale

    2016-01-01

    .... In order to understand better how these bacteria metabolize xylans in the colon, this study was undertaken to investigate xylan breakdown by the prominent human gut symbiont Transcriptomic analyses...

  12. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark....... The longitudinal study on the high-tech cluster reveals that technological lock-in and exit of key firms have contributed to decline. Entrepreneurship has a positive effect on the cluster’s adaptive capabilities, while multinational companies have contradicting effects by bringing in new resources to the cluster...

  13. The gene encoding human intestinal trefoil factor (TFF3) is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family

    Energy Technology Data Exchange (ETDEWEB)

    Chinery, R. [Royal College of Surgeons of England, London (United Kingdom); Williamson, J.; Poulsom, R. [Imperial Cancer Research Fund, London (United Kingdom)

    1996-03-01

    The gene coding for human intestinal trefoil factor (hITF), a recently described cellular motogen produced by gastrointestinal goblet cells and epithelia elsewhere, is a member of the rapidly growing trefoil peptide family. In a rodent-human somatic cell hybrid panel, the hITF (HGMW-approved symbol TFF3) genomic locus segregated with human chromosome 21q. Fluorescence in situ hybridization with a 2.1-kb genomic probe of the hITF gene mapped this locus more precisely to the q22.3 region. Triple fluorescence in situ hybridization, together with physical mapping of human genomic DNA using pulsed-field gel electrophoresis, revealed that the hITF gene is tightly linked to those encoding the other known human trefoil peptides, namely the breast cancer estrogen-inducable gene pS2 (BCEI) and human spasmolytic polypeptide (hSP/SML1). This gene family could become a useful marker for the genetic and physical mapping of chromosome 21 and for a better definition of the region involved in the clinical phenotype of several genetic diseases. 17 refs., 2 figs.

  14. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  15. The Cluster Substructure - Alignment Connection

    OpenAIRE

    Plionis, Manolis

    2001-01-01

    Using the APM cluster data we investigate whether the dynamical status of clusters is related to the large-scale structure of the Universe. We find that cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster. Furthermore, dynamically young clusters are more clustered than the overall cluster population. These are strong indications that cluster develop in ...

  16. Nuclear Clusters in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, H.; Kahl, D.; Wakabayashi, Y.; Yamaguchi, H. [Center for Nuclear Study (CNS), University of Tokyo, Wako Branch at RIKEN 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka, 812-8581 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Sendai, 980-8578 (Japan); Komatsubara, T. [Department of Physics, Tsukuba University, Ibaraki, 305-8571 (Japan); Kato, S. [Department of Physics, Yamagata University, Yamagata, 990-8560 (Japan); Khiem, Le H. [Institute of Physics, Vietnam Academy for Science and Technology, Hanoi (Viet Nam)

    2010-03-01

    The role of nuclear clustering is discussed for nucleosynthesis in stellar evolution with Cluster Nucleosynthesis Diagram (CND) proposed before. Special emphasis is placed on alpha-induced stellar reactions together with molecular states for O and C burning.

  17. [Pathophysiology of cluster headache].

    Science.gov (United States)

    Donnet, Anne

    2015-11-01

    The aetiology of cluster headache is partially unknown. Three areas are involved in the