WorldWideScience

Sample records for human hnscc tumors

  1. Human papilloma virus (HPV) modulation of the HNSCC epigenome.

    Science.gov (United States)

    Stephen, Josena K; Worsham, Maria J

    2015-01-01

    Currently, the human papilloma virus (HPV), in addition to tobacco and alcohol, is considered another independent risk factor for oropharyngeal squamous head and neck cancer (OPSCC), where the prevalence of HPV-16 increases to 50-90 % for the oropharynx. Also, incidence and mortality in head and neck SCC (HNSCC) continue to be higher in African Americans (AA) than in Caucasian Americans (CA). A recent study found that poorer survival outcomes for AA versus CA with oropharyngeal tumors were attributable to racial differences in the prevalence of HPV positive (+) tumors; HPV negative (-) AA and CA patients had similar outcomes (Settle et al., Cancer Prev Res (Phila) 2:776-781, 2009). Evidence indicates that a HPV+ diagnosis has significant prognostic implications; these patients have at least half the risk of death when compared with the HPV- patient, due in part to a better response to chemoradiotherapy (Fakhry et al., J Natl Cancer Inst 100:261-269, 2008).Epigenetic events of promoter hypermethylation are emerging as promising molecular strategies for cancer detection, representing tumor-specific markers occurring early in tumor progression. HPV infection is now recognized to play a role in the pathogenesis of OPSCC, where HPV+ and HPV- patients appear to be clinically and biologically distinct with reported genome-wide hypomethylation and promoter hypermethylation in HPV+ HNSCC tumors. A recent study from our group applying pathway analysis to investigate the biological role of the differentially methylated genes in HPV+ and HPV- HNSCC reported 8 signal transduction pathways germane to HNSCC (Worsham et al., Otolaryngol Head Neck Surg 149:409-416, 2013).

  2. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties.

    Directory of Open Access Journals (Sweden)

    Paloma Bragado

    Full Text Available Head and neck squamous carcinoma (HNSCC tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin surface levels and aldehyde dehydrogenase (ALDH activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu and NSG (NOD.Cg-Prkdc(scid Il2rg(tm1Wjl/SzJ mice and chicken embryo chorioallantoic membrane (CAM assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49f(high/ALDH1A1(high/H3K4/K27me3(low subpopulation (CD49f+ of tumor cells. A strikingly similar CD49f(high/H3K27me3(low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49f(high/ALDH(high, label retaining cells (LRC proliferated immediately in vivo, with time the CD49f(low/ALDH(low, non-LRC (NLRC tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49f(high/ALDH(high, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2 phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f- cells can "reprogram" and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a "moving target" and their eradication might require

  3. Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    Science.gov (United States)

    Bragado, Paloma; Estrada, Yeriel; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Cannan, David; Genden, Eric; Teng, Marita; Ranganathan, Aparna C.; Wen, Huei-Chi; Kapoor, Avnish; Bernstein, Emily; Aguirre-Ghiso, Julio A.

    2012-01-01

    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more

  4. Tumor-associated fibroblast-conditioned medium induces CDDP resistance in HNSCC cells.

    Science.gov (United States)

    Steinbichler, Teresa Bernadette; Metzler, Veronika; Pritz, Christian; Riechelmann, Herbert; Dudas, Jozsef

    2016-01-19

    EMT (epithelial to mesenchymal transition) contributes to tumor progression and metastasis. We aimed to investigate the effects of EMT on CDDP resistance in HNSCC (head and neck squamous cell carcinoma)-cells. EMT was induced using conditioned medium from a tumor cell/fibroblast co-culture. HNSCC cells were alternatively treated with TGF-β1. The response to CDDP was evaluated with viability and clonogenic assays. Treatment of SCC-25/ Detroit 562 cells with conditioned medium increased viability of the tumor cells. Moreover, it doubled the IC50 of CDDP of SCC-25 cells from 6.2 μM to 13.1 μM (p cells was increased following treatment with conditioned medium from 13.1 μM to 26.8 μM (p cells treated with co-culture conditioned medium than in controls (p 0.1). Cell free medium from a co-culture was able to induce EMT in HNSCC cells. Co-culture treated HNSCC cells revealed increased viability and were less sensitive to CDDP treatment. TGF-β1 also induced a mesenchymal phenotype, but did not alter resistance to CDDP in HNSCC cells.

  5. TIMP3 and CCNA1 hypermethylation in HNSCC is associated with an increased incidence of second primary tumors

    OpenAIRE

    Rettori, Marianna Marconato [UNIFESP; Carvalho, Ana Carolina; Bomfim Longo, Ana Luiza [UNIFESP; de Oliveira, Cleyton Zanardo; Kowalski,Luiz Paulo; Carvalho, Andre Lopes; Vettore, Andre Luiz [UNIFESP

    2013-01-01

    Background: Hypermethylation in the promoter regions is associated with the suppression of gene expression and has been considered a potential molecular marker for several tumor types, including head and neck squamous cell carcinomas (HNSCC).Methods: To evaluate the gene hypermethylation profile as a prognostic marker, this retrospective study used a QMSP approach to determine the methylation status of 19 genes in 70 HNSCC patients.Results: the methylation profile analysis of primary HNSCC re...

  6. γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity - preliminary methodological study and discussion

    Science.gov (United States)

    Falk, Martin; Horakova, Zuzana; Svobodova, Marketa; Masarik, Michal; Kopecna, Olga; Gumulec, Jaromir; Raudenska, Martina; Depes, Daniel; Bacikova, Alena; Falkova, Iva; Binkova, Hana

    2017-09-01

    In order to improve patients' post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures - CD90-, CD90+, and a mixed culture of these cells - were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV-HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.

  7. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  8. Cyclin A1 shows age-related expression in benign tonsils, HPV16-dependent overexpression in HNSCC and predicts lower recurrence rate in HNSCC independently of HPV16

    Directory of Open Access Journals (Sweden)

    Weiss Daniel

    2012-06-01

    Full Text Available Abstract Background Promoter methylation of the tumor suppressor gene Cyclin A1 could be associated with Human Papillomavirus 16 (HPV16 induced Head and Neck Squamous Cell Carcinoma (HNSCC and Cervical Carcinoma. There is disagreement about the impact of this epigenetic event on protein expression of Cyclin A1 in malignant and non-malignant tissue and there hardly exists any information about possible relationships between Cyclin A1 expression and clinicopathological characteristics in HNSCC. Methods We analyzed protein expression of Cyclin A1 in 81 HNSCC and 74 benign tonsils by immunohistochemistry and correlated it to Cyclin A1 methylation status, presence of HPV16 infection and other clinicopathological characteristics. Results Overexpression of Cyclin A1 was more present in HNSCC than in tonsils (p Cyclin A1 significantly correlated with the expression of Cyclin-dependent kinase-inhibitor p16 (p = 0.000672 and 0.00495. In tonsils, expression of Cyclin A1 was inversely proportional to age (p = 0.00000396, and further correlated with expression of tumor suppressor gene p53 (p = 0.000228. In HNSCC Cyclin A1 expression was associated with the presence of HPV16 DNA (p = 0.0014 and a lower recurrence rate in univariate and multivariate analysis (p = 0.002 and 0.013. Neither in HNSCC nor in tonsils Cyclin A1 expression correlated with promoter methylation. Conclusions Cyclin A1 is an important cell cycle regulator with age-related increased expression in tonsils of children. HPV16 induces overexpression of Cyclin A1 in HNSCC despite promoter methylation. Overexpression of Cyclin A1 predicts a lower recurrence rate in HNSCC independently of HPV16.

  9. Epigenetic silencing of MAL, a putative tumor suppressor gene, can contribute to human epithelium cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    Full Text Available Abstract Background To identify new and useful candidate biomarkers in head and neck squamous cell carcinoma (HNSCC, we performed a genome-wide survey and found that Myelin and lymphocyte-associated protein (MAL was a gene that was markedly down-regulated in HNSCC. Hence, we investigated the mechanism of MAL silencing and the effects of MAL on the proliferation, invasion, and apoptotic potential in HNSCC. Results MAL was significantly down-regulated in 91.7% of HNSCC specimens at the mRNA level as compared with adjacent normal tissues (P = 0.0004. Moreover, the relative transcript levels of the MAL gene were remarkably decreased by five-fold in nine HNSCC cell lines as compared with normal head and neck epithelium cells. MAL gene expression was restored in 44%, 67%, and 89% in HNSCC cell lines treated with TSA, 5-Aza-dC, and TSA plus 5-Aza-dC, respectively. Furthermore, bisulfate-treated DNA sequencing demonstrated that the two CpG islands (that is, M1 and M2 located in MAL promoter region were completely methylated in the HNSCC cell lines (CpG methylated ratio was more than 90%, and only one CpG island (that is, M1 was partially methylated in HNSCC tissues (CpG methylated ratio between 20% and 90%. A significant reduction in cell proliferation and a change in the cell cycle profile were also observed in MAL transfectants. Matrigel assay demonstrated that the invasiveness of HNSCC cells significantly decreased. A significant increase in the population of apoptotic cells was observed in MAL transfected cells. The exogenous expression of the MAL gene suppressed malignant phenotypes, while the cell death induced by MAL gene transfer was a result of apoptosis as demonstrated by the induction of cleavage of the poly (that is, ADP-ribose polymerase. Additionally, tumor growth was suppressed in cells expressing MAL as compared with cells not expressing MAL. Conclusion Our data suggest that the epigenetic inactivation of MAL, as a candidate tumor

  10. Autophagy induction contributes to GDC-0349 resistance in head and neck squamous cell carcinoma (HNSCC) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yajuan; Peng, Yi [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Tang, Hao [Department of Pathology, Hubei Cancer Hospital, Wuhan 430071 (China); He, Xiaojun; Wang, Zhaohua [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Hu, Desheng, E-mail: hudeshengvvip@sina.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China); Zhou, Xiaoyi, E-mail: zhouxy1218@126.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan (China)

    2016-08-19

    Dysregulation of mammalian target of rapamycin (mTOR) signaling contributes to head and neck squamous cell carcinoma (HNSCC) tumorigenesis and progression. In the current study, we tested the anti-HNSCC cell activity by GDC-0349, a selective ATP-competitive inhibitor of mTOR. We showed that GDC-0349 inhibited proliferation of established and primary human HNSCC cells bearing high-level of p-AKT/p-S6K. Further, it induced caspase-dependent apoptosis in the HNSCC cells. GDC-0349 blocked mTORC1 and mTORC2 activation, yet it simultaneously induced autophagy activation in HNSCC cells. The latter was evidenced by induction of LC3B-II, Beclin-1 and Autophagy-related (ATG)-7, as well as downregulation of p62. Autophagy inhibitors (3-methyladenine and bafilomycin A1) or ATG-7 siRNA dramatically potentiated GDC-0349’s cytotoxicity against HNSCC cells. Intriguingly, we showed that ceramide (C14), a pro-apoptotic sphingolipid, also induced ATG-7 degradation, and sensitized HNSCC cells to GDC-0349. Collectively, the preclinical study provided evidences to support GDC-0349 as a promising anti-HNSCC agent. GDC-0349 sensitization may be achieved via autophagy inhibition. - Highlights: • GDC-0349 inhibits proliferation of HNSCC cells bearing high-level of p-AKT/p-S6K. • GDC-0349 activates caspase-dependent apoptosis in HNSCC cells. • Simultaneous blockage of mTORC1/2 by GDC-0349 induces autophagy activation. • Autophagy inhibitor or ATG-7 siRNA potentiates GDC-0349’s cytotoxicity. • C14 ceramide downregulates ATG-7 and sensitizes HNSCC cells to GDC-0349.

  11. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1.

    Science.gov (United States)

    Joo, Nam E; Ritchie, Kathryn; Kamarajan, Pachiyappan; Miao, Di; Kapila, Yvonne L

    2012-12-01

    Nisin, a bacteriocin and commonly used food preservative, may serve as a novel potential therapeutic for treating head and neck squamous cell carcinoma (HNSCC), as it induces preferential apoptosis, cell cycle arrest, and reduces cell proliferation in HNSCC cells, compared with primary keratinocytes. Nisin also reduces HNSCC tumorigenesis in vivo. Mechanistically, nisin exerts these effects on HNSCC, in part, through CHAC1, a proapoptotic cation transport regulator, and through a concomitant CHAC1-independent influx of extracellular calcium. In addition, although CHAC1 is known as an apoptotic mediator, its effects on cancer cell apoptosis have not been examined. Our studies are the first to report CHAC1's new role in promoting cancer cell apoptosis under nisin treatment. These data support the concept that nisin decreases HNSCC tumorigenesis in vitro and in vivo by inducing increased cell apoptosis and decreased cell proliferation; effects that are mediated by activation of CHAC1, increased calcium influxes, and induction of cell cycle arrest. These findings support the use of nisin as a potentially novel therapeutic for HNSCC, and as nisin is safe for human consumption and currently used in food preservation, its translation into a clinical setting may be facilitated.

  12. Association between promoter methylation of DAPK gene and HNSCC: A meta-analysis

    Science.gov (United States)

    Cai, Fucheng; Xiao, Xiyue; Niu, Xun; Zhong, Yi

    2017-01-01

    Background The death-associated protein kinase (DAPK) is a tumor suppressor gene, which is a mediator of cell death of INF-γ–induced apoptosis. Aberrant methylation of DAPK promoter has been reported in patients with head and neck squamous cell carcinoma (HNSCC). However, the results of these studies are inconsistent. Hence, the present study aimed to evaluate the association between the promoter methylation of DAPK gene and HNSCC. Methods Relevant studies were systematically searched in PubMed, Web of Science, Ovid, and Embase. The association between DAPK promoter methylation and HNSCC was assessed by odds ratio (ORs) and 95% confidence intervals (CI). To evaluate the potential sources of heterogeneity, we conducted the meta-regression analysis and subgroup analysis. Results Eighteen studies were finally included in the meta-analysis. The frequency of DAPK promoter methylation in patients with HNSCC was 4.09-fold higher than the non-cancerous controls (OR = 3.96, 95%CI = 2.26–6.95). A significant association between DAPK promoter methylation and HNSCC was found among the Asian region and the Non-Asia region (Asian region, OR = 4.43, 95% CI = 2.29–8.58; Non-Asia region, OR = 3.39, 95% CI = 1.18–9.78). In the control source, the significant association between DAPK promoter methylation and HNSCC was seen among the autologous group and the heterogeneous group (autologous group, OR = 2.71, 95% CI = 1.49–4.93; heterogeneous group, OR = 9.50, 95% CI = 2.98–30.27). DAPK promoter methylation was significantly correlated with alcohol status (OR = 1.85, 95% CI = 1.07–3.21). Conclusion The results of this meta-analysis suggested that aberrant methylation of DAPK promoter was associated with HNSCC. PMID:28249042

  13. Basics of tumor development and importance of human papilloma virus (HPV for head and neck cancer [

    Directory of Open Access Journals (Sweden)

    Klussmann, Jens Peter

    2012-12-01

    Full Text Available [english] Head and Neck Squamous Cell Carcinomas (HNSCC are the 6 most common cancers worldwide. While incidence rates for cancer of the hypopharynx and larynx are decreasing, a significant increase in cancer of the oropharynx (OSCC is observed. Classical risk factors for HNSCC are smoking and alcohol. It has been shown for 25 to 60% of OSCC to be associated with an infection by oncogenic human papilloma viruses (HPV. The development of “common” cancer of the head and neck is substantially enhanced by an accumulation of genetic changes, which lead to an inactivation of tumor suppressor genes or activation of proto-oncogenes. A more or less uniform sequence of different DNA-damages leads to genetic instability. In this context, an early and frequent event is deletion on the short arm of chromosome 9, which results in inactivation of the p16-gene. In contrast, for HPV-induced carcinogenesis, expression of the viral proteins E6 and E7 is most important, since they lead to inactivation of the cellular tumor-suppressor-proteins p53 and Rb. The natural route of transoral infection is a matter of debate; peroral HPV-infections might be frequent and disappear uneventfully in most cases. Smoking seems to increase the probability for developing an HPV-associated OSCC. The association of HNSCC with HPV can be proven with established methods in clinical diagnostics. In addition to classical prognostic factors, diagnosis of HPV-association may become important for selection of future therapies. Prognostic relevance of HPV probably surmounts many known risk-factors, for example regional metastasis. Until now, no other molecular markers are established in clinical routine. Future therapy concepts may vary for the two subgroups of patients, particularly patients with HPV-associated OSCC may take advantage of less aggressive treatments. Finally, an outlook will be given on possible targeted therapies.

  14. Reduced promoter methylation and increased expression of CSPG4 negatively influences survival of HNSCC patients.

    Science.gov (United States)

    Warta, Rolf; Herold-Mende, Christel; Chaisaingmongkol, Jittiporn; Popanda, Odilia; Mock, Andreas; Mogler, Carolin; Osswald, Florian; Herpel, Esther; Küstner, Sabine; Eckstein, Volker; Plass, Christoph; Plinkert, Peter; Schmezer, Peter; Dyckhoff, Gerhard

    2014-12-01

    Proteoglycans are often overexpressed in tumors and can be found on several normal and neoplastic stem cells. In this study, we analyzed in-depth the role of CSPG4 in head and neck squamous cell carcinomas (HNSCC). Analysis of CSPG4 in a homogeneous study sample of HPV-negative stage IVa HNSCCs revealed overexpression of protein and mRNA levels in a subgroup of HNSCC tumors and a significant association of high CSPG4 protein levels with poor survival. This could be validated in three publicly available microarray datasets. As a potential cause for upregulated CSPG4 expression, we identified DNA hypomethylation in a CpG-island of the promoter region. Accordingly, we found an inverse correlation of methylation and patient outcome. Finally, CSPG4 re-expression was achieved by demethylating treatment of highly methylated HNSCC cell lines establishing a direct link between methylation and CSPG4 expression. In conclusion, we identified CSPG4 as a novel biomarker in HNSCC on several biological levels and established a causative link between DNA methylation and CSPG4 protein and mRNA expression.

  15. Clinical and molecular characteristics of HNSCC patients with brain metastases: a retrospective study.

    Science.gov (United States)

    Bulut, Olcay Cem; Lindel, Katja; Hauswald, Henrik; Brandt, Regine; Klauschen, Frederick; Wolf, Janina; Wolf, Thomas; Plinkert, Peter K; Simon, Christian; Weichert, Wilko; Stenzinger, Albrecht

    2014-06-01

    Among the metastasis patterns of head and neck squamous cell carcinoma (HNSCC), intracranial spread is a rare but dreaded event. To date only very few cases have been reported and clinical and molecular data are sparse. We screened our archives for HNSCC patients from 1992 to 2005 who were diagnosed with brain metastases (BM). For retrospective analysis, all clinico-pathological data including disease-free survival (DFS), local progression-free survival (LPFS), and overall survival (OS) were compiled. Additionally, we assessed the mutational status of the TP53 gene and the prevalence of HPV serotypes by PCR and Sanger sequencing. Immunohistochemistry was applied to detect p16INK4A expression levels as surrogate marker for HPV infection. The prevalence rate of BM in our cohort comprising 193 patients with advanced HNSCC was 5.7%. Of 11 patients with BM, 3 were female and 9 were male. Seven of the primary tumors were of oropharyngeal origin (OPSCC). LPFS of the cohort was 11.8 months, DFS was 12.1 months and OS was 36.0 months. After the diagnosis of BM, survival was 10.5 months. Five tumors showed a mutation in the TP53 gene, while five of the seven OPSCC tumors had a positive HPV status displaying infection with serotype 16 in all cases. Compared with patients who harbored TP53wt/HPV-positive tumors, patients with TP53 mutations showed a poor prognosis. Compared with the whole cohort, the interval between diagnosis of the primary and the detection of BM was prolonged in the HPV-infected OPSCC subgroup (26.4 vs. 45.6 months). The prognosis of HNSCC patients with BM is poor. In our cohort, most tumors were OPSCC with the majority being HPV positive. Our study points toward a putatively unusual metastatic behavior of HPV-positive OPSCC.

  16. [Papillomaviruses and human tumors].

    Science.gov (United States)

    Vonka, V; Hamsíková, E; Sobotková, E; Smahel, M; Kitasato, H; Sainerová, H; Ludvíková, V; Zák, R; Kanka, J; Kolár, Z; Kovarík, J

    2000-12-01

    The report summarizes the main results obtained in the course of our research project. The results of immunological and epidemiological studies provide further proofs that human papillomaviruses (HPV) are the etiological agents in cervical neoplasia. In addition, they raise hopes that immunological methods may be utilized in diagnostics of cervical cancer and for monitoring the clinical course of this disease in the near future. Since the etiological relationship between HPV and cervical carcinoma seems to be proven beyond reasonable doubt, the development of prophylactic and therapeutic vaccines has become the dominant of the contemporary HPV reseach. For studying immune reactions against HPV-induced tumours we developed a model of HPV16-transformed rodent cells.

  17. Meta-analysis of survival in patients with HNSCC discriminates risk depending on combined HPV and p16 status.

    Science.gov (United States)

    Coordes, Annekatrin; Lenz, Klaus; Qian, Xu; Lenarz, Minoo; Kaufmann, Andreas M; Albers, Andreas E

    2016-08-01

    Data indicate a better prognosis for human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC). HPV and p16 detection are established markers for HPV-related HNSCC. Both are accepted as survival-independent predictors. Previous studies investigating the survival in HNSCC patients depending on HPV(+/-) and p16(+/-) status consistently found discordant results with p16(-)/HPV(+) and p16(+)/HPV(-). However, no meta-analysis regarding the survival according to combined HPV/p16 status has been performed yet. The objective of this study was to discriminate the impact of combined HPV(+/-) and p16(+/-) status on survival. Data sources were identification and review of publications assessing survival of the distinct subgroups with both p16 and HPV investigated in HNSCC until February, 2015. A meta-analysis was performed to classify survival and clinical outcomes. 18 out of 397 articles (4424 patients) were eligible for the meta-analysis. The percent proportion of the subgroups was 25 % for HPV(+)/p16(+), 61.2 % for HPV(-)/p16(-), 7.1 % for HPV(-)/p16(+) and 6.8 % for HPV(+)/P16(-). The meta-analysis showed a significantly improved 5-year overall survival (OS), 5-year disease-free survival and their corresponding hazard ratio for HPV(+)/p16(+) HNSCC in comparison to HPV(-)/p16(-), HPV(+)/p16(-) and HPV(-)/p16(+). The 5-year OS of the HPV(-)/p16(+) subgroup was intermediate while HPV(+)/p16(-) and HPV(-)/p16(-) HNSCC had the shortest survival. With current therapeutic strategies, survival of patients with HNSCC is better if associated with HPV(+)/p16(+) or HPV(-)/p16(+). Clinical trials are needed to confirm the distinct survival pattern and to investigate possible differences in survival for HPV(+)/p16(-) and HPV(-)/p16(+) HNSCC. To further differentiate p16(+) HNSCC, HPV testing may be advisable.

  18. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  19. Glutathione Levels in Human Tumors

    Science.gov (United States)

    Gamcsik, Michael P.; Kasibhatla, Mohit S.; Teeter, Stephanie D.; Colvin, O. Michael

    2013-01-01

    This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker. PMID:22900535

  20. Inhibitory Effect of 1,8-Cineol on β-Catenin Regulation, WNT11 Expression, and Cellular Progression in HNSCC

    Directory of Open Access Journals (Sweden)

    Anna Roettger

    2017-05-01

    Full Text Available ObjectivesHead and neck squamous cell carcinoma (HNSCC is one of the most common tumors worldwide. The high mortality rates have not changed during the last three decades, and thus there is an enormous need for innovative therapy approaches. Several recent studies suggest an important role of the Wnt/β-catenin signaling pathway in the tumorigenesis of HNSCC. We analyzed the effect of the monoterpene oxide 1,8-cineol on the regulation of the Wnt/β-catenin signaling pathway and the cellular progression of different HNSCC cell lines.MethodsPermanent HNSCC cell lines were exposed to varying concentrations and times of 1,8-cineol. Regulation and activity profiles of the Wnt/β-catenin signaling cascade were analyzed using Western hybridization experiments, MTT assays, real-time PCR-based epithelial to mesenchymal transition array, and immunohistochemistry.ResultsExposure of different cell lines to 1,8-cineol treatment resulted in a dose-dependent inhibition of proliferation and a decreased activity of the WNT/β-catenin pathway. We can show the inhibition of glycogen synthase kinase 3 (GSK-3α/β (Ser-9/21 as well as a corresponding decreased endolysosomal localization, leading to a decreased β-catenin activity. Furthermore, we can show that exposure to cineol functionally results in a reduced expression of WNT11.ConclusionIn this work, we demonstrate for the first time that 1,8-cineol acts as an inhibitor of the Wnt/β-catenin activity in HNSCC via a decreased inhibition of GSK-3, which lead to reduced levels of WNT11 and a dose-dependent decrease of the cellular progression. Our data represent a new mechanism of 1,8-cineol activity, which may lead to novel molecular targets and treatment approaches of this natural drug.

  1. The ING tumor suppressor genes: status in human tumors.

    Science.gov (United States)

    Guérillon, Claire; Bigot, Nicolas; Pedeux, Rémy

    2014-04-01

    ING genes (ING1-5) were identified has tumor suppressor genes. ING proteins are characterized as Type II TSGs since they are involved in the control of cell proliferation, apoptosis and senescence. They may also function as Type I TSGs since they are also involved in DNA replication and repair. Most studies have reported that they are frequently lost in human tumors and epigenetic mechanisms or misregulation of their transcription may be involved. Recently, studies have described that this loss may be caused by microRNA inhibition. Here, we summarize the current knowledge on ING functions, their involvement in tumor suppression and, in order to give a full assessment of the current knowledge, we review all the studies that have examined ING status in human cancers.

  2. Cidofovir is active against human papillomavirus positive and negative head and neck and cervical tumor cells by causing DNA damage as one of its working mechanisms

    Science.gov (United States)

    Mertens, Barbara; Nogueira, Tatiane; Stranska, Ruzena; Naesens, Lieve; Andrei, Graciela; Snoeck, Robert

    2016-01-01

    Human papillomavirus (HPV) causes cervical cancer and a large fraction of head and neck squamous cell carcinomas (HNSCC). Cidofovir (CDV) proved efficacious in the treatment of several HPV-induced benign and malignant hyper proliferations. To provide a better insight into how CDV selectively eradicates transformed cells, HPV+ and HPV− cervical carcinoma and HNSCC cell lines were compared to normal cells for antiproliferative effects, CDV metabolism, drug incorporation into cellular DNA, and DNA damage. Incorporation of CDV into cellular DNA was higher in tumor cells than in normal cells and correlated with CDV antiproliferative effects, which were independent of HPV status. Increase in phospho-ATM levels was detected following CDV exposure and higher levels of γ-H2AX (a quantitative marker of double-strand breaks) were measured in tumor cells compared to normal cells. A correlation between DNA damage and CDV incorporation into DNA was found but not between DNA damage and CDV antiproliferative effects. These data indicate that CDV antiproliferative effects result from incorporation of the drug into DNA causing DNA damage. However, the anti-tumor effects of CDV cannot be exclusively ascribed to DNA damage. Furthermore, CDV can be considered a promising broad spectrum anti-cancer agent, not restricted to HPV+ lesions. PMID:27331622

  3. Metabolic heterogeneity in human lung tumors

    Science.gov (United States)

    Hensley, Christopher T.; Faubert, Brandon; Yuan, Qing; Lev-Cohain, Naama; Jin, Eunsook; Kim, Jiyeon; Jiang, Lei; Ko, Bookyung; Skelton, Rachael; Loudat, Laurin; Wodzak, Michelle; Klimko, Claire; McMillan, Elizabeth; Butt, Yasmeen; Ni, Min; Oliver, Dwight; Torrealba, Jose; Malloy, Craig R.; Kernstine, Kemp; Lenkinski, Robert E.; DeBerardinis, Ralph J.

    2015-01-01

    SUMMARY Non-small cell lung cancer (NSCLC) is heterogeneous in the genetic and environmental parameters that influence cell metabolism in culture. Here, we assessed the impact of these factors on human NSCLC metabolism in vivo using intra-operative 13C-glucose infusions in nine NSCLC patients to compare metabolism between tumors and benign lung. While enhanced glycolysis and glucose oxidation were common among these tumors, we observed evidence for oxidation of multiple nutrients in each of them, including lactate as a potential carbon source. Moreover, metabolically heterogeneous regions were identified within and between tumors, and surprisingly, our data suggested potential contributions of non-glucose nutrients in well-perfused tumor areas. Our findings not only demonstrate the heterogeneity in tumor metabolism in vivo but also highlight the strong influence of the microenvironment on this feature. PMID:26853473

  4. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level.

    Directory of Open Access Journals (Sweden)

    Deli Liu

    2015-06-01

    Full Text Available Spontaneous canine head and neck squamous cell carcinoma (HNSCC represents an excellent model of human HNSCC but is greatly understudied. To better understand and utilize this valuable resource, we performed a pilot study that represents its first genome-wide characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high density array comparative genomic hybridization and RNA-seq. The analyses reveal that these canine cancers recapitulate many molecular features of human HNSCC. These include analogous genomic copy number abnormality landscapes and sequence mutation patterns, recurrent alteration of known HNSCC genes and pathways (e.g., cell cycle, PI3K/AKT signaling, and comparably extensive heterogeneity. Amplification or overexpression of protein kinase genes, matrix metalloproteinase genes, and epithelial-mesenchymal transition genes TWIST1 and SNAI1 are also prominent in these canine tumors. This pilot study, along with a rapidly growing body of literature on canine cancer, reemphasizes the potential value of spontaneous canine cancers in HNSCC basic and translational research.

  5. MRI and MRS of human brain tumors.

    Science.gov (United States)

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  6. Potential effect of matrix stiffness on the enrichment of tumor initiating cells under three-dimensional culture conditions.

    Science.gov (United States)

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Wu, Hao; Xie, Hong-guo; Chen, Li; Lu, Ting; Yang, Li; Guo, Xin; Sun, Guang-wei; Wang, Wei; Ma, Xiao-jun; He, Xin

    2015-01-01

    Cancer stem cell (CSC) or tumor initiating cell (TIC) plays an important role in tumor progression and metastasis. Biophysical forces in tumor microenvironment have an important effect on tumor formation and development. In this study, the potential effect of matrix stiffness on the biological characteristics of human head and neck squamous cell carcinoma (HNSCC) TICs, especially the enrichment of HNSCC TICs, was investigated under three-dimensional (3D) culture conditions by means of alginate gel (ALG) beads with different matrix stiffnesses. ALG beads with soft (21 kPa), moderate (70 kPa) and hard (105 kPa) stiffness were generated by changing alginate concentration. It was found that significant HNSCC TIC enrichment was achieved in the ALG beads with moderate matrix stiffness (70 kPa). The gene expression of stemness markers Oct3/4 and Nanog, TIC markers CD44 and ABCG2 was enhanced in cells under this moderate (70 kPa) stiffness. HNSCC TIC proportion was also highly enriched under moderate matrix stiffness, accompanying with higher tumorigenicity, metastatic ability and drug resistance. And it was also found that the possible molecular mechanism underlying the regulated TIC properties by matrix stiffness under 3D culture conditions was significantly different from 2D culture condition. Therefore, the results achieved in this study indicated that 3D biophysical microenvironment had an important effect on TIC characteristics and alginate-based biomimetic scaffolds could be utilized as a proper platform to investigate the interaction between tumor cells and 3D microenvironment.

  7. Respiration rate in human pituitary tumor explants.

    Science.gov (United States)

    Anniko, M; Bagger-Sjöbäck, D; Hultborn, R

    1982-01-01

    Studies on the respiration rate of human pituitary tumor tissue have so far been lacking in the literature. This study presents the results from four adenomas causing acromegaly, all with different clinical degrees of the disease. Determination of oxygen uptake was performed in vitro with a spectrophotorespirometric system. Pieces of the tumors were explanted to an organ culture system with a high degree of stability. The secretion rate of growth hormone (GH) and prolactin (PRL) was determined. After 4-8 days in vitro, specimens were analyzed for respiration rate. This was approximately 1-1.5 microliters O2/h/micrograms dry weight. The activity of the pituitary tumor tissue was characterized by both the hormone secretion rate and the respiration rate. Particularly active foci were found to occur in the adenoma tissue. Depending on the individual tumor, the GH secretion rate was approximately 0.1-100 pmol/micrograms dry weight/h and PRL secretion rate approximately 0.4-18 micrograms/micrograms dry weight/h. The respiration rate--as is also the hormone secretion rate--is dependent on the time in vitro prior to analysis. The respiration rate in individual tumors is a parameter which does not reflect GH or PRL serum levels or clinical activity of the disease.

  8. Promising link of HLA-G polymorphism, tobacco consumption and risk of Head and Neck Squamous Cell Carcinoma (HNSCC) in North Indian population.

    Science.gov (United States)

    Agnihotri, Vertica; Gupta, Abhishek; Kumar, Rahul; Upadhyay, Ashish Datt; Dwivedi, Sadanand; Kumar, Lalit; Dey, Sharmistha

    2017-02-01

    Human leukocyte antigen (HLA-G) is a potent immune-tolerant molecule and has a critical role in various pathological conditions of cancer. The aim of the study was to analyze the association of HLA-G polymorphism as a risk factor in Head and Neck Squamous Cell Carcinoma (HNSCC). The HLA-G polymorphism at 3'UTR 14bp INDEL (rs371194629) and +3142G/C (rs1063320) were studied in 383 HNSCC patients and 383 ethnically similar-aged healthy controls in North Indian population. The genotyping study of two polymorphisms of HLA-G was documented using DNA-PAGE and RFLP-PCR method. 14bp INDEL Del/Ins, Ins/Ins genotype and Ins allele were more pronounced in HNSCC patients in compared to controls. Whereas, +3142 C/C genotype and C allele were associated with risk factors in HNSCC. Furthermore, the dual effect of polymorphisms; both variants (Del/Ins-Ins/Ins & G/C-C/C) carrying loci was significantly (OR=2.78) associated with the disease compared to one variant (Del/Del-G/C or Del/Del-C/C or Ins/Ins-G/G). Moreover, both polymorphisms showed promising link in terms of tobacco influence on HNSCC risk. It can be concluded that this study first time reports that C/C, Del/Ins and Ins/Ins genotype as well as C and Ins allele could be major risk factors with strong impact of tobacco for HNSCC in North Indian population.

  9. Markers of Epithelial to Mesenchymal Transition in Association with Survival in Head and Neck Squamous Cell Carcinoma (HNSCC)

    Science.gov (United States)

    Pectasides, Eirini; Rampias, Theodoros; Sasaki, Clarence; Perisanidis, Christos; Kouloulias, Vassilis; Burtness, Barbara; Zaramboukas, Thomas; Rimm, David; Fountzilas, George; Psyrri, Amanda

    2014-01-01

    Background Elucidating the molecular phenotype of cancers with high metastatic potential will facilitate the development of novel therapeutic approaches to the disease. Gene expression profiles link epithelial to mesenchymal transition (EMT) phenotype with high-risk HNSCC. We sought to determine the role of protein biomarkers of EMT in head and neck squamous carcinoma (HNSC) prognosis. Methods Protein expression analysis of EGFR, β-catenin and E-cadherin was performed on a cohort of 102 patients with HNSCC recruited between 1992 and 2005 using automated quantitative protein analysis (AQUA). We evaluated associations with clinicopathological parameters and prognosis. Results There were 67 patients with primary squamous cell carcinoma of the head and neck in this cohort who met inclusion criteria and for whom we had complete E-cadherin, beta-catenin and EGFR expression data. High E-cadherin expressers had longer 5-year progression-free survival (PFS) compared to those with low E-cadherin (59.7% versus 40.6%, p = 0.04) and overall survival (OS) (69.6% versus 44.3%, p  = 0.05). Kaplan-Meier analysis showed that patients with low beta-catenin-expressing tumors trended toward worse 5-year PFS (p = 0.057). High EGFR expressers had inferior OS compared to low EGFR expressers (27.7% vs. 54%, p = 0.029). In the multivariable analysis context, E-cadherin remained an independent predictor of improved OS (HR = 0.204, 95% CI 0.043 to 0.972, p = 0.046) while EGFR trended towards significance for OS. Conclusions The putative markers of EMT defined within a panel of HNSCC using AQUA are associated with tumors of poor prognosis. PMID:24722213

  10. Markers of epithelial to mesenchymal transition in association with survival in head and neck squamous cell carcinoma (HNSCC.

    Directory of Open Access Journals (Sweden)

    Eirini Pectasides

    Full Text Available BACKGROUND: Elucidating the molecular phenotype of cancers with high metastatic potential will facilitate the development of novel therapeutic approaches to the disease. Gene expression profiles link epithelial to mesenchymal transition (EMT phenotype with high-risk HNSCC. We sought to determine the role of protein biomarkers of EMT in head and neck squamous carcinoma (HNSC prognosis. METHODS: Protein expression analysis of EGFR, β-catenin and E-cadherin was performed on a cohort of 102 patients with HNSCC recruited between 1992 and 2005 using automated quantitative protein analysis (AQUA. We evaluated associations with clinicopathological parameters and prognosis. RESULTS: There were 67 patients with primary squamous cell carcinoma of the head and neck in this cohort who met inclusion criteria and for whom we had complete E-cadherin, beta-catenin and EGFR expression data. High E-cadherin expressers had longer 5-year progression-free survival (PFS compared to those with low E-cadherin (59.7% versus 40.6%, p = 0.04 and overall survival (OS (69.6% versus 44.3%, p  = 0.05. Kaplan-Meier analysis showed that patients with low beta-catenin-expressing tumors trended toward worse 5-year PFS (p = 0.057. High EGFR expressers had inferior OS compared to low EGFR expressers (27.7% vs. 54%, p = 0.029. In the multivariable analysis context, E-cadherin remained an independent predictor of improved OS (HR = 0.204, 95% CI 0.043 to 0.972, p = 0.046 while EGFR trended towards significance for OS. CONCLUSIONS: The putative markers of EMT defined within a panel of HNSCC using AQUA are associated with tumors of poor prognosis.

  11. Notch receptors in human choroid plexus tumors.

    Science.gov (United States)

    Beschorner, R; Waidelich, J; Trautmann, K; Psaras, T; Schittenhelm, J

    2013-08-01

    Notch signaling plays a role in development and formation of the normal choroid plexus (nCP), and in formation of various tumors in humans. Activation of Notch3 has been reported to promote tumor growth in invasive gliomas and to initiate formation of choroid plexus tumors (CPT) in mice. We investigated the expression of all currently known Notch receptors (Notch 1-4) in 55 samples of nCP and 88 CPT, including 61 choroid plexus papillomas (CPP), 22 atypical CPP and 5 choroid plexus carcinomas by immunohistochemistry. Notch expression was semiquantitatively evaluated separately for membranous/cytoplasmic and for nuclear staining. In addition, we examined Her2 expression (EGFR2, Her2/neu, ErbB2, CD340) because of its functional link to Notch signaling. All samples were negative for Notch3. Membranous/cytoplasmic expression of Notch1 (pnCP compared to CPT. Nuclear expression of Notch1, -2 and -4 was significantly higher in CPT compared to nCP (pnCP to a predominant nuclear expression in CPT. Her2 was weakly expressed in 42/84 CPT but only in 2/53 nCP (p=0.0001) and positively correlated with nuclear expression of Notch1, -2 and 4 in CPT. In summary, a shift between membranous/cytoplasmic (non-canonical signaling pathway) and nuclear expression (canonical signaling pathway) of Notch1, -2 and -4 and upregulation of Her2 indicate neoplastic transformation in human CP and may reveal new therapeutic approaches.

  12. Integrated and Quantitative Proteomics of Human Tumors.

    Science.gov (United States)

    Yakkioui, Y; Temel, Y; Chevet, E; Negroni, L

    2017-01-01

    Quantitative proteomics represents a powerful approach for the comprehensive analysis of proteins expressed under defined conditions. These properties have been used to investigate the proteome of disease states, including cancer. It has become a major subject of studies to apply proteomics for biomarker and therapeutic target identification. In the last decades, technical advances in mass spectrometry have increased the capacity of protein identification and quantification. Moreover, the analysis of posttranslational modification (PTM), especially phosphorylation, has allowed large-scale identification of biological mechanisms. Even so, increasing evidence indicates that global protein quantification is often insufficient for the explanation of biology and has shown to pose challenges in identifying new and robust biomarkers. As a consequence, to improve the accuracy of the discoveries made using proteomics in human tumors, it is necessary to combine (i) robust and reproducible methods for sample preparation allowing statistical comparison, (ii) PTM analyses in addition to global proteomics for additional levels of knowledge, and (iii) use of bioinformatics for decrypting protein list. Herein, we present technical specificities for samples preparation involving isobaric tag labeling, TiO2-based phosphopeptides enrichment and hydrazyde-based glycopeptides purification as well as the key points for the quantitative analysis and interpretation of the protein lists. The method is based on our experience with tumors analysis derived from hepatocellular carcinoma, chondrosarcoma, human embryonic intervertebral disk, and chordoma experiments.

  13. The molecular features of tongue epithelium treated with the carcinogen 4-nitroquinoline-1-oxide and alcohol as a model for HNSCC.

    Science.gov (United States)

    Osei-Sarfo, Kwame; Tang, Xiao-Han; Urvalek, Alison M; Scognamiglio, Theresa; Gudas, Lorraine J

    2013-11-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer affecting humans worldwide. To determine the potential mechanisms by which chronic tobacco and alcohol abuse lead to HNSCC of the oral cavity, we have used both the 4-nitroquinoline-1-oxide (4-NQO) murine oral carcinogenesis and the Meadows-Cook alcohol models. In this study, we treated mice with 4-NQO in drinking water for 10 weeks and then administered 20% (w:v) ethanol (EtOH) for another 10 weeks. We observed increased levels and/or activation of signaling proteins [p38 mitogen-activated protein kinase (MAPK), β-catenin and Erk 1/2] that are typically altered during HNSCC initiation in humans. We found that EtOH administration alone increased the expression of p38 MAPK but not Erk 1/2 MAPK. Total β-catenin levels in the tongues increased by 2- to 3-fold after 4-NQO treatment, with or without EtOH. However, EtOH combined with 4-NQO reduced phosphorylated β-catenin levels, whereas 4-NQO treatment alone did not. These data implicate EtOH as a regulator of β-catenin signaling in this HNSCC model. We also utilized K14-CreER(TAM); ROSA26 mice to mark permanently stem/progenitor cells in the tongue epithelia. We found that 4-NQO alone and 4-NQO plus EtOH treatment resulted in massive, horizontal expansion of stem/progenitor cell populations arising from single stem cells in the basal layer of the epithelia. This expansion is consistent with carcinogen-associated, symmetric division of stem/progenitor cells. Our data suggest that specific therapeutic targets for prevention of HNSCC of the oral cavity associated with both alcohol and tobacco use are p38 MAPK and β-catenin.

  14. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors

    Directory of Open Access Journals (Sweden)

    Gennadiy Bondarenko

    2015-09-01

    Full Text Available Patient-derived xenograft (PDX tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients’ personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients’ samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers.

  15. Anticancer drug sensitivity by human tumor clonogenic assay.

    Directory of Open Access Journals (Sweden)

    Hiraki,Shunkichi

    1986-10-01

    Full Text Available The anticancer drug sensitivity of human cancers was tested by the human tumor clonogenic assay (HTCA. Of 152 human cancer specimens tested, 63 (41% formed more than 30 tumor cell colonies in control plates and could be used to evaluate the drug sensitivity of tumor cells. In 42 (93% of 45 clinical trials in 24 patients, a parallel correlation was observed between the in vitro anticancer drug sensitivity measured by the HTCA and the clinical response of tumors to anticancer drugs. These results suggest that the HTCA is a good technique for the in vitro test of the anticancer drug sensitivity of human cancers.

  16. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  17. Activity of the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid against Human Head and Neck Carcinoma Xenografts

    Directory of Open Access Journals (Sweden)

    Mukund Seshadri

    2006-07-01

    Full Text Available Head and neck squamous cell carcinomas (HNSCC constitute a majority of the tumors of the upper aerodigestive tract and continue to present a significant therapeutic challenge. To explore the potential of vascular-targeted therapy in HNSCC, we investigated the antivascular, antitumor activity of the potent vascular-disrupting agent (VDA 5,6-dimethylxanthenone-4-acetic acid (DMXAA against two HNSCC xenografts with markedly different morphologic and vascular characteristics. Athymic nude mice bearing subcutaneous FaDu (human pharyngeal squamous cell carcinoma and A253 (human submaxillary gland epidermoid carcinoma tumors were administered a single dose of DMXAA (30 mg/kg, i.p. Changes in vascular function were evaluated 24 hours after treatment using contrast-enhanced magnetic resonance imaging (MRI and immunohistochemistry (CD31. Signal enhancement (E and change in longitudinal relaxation rates (ΔR1 were calculated to measure alterations in vascular perfusion. MRI showed a 78% and 49% reduction in vascular perfusion in FaDu and A253 xenografts, respectively. CD31-immunostaining of tumor sections revealed three-fold (FaDu and two-fold (A253 reductions in microvessel density (MVD 24 hours after treatment. DMXAA was equally effective against both xenograffs, with significant tumor growth inhibition observed 30 days after treatment. These results indicate that DMXAA may be beneficial in the management of HNSCC, alone or in combination with other treatments.

  18. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  19. The immune landscape of human tumors

    Science.gov (United States)

    Bindea, Gabriela; Mlecnik, Bernhard; Angell, Helen K; Galon, Jérôme

    2014-01-01

    Understanding the spontaneous immune response of cancer patients is critical for the design of efficient anticancer immunotherapies. The power of integrative tumor immunology approaches allowed for a comprehensive view of the immune system evolution in the course of tumor progression and recurrence. We have demonstrated that tumor-infiltrating immune cells are spatiotemporally regulated, a finding that has profound implications for the development of efficient anticancer immunotherapies. PMID:24800163

  20. Tissue-engineered models of human tumors for cancer research

    Science.gov (United States)

    Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. Areas covered In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. Expert opinion While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function. PMID:25662589

  1. Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models

    Directory of Open Access Journals (Sweden)

    Yingjen Jeffrey Wu

    2009-02-01

    Full Text Available The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally 24 hours before human ovarian carcinoma (SKOV3, small cell lung carcinoma (LX-1 SCLC, and glioma (UW28, U87MG, and U251 tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0% of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues.

  2. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  3. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels

    Energy Technology Data Exchange (ETDEWEB)

    Loevey, J. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Bereczky, B.; Gilly, R.; Kenessey, I.; Raso, E.; Simon, E.; Timar, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); Dobos, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Vago, A. [Central Lab., National Inst. of Oncology, Budapest (Hungary); Kasler, M. [Head and Neck Surgery, National Inst. of Oncology, Budapest (Hungary); Doeme, B. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Tovari, J. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); 1. Inst. of Pathology and Experimental Cancer Research, Semmelweis Univ., Budapest (Hungary)

    2008-01-15

    Background and purpose: tumor-induced anemia often occurs in cancer patients, and is corrected by recombinant human erythropoietins (rHuEPOs). Recent studies indicated that, besides erythroid progenitor cells, tumor and endothelial cells express erythropoietin receptor (EPOR) as well; therefore, rHuEPO may affect their functions. Here, the effect of rHuEPO{alpha} on irradiation in EPOR-positive human squamous cell carcinoma xenograft was tested. Material and methods: A431 tumor-bearing SCID mice were treated from the tumor implantation with rHuEPO{alpha} at human-equivalent dose. Xenografts were irradiated (5 Gy) on day 14, and the final tumor mass was measured on day 22. The systemic effects of rHuEPO{alpha} on the hemoglobin level, on tumor-associated blood vessels and on hypoxia-inducible factor-(HIF-)1{alpha} expression of the tumor xenografts were monitored. The proliferation, apoptosis and clonogenic capacity of A431 cancer cells treated with rHuEPO{alpha} and irradiation were also tested in vitro. Results: in vitro, rHuEPO{alpha} treatment alone did not modify the proliferation of EPOR-positive A431 tumor cells but enhanced the effect of irradiation on proliferation, apoptosis and clonogenic capacity. In vivo, rHuEPO{alpha} administration compensated the tumor-induced anemia in SCID mice and decreased tumoral HIF-1{alpha} expression but had no effect on tumor growth. At the same time rHuEPO{alpha} treatment significantly increased the efficacy of radiotherapy in vivo (tumor weight of 23.9 {+-} 4.7 mg and 34.9 {+-} 4.6 mg, respectively), mediated by increased tumoral blood vessel destruction. Conclusion: rHuEPO{alpha} treatment may modulate the efficacy of cancer radiotherapy not only by reducing systemic hypoxia and tumoral HIF-1{alpha} expression, but also by destroying tumoral vessels. (orig.)

  4. Newcastle disease virus selectively kills human tumor cells.

    Science.gov (United States)

    Reichard, K W; Lorence, R M; Cascino, C J; Peeples, M E; Walter, R J; Fernando, M B; Reyes, H M; Greager, J A

    1992-05-01

    Newcastle disease virus (NDV), strain 73-T, has previously been shown to be cytolytic to mouse tumor cells. In this study, we have evaluated the ability of NDV to replicate in and kill human tumor cells in culture and in athymic mice. Plaque assays were used to determine the cytolytic activity of NDV on six human tumor cell lines, fibrosarcoma (HT1080), osteosarcoma (KHOS), cervical carcinoma (KB8-5-11), bladder carcinoma (HCV29T), neuroblastoma (IMR32), and Wilm's tumor (G104), and on nine different normal human fibroblast lines. NDV formed plaques on all tumor cells tested as well as on chick embryo cells (CEC), the native host for NDV. Plaques did not form on any of the normal fibroblast lines. To detect NDV replication, virus yield assays were performed which measured virus particles in infected cell culture supernatants. Virus yield increased 10,000-fold within 24 hr in tumor and CEC supernatants. Titers remained near zero in normal fibroblast supernatants. In vivo tumoricidal activity was evaluated in athymic nude Balb-c mice by subcutaneous injection of 9 x 10(6) tumor cells followed by intralesional injection of either live or heat-killed NDV (1.0 x 10(6) plaque forming units [PFU]), or medium. After live NDV treatment, tumor regression occurred in 10 out of 11 mice bearing KB8-5-11 tumors, 8 out of 8 with HT-1080 tumors, and 6 out of 7 with IMR-32 tumors. After treatment with heat-killed NDV no regression occurred (P less than 0.01, Fisher's exact test). Nontumor-bearing mice injected with 1.0 x 10(8) PFU of NDV remained healthy. These results indicate that NDV efficiently and selectively replicates in and kills tumor cells, but not normal cells, and that intralesional NDV causes complete tumor regression in athymic mice with a high therapeutic index.

  5. Metallothioneins in human tumors and potential roles in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-12-10

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  6. G2-checkpoint targeting and radiosensitization of HPV/p16-positive HNSCC cells through the inhibition of Chk1 and Wee1.

    Science.gov (United States)

    Busch, Chia-Jung; Kröger, Marie Sophie; Jensen, Jana; Kriegs, Malte; Gatzemeier, Fruzsina; Petersen, Cordula; Münscher, Adrian; Rothkamm, Kai; Rieckmann, Thorsten

    2017-02-01

    HPV-positive HNSCC cells are characterized by radiosensitivity, inefficient DNA double-strand break repair and a profound and prolonged arrest in G2. Here we explored the effect of clinically relevant inhibitors of Chk1 and Wee1 to inhibit the radiation-induced G2-arrest in order to achieve further radiosensitization. Assessment of Chk1 activity by Western blot; assessment of cell cycle distribution by propidium iodide staining and flow cytometry; assessment of cell survival by colony formation assay. HPV+ HNSCC cell lines: UD-SCC-2, UM-SCC-47 and UPCI-SCC-154; Chk1 inhibitors: LY2603618, MK8776; Wee1 inhibitor: AZD1775. Specific Chk1 inhibitors efficiently abrogated the radiation-induced G2-arrest and caused radiosensitization. Wee-inhibition by AZD1775 resulted in the activation of Chk1. This feedback mechanism is likely to counteract some of the effects of Wee1 inhibition but could be antagonized through the combined inhibition of both kinases. Combined inhibition was effective using profoundly reduced concentrations of both inhibitors and resulted in more efficient radiosensitization of the HPV-positive cell lines compared to p53 proficient normal human fibroblasts. Specific Chk1 inhibitors as well as the combined inhibition of Chk1 and Wee1 radiosensitize HPV-positive HNSCC cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. 4-Hydroxylation of estrogens as marker of human mammary tumors.

    OpenAIRE

    Liehr, J G; Ricci, M J

    1996-01-01

    Estrogen is a known risk factor in human breast cancer. In rodent models, estradiol has been shown to induce tumors in those tissues in which this hormone is predominantly converted to the catechol metabolite 4-hydroxyestradiol by a specific 4-hydroxylase enzyme, whereas tumors fail to develop in organs in which 2-hydroxylation predominates. We have now found that microsomes prepared from human mammary adenocarcinoma and fibroadenoma predominantly catalyze the metabolic 4-hydroxylation of est...

  8. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses.

    Science.gov (United States)

    Nishimura, Yasuharu; Tomita, Yusuke; Yuno, Akira; Yoshitake, Yoshihiro; Shinohara, Masanori

    2015-05-01

    Recent genome-wide cDNA microarray analysis of gene expression profiles in comprehensive tumor types coupled with isolation of cancer tissues by laser-microbeam microdissection have revealed ideal tumor-associated antigens (TAAs) that are frequently overexpressed in various cancers including head and neck squamous cell cancer (HNSCC) and lung cancer, but not in most normal tissues except for testis, placenta, and fetal organs. Preclinical studies using HLA-transgenic mice and human T cells in vitro showed that TAA-derived CTL-epitope short peptides (SPs) are highly immunogenic and induce HLA-A2 or -A24-restricted CTLs. Based on the accumulated evidence, we carried out a phase II clinical trial of the TAA-SP vaccine in advanced 37 HNSCC patients. This study showed a significant induction of TAA-specific CTLs in the majority of patients without serious adverse effects. Importantly, clinical responses including a complete response were observed in this study. Another phase II clinical trial of therapeutic TAA-SP vaccine, designed to evaluate the ability of prevention of recurrence, is ongoing in HNSCC patients who have received curative operations. Further studies in human preclinical studies and in vivo studies using HLA class I transgenic mice showed TAA-derived long peptides (TAA-LPs) have the capacity to induce not only promiscuous HLA class II-restricted CD4(+) T helper type 1 cells but also tumor-specific CTLs through a cross-presentation mechanism. Moreover, we observed an augmentation of TAA-LP-specific T helper type 1 cell responses and tumor antigen-spreading in HNSCC patients vaccinated with TAA-SPs. This accumulated evidence suggests that therapeutic TAA-SPs and LPs vaccines may provide a promising cancer immunotherapy.

  9. Targeted Radionuclide Therapy of Human Tumors

    Directory of Open Access Journals (Sweden)

    Sergey V. Gudkov

    2015-12-01

    Full Text Available Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.

  10. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    Internet site(s) Penn Medicine News Site: ▪ http://www.uphs.upenn.edu/news/News_Releases/2016/07/eruslanov/ Technologies or techniques Nothing to...determine whether the tumor microenvironment stimu- lates trafficking of neutrophils, resting PBNs were assayed for tran- swell migration in the presence of...Ray, Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning

  11. Absence of Y chromosome in human placental site trophoblastic tumor.

    Science.gov (United States)

    Hui, Pei; Wang, Hanlin L; Chu, Peiguo; Yang, Bin; Huang, Jiaoti; Baergen, Rebecca N; Sklar, Jeffrey; Yang, Ximing J; Soslow, Robert A

    2007-10-01

    Placental site trophoblastic tumor is a neoplasm of extravillous intermediate trophoblast at the implantation site, preceded in the majority of cases by a female gestational event. Our pilot investigation suggested that the development of this tumor might require a paternally derived X chromosome and the absence of a Y chromosome. Twenty cases of placental site trophoblastic tumor were included in this study. Genotyping at 15 polymorphic loci and one sex determination locus was performed by multiplex PCR followed by capillary electrophoresis. X chromosome polymorphisms were determined by PCR amplification of exon 1 of the human androgen receptor gene using primers flanking the polymorphic CAG repeats within this region. Genotyping at 15 polymorphic loci was informative and paternal alleles were present in all tumors, confirming the trophoblastic origin of the tumors. The presence of an X chromosome and the absence of a Y chromosome were observed in all tumors. Among 13 cases in which analysis of the X chromosome polymorphism was informative, all but one demonstrated at least two X alleles and seven cases showed one identifiable paternal X allele. These results confirm a unique pathogenetic mechanism in placental site trophoblastic tumor, involving an exclusion of the Y chromosome from the genome and, therefore, a tumor arising from the trophectoderm of a female conceptus. As epigenetic regulations of imprinting during X chromosome inactivation are of significant biological implications, placental site trophoblastic tumor may provide an important model for studying the sex chromosome biology and the proliferative advantage conferred by the paternal X chromosome.

  12. Anti-Tumor Immunity in Head and Neck Cancer: Understanding the Evidence, How Tumors Escape and Immunotherapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Clint T. Allen

    2015-12-01

    Full Text Available Many carcinogen- and human papilloma virus (HPV-associated head and neck cancers (HNSCC display a hematopoietic cell infiltrate indicative of a T-cell inflamed phenotype and an underlying anti-tumor immune response. However, by definition, these tumors have escaped immune elimination and formed a clinically significant malignancy. A number of both genetic and environmental mechanisms may allow such immune escape, including selection of poorly antigenic cancer cell subsets, tumor produced proinflammatory and immunosuppressive cytokines, recruitment of immunosuppressive immune cell subsets into the tumor and expression of checkpoint pathway components that limit T-cell responses. Here, we explore concepts of antigenicity and immunogenicity in solid tumors, summarize the scientific and clinical data that supports the use of immunotherapeutic approaches in patients with head and neck cancer, and discuss immune-based treatment approaches currently in clinical trials.

  13. A Big Bang model of human colorectal tumor growth.

    Science.gov (United States)

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

  14. Expressional patterns of chaperones in ten human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Slavc Irene

    2004-12-01

    Full Text Available Abstract Background Chaperones (CH play an important role in tumor biology but no systematic work on expressional patterns has been reported so far. The aim of the study was therefore to present an analytical method for the concomitant determination of several CH in human tumor cell lines, to generate expressional patterns in the individual cell lines and to search for tumor and non-tumor cell line specific CH expression. Human tumor cell lines of neuroblastoma, colorectal and adenocarcinoma of the ovary, osteosarcoma, rhabdomyosarcoma, malignant melanoma, lung, cervical and breast cancer, promyelocytic leukaemia were homogenised, proteins were separated on two-dimensional gel electrophoresis with in-gel digestion of proteins and MALDI-TOF/TOF analysis was carried out for the identification of CH. Results A series of CH was identified including the main CH groups as HSP90/HATPas_C, HSP70, Cpn60_TCP1, DnaJ, Thioredoxin, TPR, Pro_isomerase, HSP20, ERP29_C, KE2, Prefoldin, DUF704, BAG, GrpE and DcpS. Conclusions The ten individual tumor cell lines showed different expression patterns, which are important for the design of CH studies in tumor cell lines. The results can serve as a reference map and form the basis of a concomitant determination of CH by a protein chemical rather than an immunochemical method, independent of antibody availability or specificity.

  15. Brain tumors induced in rats by human adenovirus type 12

    Directory of Open Access Journals (Sweden)

    Murao,Tsuyoshi

    1974-02-01

    Full Text Available Oncogenesis of human adenovirus type 12 in the brain of rats was examined. Newborn rats of Sprague-Dawley and Donryu strains were injected intracranially with human adenovirus type 12. The incidence of intracranial tumors was 91% (30/33 in SpragueDawley and 56% (14/25 in Donryu rats. Except for one tumor nodule located in the parietal cortex of a Sprague.Dawley rat, all tumors developed in the paraventricular areas or in the meninges. Tumors were quite similar histologically to those induced in hamsters and mice resembling the undifferentiated human brain tumors such as medulloblastoma, ependymoblastoma and embryonic gliomas. From the histological features and primary sites of tumor development, it is suggested that the tumors in the brain of rats induced by adenovirus type 12 originate from the embryonic cells in the paraventricular area and also from the undifferentiated supporting cells of the peripheral nerves in the leptomeninges.

  16. Expression of epidermal growth factor receptors in human brain tumors.

    Science.gov (United States)

    Libermann, T A; Razon, N; Bartal, A D; Yarden, Y; Schlessinger, J; Soreq, H

    1984-02-01

    The expression of receptors for epidermal growth factor (EGF-R) was determined in 29 samples of brain tumors from 22 patients. Primary gliogenous tumors, of various degrees of cancer, five meningiomas, and two neuroblastomas were examined. Tissue samples were frozen in liquid nitrogen immediately after the operation and stored at -70 degrees until use. Cerebral tissue samples from 11 patients who died from diseases not related to the central nervous system served as controls. Immunoprecipitation of functional EGF-R-kinase complexes revealed high levels of EGF-R in all of the brain tumors of nonneuronal origin that were examined. The level of EGF-R varied between tumors from different patients and also between specimens prelevated from different areas of the same tumor. In contrast, the levels of EGF-R from control specimens were invariably low. The biochemical properties of EGF-R in brain tumor specimens were found to be indistinguishable from those of the well-characterized EGF-R from the A-431 cell line, derived from human epidermoid carcinomas. Human brain EGF-R displays a molecular weight of 170,000 by polyacrylamide-sodium dodecyl sulfate gel electrophoresis. It is phosphorylated mainly in tyrosine residues and shows a 2-dimensional phosphopeptide map similar to that obtained with the phosphorylated EGF-R from membranes of A-431 cells. Our observations suggest that induction of EGF-R expression may accompany the malignant transformation of human brain cells of nonneuronal origin.

  17. Bioengineered models of solid human tumors for cancer research

    Science.gov (United States)

    Marturano-Kruik, Alessandro; Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2016-01-01

    Summary The lack of controllable in vitro models that can recapitulate the features of solid tumors such as Ewing’s sarcoma limits our understanding of the tumor initiation and progression and impedes the development of new therapies. Cancer research still relies of the use of simple cell culture, tumor spheroids, and small animals. Tissue-engineered tumor models are now being grown in vitro to mimic the actual tumors in patients. Recently, we have established a new protocol for bioengineering the Ewing’s sarcoma, by infusing tumor cell aggregates into the human bone engineered from the patient’s mesenchymal stem cells. The bone niche allows crosstalk between the tumor cells, osteoblasts and supporting cells of the bone, extracellular matrix and the tissue microenvironment. The bioreactor platform used in these experiments also allows the implementation of physiologically relevant mechanical signals. Here, we describe a method to build an in vitro model of Ewing’s sarcoma that mimics the key properties of the native tumor and provides the tissue context and physical regulatory signals. PMID:27115504

  18. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line.

    OpenAIRE

    Spriggs, D; Imamura, K; Rodriguez, C; Horiguchi, J; Kufe, D W

    1987-01-01

    Tumor necrosis factor (TNF) is a polypeptide cytokine that is cytotoxic to some but not all tumor cells. The basis for resistance to the cytotoxic effects of this agent remains unclear. We have studied the development of TNF resistance in human ZR-75-1 breast carcinoma cells. ZR-75-1 cells have undetectable levels of TNF RNA and protein. However, TNF transcripts are transiently induced in these cells by exposure to recombinant human TNF. This induction of TNF RNA is associated with production...

  19. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  20. HMGA1-pseudogene expression is induced in human pituitary tumors

    Science.gov (United States)

    Esposito, Francesco; De Martino, Marco; D'Angelo, Daniela; Mussnich, Paula; Raverot, Gerald; Jaffrain-Rea, Marie-Lise; Fraggetta, Filippo; Trouillas, Jacqueline; Fusco, Alfredo

    2015-01-01

    Numerous studies have established that High Mobility Group A (HMGA) proteins play a pivotal role on the onset of human pituitary tumors. They are overexpressed in pituitary tumors, and, consistently, transgenic mice overexpressing either the Hmga1 or the Hmga2 gene develop pituitary tumors. In contrast with HMGA2, HMGA1 overexpression is not related to any rearrangement or amplification of the HMGA1 locus in these tumors. We have recently identified 2 HMGA1 pseudogenes, HMGA1P6 and HMGA1P7, acting as competitive endogenous RNA decoys for HMGA1 and other cancer related genes. Here, we show that HMGA1 pseudogene expression significantly correlates with HMGA1 mRNA levels in growth hormone and nonfunctioning pituitary adenomas likely inhibiting the repression of HMGA1 through microRNAs action. According to our functional studies, these HMGA1 pseudogenes enhance the proliferation and migration of the mouse pituitary tumor cell line, at least in part, through their upregulation. Our results point out that the overexpression of HMGA1P6 and HMGA1P7 could contribute to increase HMGA1 levels in human pituitary tumors, and then to pituitary tumorigenesis. PMID:25894544

  1. Comparative expression pathway analysis of human and canine mammary tumors

    Directory of Open Access Journals (Sweden)

    Marconato Laura

    2009-03-01

    Full Text Available Abstract Background Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved. Results We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. Conclusion Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.

  2. Targeting a single mismatched minor histocompatibility antigen with tumor-restricted expression eradicates human solid tumors

    NARCIS (Netherlands)

    L. Hambaeh (Lothar); M. Vermeij (Marcel); A. Buser (Andreas); Z. Aghai (Zohara); Th.H. van der Kwast (Theo); E. Goulmy (Els)

    2008-01-01

    textabstractRegressions of metastatic solid tumors after allogeneic human leukocyte antigen (HLA)-matched stem cell transplantation (SCT) are often associated with detrimental graft-versus-host disease (GVHD). The graft-versus-host reaction of the HLA-matched donor is directed mainly against the mul

  3. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  4. Expression of muscarinic binding sites in primary human brain tumors.

    Science.gov (United States)

    Gurwitz, D; Razon, N; Sokolovsky, M; Soreq, H

    1984-05-01

    The expression of muscarinic binding sites was examined in a collection of primary brain tumors of different cellular origins and various degrees of dedifferentiation, as compared to control specimens. Eleven gliogenous tumors were examined, all of which contained substantial amounts of muscarinic binding sites. Most of the other tumor types examined did not display detectable binding of [3H]N-methyl-4-piperidyl benzilate ([3H]4NMPB). Scatchard analysis indicated the existence of homogeneous antagonist sites in both normal forebrain and glioblastoma multiforme, with Kd values of 1.2 nM and 0.9 nM, respectively. The density of muscarinic binding sites varied between tumors from different patients, and also between specimens prelevated from different areas of the same tumor. This variability, as well as the average density of binding sites, appeared to be larger in highly malignant tumors than in less malignant ones. In contrast, the density of muscarinic receptors from control specimens was invariably high, but within the same order of magnitude. To test whether the muscarinic binding activity in the brain tumors is correlated to other cholinoceptive properties, cholinesterase activity was also examined. Individual data for density of [3H]4NMPB binding sites were then plotted against corresponding values of cholinesterase activity. The pattern of distribution of these values was clearly different in tumor specimens, when compared to that observed in samples derived from non-malignant brain. Our observations indicate that human brain cells of gliogenous origin are capable of expressing muscarinic binding sites, and that, if a correlation exists between muscarinic receptors and cholinesterase levels in gliogenous tumors, it differs from that of non-malignant brain tissue.

  5. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  6. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence

    Directory of Open Access Journals (Sweden)

    Kelsey A. Finkel

    2016-05-01

    Full Text Available Head and neck squamous cell carcinomas (HNSCC exhibit a small population of uniquely tumorigenic cancer stem cells (CSC endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDHhighCD44high cells. Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117 using three low-passage patient-derived xenograft (PDX models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05. This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11. Low dose MEDI5117 (3 mg/kg consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001, PDX-SCC-M1 (P < .001, PDX-SCC-M11 (P = .04. Interestingly, high dose MEDI5117 (30 mg/kg decreased the CSC fraction in the PDX-SCC-M11 model (P = .002, but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDHhighCD44high cells cultured in ultra-low attachment plates (P < .05, supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC.

  7. Ki-67 Expression in Human Tumors Measured by Flow Cytometry

    Science.gov (United States)

    1990-01-01

    proliferation. One of the first proliferation antigens to be studied was the transferrin receptor (TfR). Proliferating normal and tumor cells require iron and...obtained by incubation in NP-40. When the antibody was used to stain frozen sections of human tonsil , the chromosomes were stained. The antibody was...proliferation. When applied to frozen sections of human tonsil , the antibody appeared to be reactive with a mitotic spindle-associated protein. It bound

  8. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    Science.gov (United States)

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  9. Effect of the Premalignant and Tumor Microenvironment on Immune Cell Cytokine Production in Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Sara D. [Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425 (United States); De Costa, Anna-Maria A. [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Young, M. Rita I., E-mail: rita.young@va.gov [Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, Charleston, SC 29425 (United States); Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 (United States); Medical Research Service (151), Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street, Charleston, SC 29401 (United States)

    2014-04-02

    Head and neck squamous cell carcinoma (HNSCC) is marked by immunosuppression, a state in which the established tumor escapes immune attack. However, the impact of the premalignant and tumor microenvironments on immune reactivity has yet to be elucidated. The purpose of this study was to determine how soluble mediators from cells established from carcinogen-induced oral premalignant lesions and HNSCC modulate immune cell cytokine production. It was found that premalignant cells secrete significantly increased levels of G-CSF, RANTES, MCP-1, and PGE{sub 2} compared to HNSCC cells. Splenocytes incubated with premalignant supernatant secreted significantly increased levels of Th1-, Th2-, and Th17-associated cytokines compared to splenocytes incubated with HNSCC supernatant. These studies demonstrate that whereas the premalignant microenvironment elicits proinflammatory cytokine production, the tumor microenvironment is significantly less immune stimulatory and may contribute to immunosuppression in established HNSCC.

  10. Human STEAP3 maintains tumor growth under hypoferric condition

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Taichi, E-mail: tisobe@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Eishi, E-mail: e-baba@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Arita, Shuji, E-mail: arita.s@nk-cc.go.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Komoda, Masato, E-mail: komoda@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamura, Shingo, E-mail: tamshin@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Shirakawa, Tsuyoshi, E-mail: t-w-r@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ariyama, Hiroshi, E-mail: hariyama@kyumed.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takaishi, Shigeo, E-mail: takaishi@med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kusaba, Hitoshi, E-mail: hkusaba@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); and others

    2011-11-01

    Iron is essential in cellular proliferation and survival based on its crucial roles in DNA and ATP synthesis. Tumor cells proliferate rapidly even in patients with low serum iron, although their actual mechanisms are not well known. To elucidate molecular mechanisms of efficient tumor progression under the hypoferric condition, we studied the roles of six-transmembrane epithelial antigen of the prostate family member 3 (STEAP3), which was reported to facilitate iron uptake. Using Raji cells with low STEAP3 mRNA expression, human STEAP3-overexpressing cells were established. The impact of STEAP3 expression was analyzed about the amount of iron storage, the survival under hypoferric conditions in vitro and the growth of tumor in vivo. STEAP3 overexpression increased ferritin, an indicator of iron storage, in STEAP3-overexpressing Raji cells. STEAP3 gave Raji cells the resistance to iron deprivation-induced apoptosis. These STEAP3-overexpressing Raji cells preserved efficient growth even in hypoferric mice, while parental Raji cells grew less rapidly. In addition, iron deficiency enhanced STEAP3 mRNA expression in tumor cells. Furthermore, human colorectal cancer tissues exhibited more STEAP3 mRNA expression and iron storage compared with normal colon mucosa. These findings indicate that STEAP3 maintains iron storage in human malignant cells and tumor proliferation under the hypoferric condition. -- Highlights: {yields} STEAP3 expression results in increment of stored intracellular iron. {yields} Iron deprivation induces expression of STEAP3. {yields} Colorectal cancer expresses STEAP3 highly and stores iron much. {yields} STEAP3 expressing tumors preserves growth even in mice being hypoferremia.

  11. Stanniocalcin-1 Reduces Tumor Size in Human Hepatocellular Carcinoma

    Science.gov (United States)

    Yeung, Bonnie H. Y.; Shek, Felix H.; Lee, Nikki P.; Wong, Chris K. C.

    2015-01-01

    Growing evidence has revealed high expression levels of stanniocalcin-1 (STC1) in different types of human cancers. Numerous experimental studies using cancer cell lines demonstrated the involvement of STC1 in inflammatory and apoptotic processes; however the role of STC1 in carcinogenesis remains elusive. Hepatocellular carcinoma (HCC) an exemplified model of inflammation-related cancer, represents a paradigm of studying the association between STC1 and tumor development. Therefore, we conducted a statistical analysis on the expression levels of STC1 using clinicopathological data from 216 HCC patients. We found that STC1 was upregulated in the tumor tissues and its expression levels was positively correlated with the levels of interleukin (IL)-6 and IL-8. Intriguingly tumors with greater expression levels of STC1 (tumor/normal ≥ 2) were significantly smaller than the lower level (tumor/normal<2) samples (p = 0.008). A pharmacological approach was implemented to reveal the functional correlation between STC1 and the ILs in the HCC cell-lines. IL-6 and IL-8 treatment of Hep3B cells induced STC1 expression. Lentiviral-based STC1 overexpression in Hep3B and MHCC-97L cells however showed inhibitory action on the pro-migratory effects of IL-6 and IL-8 and reduced size of tumor spheroids. The inhibitory effect of STC1 on tumor growth was confirmed in vivo using the stable STC1-overexpressing 97L cells on a mouse xenograft model. Genetic analysis of the xenografts derived from the STC1-overexpressing 97L cells, showed upregulation of the pro-apoptotic genes interleukin-12 and NOD-like receptor family, pyrin domain-containing 3. Collectively, the anti-inflammatory and pro-apoptotic functions of STC1 were suggested to relate its inhibitory effect on the growth of HCC cells. This study supports the notion that STC1 may be a potential therapeutic target for inflammatory tumors in HCC patients. PMID:26469082

  12. Stanniocalcin-1 Reduces Tumor Size in Human Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Growing evidence has revealed high expression levels of stanniocalcin-1 (STC1 in different types of human cancers. Numerous experimental studies using cancer cell lines demonstrated the involvement of STC1 in inflammatory and apoptotic processes; however the role of STC1 in carcinogenesis remains elusive. Hepatocellular carcinoma (HCC an exemplified model of inflammation-related cancer, represents a paradigm of studying the association between STC1 and tumor development. Therefore, we conducted a statistical analysis on the expression levels of STC1 using clinicopathological data from 216 HCC patients. We found that STC1 was upregulated in the tumor tissues and its expression levels was positively correlated with the levels of interleukin (IL-6 and IL-8. Intriguingly tumors with greater expression levels of STC1 (tumor/normal ≥ 2 were significantly smaller than the lower level (tumor/normal<2 samples (p = 0.008. A pharmacological approach was implemented to reveal the functional correlation between STC1 and the ILs in the HCC cell-lines. IL-6 and IL-8 treatment of Hep3B cells induced STC1 expression. Lentiviral-based STC1 overexpression in Hep3B and MHCC-97L cells however showed inhibitory action on the pro-migratory effects of IL-6 and IL-8 and reduced size of tumor spheroids. The inhibitory effect of STC1 on tumor growth was confirmed in vivo using the stable STC1-overexpressing 97L cells on a mouse xenograft model. Genetic analysis of the xenografts derived from the STC1-overexpressing 97L cells, showed upregulation of the pro-apoptotic genes interleukin-12 and NOD-like receptor family, pyrin domain-containing 3. Collectively, the anti-inflammatory and pro-apoptotic functions of STC1 were suggested to relate its inhibitory effect on the growth of HCC cells. This study supports the notion that STC1 may be a potential therapeutic target for inflammatory tumors in HCC patients.

  13. Intracellular insulin in human tumors: examples and implications

    Directory of Open Access Journals (Sweden)

    Radulescu Razvan T

    2011-04-01

    Full Text Available Abstract Insulin is one of the major metabolic hormones regulating glucose homeostasis in the organism and a key growth factor for normal and neoplastic cells. Work conducted primarily over the past 3 decades has unravelled the presence of insulin in human breast cancer tissues and, more recently, in human non-small cell lung carcinomas (NSCLC. These findings have suggested that intracellular insulin is involved in the development of these highly prevalent human tumors. A potential mechanism for such involvement is insulin's binding and inactivation of the retinoblastoma tumor suppressor protein (RB which in turn is likely controlled by insulin-degrading enzyme (IDE. This model and its supporting data are collectively covered in this survey in order to provide further insight into insulin-driven oncogenesis and its reversal through future anticancer therapeutics.

  14. Significance of rat mammary tumors for human risk assessment.

    Science.gov (United States)

    Russo, Jose

    2015-02-01

    We have previously indicated that the ideal animal tumor model should mimic the human disease. This means that the investigator should be able to ascertain the influence of host factors on the initiation of tumorigenesis, mimic the susceptibility of tumor response based on age and reproductive history, and determine the response of the tumors induced to chemotherapy. The utilization of experimental models of mammary carcinogenesis in risk assessment requires that the influence of ovarian, pituitary, and placental hormones, among others, as well as overall reproductive events are taken into consideration, since they are important modifiers of the susceptibility of the organ to neoplastic development. Several species, such as rodents, dogs, cats, and monkeys, have been evaluated for these purposes; however, none of them fulfills all the criteria specified previously. Rodents, however, are the most widely used models; therefore, this work will concentrate on discussing the rat rodent model of mammary carcinogenesis. © 2014 by The Author(s).

  15. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells.

    Science.gov (United States)

    Shrotriya, Sangeeta; Deep, Gagan; Lopert, Pamela; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2015-12-01

    Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells. © 2014 Wiley Periodicals, Inc.

  16. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  17. Photon emission from normal and tumor human tissues.

    Science.gov (United States)

    Grasso, F; Grillo, C; Musumeci, F; Triglia, A; Rodolico, G; Cammisuli, F; Rinzivillo, C; Fragati, G; Santuccio, A; Rodolico, M

    1992-01-15

    Photon emission in the visible and near ultraviolet range by samples of human tissue removed during surgery has been measured by means of a low noise photomultiplier coupled to a data acquisition system. The results show that among the 25 analyzed samples the 9 from normal tissues had an emission rate of the order of some tens of photons/cm2 min, while most of the 16 tumor tissue samples had a very much higher rate.

  18. Functional Study of the Human BRCA2 Tumor Suppressor

    Science.gov (United States)

    2005-08-01

    Wang, Y., Lee, M. & Venkitaraman, A. R. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876...tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2, 317-28 (1998). 28. Fuks, F., Milner, J. & Kouzarides, T. BRCA2 associates with...Scully, R. et al. Association of BRCA1 with Rad5l in mitotic and meiotic cells. Cell 88, 265-75 (1997). 49. Nakanishi, K. et al. Human Fanconi anemia

  19. CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer.

    Directory of Open Access Journals (Sweden)

    Yu-Syuan Chen

    Full Text Available BACKGROUND: Head and Neck squamous cell carcinoma (HNSCC is a human lethal cancer with clinical, pathological, phenotypical and biological heterogeneity. Caner initiating cells (CICs, which are responsible for tumor growth and coupled with gain of epithelial-mesenchymal transition (EMT, have been identified. Previously, we enriched a subpopulation of head and neck cancer initiating cells (HN-CICs with up-regulation of CD133 and enhancement of EMT. Others demonstrate that Src kinase interacts with and phosphorylates the cytoplasmic domain of CD133. However, the physiological function of CD133/Src signaling in HNSCCs has not been uncovered. METHODOLOGY/PRINCIPAL FINDING: Herein, we determined the critical role of CD133/Src axis modulating stemness, EMT and tumorigenicity of HNSCC and HN-CICs. Initially, down-regulation of CD133 significantly reduced the self-renewal ability and expression of stemness genes, and promoted the differentiation and apoptotic capability of HN-CICs. Additionally, knockdown of CD133 in HN-CICs also lessened both in vitro malignant properties including cell migration/cell invasiveness/anchorage independent growth, and in vivo tumor growth by nude mice xenotransplantation assay. In opposite, overexpression of CD133 enhanced the stemness properties and tumorigenic ability of HNSCCs. Lastly, up-regulation of CD133 increased phosphorylation of Src coupled with EMT transformation in HNSCCs, on the contrary, silence of CD133 or treatment of Src inhibitor inversely abrogated above phenotypic effects, which were induced by CD133 up-regulation in HNSCCs or HN-CICs. CONCLUSION/SIGNIFICANCE: Our results suggested that CD133/Src signaling is a regulatory switch to gain of EMT and of stemness properties in HNSCC. Finally, CD133/Src axis might be a potential therapeutic target for HNSCC by eliminating HN-CICs.

  20. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    OpenAIRE

    Sunil L. Bangare; Madhura Patil

    2015-01-01

    This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed wor...

  1. Chromosomal aberrations related to metastasis of human solid tumors

    Institute of Scientific and Technical Information of China (English)

    Lun-Xiu Qin

    2002-01-01

    The central role of sequential accumulation of genetic alterations during the development of cancer has been firmly established since the pioneering cytogenetic studies successfully defined recurrent chromosome changes in spedfic types of tumor. In the course of carcinogenesis, cells experience several genetic alterations that are associated with the transition from a preneoplastic lesion to an invasive tumor and finally to the metastatic state. Tumor progression is characterized by stepwise accumulation of genetic alterations.So does the dominant metastatic clone. Modern molecular genetic analyses have clarified that genomic changes accumulate during the development and progression of cancers. In comparison with the corresponding primary tumor,additional events of chromosomal aberrations (including gains or allelic losses) are frequently found in metastases, and the incidence of combined chromosomal alterations in the primary tumor, plus the occurrence of additional aberrations inthe distant metastases, correlated significantly with decreased postmetastatic survival. The deletions at 3p, 4p, 6q, 8p, 10q,11p, 11q, 12p, 13q, 16q, 17p, 18q, 21q, and 22q, as well as the over-representations at 1q, 8q, 9q, 14q and 15q, have been found to associate preferentially with the metastatic phenotype of human cancers. Among of them, the deletions on chromosomes 8p, 17p, 11p and 13p seem to be more significant, and more detail fine regions of them, including 8p11, 8p21-12, 8p22, 8p23, 17p13.3, 11p15.5, and 13q12-13 have been suggested harboring metastasis-suppressor genes.During the past decade, several human chromosomes have been functionally tested through the use of microcell-mediated chromosome transfer (MMCT), and metastasis-suppressor activities have been reported on chromosomes 1, 6, 7, 8, 10,11, 12, 16, and 17. However, it is not actually known at what stage of the metastatic cascade these alterations have occurred.There is still controversial with the association

  2. Cat Mammary Tumors: Genetic Models for the Human Counterpart

    Directory of Open Access Journals (Sweden)

    Filomena Adega

    2016-08-01

    Full Text Available The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively, but also to present a critical point of view of some of the issues that really need to be investigated in future research.

  3. Epigenetic regulation of putative tumor suppressor TGFBI in human leukemias

    Institute of Scientific and Technical Information of China (English)

    Fang Hongbo; Liu Jing; Guo Dan; Liu Peixiang; Zhao Yongliang

    2014-01-01

    Background Both in vitro and in vivo data have demonstrated the TGFBI gene functions as a putative tumor suppressor and is frequently downregulated in human tumors of different histological types.The hypermethylation of the TGFBI promoter,as one of the main regulatory mechanisms,is associated with TGFBI silencing.In this study,we used a methylation-specific PCR (MSP) method to evaluate the methylation status of the TGFBI promoter in human leukemias.Methods Real-time RT-PCR and methylation-specific PCR approaches were performed to define the TGFBI expression and promoter methylation in human leukemia call lines and clinical samples.Genomic DNA was isolated from peripheral blood mononuclear cells from leukemia patients,bisulfite-converted,and analyzed by the MSP method.Results Hypermethylation of the TGFBI promoter occurred in leukemia cell lines and demethylation treatment reexpressed TGFBI at a substantially increased level in most of leukemia cell lines tested.Furthermore,a much higher level of CpG island methylation and a significantly lower TGFBI expression were also identified in clinical leukemia samples.Conclusion The results suggest an important role of promoter methylation in regulating TGFBI expression in leukemia,which provides a useful diagnostic marker for clinical management of human leukemias.

  4. Triparanol suppresses human tumor growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xinyu [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China); Han, Xingpeng [Department of Pathology, Tianjin Chest Hospital, Tianjin 300051 (China); Zhang, Fang [Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang (China); He, Miao [Life Sciences School, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhi, Xiu-Yi, E-mail: xiuyizhi@yahoo.com.cn [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  5. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas.

    Science.gov (United States)

    Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P

    2016-04-01

    Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.

  6. Thyroxine 5'-deiodinase in human anterior pituitary tumors.

    Science.gov (United States)

    Itagaki, Y; Yoshida, K; Ikeda, H; Kaise, K; Kaise, N; Yamamoto, M; Sakurada, T; Yoshinaga, K

    1990-08-01

    The activity of T4 5'-monodeiodinase (5'D) in the pituitary was measured in 12 patients with pituitary adenoma (3 patients with acromegaly, 2 with prolactinoma, 1 with Cushing's disease, 1 with TSH-producing tumor, and 5 with nonfunctioning tumor) and, as a control, in a patient who died of parotid cancer. The pituitaries, obtained at operation or autopsy, were homogenized in 0.1 mol/L potassium phosphate buffer, pH 7.0, and centrifuged at 800 x g. Supernatants were incubated with [125I]T4 and 20 mmol/L dithiothreitol (DTT) at 37C for 90 min. T4 5'-D was measured by the release of 125I- with the ion exchange method. The activity of T4 5'-D in the pituitaries from patients with prolactinoma and parotid cancer was dependent on protein concentration, incubation time, incubation temperature, and T4 concentration, and was labile to prior heating at 70 C for 30 min. T4 5'-D was not inhibited by 1 mmol/L propylthiouracil, but was inhibited 95% by 0.1 mmol/L iopanoic acid. The apparent Km and maximum velocity for T4 5'-D in homogenates of prolactinoma at 20 mmol/L DTT were 11 nmol/L and 1.54 pmol/mg protein.h, respectively. This reaction followed sequential-type reaction kinetics when the DTT concentration was varied. All other homogenates of pituitary tumors, except two nonfunctioning tumors, also demonstrated T4 5'-D activity. These results indicate that 1) the human pituitary express a low Km and PTU-insensitive T4 5'-D activity which is very similar to the type II enzyme activity in the rat pituitary; and 2) various types of pituitary tumor cells contain T4 5'-D activity.

  7. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    Directory of Open Access Journals (Sweden)

    Chen YH

    2013-07-01

    Full Text Available Ying-Hui Chen,1,2,* Jo-Yu Wang,3,* Bo-Syong Pan,3,4 Yi-Fen Mu,3 Meng-Shao Lai,3,4 Edmund Cheung So,5 Thian-Sze Wong,6 Bu-Miin Huang3,4 1Department of Anesthesia, Chi-Mei Medical Center, Liouying, 2Department of Nursing, Min-Hwei College of Health Care Management, 3Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 4The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 5Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan; 6Department of Surgery, University of Hong Kong Medical Center, Faculty of Medicine, The University of Hong Kong, Hong Kong *Authors contributed equally to this work Purpose: The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis and cisplatin (a platinum-based chemotherapy drug has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC. Methods: The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results: Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c

  8. TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects.

    Science.gov (United States)

    Wang, L; Zhang, P; Molkentine, D P; Chen, C; Molkentine, J M; Piao, H; Raju, U; Zhang, J; Valdecanas, D R; Tailor, R C; Thames, H D; Buchholz, T A; Chen, J; Ma, L; Mason, K A; Ang, K-K; Meyn, R E; Skinner, H D

    2017-02-09

    Patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) have better responses to radiotherapy and higher overall survival rates than do patients with HPV-negative HNSCC, but the mechanisms underlying this phenomenon are unknown. p16 is used as a surrogate marker for HPV infection. Our goal was to examine the role of p16 in HPV-related favorable treatment outcomes and to investigate the mechanisms by which p16 may regulate radiosensitivity. HNSCC cells and xenografts (HPV/p16-positive and -negative) were used. p16-overexpressing and small hairpin RNA-knockdown cells were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survival and tumor growth delay assays. DNA double-strand breaks (DSBs) were assessed by immunofluorescence analysis of 53BP1 foci; DSB levels were determined by neutral comet assay; western blotting was used to evaluate protein changes; changes in protein half-life were tested with a cycloheximide assay; gene expression was examined by real-time polymerase chain reaction; and data from The Cancer Genome Atlas HNSCC project were analyzed. p16 overexpression led to downregulation of TRIP12, which in turn led to increased RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci and enhanced radioresponsiveness. Inhibition of TRIP12 expression further led to radiosensitization, and overexpression of TRIP12 was associated with poor survival in patients with HPV-positive HNSCC. These findings reveal that p16 participates in radiosensitization through influencing DDR and support the rationale of blocking TRIP12 to improve radiotherapy outcomes.

  9. Outlier Analysis Defines Zinc Finger Gene Family DNA Methylation in Tumors and Saliva of Head and Neck Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Daria A Gaykalova

    Full Text Available Head and Neck Squamous Cell Carcinoma (HNSCC is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas. Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.

  10. HIF-α/MIF and NF-κB/IL-6 axes contribute to the recruitment of CD11b+Gr-1+ myeloid cells in hypoxic microenvironment of HNSCC.

    Science.gov (United States)

    Zhu, Guiquan; Tang, Yaling; Geng, Ning; Zheng, Min; Jiang, Jian; Li, Ling; Li, Kaide; Lei, Zhengge; Chen, Wei; Fan, Yunlong; Ma, Xiangrui; Li, Longjiang; Wang, Xiaoyi; Liang, Xinhua

    2014-02-01

    CD11b+Gr-1+ myeloid cells have gained much attention due to their roles in tumor immunity suppression as well as promotion of angiogenesis, invasion, and metastases. However, the mechanisms by which CD11b+Gr-1+ myeloid cells recruit to the tumor site have not been well clarified. In the present study, we showed that hypoxia could stimulate the migration of CD11b+Gr-1+ myeloid cells through increased production of macrophage migration inhibitory factor (MIF) and interleukin-6 (IL-6) by head and neck squamous cell carcinoma (HNSCC) cells. Hypoxia-inducible factor-1α (HIF-1α)- and HIF-2α-dependent MIF regulated chemotaxis, differentiation, and pro-angiogenic function of CD11b+Gr-1+ myeloid cells through binding to CD74/CXCR2, and CD74/CXCR4 complexes, and then activating p38/mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinases (PI3K)/AKT signaling pathways. Knockdown (KD) of HIF-1α and HIF-2α in HNSCC cells decreased MIF level but failed to inhibit the CD11b+Gr-1+ myeloid cell migration, because HIF-1α/2α KD enhanced nuclear factor κB (NF-κB) activity that increased IL-6 secretion. Simultaneously blocking NF-κB and HIF-1α/HIF-2α had better inhibitory effect on CD11b+Gr-1+ myeloid cell recruitment in the hypoxic zone than individually silencing HIF-1α/2α or NF-κB. In conclusion, the interaction between HIF-α/MIF and NF-κB/IL-6 axes plays an important role in the hypoxia-induced accumulation of CD11b+Gr-1+ myeloid cells and tumor growth in HNSCC.

  11. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  12. A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells.

    Science.gov (United States)

    Burgos-Ojeda, Daniela; McLean, Karen; Bai, Shoumei; Pulaski, Heather; Gong, Yusong; Silva, Ines; Skorecki, Karl; Tzukerman, Maty; Buckanovich, Ronald J

    2013-06-15

    Human tumor vessels express tumor vascular markers (TVM), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to do due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell-derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that in the presence of tumor cells, hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor-type-specific with ovarian cancer cells inducing primarily ovarian TVMs, whereas breast cancer cells induce breast cancer specific TVMs. We show the use of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally, we tested the ability of the hESCT model, with human tumor vascular niche, to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH(+) CSC from patients (n = 6) engrafted in hESCT within 4 to 12 weeks whereas none engrafted in the flank. ALDH(-) ovarian cancer cells showed no engraftment in the hESCT or flank (n = 3). Thus, this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology.

  13. Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells

    Science.gov (United States)

    Betancourt-Mar, J. A.; Llanos-Pérez, J. A.; Cocho, G.; Mansilla, R.; Martin, R. R.; Montero, S.; Nieto-Villar, J. M.

    2017-05-01

    By the use of thermodynamics formalism of irreversible processes, complex systems theory and systems biology, it is derived a relationship between the production of entropy per unit time, the fractal dimension and the tumor growth rate for human tumors cells. The thermodynamics framework developed demonstrates that, the dissipation function is a Landau potential and also the Lyapunov function of the dynamical behavior of tumor growth, which indicate the directional character, stability and robustness of the phenomenon. The entropy production rate may be used as a quantitative index of the metastatic potential of tumors. The current theoretical framework will hopefully provide a better understanding of cancer and contribute to improvements in cancer treatment.

  14. Tumor Environmental Factors Glucose Deprivation and Lactic Acidosis Induce Mitotic Chromosomal Instability – An Implication in Aneuploid Human Tumors

    Science.gov (United States)

    Zhu, Chunpeng; Hu, Xun

    2013-01-01

    Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453

  15. Oncogenes and RNA splicing of human tumor viruses.

    Science.gov (United States)

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  16. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    Science.gov (United States)

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity.

  17. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis.

    Directory of Open Access Journals (Sweden)

    Richard B Bankert

    Full Text Available Ovarian cancer is the most common cause of death from gynecological cancer. Understanding the biology of this disease, particularly how tumor-associated lymphocytes and fibroblasts contribute to the progression and metastasis of the tumor, has been impeded by the lack of a suitable tumor xenograft model. We report a simple and reproducible system in which the tumor and tumor stroma are successfully engrafted into NOD-scid IL2Rγ(null (NSG mice. This is achieved by injecting tumor cell aggregates derived from fresh ovarian tumor biopsy tissues (including tumor cells, and tumor-associated lymphocytes and fibroblasts i.p. into NSG mice. Tumor progression in these mice closely parallels many of the events that are observed in ovarian cancer patients. Tumors establish in the omentum, ovaries, liver, spleen, uterus, and pancreas. Tumor growth is initially very slow and progressive within the peritoneal cavity with an ultimate development of tumor ascites, spontaneous metastasis to the lung, increasing serum and ascites levels of CA125, and the retention of tumor-associated human fibroblasts and lymphocytes that remain functional and responsive to cytokines for prolonged periods. With this model one will be able to determine how fibroblasts and lymphocytes within the tumor microenvironment may contribute to tumor growth and metastasis, and will make it possible to evaluate the efficacy of therapies that are designed to target these cells in the tumor stroma.

  18. Hepatic progenitor cells in human liver tumor development

    Institute of Scientific and Technical Information of China (English)

    Louis Libbrecht

    2006-01-01

    In recent years, the results of several studies suggest that human liver tumors can be derived from hepatic progenitor cells rather than from mature cell types.The available data indeed strongly suggest that most combined hepatocellular-cholangiocarcinomas arise from hepatic progenitor cells that retained their potential to differentiate into the hepatocytic and biliary lineages.Hepatic progenitor cells could also be the basis for some hepatocellular carcinomas and hepatocellular adenomas, although it is very difficult to determine the origin of an individual hepatocellular carcinoma. There is currently not enough data to make statements regarding a hepatic progenitor cell origin of cholangiocarcinoma.The presence of hepatic progenitor cell markers and the presence and extent of the cholangiocellular component are factors that are related to the prognosis of hepatocellular carcinomas and combined hepatocellularcholangiocarcinomas, respectively.

  19. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein.

    Science.gov (United States)

    Kamphorst, Jurre J; Nofal, Michel; Commisso, Cosimo; Hackett, Sean R; Lu, Wenyun; Grabocka, Elda; Vander Heiden, Matthew G; Miller, George; Drebin, Jeffrey A; Bar-Sagi, Dafna; Thompson, Craig B; Rabinowitz, Joshua D

    2015-02-01

    Glucose and amino acids are key nutrients supporting cell growth. Amino acids are imported as monomers, but an alternative route induced by oncogenic KRAS involves uptake of extracellular proteins via macropinocytosis and subsequent lysosomal degradation of these proteins as a source of amino acids. In this study, we examined the metabolism of pancreatic ductal adenocarcinoma (PDAC), a poorly vascularized lethal KRAS-driven malignancy. Metabolomic comparisons of human PDAC and benign adjacent tissue revealed that tumor tissue was low in glucose, upper glycolytic intermediates, creatine phosphate, and the amino acids glutamine and serine, two major metabolic substrates. Surprisingly, PDAC accumulated essential amino acids. Such accumulation could arise from extracellular proteins being degraded through macropinocytosis in quantities necessary to meet glutamine requirements, which in turn produces excess of most other amino acids. Consistent with this hypothesis, active macropinocytosis is observed in primary human PDAC specimens. Moreover, in the presence of physiologic albumin, we found that cultured murine PDAC cells grow indefinitely in media lacking single essential amino acids and replicate once in the absence of free amino acids. Growth under these conditions was characterized by simultaneous glutamine depletion and essential amino acid accumulation. Overall, our findings argue that the scavenging of extracellular proteins is an important mode of nutrient uptake in PDAC.

  20. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft

    NARCIS (Netherlands)

    Nagengast, Wouter B.; Hospers, Geke A.; Mulder, Nanno H.; de Jong, Johan R.; Hollema, Harry; Brouwers, Adrienne H.; van Dongen, Guns A.; Perk, Lars R.; Lub-de Hooge, Marjolijn N.

    Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for

  1. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft.

    Science.gov (United States)

    Gazzaniga, Silvina; Bravo, Alicia I; Guglielmotti, Angelo; van Rooijen, Nico; Maschi, Fabricio; Vecchi, Annunciata; Mantovani, Alberto; Mordoh, José; Wainstok, Rosa

    2007-08-01

    Chemokines such as monocyte chemoattractant protein (MCP)-1 are key agonists that attract macrophages to tumors. In melanoma, it has been previously shown that variable levels of MCP-1/CCL2 appear to correlate with infiltrating macrophages and tumor fate, with low to intermediate levels of the chemokine contributing to melanoma development. To work under such conditions, a poorly tumorigenic human melanoma cell line was transfected with an expression vector encoding MCP-1. We found that M2 macrophages are associated to MCP-1+ tumors, triggering a profuse vascular network. To target the protumoral macrophages recruitment and reverting tumor growth promotion, clodronate-laden liposomes (Clod-Lip) or bindarit were administered to melanoma-bearing mice. Macrophage depletion after Clod-Lip treatment induced development of smaller tumors than in untreated mice. Immunohistochemical analysis with an anti-CD31 antibody revealed scarce vascular structures mainly characterized by narrow vascular lights. Pharmacological inhibition of MCP-1 with bindarit also reduced tumor growth and macrophage recruitment, rendering necrotic tumor masses. We suggest that bindarit or Clod-Lip abrogates protumoral-associated macrophages in human melanoma xenografts and could be considered as complementary approaches to antiangiogenic therapy.

  2. Human tumor-derived genomic DNA transduced into a recipient cell induces tumor-specific immune responses ex vivo

    OpenAIRE

    2002-01-01

    This article describes a DNA-based vaccination strategy evaluated ex vivo with human cells. The vaccine was prepared by transferring tumor-derived genomic DNA to PCI-13 cells, a highly immunogenic tumor cell line (“recipient cell”), which had been genetically modified to secrete IL-2 (PCI-13/IL-2). PCI-13 cells expressed class I MHC determinants (HLA-A2) shared with the tumor from which the DNA was obtained as well as allogeneic determinants. DNA from a gp100+ melanoma ce...

  3. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases.

    Science.gov (United States)

    Chaichana, Kaisorn L; Capilla-Gonzalez, Vivian; Gonzalez-Perez, Oscar; Pradilla, Gustavo; Han, James; Olivi, Alessandro; Brem, Henry; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2007-08-30

    For the human brain, in vitro models that accurately represent what occurs in vivo are lacking. Organotypic models may be the closest parallel to human brain tissue outside of a live patient. However, this model has been limited primarily to rodent-derived tissue. We present an organotypic model to maintain intraoperatively collected human tumor and non-tumor explants ex vivo for a prolonged period of time ( approximately 11 days) without any significant changes to the tissue cytoarchitecture as evidenced through immunohistochemistry and electron microscopy analyses. The ability to establish and reliably predict the cytoarchitectural changes that occur with time in an organotypic model of tumor and non-tumor human brain tissue has several potential applications including the study of cell migration on actual tissue matrix, drug toxicity on neural tissue and pharmacological treatment for brain cancers, among others.

  4. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization.

    Science.gov (United States)

    Schiller, J H; Bittner, G

    1999-12-01

    Squalamine is a novel anti-angiogenic aminosterol that is postulated to inhibit neovascularization by selectively inhibiting the sodium-hydrogen antiporter exchanger. To determine how to most effectively use this agent in patients with cancer, we examined the antitumor effects of squalamine with or without cytotoxic agents in human lung cancer xenografts and correlated these observations with the degree of tumor neovascularization. No direct cytotoxic effects of squalamine against tumor cells were observed in vitro with or without cisplatin. Squalamine was effective in inhibiting the establishment of H460 human tumors in BALBc nude mice but was ineffective in inhibiting the growth of H460, CALU-6, or NL20T-A human tumor xenografts when administered i.p. to mice bearing established tumors. However, when combined with cisplatin or carboplatin, squalamine increased tumor growth delay by > or =1.5-fold in the three human lung carcinoma cell lines compared with cisplatin or carboplatin alone. No enhancement of antitumor activity was observed when squalamine was combined with paclitaxel, vinorelbine, gemcitabine, or docetaxel. Repeated cycles of squalamine plus cisplatin administration delayed H460 tumor growth >8.6-fold. Squalamine plus cisplatin reduced CD31 vessel formation by 25% compared with controls, squalamine alone, or cisplatin alone; however, no inhibition in CD31 vessel formation was observed when squalamine was combined with vinorelbine. These data demonstrate that the combination of squalamine and a platinum analog has significant preclinical antitumor activity against human lung cancer that is related to the anti-angiogenic effects of squalamine.

  5. Identification of a human TFPI-2 splice variant that is upregulated in human tumor tissues

    Directory of Open Access Journals (Sweden)

    Kisiel Walter

    2007-03-01

    Full Text Available Abstract Background Previous studies have shown that the expression of tissue factor pathway inhibitor-2 (TFPI-2, a matrix-associated Kunitz-type serine proteinase inhibitor, is markedly down-regulated in several tumor cells through hypermethylation of the TFPI-2 gene promoter. In the present study, RT-PCR analysis of total RNA from both human normal and tumor cells revealed a novel 289 nucleotide splice variant of the TFPI-2 transcript designated as aberrantly-spliced TFPI-2 (asTFPI-2. Results Nucleotide sequence analyses indicated that asTFPI-2 consists of complete exons II and V, fused with several nucleotides derived from exons III and IV, as well as six nucleotides derived from intron C. 5'- and 3'-RACE analyses of total RNA amplified exclusively the wild-type TFPI-2 transcript, indicating that asTFPI-2 lacks either a 5'-untranslated region (UTR or a 3'-poly (A+ tail. Quantitative real-time RT-PCR analyses revealed that several human tumor cells contain 4 to 50-fold more copies of asTFPI-2 in comparison to normal cells. In spite of the absence of a 5'-UTR or poly (A+ tail, the asTFPI-2 variant exhibited a half-life of ~16 h in tumor cells. Conclusion Our studies reveal the existence of a novel, aberrantly-spliced TFPI-2 transcript predominantly expressed in tumor cells and provides suggestive evidence for an additional mechanism for tumor cells to down-regulate TFPI-2 protein expression enhancing their ability to degrade the extracellular matrix.

  6. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging

    OpenAIRE

    Fecher, David; Hofmann, Elisabeth; Buck, Andreas; BUNDSCHUH, RALPH; Nietzer, Sarah; Dandekar, Gudrun; Walles, Thorsten; Walles, Heike; Lückerath, Katharina; Steinke, Maria

    2016-01-01

    Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. ...

  7. Functional EpoR pathway utilization is not detected in primary tumor cells isolated from human breast, non-small cell lung, colorectal, and ovarian tumor tissues.

    Directory of Open Access Journals (Sweden)

    Scott D Patterson

    Full Text Available Several clinical trials in oncology have reported increased mortality or disease progression associated with erythropoiesis-stimulating agents. One hypothesis proposes that erythropoiesis-stimulating agents directly stimulate tumor proliferation and/or survival through cell-surface receptors. To test this hypothesis and examine if human tumors utilize the erythropoietin receptor pathway, the response of tumor cells to human recombinant erythropoietin was investigated in disaggregated tumor cells obtained from 186 patients with colorectal, breast, lung, ovarian, head and neck, and other tumors. A cocktail of well characterized tumor growth factors (EGF, HGF, and IGF-1 were analyzed in parallel as a positive control to determine whether freshly-isolated tumor cells were able to respond to growth factor activation ex vivo. Exposing tumor cells to the growth factor cocktail resulted in stimulation of survival and proliferation pathways as measured by an increase in phosphorylation of the downstream signaling proteins AKT and ERK. In contrast, no activation by human recombinant erythropoietin was observed in isolated tumor cells. Though tumor samples exhibited a broad range of cell-surface expression of EGFR, c-Met, and IGF-1R, no cell-surface erythropoietin receptor was detected in tumor cells from the 186 tumors examined (by flow cytometry or Western blot. Erythropoiesis-stimulating agents did not act directly upon isolated tumor cells to stimulate pathways known to promote proliferation or survival of human tumor cells isolated from primary and metastatic tumor tissues.

  8. Tropomyosin-1, A Putative Tumor-Suppressor and a Biomarker of Human Breast Cancer

    Science.gov (United States)

    2004-10-01

    cDNA. Lobular carcinoma - 2 A polyclonal pan-TM antibody that recognizes multiple TM Phyllodes tumor - 1 Not determined from the initial pathology...AD Award Number: DAMD17-98-1-8162 TITLE: Tropomyosin-1, A Putative Tumor -Suppressor and a Biomarker of Human Breast Cancer PRINCIPAL INVESTIGATOR...4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Tropomyosin-l, A Putative Tumor -Suppressor and a Biomarker DAMD17-98-1-8162 of Human Breast Cancer 6. A UTHOR

  9. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors.

    Science.gov (United States)

    Hall, MacLean; Liu, Hao; Malafa, Mokenge; Centeno, Barbara; Hodul, Pamela J; Pimiento, José; Pilon-Thomas, Shari; Sarnaik, Amod A

    2016-01-01

    We evaluated whether tumor infiltrating lymphocytes (TIL) could be expanded from surgically resected tumors from pancreatic cancer patients. Tumors were resected from pancreatic cancer patients. Tumors were minced into fragments and cultured in media containing high dose interleukin-2 (IL-2) for up to 6 weeks. T cell phenotype, activation markers, and reactivity were measured. TIL expansion was measured in 19 patient samples. The majority of these TIL were CD4(+) T cells and were highly activated. Purified CD8(+) T cells produced IFN-γ in response to HLA-matched pancreatic tumor targets. PD-1 blockade and 4-1BB stimulation were demonstrated as effective strategies to improve effective TIL yield, including the production of tumor-reactive pancreatic TIL. TIL expanded from pancreatic tumors are functional and able to respond to pancreatic tumor associated antigens. PD-1 blockade, 41BB stimulation, and CD8(+) T cell enrichment are effective strategies to improve TIL yield and tumor reactivity. These results support the development of adoptive cell therapy strategies using TIL for the treatment of pancreatic cancer.

  10. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  11. Modification of cyclic NGR tumor neovasculature-homing motif sequence to human plasminogen kringle 5 improves inhibition of tumor growth.

    Directory of Open Access Journals (Sweden)

    Weiwei Jiang

    Full Text Available BACKGROUND: Blood vessels in tumors express higher level of aminopeptidase N (APN than normal tissues. Evidence suggests that the CNGRC motif is an APN ligand which targets tumor vasculature. Increased expression of APN in tumor vascular endothelium, therefore, offers an opportunity for targeted delivery of NGR peptide-linked drugs to tumors. METHODS/PRINCIPAL FINDINGS: To determine whether an additional cyclic CNGRC sequence could improve endothelial cell homing and antitumor effect, human plasminogen kringle 5 (hPK5 was modified genetically to introduce a CNGRC motif (NGR-hPK5 and was subsequently expressed in yeast. The biological activity of NGR-hPK5 was assessed and compared with that of wild-type hPK5, in vitro and in vivo. NGR-hPK5 showed more potent antiangiogenic activity than wild-type hPK5: the former had a stronger inhibitory effect on proliferation, migration and cord formation of vascular endothelial cells, and produced a stronger antiangiogenic response in the CAM assay. To evaluate the tumor-targeting ability, both wild-type hPK5 and NGR-hPK5 were (99 mTc-labeled, for tracking biodistribution in the in vivo tumor model. By planar imaging and biodistribution analyses of major organs, NGR-hPK5 was found localized to tumor tissues at a higher level than wild-type hPK5 (approximately 3-fold. Finally, the effects of wild-type hPK5 and NGR-modified hPK5 on tumor growth were investigated in two tumor model systems. NGR modification improved tumor localization and, as a consequence, effectively inhibited the growth of mouse Lewis lung carcinoma (LLC and human colorectal adenocarcinoma (Colo 205 cells in tumor-bearing mice. CONCLUSIONS/SIGNIFICANCE: These studies indicated that the addition of an APN targeting peptide NGR sequence could improve the ability of hPK5 to inhibit angiogenesis and tumor growth.

  12. Sphere-forming tumor cells possess stem-like properties in human fibrosarcoma primary tumors and cell lines

    Science.gov (United States)

    LIU, WEI-DONG; ZHANG, TAO; WANG, CHUN-LEI; MENG, HONG-MEI; SONG, YU-WEN; ZHAO, ZHE; LI, ZHENG-MIN; LIU, JIANG-KUN; PAN, SHANG-HA; WANG, WEN-BO

    2012-01-01

    Fibrosarcoma is a malignant soft tissue tumor of mesenchymal origin. Despite advances in medical and surgical treatment, patient survival rates have remained poor. According to the cancer stem cell hypothesis, tumors are comprised of heterogeneous cell populations that have different roles in tumor formation and growth. Cancer stem cells are a small cell subpopulation that exhibits stem-like properties to gain aggressiveness and recurrence. These cells have been identified in a variety of cancerous tumors, but not in human fibrosarcoma. In this study, we observed that HT1080 cells and primary fibrosarcoma cells formed spheres and showed higher self-renewal capacity, invasiveness and drug resistance compared with their adherent counterparts. Moreover, we demonstrated that the cells showed higher expression of the embryonic stem cell-related genes Nanog, Oct3/4, Sox2, Sox10 and their encoding proteins, as well as greater tumorigenic capacity in nude mice. In conclusion, our data suggest the presence of a stem-like cell population in human fibrosarcoma tumors, which provides more evidence for the cancer stem cell hypothesis and assistance in designing new therapeutic strategies against human fibrosarcoma. PMID:23205129

  13. Inactivation of X-linked tumor suppressor genes in human cancer.

    Science.gov (United States)

    Liu, Runhua; Kain, Mandy; Wang, Lizhong

    2012-04-01

    Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.

  14. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    Science.gov (United States)

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.

  15. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  16. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  17. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  18. Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Terence C. Tang; Ronnie T. Poon; Cecilia P. Lau; Dan Xie; Sheung Tat Fan

    2005-01-01

    AIM: Recent studies suggested that cyclooxygenase-2(COX-2) enhances tumor angiogenesis via upregulationof vascular endothelial growth factor (VEGF). AlthoughCOX-2 expression has been demonstrated in hepatocellularcarcinoma (HCC), the significance of COX-2 in progressionof HCC remains unclear. This study evaluated the clinico-pathological correlation of COX-2 level and its relationshipwith VEGF level in HCC.METHODS: Fresh tumor tissues were obtained from 100patients who underwent resection of HCC. COX-2 proteinexpression was examined by immunohistochemistry, andquantitatively by an enzyme immunometric assay (EIA)of tumor cytosolic COX-2 levels. Tumor cytosolic VEGFlevels were measured by an ELISA.RESULTS: Immunostaining showed expression of COX-2in tumor cells. Tumor cytosolic COX-2 levels correlatedwith VEGF levels (r = 0.469, P<0.001). Correlation withclinicopathological features showed significantly highertumor cytosolic COX-2 levels in the presence of multipletumors (P = 0.027), venous invasion (P = 0.030),microsatellite lesions (P = 0.037) and advanced tumorstage (P = 0.008). Higher tumor cytosolic COX-2 levelswere associated with worse patient survival.CONCLUSION: This study shows that elevated tumorCOX-2 levels correlate with elevated VEGF levels andinvasiveness in HCC, suggesting that COX-2 plays a significantrole in the progression of HCC.

  19. Implementing Tumor Detection and Area Calculation in Mri Image of Human Brain Using Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Sunil L. Bangare

    2015-04-01

    Full Text Available This paper is based on the research on Human Brain Tumor which uses the MRI imaging technique to capture the image. In this proposed work Brain Tumor area is calculated to define the Stage or level of seriousness of the tumor. Image Processing techniques are used for the brain tumor area calculation and Neural Network algorithms for the tumor position calculation. Also in the further advancement the classification of the tumor based on few parameters is also expected. Proposed work is divided in to following Modules: Module 1: Image Pre-Processing Module 2: Feature Extraction, Segmentation using K-Means Algorithm and Fuzzy C-Means Algorithm Module 3: Tumor Area calculation & Stage detection Module 4: Classification and position calculation of tumor using Neural Network

  20. The immune landscape of human tumors: Implications for cancer immunotherapy.

    Science.gov (United States)

    Bindea, Gabriela; Mlecnik, Bernhard; Angell, Helen K; Galon, Jérôme

    2014-01-01

    Understanding the spontaneous immune response of cancer patients is critical for the design of efficient anticancer immunotherapies. The power of integrative tumor immunology approaches allowed for a comprehensive view of the immune system evolution in the course of tumor progression and recurrence. We have demonstrated that tumor-infiltrating immune cells are spatiotemporally regulated, a finding that has profound implications for the development of efficient anticancer immunotherapies.

  1. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E

    1995-01-01

    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  2. The influence of a human embryonic stem cell-derived microenvironment on targeting of human solid tumor xenografts.

    Science.gov (United States)

    Tzukerman, Maty; Rosenberg, Tzur; Reiter, Irena; Ben-Eliezer, Shoshana; Denkberg, Galit; Coleman, Raymond; Reiter, Yoram; Skorecki, Karl

    2006-04-01

    The awareness of the important role that the surrounding tissue microenvironment and stromal response play in the process of tumorigenesis has grown as a result of in vivo models of tumor xenograft growth in immunocompromised mice. In the current study, we used human embryonic stem cells in order to study the interactions of tumor cells with the surrounding microenvironment of differentiated human cell tissues and structures. Several cancer cell types stably expressing an H2A-green fluorescence protein fusion protein, which allowed tracking of tumor cells, were injected into mature teratomas and developed into tumors. The salient findings were: (a) the observation of growth of tumor cells with high proliferative capacity within the differentiated microenvironment of the teratoma, (b) the identification of invasion by tumor cells into surrounding differentiated teratoma structures, and (c) the identification of blood vessels of human teratoma origin, growing adjacent to and within the cancer cell-derived tumor. Mouse embryonic stem cell-derived teratomas also supported cancer cell growth, but provided a less suitable model for human tumorigenesis studies. Anticancer immunotherapy treatment directed against A431 epidermoid carcinoma cell-related epitopes induced the complete regression of A431-derived tumor xenografts following direct i.m. injection in immunocompromised mice, as opposed to corresponding tumors growing within a human embryonic stem cell-derived microenvironment, wherein remnant foci of viable tumor cells were detected and resulted in tumor recurrence. We propose using this novel experimental model as a preclinical platform for investigating and manipulating the stromal response in tumor cell growth as an additional tool in cancer research.

  3. P53 MUTATIONS IN HUMAN LUNG-TUMORS

    NARCIS (Netherlands)

    MILLER, CW; ASLO, A; KOK, K; YOKOTA, J; BUYS, CHCM; TERADA, M; KOEFFLER, HP; Simon, K.

    1992-01-01

    Mutation of one p53 allele and loss of the normal p53 allele [loss of heterozygosity (LOH)] occur in many tumors including lung cancers. These alterations apparently contribute to development of cancer by interfering with the tumor suppressor activity of p53. We directly sequenced amplified DNA in t

  4. Steroid Tumor Environment in Male and Female Mice Model of Canine and Human Inflammatory Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sara Caceres

    2016-01-01

    Full Text Available Canine inflammatory mammary cancer (IMC shares clinical and histopathological characteristics with human inflammatory breast cancer (IBC and has been proposed as a good model for studying the human disease. The aim of this study was to evaluate the capacity of female and male mice to reproduce IMC and IBC tumors and identify the hormonal tumor environment. To perform the study sixty 6–8-week-old male and female mice were inoculated subcutaneously with a suspension of 106 IPC-366 and SUM149 cells. Tumors and serum were collected and used for hormonal analysis. Results revealed that IPC-366 reproduced tumors in 90% of males inoculated after 2 weeks compared with 100% of females that reproduced tumor at the same time. SUM149 reproduced tumors in 40% of males instead of 80% of females that reproduced tumors after 4 weeks. Both cell lines produce distant metastasis in lungs being higher than the metastatic rates in females. EIA analysis revealed that male tumors had higher T and SO4E1 concentrations compared to female tumors. Serum steroid levels were lower than those found in tumors. In conclusion, IBC and IMC male mouse model is useful as a tool for IBC research and those circulating estrogens and intratumoral hormonal levels are crucial in the development and progression of tumors.

  5. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  6. Diagnostic performance of FDG PET/CT to detect subclinical HNSCC recurrence 6 months after the end of treatment

    Energy Technology Data Exchange (ETDEWEB)

    Robin, Philippe; Abgral, Ronan; Le Roux, Pierre-Yves; Keromnes, Nathalie; Palard, Xavier; Salaun, Pierre-Yves [University Hospital of Brest, Nuclear Medicine Department, Brest Cedex (France); Valette, Gerald; Potard, Gael; Marianowski, Remi [University Hospital of Brest, Department of Head and Neck Surgery, Brest (France); Rousset, Jean [Military Hospital of Brest, Department of Radiology, Brest (France)

    2015-01-15

    Posttreatment follow-up for the recurrence of head and neck squamous cell carcinoma (HNSCC) is a diagnostic challenge. Tissue distortion from radiation and surgery can obscure early detection of recurrence by conventional follow-up approaches such as physical examination or conventional imaging. Fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT is widely validated for the diagnosis of suspected recurrence. Moreover, we have shown in a previous prospective study the high effectiveness of FDG PET/CT in the assessment of subclinical recurrence 12 months after treatment. The aim of this prospective study was to evaluate the effectiveness of an earlier FDG PET/CT, at 6 months after the end of treatment. All patients treated for histologically proven HNSCC from April 2009 to May 2012 at the University Hospital of Brest who did not show any findings suggestive of recurrence at 6 months of their usual follow-up underwent an FDG PET/CT examination. FDG PET/CT findings were correlated with histopathology or imaging follow-up. The study included 116 patients. FDG PET/CT examinations were performed within a mean period ± SD of 5.6 ± 1.8 months after treatment. FDG PET/CT examinations exhibited abnormal FDG uptake in 34 patients and found no suspected recurrence in 82 cases. Of these 82 FDG PET/CT considered as negative, only 1 had a recurrence. Among the 34 positive FDG PET/CT, 22 relapsed whereas 12 did not show evidence of recurrence. The sensitivity and specificity of FDG PET/CT in this study for the diagnosis of occult HNSCC recurrence were 96 (22/23) and 87 % (81/93), respectively. The positive predictive value was 65 % (22/34). The negative predictive value was 99 % (81/82). The overall accuracy was 89 % (103/116). Of the 116 patients, FDG PET/CT highlighted 22 (19 %) subclinical recurrences. Our study showed the high effectiveness of FDG PET/CT in the assessment of subclinical HNSCC recurrence 6 months after completion of treatment. These results

  7. Desmosomal plaque-associated vimentin filaments in human ovarian granulosa cell tumors of various histologic patterns.

    OpenAIRE

    Czernobilsky, B; Moll, R.; Leppien, G.; Schweikhart, G.; Franke, W W

    1987-01-01

    Proteins of intermediate-sized filaments and desmosomal plaques (desmoplakins) of four human ovarian granulosa cell tumors were studied by immunofluorescence and immunoelectron microscopy and by two-dimensional gel electrophoresis of microdissected tissue samples. All tumor cells, irrespective of their specific histologic patterns, contained both vimentin and desmoplakins. Cytokeratin-positive structures were absent or very scant in most tumor regions, but more common in trabecular, insular, ...

  8. Phenobarbital-mediated tumor promotion in transgenic mice with humanized CAR and PXR.

    Science.gov (United States)

    Braeuning, Albert; Gavrilov, Alina; Brown, Susan; Wolf, C Roland; Henderson, Colin J; Schwarz, Michael

    2014-08-01

    The nuclear receptors CAR (constitutive androstane receptor) and possibly PXR (pregnane X receptor) mediate the hepatic effects of phenobarbital (PB) and similar-acting compounds. Although PB is a potent nongenotoxic tumor promoter in rodent liver, epidemiological data from epilepsy patients treated with phenobarbital do not show a specific role of PB in human liver cancer risk. That points to species differences in the susceptibility to tumor promotion by PB, which might be attributed to divergent functions of the PB receptors CAR and PXR in mice and humans. In the present study, male transgenic mice expressing human CAR and PXR were used to detect possible differences between wild-type (WT) and humanized mice in their response to CAR activation in a tumor initiation/promotion experiment with a single injection of the tumor initiator N-nitrosodiethylamine preceding chronic PB treatment for 10 months. Analysis of liver tumor burden revealed that PB strongly promoted the outgrowth of hepatocellular adenoma driven by activated β-catenin in WT mice, whereas the tumor-promoting effect of PB was much less pronounced in the humanized group. In conclusion, the present findings demonstrate that human CAR and PXR support tumor promotion by PB in mouse liver, but to a significantly lesser extent than the WT murine receptors. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration.

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-11-17

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation.

  10. EXPRESSION OF IL-13Ra2 GENE IN HUMAN BRAIN TUMORS

    Institute of Scientific and Technical Information of China (English)

    WU An-hua; TIE Xin-xin; WANG Yun-jie; YANG Guo-rui

    2005-01-01

    Objective: To investigate the expression of IL-13Ra2 gene in brain tumors. Methods: Seventy-nine human brain tumors were obtained from the department of Neurosurgery of China Medical University. Human IL-13Ra2 expression was evaluated by reverse transcriptase polymerase chain reaction and immunohistochemical analysis. Results: IL-13Ra2 gene was highly expressed in glioblastoma, medulloblastoma, malignant meningioma and benign meningioma. Conclusion:Human IL-13Ra2 gene is expressed in brain tumors in addition to gliomas, and our result indicates that the IL-13Ra2 gene promoter based gene therapy method can be used to treat brain tumors in addition to gliomas. Further studies involving larger numbers of samples are necessary to fully understand the expression profile of IL-13Ra2 gene in the brain tumors.

  11. Phenotypic characterization of drug resistance and tumor initiating cancer stem cells from human bone tumor osteosarcoma cell line OS-77

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-08-01

    Full Text Available The cancer stem cell theory suggest that presence of small subpopulation of cancer stem cells are the major implication in the cancer treatment and also responsible for tumor recurrence. Based on Hoechst 33342 dye exclusion technique, we have identified about 3.3% of cancer stem like side population (SP cells from human osteosarcoma OS-77 cell line whose prevalence is significantly reduced to 0.3% after treatment with verapamil. The sphere formation assay revealed that osteosarcoma SP cells are highly capable to form tumor spheres (sarcospheres. Further by immunocytochemistry and RT-PCR, we show that OS-77 SP cells have enhanced expression of stem cell surface markers such as CD44, Nanog and ATP-binding cassette (ABC transporter gene (ABCG2 which contributes to self-renewal and drug resistance, respectively. Our findings help to designing a novel therapeutic drug which could effectively target the cancer stem cells and prevent the tumor relapse.

  12. Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression.

    Science.gov (United States)

    Han, Zeqiu; Slack, Rebecca S; Li, Wenping; Papadopoulos, Vassilios

    2003-01-01

    High levels of peripheral-type benzodiazepine receptor (PBR), the alternative-binding site for diazepam, are part of the aggressive human breast cancer cell phenotype in vitro. We examined PBR levels and distribution in normal tissue and tumors from multiple cancer types by immunohistochemistry. Among normal breast tissues, fibroadenomas, primary and metastatic adenocarcinomas, there is a progressive increase in PBR levels parallel to the invasive and metastatic ability of the tumor (p cancers, such as those of breast, colon-rectum and prostate tissues, where elevated PBR expression is associated with tumor progression. Thus, we propose that PBR overexpression could serve as a novel prognostic indicator of an aggressive phenotype in breast, colorectal and prostate cancers.

  13. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  14. Establishment of a Tumor-bearing Mouse Model Stably Expressing Human Tumor Antigens Survivin and MUC1 VNTRs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-xing; DU Jian-shi; WANG Yu-qian; LIU Chen-lu; XIA Qiu; ZHANG Xi-zhen; CONG Xian-ling; ZHANG Hai-hong

    2012-01-01

    The eukaryotic vectors VR1012 expressing survivin or 33 tandem repeats of human mucin 1(MUC1)(VNTRs),namely,VR1012-S and VR1012-VNTR(VNTR=variable number of tandem repeat),were constructed by cloning survivin and VNTR genes into VR1012,respectively.The eukaryotic vector pEGFP expressing survivin and MUC1 VNTRs fusion gene pEGFP-MS was also constructed.Mouse melanoma cell line(B16)stably expressing survivin and MUC1 VNTRs(MS+B16)was established by Lipofectamine-mediated transfection of pEGFP-MS into B16 cells.EGFP expression in MS+B16 cells was observed using a fluorescent microscope and survivin and MUC1 VNTRs(MS)expression was confirmed by means of Western blot analysis.A syngenic graft tumor model was generated by subcutaneous injection of MS+B16 cells into C57/BL6 mice and tumor size increased rapidly with time in a cell number dependent manner.After the third immunization,mice were challenged subcutaneously with 5×105 MS+B16 cells.Compared with that of the negative control immunized with phosphate-buffered saline(PBS),a significant reduction of tumor growth was observed in groups immunized with survivin plasmid DNA and MUC1 VNTRs plasmid DNA.Thus,the suppression of subcutaneous tumor was antigen-specific.This model is useful for the development of tumor vaccines targeting survivin and MUCI VNTRs.

  15. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    Science.gov (United States)

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  16. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    Science.gov (United States)

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  17. Testing of the radiosensitivity of human malignant tumor cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, M.; Neumeister, K.; Jahns, J.; Kamprad, F. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Chirurgische Klinik; Bezirkskrankenhaus Karl-Marx-Stadt (German Democratic Republic); Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Radiologische Klinik)

    1984-01-01

    Primary cell cultures of human malignant tumors were irradiated with X-ray doses of 1-30 Gy. Their radiosensitivity has been examined for 3 weeks postirradiation concerning morphological aspects. The investigations were carried out on 43 tumors of different histology. In 26 cases the results of the radiosensitivity test in the tumor cell culture were compared with the results of the radiotherapy of the adequate patients, 6-8 years postirradiation. In 17 patients the in vitro results correlated with the conventional clinical experience as to the radiosensitivity of the corresponding tumor.

  18. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  19. Apoptosis induced by norcantharidin in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Zhen Xiao Sun; Qing Wen Ma; Tian De Zhao; Yu Lin Wei; Guang Sheng Wang; Jia Shi Li

    2000-01-01

    @@INTRODUCTION The antitumor activity of norcantharidin (NCTD),the demethylated analogue of cantharidin, was studied in the early 1980s in China. NCTD has no side effects on urinary organs which cantharidin has shown and is easier to synthesize, and it can inhibit the proliferation of several tumor cell lines as well as transplanted tumors. Clinical trials with NCTD as a monotherapeutic agent indicated that NCTD had beneficial effects in patients with different kinds of digestive tract cancers, such as primary hepatoma,carcinomas of esophagus and gastric cancer, but no depressive effect on bone marrow cells. NCTD can increase the white blood cell count by stimulating the bone marrow and has some antagonistic effect against leukopenia caused by other agents. The exact cellular and molecular mechanisms of NCTD on tumor cells have not yet been elucidated to date[1-3].

  20. A Role for T-Lymphocytes in Human Breast Cancer and in Canine Mammary Tumors

    Directory of Open Access Journals (Sweden)

    Maria Isabel Carvalho

    2014-01-01

    Full Text Available Chronic inflammation in the tumor microenvironment has a prominent role in carcinogenesis and benefits the proliferation and survival of malignant cells, promoting angiogenesis and metastasis. Mammary tumors are frequently infiltrated by a heterogeneous population of immune cells where T-lymphocytes have a great importance. Interestingly, similar inflammatory cell infiltrates, cytokine and chemokine expression in humans and canine mammary tumors were recently described. However, in both species, despite all the scientific evidences that appoint for a significant role of T-lymphocytes, a definitive conclusion concerning the effectiveness of T-cell dependent immune mechanisms has not been achieved yet. In the present review, we describe similarities between human breast cancer and canine mammary tumors regarding tumor T-lymphocyte infiltration, such as relationship of TILs and mammary tumors malignancy, association of ratio CD4+/ CD8+ T-cells with low survival rates, promotion of tumor progression by Th2 cells actions, and association of great amounts of Treg cells with poor prognostic factors. This apparent parallelism together with the fact that dogs develop spontaneous tumors in the context of a natural immune system highlight the dog as a possible useful biological model for studies in human breast cancer immunology.

  1. C-kit gene mutation in human gastrointestinal stromal tumors

    Institute of Scientific and Technical Information of China (English)

    Ying-Yong Hou; Ai-Hua Zheng; Tai-Ming Zhang; Wen-Zhong Hou; Jian Wang; Xiang Du; Xiong-Zeng Zhu; Yun-Shan Tan; Meng-Hong Sun; Yong-Kun Wei; Jian-Fang Xu; Shao-Hua Lu; Su-Jie A-Ke-Su; Yan-Nan Zhou; Feng Gao

    2004-01-01

    AIM: To investigate the significance of c-kit gene mutation in gastrointestinal stromal tumors (GIST).METHODS: Fifty two cases of GIST and 28 cases of other tumors were examined. DNA samples were extracted from paraffin sections and fresh blocks. Exons 11, 9 and 13 of the c-kit gene were amplified by PCR and sequenced.RESULTS: Mutations of exon 11 were found in 14 of 25 malignant GISTs (56%), mutations of exon 11 of the c-kit gene were revealed in 2 of 19 borderline GISTs (10.5%),and no mutation was found in benign tumors. The mutation rate showed significant difference (X2=14.39, P<0.01)between malignant and benign GISTs. Most of mutations consisted of the in-frame deletion or replication from 3 to 48 bp in heterozygous and homozygous fashions, None of the mutations disrupted the downstream reading frame of the gene. Point mutations and frame deletions were most frequently observed at codons 550-560, but duplications were most concentrated at codons 570-585. No mutations of exons 9 and 13 were revealed in GISTs, Neither c-kit gene expression nor gene mutations were found in 3 leiomyomas, 8 leiomyosarcomas, 2 schwannomas, 2malignant peripheral nerve sheath tumors, 2 intraabdominal fibromatoses, 2 malignant fibrous histiocytomas and 9 adenocarcinomas.CONCLUSION: C-kit gene mutations occur preferentially in malignant GISTs and might be a clinically useful adjunct marker in the evaluation of GISTs and can help to differentiate GISTs from other mesenchymal tumors of gastrointestinal tract, such as smooth muscle tumors,schwannomas, etc.

  2. Human saliva as route of inter-human infection for mouse mammary tumor virus.

    Science.gov (United States)

    Mazzanti, Chiara Maria; Lessi, Francesca; Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-07-30

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma.

  3. The in vitro and in vivo effects of human growth hormone administration on tumor growth of rats bearing a transplantable rat pituitary tumor (7315b)

    NARCIS (Netherlands)

    A. Binnerts (Arjen); P. Uitterlinden (Piet); L.J. Hofland (Leo); P.M. van Koetsveld (Peter); S.W.J. Lamberts (Steven)

    1990-01-01

    markdownabstractAbstract The direct effects of human GH and IGF-I on PRL secretion and cell proliferation were studied on PRL secreting rat pituitary tumor 7315b cells in vitro, as well as the effects in vivo of human GH administration on body weight, IGF-I levels and tumor size in rats bearing th

  4. Growth curves of three human malignant tumors transplanted to nude mice

    DEFF Research Database (Denmark)

    Spang-Thomsen, M; Nielsen, A; Visfeldt, J

    1980-01-01

    Experimental growth data for three human malignant tumors transplanted to nude mice of BALB/c origin are analyzed statistically in order to investigate whether they can be described according to the Gompertz function. The aim is to set up unequivocal standards for planned therapeutic experiments...... and to develop an essential part of the determination of proliferation parameters for the tumors. The results indicate that the course of tumor growth can be described with good approximation by the Gompertz function. A transformation of this function depicts the growth rectilinearly and appears to be suitable...... mice. For tumors whose growth is described according to the Gompertz function, recording of the growth of the tumor size in two dimensions is sufficient for calculating other relevant growth parameters, if the three linear tumor measurements are proportional throughout the growth period. The initial...

  5. Role of COX-2 in the regulation of the metastatic potential of human breast tumor cells

    Directory of Open Access Journals (Sweden)

    M. A. Taipov

    2014-01-01

    Full Text Available The expression of СOX-2, VEGF, VEGFR-1, VEGFR-2, VEGFR-3, EGFR, endoglin (СD105, and IL-6 was analyzed in the human breast tumor cells having a varying metastatic potential. The role of these factors in the regulation of the metastatic potential of breast cancer cells, as well as that of COX-2 in the regulation of metastatic processes at the cellular level were examined. The potential capacity of human breast tumor cells to elaborate factors that stimulate tumor growth, angiogenesis, and metastasis was evaluated.

  6. V3 versican isoform expression has a dual role in human melanoma tumor growth and metastasis.

    Science.gov (United States)

    Miquel-Serra, Laia; Serra, Montserrat; Hernández, Daniel; Domenzain, Clelia; Docampo, María José; Rabanal, Rosa M; de Torres, Inés; Wight, Thomas N; Fabra, Angels; Bassols, Anna

    2006-09-01

    Versican is a large chondroitin sulfate proteoglycan produced by several tumor cell types, including malignant melanoma, which exists as four different splice variants. The presence of versican in the extracellular matrix plays a role in tumor cell growth, adhesion and migration, which could be altered by altering the ratio between versican isoforms. We have previously shown that overexpression of the V3 isoform of versican in human melanoma cell lines markedly reduces cell growth in vitro and in vivo, since V3-overexpressing (LV3SN) cultured cells as well as primary tumors arising from these cells grow slower than their vector-only counterparts (LXSN). In the present work, we have extended these observations to demonstrate that the delayed cell growth is due to multiple events since differences in proliferative index as well as in apoptosis are observed in LV3SN cells and tumors compared to LXSN. For example, LV3SN melanoma cells exhibit delayed activation of MAPK in response to EGF, we have also characterized further the primary tumors originated in nude mice from V3-transduced melanoma cells to determine if other events affect the V3 tumor phenotype. For example, hyaluronan content of LV3SN tumors was higher than in LXSN tumors, whereas other related matrix components and vascularization were unaffected. Furthermore, lung metastasis in nude mice occurred only in animals carrying LV3SN tumors, indicating a dual role for this molecule, both as an inhibitor of tumor growth and a metastasis inductor.

  7. Development of human serum albumin conjugated with near-infrared dye for photoacoustic tumor imaging

    Science.gov (United States)

    Kanazaki, Kengo; Sano, Kohei; Makino, Akira; Takahashi, Atsushi; Deguchi, Jun; Ohashi, Manami; Temma, Takashi; Ono, Masahiro; Saji, Hideo

    2014-09-01

    Photoacoustic (PA) imaging has emerged as a noninvasive diagnostic method which detects ultrasonic waves thermoelastically induced by optical absorbers irradiated with laser. For tumor diagnosis, PA contrast agent has been proposed to enhance the PA effect for detecting tumors sensitively. Here, we prepared a human serum albumin (HSA) conjugated with indocyanine green (ICG) as a PA contrast agent allowing enhanced permeability and retention effect for sensitive tumor imaging. The feasibility of PA imaging with HSA-ICG to detect allografted tumors was evaluated in tumor-bearing mice. In vivo fluorescence imaging and radiolabeled biodistribution study showed that the biodistribution dramatically changed as the number of ICG bound to HSA increased, and the maximum accumulation of ICG was achieved when around three ICG molecules were loaded on an HSA. In vivo PA imaging demonstrated a tumor-selective and dose-dependent increase of PA signal intensity in mice injected with HSA-ICG (R2=0.88, 387% increase for HSA-ICG, 104 nmol ICG). In conclusion, HSA-ICG clearly visualized the allografted tumors with high tumor-to-background ratios having high quantitative and spatial resolution for the sensitive PA imaging of tumors. HSA-ICG could be useful as a favorable contrast agent for PA tumor imaging for the management of cancer.

  8. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing

    Science.gov (United States)

    Clark, Andrew J.; Wiley, Devin T.; Zuckerman, Jonathan E.; Webster, Paul; Chao, Joseph; Lin, James; Yen, Yun; Davis, Mark E.

    2016-01-01

    Nanoparticle-based therapeutics are being used to treat patients with solid tumors. Whereas nanoparticles have been shown to preferentially accumulate in solid tumors of animal models, there is little evidence to prove that intact nanoparticles localize to solid tumors of humans when systemically administered. Here, tumor and adjacent, nonneoplastic tissue biopsies are obtained through endoscopic capture from patients with gastric, gastroesophageal, or esophageal cancer who are administered the nanoparticle CRLX101. Both the pre- and postdosing tissue samples adjacent to tumors show no definitive evidence of either the nanoparticle or its drug payload (camptothecin, CPT) contained within the nanoparticle. Similar results are obtained from the predosing tumor samples. However, in nine of nine patients that were evaluated, CPT is detected in the tumor tissue collected 24–48 h after CRLX101 administration. For five of these patients, evidence of the intact deposition of CRLX101 nanoparticles in the tumor tissue is obtained. Indications of CPT pharmacodynamics from tumor biomarkers such as carbonic anhydrase IX and topoisomerase I by immunohistochemistry show clear evidence of biological activity from the delivered CPT in the posttreatment tumors. PMID:27001839

  9. The role of miRNAs in human papilloma virus (HPV)-associated cancers

    DEFF Research Database (Denmark)

    Lajer, C.B.; Garnæs, E.; Friis-Hansen, Lennart Jan

    2012-01-01

    Although the role of human papilloma virus (HPV) in cervical squamous cell carcinoma (CSCC) is well established, the role in head and neck SCC (HNSCC) is less clear. MicroRNAs (miRNAs) have a role in the cancer development, and HPV status may affect the miRNA expression pattern in HNSCC. To explore...

  10. Human pontine glioma cells can induce murine tumors

    NARCIS (Netherlands)

    Caretti, V.; Sewing, A.C.; Lagerweij, T.; Schellen, P.; Bugiani, M.; Jansen, M.H.; Vuurden, D.G. van; Navis, A.C.; Horsman, I.; Vandertop, W.P.; Noske, D.P.; Wesseling, P.; Kaspers, G.J.L.; Nazarian, J.; Vogel, H.; Hulleman, E.; Monje, M.; Wurdinger, T.

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop

  11. Molecular determinants of treatment response in human germ cell tumors

    NARCIS (Netherlands)

    F. Mayer; J.A. Stoop (Hans); G.L. Scheffer (George); R. Scheper; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer

    2003-01-01

    textabstractPURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways ma

  12. Hsp60 is actively secreted by human tumor cells.

    Directory of Open Access Journals (Sweden)

    Anna M Merendino

    Full Text Available BACKGROUND: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination. METHODOLOGY/PRINCIPAL FINDINGS: Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likely reflect a general physiological phenomenon, occurring in many tumors.

  13. A Genomics-Based Classification of Human Lung Tumors

    NARCIS (Netherlands)

    Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Fernandez-Cuesta, Lynnette; Leenders, Frauke; Lu, Xin; Ansen, Sascha; Gardizi, Masyar; Nguyen, Chau; Berg, Johannes; Russell, Prudence; Wainer, Zoe; Schildhaus, Hans-Ulrich; Rogers, Toni-Maree; Solomon, Benjamin; Pao, William; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Thunnissen, Erik; Travis, William D.; Perner, Sven; Wright, Gavin; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman; Gabler, Franziska; Wilkening, Ines; Mueller, Christian; Dahmen, Ilona; Menon, Roopika; Koenig, Katharina; Albus, Kerstin; Merkelbach-Bruse, Sabine; Fassunke, Jana; Schmitz, Katja; Kuenstlinger, Helen; Kleine, Michaela; Binot, Elke; Querings, Silvia; Altmueller, Janine; Boessmann, Ingelore; Nuemberg, Peter; Schneider, Peter; Bogus, Magdalena; Buettner, Reinhard; Perner, Sven; Russell, Prudence; Thunnissen, Erik; Travis, William D.; Brambilla, Elisabeth; Soltermann, Alex; Moch, Holger; Brustugun, Odd Terje; Solberg, Steinar; Lund-Iversen, Marius; Helland, Aslaug; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Chen, Yuan; Groen, Herman; Timens, Wim; Sietsma, Hannie; Clement, Joachim H.; Weder, Walter; Saenger, Joerg; Stoelben, Erich; Ludwig, Corinna; Engel-Riedel, Walburga; Smit, Egbert; Heideman, Danille A. M.; Snijders, Peter J. F.; Nogova, Lucia; Sos, Martin L.; Mattonet, Christian; Toepelt, Karin; Scheffler, Matthias; Goekkurt, Eray; Kappes, Rainer; Krueger, Stefan; Kambartel, Kato; Behringer, Dirk; Schulte, Wolfgang; Galetke, Wolfgang; Randerath, Winfried; Heldwein, Matthias; Schlesinger, Andreas; Serke, Monika; Hekmat, Khosro; Frank, Konrad F.; Schnell, Roland; Reiser, Marcel; Huenerlituerkoglu, Ali-Nuri; Schmitz, Stephan; Meffert, Lisa; Ko, Yon-Dschun; Litt-Lampe, Markus; Gerigk, Ulrich; Fricke, Rainer; Besse, Benjamin; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Moro-Sibilot, Denis; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John K.; Hyde, Russell; Validire, Pierre; Girard, Philippe; Muscarella, Lucia A.; Fazio, Vito M.; Hallek, Michael; Soria, Jean-Charles; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Achter, Viktor; Lang, Ulrich; Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Pao, William; Travis, William D.; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman K.

    2013-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic interventi

  14. Criteria to define HLA haplotype loss in human solid tumors

    NARCIS (Netherlands)

    Ramal, LM; van der Zwan, AW; Collado, A; Lopez-Nevot, MA; Tilanus, M; Garrido, F

    2000-01-01

    Short tandem repeat (STR) markers are currently used to define loss of heterozygosity (LOH) of genes and chromosomes in tumors. Chromosome 6 and chromosome 15 STR markers are applied to define loss of HLA and related genes (e.g. TAP and beta(2)m) The number of STR identified in the HLA region is sti

  15. Molecular profiles of progesterone receptor loss in human breast tumors

    NARCIS (Netherlands)

    C.J. Creighton; C. Kent Osborne; M.J. van de Vijver; J.A. Foekens; J.G. Klijn; H.M. Horlings; D. Nuyten; Y. Wang; Y. Zhang; G.C. Chamness; S.G. Hilsenbeck; A.V. Lee; R. Schiff

    2009-01-01

    Background Patient prognosis and response to endocrine therapy in breast cancer correlate with protein expression of both estrogen receptor (ER) and progesterone receptor (PR), with poorer outcome in patients with ER+/PR- compared to ER+/PR+ tumors. Methods To better understand the underlying biolog

  16. Molecular determinants of treatment response in human germ cell tumors

    NARCIS (Netherlands)

    F. Mayer; J.A. Stoop (Hans); G.L. Scheffer (George); R. Scheper; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer

    2003-01-01

    textabstractPURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways

  17. Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors.

    Science.gov (United States)

    Suzuki, M; Tanaka, M; Iwase, T; Naito, Y; Sugimura, H; Kino, I

    1993-07-15

    A human ovarian yolk sac tumor cDNA library was screened for homeobox genes with an oligonucleotide probe under low stringent condition. Three homeobox genes were isolated, two of which were identified as HHO.c1 and HB24. The third was highly homologous with the mouse Hox-8 gene and was designated as HOX-8. Studies on RNAs from 25 human tumor tissues and cell lines showed that the profile of HOX-8 expression was different from those of HHO.c1 and HB24. The expression of HOX-8 was not detected in hematopoietic tumor cells, in which HHO.c1 and HB24 were highly expressed. HOX-8 was expressed at higher levels in a variety of tumors of epithelial origin than in their corresponding normal tissues more frequently than HHO.c1 and HB24. All three homeobox genes were highly expressed in a yolk sac tumor, an immature tumor of gonadal origin. These results suggest that HOX-8 plays a more important role in human tumors of epithelial origin than those of hematopoietic origin.

  18. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α.

    Science.gov (United States)

    Shealy, David J; Cai, Ann; Staquet, Kim; Baker, Audrey; Lacy, Eilyn R; Johns, Laura; Vafa, Omid; Gunn, George; Tam, Susan; Sague, Sarah; Wang, Dana; Brigham-Burke, Mike; Dalmonte, Paul; Emmell, Eva; Pikounis, Bill; Bugelski, Peter J; Zhou, Honghui; Scallon, Bernard J; Giles-Komar, Jill

    2010-01-01

    We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018).  The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry.  In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration.  In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.

  19. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  20. Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors.

    Science.gov (United States)

    Deng, Xinzhu; Michaelson, David; Tchieu, Jason; Cheng, Jin; Rothenstein, Diana; Feldman, Regina; Lee, Sang-gyu; Fuller, John; Haimovitz-Friedman, Adriana; Studer, Lorenz; Powell, Simon; Fuks, Zvi; Hubbard, E Jane Albert; Kolesnick, Richard

    2015-01-01

    Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.

  1. Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors.

    Directory of Open Access Journals (Sweden)

    Xinzhu Deng

    Full Text Available Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202, a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202 is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.

  2. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    Institute of Scientific and Technical Information of China (English)

    Takahiro Nemoto; Shunichiro Kubota; Hideyuki Ishida; Nobuo Murata; Daijo Hashimoto

    2005-01-01

    AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.

  3. Head and neck squamous cell carcinoma (HNSCC) - detection of synchronous primaries with {sup 18}F-FDG-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Klaus; Schrank, Madeleine; Soyka, Jan D.; Veit-Haibach, Patrick; Hany, Thomas F. [University Hospital Zurich, Division of Nuclear Medicine, Department of Medical Radiology, Zurich (Switzerland); Haerle, Stephan K.; Stoeckli, Sandro J. [University Hospital Zurich, Department of Otorhinolaryngology, Head and Neck Surgery, Zurich (Switzerland)

    2009-06-15

    The aim of the study was to evaluate {sup 18}F-FDG-PET/CT for the detection of synchronous primaries at initial staging of patients with head and neck squamous cell carcinoma (HNSCC). FDG-PET/CT images acquired between March 2001 and October 2007 in 589 consecutive patients (147 women, 442 men; mean age 61.5 years, age range 32-97 years) with proven HNSCC were reviewed for the presence of synchronous primaries. Cytology, histology and/or clinical and imaging follow-up served as reference standard. FDG-PET/CT showed 69 suspected synchronous primaries in 62 patients of which 56 were finally confirmed in 44 patients. Of the 56 second cancers, 46 (82%) were found in the aerodigestive tract in the following locations: lung (26, 46%), head and neck (15, 17%), oesophagus (5, 9%). Ten second cancers (18%) were located outside the aerodigestive tract (colon, five; stomach, lymphoma, breast, thymus and kidney, one each). Six patients had three synchronous primaries and three patients had four synchronous cancers. Nine synchronous cancers were not detected by PET/CT (four head and neck, two lung, two oesophageal, one gastric). False-positive PET/CT findings were mainly related to benign FDG uptake in the intestine due to benign or precancerous polyps or physiological FDG uptake in other head and neck regions. Overall the prevalence of synchronous second primaries according to the reference standard was 9.5%, of which 84% were detected with FDG-PET/CT. In 80% of the patients, therapy was changed because of the detection of a synchronous primary. FDG-PET/CT detects a considerable number of synchronous primaries (8.0% prevalence) at initial staging of patients with HNSCC. Synchronous cancers were predominantly located in the aerodigestive tract, primarily in the lung, head and neck and oesophagus. Detection of second primaries has an important impact on therapy. PET/CT should be performed before panendoscopy. (orig.)

  4. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    Science.gov (United States)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  5. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location.

    Science.gov (United States)

    Tirodkar, Tejas S; Budiu, Raluca A; Elishaev, Esther; Zhang, Lixin; Mony, Jyothi T; Brozick, Joan; Edwards, Robert P; Vlad, Anda M

    2014-01-01

    Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.

  6. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

  7. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures

    DEFF Research Database (Denmark)

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded...... the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants....

  8. Human primary brain tumor cell growth inhibition in serum-free medium optimized for neuron survival.

    Science.gov (United States)

    Brewer, Gregory J; LeRoux, Peter D

    2007-07-09

    Glioblastoma is the most common primary brain tumor in adults from which about 15,000 patients die each year in the United States. Despite aggressive surgery, radiotherapy and chemotherapy, median survival remains only 1 year. Here we evaluate growth of primary human brain tumor cells in a defined nutrient culture medium (Neuregen) that was optimized for neuron regeneration. We hypothesized that Neuregen would inhibit tumor cell growth because of its ability to inhibit gliosis in rat brain. Tumor tissue was collected from 18 patients including 10 males and 8 females (mean age 60+/-12 years) who underwent craniotomy for newly diagnosed, histologically confirmed brain tumors. The tissue was shipped overnight in Hibernate transport medium. Tumor cells were isolated and plated in Neurobasal/serum or Neuregen on culture plastic. After 1 week, growth in Neuregen was significantly less in 9/10 glioblastoma multiforme cases, 5/5 meningioma cases and 3/3 cases of brain metastasis. Analysis of deficient formulations of Neuregen and formulations to which selected components were added back implicate no single active component. However, individual cases were sensitive to corticosterone, selenium, ethanolamine, fatty acids and/or antioxidants. Therefore, a defined culture medium that promotes neuron regeneration inhibits the growth of human primary glioblastoma, meningioma and metastatic tumor cells in culture. The possible in vivo efficacy of Neuregen for treatment of brain tumor resections remains to be determined.

  9. Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells.

    Science.gov (United States)

    Henrich, Frederik C; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D; Limm, Katharina; Ritter, Axel P; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J; Bosserhoff, Anja-Katrin; Kreutz, Marina P; Aigner, Michael; Mackensen, Andreas

    2016-08-01

    The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting.

  10. On the growth rates of human malignant tumors: implications for medical decision making.

    Science.gov (United States)

    Friberg, S; Mattson, S

    1997-08-01

    Testicular carcinomas, pediatric tumors, and some mesenchymal tumors are examples of rapidly proliferating cell populations, for which the tumor volume doubling time (TVDT) can be counted in days. Cancers from the breast, prostate, and colon are frequently slow-growing, displaying a TVDT of months or years. Irrespective of their growth rates, most human tumors have been found: to start from one single cell, to have a long subclinical period, to grow at constant rates for long periods of time, to start to metastasize often even before the primary is detected, and to have metastases that often grow at approximately the same rate as the primary tumor. The recognition of basic facts in tumor cell kinetics is essential in the evaluation of important present-day strategies in oncology. Among the facts emphasized in this review are: (1) Screening programs. Most tumors are several years old when detectable by present-day diagnostic methods. This makes the term "early detection" questionable. (2) Legal trials. The importance of so-called doctor's delay is often discussed, but the prognostic value of "early" detection is overestimated. (3) Analyses of clinical trials. Such analysis may be differentiated depending on the growth rates of the type of tumor studied. Furthermore, uncritical analysis of survival data may be misleading if the TVDT is not taken into consideration. (4) Analyses of epidemiological data. If causes of malignant tumors in humans are searched for, the time of exposure must be extended far back in the subject's history. (5) Risk estimations by insurance companies. For the majority of human cancers, the 5-year survival rate is not a valid measurement for cure. Thus, basic knowledge of tumor kinetics may have important implications for political health programs, legal trials, medical science, and insurance policies.

  11. Identification of internalizing human single-chain antibodies targeting brain tumor sphere cells.

    Science.gov (United States)

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C David; Berger, Mitchel S; Liu, Bin

    2010-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor for which there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive medium and exhibits enhanced tumor-initiating ability and resistance to therapy. We report here the identification of internalizing human single-chain antibodies (scFv) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133-positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv, and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular nonselective medium. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. (c)2010 AACR.

  12. Identification of internalizing human single chain antibodies targeting brain tumor sphere cells

    Science.gov (United States)

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C. David; Berger, Mitchel S.; Liu, Bin

    2010-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor and there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive media, and exhibit enhanced tumor initiating ability and resistance to therapy. We report here the identification of internalizing human single chain antibodies (scFvs) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133 positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular non-selective media. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. PMID:20587664

  13. Human B cell activating factor (BCAF): production by a human T cell tumor line.

    Science.gov (United States)

    Fevrier, M; Diu, A; Mollier, P; Abadie, A; Olive, D; Mawas, C; Theze, J

    1989-01-01

    In a previous study, we demonstrated that supernatants from human T cell clones stimulated by a pair of anti-CD2 monoclonal antibodies cause resting human B cells to become activated and to proliferate in the absence of any other signals. The activity responsible for these effects was shown to be different from already characterized lymphokines and in particular from IL-2 and IL-4, and was named B Cell Activating Factor or BCAF. In this paper, we describe the production of BCAF by a human T cell tumor line T687 after phorbol myristate acetate (PMA) stimulation; this production can be potentiated by phytohemagglutinin (PHA). We further show that the stimulatory phase can be separated from the secretory phase thereby avoiding contamination of BCAF-containing supernatant by PMA and PHA. Supernatants produced under these conditions do not contain either IL-4 or IFN but contain traces of lymphotoxin and 2 to 10 ng/ml of IL-2. The T687 cell line will allow us to obtain a large volume of supernatant for biochemical study and purification of the molecule(s) responsible for BCAF activity.

  14. Human liver tumors in relation to steroidal usage.

    Science.gov (United States)

    Barrows, G H; Christopherson, W M

    1983-01-01

    Since 1973 a number of investigators have reported an association between liver neoplasia and steroid usage. Through referral material we have examined the histology of over 250 cases of hepatic neoplasia, most in patients receiving steroid medications. The majority have been benign, predominantly focal nodular hyperplasia (55%) and hepatocellular adenoma (39%). The average age was 31.4 years; 83% had significant steroid exposure with an average duration of 71 months for focal nodular hyperplasia and 79.6 months for hepatocellular adenoma. The type of estrogenic agent was predominantly mestranol; however, during the period mestranol was the most frequently used synthetic steroid. A distinct clinical entity of life threatening hemorrhage from the lesion occurred in 31% of patients with hepatocellular adenoma and 9% of patients with focal nodular hyperplasia. Recurrence of benign tumors has occurred in some patients who continued using steroids and regression has been observed in patients who had incomplete tumor removal but discontinued steroid medication. Medial and intimal vascular changes have been present in a large number of the benign tumors. The relationship of these vascular changes to oncogenesis is unclear, but similar lesions have been described in the peripheral vasculature associated with steroid administration. A number of hepatocellular carcinomas have also been seen. Of significance is the young age of these patients and lack of abnormal histology in adjacent nonneoplastic liver. A striking number of the malignant hepatocellular tumors have been of the uncommon type described as "eosinophilic hepatocellular carcinoma with lamellar fibrosis." The epidemiology of liver lesions within this series is difficult to assess, since the material has been referred from very diverse locations. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. PMID:6307679

  15. Bone marrow CFU-GM and human tumor xenograft efficacy of three antitumor nucleoside analogs.

    Science.gov (United States)

    Bagley, Rebecca G; Roth, Stephanie; Kurtzberg, Leslie S; Rouleau, Cecile; Yao, Min; Crawford, Jennifer; Krumbholz, Roy; Lovett, Dennis; Schmid, Steven; Teicher, Beverly A

    2009-05-01

    Nucleoside analogs are rationally designed anticancer agents that disrupt DNA and RNA synthesis. Fludarabine and cladribine have important roles in the treatment of hematologic malignancies. Clofarabine is a next generation nucleoside analog which is under clinical investigation. The bone marrow toxicity, tumor cell cytotoxicity and human tumor xenograft activity of fludarabine, cladribine and clofarabine were compared. Mouse and human bone marrow were subjected to colony forming (CFU-GM) assays over a 5-log concentration range in culture. NCI-60 cell line screening data were compared. In vivo, a range of clofarabine doses was compared with fludarabine for efficacy in several human tumor xenografts. The IC90 concentrations for fludarabine and cladribine for mouse CFU-GM were >30 and 0.93 microM, and for human CFU-GM were 8 and 0.11 microM, giving mouse to human differentials of >3.8- and 8.5-fold. Clofarabine produced IC90s of 1.7 microM in mouse and 0.51 microM in human CFU-GM, thus a 3.3-fold differential between species. In the NCI-60 cell line screen, fludarabine and cladribine showed selective cytotoxicity toward leukemia cell lines while for clofarabine there was no apparent selectivity based upon origin of the tumor cells. In vivo, clofarabine produced a dose-dependent increase in tumor growth delay in the RL lymphoma, the RPMI-8226 multiple myeloma, and HT-29 colon carcinoma models. The PC3 prostate carcinoma was equally responsive to clofarabine and fludarabine. Bringing together bone marrow toxicity data, tumor cell line cytotoxicity data, and human tumor xenograft efficacy provides valuable information for the translation of preclinical findings to the clinic.

  16. Human T Cell Crosstalk Is Induced by Tumor Membrane Transfer

    Science.gov (United States)

    Uzana, Ronny; Eisenberg, Galit; Merims, Sharon; Frankenburg, Shoshana; Pato, Aviad; Yefenof, Eitan; Engelstein, Roni; Peretz, Tamar

    2015-01-01

    Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC). Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs) and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+T-APCs). We demonstrate that, following trogocytosis, CD8+T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1) Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2) Fratricide (killing) of CD8+T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response. PMID:25671577

  17. Human T cell crosstalk is induced by tumor membrane transfer.

    Directory of Open Access Journals (Sweden)

    Ronny Uzana

    Full Text Available Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC. Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+ T-APCs. We demonstrate that, following trogocytosis, CD8+ T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1 Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2 Fratricide (killing of CD8+ T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response.

  18. Construction of novel tumor necrosis factor-alpha mutants with reduced toxicity and higher cytotoxicity on human tumor cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Hui; (刘; 惠); LU; Fang; (卢; 芳); CHEN; Jianjun; (陈建军); REN; Hongyu; (任红玉); CHEN; Changqing(陈常庆)

    2003-01-01

    Two tumor necrosis factor-( mutants MT1 (32Trp157Phe) and MT2 (2Lys30Ser- 32Trp157Phe) were constructed by site-directed mutagenesis. These mutants were soluble and over-expressed in E. coli. The purity of purified mutants was above 95% by serial chromatography. The results of Western blot indicated that these mutants could be cross-reactive with monoclonal antibody against native hTNF-α. Compared to parent hTNF-α, the cytotoxicity of these mutants on murine fibrosarcoma L929 cell lines reduced 4-5 orders of magnitude but was equivalent to that of native hTNF-α on human tumor cell lines. The LD50 of mutant MT1 was reduced to 0.34% of wild type and the dose of MT2 that resulted in 30% death of mice reduced to less than 1/700 that of parent hTNF-α.

  19. ING Genes Work as Tumor Suppressor Genes in the Carcinogenesis of Head and Neck Squamous Cell Carcinoma.

    Science.gov (United States)

    Li, Xiaohan; Kikuchi, Keiji; Takano, Yasuo

    2011-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world. The evolution and progression of HNSCC are considered to result from multiple stepwise alterations of cellular and molecular pathways in squamous epithelium. Recently, inhibitor of growth gene (ING) family consisting of five genes, ING1 to ING5, was identified as a new tumor suppressor gene family that was implicated in the downregulation of cell cycle and chromatin remodeling. In contrast, it has been shown that ING1 and ING2 play an oncogenic role in some cancers, this situation being similar to TGF-β. In HNSCC, the ING family has been reported to be downregulated, and ING translocation from the nucleus to the cytoplasm may be a critical event for carcinogenesis. In this paper, we describe our recent results and briefly summarize current knowledge regarding the biologic functions of ING in HNSCC.

  20. Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin.

    Science.gov (United States)

    Chan, Leong-Perng; Chou, Tzung-Han; Ding, Hsiou-Yu; Chen, Pin-Ru; Chiang, Feng-Yu; Kuo, Po-Lin; Liang, Chia-Hua

    2012-07-01

    Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Imaging of non tumorous and tumorous human brain tissue with full-field optical coherence tomography

    CERN Document Server

    Assayag, Osnath; Devaux, Bertrand; Harms, Fabrice; Pallud, Johan; Chretien, Fabrice; Boccara, Claude; Varlet, Pascale

    2013-01-01

    A prospective study was performed on neurosurgical samples from 18 patients to evaluate the use of Full-Field Optical Coherence Tomography (FF-OCT) in brain tumor diagnosis. FF-OCT captures en face slices of tissue samples at 1\\mum resolution in 3D with a typical 200\\mum imaging depth. A 1cm2 specimen is scanned at a single depth and processed in about 5 minutes. This rapid imaging process is non-invasive and 30 requires neither contrast agent injection nor tissue preparation, which makes it particularly well suited to medical imaging applications. Temporal chronic epileptic parenchyma and brain tumors such as meningiomas, low- grade and high-grade gliomas, and choroid plexus papilloma were imaged. A subpopulation of neurons, myelin fibers and CNS vasculature were clearly identified. Cortex could be discriminated from white matter, but individual glial cells as astrocytes (normal or reactive) or oligodendrocytes were not observable. This study reports for the first time on the feasibility of using FF-OCT in a...

  2. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  3. A Comparison of Two Human Brain Tumor Segmentation Methods for MRI Data

    CERN Document Server

    Egger, Jan; Bauer, Miriam H A; Kuhnt, Daniela; Carl, Barbara; Freisleben, Bernd; Kolb, Andreas; Nimsky, Christopher

    2011-01-01

    The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process that can be overcome with the help of computerized segmentation methods. In this contribution, two methods for World Health Organization (WHO) grade IV glioma segmentation in the human brain are compared using magnetic resonance imaging (MRI) patient data from the clinical routine. One method uses balloon inflation forces, and relies on detection of high intensity tumor boundaries that are coupled with the use of contrast agent gadolinium. The other method sets up a directed and weighted graph and performs a min-cut for optimal segmentation results. The ground truth of the tumor boundaries - for evaluating the methods on 27 cases - is manually extracted by neurosurgeons with several years of experience in the resection of glio...

  4. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Science.gov (United States)

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  5. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment.

    Science.gov (United States)

    Kuracha, Murali R; Thomas, Peter; Loggie, Brian W; Govindarajan, Venkatesh

    2016-04-01

    Pseudomyxoma peritonei (PMP) is a neoplastic syndrome characterized by peritoneal tumor implants with copious mucinous ascites. The standard of care for PMP patients is aggressive cytoreductive surgery performed in conjunction with heated intraperitoneal chemotherapy. Not all patients are candidates for these procedures and a majority of the patients will have recurrent disease. In addition to secreted mucin, inflammation and fibrosis are central to PMP pathogenesis but the molecular processes that regulate tumor-stromal interactions within the peritoneal tumor microenvironment remain largely unknown. This knowledge is critical not only to elucidate PMP pathobiology but also to identify novel targets for therapy. Here, we report the generation of patient-derived xenograft (PDX) mouse models for PMP and assess the ability of these models to replicate the inflammatory peritoneal microenvironment of human PMP patients. PDX mouse models of low- and high-grade PMP were generated and were of a similar histopathology as human PMP. Cytokines previously shown to be elevated in human PMP were also elevated in PDX ascites. Significant differences in IL-6 and IL-8/KC/MIP2 were seen between human and PDX ascites. Interestingly, these cytokines were mostly secreted by mouse-derived, tumor-associated stromal cells rather than by human-derived PMP tumor cells. Our data suggest that the PMP PDX mouse models are especially suited to the study of tumor-stromal interactions that regulate the peritoneal inflammatory environment in PMP as the tumor and stromal cells in these mouse models are of human and murine origins, respectively. These mouse models are therefore, likely to be useful in vivo surrogates for testing and developing novel therapeutic treatment interventions for PMP.

  6. Bioinformatics Analysis of the Human Surfaceome Reveals New Targets for a Variety of Tumor Types

    Directory of Open Access Journals (Sweden)

    André L. Fonseca

    2016-01-01

    Full Text Available It is estimated that 10 to 20% of all genes in the human genome encode cell surface proteins and due to their subcellular localization these proteins represent excellent targets for cancer diagnosis and therapeutics. Therefore, a precise characterization of the surfaceome set in different types of tumor is needed. Using TCGA data from 15 different tumor types and a new method to identify cancer genes, the S-score, we identified several potential therapeutic targets within the surfaceome set. This allowed us to expand a previous analysis from us and provided a clear characterization of the human surfaceome in the tumor landscape. Moreover, we present evidence that a three-gene set—WNT5A, CNGA2, and IGSF9B—can be used as a signature associated with shorter survival in breast cancer patients. The data made available here will help the community to develop more efficient diagnostic and therapeutic tools for a variety of tumor types.

  7. Transcription factors link mouse WAP-T mammary tumors with human breast cancer.

    Science.gov (United States)

    Otto, Benjamin; Streichert, Thomas; Wegwitz, Florian; Gevensleben, Heidrun; Klätschke, Kristin; Wagener, Christoph; Deppert, Wolfgang; Tolstonog, Genrich V

    2013-03-15

    Mouse models are important tools to decipher the molecular mechanisms of mammary carcinogenesis and to mimic the respective human disease. Despite sharing common phenotypic and genetic features, the proper translation of murine models to human breast cancer remains a challenging task. In a previous study we showed that in the SV40 transgenic WAP-T mice an active Met-pathway and epithelial-mesenchymal characteristics distinguish low- and high-grade mammary carcinoma. To assign these murine tumors to corresponding human tumors we here incorporated the analysis of expression of transcription factor (TF) coding genes and show that thereby a more accurate interspecies translation can be achieved. We describe a novel cross-species translation procedure and demonstrate that expression of unsupervised selected TFs, such as ELF5, HOXA5 and TFCP2L1, can clearly distinguish between the human molecular breast cancer subtypes--or as, for example, expression of TFAP2B between yet unclassified subgroups. By integrating different levels of information like histology, gene set enrichment, expression of differentiation markers and TFs we conclude that tumors in WAP-T mice exhibit similarities to both, human basal-like and non-basal-like subtypes. We furthermore suggest that the low- and high-grade WAP-T tumor phenotypes might arise from distinct cells of tumor origin. Our results underscore the importance of TFs as common cross-species denominators in the regulatory networks underlying mammary carcinogenesis.

  8. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  9. Expression of fibroblast growth factor (FGF)-8 isoforms and FGF receptors in human ovarian tumors.

    Science.gov (United States)

    Valve, E; Martikainen, P; Seppänen, J; Oksjoki, S; Hinkka, S; Anttila, L; Grenman, S; Klemi, P; Härkönen, P

    2000-12-01

    FGF-8 is a mitogenic growth factor, which is widely expressed during embryonic development but only at a very low level in adult tissues. Alternative splicing of the human FGF-8 gene potentially allows coding for 4 protein isoforms (a, b, e, f), which differ in their transforming capacity. The FGF-8 isoforms preferentially activate the receptors FGFR1IIIc, FGFR2IIIc, FGFR3IIIc and FGFR4. FGF-8 is over-expressed in human breast and prostate cancers. Expression has also been found in RT-PCR studies of human ovarian and testicular cancers. The present study was undertaken to examine which FGF-8 isoforms are expressed in ovarian cancer and whether FGF-8 receptors are also expressed. Specimens from 5 normal human ovaries and 51 ovarian tumors (1 benign tumor, 8 borderline malignancies, 42 malignant tumors of different histopathological types) were studied by RT-PCR and immunohistochemistry. FGF-8 isoform b was expressed in all ovarian tumors and in all 7 ovarian-cancer cell lines studied. Isoform a was co-expressed in 9 malignant ovarian tumors. FGF-8 mRNA was not detected by RT-PCR of 3 normal ovary samples. Immunohistochemical staining localized FGF-8 protein to cancer cells. In general, the increased intensity of FGF-8 staining was associated with loss of differentiation within the tumors (Bowker's test, p = 0.37). FGF-8 staining of surface epithelium observed on 2 normal ovaries was very faint. RT-PCR showed that FGFR1IIIc, FGFR2IIIc and FGFR4 were the FGF-8 receptors expressed in normal ovaries and in ovarian tumors. FGF-8 receptor immunoreactivity was preferentially found in normal ovary surface epithelium and tumor cells but also in some stromal cells. Collectively, our results show that ovarian cancers of a wide variety of histological types expressing receptors for FGF-8 have acquired the capacity of expressing FGF-8. This suggests that FGF-8 has an important role in ovarian tumorigenesis.

  10. CD147 Expression in Human Gastric Cancer Is Associated with Tumor Recurrence and Prognosis

    OpenAIRE

    Dake Chu; Shaojun Zhu; Jipeng Li; Gang Ji; Weizhong Wang; Guosheng Wu; Jianyong Zheng

    2014-01-01

    CD147 is correlated with tumor aggressiveness in various human malignancies. Here, we investigated CD147 protein expression in 223 patients with gastric cancer by immunohistochemistry and analyzed its association with disease-free and overall survival. CD147 was increased in gastric cancer compared to normal tissues. Additionally, CD147 expression was associated with gastric cancer invasion, metastasis and TNM stage, whereas it was not related to age, sex, differentiation status, tumor site o...

  11. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    Science.gov (United States)

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  12. Anti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models

    OpenAIRE

    XIE, KE; Bai, Rui-Zhen; Wu, Yang; Liu, Quan; Liu,Kang; Wei, Yu-Quan

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor. Methods The protective effects and therapeutic anti-tumor immunity mediated by the DNA vaccine were investigated in mouse models. Anti-ang...

  13. PCR Expression Analysis Of the Estrogeninducible Gene Bcei in Gastrointestinal and Other Human Tumors

    Directory of Open Access Journals (Sweden)

    Iris Wundrack

    1994-01-01

    Full Text Available A polymerase chain reaction (PCR assay was developed to test for tumor cell specific expression of the BCEI gene. This new marker gene, reported at first for human breast cancer, was found specifically active in various gastrointestinal carcinomas by previously applying immunohistochemistry and RNA (Northern blot analysis. Presently, by using reverse transcription -PCR analysis, a series of primary tumor tissues and established tumor cell lines were testcd for BCEI transcription. This approach was compared to immunostaining achieved by an antibody directed against the BCEI gene’s product. The result demonstrate the superior sensitivity of PCR by indicating the gene’ s expression in cases where immunohistochemical testing remained negative.

  14. Synergism between human tumor necrosis factor and human interferon-alpha: effects on cells in culture.

    Science.gov (United States)

    Orita, K; Ando, S; Kurimoto, M

    1987-08-01

    The cytostatic and cytotoxic effects of highly purified natural human tumor necrosis factor (HuTNF-alpha) and natural human interferon-alpha (HuIFN-alpha) on 23 cell lines were studied in vitro. Natural HuTNF-alpha showed cytostatic and cytotoxic effects on PC-9, KHG-2, HT-1197, KG-1 and L-929 cells, and HuIFN-alpha showed both effects on KHG-2 and Daudi cells. A mixture of HuTNF-alpha and HuIFN-alpha (1:1, by unit) showed cytostatic and cytotoxic effects on HuTNF-alpha- or HuIFN-alpha-resistant cell lines such as KB, KATO-III, HEp-2, P-4788, as well as on HuTNF-alpha- or HuIFN-alpha-susceptible cells. Thus, the combined preparation of HuTNF-alpha and HuIFN-alpha expanded the spectrum of sensitive cells. The dosage of the mixed preparation required to produce 50% inhibition of cell growth was less than 20% of that of HuTNF-alpha or HuIFN-alpha alone. These results indicate that the cytostatic and cytotoxic effects of HuTNF-alpha and HuIFN-alpha are synergistically enhanced when they are administered together.

  15. Synergism between human tumor necrosis factor and human interferon-alpha: effects on cells in culture.

    Directory of Open Access Journals (Sweden)

    Orita,Kunzo

    1987-08-01

    Full Text Available The cytostatic and cytotoxic effects of highly purified natural human tumor necrosis factor (HuTNF-alpha and natural human interferon-alpha (HuIFN-alpha on 23 cell lines were studied in vitro. Natural HuTNF-alpha showed cytostatic and cytotoxic effects on PC-9, KHG-2, HT-1197, KG-1 and L-929 cells, and HuIFN-alpha showed both effects on KHG-2 and Daudi cells. A mixture of HuTNF-alpha and HuIFN-alpha (1:1, by unit showed cytostatic and cytotoxic effects on HuTNF-alpha- or HuIFN-alpha-resistant cell lines such as KB, KATO-III, HEp-2, P-4788, as well as on HuTNF-alpha- or HuIFN-alpha-susceptible cells. Thus, the combined preparation of HuTNF-alpha and HuIFN-alpha expanded the spectrum of sensitive cells. The dosage of the mixed preparation required to produce 50% inhibition of cell growth was less than 20% of that of HuTNF-alpha or HuIFN-alpha alone. These results indicate that the cytostatic and cytotoxic effects of HuTNF-alpha and HuIFN-alpha are synergistically enhanced when they are administered together.

  16. Strategies for Human Tumor Virus Discoveries: from Microscopic Observation to Digital Transcriptome Subtraction

    Directory of Open Access Journals (Sweden)

    Ezra David Mirvish

    2016-05-01

    Full Text Available Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis (RDA. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Patrick S. Moore, Yuan Chang, and colleagues developed digital transcriptome subtraction (DTS, an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV from Merkel cell carcinoma (MCC. Here we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV.

  17. RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors

    Science.gov (United States)

    Zhang, He-Yu; Jin, Long; Stilling, Gail A.; Ruebel, Katharina H.; Coonse, Kendra; Tanizaki, Yoshinori; Raz, Avraham

    2010-01-01

    Galectin-3 is expressed in a cell-type specific manner in human pituitary tumors and may have a role in pituitary tumor development. In this study, we hypothesized that Galectin-3 is regulated by RUNX proteins in pituitary tumors. Transcription factor prediction programs revealed several putative binding sites in the LGALS3 (Galectin-3 gene) promoter region. A human pituitary cell line HP75 was used as a model to study LGALS3 and RUNX interactions using Chromatin immunoprecipitation assay and electrophoresis mobility shift assay. Two binding sites for RUNX1 and one binding site for RUNX2 were identified in the LGALS3 promoter region. LGALS3 promoter was further cloned into a luciferase reporter, and the experiments showed that both RUNX1 and RUNX2 upregulated LGALS3. Knock-down of either RUNX1 or RUNX2 by siRNA resulted in a significant downregulation of Galectin-3 expression and decreased cell proliferation in the HP 75 cell line. Immunohistochemistry showed a close correlation between Galectin-3 expression and RUNX1/RUNX2 level in pituitary tumors. These results demonstrate a novel binding target for RUNX1 and RUNX2 proteins and suggest that Galectin-3 is regulated by RUNX1 and RUNX2 in human pituitary tumor cells by direct binding to the promoter region of LGALS3 and thus may contribute to pituitary tumor progression. PMID:19020999

  18. A Comparative Approach of Tumor-Associated Inflammation in Mammary Cancer between Humans and Dogs

    Directory of Open Access Journals (Sweden)

    Maria Isabel Carvalho

    2016-01-01

    Full Text Available Infiltrating cells of the immune system are widely accepted to be generic constituents of tumor microenvironment. It has been well established that the development of mammary cancer, both in humans and in dogs, is associated with alterations in numbers and functions of immune cells at the sites of tumor progression. These tumor infiltrating immune cells seem to exhibit exclusive phenotypic and functional characteristics and mammary cancer cells can take advantage of signaling molecules released by them. Cancer related inflammation has an important role in mammary carcinogenesis, contributing to the acquisition of core hallmark capabilities that allow cancer cells to survive, proliferate, and disseminate. Indeed, recent studies in human breast cancer and in canine mammary tumors have identified a growing list of signaling molecules released by inflammatory cells that serve as effectors of their tumor-promoting actions. These include the COX-2, the tumor EGF, the angiogenic VEGF, other proangiogenic factors, and a large variety of chemokines and cytokines that amplify the inflammatory state. This review describes the intertwined signaling pathways shared by T-lymphocytic/macrophage infiltrates and important tissue biomarkers in both human and dog mammary carcinogenesis.

  19. A Comparative Approach of Tumor-Associated Inflammation in Mammary Cancer between Humans and Dogs.

    Science.gov (United States)

    Carvalho, Maria Isabel; Silva-Carvalho, Ricardo; Pires, Isabel; Prada, Justina; Bianchini, Rodolfo; Jensen-Jarolim, Erika; Queiroga, Felisbina L

    2016-01-01

    Infiltrating cells of the immune system are widely accepted to be generic constituents of tumor microenvironment. It has been well established that the development of mammary cancer, both in humans and in dogs, is associated with alterations in numbers and functions of immune cells at the sites of tumor progression. These tumor infiltrating immune cells seem to exhibit exclusive phenotypic and functional characteristics and mammary cancer cells can take advantage of signaling molecules released by them. Cancer related inflammation has an important role in mammary carcinogenesis, contributing to the acquisition of core hallmark capabilities that allow cancer cells to survive, proliferate, and disseminate. Indeed, recent studies in human breast cancer and in canine mammary tumors have identified a growing list of signaling molecules released by inflammatory cells that serve as effectors of their tumor-promoting actions. These include the COX-2, the tumor EGF, the angiogenic VEGF, other proangiogenic factors, and a large variety of chemokines and cytokines that amplify the inflammatory state. This review describes the intertwined signaling pathways shared by T-lymphocytic/macrophage infiltrates and important tissue biomarkers in both human and dog mammary carcinogenesis.

  20. THE ENHANCED GREEN FLUORESCENT PROTEIN AS A MARKER FOR HUMAN TUMOR CELLS LABELLED BY RETROVIRAL TRANSDUCTION

    Institute of Scientific and Technical Information of China (English)

    傅建新; 王玮; 白霞; 卢大儒; 阮长耿; 陈子兴

    2002-01-01

    Objective: To investigate the feasibility of marking the human tumor cells with enhanced green fluorescent protein (EGFP) in vitro. Methods: The retroviral vector LGSN encoding EGFP was constructed and three human tumor cell lines were infected with LGSN amphotropic virus. Tumor cell lines that stably express EGFP were selected with G418. The integration and expression of EGFP gene were analyzed by polymerase chain reaction, and flow cytometry (FCM). Results: After gene transfection and ping-pong transduction, amphotropic producer line Am12/LGSN was generated with a stable green fluorescence signal readily detectable by FCM in up to 97% of examined cells. The viral titer in the supernatants was up to 8.2×105CFU/ml. After transduction and selection, G418-resistant leukemia K562, mammary carcinoma MCF-7, and bladder cancer 5637 cells were developed, in which the integration of both EGFP and neomycin resistance gene was confirmed by DNA amplification. In comparison with uninfected cells, FCM analysis revealed EGFP expression in up to 90% (range 85.5%~90.0%) of tumor cells containing LGSN provirus. Conclusion: The retroviral vector LGSN can effectively mark the human tumor cells with a stably EGFP expression which may be in studying tumor growth, metastasis and angiogenesis.

  1. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice.

    Science.gov (United States)

    Wang, Hongwei; Venkatesh, Madhukumar; Li, Hao; Goetz, Regina; Mukherjee, Subhajit; Biswas, Arunima; Zhu, Liang; Kaubisch, Andreas; Wang, Lei; Pullman, James; Whitney, Kathleen; Kuro-o, Makoto; Roig, Andres I; Shay, Jerry W; Mohammadi, Moosa; Mani, Sridhar

    2011-08-01

    The nuclear receptor pregnane X receptor (PXR) is activated by a range of xenochemicals, including chemotherapeutic drugs, and has been suggested to play a role in the development of tumor cell resistance to anticancer drugs. PXR also has been implicated as a regulator of the growth and apoptosis of colon tumors. Here, we have used a xenograft model of colon cancer to define a molecular mechanism that might underlie PXR-driven colon tumor growth and malignancy. Activation of PXR was found to be sufficient to enhance the neoplastic characteristics, including cell growth, invasion, and metastasis, of both human colon tumor cell lines and primary human colon cancer tissue xenografted into immunodeficient mice. Furthermore, we were able to show that this PXR-mediated phenotype required FGF19 signaling. PXR bound to the FGF19 promoter in both human colon tumor cells and "normal" intestinal crypt cells. However, while both cell types proliferated in response to PXR ligands, the FGF19 promoter was activated by PXR only in cancer cells. Taken together, these data indicate that colon cancer growth in the presence of a specific PXR ligand results from tumor-specific induction of FGF19. These observations may lead to improved therapeutic regimens for colon carcinomas.

  2. Detection of cellular senescence within human invasive breast carcinomas distinguishes different breast tumor subtypes.

    Science.gov (United States)

    Cotarelo, Cristina L; Schad, Arno; Kirkpatrick, Charles James; Sleeman, Jonathan P; Springer, Erik; Schmidt, Marcus; Thaler, Sonja

    2016-11-15

    Oncogene-induced senescence is thought to act as a barrier to tumorigenesis by arresting cells at risk of malignant transformation. Nevertheless, numerous findings suggest that senescent cells may conversely promote tumor progression through the development of the senescence-associated secretome they produce. It is likely that the composition and the physiological consequences mediated by the senescence secretome are dependent on the oncogenes that trigger the senescence program. Breast cancer represents a heterogenous disease that can be divided into breast cancer subtypes due to different subsets of genetic and epigenetic abnormalities. As tumor initiation and progression of these breast cancer subtypes is triggered by diverse oncogenic stimuli, differences in the senescence secretomes within breast tumors might be responsible for tumor initiation, progression, metastasis and therapeutic response. Many studies have addressed the role of senescence as a barrier to tumor progression using murine xenograft models. However, few investigations have been performed to elucidate the degree to which senescent tumor cells are present within untreated human tumors, and if present, whether these senescent tumor cells may play a role in disease progression. In the present study we analysed the appearance of senescent cells within invasive breast cancers. Detection of cellular senescence by the use of SAβ-galactosidase (SAβ-gal) staining within invasive breast carcinoms from 129 untreated patients revealed differences in the amount of SAβ-gal+ tumor cells between breast cancer subtypes. The highest percentages of SAβ-gal+ tumor cells were found in HER2-positive and luminal A breast carcinomas whereas triple negative tumors showed either little or no positivity.

  3. Antagonism between gene therapy and epigenetic therapy on human laryngeal carcinoma tumor-bearing mice

    Institute of Scientific and Technical Information of China (English)

    LIAN Meng; WANG Qi; FANG Ju-gao; WANG Hong; FAN Er-zhong

    2013-01-01

    Background Gene therapy and epigenetic therapy have gained more attention in cancer treatment.However,the effect of a combined treatment of gene therapy and epigenetic therapy on head and neck squamous cell carcinoma have not been studied yet.To study the mechanism and clinical application,human laryngeal carcinoma cell (Hep-2) tumor-bearing mice were used.Methods A xenograft tumor model was established by the subcutaneous inoculation of Hep-2 cells in the right armpit of BALB/c nu/nu mice.The mice with well-formed tumor were randomly divided into six groups.Multisite injections of rAd-p53 and/or 5-aza-dC were used to treat tumor.Tumor growth was monitored by measuring tumor volume and growth rate.p53 and E-cadherin protein levels in tumor tissues were detected by immunohistochemical staining.The mRNA levels were monitored with FQ-PCR.Results Gene therapy was much more effective than single epigenetic therapy and combined therapy.The gene therapy group has the lowest tumor growth rate and the highest expression levels of p53 and E-cadherin.Conclusions The combined treatment of gene and epigenetic therapy is not suggested for treating head and neck carcinoma,because gene therapy shows an antagonistic effect to epigenetic therapy.However,the mechanisms of action are still unclear.

  4. Expression and effects of human telomerase RNA in testicular tumor

    Institute of Scientific and Technical Information of China (English)

    叶哲伟; 陈晓春; 杨述华; 杨秀萍; 曾汉青; 谷龙杰; 鲁功成

    2004-01-01

    @@ Human telomerase RNA (hTR) plays an important role in determining repeated telomere sequence and the expression of an antisense telomerase RNA that leads to telomere shortening and cell death.1 Using highly sensitive in situ nucleic acid hybridisation, we investigated the expression of hTR in human testicular tumours and located its cellular expression. Our study may help in elucidating the role of hTR in human testicular tumours, finding a highly sensitive diagnostic method and a target for gene therapy of testicular tumours.

  5. DNA methylation in tumour and normal mucosal tissue of head and neck squamous cell carcinoma (HNSCC) patients: new diagnostic approaches and treatment.

    Science.gov (United States)

    Laytragoon-Lewin, Nongnit; Rutqvist, Lars Erik; Lewin, Freddi

    2013-01-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Long-term survival of this patient group has been marginally improved during the last 30 years. This is due to the high recurrence rate of local primary or development of second primary tumours in the patients. We found that normal-appearing surgical margins and distant mucosal tissue of HNSCC patients contained tumour suppressor genes DNA methylation. These cells might be the progenitors of the tumour recurrences. Such molecular abnormalities in the normal-appearing mucosa tissue were not possible to detect in the clinic or by standard histopathologically analysis. To improve clinical outcome, the convenient and cost-effective molecular analysis such as methylation-specific PCR should be added to the pathological diagnosis armamentarium for HNSCC patients. The beneficial effect of antimethylating agents as additional treatment or for cancer chemoprevention, in this high-risk patient group, warrants further investigation.

  6. Annexin 1: differential expression in tumor and mast cells in human larynx cancer.

    Science.gov (United States)

    Silistino-Souza, Rosana; Rodrigues-Lisoni, Flávia C; Cury, Patricia M; Maniglia, José V; Raposo, Luis S; Tajara, Eloiza H; Christian, Helen C; Oliani, Sonia M

    2007-06-15

    Annexin 1 protein (ANXA1) expression was evaluated in tumor and mast cells in human larynx cancer and control epithelium. The effect of the exogenous ANXA1 (peptide Ac 2-26) was also examined during the cellular growth of the Hep-2 human larynx epidermoid carcinoma cell line. This peptide inhibited the proliferation of the Hep-2 cells within 144 hr. In surgical tissue specimens from 20 patients with larynx cancer, ultrastructural immunocytochemistry analysis showed in vivo down-regulation of ANXA1 expression in the tumor and increased in mast cells and Hep-2 cells treated with peptide Ac2-26. Combined in vivo and in vitro analysis demonstrated that ANXA1 plays a regulatory role in laryngeal cancer cell growth. We believe that a better understanding of the regulatory mechanisms of ANXA1 in tumor and mast cells may lead to future biological targets for the therapeutic intervention of human larynx cancer.

  7. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  8. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  9. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  10. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2015-05-01

    Full Text Available ERBB2 is an oncogenic receptor tyrosine kinase overexpressed in a subset of human breast cancer and other cancers. We recently found that human prolidase (PEPD, a dipeptidase, is a high affinity ERBB2 ligand and cross-links two ERBB2 monomers. Here, we show that recombinant human PEPD (rhPEPD strongly inhibits ERBB2-overexpressing tumors in mice, whereas it does not impact tumors without ERBB2 overexpression. rhPEPD causes ERBB2 depletion, disrupts oncogenic signaling orchestrated by ERBB2 homodimers and heterodimers, and induces apoptosis. The impact of enzymatically-inactive mutant rhPEPDG278D on ERBB2 is indistinguishable from that of rhPEPD, but rhPEPDG278D is superior to rhPEPD for tumor inhibition. The enzymatic function of rhPEPD stimulates HIF-1α and other pro-survival factors in tumors, which likely attenuates its antitumor activity. rhPEPDG278D is also attractive in that it may not interfere with the physiologic function of endogenous PEPD in normal cells. Collectively, we have identified a human protein as an inhibitory ERBB2 ligand that inhibits ERBB2-overexpressing tumors in vivo. Several anti-ERBB2 agents are on the market but are hampered by drug resistance and high drug cost. rhPEPDG278D may synergize with these agents and may also be highly cost-effective, since it targets ERBB2 with a different mechanism and can be produced in bacteria.

  11. Is IGSF1 involved in human pituitary tumor formation?

    Science.gov (United States)

    Faucz, Fabio R; Horvath, Anelia D; Azevedo, Monalisa F; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R; Wit, Jan M; Bernard, Daniel J; Stratakis, Constantine A

    2015-02-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study, we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in the sections of GH-producing adenomas, familial somatomammotroph hyperplasia, and in normal pituitary. We identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function, in two male patients and one female with somatomammotroph hyperplasia from the same family. Of 60 female controls, two carried the same variant and seven were heterozygous for other variants. Immunohistochemistry showed increased IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared with a GH-producing adenoma from a patient negative for any IGSF1 variants and with normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation.

  12. Is IGSF1 involved in human pituitary tumor formation?

    Science.gov (United States)

    Faucz, Fabio R.; Horvath, Anelia D.; Azevedo, Monalisa F.; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D.; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R.; Wit, Jan M.; Bernard, Daniel J.; Stratakis, Constantine A.

    2014-01-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in sections from GH-producing adenomas, familial somatomammotroph hyperplasia and in normal pituitary. In two male patients, and in one female, with somatomammotroph hyperplasia from the same family, we identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function. Of 60 female controls, two carried the same variant, and seven were heterozygous for other variants. Immunohistochemistry showed increase IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared to a GH-producing adenoma from a patient negative for any IGSF1 variants and to normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. PMID:25527509

  13. Tissue concentration of systemically administered antineoplastic agents in human brain tumors

    Science.gov (United States)

    Desai, Arati; Grossman, Stuart A.; Blakeley, Jaishri O.

    2014-01-01

    The blood–brain-barrier (BBB) limits the penetration of many systemic antineoplastic therapies. Consequently, many agents may be used in clinical studies and clinical practice though they may not achieve therapeutic levels within the tumor. We sought to compile the currently available human data on antineoplastic drug concentrations in brain and tumor tissue according to BBB status. A review of the literature was conducted for human studies providing concentrations of antineoplastic agents in blood and metastatic brain tumors or high-grade gliomas. Studies were considered optimal if they reported simultaneous tissue and blood concentration, multiple sampling times and locations, MRI localization, BBB status at sampling site, tumor histology, and individual subject data. Twenty-Four studies of 19 compounds were included. These examined 18 agents in contrast-enhancing regions of high-grade gliomas, with optimal data for 2. For metastatic brain tumors, adequate data was found for 9 agents. Considerable heterogeneity was found in the measurement value, tumor type, measurement timing, and sampling location within and among studies, limiting the applicability of the results. Tissue to blood ratios ranged from 0.054 for carboplatin to 34 for mitoxantrone in high-grade gliomas, and were lowest for temozolomide (0.118) and etoposide (0.116), and highest for mitoxantrone (32.02) in metastatic tumors. The available data examining the concentration of antineoplastic agents in brain and tumor tissue is sparse and limited by considerable heterogeneity. More studies with careful quantification of antineoplastic agents in brain and tumor tissue is required for the rational development of therapeutic regimens. PMID:21400119

  14. Expression of adrenomedullin 2/intermedin in human adrenal tumors and attached non-neoplastic adrenal tissues.

    Science.gov (United States)

    Morimoto, Ryo; Satoh, Fumitoshi; Murakami, Osamu; Hirose, Takuo; Totsune, Kazuhito; Imai, Yutaka; Arai, Yoichi; Suzuki, Takashi; Sasano, Hironobu; Ito, Sadayoshi; Takahashi, Kazuhiro

    2008-07-01

    Adrenomedullin 2/intermedin (AM2/IMD) is a new member of calcitonin/calcitonin gene-related peptide family. AM is expressed in various tumors including adrenocortical tumors and modulates tumor growth. The AM2/IMD expression has not been studied, however, in adrenal tumors. The expression of AM2/IMD and AM was therefore studied in human adrenal tumors and attached non-neoplastic adrenal tissues by immunocytochemistry (ICC). Immunoreactive (IR)-AM2/IMD was measured by RIA. Furthermore, the expression of AM2/IMD and its receptor components, calcitonin receptor-like receptor (CRLR), and receptor activity-modifying proteins (RAMPs) 1, 2, and 3 mRNA in these tissues was studied by reverse transcription PCR (RT-PCR). ICC showed that AM2/IMD and AM immunoreactivities were localized in adrenocortical tumors and pheochromocytomas. AM2/IMD and AM immunoreactivities were detected in medulla of attached non-neoplastic tissues, while the degree of immunoreactivity for AM2/IMD and AM in cortices of attached adrenals was relatively weak or undetectable. RIA detected IR-AM2/IMD in adrenal tumors (0.414+/-0.12 to 0.786+/-0.27 pmol/g wet weight, mean+/-S.E.M.) and attached adrenal tissues (0.397+/-0.052 pmol/g wet weight). Reverse-phase high-performance liquid chromatography showed one broad peak eluted in the similar position to synthetic AM2/IMD with several minor peaks. RT-PCR showed expression of AM2/IMD, CRLR, and RAMP1, RAMP2, and RAMP3 mRNA in tissues of adrenal tumors and attached adrenal glands. In conclusion, AM2/IMD is expressed in human adrenal tumors and attached non-neoplastic adrenal tissues and may play (patho-)physiological roles in normal and neoplastic adrenals as an autocrine/paracrine regulator.

  15. Generation of neuronal progenitor cells in response to tumors in the human brain.

    Science.gov (United States)

    Macas, Jadranka; Ku, Min-Chi; Nern, Christian; Xu, Yuanzhi; Bühler, Helmut; Remke, Marc; Synowitz, Michael; Franz, Kea; Seifert, Volker; Plate, Karl H; Kettenmann, Helmut; Glass, Rainer; Momma, Stefan

    2014-01-01

    Data from transgenic mouse models show that neuronal progenitor cells (NPCs) migrate toward experimental brain tumors and modulate the course of pathology. However, the pathways whereby NPCs are attracted to CNS neoplasms are not fully understood and it is unexplored if NPCs migrate toward brain tumors (high-grade astrocytomas) in humans. We analyzed the tumor-parenchyma interface of neurosurgical resections for the presence of (NPCs) and distinguished these physiological cells from the tumor mass. We observed that polysialic acid neural cell adhesion molecule-positive NPCs accumulate at the border of high-grade astrocytomas and display a marker profile consistent with immature migratory NPCs. Importantly, these high-grade astrocytoma-associated NPCs did not carry genetic aberrations that are indicative of the tumor. Additionally, we observed NPCs accumulating in CNS metastases. These metastatic tumors are distinguished from neural cells by defined sets of markers. Transplanting murine glioma cells embedded in a cell-impermeable hollow fiber capsule into the brains of nestin-gfp reporter mice showed that diffusible factors are sufficient to induce a neurogenic reaction. In vitro, vascular endothelial growth factor (VEGF) secreted from glioma cells increases the migratory and proliferative behavior of adult human brain-derived neural stem and progenitor cells via stimulation of VEGF receptor-2 (VEGFR-2). In vivo, inhibiting VEGFR-2 signaling with a function-blocking antibody led to a reduction in NPC migration toward tumors. Overall, our data reveal a mechanism by which NPCs are attracted to CNS tumors and suggest that NPCs accumulate in human high-grade astrocytomas.

  16. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  17. Decline of lactate in tumor tissue after ketogenic diet: in vivo microdialysis study in patients with head and neck cancer.

    Science.gov (United States)

    Schroeder, U; Himpe, B; Pries, R; Vonthein, R; Nitsch, S; Wollenberg, B

    2013-01-01

    In head and neck squamous cell carcinoma (HNSCC) aerobic glycolysis is the key feature for energy supply of the tumor. Quantitative microdialysis (μD) offers an online method to measure parameters of the carbohydrate metabolism in vivo. The aim was to standardize a quantitative μD-study in patients with HNSCC and to prove if a ketogenic diet would differently influence the carbohydrate metabolism of the tumor tissue. Commercially available 100 kDa-CMA71-μD- catheters were implanted in tumor-free and in tumor tissue in patients with HNSCC for simultaneous measurements up to 5 days. The metabolic pattern and circadian rhythm of urea, glucose, lactate, and pyruvate was monitored during 24 h of western diet and subsequent up to 4 days of ketogenic diet. After 3 days of ketogenic diet the mean lactate concentration declines to a greater extent in the tumor tissue than in the tumor-free mucosa, whereas the mean glucose and pyruvate concentrations rise. The in vivo glucose metabolism of the tumor tissue is clearly influenced by nutrition. The decline of mean lactate concentration in the tumor tissue after ketogenic diet supports the hypothesis that HNSCC tumor cells might use lactate as fuel for oxidative glucose metabolism.

  18. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  19. Squalamine treatment of human tumors in nu/nu mice enhances platinum-based chemotherapies.

    Science.gov (United States)

    Williams, J I; Weitman, S; Gonzalez, C M; Jundt, C H; Marty, J; Stringer, S D; Holroyd, K J; Mclane, M P; Chen, Q; Zasloff, M; Von Hoff, D D

    2001-03-01

    Squalamine, an antiangiogenic aminosterol, is presently undergoing Phase II clinical trials in cancer patients. To broaden our understanding of the clinical potential for squalamine, this agent was evaluated in nu/nu mouse xenograft models using the chemoresistant MV-522 human non-small cell lung carcinoma and the SD human neuroblastoma lines. Squalamine was studied alone and in combination with either cisplatin or paclitaxel plus carboplatin. Squalamine alone produced a modest MV-522 tumor growth inhibition (TGI) and yielded a TGI with cisplatin that was better than cisplatin alone. Squalamine also significantly enhanced the activity of paclitaxel/carboplatin combination therapy in the MV-522 tumor model. Squalamine similarly improved the effectiveness of cisplatin in producing TGI when screened against the SD human neuroblastoma xenograft. Xenograft tumor shrinkage was seen for the MV-522 tumor in combination treatments including squalamine, whereas no tumor shrinkage was seen when squalamine was omitted from the treatment regimen. To gain a greater understanding of the mechanism by which squalamine inhibited tumor growth in the xenograft studies, in vitro experiments were carried out with vascular endothelial growth factor-stimulated human umbilical vein endothelial cells in culture exposed to squalamine. Squalamine treatment was found to retard two cellular events necessary for angiogenesis, inducing disorganization of F-actin stress fibers and causing a concomitant reduction of detectable cell the surface molecular endothelial cadherin (VE-cadherin). We propose that the augmentation by squalamine of cytotoxicity from platinum-based therapies is attributable to interference by squalamine with the ability of stimuli to promote endothelial cell movement and cell-cell communication necessary for growth of new blood vessels in xenografts after chemotherapeutic injury to the tumor.

  20. [Human single chain antibodies directed to tumor necrosis factor].

    Science.gov (United States)

    Vikhrova, M A; Batanova, T A; Lebedev, L R; Shingarova, L N; Frank, L A; Kirpichnikov, M P; Tikunova, N V

    2011-01-01

    Six unique phage antibodies to human TNF have been selected from a combinatorial library of human single chain fragment variable. ELISA and Western-blotting was used to study selected phage antibodies binding with TNF. The specificity of selected antibodies was determined by binding with interferon alpha and gamma, bovine serum albumin, ovalbumin and ubiquitin. Two antibodies, sA1 and sB3, were converted into a soluble single-chain antibody form and their affinity was 2.5 and 13.7 nM respectively.

  1. Systemic interleukin 2 therapy for human prostate tumors in a nude mouse model.

    Science.gov (United States)

    Triest, J A; Grignon, D J; Cher, M L; Kocheril, S V; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J E; Hillman, G G

    1998-08-01

    Once the regional lymph nodes become involved in prostate carcinoma, 85% of patients develop distant metastases within 5 years, and metastatic disease is difficult to treat. We have investigated the effect of systemic interleukin 2 (IL-2) treatment on metastatic prostate carcinoma using a xenograft tumor model. Cells from a PC-3/IF cell line, produced by intrafemoral injection of human PC-3 prostate carcinoma cells, were injected in the prostate of Balb/c nude mice. Prostate tumors and para-aortic lymph nodes were resected, and tumor cells were recultured and passaged in the prostate in vivo to produce new cell lines. On day 6 following prostatic injection of these cell lines, mice were treated with i.p. injections of IL-2 at 25,000-50,000 units/ day for 5 consecutive days. The effect of IL-2 on tumor progression was assessed, and histological studies were performed on prostate tumor and lymph node sections. The tumor cell lines generated by serial prostate injection were tumorigenic and metastasized to regional para-aortic lymph nodes. Tumors of 0.4 cm were obtained by day 16 and grew to 1-1.5 cm by day 40 with metastasis to para-aortic lymph nodes. Following two to three weekly courses of 5 days of 25,000-40,000 units/day of IL-2, the growth of prostate tumors was inhibited by 94%. Higher doses of 50,000 units/ day were toxic. Histologically, prostate sections showed vascular damage manifested by multifocal hemorrhages and an influx of lymphocytes and polymorphonuclear cells into disintegrating tumors and areas of necrosis containing numerous apoptotic cells. In contrast to control mice, para-aortic lymph nodes were not enlarged in responding mice. These findings suggest that systemic IL-2 therapy can induce an antitumor response in prostate tumors and control their growth and metastasis.

  2. Systemic Lipoplatin infusion results in preferential tumor uptake in human studies.

    Science.gov (United States)

    Boulikas, Teni; Stathopoulos, Georgios P; Volakakis, Nikolaos; Vougiouka, Maria

    2005-01-01

    Lipoplatin, a liposomal formulation of cisplatin, was developed with almost negligible nephrotoxicity, ototoxicity and neurotoxicity, as demonstrated in preclinical and Phase I human studies. A polyethylene-glycol coating of the liposome nanoparticles is supposed to result in tumor accumulation of the drug by extravasation through the altered tumor vasculature. We explored the hypothesis that intravenous infusion of Lipoplatin results in tumor targeting in four independent patient cases (one with hepatocellular adenocarcinoma, two with gastric cancer and one with colon cancer) who underwent Lipoplatin infusion followed by a prescheduled surgery approximately 20 h later. Direct measurement of the platinum levels in specimens from the excised tumors and normal tissues showed that the total platinum levels were on average 10-50 times higher in malignant tissue compared to the adjacent normal tissue specimens; most effective targeting was observed in colon cancer, with an accumulation up to 200-fold higher in colon tumors compared to normal colon tissue. Of the several surgical specimens, gastric tumors displayed the highest levels of total platinum suggesting Lipoplatin as a candidate anticancer agent for gastric tumors; gastric tumor specimens had up to 260 micrograms platinum /g tissue, that was higher than any tissue level in animals treated at much higher doses. Fat tissue displayed a high accumulation of total platinum in surgical specimens in three different patients, correlating to the lipid capsule of cisplatin in its Lipoplatin formulation. It was also inferred that normal tissue had more platinum trapped in the tissue but not reacted with macromolecules, whereas tumor tissue displayed platinum that reacted with cellular macromolecules; the data were consistent with a model where Lipoplatin damages more tumor compared to normal cells. In conclusion, Lipoplatin has the ability to preferentially concentrate in malignant tissue both of primary and metastatic

  3. Tumor necrosis factor-alpha modulates human in vivo lipolysis

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Fischer, Christian P; Ibfelt, Tobias;

    2008-01-01

    in lipolysis, increasing circulatory free fatty acid (FFA) levels. SUBJECTS AND METHODS: Using a randomized controlled, crossover design, healthy young male individuals (n = 10) received recombinant human (rh) TNF-alpha (700 ng/m(-2).h(-1)) for 4 h, and energy metabolism was evaluated using a combination...

  4. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

    Science.gov (United States)

    Liu, Huiping; Patel, Manishkumar R.; Prescher, Jennifer A.; Patsialou, Antonia; Qian, Dalong; Lin, Jiahui; Wen, Susanna; Chang, Ya-Fang; Bachmann, Michael H.; Shimono, Yohei; Dalerba, Piero; Adorno, Maddalena; Lobo, Neethan; Bueno, Janet; Dirbas, Frederick M.; Goswami, Sumanta; Somlo, George; Condeelis, John; Contag, Christopher H.; Gambhir, Sanjiv Sam; Clarke, Michael F.

    2010-01-01

    To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy. PMID:20921380

  5. Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo

    Science.gov (United States)

    Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.

    2012-01-01

    Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606

  6. Purification of human immunoglobulin G autoantibodies to tumor necrosis factor using affinity chromatography and magnetic separation.

    Science.gov (United States)

    Sennikov, S V; Golikova, E A; Kireev, F D; Lopatnikova, J A

    2013-04-30

    Autoantibodies to cytokines are important biological effector molecules that can regulate cytokine activities. The aim of the study was to develop a protocol to purify autoantibodies to tumor necrosis factor from human serum, for use as a calibration material to determine the absolute content of autoantibodies to tumor necrosis factor by enzyme-linked immunosorbent assay. The proposed protocol includes a set of affinity chromatography methods, namely, Bio-Gel P6DG sorbent to remove albumin from serum, Protein G Sepharose 4 Fast Flow to obtain a total immunoglobulin G fraction of serum immunoglobulins, and Affi-Gel 15 to obtain specifically antibodies to tumor necrosis factor. The addition of a magnetic separation procedure to the protocol eliminated contaminant tumor necrosis factor from the fraction of autoantibodies to tumor necrosis factor. The protocol generated a pure fraction of autoantibodies to tumor necrosis factor, and enabled us to determine the absolute concentrations of different subclasses of immunoglobulin G autoantibodies to tumor necrosis factor in apparently healthy donors.

  7. PIAS3 expression in human gastric carcinoma and its adjacent non-tumor tissues.

    Science.gov (United States)

    Liu, Liang-ming; Yan, Ming-guo; Yang, Dao-hua; Sun, Wei-wei; Zhang, Ji-xiang

    2011-05-01

    PIAS3 is the endogenous inhibitor of STAT3, which has been implicated in the pathogenesis of many cancers. However, the effect of PIAS3 on human tumors remains elusive. The aim of this article is to investigate the expression of PIAS3 in gastric carcinoma and its adjacent non-tumor tissues. Samples were taken from 30 patients with gastric cancer, which included tumor or non-tumor tissues in the excised sections. The expression of PIAS3 protein was detected by immunocytochemistry, and that of mRNA by in situ hybridization. The results were semi-quantitative analyzed by using cell count and color depth to stage. The expression levels of PIAS3 protein and mRNA were significantly lower in gastric cancerous tissues than in its adjacent non-tumor tissues, and had a close relation with tumor size and differentiation, but not with age, gender and lymphatic metastasis in gastric carcinoma. The more large in size and poorly in differentiation, the more low PIAS3 expression was. Loss of PIAS3 expression may be an important characteristic of gastric cancer and suggest vicious degree of the tumor. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy

    Directory of Open Access Journals (Sweden)

    Rogerio M. Castilho

    2017-07-01

    Full Text Available Head and neck squamous carcinoma (HNSCC is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs, a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.

  9. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  10. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness.

    Science.gov (United States)

    Singh, Lata; Nag, Tapas C; Kashyap, Seema

    2016-05-01

    Retinoblastoma still represents a challenge for pediatric tumors. Mitochondria have been implicated in tumor progression, cell differentiation, and apoptotic pathways. Electron microscopy allows the study of mitochondrial morphology and it is still debated in human retinoblastoma. Demographic, clinical, and histopathological parameters were recorded in 17 enucleated retinoblastoma specimens. Hematoxylin and eosin staining was performed to study tumor characteristics and the extent of invasion in ocular structures. The aim of this study was to describe and analyze the mitochondrial morphology in human retinoblastoma by transmission electron microscopy (TEM). There was a male preponderance in our study. Ages ranged from 2 to 78 months. Histopathological analysis revealed that 15 (88.2 %) tumors were poorly differentiated retinoblastomas. Massive choroidal invasion was the most frequent histopathological high-risk factor among the others. Histopathological high-risk factors were found in 7/17 (41.1 %) cases. Tumor samples of all patients were examined by means of TEM. All cases showed tumor cells with high nucleocytoplasmic ratio. Poorly differentiated retinoblastoma cases showed fewer mitochondria, scant cytoplasm, disorganized organelles (mitochondria), and necrosis, whereas well-differentiated retinoblastomas had larger number of mitochondria and more organized organelles. However, there was no significant difference in mitochondrial changes between invasive and noninvasive tumors. Our study observed that cristolysis and swollen mitochondria were more frequent in retinoblastoma tumors. Understanding the structural and functional characteristics of mitochondria in retinoblastoma might be essential for the design of future therapeutic strategies. The authors have no proprietary or commercial interest in any materials discussed in this article.

  11. ras activation in human tumors and in animal model systems

    Energy Technology Data Exchange (ETDEWEB)

    Corominas, M.; Sloan, S.R.; Leon, J.; Kamino, Hideko; Newcomb, E.W.; Pellicer, A. (New York Univ. Medical Center, New York (United States))

    1991-06-01

    Environmental agents such as radiation and chemicals are known to cause genetic damage. Alterations in a limited set of cellular genes called proto-oncogenes lead to unregulated proliferation and differentiation. The authors have studied the role of the ras gene family in carcinogenesis using two different animal models. In one case, thymic lymphomas were induced in mice by either gamma or neutron radiation, and in the other, keratoacanthomas were induced in rabbit skin with dimethylbenzanthracene. Human keratoacanthomas similar to the ones induced in rabbits were also analyzed. They found that different types of radiation such as gamma rays and neutrons, induced different point mutations in ras genes. A novel K-ras mutation in codon 146 has been found in thymic lymphomas induced by neutrons. Keratoacanthomas induced in rabbit skin by dimethylbenzanthracene show a high frequency of H-ras-activated genes carrying a mutation in codon 61. The same is observed in human keratoacanthomas, although mutations are in both the 12th and the 61st codons of the H-ras gene. H-ras activation is less frequent in human squamous cell carcinomas than in keratoacanthomas, suggesting that ras genes could play a role in vivo in differentiation as well as in proliferation.

  12. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  13. Assessment of Tumor Stiffness With Shear Wave Elastography in a Human Prostate Cancer Xenograft Implantation Model.

    Science.gov (United States)

    Wang, Yiru; Yao, Binwei; Li, Hongfei; Zhang, Yan; Gao, Hanjing; Gao, Yabin; Peng, Ruiyun; Tang, Jie

    2017-05-01

    To investigate the stiffness of human prostate cancer in a xenograft implantation model using shear wave elastography and compare the pathologic features of tumors with varying elasticity. Human prostate cancer DU-145 cells were injected into 24 nude male mice. The mice were divided into 3 groups according to the time of transplantation (6, 8, and 10 weeks). The volume, elasticity, and Young modulus of tumors were recorded by 2-dimensional sonography and shear wave elastography. The tumors were collected for pathologic analyses: hematoxylin-eosin staining, Ponceau S, and aniline staining were used to stain collagen and elastic fibers, and picric acid-sirius red staining was used to indicate type I and III collagen. The area ratios of collagen I/III were calculated. The correlation between the Young modulus of the tumor and area ratio of collagen I/III were evaluated. Immunohistochemistry of vimentin and α-smooth muscle actin was performed. Nineteen tumors in 3 groups were collected. The volume and mean Young modulus increased with the time of transplantation. There were more collagen fibers in the stiff tumors, and there were significant differences in the area ratios of collagen I/III between groups 1 (mean ± SD, 0.50 ± 0.17) and 3 (1.97 ± 0.56; P prostate cancer xenograft implantation tumors. Collagen fibers, especially collagen type I, play a crucial role in the elasticity in the human prostate cancer xenograft implantation model. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Is human hepatocellular carcinoma a hormone-responsive tumor?

    Institute of Scientific and Technical Information of China (English)

    Massimo Di Maio; Bruno Daniele; Sandra Pignata; Ciro Gallo; Ermelinda De Maio; Alessandro Morabito; Maria Carmela Piccirillo; Francesco Perrone

    2008-01-01

    Before the positive results recently obtained with multitarget tyrosine kinase inhibitor sorafenib, there was no standard systemic treatment for patients with advanced hepatocellular carcinoma (HCC). Sex hormones receptors are expressed in a significant proportion of HCC samples. Following preclinical and epidemiological studies supporting a relationship between sex hormones and HCC tumorigenesis, several randomized controlled trials (RCTs) tested the efficacy of the anti-estrogen tamoxifen as systemic treatment. Largest among these trials showed no survival advantage from the administration of tamoxifen, and the recent Cochrane systematic review produced a completely negative result. This questions the relevance of estrogen receptor-mediated pathways in HCC. However, a possible explanation for these disappointing results is the lack of proper patients selection according to sex hormones receptors expression, but unfortunately the interaction between this expression and efficacy of tamoxifen has not been studied adequately. It has been also proposed that negative results might be explained if tamoxifen acts in HCC via an estrogen receptor-independent pathway, that requires higher doses than those usually administered, but an Asian RCT conducted to assess dose-response effect was completely negative. Interesting, preliminaryresults have been obtained when hormonal treatment (tamoxifen or megestrol) has been selected according to the presence of wild-type or variant estrogen receptors respectively, but no large RCTs are available to support this strategy. Negative results have been obtained also with anti-androgen therapy. In conclusion, there is no robust evidence to consider HCC a hormone-responsive tumor. Hormonal treatments should not be part of the current management of HCC.

  15. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location.

    Directory of Open Access Journals (Sweden)

    Tejas S Tirodkar

    Full Text Available Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus. Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015, yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.

  16. Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.

    Science.gov (United States)

    Johnson, Hannah; Del Rosario, Amanda M; Bryson, Bryan D; Schroeder, Mark A; Sarkaria, Jann N; White, Forest M

    2012-12-01

    Glioblastoma multiforme (GBM) is a malignant primary brain tumor with a mean survival of 15 months with the current standard of care. Genetic profiling efforts have identified the amplification, overexpression, and mutation of the wild-type (wt) epidermal growth factor receptor tyrosine kinase (EGFR) in ≈ 50% of GBM patients. The genetic aberration of wtEGFR is frequently accompanied by the overexpression of a mutant EGFR known as EGFR variant III (EGFRvIII, de2-7EGFR, ΔEGFR), which is expressed in 30% of GBM tumors. The molecular mechanisms of tumorigenesis driven by EGFRvIII overexpression in human tumors have not been fully elucidated. To identify specific therapeutic targets for EGFRvIII driven tumors, it is important to gather a broad understanding of EGFRvIII specific signaling. Here, we have characterized signaling through the quantitative analysis of protein expression and tyrosine phosphorylation across a panel of glioblastoma tumor xenografts established from patient surgical specimens expressing wtEGFR or overexpressing wtEGFR (wtEGFR+) or EGFRvIII (EGFRvIII+). S100A10 (p11), major vault protein, guanylate-binding protein 1(GBP1), and carbonic anhydrase III (CAIII) were identified to have significantly increased expression in EGFRvIII expressing xenograft tumors relative to wtEGFR xenograft tumors. Increased expression of these four individual proteins was found to be correlated with poor survival in patients with GBM; the combination of these four proteins represents a prognostic signature for poor survival in gliomas. Integration of protein expression and phosphorylation data has uncovered significant heterogeneity among the various tumors and has highlighted several novel pathways, related to EGFR trafficking, activated in glioblastoma. The pathways and proteins identified in these tumor xenografts represent potential therapeutic targets for this disease.

  17. An active learning approach for rapid characterization of endothelial cells in human tumors.

    Directory of Open Access Journals (Sweden)

    Raghav K Padmanabhan

    Full Text Available Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67 and activity in important signal transduction pathways (MAP kinase, STAT3 in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

  18. Annexin 1: differential expression in tumor and mast cells in human larynx cancer

    OpenAIRE

    Silistino-Souza, Rosana [UNESP; RODRIGUES-LISONI, Flavia C.; CURY, Patricia M.; MANIGLIA, Jose V.; Raposo, Luis S.; Eloiza H. Tajara; Christian, Helen C.; Oliani, Sonia Maria

    2007-01-01

    Annexin 1 protein (ANXA1) expression was evaluated in tumor and mast cells in human larynx cancer and control epithelium. The effect of the exogenous ANXA1 (peptide Ac 2-26) was also examined during the cellular growth of the Hep-2 human larynx epidermoid carcinoma cell line. This peptide inhibited the proliferation of the Hep-2 cells within 144 hr. In surgical tissue specimens from 20 patients with larynx cancer, ultrastructural immunocytochemistry analysis showed in vivo down-regulation of ...

  19. DNA double-strand break rejoining in human follicular lymphoma and glioblastoma tumor cells

    NARCIS (Netherlands)

    Macann, AMJ; Britten, RA; Poppema, S; Pearcey, R; Rosenberg, E; Allalunis-Turner, MJ; Murray, D

    2000-01-01

    Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the exten

  20. Molecular characterization of a recurring complex chromosomal translocation in two human extragonadal germ cell tumors.

    NARCIS (Netherlands)

    Sinke, R J; Weghuis, D O; Suijkerbuijk, R F; Tanigami, A; Nakamura, Y; Larsson, C; Weber, G; Jong, B de; Oosterhuis, J W; Molenaar, W M

    1994-01-01

    The molecular characterization of a recurring complex chromosomal translocation involving 6p21, 6p22, 6q23, and 11q13 in two independent but similar extragonadal human germ cell tumors was initiated using fluorescence in situ hybridization (FISH) and pulse field gel electrophoresis (PFGE) techniques

  1. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  2. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  3. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas.

    Science.gov (United States)

    Anderson, Ryan T; Keysar, Stephen B; Bowles, Daniel W; Glogowska, Magdalena J; Astling, David P; Morton, J Jason; Le, Phuong; Umpierrez, Adrian; Eagles-Soukup, Justin; Gan, Gregory N; Vogler, Brian W; Sehrt, Daniel; Takimoto, Sarah M; Aisner, Dara L; Wilhelm, Francois; Frederick, Barbara A; Varella-Garcia, Marileila; Tan, Aik-Choon; Jimeno, Antonio

    2013-10-01

    The dual pathway inhibitor rigosertib inhibits phosphoinositide 3-kinase (PI3K) pathway activation as well as polo-like kinase 1 (PLK1) activity across a broad spectrum of cancer cell lines. The importance of PIK3CA alterations in squamous cell carcinoma of the head and neck (HNSCC) has raised interest in exploring agents targeting PI3K, the product of PIK3CA. The genetic and molecular basis of rigosertib treatment response was investigated in a panel of 16 HNSCC cell lines, and direct patient tumor xenografts from eight patients with HNSCC [four HPV-serotype16 (HPV16)-positive]. HNSCC cell lines and xenografts were characterized by pathway enrichment gene expression analysis, exon sequencing, gene copy number, Western blotting, and immunohistochemistry (IHC). Rigosertib had potent antiproliferative effects on 11 of 16 HPV(-) HNSCC cell lines. Treatment sensitivity was confirmed in two cell lines using an orthotopic in vivo xenograft model. Growth reduction after rigosertib treatment was observed in three of eight HNSCC direct patient tumor lines. The responsive tumor lines carried a combination of a PI3KCA-activating event (amplification or mutation) and a p53-inactivating event (either HPV16- or mutation-mediated TP53 inactivation). In this study, we evaluated the in vitro and in vivo efficacy of rigosertib in both HPV(+) and HPV(-) HNSCCs, focusing on inhibition of the PI3K pathway. Although consistent inhibition of the PI3K pathway was not evident in HNSCC, we identified a combination of PI3K/TP53 events necessary, but not sufficient, for rigosertib sensitivity.

  4. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  5. Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance.

    Science.gov (United States)

    Hess, Julia; Unger, Kristian; Orth, Michael; Schötz, Ulrike; Schüttrumpf, Lars; Zangen, Verena; Gimenez-Aznar, Igor; Michna, Agata; Schneider, Ludmila; Stamp, Ramona; Selmansberger, Martin; Braselmann, Herbert; Hieber, Ludwig; Drexler, Guido A; Kuger, Sebastian; Klein, Diana; Jendrossek, Verena; Friedl, Anna A; Belka, Claus; Zitzelsberger, Horst; Lauber, Kirsten

    2017-02-01

    Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.

  6. Lysophosphatidic acid acyltransferase β (LPAATβ promotes the tumor growth of human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Farbod Rastegar

    Full Text Available BACKGROUND: Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2 in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This

  7. Overexpression of the human major vault protein in astrocytic brain tumor cells.

    Science.gov (United States)

    Berger, W; Spiegl-Kreinecker, S; Buchroithner, J; Elbling, L; Pirker, C; Fischer, J; Micksche, M

    2001-11-01

    Evidence has shown that the major human vault protein (MVP), which is identical to lung resistance-related protein (LRP), may be causally involved in a special type of multidrug resistance (MDR). The purpose of this study was to investigate the expression and cellular localization of MVP in cells derived from brain tumors and other tumors of neuroectodermal origin. Using both established cell lines (n = 22) and primary explants (n = 30), we show that a distinct overexpression of the MVP gene at the mRNA (RT-PCR) and protein (Western blot) levels is a characteristic feature of cells derived from astrocytic brain tumors. Primary cultures obtained from meningioma specimens also expressed high MVP levels, in contrast to neuroblastoma and medulloblastoma cells, which rarely contained detectable amounts of MVP. Normal human astrocytes cultured in vitro expressed MVP, although at low amounts compared with most malignant cell types. Basal MVP expression correlated with resistance against diverse antineoplastic drugs including anthracyclins, cisplatin and etoposide. By Western blot, MVP was also detected in all tumor samples taken from 7 glioma and 3 meningioma patients. Taken together, these data suggest overexpression of MVP as one explanation for the low efficacy of chemotherapeutic treatment of astrocytic brain tumors. Copyright 2001 Wiley-Liss, Inc.

  8. Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor

    Directory of Open Access Journals (Sweden)

    Zhao Junfeng

    2012-03-01

    Full Text Available Abstract The testicular yolk sac tumor (TYST is the most common neoplasm originated from germ cells differentiated abnormally, a major part of pediatric malignant testicular tumors. The present study aimed at developing and validating the in vitro and vivo models of TYST and evaluating the sensitivity of TYST to treatments, by cloning human TYST cells and investigating the histology, ultra-structure, growth kinetics and expression of specific proteins of cloned cells. We found biological characteristics of cloned TYST cells were similar to the yolk sac tumor and differentiated from the columnar to glandular-like or goblet cells-like cells. Chromosomes for tumor identification in each passage met nature of the primary tumor. TYST cells were more sensitive to all-trans-retinoic acid which had significantly inhibitory effects on cell proliferation. Cisplatin induced apoptosis of TYST cells through the activation of p53 expression and down-regulation of Bcl- expression. Thus, we believe that cloned TYST cells and the animal model developed here are useful to understand the molecular mechanism of TYST cells and develop potential therapies for human TYST.

  9. Monoclonal antibodies to human colorectal tumor-associated antigens: improved elicitation and subclass restriction.

    Science.gov (United States)

    Morgan, A C; Woodhouse, C S; Knost, J A; Abrams, P G; Clarke, G C; Arthur, L O; McIntyre, R; Ochs, J J; Foon, K A; Oldham, R K

    1984-01-01

    Monoclonal antibodies to tumor-associated antigens (TAA) of human colorectal cancer were elicited using immunosorbents of lectins combined with peripheral protein extracts of xenografted colon adenocarcinoma. This method of immunization was compared with whole cells from surgical specimens and to crude membranes from xenografted tumors. The immunosorbent immunogens were superior to the other immunogens in three ways: (1) the number of hybrids reactive with colon tumor cells or extracts, but not with lymphoid cells or extracts, (2) the number of stable hybrids after cloning, and (3) the number of hybridoma clones reactive with tissue sections of colon tumors, but not normal colonic mucosa. In addition, lectin immunosorbents elicited primarily IgG antibodies, especially IgG3, with almost 50% of the clones of interest reacting to seemingly less immunogenic glycoproteins. The improved elicitation of monoclonal antibodies to TAA by the use of lectin immunosorbents and peripheral protein extracts has considerable potential for generating reagents useful in diagnosis and therapy of human tumors.

  10. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  11. Combination therapy targeting the tumor microenvironment is effective in a model of human ocular melanoma

    Directory of Open Access Journals (Sweden)

    Schafer Peter H

    2007-07-01

    Full Text Available Abstract Background Ocular melanoma is the leading intraocular malignancy. There is no effective treatment for metastatic ocular melanoma. We sought a treatment targeting the tumor microenvironment as well as the tumor cells. Methods Migration of HUVEC cells, the ability of HUVEC cells to form tubes, and proliferative capacity of a human ocular melanoma cell line were tested in the presence of lenalidomide and sorafenib alone and in combination. The compounds were also tested in a rat aortic ring assay and were tested in a highly aggressive human ocular melanoma xenograft model. Results Lenalidomide and Sorafenib inhibit HUVEC ability to migrate and form tubes and when used in combination the inhibition is increased. The agents alone and in combination inhibit outgrowth in the rat aortic ring model. The combination of the agents improved the inhibition over either single agent. In a xenograft model, combination therapy inhibited tumor growth over inhibition by single agent alone in a significant fashion (p Conclusion Lenalidomide and sorafenib are effective at targeting endothelial cells, inhibiting growth of ocular melanoma cells and can inhibit growth of tumors in a xenograft model as well as inhibit development of metastases. Combining these agents works in an additive to synergistic way to inhibit the growth of tumors and development of metastases.

  12. Construction of Human ScFv Phage Display Library against Ovarian Tumor

    Institute of Scientific and Technical Information of China (English)

    XIA Jinsong; BI Hao; YAO Qin; QU Shen; ZONG Yiqiang

    2006-01-01

    In order to construct a single chain fragment variable (ScFv) phage display library against ovarian tumor, by using RT-PCR, the human heavy chain variable region genes (VH) and light chain variable region genes (VL) were amplified from lymphocytes of ovarian tumor patients and subsequently assembled into ScFv genes by SOE. The resulting ScFv genes were electrotransformed into E.coli TG1 and amplified with the co-infection of helper phage M13KO7 to obtain phage display library. The capacity and titer of the resulting library were detected. The phage antibody library with a capacity of approximately 3 × 109 cfu/μg was obtained. After amplification with helper phage, the titer of antibody library reached 5 × 1012 cfu/mL. Human ScFv library against ovarian tumor was constructed successfully, which laid a foundation for the screening of ovarian tumor specific ScFv for the radioimmunoimaging diagnosis of ovarian tumor.

  13. Genetic alteration of poly(ADP-ribose) polymerase-1 in human germ cell tumors.

    Science.gov (United States)

    Shiokawa, Motoko; Masutani, Mitsuko; Fujihara, Hisako; Ueki, Keisuke; Nishikawa, Ryo; Sugimura, Takashi; Kubo, Harumi; Nakagama, Hitoshi

    2005-02-01

    Accumulated evidence suggests that poly(ADP-ribose) polymerase-1 (PARP-1) is involved in DNA repair, cell-death induction, differentiation and tumorigenesis. Parp-1 deficiency also induces trophoblast differentiation from mouse embryonic stem cells during teratocarcinoma-like tumor formation. To understand the relationship of PARP-1 dysfunction and development of germ cell tumors, we conducted a genetic analysis of the PARP-1 gene in human germ cell tumors. Sixteen surgical specimens of germ cell tumors that developed in the brain and testes were used. Two known single nucleotide polymorphisms (SNPs) (Val762Ala and Lys940Arg), which are listed in the SNP database of the NCBI (National Center for Biotechnology Information), were detected. In both cases, cSNPs encoded amino acids located within peptide stretches in the catalytic domain, which are highly conserved among various animal species. Furthermore, another novel sequence alteration, a base change of ATG to ACG, was identified in a tumor specimen, which would result in the amino acid substitution, Met129Thr. This base change was observed in one allele of both tumor and normal tissues, suggesting that it is either a rare SNP or a germline mutation of the PARP-1 gene. Notably, the amino acid Met129 is located within the second zinc finger domain, which is essential for DNA binding and is conserved among animal species. One SNP in intron 2 and one in the upstream 5'-UTR (untranslated region) were also detected.

  14. Establishment of a Tumor-bearing Mouse Model Stably Expressing EGFP Labeled Human MUC1 VNTRs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-zi; ZHANG Hai-hong; ZHANG Wa; SHI He-liang; YU Xiang-hui; KONG Wei; LI Wei

    2008-01-01

    Two eukaryotic vectors expressing 9 tandem repeats of human MUCI(VNTR),VRI012-VNTR,and pEGFP-VNTR,were constructed by cloning VNTR gene into VR1012 and pEGFP,respectively,VNTR stably expressing murine Lewis lung carcinoma(LLC) cell Iine(VNTR+ LLC) was established by Lipofectamine-mediated transfection of pEGFP-VNTR into LLC cells,The EGFP expression was observed under a fluorescent microscope and VNTR expression in VNTR+ LLC cells was confirmed by means of Western blotting,A syngenic graft tumor model was generated by subcutaneous injection of VNTR+ LLC cells into C57/BL6 mice and tumor size increased rapidly with time and in a cell number dependent manner,VNTR mRNA expression in the tumor formed was confirmed by RT-PCR.After the third immunization mice were challenged subcutaneously with 5x10 5 VNTR* LLC cells,a significant reduction of subcutaneous tumor growth was observed in the groups immunized with VNTR plasmid DNA compared with that in the groups immunized with the vector DNA alone,Thus,the suppression of subcutaneous tumor was antigen-specific,This model is useful for the development of tumor vaccines targeting MUCI VNTRs.

  15. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    Science.gov (United States)

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  16. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure.

    Directory of Open Access Journals (Sweden)

    Branka Stancevic

    Full Text Available These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT. Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x, and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors.

  17. Expression of TMEM166 protein in human normal and tumor tissues.

    Science.gov (United States)

    Xu, Dong; Yang, Fan; He, Huiying; Hu, Jia; Lv, Xiaodong; Ma, Dalong; Chen, Ying Yu

    2013-12-01

    Transmembrane protein 166 (TMEM166) is a novel human regulator involved in both autophagy and apoptosis. In this study, we generated a specific rabbit polyclonal antibody against human TMEM166 and assessed the expression of this protein in various human normal and tumor tissue samples by tissue microarray-based immunohistochemical analysis. Varying TMEM166 protein levels were expressed in a cell-type and tissue-type-specific manner in detected tissues or organs. Strong TMEM166 expression was shown in the glomerular zona of the adrenal cortex, chromophil cells of the pituitary gland, islet cells, squamous epithelium of the esophagus mucosa, the fundic gland, and hepatocytes. Moderate or weak TMEM166 staining was identified in the parathyroid gland, the testis, vaginal stratified squamous cells, lung macrophages, hematopoietic cells, renal tubular epithelial cells, macrophages in the spleen red pulp, and neuronal cells in the cerebral cortex. Some tissues failed to stain for TMEM166, such as adipose tissue, colon, cerebellum, lymph node, mammary gland, ovary, prostate, rectum, skin, small intestine, thyroid gland, tonsil, and thymus. In comparing human normal and tumor tissues, TMEM166 expression was widely downregulated in the cancer tissues. Our studies provide the basis for future investigations into cell-type-specific functions of this protein in human normal and tumor tissues.

  18. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells.

    Science.gov (United States)

    Takasawa, Ryoko; Shimada, Nami; Uchiro, Hiromi; Takahashi, Satoshi; Yoshimori, Atsushi; Tanuma, Sei-Ichi

    2016-01-01

    Human glyoxalase I (hGLO I) is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), which is the side product of tumor-specific aerobic glycolysis. GLO I has been reported to be overexpressed in various types of cancer cells, and has been expected as an attractive target for the development of new anticancer drugs. We previously discovered a novel inhibitor of hGLO I, named TLSC702, by our in silico screening method. Here, we show that TLSC702 inhibits the proliferation of human leukemia HL-60 cells and induces apoptosis in a dose-dependent manner. In addition, TLSC702 more significantly inhibits the proliferation of human lung cancer NCI-H522 cells, which highly express GLO I, than that of GLO I lower-expressing human lung cancer NCI-H460 cells. Furthermore, this antiproliferative effect of TLSC702 on NCI-H522 cells is in a dose- and time-dependent manner. These results suggest that TLSC702 can induce apoptosis in tumor cells by GLO I inhibition, which lead to accumulation of MG. Taken together, TLSC702 could become a unique seed compound for the generation of novel chemotherapeutic drugs targeting GLO I-dependent human tumors.

  19. MtDNA mutation pattern in tumors and human evolution are shaped by similar selective constraints.

    Science.gov (United States)

    Zhidkov, Ilia; Livneh, Erez A; Rubin, Eitan; Mishmar, Dan

    2009-04-01

    Multiple human mutational landscapes of normal and cancer conditions are currently available. However, while the unique mutational patterns of tumors have been extensively studied, little attention has been paid to similarities between malignant and normal conditions. Here we compared the pattern of mutations in the mitochondrial genomes (mtDNAs) of cancer (98 sequences) and natural populations (2400 sequences). De novo mtDNA mutations in cancer preferentially colocalized with ancient variants in human phylogeny. A significant portion of the cancer mutations was organized in recurrent combinations (COMs), reaching a length of seven mutations, which also colocalized with ancient variants. Thus, by analyzing similarities rather than differences in patterns of mtDNA mutations in tumor and human evolution, we discovered evidence for similar selective constraints, suggesting a functional potential for these mutations.

  20. Human BCAS3 expression in embryonic stem cells and vascular precursors suggests a role in human embryogenesis and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Kavitha Siva

    Full Text Available Cancer is often associated with multiple and progressive genetic alterations in genes that are important for normal development. BCAS3 (Breast Cancer Amplified Sequence 3 is a gene of unknown function on human chromosome 17q23, a region associated with breakpoints of several neoplasms. The normal expression pattern of BCAS3 has not been studied, though it is implicated in breast cancer progression. Rudhira, a murine WD40 domain protein that is 98% identical to BCAS3 is expressed in embryonic stem (ES cells, erythropoiesis and angiogenesis. This suggests that BCAS3 expression also may not be restricted to mammary tissue and may have important roles in other normal as well as malignant tissues. We show that BCAS3 is also expressed in human ES cells and during their differentiation into blood vascular precursors. We find that BCAS3 is aberrantly expressed in malignant human brain lesions. In glioblastoma, hemangiopericytoma and brain abscess we note high levels of BCAS3 expression in tumor cells and some blood vessels. BCAS3 may be associated with multiple cancerous and rapidly proliferating cells and hence the expression, function and regulation of this gene merits further investigation. We suggest that BCAS3 is mis-expressed in brain tumors and could serve as a human ES cell and tumor marker.

  1. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  2. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    Directory of Open Access Journals (Sweden)

    Michael Bzorek

    2013-10-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs via somatostatin receptors. Despite promising clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following treatment with PRRT, there was significantly increased tumor infiltration by CD49b+/FasL+ NK cells potentially capable of tumor killing. Further investigation into the immunomodulatory effects of PRRT will be essential in improving treatment efficacy.

  3. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  4. Common corruption of the mTOR signaling network in human tumors

    Science.gov (United States)

    Menon, Suchithra; Manning, Brendan D.

    2013-01-01

    Summary The mammalian Target of Rapamycin (mTOR) is responsive to numerous extracellular and intracellular cues and, through the formation of two physically and functionally distinct complexes, plays a central role in the homeostatic control of cell growth, proliferation and survival. Through aberrant activation of mTOR signaling, the perception of cellular growth signals becomes disconnected from the processes promoting cell growth, and this underlies the pathophysiology of a number of genetic tumor syndromes and cancers. Here, we review the oncogenes and tumor suppressors comprising the regulatory network upstream of mTOR, highlight the human cancers in which mTOR is activated, and discuss how dysregulated mTOR signaling gives tumors a selective growth advantage. In addition, we discuss why activation of mTOR, as a consequence of distinct oncogenic events, results in diverse clinical outcomes, and how the complexity of the mTOR signaling network might dictate therapeutic approaches. PMID:19956179

  5. EXPRESSION OF EPIDERMAL GROWTH FACTOR, TRANSFORMING GROWTH FACTOR-a AND THEIR RECEPTOR IN HUMAN PITUITARY TUMORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the role of growth factor autocrine stimulation in the pathogenesis of human pituitary tumors. Methods: The expression of EGF, TGF-a and EGFR were studied by immunohisto-chemical method on paraffin-embedded sections of 30 cases pituitary tumor. Results: EGFR and its ligands EGF, TGF-a expressed in majority of pituitary tumors. The expression of EGFR and its ligands varied with cells' intensity, density and type. Conclusion: The EGF autocrine stimulating exerted in the pituitary tumor development process, that tyrosine kinases inhibitors may be useful for pituitary tumors treatment.

  6. The TCD[sub 50] and regrowth delay assay in human tumor xenografts: Differences and implications

    Energy Technology Data Exchange (ETDEWEB)

    Budach, W.; Budach, V.; Stuschke, M.; Dinges, S.; Sack, H. (Univ. of Essen (Germany))

    1993-01-15

    The response to irradiation of five human xenograft cell lines - a malignant paraganglioma, a neurogenic sarcoma, a malignant histiocytoma, a primary lymphoma of the brain, and a squamous cell carcinoma - were tested in nude mice. All mice underwent 5 Gy whole body irradiation prior to xenotransplantation to minimize the residual immune response. The subcutaneous tumors were irradiated at a tumor volume of 120 mm[sup 3] under acutely hypoxic conditions with single doses between 8 Gy and 80 Gy depending on the expected radiation sensitivity of the tumor line. Endpoints of the study were the tumor control dose 50% (TCD[sub 50]) and the regrowth delay endpoints growth delay, specific growth delay, and the tumor bed effect corrected specific growth delay. Specific growth delay and corrected specific growth delay at 76% of the TCD[sub 50] was used in order to compare the data to previously published data from spheroids. The lowest TCD[sub 50] was found in the lymphoma with 24.9 Gy, whereas the TCD[sub 50] of the soft tissue sarcomas and the squamous cell carcinoma ranged from 57.8 Gy to 65.6 Gy. The isoeffective dose levels for the induction of 30 days growth delay, a specific growth delay of 3, and a corrected specific growth delay of 3 ranged from 15.5 Gy (ECL1) to 37.1 Gy (FADU), from 7.2 Gy (ENE2) to 45.6 Gy (EPG1) and from 9.2 Gy (ENE2) to 37.6 Gy (EPG1), respectively. The corrected specific growth delay at 76% of the TCD[sub 50] was correlated with the number of tumor rescue units per 100 cells in spheroids, which was available for three tumor lines, and with the tumor doubling time in xenografts (n = 5). The TCD[sub 50] values corresponded better to the clinical experience than the regrowth delay data. There was no correlation between TCD[sub 50] and any of the regrowth delay endpoints. This missing correlation was most likely a result of large differences in the number of tumor rescue units in human xenografts of the same size.

  7. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with (177)Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    DEFF Research Database (Denmark)

    Wu, Yin; Pfeifer, Andreas Klaus; Myschetzky, Rebecca;

    2013-01-01

    Peptide receptor radionuclide therapy (PRRT) is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs) via somatostatin receptors. Despite promising...... clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following...

  8. Screening of urocanic acid isomers in human basal and squamous cell carcinoma tumors compared with tumor periphery and healthy skin.

    Science.gov (United States)

    Decara, Juan Manuel; Aguilera, José; Abdala, Roberto; Sánchez, Purificación; Figueroa, Félix L; Herrera, Enrique

    2008-10-01

    Trans-urocanic acid is a major chromophore for ultraviolet (UV) radiation in human epidermis. The UV induces photoisomerization of trans-urocanic acid (tUCA) form to cis-urocanic acid (cUCA) and has been reported as an important mediator in the immunosuppression induced by UV. This immunomodulation has been recognized as an important factor related to skin cancer development. This is the first time that UCA isomers have been measured in epidermis of skin biopsies from patients with squamous cell carcinoma (SCC) and with basal cell carcinoma (BCC) and compared with the tumor periphery and biopsies of healthy photoexposed and non-photoexposed skin as controls. The UCA isomers were separated and quantified by high performance liquid chromatography. Analysis of UCA in healthy skin showed significant increase in total UCA content in non-photoexposed body sites compared with highly exposed skins. In contrast, the percentage of cUCA was higher in photoexposed body sites. Maximal levels of cUCA were found in cheek, forehead and forearm and lower levels in abdomen and thigh. No differences were found in total UCA concentration between the tumor samples and healthy photoexposed skin. However, differences were found in relation between isomers. Higher levels of cUCA were detected in SCC biopsies (44% of total UCA) compared with samples of BCC and that of healthy photoexposed skin (30%). These results suggest that the UV radiation exposure, a main factor in development of SCC can be mediated, apart from direct effect to cells (DNA damage), by immunosuppression pathways mediated by high production of cUCA.

  9. Expression of LacdiNAc Groups on N-Glycans among Human Tumors Is Complex

    Directory of Open Access Journals (Sweden)

    Kiyoko Hirano

    2014-01-01

    Full Text Available Aberrant glycosylation of proteins and lipids is one of the characteristic features of malignantly transformed cells. The GalNAcβ1 → 4GlcNAc (LacdiNAc or LDN group at the nonreducing termini of both N- and O-glycans is not generally found in mammalian cells. We previously showed that the expression level of the LacdiNAc group in N-glycans decreases dramatically during the progression of human breast cancer. In contrast, the enhanced expression of the LacdiNAc group has been shown to be associated with the progression of human prostate, ovarian, and pancreatic cancers. Therefore, the expression of the disaccharide group appears to be dependent on types of tumors. The mechanism of formation of the LacdiNAc group in human tumors and cancer cells has been studied, and two β4-N-acetylgalacto-saminyltransferases (β4GalNAcTs, β4GalNAcT3 and β4GalNAcT4, have been shown to be involved in the biosynthesis of this disaccharide group in a tissue-dependent manner. Transfection of the β4GalNAcT3 gene brought about significant changes in the malignant phenotypes of human neuroblastoma, indicating that this disaccharide group is important for suppressing the tumor growth.

  10. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    Science.gov (United States)

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.

  11. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  12. Matriptase and Human Tumors%Matriptase在人类肿瘤中的作用

    Institute of Scientific and Technical Information of China (English)

    高利娟

    2012-01-01

    Ⅱ型跨膜丝氨酸蛋白酶Matriptase与多种实体肿瘤(如乳腺癌、前列腺癌、妇科肿瘤及头颈部鳞状细胞癌等)的发生、发展密切相关.Matriptase通过激活肝细胞生长因子前体、尿激酶前体、蛋白酶激活受体2等启动一系列蛋白酶级联反应,影响肿瘤细胞的生长和黏附,促进肿瘤细胞的侵袭和迁移.此外,Matriptase与其同源性抑制剂肝细胞生长因子激活物抑制剂1比例失调后,也可导致肿瘤的发生.Matriptase在肿瘤发生、发展中的重要作用,使其有望成为肿瘤诊断的一个新指标,抑制Matriptase蛋白酶活性可能成为肿瘤治疗的新策略.%Matriptase , a member of the type Ⅱ transmembrane serine protease family, is involved in epithelium-derived solid tumors , such as breast cancer, prostate cancer, gynecology tumors , head and neck squa-mous cell carcinoma. Matriptase initiates a series of protease cascades via activation of PAR-2, pro-HGF, pro-LPA and other signaling molecules, which may promote tumor cell growth and adhesion, thereby enhancing tumor invasion and migration. The imbalance activities of Matriptase and its cognate inhibitor 11A1-1 may result in a variety of tumors. Given its important role in tumor development, Matriptase might represent a novel diagnostic marker as well as a newT therapeutic target for human tumors.

  13. Thermal survival characteristics of cell subpopulations isolated from a heterogeneous human colon tumor.

    Science.gov (United States)

    Leith, J T; Heyman, P; DeWyngaert, J K; Dexter, D L; Calabresi, P; Glicksman, A S

    1983-07-01

    Responses of a heterogeneous human colon adenocarcinoma model tumor system to in vitro hyperthermic treatment at various temperatures have been studied. This model tumor system consists of an original tumor line (DLD-1) obtained from surgical biopsy, and two derivative subpopulations termed clones A and D. These 3 tumor cell populations differ in many properties, including karyotype and DNA content, production of specific antigens, and sensitivities to other cytotoxic agents such as chemotherapeutic drugs and X-irradiation. In these experiments, exponentially growing tumor cells were exposed to hyperthermia (42.2, 42.5, 43.0, 44.0, or 45.0 degrees) for graded time periods. A single-hit, multitarget equation was used to express the dependence of survival on time at a given temperature, and values for extrapolation numbers, quasi-threshold time (min), and T0 (mean lethal time; min) were obtained for the initial regions of survival. At the lower temperatures of 42.2 and 42.5 degrees, biphasic survival curves were obtained for all three tumor lines and, as a consequence, a second mean lethal time (T0,f) was also determined for the final thermal-resistant portion of the survival curves. Using the T0 values as an index of relative resistance, values at 42.2 and 42.5 degrees indicated that, in this temperature region, the parent (DLD-1) line was the most sensitive, the clone A line showed intermediate sensitivity, and the clone D line was the most resistant. In the thermally resistant portion of the survival curve, T0 values indicated that the clone A subpopulation was the most sensitive, the DLD-1 line showed intermediate sensitivity, and the clone D tumor subpopulation remained the most resistant. At the higher temperatures of 43, 44, and 45 degrees, in which thermotolerance is not observed during heat treatment, values for T0 indicated the parent (DLD-1) tumor line was still the most sensitive tumor line, and the clone A and clone D lines showed approximately equal

  14. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  15. Establishment of multiplexed, microsphere-based flow cytometric assay for multiple human tumor markers

    Institute of Scientific and Technical Information of China (English)

    Kai SUN; Qian WANG; Xiao-hui HUANG; Mao-chuan ZHEN; Wen LI; Long-juan ZHANG

    2007-01-01

    Aim: The multiplexed, microsphere-based flow cytometric assay (MFCA) for mul- tiple human tumor markers was established for the early screening and detection of suspected cancer patients. Methods: Covalent coupling of capture antibodies directed against their respective tumor markers to fluorescent microspheres was performed by following the protocols recommended by a commercial corporation with some modifications. The coupling efficiency and cross-reactivity were iden- tified by the Luminex 100 system and associated software. The standard curve was constructed by using serial dilution of recombinant tumor marker standards and was validated by comparison with ELISA for quantifying the tumor markers in serum samples. Results: The identifications revealed that the coupling proce- dures were successful without non-specific cross-reactivity and the standard curve was highly efficient. However, it was necessary to ensure the quality con- trol of the coupling process since slight variations in the coupling procedures could profoundly affect the density of capture reagents coupled to the microspheres and consequently adversely affect the assay precision. In addition to its multi-analyte capability, the MFCA system had definite advantages, such as higher reproducibility, greater dynamic range of measurement, and considerably less preparation time and labor over the conventional "gold standard", which was the ELISA. Conclusion: The successful establishment of the MFCA system for the simultaneous detection of multiple tumor markers will provide the foundation for the further study of clinical applications.

  16. Stimulation of differentiated functions in human melanoma cells by tumor-promoting agents and dimethyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Huberman, E.; Heckman, C.; Langenbach, R.

    1979-07-01

    Treatment of cultured human HO melanoma cells with the mouse skin tumor promoter phorbol-12-myristate-13-acetate (PMA) at 5 x 10/sup -10/ to 5 x 10/sup -7/ M resulted in a dose-related inhibition of growth and a stimulation of differentiated functions. These included melanin synthesis and formation of dendrite-like structues. Higher doses of phorbol dibutyrate, a less potent tumor promoter, were required to produce an effect comparable to that of PMA for dendrite induction. Phorbol and two other phorbal esters, which lack tumor-promoting activity, were either inactive or elicited a poor response. In addition to morphological changes, treatment with PMA altered glucosamine incorporation into membrane gangliosides. After PMA treatment, glucosamine incorporation increased 8- to 10 fold in the G/sub m3/ ganglioside and decreased 2-fold in the G/sub m1/ ganglioside, as compared to phorbol or untreated control. Inhibition of cell growth and stimulation of melanin synthesis were also observed after treatment of the HO cells with dimethyl sulfoxide. Unlike the tumor-promoting agents, dimethyl sulfoxide did not induce the formation of dendrite-like structures in the cells. These findings indicate that HO melanoma cells can be stimulated into terminally differentiated cells after treatment with tumor-promoting agents such as phorbol diesters.

  17. The cytogenetic theory of the pathogenesis of human adult male germ cell tumors. Review article.

    Science.gov (United States)

    Chaganti, R S; Houldsworth, J

    1998-01-01

    Human male germ cell tumors (GCTs) represent a biological paradox because, in order to develop into a pluripotential tumor, a germ cell destined to a path of limited or no proliferation must acquire the potential for unlimited proliferation. In addition, it must acquire the ability to elicit embryonal differentiation patterns without the reciprocal inputs from fertilization and the imprinting-associated genomic changes which are a part of normal embryonal development. Although much speculated about, the genetic mechanisms underlying these properties of male GCTs remain enigmatic. Recent cytogenetic and molecular genetic analyses of these tumors are providing new insights and new testable hypotheses. Based on our recent work, we propose two such hypotheses. One relates to the mechanism of germ cell transformation and germ cell tumor development. We suggest that the invariable 12p amplification noted as early as in carcinoma in situ/intratubular germ cell neoplasia (CIS/ITGCN) lesions leads to deregulated overexpression of cyclin D2, a cell cycle G1/S checkpoint regulator with oncogeneic potential. Such overexpression reinitiates the cell cycle. We visualize this happening during the pachytene stage of meiosis through aberrant recombinational events which lead to 12p amplification. The other hypothesis relates to the origin of primary extragonadal GCTs. By comparing cytogenetic changes in primary mediastinal versus gonadal lesions, we propose that, in contrast to long-standing speculation that primary extra-gonadal tumors arise from embryonally misplaced primordial germ cells, these lesions arise from migration of transformed gonadal germ cells.

  18. Generation and tumor recognition properties of two human monoclonal antibodies specific to cell surface anionic phospholipids.

    Science.gov (United States)

    Bujak, Emil; Pretto, Francesca; Neri, Dario

    2015-08-01

    Phosphatidylserine (PS) and other anionic phospholipids, which become exposed on the surface of proliferating endothelial cells, tumor cells and certain leukocytes, have been used as targets for the development of clinical-stage biopharmaceuticals. One of these products (bavituximab) is currently being investigated in Phase 3 clinical trials. There are conflicting reports on the ability of bavituximab and other antibodies to recognize PS directly or through beta-2 glycoprotein 1, a serum protein that is not highly conserved across species. Here, we report on the generation and characterization of two fully human antibodies directed against phosphatidylserine. One of these antibodies (PS72) bound specifically to phosphatidylserine and to phosphatidic acid, but did not recognize other closely related phospholipids, while the other antibody (PS41) also bound to cardiolipin. Both PS72 and PS41 stained 8/9 experimental tumor models in vitro, but both antibodies failed to exhibit a preferential tumor accumulation in vivo, as revealed by quantitative biodistribution analysis. Our findings indicate that anionic phospholipids are exposed and accessible in most tumor types, but cast doubts about the possibility of efficiently targeting tumors in vivo with PS-specific reagents.

  19. Differential gene expression profiling of human epidermal growth factor receptor 2-overexpressing mammary tumor

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Haining Peng; Yingli Zhong; Daiqiang Li; Mi Tang; Xiaofeng Ding; Jian Zhang

    2008-01-01

    Human epidermal growth factor receptor 2 (HER2) is highly expressed in approximately 30% of breast cancer patients,and substantial evidence supports the relationship between HER2 overexpression and poor overall survival. However,the biological function of HER2 signaltransduction pathways is not entirely clear. To investigate gene activation within the pathways, we screened differentially expressed genes in HER2-positive mouse mammary tumor using two-directional suppression subtractive hybridization combined with reverse dot-blotting analysis. Forty genes and expressed sequence tags related to transduction, cell proliferation/growth/apoptosis and secreted/extracellular matrix proteins were differentially expressed in HER2-positive mammary tumor tissue. Among these, 19 were already reported to be differentially expressed in mammary tumor, 11 were first identified to be differentially expressed in mammary tumor in this study but were already reported in other tumors, and 10 correlated with other cancers. These genes can facilitate the understanding of the role of HER2 signaling in breast cancer.

  20. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins.

    Science.gov (United States)

    Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J

    2016-10-01

    The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.

  1. Activity of MKT 077, a rhodacyanine dye, against human tumor colony-forming units.

    Science.gov (United States)

    Petit, T; Izbicka, E; Lawrence, R A; Nalin, C; Weitman, S D; Von Hoff, D D

    1999-03-01

    MKT 077 is related to rhodamine 123 dye and demonstrates preferential accumulation in the mitochondria of cancer cells compared to normal cells. This difference in retention between cancer and normal cells led to the finding that MKT 077 selectively inhibits the growth of cancer cells in vitro. To define the preclinical activity profile of MKT 077, the compound was tested in vivo against a large variety of human tumors utilizing the human tumor-cloning assay. MKT 077 was studied using a sequential 2 h exposure separated by 24 h (2-24-2 h) and a 24 h exposure at final concentrations of 0.1, 0.2, 1.0, 2.0, 10.0 and 20.0 microg/ml. MKT 077 was also studied using continuous exposure at final concentrations of 0.1, 1.0 and 10 microg/ml. A decrease in tumor colony formation was considered significant if survival of colonies treated with MKT 077 was 50% or less compared to untreated controls. A total of 149 specimens was treated with MKT 077 with 51, 58 and 34 evaluable specimens with the 2-24-2 h, the 24 h and the continuous exposure, respectively. The results of the present study suggest a positive relationship between concentration and response. No relationship between exposure schedule and activity was observed. Inhibitory effects were obtained against multiple tumor types. High cytotoxic activity was obtained against breast, ovary, endometrial, colon and non-small cell lung cancer with concentrations of 2 microg/ml or above. In conclusion, the broad spectrum of cytotoxicity of MKT 077 in the human tumor-cloning assay and the unique mechanism of action of MKT 077 encourage additional preclinical and clinical studies with this compound and other rhodacyanine dyes.

  2. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma.

    Science.gov (United States)

    Son, Myung Jin; Woolard, Kevin; Nam, Do-Hyun; Lee, Jeongwu; Fine, Howard A

    2009-05-08

    CD133+ populations of human glioblastoma multiforme (GBM) cells are reportedly enriched for tumor stem cells (TSCs) or tumor-initiating cells (TICs). Approximately 40% of freshly isolated GBM specimens, however, do not contain CD133+ tumor cells, raising the possibility that CD133 may not be a universal enrichment marker for GBM TSCs/TICs. Here we demonstrate that stage-specific embryonic antigen 1(SSEA-1/LeX)+ GBM cells fulfill the functional criteria for TSC/TIC, since (1) SSEA-1+ cells are highly tumorigenic in vivo, unlike SSEA-1- cells; (2) SSEA-1+ cells can give rise to both SSEA-1+ and SSEA-1- cells, thereby establishing a cellular hierarchy; and (3) SSEA-1+ cells have self-renewal and multilineage differentiation potentials. A distinct subpopulation of SSEA-1+ cells was present in all but one of the primary GBMs examined (n = 24), and most CD133+ tumor cells were also SSEA-1+, suggesting that SSEA-1 may be a general TSC/TIC enrichment marker in human GBMs.

  3. [Vitamin D metabolism and signaling in human hepatocellular carcinoma and surrounding non-tumorous liver].

    Science.gov (United States)

    Horváth, Evelin; Balla, Bernadett; Kósa, János; Lakatos, Péter András; Lazáry, Áron; Németh, Dániel; Jozilan, Hasan; Somorácz, Áron; Korompay, Anna; Gyöngyösi, Benedek; Borka, Katalin; Kiss, András; Kupcsulik, Péter; Schaff, Zsuzsa; Szalay, Ferenc

    2016-11-01

    1,25-Dihydroxy vitamin D3 mediates antitumor effects in hepatocellular carcinoma. We examined mRNA and protein expression differences in 1,25-Dihydroxy vitamin D3-inactivating CYP24A1, mRNA of activating CYP27B1 enzymes, and that of VDR between human hepatocellular carcinoma and surrounding non-tumorous liver. Snap-frozen tissues from 13 patients were studied for mRNA and protein expression of CYP24A1. Paraffin-embedded tissues from 36 patients were used to study mRNA of VDR and CYP27B1. mRNA expression was measured by RT-PCR, CYP24A1 protein was detected by immunohistochemistry. Expression of VDR and CYP27B1 was significantly lower in hepatocellular carcinoma compared with non-tumorous liver (p<0.05). The majority of the HCC samples expressed CYP24A1 mRNA, but neither of the non-tumorous liver. The gene activation was followed by CYP24A1 protein synthesis. The presence of CYP24A1 mRNA and the reduced expression of VDR and CYP27B1 mRNA in human hepatocellular carcinoma samples indicate decreased bioavailability of 1,25-Dihydroxy vitamin D3, providing an escape mechanism from the anti-tumor effect. Orv. Hetil., 2016, 157(48), 1910-1918.

  4. Viral Oncogenes, Noncoding RNAs, and RNA Splicing in Human Tumor Viruses

    Directory of Open Access Journals (Sweden)

    Zhi-Ming Zheng

    2010-01-01

    Full Text Available Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. Although different human tumor viruses express different viral oncogenes and induce different tumors, their oncoproteins often target similar sets of cellular tumor suppressors or signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA splicing. However, this regulation is only partially understood. DNA tumor viruses also encode noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART and BHRF1, KSHV encodes 12 from a latent region, human polyomavirus MCV produce only one microRNA from the late region antisense to early transcripts, but HPVs appears to produce no viral microRNAs.

  5. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Willingham, Stephen B; Volkmer, Jens-Peter; Gentles, Andrew J; Sahoo, Debashis; Dalerba, Piero; Mitra, Siddhartha S; Wang, Jian; Contreras-Trujillo, Humberto; Martin, Robin; Cohen, Justin D; Lovelace, Patricia; Scheeren, Ferenc A; Chao, Mark P; Weiskopf, Kipp; Tang, Chad; Volkmer, Anne Kathrin; Naik, Tejaswitha J; Storm, Theresa A; Mosley, Adriane R; Edris, Badreddin; Schmid, Seraina M; Sun, Chris K; Chua, Mei-Sze; Murillo, Oihana; Rajendran, Pradeep; Cha, Adriel C; Chin, Robert K; Kim, Dongkyoon; Adorno, Maddalena; Raveh, Tal; Tseng, Diane; Jaiswal, Siddhartha; Enger, Per Øyvind; Steinberg, Gary K; Li, Gordon; So, Samuel K; Majeti, Ravindra; Harsh, Griffith R; van de Rijn, Matt; Teng, Nelson N H; Sunwoo, John B; Alizadeh, Ash A; Clarke, Michael F; Weissman, Irving L

    2012-04-24

    CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.

  6. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery.

    Directory of Open Access Journals (Sweden)

    GuangJun Zhang

    2013-08-01

    Full Text Available The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs. Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.

  7. Detection of human CMV PP65 protein in glioma brain tumors with immunohistochemistry method

    Directory of Open Access Journals (Sweden)

    MR. Jabbari

    2015-08-01

    Full Text Available Background: Human cytomegalovirus (HCMV may play a role in the development of glioma disease that is one of the most common brain tumors. Objective: The aim of this study was to detect human CMV in patients with glioma in Imam Khomeini hospital, Tehran. Methods: This experimental study was conducted on paraffin-embedded tumor samples of 18 patients referred to Imam Khomeini hospital in 2012. Immunohistochemistry (IHC was performed with monoclonal antibody specific for HCMV PP65 protein and the samples were assessed using a light microscope. Findings: Of 18 patients, 13 (72.2% were positive for HCMV PP65 protein and four of them expired. Conclusion: With regards to the results, more comprehensive studies are recommended for detection of HCMV in patients with glioma using different diagnostic methods.

  8. Structure of the gut microbiome following colonization with human feces determines colonic tumor burden.

    Science.gov (United States)

    Baxter, Nielson T; Zackular, Joseph P; Chen, Grace Y; Schloss, Patrick D

    2014-01-01

    A growing body of evidence indicates that the gut microbiome plays a role in the development of colorectal cancer (CRC). Patients with CRC harbor gut microbiomes that are structurally distinct from those of healthy individuals; however, without the ability to track individuals during disease progression, it has not been possible to observe changes in the microbiome over the course of tumorigenesis. Mouse models have demonstrated that these changes can further promote colonic tumorigenesis. However, these models have relied upon mouse-adapted bacterial populations and so it remains unclear which human-adapted bacterial populations are responsible for modulating tumorigenesis. We transplanted fecal microbiota from three CRC patients and three healthy individuals into germ-free mice, resulting in six structurally distinct microbial communities. Subjecting these mice to a chemically induced model of CRC resulted in different levels of tumorigenesis between mice. Differences in the number of tumors were strongly associated with the baseline microbiome structure in mice, but not with the cancer status of the human donors. Partitioning of baseline communities into enterotypes by Dirichlet multinomial mixture modeling resulted in three enterotypes that corresponded with tumor burden. The taxa most strongly positively correlated with increased tumor burden were members of the Bacteroides, Parabacteroides, Alistipes, and Akkermansia, all of which are Gram-negative. Members of the Gram-positive Clostridiales, including multiple members of Clostridium Group XIVa, were strongly negatively correlated with tumors. Analysis of the inferred metagenome of each community revealed a negative correlation between tumor count and the potential for butyrate production, and a positive correlation between tumor count and the capacity for host glycan degradation. Despite harboring distinct gut communities, all mice underwent conserved structural changes over the course of the model. The

  9. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  10. Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: an electron microscopic study.

    Science.gov (United States)

    Bronson, D L; Fraley, E E; Fogh, J; Kalter, S S

    1979-08-01

    The Tera-1 and Tera-2 cell lines, established from germ-cell tumors of the human testis, were examined by electron microscopy for particles with the morphology of retroviruses. Extracellular and budding particles were observed at low frequencies only in cultures of Tera-1 cells that had been treated with 5-iodo-2'-deoxyuridine and dexamethasone. No particles were detected in untreated cultures of Tera-1 cells or in any preparations of Tera-2 cells.

  11. Interaction of the host immune system with tumor cells in human papillomavirus associated diseases

    OpenAIRE

    Sauer, Madeleine

    2016-01-01

    Human papillomaviruses (HPV) are very common in the sexually active population and contribute to 610,000 cancers per year occurring at different locations. The initial step of HPV-related carcinogenesis is the induction of transforming processes in the host cells mediated by the viral oncoproteins E6 and E7 that interfere with critical host cell pathways. The transforming infection is highlighted by overexpression of the tumor suppressor protein p16INK4a. Only a small number of precancerous l...

  12. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  13. Tumor-specific gene therapy for pancreatic cancer using human neural stem cells encoding carboxylesterase.

    Science.gov (United States)

    Choi, Sung S; Yoon, Kichul; Choi, Seon-A; Yoon, Seung-Bin; Kim, Seung U; Lee, Hong J

    2016-11-15

    Advanced pancreatic cancer is one of the most lethal malignant human diseases lacking effective treatment. Its extremely low survival rate necessitates development of novel therapeutic approach. Human neural stem cells (NSCs) are known to have tumor-tropic effect. We genetically engineered them to express rabbit carboxyl esterase (F3.CE), which activates prodrug CPT-11(irinotecan) into potent metabolite SN-38. We found significant inhibition of the growth of BxPC3 human pancreatic cancer cell line in vitro by F3.CE in presence of CPT-11. Apoptosis was also markedly increased in BxPC3 cells treated with F3.CE and CPT-11. The ligand VEGF and receptor VEGF-1(Flt1) were identified to be the relevant tumor-tropic chemoattractant. We confirmed in vivo that in mice injected with BxPC3 on their skin, there was significant reduction of tumor size in those treated with both F3.CE and BxPC3 adjacent to the cancer mass. Administration of F3.CE in conjunction with CPT-11 could be a new possibility as an effective treatment regimen for patients suffering from advanced pancreatic cancer.

  14. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    Science.gov (United States)

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  15. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

    Directory of Open Access Journals (Sweden)

    Carmen Unzu

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSC are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.

  16. Genetic and epigenetic changes of genes on chromosome 3 in human urogenital tumors

    Directory of Open Access Journals (Sweden)

    Gordiyuk V. V.

    2011-02-01

    Full Text Available Numerous disorders of genes and alterations of their expression are observed on a short arm of human chromosome 3, particularly in 3p14, 3p21, 3p24 compact regions in epithelial tumors. These aberrations affect the key biological processes specific for cancerogenesis. Such genes or their products could be used for diagnostics and prognosis of cancer. Genetical and epigenetical changes of a number of genes on chromosome 3 in human urogenital cancer, their role in cellular processes and signal pathways and perspectives as molecular markers of cancer diseases are analyzed in the review

  17. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    Science.gov (United States)

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  18. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy.

    Science.gov (United States)

    Themeli, Maria; Kloss, Christopher C; Ciriello, Giovanni; Fedorov, Victor D; Perna, Fabiana; Gonen, Mithat; Sadelain, Michel

    2013-10-01

    Progress in adoptive T-cell therapy for cancer and infectious diseases is hampered by the lack of readily available, antigen-specific, human T lymphocytes. Pluripotent stem cells could provide an unlimited source of T lymphocytes, but the therapeutic potential of human pluripotent stem cell-derived lymphoid cells generated to date remains uncertain. Here we combine induced pluripotent stem cell (iPSC) and chimeric antigen receptor (CAR) technologies to generate human T cells targeted to CD19, an antigen expressed by malignant B cells, in tissue culture. These iPSC-derived, CAR-expressing T cells display a phenotype resembling that of innate γδ T cells. Similar to CAR-transduced, peripheral blood γδ T cells, the iPSC-derived T cells potently inhibit tumor growth in a xenograft model. This approach of generating therapeutic human T cells 'in the dish' may be useful for cancer immunotherapy and other medical applications.

  19. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells.

    Science.gov (United States)

    Wang, Xueqin; Tu, Miaomiao; Tian, Baoming; Yi, Yanjie; Wei, ZhenZhen; Wei, Fang

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.

  20. Tumor and Stromal-Based Contributions to Head and Neck Squamous Cell Carcinoma Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Markwell, Steven M.; Weed, Scott A., E-mail: scweed@hsc.wvu.edu [Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 (United States)

    2015-02-27

    Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.

  1. Differentially expressed genes during human cutaneous melanocytic tumor progression : a focus on cancer/testis-associated genes

    NARCIS (Netherlands)

    Zendman, Albert Johan Willem

    2003-01-01

    Human cutaneous melanoma, the skin cancer originating from the pigment producing melanocyte, is one of the most aggressive types of tumors due to its early dissemination. The progression of melanoma surpasses several stages from common nevi to metastatic tumors. For diagnostic and clinical purposes

  2. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors

    NARCIS (Netherlands)

    L.H.J. Looijenga (Leendert); C.A. de Gouveia Brazao; J. Kononen; A.J.M. Gillis (Ad); K.E. van Roozendaal (Kees); E.J.J. van Zoelen (Everardus); D.T. Schneider (Dominik); J.W. Oosterhuis (Wolter); R.F.A. Weber (Robert); K.P. Wolffenbuttel (Katja); E.J. Perlman; H. van Dekken (Herman); C. Bokemeyer; G. Sauter; J.A. Stoop (Hans); H.P. de Leeuw; F.U. Honecker (Friedemann)

    2003-01-01

    textabstractHuman germ cell tumors (GCTs) may have variable histology and clinical behavior, depending on factors such as sex of the patient, age at clinical diagnosis, and anatomical site of the tumor. Some types of GCT, i.e., the seminomas/germinomas/dysgerminomas and embryonal c

  3. The stem cell self-renewal gene, Musashi 1, is highly expressed in tumor and non-tumor samples of human bladder

    Directory of Open Access Journals (Sweden)

    P Nikpour

    2013-01-01

    Full Text Available Context: The stem cell model for cancer assumes that a key event in tumorigenesis is the deregulation of genes involved in the regulation of stem cell self-renewal. The Musashi family is an evolutionarily conserved group of neural RNA-binding proteins. In mammals, the family consists of two individual genes, Musashi 1 (MSI1 and MSI2, encoding the Musashi 1 and Musashi 2 proteins. Musashi 1 is involved in the regulation of self-renewal of stem cells. Recently, its over-expression has also been reported in a variety of human tumors. Aims: To investigate a potential expression of the stem cell self-renewal gene, Musashi 1, in human bladder cancer, we examined its gene expression in a series of tumor and non-tumor tissue samples of bladder. Materials and Methods: Relative expression of MSI1 was determined by the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR in 70 surgical samples of bladder. Results: Using specific primers for MSI1 and TBP (as an internal control for qRT-PCR technique, we found a relatively high expression level of MSI1 in all examined tumor and non-tumor bladder tissue specimens. However, our data did not show any correlation between the level of gene expression and tumor/non-tumor states of the samples (P>0.05. Conclusions: All together, our data demonstrated that Musashi 1 is highly and un-differentially expressed in both examined tumoral and apparently normal bladder tissues.

  4. Mutation analysis of novel human liver-related putative tumor suppressor gene in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng Liao; Tsai-Ping Li; Mu-Jun Zhao; Jing Zhao; Hai Song; Pascal Pineau; Agnès Marchio; Anne Dejean; Pierre Tiollais; Hong-Yang Wang

    2003-01-01

    AIM: To find the point mutations meaningful for inactivationof liver-related putative tumor suppressor gene (LPTS) gene,a human novel liver-related putative tumor suppressor geneand telomerase inhibitor in hepatocellular carcinoma.METHODS: The entire coding sequence of LPTS genewas examined for mutations by single strand conformationpolymorphism (SSCP) assay and PCR products directsequencing in 56 liver cancer cell lines, 7 ovarian cancerand 7 head & neck tumor cell lines and 70 pairs of HCCtissues samples. The cDNA fragment coding for the mostfrequent mutant protein was subcloned into GST fusionexpression vector. The product was expressed in E. coliand purified by glutathione-agarose column. Telomericrepeat amplification protocol (TRAP) assays wereperformed to study the effect of point mutation totelomerase inhibitory activity.RESULTS: SSCP gels showed the abnormal shifting bandsand DNA sequencing found that there were 5 differentmutations and/or polymorphisms in 12 tumor cell lineslocated at exon2, exon5 and exon7. The main alterationswere A(778)A/G and A(880)T in exon7. The change in siteof 778 could not be found in HCC tissue samples, while themutation in position 880 was seen in 7 (10 %) cases. Themutation in the site of 880 had no effect on telomeraseinhibitory activity.CONCLUSION: Alterations identified in this study arepolymorphisms of LPTS gene. LPTS mutations occur in HCCbut are infrequent and of little effect on the telomeraseinhibitory function of the protein. Epigenetics, such asmethylation, acetylation, may play the key role in inactivationof LPTS.

  5. Changes in tumor-antigen expression proifle as human small-cell lung cancers progress

    Institute of Scientific and Technical Information of China (English)

    Li-Sheng Ge; Neil T Hoa; Nils Lambrecht; Maria Dacosta-Iyer; Yi Ouyang; Amir Abolhoda; Martin R Jadus

    2015-01-01

    AbstrAct Objective:Our group has previously observed that in patients with small-cell lung cancers (SCLCs), the expression of a tumor antigen, glioma big potassium (gBK) ion channel, is higher at the time of death than when the cancer is ifrst treated by surgical resection. This study aimed to determine whether this dichotomy was common in other potential lung tumor antigens by examining the same patient samples using our more extensive proifle analysis of tumor-antigen precursor protein (TAPP). We then tested the hypothesis that therapeutic intervention may inadvertently cause this increased gBK production. Methods:SCLC samples (eight surgical resections and three autopsy samples) and three control lungs were examined by quantitative real-time polymerase chain reaction for 42 potential TAPPs that represent potential T-cell-mediated immunological targets. Results:Twenty-two TAPP mRNAs displayed the same profile as gBK, i.e., more mRNAs were expressed at autopsy than in their surgical counterparts. B-cyclin and mouse double minute 2, human homolog of P53-binding protein were elevated in both autopsy and surgical specimens above the normal-lung controls. When HTB119 cells were incubated with doxorubicin, gBK was strongly induced, as conifrmed by intracellular lfow cytometry with a gBK-speciifc antibody. Conclusion:Our findings suggested that more immunological targets became available as the tumor responded to chemotherapy and proceeded toward its terminal stages.

  6. DNA end binding activity and Ku70/80 heterodimer expression in human colorectal tumor

    Institute of Scientific and Technical Information of China (English)

    Paola Mazzarelli; Carolina Gravina; Marco Caricato; Maria Luana Poeta; Monica Rinaldi; Sergio Valeri; Roberto Coppola; Vito Michele Fazio; Paola Parrella; Davide Seripa; Emanuela Signori; Giuseppe Perrone; Carla Rabitti; Domenico Borzomati; Armando Gabbrielli; Maria Giovanna Matera

    2005-01-01

    AIM: To determine the DNA binding activity and protein levels of the Ku70/80 heterodimer, the functional mediator of the NHEJ activity, in human colorectal carcinogenesis.METHODS: The Ku70/80 DNA-binding activity was determined by electrophoretic mobility shift assays in 20 colon adenoma and 15 colorectal cancer samples as well as matched normal colonic tissues. Nuclear and cytoplasmic protein expression was determined by immunohistochemistry and Western blot analysis.RESULTS: A statistically significant difference was found in both adenomas and carcinomas as compared to matched normal colonic mucosa (P<0.00). However,changes in binding activity were not homogenous with approximately 50% of the tumors showing a clear increase in the binding activity, 30% displaying a modest increase and 15% showing a decrease of the activity.Tumors, with increased DNA-binding activity, also showed a statistically significant increase in Ku70 and Ku86nuclear expression, as determined by Western blot and immunohistochemical analyses (P<0.001). Cytoplasmic protein expression was found in pathological samples,but not in normal tissues either from tumor patients or from healthy subjects.CONCLUSION: Overall, our DNA-binding activity and protein level are consistent with a substantial activation of the NHEJ pathway in colorectal tumors. Since the NHEJ is an error prone mechanism, its abnormal activation can result in chromosomal instability and ultimately lead to tumorigenesis.

  7. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  8. Epo receptors are not detectable in primary human tumor tissue samples.

    Directory of Open Access Journals (Sweden)

    Steve Elliott

    Full Text Available Erythropoietin (Epo is a cytokine that binds and activates an Epo receptor (EpoR expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment, low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82, little/no EpoR protein was detected and it was not functional. In contrast, EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7 and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20, and functional responses to rHuEpo were reported with MCF-7 cells. In another study, a functional response was reported with the lung tumor cell line (NCI-H838 at physiological levels of rHuEpo. However, the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82, no EpoR protein was detectable in normal human and matching cancer tissues from breast, lung, colon, ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells, but no rHuEpo-induced phosphorylation of AKT, STAT3, pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.

  9. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  10. Anti-tumor Effect and Its Mechanisms of Ursolic Acid on Human Esophageal Carcinoma Cell Eca-109 in Vivo

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-qing; SHEN Yi; DUANG Hong

    2008-01-01

    Objective:To investigate the anti-tumor effect and possible mechanisms of ursolic acid on human esophageal carcinoma in vivo.Methods:A transplanted tumor model by injecting Eca-109 cells into subcutaneous tissue of BALB/c nude mice was established.40 nude mice bearing tumors were randomly divided into 4 groups and 0.2 ml saline or 0.2 ml ursolic acid(25-100 mg·kg-1.d-1)was injected into abdominal cavity respectively once everyday and lasted for fourteen days.The changes of tumor volume were measured continuously and tumor inhibition rate was calculated.The morphological changes of apoptosis were observed by electron microscope.The expressions of COX-2,bcl-2 and Bax protein in transplanted tumors were detected by immunohistochemistry.At last the PGE2 level of transplanted tumors was detected by radioimmunoassay.Results:Treatment of nude mice with 25,50,or 100 mg·kg-1.d-1 of ursolic acid significantly inhibited the growth of the human esophageal carcinoma tumor in nude mice and induced Eca-109 cells apoptosis as demonstrated by electron microscopy analyses.The expressions of COX-2 and bcl-2 in the transplanted tumors were decreased in ursolic acid groups,while the Bax increased.The PGE2 level of transplanted tumors was decreased in ursolic acid groups with a dose-related manner.Conclusion:Ursolic acid has anti-tumor effects against human esophageal carcinoma cells in vivo,which are likely mediated via induction of tumor cell apoptosis and inhibition of COX-2 and PGE2.

  11. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors.

    Science.gov (United States)

    Gros, Alena; Robbins, Paul F; Yao, Xin; Li, Yong F; Turcotte, Simon; Tran, Eric; Wunderlich, John R; Mixon, Arnold; Farid, Shawn; Dudley, Mark E; Hanada, Ken-Ichi; Almeida, Jorge R; Darko, Sam; Douek, Daniel C; Yang, James C; Rosenberg, Steven A

    2014-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.

  12. Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jerry R.; Yonggang Zhang; Russell, James [Radiobiology Laboratory, Johns Hopkins Oncology Center. Baltimore, MD (United States); Koch, Cameron [Dept. of Radiation Oncology, Univ. of Pennsylvania, Philadelphia, PA (United States); Little, John B. [John B. Little Center, Harvard School of Public Health. Boston, MA (United States)

    2007-07-15

    We seek to determine whether cellular radiosensitivity in nineteen human colorectal tumor cell lines and three human glioblastoma tumor cell lines segregate into statistically distinct groups and whether such groups correlate with gene expression. We measure clonogenic survival in 22 cell lines that vary in radiosensitivity and in expression of selected genes: ATM, TP53, CDKN1A, 14-3-3{sigma}, Ki-ras and DNA mismatch repair genes. We describe and compare radiosensitivity in these cell lines by one-parameter or two parameter analysis. Radiosensitivity varies among and between colorectal tumor cell lines and glioblastoma cell lines. When compared directly using survival, or using two-parameter analysis of radiosensitivity, cell lines distribute into four statistically-significant radiosensitivity groups. These groups associate strongly with the status of two genes, ATM and TP53, but do not associate with CDKN1A, 14-3-3{sigma}, Ki-ras and DNA mismatch repair genes. Intrinsic cellular radiosensitivity of 22 colorectal and glioblastoma cell lines fall into four radiosensitivity groups that associate with expression of ATM and TP53. These analyses suggest multiple mechanisms underlay intrinsic cellular radiosensitivity.

  13. Role of microRNAs on HLA-G expression in human tumors.

    Science.gov (United States)

    Seliger, Barbara

    2016-09-01

    The non-classical human leukocyte antigen G (HLA-G) known to protect the embryo from immune cell destruction leading to fetal maternal tolerance is often overexpressed in human tumors of distinct origin thereby leading to an escape from T and NK cell-mediated immune response. The molecular mechanisms controlling HLA-G expression are complex and involve deregulation at the transcriptional, epigenetic and posttranscriptional level. Using bioinformatics and high through put analyses a number of microRNAs (miRs) have been identified, which were able to bind to the 3' UTR of HLA-G with distinct efficacy. This caused by a downregulation of HLA-G surface expression, which was associated with an increased immune response thereby overcoming the HLA-G-mediated immune tolerance. Reduced expression of HLA-G-specific miRs was associated with tumor progression and metastases and appear to affect directly or indirectly tumor characteristics, such as cell proliferation, apoptosis and resistance to chemotherapy. Recently, an interaction between long non-coding RNAs, such as HOTAIR, and HLA-G-specific miRs has also been demonstrated. This review summarizes the control of HLA-G expression and function by microRNAs as well as its clinical significance.

  14. Evaluation of TAZ expression and its effect on tumor invasion and metastasis in human glioma

    Institute of Scientific and Technical Information of China (English)

    Pei-Dong Li; Xin-Jun Wang; Qiao Shan; Yue-Hui Wu; Zhen Wang

    2014-01-01

    Objective:To evaluate the expression ofTAZ and its role in tumor invasion and metastasis in human glioma.Methods:The expression ofTAZ protein was measured in48 samples of surgically resected human glioma and13 samples of normal brain tissues using immunohistochemistry. TAZ was knocked down by a retrovirus-mediatedTAZ shRNA in a glioma cell line,SNB19. Transwell cell migration and invasion assays were used to determine migration and invasion ofSNB19 cells.Results:The positive expression rate ofTAZ protein in glioma tissues was significantly higher than that in normal brain tissues(79.2%vs.15.4%,P<0.001).Furthermore, clinical analysis suggested that the positive expression rate ofTAZ protein in poorly differentiated tumor tissues was significantly higher as compared with that in well differentiated tissues(96.0%vs.60.9%,P<0.01).TAZ was significantly knocked down byTAZ shRNA(P<0.001), andTAZ knockdown significantly reduced cell migration and invasion(P<0.01, respectively) inSNB19 cells.Conclusions:TAZ protein overexpression is observed in human glioma and its elevated expression is significantly correlated with poor differentiation.TAZ knockdown prominently reduces cell migration and invasion inSNB19 cells, suggesting thatTAZ may play a key role in the initiation and progression of human glioma.

  15. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

    Science.gov (United States)

    Carpi, Sara; Fogli, Stefano; Polini, Beatrice; Montagnani, Valentina; Podestà, Adriano; Breschi, Maria Cristina; Romanini, Antonella; Stecca, Barbara; Nieri, Paola

    2017-04-01

    The role of endocannabinoid system in melanoma development and progression is actually not fully understood. This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma. CB1 receptor expression was measured in human melanoma cell lines by real-time PCR. A genetic deletion of CB1 receptors in selected melanoma cells was carried out by using three different short hairpin RNAs (shRNAs). Performance of target gene silencing was verified by real-time PCR and Western blot. The effects of CB1 receptor silencing on cell growth, clonogenicity, migration capability, cell cycle progression, and activation of mitogenic signals was tested. Lentiviral shRNAs vectors targeting different regions of the human CB1 gene led to a significant reduction in CB1 receptor mRNA and a near complete loss of CB1 receptor protein, compared to control vector (LV-c). The number of viable cells, the colony-forming ability and cell migration were significantly reduced in cells transduced with CB1 lentiviral shRNAs compared to LV-c. Cell cycle analyses showed arrest at G1/S phase. p-Akt and p-ERK expression were decreased in transduced versus control cells. Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anti-tumor effect of a novel soluble recombinant human endostatin: administered as a single agent or in combination with chemotherapy agents in mouse tumor models.

    Directory of Open Access Journals (Sweden)

    Zhihua Ren

    Full Text Available Angiogenesis has become an attractive target in cancer treatment. Endostatin is one of the potent anti-angiogenesis agents. Its recombinant form expressed in the yeast system is currently under clinical trials. Endostatin suppresses tumor formation through the inhibition of blood vessel growth. It is anticipated that combined therapy using endostatin and cytotoxic compounds may exert an additive effect. In the present study, we expressed and purified recombinant human endostatin (rhEndostatin that contained 3 additional amino acid residues (arginine, glycine, and serine at the amino-terminus and 6 histidine residues in its carboxyl terminus. The recombinant protein was expressed in E. Coli and refolded into a soluble form in a large scale purification process. The protein exhibited a potent anti-tumor activity in bioassays. Furthermore, rhEndostatin showed an additive effect with chemotherapy agents including cyclophosphamide (CTX and cisplatin (DDP.rhEndostatin cDNA was cloned into PQE vector and expressed in E. Coli. The protein was refolded through dialysis with an optimized protocol. To establish tumor models, nude mice were subcutaneously injected with human cancer cells (lung carcinoma A549, hepatocellular carcinoma QGY-7703, or breast cancer Bcap37. rhEndostatin and/or DDP was administered peritumorally to evaluate the rate of growth inhibition of A549 tumors. For the tumor metastasis model, mice were injected intravenously with mouse melanoma B16 cells. One day after tumor cell injection, a single dose of rhEndostatin, or in combination with CTX, was administered intravenously or at a site close to the tumor.rhEndostatin reduced the growth of A549, QGY-7703, and Bcap37 xenograft tumors in a dose dependent manner. When it was administered peritumorally, rhEndostatin exhibited a more potent inhibitory activity. Furthermore, rhEndostatin displayed an additive effect with CTX or DDP on the inhibition of metastasis of B16 tumors or growth of

  17. Tumor growth effects of rapamycin on human biliary tract cancer cells

    Directory of Open Access Journals (Sweden)

    Heuer Matthias

    2012-06-01

    Full Text Available Abstract Background Liver transplantation is an important treatment option for patients with liver-originated tumors including biliary tract carcinomas (BTCs. Post-transplant tumor recurrence remains a limiting factor for long-term survival. The mammalian target of rapamycin-targeting immunosuppressive drug rapamycin could be helpful in lowering BTC recurrence rates. Therein, we investigated the antiproliferative effect of rapamycin on BTC cells and compared it with standard immunosuppressants. Methods We investigated two human BTC cell lines. We performed cell cycle and proliferation analyses after treatment with different doses of rapamycin and the standard immunosuppressants, cyclosporine A and tacrolimus. Results Rapamycin inhibited the growth of two BTC cell lines in vitro. By contrast, an increase in cell growth was observed among the cells treated with the standard immunosuppressants. Conclusions These results support the hypothesis that rapamycin inhibits BTC cell proliferation and thus might be the preferred immunosuppressant for patients after a liver transplantation because of BTC.

  18. Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors

    Directory of Open Access Journals (Sweden)

    Avilés-Salas Alejandro

    2009-08-01

    Full Text Available Abstract Background Germ cell testicular tumors have survival rate that diminishes with high tumor marker levels, such as human chorionic gonadotropin (hCG. hCG may regulate vascular neoformation through vascular endothelial growth factor (VEGF. Our purpose was to determine the relationship between hCG serum levels, angiogenesis, and VEGF expression in germ cell testicular tumors. Methods We conducted a retrospective study of 101 patients. Serum levels of hCG, alpha-fetoprotein (AFP, and lactate dehydrogenase were measured prior to surgery. Vascular density (VD and VEGF tissue expression were determined by immunohistochemistry and underwent double-blind analysis. Results Histologically, 46% were seminomas and 54%, non-seminomas. Median follow-up was 43 ± 27 months. Relapse was present in 7.5% and mortality in 11.5%. Factors associated with high VD included non-seminoma type (p = 0.016, AFP ≥ 14.7 ng/mL (p = 0.0001, and hCG ≥ 25 mIU/mL (p = 0.0001. In multivariate analysis, the only significant VD-associated factor was hCG level (p = 0.04. When hCG levels were stratified, concentrations ≥ 25 mIU/mL were related with increased neovascularization (p Conclusion This is the first study that relates increased serum hCG levels with vascularization in testicular germ cell tumors. Hence, its expression might play a role in tumor angiogenesis, independent of VEGF expression, and may explain its association with poor prognosis. hCG might represent a molecular target for therapy.

  19. Restricted 12p Amplification and RAS Mutation in Human Germ Cell Tumors of the Adult Testis

    Science.gov (United States)

    Roelofs, Helene; Mostert, Marijke C.; Pompe, Kirsten; Zafarana, Gaetano; van Oorschot, Monique; van Gurp, Ruud J. H. L. M.; Gillis, Ad J. M.; Stoop, Hans; Beverloo, Berna; Oosterhuis, J. Wolter; Bokemeyer, Carsten; Looijenga, Leendert H. J.

    2000-01-01

    Human testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been identified with an additional high-level amplification of a restricted region of 12p including the K-RAS proto-oncogene. Here we show that the incidence of these restricted 12p amplifications is ∼8% in primary TGCTs. Within a single cell formation of i(12p) and restricted 12p amplification is mutually exclusive. The borders of the amplicons cluster in short regions, and the amplicon was never found in the adjacent carcinoma in situ cells. Seminomas with the restricted 12p amplification virtually lacked apoptosis and the tumor cells showed prolonged in vitro survival like seminoma cells with a mutated RAS gene. However, no differences in proliferation index between these different groups of seminomas were found. Although patients with a seminoma containing a homogeneous restricted 12p amplification presented at a significantly younger age than those lacking it, the presence of a restricted 12p amplification/RAS mutation did not predict the stage of the disease at clinical presentation and the treatment response of primary seminomas. In 55 primary and metastatic tumors from 44 different patients who failed cisplatinum-based chemotherapy, the restricted 12p amplification and RAS mutations had the same incidence as in the consecutive series of responding patients. These data support the model that gain of 12p in TGCTs is related to invasive growth. It allows tumor cells, in particular those showing characteristics of early germ cells (ie, the seminoma cells), to survive outside their specific microenvironment. Overexpression of certain genes on 12p probably inhibits apoptosis in these tumor cells. However, the copy numbers of the restricted amplification of 12p and K-RAS mutations do not predict response

  20. Analysis of p53 and vascular endothelial growth factor expression in human gallbladder carcinoma for the determination of tumor vascularity

    Institute of Scientific and Technical Information of China (English)

    Yu Tian; Ren-Yu Ding; Ying-Hui Zhi; Ren-Xuan Guo; Shuo-Dong Wu

    2006-01-01

    AIM: To examine the expression of p53 and vascular endothelial growth factor (VEGF) as well as microvessel count (MVC) and to investigate the role of VEGF as an angiogenic marker and the possible role of p53 in the regulation of angiogenesis in human gallbladder carcinoma.METHODS: Surgically resected specimens of 49 gallbladder carcinomas were studied by immunohistochemical staining for p53 protein, VEGF, and factor Ⅷ-related antigen. VEGF expression and mutant p53 expression were then correlated with Nevin stage,differentiation grade, MVC, and lymph node metastasis.RESULTS: Positive p53 protein and VEGF expressions were found in 61.2% and 63.3% of tumors, respectively.p53 and VEGF staining status was identical in 55.1%of tumors. The Nevin staging of p53- or VEGF-positive tumors was significantly later than that of negative tumors. The MVC in p53- or VEGF-positive tumors was significantly higher than that in negative tumors,and MVC in both p53- and VEGF-negative tumors was significantly lower than that in the other subgroups.CONCLUSION: Our findings suggest that p53-VEGF pathway can regulate tumor angiogenesis in human gallbladder carcinoma. Combined analysis of p53 and VEGF expression might be useful for predicting the tumor vascularity of gallbladder cancer.

  1. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-01-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  2. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-06-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  3. Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Directory of Open Access Journals (Sweden)

    Wang Xiaosheng

    2011-10-01

    Full Text Available Abstract Background The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach. Results We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells. Conclusions The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.

  4. Widespread p53 overexpression in human malignant tumors. An immunohistochemical study using methacarn-fixed, embedded tissue.

    Science.gov (United States)

    Porter, P. L.; Gown, A. M.; Kramp, S. G.; Coltrera, M. D.

    1992-01-01

    p53 is a nuclear protein believed to play an important role, through mutation and overexpression, in the progression of human malignant tumors. The authors employed a monoclonal antibody, 1801, and investigated overexpression of p53 in a series of 255 malignant and benign tumors, using deparaffinized sections of methacarn-fixed tissue. Overall, immunohistochemically detected p53 overexpression was found in 39% of malignant tumors, with considerable variation within individual tumor types (34% of breast carcinomas, 92% of ovarian carcinomas, 33% of soft tissue sarcomas). Homogenous, heterogenous, and focal immunostaining patterns were noted. With rare exceptions, no immunostaining of any benign tumors was noted. No immunostaining was found in adjacent, benign tissues, or in a series of fetal tissues. This is the first demonstration of widespread p53 overexpression in alcohol-fixed, embedded tissue and confirms the major role played by p53 in human malignancies. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1731521

  5. Kanglaite combined Gemcitabine inhibits growth of nude mouse subcutaneous transplantation tumor of human PC-3 pancreatic cancer cell

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; JIN Jian-guang; QIN Zhao-yin

    2005-01-01

    Objective:To study the mechanisms of pancreatic cancer treatment with Kanglaite combined Gemcitabine by investigating the relationship between the apoptosis and the expression of bcl-2, Bax and VEGF in pancreatic cancer cells.Methods:Nude mouse subcutaneous transplantation tumor model of Human PC-3 pancreatic cancer was established; the expressions of bcl-2, Bax and VEGF of transplantation tumor cell were determined; the earlier apoptosis rate of pancreatic cancer cell and the gross tumor volume were determined. Results:Kanglaite combined Gemcitabine remarkably decreased the protein expression of bcl-2,raised the expression of Bax,increased the apoptosis rate of the pancreatic cancer and contract the gross tumor volume. Kanglaite greatly decreased the protein expression of VEGF of the tumor cell. Conclusion:Therapeutic efficacy of Kanglaite combined Gemcitabine is far better than separate use of the two medicines in the pancreatic cancer transplantation tumor treatment.

  6. Tubulin binding cofactor C (TBCC suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Laurier Jean-Fabien

    2010-04-01

    Full Text Available Abstract Background Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC, a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. Methods We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. Results TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to

  7. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors.

    Science.gov (United States)

    van Rijt, Sabine H; Bölükbas, Deniz A; Argyo, Christian; Datz, Stefan; Lindner, Michael; Eickelberg, Oliver; Königshoff, Melanie; Bein, Thomas; Meiners, Silke

    2015-03-24

    Nanoparticles allow for controlled and targeted drug delivery to diseased tissues and therefore bypass systemic side effects. Spatiotemporal control of drug release can be achieved by nanocarriers that respond to elevated levels of disease-specific enzymes. For example, matrix metalloproteinase 9 (MMP9) is overexpressed in tumors, is known to enhance the metastatic potency of malignant cells, and has been associated with poor prognosis of lung cancer. Here, we report the synthesis of mesoporous silica nanoparticles (MSNs) tightly capped by avidin molecules via MMP9 sequence-specific linkers to allow for site-selective drug delivery in high-expressing MMP9 tumor areas. We provide proof-of-concept evidence for successful MMP9-triggered drug release from MSNs in human tumor cells and in mouse and human lung tumors using the novel technology of ex vivo 3D lung tissue cultures. This technique allows for translational testing of drug delivery strategies in diseased mouse and human tissue. Using this method we show MMP9-mediated release of cisplatin, which induced apoptotic cell death only in lung tumor regions of Kras mutant mice, without causing toxicity in tumor-free areas or in healthy mice. The MMP9-responsive nanoparticles also allowed for effective combinatorial drug delivery of cisplatin and proteasome inhibitor bortezomib, which had a synergistic effect on the (therapeutic) efficiency. Importantly, we demonstrate the feasibility of MMP9-controlled drug release in human lung tumors.

  8. The Vascular-Targeting Fusion Toxin VEGF121/rGel Inhibits the Growth of Orthotopic Human Bladder Carcinoma Tumors

    Directory of Open Access Journals (Sweden)

    Khalid Mohamedali

    2005-10-01

    Full Text Available Vascular endothelial growth factor. (VEGF and its receptors. (FLT-1 and KDR are overexpressed by human bladder cancer cells and tumor endothelial cells, respectively. Strategies that target VEGF receptors hold promise as antlanglogenic therapeutic approaches to bladder cancer. A fusion protein of VEGF121 and the plant toxin gelonin (rGel was constructed, expressed in bacteria, purified to homogeneity. Cytotoxicity experiments of VEGF121/rGel on the highly metastatic 253J B-V human bladder cancer cell line demonstrated that the VEGF121/rGel does not specifically target these cells, whereas Western blot analysis showed no defectable expression of KDR. Treatment with VEGF121/rGel against orthotopically implanted 253J B-V xenografts in nude mice resulted in a significant suppression of bladder tumor growth (-60% inhibition; P < .05 compared to controls. lmmunohistochemistry studies of orthotopic 253J B-V tumors demonstrated that KDR is highly overexpressed in tumor vasculature. Immunofluorescence staining with antibodies to CD-31 (blood vessel endothelium and reel demonstrated a dramatic colocalization of the construct on tumor neovasculature. Treated tumors also displayed an increase in terminal deoxynucleotidyl transferase-mediated dUTPblotin end labeling staining compared to controls. Thus, VEGF121/rGel inhibits the growth of human bladder cancer by cytotoxic effects directed against the tumor vascular supply and has significant potential as a novel antlangiogenic therapeutic against human bladder cancer.

  9. Canine classical seminoma: a specific malignant type with human classifications is highly correlated with tumor angiogenesis

    Directory of Open Access Journals (Sweden)

    Kim Jong-Hyuk

    2010-05-01

    Full Text Available Abstract Background Human seminoma is classified as classical seminoma (SE and spermatocytic seminoma (SS. Human SE is known to be more malignant and metastasizing more frequently than SS. Tumor angiogenesis is highly related with tumor progression and metastasis, with microvessel density (MVD being an important parameter of metastatic potential. Canine seminoma is not yet well-established as SE or SS type including correlation with angiogenesis. We classified canine SE and SS, and then compared them to tumor associated vessels. Methods Twenty-three cases of canine seminomas (2 intratubular, 9 diffuse, and 12 intratubular/diffuse seminomas showing both intratubular and diffuse patterns were classified as SE or SS by immunohistochemistry (IHC using monoclonal antibody against PLAP and by PAS stain. The histopathological data were then compared to see if there was a correlation with SE or SS. Angiogenesis of seminomas were evaluated by immunohistochemical assay using polyclonal antibody against Von Willebrand factor (vWF and by calculating the means of MVD, vessels area and perimeters using computerized image analysis. Statistical Package for Social Sciences (SPSS program was used for various statistical analyses. Results The numbers of PLAP+/PAS+ canine SEs were 8/23 (34.8% and PLAP-/PAS- SSs were 15/23 (61.2%. All SE cases (8/8, 100% were intratubular/diffuse types. SS types included 2 intratubular (2/15, 13.3%, 9 diffuse (9/15, 60%, and 4 intratubular/diffuse (4/15, 26.7% types. MVD and vascular parameters in SEs were significantly higher than in SSs, showing the highest value in the intratubular/diffuse type. Seminomas observed with neoplastic cells invasion of vessels presented higher perimeter and area values than seminomas without conformed neoplastic cells invasion. Conclusion In this study, we demonstrated a positive relationship between canine SE and tumor angiogenesis. Furthermore, we also showed that a tumor cells invasion of vessels

  10. Canine classical seminoma: a specific malignant type with human classifications is highly correlated with tumor angiogenesis

    Science.gov (United States)

    2010-01-01

    Background Human seminoma is classified as classical seminoma (SE) and spermatocytic seminoma (SS). Human SE is known to be more malignant and metastasizing more frequently than SS. Tumor angiogenesis is highly related with tumor progression and metastasis, with microvessel density (MVD) being an important parameter of metastatic potential. Canine seminoma is not yet well-established as SE or SS type including correlation with angiogenesis. We classified canine SE and SS, and then compared them to tumor associated vessels. Methods Twenty-three cases of canine seminomas (2 intratubular, 9 diffuse, and 12 intratubular/diffuse seminomas showing both intratubular and diffuse patterns) were classified as SE or SS by immunohistochemistry (IHC) using monoclonal antibody against PLAP and by PAS stain. The histopathological data were then compared to see if there was a correlation with SE or SS. Angiogenesis of seminomas were evaluated by immunohistochemical assay using polyclonal antibody against Von Willebrand factor (vWF) and by calculating the means of MVD, vessels area and perimeters using computerized image analysis. Statistical Package for Social Sciences (SPSS) program was used for various statistical analyses. Results The numbers of PLAP+/PAS+ canine SEs were 8/23 (34.8%) and PLAP-/PAS- SSs were 15/23 (61.2%). All SE cases (8/8, 100%) were intratubular/diffuse types. SS types included 2 intratubular (2/15, 13.3%), 9 diffuse (9/15, 60%), and 4 intratubular/diffuse (4/15, 26.7%) types. MVD and vascular parameters in SEs were significantly higher than in SSs, showing the highest value in the intratubular/diffuse type. Seminomas observed with neoplastic cells invasion of vessels presented higher perimeter and area values than seminomas without conformed neoplastic cells invasion. Conclusion In this study, we demonstrated a positive relationship between canine SE and tumor angiogenesis. Furthermore, we also showed that a tumor cells invasion of vessels were a correlated

  11. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  12. Differential expression of human homeodomain TGIFLX in brain tumor cell lines.

    Directory of Open Access Journals (Sweden)

    Reza Raoofian

    2013-12-01

    Full Text Available Glioblastoma is the most common and the most lethal primary brain cancer. This malignancy is highly locally invasive, rarely metastatic and resistant to current therapies. Little is known about the distinct molecular biology of glioblastoma multiforme (GBM in terms of initiation and progression. So far, several molecular mechanisms have been suggested to implicate in GBM development. Homeodomain (HD transcription factors play central roles in the expression of genomic information in all known eukaryotes. The TGIFX homeobox gene was originally discovered in human adult testes. Our previous study showed implications of TGIFLX in prostate cancer and azoospermia, although the molecular mechanism by which TGIFLX acts is unknown. Moreover, studies reported that HD proteins are involved in normal and abnormal brain developments. We examined the expression pattern of TGIFLX in different human brain tumor cell lines including U87MG, A172, Daoy and 1321N1. Interestingly, real time RT-PCR and western blot analysis revealed a high level of TGIFLX expression in A172 cells but not in the other cell lines. We subsequently cloned the entire coding sequence of TGIFLX gene into the pEGFP-N1 vector, eukaryotic expression vector encoding eGFP, and transfected into the U-87 MG cell line. The TGIFLX-GFP expression was confirmed by real time RT-PCR and UV-microscopic analysis. Upon transfection into U87 cells, fusion protein TGIFLX-GFP was found to locate mainly in the nucleus. This is the first report to determine the nuclear localization of TGIFLX and evaluation of its expression level between different brain tumor cell lines. Our data also suggest that TGIFLX gene dysregulation could be involved in the pathogenesis of some human brain tumors.

  13. Role of Prosurvival Molecules in the Action of Lidamycin toward Human Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    A-JING YANG; WEI-WEI SHI; YONG LI; ZHEN WANG; RONG-GUANG SHAO; DIAN-DONG LI; QI-YANG HE

    2009-01-01

    Objective Lidamycin,an enediyne antibiotic,leads to apoptosis and mitotic cell death of human tumor cells at high and low concentrations.The reason why tumor cells have distinct responses to lidamycin remains elusive.This study was to elucidate if cellular prosurvival molecules are involved in these responses. Methods Cleavage of chromatin and DNA was observed by chromatin condensation and agarose gel electrophoresis.Accumulation of rhodamine 123 in lidamycin-treated cells was assayed by flow cytometry.Cell multinucleation was detected by staining with Hoechst 33342.Western blot and senescence-associated β-galactosidase (SA-β-gal) staining were used to analyze protein expression and senescence-like phenotype,respectively. Results SIRTI deacetylase remained unchanged in 0.5 nmol/L lidamycin whereas cleavage occurred when apoptosis was induced by lidamycin.Increased FOXO3a,SOD-1 and SOD-2 expression and transient phosphorylation of ERK were detected after exposure of human hepatoma BEL-7402 cells to 0.5 nmol/L lidamycin.High expressions of SIRT1 and Akt were found in colon carcinoma HCT116 p53 knock-out cells exposed to lidamycin.Degradation of PARP and p53 by lidamycin as a substitute for SIRT1 and Akt was confirmed with caspase inhibitor Q-VD-OPh and proteasome inhibitor MG132. Resistance to lidamycin-induced DNA cleavage was observed in breast cancer doxorubicin-resistant MCF-7 cells.This was not induced by P-glycoprotein as no accumulation of rhodamine 123 was detected in the resistant cells following exposure to lidamycin.In contrast to sensitive MCF-7 cells,a lower multinucleation rate for the resistant cells was measured following exposure to equal concentrations of lidamycin. Conclusions Cellular prosurvival molecules,such as SIRT1,Akt,SOD-1,SOD-2 and other unknown factors can influence the action of lidamycin on human tumor cells.

  14. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas

    Science.gov (United States)

    Agnihotri, Sameer; Wolf, Amparo; Munoz, Diana M.; Smith, Christopher J.; Gajadhar, Aaron; Restrepo, Andres; Clarke, Ian D.; Fuller, Gregory N.; Kesari, Santosh; Dirks, Peter B.; McGlade, C. Jane; Stanford, William L.; Aldape, Kenneth; Mischel, Paul S.; Hawkins, Cynthia

    2011-01-01

    Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor–initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21CIP1, independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies. PMID:21464220

  15. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    Science.gov (United States)

    Schneeberger, Valentina E; Allaj, Viola; Gardner, Eric E; Poirier, J T; Rudin, Charles M

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors.

  16. Expression of soluble human tumor necrosis factor receptor Ⅰ in Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cDNA of soluble human tumor necrosis factor receptorⅠ(sTNFRI) was inserted into fusion-protein expression plasmid pIGF of A. niger to construct fusion expression vector pHBC containing a KEX2 like protein processing site designed on the fusion position. Extracellular protease-deficient strain of A. niger 3.795-1-23 was transformed with pHBC. Positive clone was estimated by Southern hybridization. SDS-PAGE for protein produced by re-combinant strain showed the distinctive expression band. Western blotting indicated that the secreted protein had immunoactivity of sTNFRI.

  17. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  18. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  19. Role of Phosphoinositide 3-Kinase in the Aggressive Tumor Growth of HT1080 Human Fibrosarcoma Cells

    OpenAIRE

    Gupta, Swati; Stuffrein, Selma; Plattner, Rina; Tencati, Michael; Gray, Christa; Young E. Whang; Stanbridge, Eric J.

    2001-01-01

    We have developed a model system of human fibrosarcoma cell lines that do or do not possess and express an oncogenic mutant allele of N-ras. HT1080 cells contain an endogenous mutant allele of N-ras, whereas the derivative MCH603 cell line contains only wild-type N-ras. In an earlier study (S. Gupta et al., Mol. Cell. Biol. 20:9294–9306, 2000), we had shown that HT1080 cells produce rapidly growing, aggressive tumors in athymic nude mice, whereas MCH603 cells produced more slowly growing tumo...

  20. Detection of Tumor Suppressor Gene and Oncogene in SO-Rb_(50) Human Retinoblastoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    Retinoblastoma (Rb) is the most common malignant'cancer of eye. So-Rb_(50) is the first Rb cell line established in China in 1988. It has passed to the 387th passage now. We collected cells of the 327th passage of SO-Rb_(50), purified its genomic DNA and detected it with Rb and c-myc cDNA probes respectively (normal human white blood cells DNA was the control). We found the Rb gene was deleted while c-myc gene was amplified three times. This provides a basis for further study of the regulation of tumor ...

  1. Differences in expression of oncogenes and tumor suppressor genes in different sites of head and neck squamous cell

    NARCIS (Netherlands)

    Takes, R P; Baatenburg de Jong, R J; Schuuring, E; Litvinov, S V; Hermans, J; Van Krieken, J H

    1999-01-01

    BACKGROUND: In most studies concerning chromosomal changes or protein expression in head and neck squamous cell carcinomas (HNSCC) no distinction is made between the sites within this area. The behaviour of tumors arising in one site or the other, however, differs significantly, suggesting different

  2. Differential gene expression in stromal cells of human giant cell tumor of bone.

    Science.gov (United States)

    Wuelling, M; Delling, G; Kaiser, E

    2004-12-01

    Giant cell tumor (GCT) offers a unique model for the hematopoietic-stromal cell interaction in human bone marrow. Evidence has been presented that GCT stromal cells (GCTSCs) promote accumulation, size and activity of the giant cells. Although GCTSCs are considered the neoplastic component of GCT, little is known about their genetic basis and, to date, a tumor-specific gene expression pattern has not been characterized. Mesenchymal stem cells (MSCs) have been identified as the origin of the GCT neoplastic stromal cell. Using state of the art array technology, expression profiling was applied to enriched stromal cell populations from five different GCTs and two primary MSCs as controls. Of the 29 differentially expressed genes found, 25 showed an increased expression. Differential mRNA expression was verified by real-time polymerase chain reaction analysis of 10 selected genes, supporting the validity of cDNA arrays as a tool to identify tumor-related genes in GCTSCs. Increased expression of two oncogenes, JUN and NME2, was substantiated at the protein level, utilizing immunohistochemical evaluation of GCT sections and Western-blot analysis. Increased phosphorylation of JUN Ser-63 was also found.

  3. Biochemical Signatures of Doppel Protein in Human Astrocytomas to Support Prediction in Tumor Malignancy

    Directory of Open Access Journals (Sweden)

    Paola Rognoni

    2010-01-01

    Full Text Available Doppel (Dpl is a membrane-bound glycoprotein mainly expressed in the testis of adult healthy people. It is generally absent in the central nervous system, but its coding gene sequence is ectopically expressed in astrocytoma specimens and in derived cell lines. In this paper, we investigated the expression and the biochemical features of Dpl in a panel of 49 astrocytoma specimens of different WHO malignancy grades. As a result, Dpl was expressed in the majority of the investigated specimens (86%, also including low grade samples. Importantly, Dpl exhibited different cellular localizations and altered glycan moieties composition, depending on the tumor grade. Most low-grade astrocytomas (83% showed a membrane-bound Dpl, like human healthy testis tissue, whereas the majority of high-grade astrocytomas (75% displayed a cytosolic Dpl. Deglycosylation studies with N-glycosidase F and/or neuraminidase highlighted defective glycan moieties and an unexpected loss of sialic acid. To find associations between glial tumor progression and Dpl biochemical features, predictive bioinformatics approaches were produced. In particular, Decision tree and Nomogram analysis showed well-defined Dpl-based criteria that separately clustered low-and high-grade astrocytomas. Taken together, these findings show that in astrocytomas, Dpl undergoes different molecular processes that might constitute additional helpful tools to characterize the glial tumor progression.

  4. Detection of human brain tumor infiltration with multimodal multiscale optical analysis

    Science.gov (United States)

    Poulon, Fanny; Metais, Camille; Jamme, Frederic; Zanello, Marc; Varlet, Pascale; Devaux, Bertrand; Refregiers, Matthieu; Abi Haidar, Darine

    2017-02-01

    Brain tumor surgeries are facing major challenges to improve patients' quality of life. The extent of resection while preserving surrounding eloquent brain areas is necessary to equilibrate the onco-functional. A tool able to increase the accuracy of tissue analysis and to deliver an immediate diagnostic on tumor, could drastically improve actual surgeries and patient survival rates. To achieve such performances a complete optical study, ranging from ultraviolet to infrared, of biopsies has been started by our group. Four different contrasts were used: 1) spectral analysis covering the DUV to IR range, 2) two photon fluorescence lifetime imaging and one photon time domain measurement, 3) second harmonic generation imaging and 4) fluorescence imaging using DUV to IR, one and two photon excitation. All these measurements were done on the endogenous fluorescence of tissues to avoid any bias and further clinical complication due to the introduction of external markers. The different modalities are then crossed to build a matrix of criteria to discriminate tumorous tissues. The results of multimodal optical analysis on human biopsies were compared to the gold standard histopathology.

  5. CD147 expression in human gastric cancer is associated with tumor recurrence and prognosis.

    Directory of Open Access Journals (Sweden)

    Dake Chu

    Full Text Available CD147 is correlated with tumor aggressiveness in various human malignancies. Here, we investigated CD147 protein expression in 223 patients with gastric cancer by immunohistochemistry and analyzed its association with disease-free and overall survival. CD147 was increased in gastric cancer compared to normal tissues. Additionally, CD147 expression was associated with gastric cancer invasion, metastasis and TNM stage, whereas it was not related to age, sex, differentiation status, tumor site or Lauren classification. Kaplan-Meier analysis confirmed that CD147 was associated with disease-free and overall survival in patients with gastric cancer; i.e., patients with positive CD147 staining tend to have worse disease-free and overall survival. Moreover, Cox's proportional hazards analysis demonstrated that CD147 was an independent marker of disease-free and overall survival for patients with gastric cancer. These results confirm the association of CD147 with gastric cancer invasion and metastasis and prove that CD147 might be an indicator of tumor recurrence and prognosis in gastric cancer.

  6. FBXW7 Acts as an Independent Prognostic Marker and Inhibits Tumor Growth in Human Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Zhanchun Li

    2015-01-01

    Full Text Available F-box and WD repeat domain-containing 7 (FBXW7 is a potent tumor suppressor in human cancers including breast cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. In this study, we found that the expressions of FBXW7 protein and mRNA levels in osteosarcoma (OS cases were significantly lower than those in normal bone tissues. Clinical analysis indicated that FBXW7 was expressed at lower levels in OS patients with advanced clinical stage, high T classification and poor histological differentiation. Furthermore, we demonstrated that high expression of FBXW7 was correlated with a better 5-year survival of OS patients. Multivariate Cox regression analysis indicated that FBXW7 was an independent prognostic marker in OS. Our in vitro studies showed that FBXW7 overexpression inhibited cell cycle transition and cell proliferation, and promoted apoptosis in both U2OS and MG-63 cells. In a nude mouse xenograft model, FBXW7 overexpression slowed down tumor growth by inducing apoptosis and growth arrest. Mechanistically, FBXW7 inversely regulated oncoprotein c-Myc and cyclin E levels in both U2OS and MG-63 cells. Together these findings suggest that FBXW7 may serve as a prognostic biomarker and inhibit tumor progression by inducing apoptosis and growth arrest in OS.

  7. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    Hua HU; Er-qing WEI; Gao CHEN; Jian-min ZHANG; Wei-ping ZHANG; Lei ZHANG; Qiu-fu GE; Hong-tian YAO; Wei DING; Zhong CHEN

    2005-01-01

    Aim: To determine the distribution of cysteinyl leukotriene receptor 2 (CysLT2),one of the cysteinyl leukotriene receptors, in human brains with traumatic injury and tumors. Methods: Brain specimens were obtained from patients who underwent brain surgery. CysLT2 in brain tissues was examined using immunohistochemical analysis. Results: CysLT2 was expressed in the smooth muscle cells (not in the endothelial cells) of arteries and veins. CysLT2 was also expressed in the granulocytes in both vessels and in the brain parenchyma. In addition, CysLT2 was detected in neuron- and glial-appearing cells in either the late stages of traumatic injury or in the area surrounding the tumors. Microvessels regenerated 8 d after trauma and CysLT2 expression was recorded in their endothelial cells.Conclusion: CysLT2 is distributed in vascular smooth muscle cells and granulocytes, and brain trauma and tumor can induce its expression in vascular endothelial cells and in a number of other cells.

  8. CD147 expression in human gastric cancer is associated with tumor recurrence and prognosis.

    Science.gov (United States)

    Chu, Dake; Zhu, Shaojun; Li, Jipeng; Ji, Gang; Wang, Weizhong; Wu, Guosheng; Zheng, Jianyong

    2014-01-01

    CD147 is correlated with tumor aggressiveness in various human malignancies. Here, we investigated CD147 protein expression in 223 patients with gastric cancer by immunohistochemistry and analyzed its association with disease-free and overall survival. CD147 was increased in gastric cancer compared to normal tissues. Additionally, CD147 expression was associated with gastric cancer invasion, metastasis and TNM stage, whereas it was not related to age, sex, differentiation status, tumor site or Lauren classification. Kaplan-Meier analysis confirmed that CD147 was associated with disease-free and overall survival in patients with gastric cancer; i.e., patients with positive CD147 staining tend to have worse disease-free and overall survival. Moreover, Cox's proportional hazards analysis demonstrated that CD147 was an independent marker of disease-free and overall survival for patients with gastric cancer. These results confirm the association of CD147 with gastric cancer invasion and metastasis and prove that CD147 might be an indicator of tumor recurrence and prognosis in gastric cancer.

  9. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment

    Science.gov (United States)

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-01-01

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy. PMID:25992773

  10. Suppressive effects of tumor cell-derived 5′-deoxy-5′-methylthioadenosine on human T cells

    Science.gov (United States)

    Henrich, Frederik C.; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D.; Limm, Katharina; Ritter, Axel P.; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Kreutz, Marina P.; Aigner, Michael; Mackensen, Andreas

    2016-01-01

    ABSTRACT The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5′-deoxy-5′-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting. PMID:27622058

  11. Recombination Mutant Human Tumor Necrosis Factor Combined with Chemotherapy in the Treatment of Advanced Cancer

    Institute of Scientific and Technical Information of China (English)

    LIUXing; ZHANGXiangfu; ZHENGZhiweng; LUHuishan; WUXinyuan; HUANGChangmin; WANGChuan; GUANGuoxian

    2005-01-01

    Objective: Past studies showed that tumor necrosis factor (TNF) assisted anti-tumor treatment and intensified the sensitivity of chemotherapy. However its clinical application has been curbed because of its low purity, high dosage, and strong toxicity. The objective of present study is to evaluate the therapeutic effects and adverse reactions of recombinant mutant human tumor necrosis factor (rmhTNF) combined with chemotherapy in patients with advanced malignant tumor. Methods: 105 patients with advanced malignant tumor were randomly divided into trial group, 69 patients, and control group, 36 patients.rm hTNF was injected intramuscularly to the trial group at a dose of 4×106 U/m2, from the 1st to 7th days, the llth to 17th days combined with chemotherapy course. The chemotherapy plan was as follows:CAP for patients with the NSCLC; FAM for patients with gastric cancer; FC for patients with colorectal cancer. One treatment cycle lasted for 21 days and two cycles were scheduled. The control group was given only the same chemotherapy as the trial group. Results: In the trial group there was 1 CR case and 12 PR cases, and the response rate was 13/69 (18.84%); in the control group 1 PR case, the response rate 1/36 (2.78%). The response rate in the trial group was significantly higher than that in the control group (P=0.022). The response rate for NSCLC in the trial group was 8/17 (47.06%), and 1/6 (16.67%) in the control group. The response rates for gastric cancer and colorectal cancer in the trial groups also were higher than those in the control groups. After the treatment the KPS was 89.00+9.92 in the trial group,and 84.17±8.84 in the control group, with a significant difference between the two groups (P=0.028). The adverse reactions of rmhTNF injection included: pain in the injection area, chill, hardening and swelling and redness in the injection area, fever, ostealgia and myosalgia, and cold-like symptoms. All these adverse reactions were mild and bearable

  12. Multimodality functional imaging using DW-MRI and (18)F-FDG-PET/CT during radiation therapy for human papillomavirus negative head and neck squamous cell carcinoma: Meixoeiro Hospital of Vigo Experience.

    Science.gov (United States)

    Aramburu Núñez, David; Lopez Medina, Antonio; Mera Iglesias, Moisés; Salvador Gomez, Francisco; Dave, Abhay; Hatzoglou, Vaios; Paudyal, Ramesh; Calzado, Alfonso; Deasy, Joseph O; Shukla-Dave, Amita; Muñoz, Victor M

    2017-01-28

    To noninvasively investigate tumor cellularity measured using diffusion-weighted magnetic resonance imaging (DW-MRI) and glucose metabolism measured by (18)F-labeled fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG-PET/CT) during radiation therapy (RT) for human papillomavirus negative (HPV-) head and neck squamous cell carcinoma (HNSCC). In this prospective study, 6 HPV- HNSCC patients underwent a total of 34 multimodality imaging examinations DW-MRI at 1.5 T Philips MRI scanner [(n = 24) pre-, during- (2-3 wk), and post-treatment (Tx), and (18)F-FDG PET/CT pre- and post-Tx (n = 10)]. All patients received RT. Monoexponential modeling of the DW-MRI data yielded the imaging metric apparent diffusion coefficient (ADC) and the mean of standardized uptake value (SUV) was measured from (18)F-FDG PET uptake. All patients had a clinical follow-up as the standard of care and survival status was documented at 1 year. There was a strong negative correlation between the mean of pretreatment ADC (ρ = -0.67, P = 0.01) and the pretreatment (18)F-FDG PET SUV. The percentage (%) change in delta (∆) ADC for primary tumors and neck nodal metastases between pre- and Wk2-3 Tx were as follows: 75.4% and 61.6%, respectively, for the patient with no evidence of disease, 27.5% and 32.7%, respectively, for those patients who were alive with disease, and 26.9% and 7.31%, respectively, for those who were dead with disease. These results are preliminary in nature and are indicative, and not definitive, trends rendered by the imaging metrics due to the small sample size of HPV- HNSCC patients in a Meixoeiro Hospital of Vigo Experience.

  13. Multimodality functional imaging using DW-MRI and 18F-FDG-PET/CT during radiation therapy for human papillomavirus negative head and neck squamous cell carcinoma: Meixoeiro Hospital of Vigo Experience

    Science.gov (United States)

    Aramburu Núñez, David; Lopez Medina, Antonio; Mera Iglesias, Moisés; Salvador Gomez, Francisco; Dave, Abhay; Hatzoglou, Vaios; Paudyal, Ramesh; Calzado, Alfonso; Deasy, Joseph O; Shukla-Dave, Amita; Muñoz, Victor M

    2017-01-01

    AIM To noninvasively investigate tumor cellularity measured using diffusion-weighted magnetic resonance imaging (DW-MRI) and glucose metabolism measured by 18F-labeled fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) during radiation therapy (RT) for human papillomavirus negative (HPV-) head and neck squamous cell carcinoma (HNSCC). METHODS In this prospective study, 6 HPV- HNSCC patients underwent a total of 34 multimodality imaging examinations DW-MRI at 1.5 T Philips MRI scanner [(n = 24) pre-, during- (2-3 wk), and post-treatment (Tx), and 18F-FDG PET/CT pre- and post-Tx (n = 10)]. All patients received RT. Monoexponential modeling of the DW-MRI data yielded the imaging metric apparent diffusion coefficient (ADC) and the mean of standardized uptake value (SUV) was measured from 18F-FDG PET uptake. All patients had a clinical follow-up as the standard of care and survival status was documented at 1 year. RESULTS There was a strong negative correlation between the mean of pretreatment ADC (ρ = -0.67, P = 0.01) and the pretreatment 18F-FDG PET SUV. The percentage (%) change in delta (∆) ADC for primary tumors and neck nodal metastases between pre- and Wk2-3 Tx were as follows: 75.4% and 61.6%, respectively, for the patient with no evidence of disease, 27.5% and 32.7%, respectively, for those patients who were alive with disease, and 26.9% and 7.31%, respectively, for those who were dead with disease. CONCLUSION These results are preliminary in nature and are indicative, and not definitive, trends rendered by the imaging metrics due to the small sample size of HPV- HNSCC patients in a Meixoeiro Hospital of Vigo Experience. PMID:28144403

  14. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    Science.gov (United States)

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability.

  15. Human leukocyte antigen E contributes to protect tumor cells from lysis by natural killer cells.

    Science.gov (United States)

    Lo Monaco, Elisa; Tremante, Elisa; Cerboni, Cristina; Melucci, Elisa; Sibilio, Leonardo; Zingoni, Alessandra; Nicotra, Maria Rita; Natali, Pier Giorgio; Giacomini, Patrizio

    2011-09-01

    The nonclassic class I human leukocyte antigen E (HLA-E) molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK) cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3) of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D). Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network.

  16. Human Leukocyte Antigen E Contributes to Protect Tumor Cells from Lysis by Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Elisa Lo Monaco

    2011-09-01

    Full Text Available The nonclassic class I human leukocyte antigen E (HLA-E molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3 of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D. Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network.

  17. Human Leukocyte Antigen E Contributes to Protect Tumor Cells from Lysis by Natural Killer Cells12

    Science.gov (United States)

    Monaco, Elisa Lo; Tremante, Elisa; Cerboni, Cristina; Melucci, Elisa; Sibilio, Leonardo; Zingoni, Alessandra; Nicotra, Maria Rita; Natali, Pier Giorgio; Giacomini, Patrizio

    2011-01-01

    The nonclassic class I human leukocyte antigen E (HLA-E) molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK) cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3) of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D). Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network. PMID:21969815

  18. Expression of some tumor associated factors in human carcinogenesis and development of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ming-Dong Zhao; Xue-Mei Hu; Dian-Jing Sun; Qun Zhang; Yu-Hao Zhang; Wei Meng

    2005-01-01

    AIM: To study the effect of IGF-1/IGF-1R and gastrin/ CCK-BR on carcinogenesis and development of human gastric carcinoma and to explore its mechanism and provide a credible theoretical foundation for early diagnosis and molecular therapy of gastric carcinoma. METHODS: mRNA expression levels of IGF-1/IGF-1R and gastrin/CCK-BR were assessed by RT-PCR method in gastric cancer tissues, adjacent mucosa, and tumor-free tissues from 56 patients with gastric carcinoma and normal gastric mucosae from 56 healthy controls. Tissue specimens were obtained by biopsy and confirmed by histological evaluation.RESULTS: The mRNA levels of IGF-1/IGF-1R were increased in gastric cancer tissues compared with normal tissues from healthy controls and successively increased in tumor-free tissues, adjacent mucosa, and gastric cancer tissues. The mRNA levels of gastrin/CCK-BR were increased in gastric cancer tissues compared with normal tissues from healthy controls. There was a significant difference between gastric cancer tissues and adjacent mucosa and tumor-free tissues, but the mRNA levels of gastrin were not significantly increased in adjacent mucosa and gastric cancer tissues compared with tumorfree tissues. The mRNA levels of CCK-BR were increased in gastric cancer tissues and adjacent mucosa compared with tumor-free tissues, but not significantly increased in adjacent mucosa and gastric cancer tissues compared with gastric cancer tissues. CONCLUSION: Overexpression of IGF-1/IGF-1R and gastrin/CCK-BR promotes the disorderly proliferation of gastric mucosa epithelia and it is of great significance in the carcinogenesis and development of gastric carcinoma.

  19. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  20. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Tiollais, Pierre [Unite' d' Organisation Nucleaire et Oncogenese, INSERM U.579, Institut Pasteur, Paris (France); Li, Tsaiping [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Zhao, Mujun, E-mail: mjzhao@sibs.ac.cn [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China)

    2011-06-03

    Highlights: {yields} LIS1 mRNA and protein levels are decreased in 70% HCC tissues. {yields} Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. {yields} LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. {yields} Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. {yields} Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the

  1. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Qing Ji

    Full Text Available BACKGROUND: MicroRNAs (miRNAs have been implicated in cancer initiation and progression via their ability to affect expression of genes and proteins that regulate cell proliferation and/or cell death. Transcription of the three miRNA miR-34 family members was recently found to be directly regulated by p53. Among the target proteins regulated by miR-34 are Notch pathway proteins and Bcl-2, suggesting the possibility of a role for miR-34 in the maintenance and survival of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: We examined the roles of miR-34 in p53-mutant human pancreatic cancer cell lines MiaPaCa2 and BxPC3, and the potential link to pancreatic cancer stem cells. Restoration of miR-34 expression in the pancreatic cancer cells by either transfection of miR-34 mimics or infection with lentiviral miR-34-MIF downregulated Bcl-2 and Notch1/2. miR-34 restoration significantly inhibited clonogenic cell growth and invasion, induced apoptosis and G1 and G2/M arrest in cell cycle, and sensitized the cells to chemotherapy and radiation. We identified that CD44+/CD133+ MiaPaCa2 cells are enriched with tumorsphere-forming and tumor-initiating cells or cancer stem/progenitor cells with high levels of Notch/Bcl-2 and loss of miR-34. More significantly, miR-34 restoration led to an 87% reduction of the tumor-initiating cell population, accompanied by significant inhibition of tumorsphere growth in vitro and tumor formation in vivo. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that miR-34 may restore, at least in part, the tumor suppressing function of the p53 in p53-deficient human pancreatic cancer cells. Our data support the view that miR-34 may be involved in pancreatic cancer stem cell self-renewal, potentially via the direct modulation of downstream targets Bcl-2 and Notch, implying that miR-34 may play an important role in pancreatic cancer stem cell self-renewal and/or cell fate determination. Restoration of miR-34 may hold significant

  2. Solutions for the Cell Cycle in Cell Lines Derived from Human Tumors

    Directory of Open Access Journals (Sweden)

    B. Zubik-Kowal

    2006-01-01

    Full Text Available The goal of the paper is to compute efficiently solutions for model equations that have the potential to describe the growth of human tumor cells and their responses to radiotherapy or chemotherapy. The mathematical model involves four unknown functions of two independent variables: the time variable t and dimensionless relative DNA content x. The unknown functions can be thought of as the number density of cells and are solutions of a system of four partial differential equations. We construct solutions of the system, which allow us to observe the number density of cells for different t and x values. We present results of our experiments which simulate population kinetics of human cancer cells in vitro. Our results show a correspondence between predicted and experimental data.

  3. Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain

    DEFF Research Database (Denmark)

    Korshoej, Anders Rosendal; Hansen, Frederik Lundgaard; Thielscher, Axel

    2017-01-01

    BackgroundTumor treating fields (TTFields) are increasingly used in the treatment of glioblastoma. TTFields inhibit cancer growth through induction of alternating electrical fields. To optimize TTFields efficacy, it is necessary to understand the factors determining the strength and distribution...... of TTFields. In this study, we provide simple guiding principles for clinicians to assess the distribution and the local efficacy of TTFields in various clinical scenarios.MethodsWe calculated the TTFields distribution using finite element methods applied to a realistic head model. Dielectric property...... estimates were taken from the literature. Twentyfour tumors were virtually introduced at locations systematically varied relative to the applied field. In addition, we investigated the impact of central tumor necrosis on the induced field.ResultsLocal field "hot spots" occurred at the sulcal fundi...

  4. Identification of "tumor-associated" nucleolar antigens in human urothelial cancer.

    Science.gov (United States)

    Yu, D; Pietro, T; Jurco, S; Scardino, P T

    1987-09-01

    Nucleoli isolated from HeLa S3 cells were used to produce rabbit antisera capable of binding nucleoli of transitional cell carcinomas (TCCa) of the bladder. Cross-reactivity of the rabbit antiserum with normal nucleoli was reduced by absorption with fetal calf serum, normal human serum, and human placental nucleoli. This antinucleolar antiserum exhibited strong reactivity in immunoperoxidase assays performed on specimens of human bladder cancer. In frozen tissue sections of 24 patients with TCCa and eight individuals without tumor, nucleolar staining was observed in all malignant specimens, but was not observed in seven of the normal specimens. Cytologic examination of bladder washing specimens from 47 normal individuals showed absence of nucleolar staining in 43 (91%) of 47 normal specimens while 12 (86%) of 14 specimens from patients with TCCa were positive. These results suggest that there are antigens associated with the nucleoli of HeLa cells and transitional cell carcinomas which are generally absent (or in low concentration) in normal human urothelial cells, and that antisera to these antigens may be useful in the cytologic diagnosis of human transitional cell carcinoma.

  5. Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells.

    Science.gov (United States)

    Tian, Xin; Ma, Ping; Sui, Cheng-Guang; Meng, Fan-Dong; Li, Yan; Fu, Li-Ye; Jiang, Tao; Wang, Yang; Jiang, You-Hong

    2014-06-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone involved in multidrug resistance and antiapoptosis in some human tumors, but its regulatory mechanisms have not been revealed in esophageal squamous cell carcinoma (ESCC). In this study, 138 specimens of ESCC were analyzed. TRAP1 was overexpressed in ESCC, particularly in poorly differentiated tumors. To further explore the molecular regulatory mechanism, we constructed specific small interfering RNA-expressing vectors targeting Trap1, and knocked down Trap1 expression in the esophageal cancer cell lines ECA109 and EC9706. Knockdown of Trap1 induced increases in reactive oxygen species and mitochondrial depolarization, which have been proposed as critical regulators of apoptosis. The cell cycle was arrested in G2/M phase, and in vitro inhibition of cell proliferation was confirmed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and bromodeoxyuridine assays. Furthermore, re-expression of TRAP1 in Trap1 small interfering RNA-transfected ESCC cells restored cell proliferation and cell apoptosis. Bioluminescence of subcutaneously xenografted ESCC tumor cells demonstrated significant inhibition of in vivo tumor growth by Trap1 knockdown. This study shows that TRAP1 was overexpressed in most patients with ESCC, and caused an increase in antiapoptosis potency. TRAP1 may be regarded as a target in ESCC biotherapy.

  6. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Cervigne Nilva K

    2010-05-01

    Full Text Available Abstract Background Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. Methods Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts. Results RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. Conclusion These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma.

  7. Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI).

    Science.gov (United States)

    Han, Yang; Wang, Shutao; Hibshoosh, Hanina; Taback, Bret; Konofagou, Elisa

    2016-05-09

    High-intensity focused ultrasound (HIFU) is a noninvasive technique used in the treatment of early-stage breast cancer and benign tumors. To facilitate its translation to the clinic, there is a need for a simple, cost-effective device that can reliably monitor HIFU treatment. We have developed harmonic motion imaging (HMI), which can be used seamlessly in conjunction with HIFU for tumor ablation monitoring, namely harmonic motion imaging for focused ultrasound (HMIFU). The overall objective of this study was to develop an all ultrasound-based system for real-time imaging and ablation monitoring in the human breast in vivo. HMI was performed in 36 specimens (19 normal, 15 invasive ductal carcinomas, and 2 fibroadenomas) immediately after surgical removal. The specimens were securely embedded in a tissue-mimicking agar gel matrix and submerged in degassed phosphate-buffered saline to mimic in vivo environment. The HMI setup consisted of a HIFU transducer confocally aligned with an imaging transducer to induce an oscillatory radiation force and estimate the resulting displacement. 3D HMI displacement maps were reconstructed to represent the relative tissue stiffness in 3D. The average peak-to-peak displacement was found to be significantly different (p = 0.003) between normal breast tissue and invasive ductal carcinoma. There were also significant differences before and after HMIFU ablation in both the normal (53.84 % decrease) and invasive ductal carcinoma (44.69 % decrease) specimens. HMI can be used to map and differentiate relative stiffness in postsurgical normal and pathological breast tissues. HMIFU can also successfully monitor thermal ablations in normal and pathological human breast specimens. This HMI technique may lead to a new clinical tool for breast tumor imaging and HIFU treatment monitoring.

  8. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection.

    Directory of Open Access Journals (Sweden)

    Olivia C Demurtas

    Full Text Available BACKGROUND: The E7 protein of the Human Papillomavirus (HPV type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. METHODOLOGY/PRINCIPAL FINDINGS: An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG, under the control of the C. reinhardtii chloroplast psbD 5' UTR and the psbA 3' UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. CONCLUSIONS: The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.

  9. Midazolam Induces Cellular Apoptosis in Human Cancer Cells and Inhibits Tumor Growth in Xenograft Mice

    Science.gov (United States)

    Mishra, Siddhartha Kumar; Kang, Ju-Hee; Lee, Chang Woo; Oh, Seung Hyun; Ryu, Jun Sun; Bae, Yun Soo; Kim, Hwan Mook

    2013-01-01

    Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosis-inducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. PMID:24008365

  10. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model.

    Science.gov (United States)

    Benedetti, Elisabetta; Antonosante, Andrea; d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-12-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma.

  11. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF gene.

    Directory of Open Access Journals (Sweden)

    Jenny Leitz

    2014-03-01

    Full Text Available The expression of the human papillomavirus (HPV E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  12. Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth Factor (LEDGF) Gene

    Science.gov (United States)

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-01-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic. PMID:24604027

  13. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  14. Oncogenic human papillomaviruses activate the tumor-associated lens epithelial-derived growth factor (LEDGF) gene.

    Science.gov (United States)

    Leitz, Jenny; Reuschenbach, Miriam; Lohrey, Claudia; Honegger, Anja; Accardi, Rosita; Tommasino, Massimo; Llano, Manuel; von Knebel Doeberitz, Magnus; Hoppe-Seyler, Karin; Hoppe-Seyler, Felix

    2014-03-01

    The expression of the human papillomavirus (HPV) E6/E7 oncogenes is crucial for HPV-induced malignant cell transformation. The identification of cellular targets attacked by the HPV oncogenes is critical for our understanding of the molecular mechanisms of HPV-associated carcinogenesis and may open novel therapeutic opportunities. Here, we identify the Lens Epithelial-Derived Growth Factor (LEDGF) gene as a novel cellular target gene for the HPV oncogenes. Elevated LEDGF expression has been recently linked to human carcinogenesis and can protect tumor cells towards different forms of cellular stress. We show that intracellular LEDGF mRNA and protein levels in HPV-positive cancer cells are critically dependent on the maintenance of viral oncogene expression. Ectopic E6/E7 expression stimulates LEDGF transcription in primary keratinocytes, at least in part via activation of the LEDGF promoter. Repression of endogenous LEDGF expression by RNA interference results in an increased sensitivity of HPV-positive cancer cells towards genotoxic agents. Immunohistochemical analyses of cervical tissue specimens reveal a highly significant increase of LEDGF protein levels in HPV-positive lesions compared to histologically normal cervical epithelium. Taken together, these results indicate that the E6/E7-dependent maintenance of intracellular LEDGF expression is critical for protecting HPV-positive cancer cells against various forms of cellular stress, including DNA damage. This could support tumor cell survival and contribute to the therapeutic resistance of cervical cancers towards genotoxic treatment strategies in the clinic.

  15. Systems biology of human epilepsy applied to patients with brain tumors.

    Science.gov (United States)

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both.

  16. The phytohormone auxin induces G1 cell-cycle arrest of human tumor cells.

    Science.gov (United States)

    Ester, Katja; Curković-Perica, Mirna; Kralj, Marijeta

    2009-10-01

    The plant hormone auxin is the key regulator of plant growth and development. Auxin regulates transcription of plant genes by targeting degradation of transcriptional repressor proteins Aux/IAA. While there are many reports describing its potential to modulate human cell functions, the majority are based on auxin action following enzymatic activation. A study focused on auxin alone and its antiproliferative potential, with emphasis on modulation of the cell cycle, has not been performed. Therefore, we analyzed tumor growth inhibitory effects and the cell-cycle perturbations of natural (IAA, IBA) and synthetic (NAA, 2,4-D) auxins. All derivatives showed cytostatic effects on selected human tumor cell lines. The cell-cycle analysis revealed that IAA and 2,4-D induce strong G1 arrest, along with a drastic decrease in the percentage of S-phase cells in MCF-7 cell line. This phenomenon demonstrates that auxins may have novel, unexploited antitumor potential and should be further investigated. Georg Thieme Verlag KG Stuttgart-New York.

  17. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells

    Science.gov (United States)

    Corsaro, Alessandro; Bajetto, Adriana; Thellung, Stefano; Begani, Giulia; Villa, Valentina; Nizzari, Mario; Pattarozzi, Alessandra; Solari, Agnese; Gatti, Monica; Pagano, Aldo; Würth, Roberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2016-01-01

    Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype. PMID:27229535

  18. λ Phage nanobioparticle expressing apoptin efficiently suppress human breast carcinoma tumor growth in vivo.

    Science.gov (United States)

    Shoae-Hassani, Alireza; Keyhanvar, Peyman; Seifalian, Alexander Marcus; Mortazavi-Tabatabaei, Seyed Abdolreza; Ghaderi, Narmin; Issazadeh, Khosro; Amirmozafari, Nour; Verdi, Javad

    2013-01-01

    Using phages is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. Apoptin, a protein from chicken anemia virus (CAV) has the ability to specifically induce apoptosis only in carcinoma cells. We presented a safe method of breast tumor therapy via the apoptin expressing λ NBPs. Here, we constructed a λ ZAP-CMV-apoptin recombinant NBP and investigated the effectiveness of its apoptotic activity on BT-474, MDA-MB-361, SKBR-3, UACC-812 and ZR-75 cell lines that over-expressing her-2 marker. Apoptosis was evaluated via annexin-V fluorescent iso-thiocyanate/propidium iodide staining, flow-cytometric method and TUNEL assay. Transfection with NBPs carrying λ ZAP-CMV-apoptin significantly inhibited growth of all the breast carcinoma cell lines in vitro. Also nude mice model implanted BT-474 human breast tumor was successfully responded to the systemic and local injection of untargeted recombinant λ NBPs. The results presented here reveal important features of recombinant λ nanobioparticles to serve as safe delivery and expression platform for human cancer therapy.

  19. DADS Suppresses Human Esophageal Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways

    Directory of Open Access Journals (Sweden)

    Xiaoran Yin

    2014-07-01

    Full Text Available Diallyl disulfide (DADS is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA. DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma.

  20. Differential sensitivity of hormone-responsive and unresponsive human prostate cancer cells (LNCaP) to tumor necrosis factor

    NARCIS (Netherlands)

    X. Zhao (X.); G.J. van Steenbrugge (Gert Jan); F.H. Schröder (Fritz)

    1992-01-01

    textabstractTwo sublines, the hormone-sensitive LNCaP-FGC and the insensitive LNCaP-r (resistant) carcinoma cell lines, originating from the parental human prostatic carcinoma cell line LNCaP were tested for sensitivity to human tumor necrosis factor-α (TNF) using the MTT assay. Irrespective of the

  1. EXPRESSION OF EPIDERMAL GROWTH FACTOR, TRANSFORMING GROWTH FACTOR-a AND THEIR RECEPTOR IN HUMAN PITUITARY TUMORS

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Long

    2001-01-01

    [1]LIU Xu-wen, FU Pei-yu, GAO Zhi-xian. Expression of epidermal growth factor receptors in human glioma [J]. Chin J Neurosurgery 1998; 14:71.[2]Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas [J]. Proc Natl Acad Sci USA 1992; 89:4309.[3]Webster J, Ham J, Bevan JS. Preliminary characterization of growth factors secreted by human pituitary tumors [J]. J Clin Endocrinol Metab 1991; 72:687.[4]Klibanski A. Nonsecreting pituitary tumors [J]. Endocrinol Metab Clin North Am 1987; 16:793.[5]LeRiche VK, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness [J]. J Clin Endocrinol Metab 1996; 81:656.

  2. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment.

    Science.gov (United States)

    Wang, Shih-Wei; Liu, Shih-Chia; Sun, Hui-Lung; Huang, Te-Yang; Chan, Chia-Han; Yang, Chen-Yu; Yeh, Hung-I; Huang, Yuan-Li; Chou, Wen-Yi; Lin, Yu-Min; Tang, Chih-Hsin

    2015-01-01

    Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma.

  3. Tumor Accumulation of NIR Fluorescent PEG-PLA Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model

    DEFF Research Database (Denmark)

    Schädlich, Andreas; Caysa, Henrike; Mueller, Thomas

    2011-01-01

    parameter for the nanoparticle accumulation in tumor tissues. In the present study the influence of the size of biodegradable nanoparticles was investigated in detail, combining in vivo and ex vivo analysis with comprehensive particle size characterizations. Polyethylene glycol-polyesters poly(lactide...

  4. Disabled-1 alternative splicing in human fetal retina and neural tumors.

    Directory of Open Access Journals (Sweden)

    Sachin Katyal

    Full Text Available BACKGROUND: The Reelin-Dab1 signaling pathway plays a critical role in the positioning of migrating neurons, dendrite formation and lamination in the developing central nervous system. We have previously identified two alternatively spliced forms of Dab1 in the developing chick retina: an early form, Dab1-E, expressed in retinal progenitor cells, and a late form, Dab1 or Dab1-L, expressed in amacrine and ganglion cells. Compared to Dab1-L, Dab1-E lacks two exons that encode two Src family kinase (SFK phosphorylation sites. PRINCIPAL FINDINGS: Both Dab1-L and Dab1-E-like transcripts were identified in human fetal retina. Expression of human Dab1-L in primary chick retinal cultures resulted in Reelin-mediated induction of SFK phosphorylation and formation of neurite-like processes. In contrast, human Dab1-E-expressing cells retained an undifferentiated morphology. The human Dab1 gene is located within a common fragile site, and it has been postulated that it may function as a tumor suppressor. Analysis of Dab1 splice forms in retinoblastoma and neuroblastoma tumor cells revealed relative enrichment of Dab1-L-like (includes exons 7 and 8 and Dab1-E-like (excludes exons 7 and 8 transcripts in retinoblastoma and neuroblastoma, respectively. Treatment of retinoblastoma cell line RB522A with Reelin resulted in increased tyrosine phosphorylation of Dab1. As Nova2 has previously been implicated in the exclusion of exons 9B and 9C in Dab1, we examined the expression of this splicing factor in neuroblastoma and retinoblastoma cell lines. Nova2 was only detected in neuroblastoma cells, suggesting a correlation between Nova2 expression and increased levels of Dab1-E-like splice forms in neuroblastoma. CONCLUSIONS: These results indicate that alternative splicing of Dab1 is conserved in avian and mammalian species, with Dab1-L driving SFK phosphorylation in both species. Dab1-E- and Dab-L-like isoforms are also expressed in childhood neural tumors, with

  5. Disabled-1 Alternative Splicing in Human Fetal Retina and Neural Tumors

    Science.gov (United States)

    Katyal, Sachin; Glubrecht, Darryl D.; Li, Lei; Gao, Zhihua; Godbout, Roseline

    2011-01-01

    Background The Reelin-Dab1 signaling pathway plays a critical role in the positioning of migrating neurons, dendrite formation and lamination in the developing central nervous system. We have previously identified two alternatively spliced forms of Dab1 in the developing chick retina: an early form, Dab1-E, expressed in retinal progenitor cells, and a late form, Dab1 or Dab1-L, expressed in amacrine and ganglion cells. Compared to Dab1-L, Dab1-E lacks two exons that encode two Src family kinase (SFK) phosphorylation sites. Principal Findings Both Dab1-L and Dab1-E-like transcripts were identified in human fetal retina. Expression of human Dab1-L in primary chick retinal cultures resulted in Reelin-mediated induction of SFK phosphorylation and formation of neurite-like processes. In contrast, human Dab1-E-expressing cells retained an undifferentiated morphology. The human Dab1 gene is located within a common fragile site, and it has been postulated that it may function as a tumor suppressor. Analysis of Dab1 splice forms in retinoblastoma and neuroblastoma tumor cells revealed relative enrichment of Dab1-L-like (includes exons 7 and 8) and Dab1-E-like (excludes exons 7 and 8) transcripts in retinoblastoma and neuroblastoma, respectively. Treatment of retinoblastoma cell line RB522A with Reelin resulted in increased tyrosine phosphorylation of Dab1. As Nova2 has previously been implicated in the exclusion of exons 9B and 9C in Dab1, we examined the expression of this splicing factor in neuroblastoma and retinoblastoma cell lines. Nova2 was only detected in neuroblastoma cells, suggesting a correlation between Nova2 expression and increased levels of Dab1-E-like splice forms in neuroblastoma. Conclusions These results indicate that alternative splicing of Dab1 is conserved in avian and mammalian species, with Dab1-L driving SFK phosphorylation in both species. Dab1-E- and Dab-L-like isoforms are also expressed in childhood neural tumors, with preferential enrichment

  6. Sensitivity of nuclear c-myc levels and induction to differentiation-inducing agents in human colon tumor cell lines.

    Science.gov (United States)

    Taylor, C W; Kim, Y S; Childress-Fields, K E; Yeoman, L C

    1992-02-29

    Six human colon tumor cell lines were analyzed for their constitutive levels of the c-myc protein. The nuclear proto-oncogene, c-myc, was detected as an expressed product in all of the human colon tumor cell lines analyzed. The poorly differentiated cell lines HCT116, RKO and C showed c-myc levels that averaged 2-fold greater than their well-differentiated counterparts, i.e., GEO, CBS and FET. When c-myc levels and responses to serum induction were analyzed in the presence of inducers of differentiation, i.e., dimethylformamide, retinoic acid, sodium butyrate and TGF-beta, distinct patterns of sensitivity and resistance emerged. Nuclear c-myc levels were reduced in all the colon cell phenotypes treated with dimethylformamide or sodium butyrate. Only the well-differentiated human colon tumor cell lines were responsive to transforming growth factor-beta. Only one of the human colon tumor cell lines (GEO) responded to retinoic acid. Increased levels of c-myc protein were found to correlate well with greater growth rates and with poor differentiation class. Similarly, a parallel sensitivity to down-regulation of c-myc levels and attenuation of c-myc induction curves for inducers of differentiation were observed in growth sensitive human colon tumor cell lines.

  7. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    OpenAIRE

    Li, Yuan; Burns, Janine A.; Carol A Cheney; Zhang, Ningyan; Vitelli, Salvatore; Wang, Fubao; Bett, Andrew; Chastain, Michael; Audoly, Laurent P.; Zhang, Zhi-Qiang

    2010-01-01

    Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prosta...

  8. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    Science.gov (United States)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  9. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/tk-luc human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-F. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Lin, Y.-Y. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Wang, H.-E. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Liu, R.-S. [Department of Nuclear Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Nuclear Medicine Department, Veterans General Hospital, Taipei, Taiwan (China); Pang Fei [Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Hwang, J.-J. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1-tk) and luciferase (luc). Both {sup 131}I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  10. Tanapoxvirus lacking a neuregulin-like gene regresses human melanoma tumors in nude mice.

    Science.gov (United States)

    Zhang, Tiantian; Suryawanshi, Yogesh R; Kordish, Dennis H; Woyczesczyk, Helene M; Jeng, David; Essani, Karim

    2017-02-01

    Neuregulin (NRG), an epidermal growth factor is known to promote the growth of various cell types, including human melanoma cells through ErbB family of tyrosine kinases receptors. Tanapoxvirus (TPV)-encoded protein TPV-15L, a functional mimic of NRG, also acts through ErbB receptors. Here, we show that the TPV-15L protein promotes melanoma proliferation. TPV recombinant generated by deleting the 15L gene (TPVΔ15L) showed replication ability similar to that of wild-type TPV (wtTPV) in owl monkey kidney cells, human lung fibroblast (WI-38) cells, and human melanoma (SK-MEL-3) cells. However, a TPV recombinant with both 15L and the thymidine kinase (TK) gene 66R ablated (TPVΔ15LΔ66R) replicated less efficiently compared to TPVΔ15L and the parental virus. TPVΔ15L exhibited more robust tumor regression in the melanoma-bearing nude mice compared to other TPV recombinants. Our results indicate that deletion of TPV-15L gene product which facilitates the growth of human melanoma cells can be an effective strategy to enhance the oncolytic potential of TPV for the treatment of melanoma.

  11. Expression of pRb and p16INK4 in human thymic epithelial tumors in relation to the presence of human polyomavirus 7

    OpenAIRE

    Keijzers, Marlies; Rensspiess, Dorit; Pujari, Sreedhar; Abdul-Hamid, Myrurgia A.; Hochstenbag, Monique; Dingemans, Anne-Marie; Kurz, Anna Kordelia; Haugg, Anke; Maessen, Jos G; Baets, Marc H. De; zur Hausen, Axel

    2015-01-01

    Background We have recently reported the presence of the Human polyomavirus 7 (HPyV7) in human thymic epithelial tumors as assessed by diverse molecular techniques. Here we report on the co-expression of p16, retinoblastoma protein (pRb) and phosphorylated retinoblastoma protein (phospho-Rb) in human thymic epithelial tumors in relation to HPyV7. Methods PRB, phospho-RB and p16 expression was assessed by immuno-histochemistry in 37 thymomas and 2 thymic carcinomas. 17 thymomas (46 %) and 1 th...

  12. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  13. Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions.

    Science.gov (United States)

    Baltz, Katrin M; Krusch, Matthias; Bringmann, Anita; Brossart, Peter; Mayer, Frank; Kloss, Mercedes; Baessler, Tina; Kumbier, Ingrid; Peterfi, Andrea; Kupka, Susan; Kroeber, Stefan; Menzel, Dagmar; Radsak, Markus P; Rammensee, Hans-Georg; Salih, Helmut R

    2007-08-01

    Glucocorticoid-induced TNF-related protein (GITR) has been shown to stimulate T cell-mediated antitumor immunity in mice. However, the functional relevance of GITR and its ligand (GITRL) for non-T cells has yet to be fully explored. In addition, recent evidence suggests that GITR plays different roles in mice and humans. We studied the role of GITR-GITRL interaction in human tumor immunology and report for the first time that primary gastrointestinal cancers and tumor cell lines of different histological origin express substantial levels of GITRL. Signaling through GITRL down-regulated the expression of the immunostimulatory molecules CD40 and CD54 and the adhesion molecule EpCAM, and induced production of the immunosuppressive cytokine TGF-beta by tumor cells. On NK cells, GITR is constitutively expressed and up-regulated following activation. Blocking GITR-GITRL interaction in cocultures of tumor cells and NK cells substantially increased cytotoxicity and IFN-gamma production of NK cells demonstrating that constitutive expression of GITRL by tumor cells diminishes NK cell antitumor immunity. GITRL-Ig fusion protein or cell surface-expressed GITRL did not induce apoptosis in NK cells, but diminished nuclear localized c-Rel and RelB, indicating that GITR might negatively modulate NK cell NF-kappaB activity. Taken together, our data indicate that tumor-expressed GITRL mediates immunosubversion in humans.

  14. Growth of peripheral and central nervous system tumors is supported by cytoplasmic c-Fos in humans and mice.

    Directory of Open Access Journals (Sweden)

    David C Silvestre

    Full Text Available BACKGROUND: We have previously shown that the transcription factor c-Fos is also capable of associating to endoplasmic reticulum membranes (ER and activating phospholipid synthesis. Herein we examined phospholipid synthesis status in brain tumors from human patients and from NPcis mice, an animal model of the human disease Neurofibromatosis Type 1 (NF1. PRINCIPAL FINDINGS: In human samples, c-Fos expression was at the limit of detection in non-pathological specimens, but was abundantly expressed associated to ER membranes in tumor cells. This was also observed in CNS of adult tumor-bearing NPcis mice but not in NPcis fos(-/- KO mice. A glioblastoma multiforme and a malignant PNS tumor from a NF1 patient (MPNST showed a 2- and 4- fold c-Fos-dependent phospholipid synthesis activation, respectively. MPNST samples also showed increased cell proliferation rates and abundant c-Fos expression. CONCLUSIONS: Results highlight a role of cytoplasmic c-Fos as an activator of phospholipid synthesis in events demanding high rates of membrane biogenesis as occurs for the exacerbated growth of tumors cells. They also disclose this protein as a potential target for controlling tumor growth in the nervous system.

  15. Effects of nicotinamide and carbogen on oxygenation in human tumor xenografts measured with luminescense based fiber-optic probes.

    Science.gov (United States)

    Bussink, J; Kaanders, J H; Strik, A M; van der Kogel, A J

    2000-10-01

    In head and neck cancer, addition of both carbogen breathing and nicotinamide to accelerated fractionated radiotherapy showed increased loco-regional control rates. An assay based on the measurement of changes in tumor pO(2) in response to oxygenation modification could be helpful for selecting patients for these new treatment approaches. The fiber-optic oxygen-sensing device, OxyLite, was used to measure changes in pO(2), at a single position in tumors, after treatment with nicotinamide and carbogen in three human xenograft tumor lines with different vascular architecture and hypoxic patterns. Pimonidazole was used as a marker of hypoxia and was analyzed with a digital image processing system. At the position of pO(2) measurement, half of the tumors showed a local increase in pO(2) after nicotinamide administration. Steep increases in pO(2) were measured in most tumors during carbogen breathing although the increase was less pronounced in tumor areas with a low pre-treatment pO(2). A trend towards a faster local response to carbogen breathing for nicotinamide pre-treated tumors was found in all three lines. There were significant differences in hypoxic fractions, based on pimonidazole binding, between the three tumor lines. There was no correlation between hypoxic marker binding and the response to carbogen breathing. Temporal changes in local pO(2) can be measured with the OxyLite. This system was used to quantitate the effects of oxygen modifying treatments. Rapid increases in pO(2) during carbogen breathing were observed in most tumor areas. The locally measured response to nicotinamide was smaller and more variable. Bio-reductive hypoxic cell marker binding in combination with OxyLite pO(2) determination gives spatial information about the distribution patterns of tumor hypoxia at the microscopic level together with the possibility to continuously measure changes in pO(2) in specific tumor areas.

  16. The Effects of Vandetanib on Paclitaxel Tumor Distribution and Antitumor Activity in a Xenograft Model of Human Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Marta Cesca

    2009-11-01

    Full Text Available This study was designed to determine the effects of vandetanib, a small-molecule receptor tyrosine kinase inhibitor of vascular endothelial growth factor and epidermal growth factor receptor, on paclitaxel (PTX tumor distribution and antitumor activity in xenograft models of human ovarian carcinoma. Nude mice bearing A2780-1A9 xenografts received daily (5, 10, or 15 days doses of vandetanib (50 mg/kg per os, combined with PTX (20 mg/kg intravenously. Morphologic and functional modifications associated with the tumor vasculature (CD31 and α-smooth muscle actin staining and Hoechst 33342 perfusion and PTX concentrations in plasma and tumor tissues were analyzed. Activity was evaluated as inhibition of tumor growth subcutaneously and spreading into the peritoneal cavity. Vandetanib treatment produced no significant change in tumor vessel density, although a reduced number of large vessels, an increased percentage of mature vessels, and diminished tumor perfusion were evident. Pretreatment with vandetanib led to decreased tumor PTX levels within 1 hour of PTX injection, although 24 hours later, tumor PTX levels were comparable with controls. In efficacy studies, the combination of vandetanib plus PTX improved antitumor activity compared with vandetanib or PTX alone, with greater effects being obtained when PTX was administered before vandetanib. The combination of PTX plus vandetanib reduced tumor burden in the peritoneal cavity of mice and significantly increased their survival. Analysis of vascular changes and PTX tumor uptake in vandetanib-treated tumors may help to guide the scheduling of vandetanib plus PTX combinations and may have implications for the design of clinical trials with these drugs.

  17. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I.

    Directory of Open Access Journals (Sweden)

    Yanke Chen

    Full Text Available Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF and matrix metalloproteinases (MMPs. In this study, we made a three-dimensional (3D tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.

  18. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

    2015-10-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

  19. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

    Science.gov (United States)

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S.; Zhau, Haiyen E.; Chung, Leland W.K.

    2016-01-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic aniontransporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors. PMID:26197410

  20. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549

    Institute of Scientific and Technical Information of China (English)

    Bin YE; Yan XIE; Zheng-hong QIN; Jun-chao WU; Rong HAN; Jing-kang HE

    2011-01-01

    Aim:To assess the cytotoxic effect of crotoxin (CrTX),a potent neurotoxin extracted from the venom of the pit viper Crotalus durissus terrificus,in human lung adenocarcinoma A549 cells and investigated the underlying mechanisms.Methods:A549 cells were treated with gradient concentrations of CrTX,and the cell cycle and apoptosis were analyzed using a flow cytometric assay.The changes of cellular effectors p53,caspase-3 and cleaved caspase-3,total P38MAPK and pP38MAPK were investigated using Western blot assays.A549 xenograft model was used to examine the inhibition of CrTX on tumor growth in vivo.Results:Treatment of A549 cells with CrTX (25-200 μg/mL) for 48 h significantly inhibited the cell growth in a dose-dependent manner (IC50=78 μg/mL).Treatment with CrTX (25 iJg/mL) for 24 h caused G1 arrest and induced cell apoptosis.CrTX (25 μg/mL) significantly increased the expression of wt p53,cleaved caspase-3 and phospho-P38MAPK.Pretreatment with the specific P38MAPK inhibitor SB203580 (5 μmol/L) significantly reduced CrTX-induced apoptosis and cleaved caspase-3 level,but G1 arrest remained unchanged and highly expressed p53 sustained.Intraperitoneal injection of CrTX (10 μg/kg,twice a week for 4 weeks) significantly inhibited A549 tumor xenograft growth,and decreased MVD and VEGF levels.Conclusion:CrTX produced significant anti-tumor effects by inducing cell apoptosis probably due to activation of P38MAPK and caspase-3,and by cell cycle arrest mediated by increased wt p53 expression.In addition,CrTX displayed anti-angiogenic effects in vivo.

  1. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.

  2. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    OpenAIRE

    Suhail Mahmoud M; Wu Weijuan; Cao Amy; Mondalek Fadee G; Fung Kar-Ming; Shih Pin-Tsen; Fang Yu-Ting; Woolley Cole; Young Gary; Lin Hsueh-Kung

    2011-01-01

    Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to opt...

  3. Human mammaglobin: a superior marker for reverse-transcriptase PCR in detecting circulating tumor cells in breast cancer patients.

    Science.gov (United States)

    Li, GuangLiang; Zhang, Jing; Jin, KeTao; He, KuiFeng; Wang, HaoHao; Lu, HaiQi; Teng, LiSong

    2011-04-01

    Breast cancer is the most frequent cancer in women in the USA and the second most common cause of death in females who develop cancer. Recently, the detection of circulating tumor cells has emerged as a promising tool for monitoring the progression of clinically occult micrometastases in breast cancer patients. Sensitive molecular techniques, primarily based upon the reverse-transcriptase PCR, using various molecules as markers, have been developed to detect circulating tumor cells. Among those molecules, human mammaglobin mRNA has been found to be the most specific marker for the hematogenous spread of breast cancer cells. In this article, we review the current knowledge regarding the use of reverse-transcriptase PCR for detecting human mammaglobin mRNA as a biomarker for circulating tumor cells in breast cancer patients, and evaluate the clinical implications of human mammaglobin since it was first isolated in 1996.

  4. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  5. Mode of action and human relevance of THF-induced mouse liver tumors.

    Science.gov (United States)

    Choi, Christopher J; Rushton, Erik K; Vardy, Audrey; Higgins, Larry; Augello, Andrea; Parod, Ralph J

    2017-07-05

    In a National Toxicology Program (NTP) bioassay, inhalation of tetrahydrofuran (THF) induced liver tumors in female B6C3F1 mice but not in male mice or rats of either sex. Since THF is not genotoxic, the NTP concluded this carcinogenic activity was likely mediated via non-genotoxic modes of action (MOA). Based on evidence that THF and phenobarbital share a similar MOA, female Car/Pxr knock-out mice were orally exposed to THF to evaluate the potential role of CAR activation in the MOA for THF-induced liver tumors. Because data from this oral study with Car/Pxr knock-out mice (C57Bl/6) and the inhalation studies with wild type mice (B6C3F1) reported by NTP and others were derived from different strains, oral studies with wild type B6C3F1 and C57Bl/6 mice were conducted to ensure THF responses in both strains were comparable. As seen in inhalation studies with THF, oral exposure of wild type female mice to a maximum tolerated dose of THF increased total P450 content, CAR-related P450 activities, and hepatocyte proliferation; these effects were not observed in Car/Pxr knock-out female mice. This finding supports the hypothesis THF-induced carcinogenicity is likely mediated via CAR activation that has limited, if any, relevance to humans. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Light dosimetry in vivo in interstitial photodynamic therapy of human tumors

    Science.gov (United States)

    Reynes, Anne M.; Diebold, Simon; Lignon, Dominique; Granjon, Yves; Guillemin, Francois H.

    1991-11-01

    Photodynamic therapy, developed since 1961 with Lipson''s studies, is now limited in its clinical applications by the lack of knowledge about light comportment and the action of hematoporphyrin in tissues. Using human tumor models in mice, the intratumoral light flux was measured during an interstitial illumination (cylindrical diffusor 5 mm of length) by an argon dye laser emitting continuously at 630 nm (Spectra-Physics 375 B). The flux measured was captured by a plane-cut fiber (400 micrometers ) linked with an optical power meter (Newport 815). The light decrease in tissue had an exponential shape, and k, the global attenuation coefficient, was easily calculated as well as the depth penetration (1/k). Control measurements were performed in beef muscle, and the k value was very consistent with published data. In small tumors (3), the results presented a good reproducibility for the same histology (ksarcoma equals 0.48 +/- 0.08 mm-1, kcholangiocarcinoma equals 0.67 +/- 0.01 mm-1). The intraperitoneal injection of hematoporphyrin derivative (HpD at 10 mg/kg) did not seem to significantly influence the light evolution in tissues compared with control measurements without HpD. The simplicity and the reproducibility of this technique raises hopes of a coming clinical application and a possible comparison between different studies with measurable references.

  7. Engineered Human Ferritin Nanoparticles for Direct Delivery of Tumor Antigens to Lymph Node and Cancer Immunotherapy

    Science.gov (United States)

    Lee, Bo-Ram; Ko, Ho Kyung; Ryu, Ju Hee; Ahn, Keum Young; Lee, Young-Ho; Oh, Se Jin; Na, Jin Hee; Kim, Tae Woo; Byun, Youngro; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Jeewon

    2016-01-01

    Efficient delivery of tumor-specific antigens (TSAs) to lymph nodes (LNs) is essential to eliciting robust immune response for cancer immunotherapy but still remains unsolved. Herein, we evaluated the direct LN-targeting performance of four different protein nanoparticles with different size, shape, and origin [Escherichia coli DNA binding protein (DPS), Thermoplasma acidophilum proteasome (PTS), hepatitis B virus capsid (HBVC), and human ferritin heavy chain (hFTN)] in live mice, using an optical fluorescence imaging system. Based on the imaging results, hFTN that shows rapid LN targeting and prolonged retention in LNs was chosen as a carrier of the model TSA [red fluorescence protein (RFP)], and the flexible surface architecture of hFTN was engineered to densely present RFPs on the hFTN surface through genetic modification of subunit protein of hFTN. The RFP-modified hFTN rapidly targeted LNs, sufficiently exposed RFPs to LN immune cells during prolonged period of retention in LNs, induced strong RFP-specific cytotoxic CD8+ T cell response, and notably inhibited RFP-expressing melanoma tumor growth in live mice. This suggests that the strategy using protein nanoparticles as both TSA-carrying scaffold and anti-cancer vaccine holds promise for clinically effective immunotherapy of cancer. PMID:27725782

  8. Anti-tumor effects of shikonin derivatives on human medullary thyroid carcinoma cells

    Directory of Open Access Journals (Sweden)

    Carina Hasenoehrl

    2017-02-01

    Full Text Available New treatment options are needed for medullary thyroid carcinoma (MTC, a highly metastasizing neuroendocrine tumor that is resistant to standard radiotherapy and chemotherapy. We show that the following shikonin derivatives inhibit cell proliferation and cell viability of the MTC cell line TT: acetylshikonin, β,β-dimethylacrylshikonin, shikonin and a petroleum ether extract of the roots of Onosma paniculata containing several shikonin derivatives. The unsubstituted shikonin derivative was found to be the most effective compound with an IC50 of 1.1 μM. The cell viability of normal human skin fibroblasts, however, was not affected by the tested substances, indicating that shikonin derivatives might be selectively toxic for cancer cells. We further report that migration and invasion of TT cells were inhibited at non-toxic concentrations. Finally, shikonin was tested in vivo using the chick chorioallantoic membrane assay, where it significantly reduced tumor growth by inhibiting cell proliferation and inducing apoptosis. In summary, our results suggest that shikonin derivatives have the potential for the treatment of medullary thyroid carcinomas.

  9. Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2010-06-01

    Full Text Available Yuan Li1, Janine A Burns1, Carol A Cheney1, Ningyan Zhang1, Salvatore Vitelli1, Fubao Wang1, Andrew Bett2, Michael Chastain2, Laurent P Audoly1, Zhi-Qiang Zhang1,31Department of Biologics Research, 2Department of Vaccine Research, Merck Research Laboratories, West Point, PA, USA; 3Clinical Development Laboratory, Merck Research Laboratories, Rahway, NJ, USAAbstract: Biological therapies, such as monoclonal antibodies (mAbs that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1 whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2 the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC, but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers.Keywords: Notch

  10. Staphylococcal Entertotoxins of the Enterotoxin Gene Cluster (egcSEs Induce Nitrous Oxide- and Cytokine Dependent Tumor Cell Apoptosis in a Broad Panel of Human Tumor Cells

    Directory of Open Access Journals (Sweden)

    David eTerman

    2013-08-01

    Full Text Available The egcSEs comprise five genetically linked staphylococcal enterotoxins, SEG, SEI, SElM, SElN and SElO and two pseudotoxins which constitute an operon present in up to 80% of Staphylococcus aureus isolates. A preparation containing theses proteins was recently used to treat advanced lung cancer with pleural effusion. We investigated the hypothesis that egcSEs induce nitrous oxide (NO and associated cytokine production and that these agents may be involved in tumoricidal effects against a broad panel of clinically relevant human tumor cells. Preliminary studies showed that egcSEs and SEA activated T cells (range: 11-25% in a concentration dependent manner. Peripheral blood mononuclear cells (PBMCs stimulated with equimolar quantities of egcSEs expressed NO synthase and generated robust levels of nitrite (range: 200-250 µM, a breakdown product of NO; this reaction was inhibited by NG-monomethyl-L-arginine (L-NMMA (0.3 mM, an NO synthase antagonist. Cell free supernatants (CSFs of all egcSE-stimulated PBMCs were also equally effective in inducing concentration dependent tumor cell apoptosis in a broad panel of human tumor cells. The latter effect was due in part to the generation of NO and TNF-α since it was significantly abolished by L-NMMA, anti-TNF-α antibodies respectively and a combination thereof. A hierarchy of tumor cell sensitivity to these CFSs was as follows: lung carcinoma>osteogenic sarcoma>melanoma>breast carcinoma>neuroblastoma. Notably, SEG induced robust activation of NO/TNFα-dependent tumor cell apoptosis comparable to the other egcSEs and SEA despite TNF-α and IFN-γ levels that were 2 and 8 fold lower respectively than the other egcSEs and SEA. Thus, egcSEs produced by S. aureus induce NO synthase and the increased NO formation together with TNF-α appear to contribute to egcSE-mediated apoptosis against a broad panel of human tumor cells.

  11. In vivo functional analysis of the human NF2 tumor suppressor gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Heather S Gavilan

    Full Text Available The proper control of tissue growth is essential during normal development and an important problem in human disease. Merlin, the product of the Neurofibromatosis 2 tumor suppressor gene, has been extensively studied to understand its functions in growth control. Here we describe experiments in which we used Drosophila as an in vivo system to test the functions of the normal human NF2 gene products and patient-derived mutant alleles. Although the predominant NF2 gene isoform, isoform 1, could functionally replace the Drosophila Merlin gene, a second isoform with a distinct C-terminal tail could not. Immunofluorescence studies show that the two isoforms have distinct subcellular localizations when expressed in the polarized imaginal epithelium, and function in genetic rescue assays correlates with apical localization of the NF2 protein. Interestingly, we found that a patient-derived missense allele, NF2L64P, appears to be temperature sensitive. These studies highlight the utility of Drosophila for in vivo functional analysis of highly conserved human disease genes.

  12. Dysregulation of JAM-A plays an important role in human tumor progression.

    Science.gov (United States)

    Zhao, Chen; Lu, Funian; Chen, Hongxia; Zhao, Xianda; Sun, Jun; Chen, Honglei

    2014-01-01

    Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described.

  13. Construction and Expression of Human PTEN Tumor Suppressor Gene Recombinant Adenovirus Vector

    Institute of Scientific and Technical Information of China (English)

    CHEN Qingyong; WANG Chunyou; CHEN Daoda; CHEN Jianying; JIANG Chunfang; ZHENG Hai

    2006-01-01

    The recombinant defective adenovirus vector carrying human PTEN tumor suppres sor gene was constructed by using AdEasy-1 system and its expression was detected in human breast cancer cell line MDA-MB-468. Human PTEN cDNA was cloned into adenovirus shuttle plasmid pAdTrack-CMV to generate a recombinant plasmid pAdTrack-CMV-PTEN, then homologeous recombination was carried out in the E. coli BJ5183 by contransforming linearized shuttle vector with adenovirus backbone plasmid pAdEasy-1. The newly recombined defective adenovirus vector AdPTEN containing green fluorescent protein (GFP) was packaged and propagated in 293 cells. After being purified by cesium chloride gradient centrifugation, the adenovirus was transfected into human breast cancer cell line MDA-MB-468 in vitro. The expression of PTEN mRNA and protein in infected human breast cancer cell line MDA-MB-468 was detected by RT-PCR and Western blot respectively. The recombinant defective adenovirus vector carrying PTEN gene was constructed successfully. The viral titer of purified adenovirus was 2.5×1010 pfu/mL, and about 70 % breast cancer cells were infected with Ad PTEN when multiplicity of infection (MOI) reached 50. The exogenous PTEN mRNA and protein were expressed in MDA-MB-468 cells infected with Ad-PTEN by RT-PCR and Western blot. The recombinant defective adenovirus vector of PTEN gene was constructed successfully using AdEasy-1 system rapidly, which paved a sound foundation for gene study of breast cancer.

  14. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer.

    Science.gov (United States)

    O'Neill, Ann Marie; Burrington, Christine M; Gillaspie, Erin A; Lynch, Darin T; Horsman, Melissa J; Greene, Michael W

    2016-12-01

    Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1(tm1Mom) mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects and possible anti-tumor immunity of electrochemotherapy with bleomycin on human colon cancer xenografts in nude mice

    Institute of Scientific and Technical Information of China (English)

    Min-Hua Zheng; Bao-Ming Yu; Bo Feng; Jian-Wen Li; Ai-Guo Lu; Ming-Liang Wang; Wei-Guo Hu; Ji-Yuan Sun; Yan-Yan Hu; Jun-Jun Ma

    2005-01-01

    AIM: To evaluate the anti-tumor effects and possible involvement of anti-tumor immunity of electrochemotherapy (ECT) employing electroporation and bleomycin in human colon cancer xenografts in nude mice, and to establish the experimental basis for clinical application of ECT.METHODS: Forty nude mice, inoculated subcutaneously human colon cancer cell line LoVo for 3 wk, were allocated randomly into four groups: B+E+ (ECT), B+E- (administration of bleomycin alone), B-E+ (administration of electric pulses alone), and B-E- (no treatment). Tumor volumes were measured daily. The animals were killed on the 7th d, the weights of xenografts were measured, and histologies of tumors were evaluated. Cytotoxicity of spleen natural killer (NK) and lymphokine-activated killer (LAK) cells was then assessed by lactic dehydrogenase release assay.RESULTS: The mean tumor volume of group B+E+ was statistically different from the other three groups after the treatment (F= 36.80, P<0.01). There was one case of complete response, seven cases of partial response (PR) in group B+E+, one case of PR in group B+E- and group B-E+ respectively, and no response was observed in group B-E-. The difference of response between group B+E+ and the other three groups was statistically significant (χ2 = 25.67, P<0.01). Histologically, extensive necrosis of tumor cells with considerable vascular damage and inflammatory cells infiltration were observed in group B+E+. There was no statistical difference between the cytotoxicity of NK and LAK cells in the four treatment groups.CONCLUSION: ECT significantly enhances the chemosensitivity and effects of chemotherapy in human colon cancer xenografts in nude mice, and could be a kind of novel treatment modality for human colon cancer.The generation of T-cell-dependent, tumor-specific immunity might be involved in the process of ECT.

  16. Tumor promoters alter the temporal program of adenovirus replication in human cells.

    Science.gov (United States)

    Fisher, P B; Young, C S; Weinstein, I B; Carter, T H

    1981-04-01

    In this study we evaluated the effect of phorbol ester tumor promoters on the kinetics of adenovirus type 5 (Ad5) replication in human cells. When added at the time of infection, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) accelerated the appearance of an early virus antigen (72,000-molecular-weight [72K] deoxyribonucleic acid-binding protein), the onset of viral deoxyribonucleic acid synthesis, and the production of infectious virus. The appearance of an Ad5-specific cytopathic effect (CPE) was also accelerated in infected cultures exposed to TPA, whereas phorbol, 4 alpha-phorbol-12,13-didecanoate and 4-OmeTPA, which are inactive as tumor promoters, were ineffective in inducing this morphological change. The acceleration of the CPE seen in TPA-treated Ad5-infected cells was not caused by TPA induction of the protease plasminogen activator, since the protease inhibitors leupeptin and antipain do not inhibit the earlier onset of this CPE and, in contrast, epidermal growth factor, which induces plasminogen activator in HeLa cells, does not induce an earlier CPE. Evidence for a direct effect of TPA on viral gene expression was obtained by analyzing viral messenger ribonucleic acid (mRNA) synthesis. TPA accelerated the appearance of mRNA from all major early regions of Ad5, transiently stimulated the accumulation of region III mRNA, and accelerated the appearance of late Ad5 mRNA. Thus, TPA altered the temporal program of Ad5 mRNA production and accelerated the appearance of at least some Ad5-specific polypeptides during lytic infection of human cells. These effects presumably explain the earlier onset of the Ad5-specific CPE in TPA-treated cells and may have relevance to the effects of TPA on viral gene expression in nonpermissive cells carrying integrated viral deoxyribonucleic acid sequences.

  17. Adenovirus replication as an in vitro probe for drug sensitivity in human tumors.

    Science.gov (United States)

    Parsons, P G; Maynard, K R; Little, J H; McLeod, G R

    1986-04-01

    The feasibility of using adenovirus 5 as an in vitro probe for chemosensitivity in short-term cultures of human tumors was evaluated using human melanoma cell lines and primary cultures of melanoma biopsies. A convenient immunoperoxidase method was developed for quantitating viral replication 2 days after infection. Two different approaches were explored: the host cell reactivation assay (HCR) using drug-treated virus; and the viral capacity assay using drug-treated cells. The HCR assay detected sensitivity to 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC) in Mer- (methyl excision repair deficient) cell lines as decreased ability of the cells to replicate MTIC-treated virus. This test should be applicable to DNA-damaging agents and repair-deficient tumors. Adenovirus replicated readily in nonproliferating primary cultures of melanoma biopsies; application of the HCR assays to this material identified one Mer- sample of 11 tested. Herpes viruses were not suitable for use in HCR because herpes simplex virus type 1 failed to distinguish Mer- from Mer+ melanoma cells; and nonproductive infection of MTIC-sensitive lymphoid cells with Epstein-Barr virus yielded an MTIC-resistant cell line. The second assay (viral capacity) involved determination of the inhibition of replication of untreated virus in treated cells. This approach correctly predicted sensitivity to hydroxyurea and deoxyadenosine in melanoma cell lines when compared with clonogenic survival assay. Viral capacity was also inhibited by cytosine arabinoside, fluorouracil, vincristine, adriamycin, 6-mercaptopurine and ionising radiation, and may therefore be useful for detecting sensitivity to a wide range of antitumor agents.

  18. Multiparameter analysis of human epithelial tumor cell lines by laser scanning cytometry.

    Science.gov (United States)

    Pollice, A A; Smith, C A; Brown, K; Farkas, D L; Silverman, J F; Shackney, S E

    2000-12-15

    Laser scanning cytometry (LSC) is a relatively new slide-based technology developed for commercial use by CompuCyte (Cambridge, MA) for performing multiple fluorescence measurements on individual cells. Because techniques developed for performing four or more measurements on individual lymphoid cells based on light scatter as a triggering parameter for cell identification are not suitable for the identification of fixed epithelial tumor cells, an alternative approach is required for the analysis of such cells by LSC. Methods for sample preparation, event triggering, and the performance of multiple LSC measurements on disaggregated fixed human cells were developed using normal lymphocytes and two human breast cancer cell lines, JC-1939 and MCF-7, as test populations. Optimal conditions for individual cell identification by LSC were found to depend on several factors, including deposited cell density (cells per unit area), the dynamic range of probe fluorescence intensities, and intracellular distribution of the fluorescent probe. Sparsely deposited cells exhibited the least cell overlap and the brightest immunofluorescent staining. Major advantages of using DNA probes over a cytoplasmic immunofluorescent protein marker such as tubulin for event triggering are that the former exhibit greater fluorescence intensity within a relatively sharply demarcated nuclear region. The DNA-binding dye LDS-751 was found to be suboptimal for quantitative DNA measurements but useful as a triggering measurement that permits the performance of simultaneous fluorescein isothiocyanate-, phycoerythrin-, and indodicarbocyanine-based measurements on each cell. A major potential advantage of LSC over flow cytometry is the high yields of analyzable cells by LSC, permitting the performance of multiple panels of multicolor measurements on each tumor. In conclusion, we have developed and optimized a technique for performing multiple fluorescence measurements on fixed epithelial cells by LSC

  19. 18F-FDG and 18F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice.

    Directory of Open Access Journals (Sweden)

    Camilla Bardram Johnbeck

    Full Text Available The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging.The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily for 10 days. PET/CT scans were repeated at day 1,3 and 10.Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016, day 7 (164±7% vs. 226±13%; p<0.001 and at day 10 (194±10% vs. 281±18%; p<0.001. Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034, 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019 and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001 and day 10 (r2 = 0.58; P = 0.027.Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.

  20. Prognostic significance of STAT3 and phosphorylated STAT3 in human soft tissue tumors - a clinicopathological analysis

    Directory of Open Access Journals (Sweden)

    Nair Asha S

    2011-05-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is a key signaling molecule and a central cytoplasmic transcription factor, implicated in the regulation of growth. Its aberrant activation has been demonstrated to correlate with many types of human malignancy. However, whether constitutive STAT3 signaling plays a key role in the survival and growth of soft-tissue tumors is still unclear and hence needs to be elucidated further. In our study we examined the expression levels of STAT3 and pSTAT3 in different grades of soft tissue tumors and correlated with its clinicopathological characteristics. Methods Expression levels of STAT3 and pSTAT3 in soft tissue tumors were studied using Immunohistochemistry, Western blotting and Reverse transcriptase- PCR and correlated with its clinicopathological characteristics using Chi squared or Fisher's exact test and by logistic regression analysis. Statistical analysis was done using Intercooled Stata software (Intercooled Stata 8.2 version. Results Of the 82 soft tissue tumor samples, fifty four (65.8% showed immunoreactivity for STAT3 and twenty eight (34.1% for pSTAT3. Expression of STAT3 and pSTAT3 was significantly associated with tumor grade (P Conclusion These findings suggest that constitutive activation of STAT3 is an important factor related to carcinogenesis of human soft tissue tumors and is significantly associated with its clinicopathological parameters which may possibly have potential diagnostic implications.

  1. Relationship of doxorubicin- and radiation-induced apoptosis with Ki-67 labeling index in human tumors in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Kayoko; Hasegawa, Masatoshi; Kawashima, Miho; Toda, Hisako; Hayakawa, Kazushige; Mitsuhashi, Norio; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine

    1999-11-01

    In the use of doxorubicin and radiation for treatment of human malignant tumors in vivo, the relationship between treatment-induced apoptosis and Ki-67 labeling index was investigated. Four human tumor xenografts (ependymoblastoma, NNE; primitive neuroectodermal tumor, YKP; small cell lung carcinoma, GLS; glioblastoma, KYG) were transplanted under the skin of thigh of the nude mice (BALB/cA JcL-nu). The mice were given a single radiation dose of 1 Gy, or doxorubicin alone intraperitoneally at a dose of 8 mg/kg. After treatment, sections of tumor specimens were prepared from paraffin-embedded tissues. Hematoxylin and eosin staining, TUNEL staining, and immunohistochemical analysis of Ki-67 were performed. In NNE, apoptotic cells appeared most frequently after treatment compared with all other tumors, and the incidence of apoptosis in the radiation-treated group was much higher than in the doxorubicintreated group. As the incidence of apoptosis in NNE increased, the Ki-67 labeling index tended to decrease. In GLS and KYG, there was a low incidence of treatment-induced apoptosis, although the Ki-67 labeling index decreased transiently after treatment. In YKP, few apoptotic cells appeared and Ki-67 the labeling index was unchanged throughout the time course after treatment. Ki-67 labeling index in malignant tumors after treatment may be affected by various kinds of cell deaths and treatment methods. (author)

  2. Tumor-associated MUC5AC stimulates in vivo tumorigenicity of human pancreatic cancer.

    Science.gov (United States)

    Hoshi, Hirotaka; Sawada, Tetsuji; Uchida, Motoyuki; Saito, Hikaru; Iijima, Hiroko; Toda-Agetsuma, Mikako; Wada, Tsutomu; Yamazoe, Sadaaki; Tanaka, Hiroaki; Kimura, Kenjiro; Kakehashi, Anna; Wei, Min; Hirakawa, Kosei; Wanibuchi, Hideki

    2011-03-01

    MUC5AC, a high molecular weight glycoprotein, is overexpressed in the ductal region of human pancreatic cancer but is not detectable in the normal pancreas, suggesting its association with disease development. In the present study, we investigated the in vitro and in vivo effects of MUC5AC knockdown by short interfering RNA (siRNA) in the MUC5AC-overexpressing SW1990 and BxPC3 human pancreatic cancer cell lines in order to clarify its function. Significant decreases in the expression levels of MUC5AC mRNA and protein were observed in SW1990 and BxPC3 cells that had been stably transfected with a MUC5AC siRNA expression vector (SW1990/si-MUC5AC and BxPC3/si-MUC5AC cells) compared to those in cells transfected with an si-mock vector (SW1990/si-mock and BxPC3/si-mock cells). In in vitro studies, neither type of MUC5AC-knockdown cell showed any difference in cell survival, proliferation, or morphology from the si-mock cells or parental cells. However, in vivo xenograft studies demonstrated that MUC5AC knockdown significantly reduced the tumorigenicity and suppressed the tumor growth of si-MUC5AC cells compared to those of the si-mock cells. Immunohistochemical analysis revealed that CD45R/B220+ and Gr-1+ cells had infiltrated into the tumor tissue of the SW1990/si-MUC5AC cells. Furthermore, cancer-associated antigen specific antibodies were detected at high levels in the sera from the SW1990/si-MUC5AC cell-bearing mice. These results suggest that tumor-associated MUC5AC expressed on the surface of pancreatic cancer cells supports the escape of pancreatic cancer cells from immunosurveillance. The present findings highlight a new dimension of MUC5AC as a functional immunosuppressive agent and its important role in pancreatic cancer progression.

  3. Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck.

    Science.gov (United States)

    Colnot, David R; Roos, Jan C; de Bree, Remco; Wilhelm, Abraham J; Kummer, J Alain; Hanft, Gertraud; Heider, Karl-Heinz; Stehle, Gerd; Snow, Gordon B; van Dongen, Guus A M S

    2003-09-01

    Previous studies have shown the potential of murine and chimeric anti-CD44v6 monoclonal antibodies (MAbs) for radioimmunotherapy (RIT) of head and neck squamous cell carcinoma (HNSCC). A limitation of these MAbs, however, appeared to be their immunogenicity. Therefore, humanized monoclonal antibody BIWA 4 (bivatuzumab), with an intermediate affinity for CD44v6, was recently selected. As a prelude to RIT, we evaluated the safety, tumor-targeting potential, pharmacokinetics, and immunogenicity of technetium-99m-labeled BIWA 4 in patients undergoing operations for primary HNSCC in this study. Ten patients were treated at BIWA 4 dose levels of 25 mg (n=3), 50 mg (n=4), and 100 mg (n=3). Patients received 2 mg of 750 MBq 99mTc-BIWA 4, together with 23-, 48-, and 98-mg unlabeled BIWA 4, respectively. Radioimmunoscintigraphy (RIS) was performed within 1 h and after 21 h, and patients underwent surgery at 48 h after injection. Biodistribution of 99mTc-BIWA 4 was evaluated by radioactivity measurements in blood, bone marrow, and in biopsies of a surgical specimen obtained 48 h after injection. BIWA 4 concentration in blood was assessed by ELISA and high performance liquid chromatography and related to soluble CD44v6 levels in serum samples. The development of human anti-human antibody (HAHA) responses was determined. Administration of 99mTc-BIWA 4 was well tolerated by all patients and no HAHA responses were observed. A mean t1/2 in plasma of 54.8 +/- 11.5 h, 76.1 +/- 21.8 h, and 68.5 +/- 21.2 h was found for the 25-, 50-, and 100-mg dose group, respectively. No complex formation of BIWA 4 with soluble CD44v6 in blood was observed. RIS showed targeting of primary tumors and lymph node metastases in 8 of 10 and 1 of 5 patients, respectively. The highest tumor uptake and tumor to nontumor ratios were observed for the 50-mg dose group. Tumor uptake was 12.9 +/- 5.9, 26.2 +/- 3.1, and 15.4 +/- 1.9% of the injected dose (ID)/kg for the 25-, 50-, and 100-mg dose group

  4. Oncogene activation in human benign tumors of the skin (keratoacanthomas): Is HRAS involved in differentiation as well as proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Corominas, M.; Kamino, Hideko; Leon, J.; Pellicer, A. (New York Univ. Medical Center, New York, NY (USA))

    1989-08-01

    In vitro DNA amplification followed by oligonucleotide mismatch hybridization was used to study the frequency of HRAS mutations in the benign self-regressing skin tumors keratoacanthomas and in squamous cell carcinomas. The authors used freshly obtained keratoacanthomas as well as Formalin-fixed paraffin-embedded tissues from both types of tumors. DNA from 50 samples of each tumor type was analyzed for activating mutations involving codons 12 and 61. A relatively high percentage (30%) of HRAS mutations was found in the keratoacanthomas compared with 13% in the squamous cell carcinomas. The most frequent mutation identified is the A{center dot}T-to-T{center dot}A transversion in the second position of codon 61. The present findings demonstrate the involvement of the HRAS oncogene in human benign tumors. Moreover, they indicate that an activated HRAS oncogene is not sufficient to maintain a neoplastic phenotype and argue against a role of HRAS in the progression of skin tumorigenesis.

  5. The rational design of specific peptide inhibitor against p38α MAPK at allosteric-site: a therapeutic modality for HNSCC.

    Directory of Open Access Journals (Sweden)

    Kamaldeep Gill

    Full Text Available p38α is a significant target for drug designing against cancer. The overproduction of p38α MAPK promotes tumorigenesis in head and neck squamous cell carcinoma (HNSCC. The ATP binding and an allosteric site referred as DFG are the key sites of the p38α mitogen activated protein kinase (MAPK exploited for the design of inhibitors. This study demonstrated design of peptide inhibitor on the basis of allosteric site using Glide molecular docking software and the biochemical analysis of the best modeled peptide. The best fitted tetrapeptide (FWCS in the allosteric site inhibited the pure recombinant and serum p38α of HNSCC patients by 74 and 72%, respectively. The potency of the peptide was demonstrated by its IC50 (4.6 nM and KD (3.41×10-10 M values, determined by ELISA and by surface plasmon resonance (SPR technology, respectively. The cell viability of oral cancer i.e. KB cell line was reduced in dose dependent manner by 60 and 97% by the treatment of peptide and the IC50 was 600 and 210 µM after 24 and 72 h incubation, respectively. Our result provides an insight for the development of a proficient small peptide as a promising anticancer agent targeting DFG site of p38α kinase.

  6. Repercussion of mitochondria deformity induced by anti-Hsp90 drug 17AAG in human tumor cells

    KAUST Repository

    Vishal, Chaturvedi

    2011-06-07

    Inhibiting Hsp90 chaperone roles using 17AAG induces cytostasis or apoptosis in tumor cells through destabilization of several mutated cancer promoting proteins. Although mitochondria are central in deciding the fate of cells, 17AAG induced effects on tumor cell mitochondria were largely unknown. Here, we show that Hsp90 inhibition with 17AAG first affects mitochondrial integrity in different human tumor cells, neuroblastoma, cervical cancer and glial cells. Using human neuroblastoma tumor cells, we found the early effects associated with a change in mitochondrial membrane potential, elongation and engorgement of mitochondria because of an increased matrix vacuolization. These effects are specific to Hsp90 inhibition as other chemotherapeutic drugs did not induce similar mitochondrial deformity. Further, the effects are independent of oxidative damage and cytoarchitecture destabilization since cytoskeletal disruptors and mitochondrial metabolic inhibitors also do not induce similar deformity induced by 17AAG. The 1D PAGE LC MS/ MS mitochondrial proteome analysis of 17AAG treated human neuroblastoma cells showed a loss of 61% proteins from membrane, metabolic, chaperone and ribonucleoprotein families. About 31 unmapped protein IDs were identified from proteolytic processing map using Swiss-Prot accession number, and converted to the matching gene name searching the ExPASy proteomics server. Our studies display that Hsp90 inhibition effects at first embark on mitochondria of tumor cells and compromise mitochondrial integrity. the author(s), publisher and licensee Libertas Academica Ltd.

  7. The prognostic role of sex, race, and human papillomavirus in oropharyngeal and nonoropharyngeal head and neck squamous cell cancer.

    Science.gov (United States)

    Fakhry, Carole; Westra, William H; Wang, Steven J; van Zante, Annemieke; Zhang, Yuehan; Rettig, Eleni; Yin, Linda X; Ryan, William R; Ha, Patrick K; Wentz, Alicia; Koch, Wayne; Richmon, Jeremy D; Eisele, David W; D'Souza, Gypsyamber

    2017-05-01

    Human papillomavirus (HPV) is a well-established prognostic marker for oropharyngeal squamous cell cancer (OPSCC). Because of the limited numbers of women and nonwhites in studies to date, sex and racial/ethnic differences in prognosis have not been well explored. In this study, survival differences were explored by the tumor HPV status among 1) patients with OPSCCs by sex and race and 2) patients with nonoropharyngeal (non-OP) head and neck squamous cell cancers (HNSCCs). This retrospective, multi-institution study included OPSCCs and non-OP HNSCCs of the oral cavity, larynx, and nasopharynx diagnosed from 1995 to 2012. Race/ethnicity was categorized as white non-Hispanic, black non-Hispanic, Asian non-Hispanic, and Hispanic of any race. Tumors were centrally tested for p16 overexpression and the presence of HPV by HPV16 DNA and high-risk HPV E6/E7 messenger RNA in situ hybridization. Kaplan-Meier and Cox proportional hazards models were used to evaluate overall survival (OS). The study population included 239 patients with OPSCC and 621 patients with non-OP HNSCC with a median follow-up time of 3.5 years. After adjustments for the tumor HPV status, age, current tobacco use, and stage, the risk of death was lower for women versus men with OPSCC (adjusted hazard ratio, 0.55; P = .04). The results were similar with p16. In contrast, for non-OP HNSCCs, HPV positivity, p16 positivity, and sex were not associated with OS. For OPSCC, there are differences in survival by sex, even after the tumor HPV status has been taken into account. For non-OP HNSCC, the HPV status and the p16 status are not of prognostic significance. Cancer 2017;123:1566-1575. © 2017 American Cancer Society. © 2017 American Cancer Society.

  8. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A. (Univ. of Freiburg (Germany, F.R.))

    1990-08-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC.

  9. Anti-Tumor Effect of Curcumin on Human Cervical Carcinoma HeLa Cells In Vitro and In Vivo

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; ZHAO Yong; ZHANG Yan; CHEN Wei

    2007-01-01

    Objective: To investigate the anti-tumor effect of curcumin on human cervical carcinoma HeLa cells in vitro and in vivo. Methods: (1) Human cervical carcinoma cell line HeLa was cultured in vitro. HeLa cells were treated with 5-50μmol/L curcumin for 24. 48, 72 h and the growth inhibition rates of HeLa cells were measured by MTT method. Cell apoptosis was inspected by electron microscopy and flow cytometry (FCM). (2) A transplanted tumor model by injecting HeLa cells into subcutaneous tissue of BABL/C mice was established and its growth curve was measured. 30 BABL/C mice with tumors were divided into 2 groups at random and 0.2 ml saline or 0.2 ml 250 μmol/L curcumin was injected into abdominal cavity respectively once everyday and lasted for ten days. The changes of tumor volume were measured continuously and tumor inhibition rate was calculated. At last the expressions of caspase-3 and bax protein in transplanted tumors were detected by immunohistochemistry. Results: (1) Curcumin inhibited the proliferation of Lela cells on a dose-depending manner. Apoptosis of cells could be observed by FCM. Partial cells presented the characteristic morphological changes of apoptosis under electron microseope. (2) When 1×107 HeLa cells were inoculated for each mouse, 100% of the mice developed growing tumors after seven days. An inhibition effect was observed in treatment group, and the inhibition rate of curcumin was 74.33%. The expressions of caspase-3 and bax in the transplanted tumors were increased in curcumin group. Conclusion: Curcumin is effective as an anti-cancer drug not only in vitro but also in vivo.

  10. Peptide Agonists of Vasopressin V2 Receptor Reduce Expression of Neuroendocrine Markers and Tumor Growth in Human Lung and Prostate Tumor Cells

    Science.gov (United States)

    Pifano, Marina; Garona, Juan; Capobianco, Carla S.; Gonzalez, Nazareno; Alonso, Daniel F.; Ripoll, Giselle V.

    2017-01-01

    Neuroendocrine tumors (NETs) comprise a heterogeneous group of malignancies that express neuropeptides as synaptophysin, chromogranin A (CgA), and specific neuronal enolase (NSE), among others. Vasopressin (AVP) is a neuropeptide with an endocrine, paracrine, and autocrine effect in normal and pathological tissues. AVP receptors are present in human lung, breast, pancreatic, colorectal, and gastrointestinal tumors. While AVP V1 receptors are associated with stimulation of cellular proliferation, AVP V2 receptor (V2r) is related to antiproliferative effects. Desmopressin (dDAVP) is a synthetic analog of AVP that acts as a selective agonist for the V2r, which shows antitumor properties in breast and colorectal cancer models. Recently, we developed a derivative of dDAVP named [V4Q5]dDAVP, which presents higher antitumor effects in a breast cancer model compared to the parental compound. The goal of present work was to explore the antitumor properties of the V2r agonist dDAVP and its novel analog [V4Q5]dDAVP on aggressive human lung (NCI-H82) and prostate cancer (PC-3) cell lines with neuroendocrine (NE) characteristics. We study the presence of specific NE markers (CgA and NSE) and V2r expression in NCI-H82 and PC-3. Both cell lines express high levels of NE markers NSE and CgA but then incubation with dDAVP diminished expression levels of both markers. DDAVP and [V4Q5]dDAVP significantly reduced proliferation, doubling time, and migration in both tumor cell cultures. [V4Q5]dDAVP analog showed a higher cytostatic effect than dDAVP, on cellular proliferation in the NCI-H82 cell line. Silencing of V2r using small interfering RNA significantly attenuated the inhibitory effects of [V4Q5]dDAVP on NCI-H82 cell proliferation. We, preliminarily, explored the in vivo effect of dDAVP and [V4Q5]dDAVP on NCI-H82 small cell lung cancer xenografts. Treated tumors (0.3 μg kg−1, thrice a week) grew slower in comparison to vehicle-treated animals. In this work, we demonstrated

  11. Quantitative protein profiling of tumor angiogenesis and metastasis biomarkers in mouse and human models

    Science.gov (United States)

    Tumor and stromal cells secrete a variety of proteins acting as extracellular signals and creating a supportive microenvironment for tumor development, angiogenesis, and metastasis. We used the Luminex immunoassay platform (including MILLIPLEX® MAP cytokine/chemokine, bone metabolism, adipocyte, M...

  12. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However...

  13. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting.

    Science.gov (United States)

    Chen, Huanhuan Joyce; Sun, Jian; Huang, Zhiliang; Hou, Harry; Arcilla, Myra; Rakhilin, Nikolai; Joe, Daniel J; Choi, Jiahn; Gadamsetty, Poornima; Milsom, Jeff; Nandakumar, Govind; Longman, Randy; Zhou, Xi Kathy; Edwards, Robert; Chen, Jonlin; Chen, Kai Yuan; Bu, Pengcheng; Wang, Lihua; Xu, Yitian; Munroe, Robert; Abratte, Christian; Miller, Andrew D; Gümüş, Zeynep H; Shuler, Michael; Nishimura, Nozomi; Edelmann, Winfried; Shen, Xiling; Lipkin, Steven M

    2015-06-01

    Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.

  14. A sandwiched biological fluorescent probe for the diagnosis of human ovarian tumor based on TiO2 nanoparticles.

    Science.gov (United States)

    Zhu, Peisi; Huang, Shasheng; Li, Mengyao; Ding, Na; Peng, Bing; Kong, Lingmi; Bo, Yang

    2011-01-01

    In this paper, we report a novel biological fluorescent probe for the diagnosis of human ovarian tumor based on sandwiched TiO(2) nanoparticles. The fluorescence nanoparticles consist of a fluorescent molecule, tetramethyl rhodamine isothiocyanate (TRITC), sandwiched between titanium dioxide (TiO(2)) nanoparticles and nano-gold via reacting with each other. The antibodies HER2, labeled on the surface of the biofluorescence nanoparticles, have granted nanoparticles the privilege of aiming at peculiar tumor antigen. The specificity of antibody-nanoparticles interacting with cells was characterized by Laser Scanning Confocal Microscope. The results showed that these sandwiched nanoparticles were innocuous and stable, and the method offered potential advantages of sensitivity and simplicity due to high combing efficiency between nanoparticles and cells and provided an alternative method for the diagnosis of human ovarian tumor (HOT).

  15. Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors

    Directory of Open Access Journals (Sweden)

    Brellier Florence

    2012-09-01

    Full Text Available Abstract Background Tenascins are large glycoproteins found in the extracellular matrix of many embryonic and adult tissues. Tenascin-C is a well-studied biomarker known for its high overexpression in the stroma of most solid cancers. Tenascin-W, the least studied member of the family, is highly expressed in the stroma of colon and breast tumors and in gliomas, but not in the corresponding normal tissues. Other solid tumors have not been analyzed. The present study was undertaken to determine whether tenascin-W could serve as a cancer-specific extracellular matrix protein in a broad range of solid tumors. Methods We analyzed the expression of tenascin-W and tenascin-C by immunoblotting and by immunohistochemistry on multiple frozen tissue microarrays of carcinomas of the pancreas, kidney and lung as well as melanomas and compared them to healthy tissues. Results From all healthy adult organs tested, only liver and spleen showed detectable levels of tenascin-W, suggesting that tenascin-W is absent from most human adult organs under normal, non-pathological conditions. In contrast, tenascin-W was detectable in the majority of melanomas and their metastases, as well as in pancreas, kidney, and lung carcinomas. Comparing lung tumor samples and matching control tissues for each patient revealed a clear overexpression of tenascin-W in tumor tissues. Although the number of samples examined is too small to draw statistically significant conclusions, there seems to be a tendency for increased tenascin-W expression in higher grade tumors. Interestingly, in most tumor types, tenascin-W is also expressed in close proximity to blood vessels, as shown by CD31 co-staining of the samples. Conclusions The present study extends the tumor biomarker potential of tenascin-W to a broad range of solid tumors and shows its accessibility from the blood stream for potential therapeutic strategies.

  16. Glucose Metabolism via the Pentose Phosphate Pathway, Glycolysis and Krebs Cycle in an Orthotopic Mouse Model of Human Brain Tumors

    Science.gov (United States)

    Marin-Valencia, Isaac; Cho, Steve K.; Rakheja, Dinesh; Hatanpaa, Kimmo J.; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B.; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M.; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Malloy, Craig R.; Bachoo, Robert M.

    2013-01-01

    It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using an orthotopic mouse model of primary human glioblastoma (GBM) and a brain metastatic renal tumor of clear cell renal cell carcinoma (CCRCC) histology, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-13C2]glucose. The [3-13C]lactate/[2,3-13C2]lactate ratio was similar for both the GBM and renal tumor and their respective surrounding brains (GBM: 0.197 ± 0.011 and 0.195 ± 0.033 (p=1); CCRCC: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than PPP flux in these tumors, and that PPP flux into the lactate pool was similar in both tissues. Remarkably, 13C-13C coupling was observed in molecules derived from Krebs cycle intermediates in both tumors, denoting glucose oxidation. In the renal tumor, in contrast to GBM and surrounding brain, 13C multiplets of GABA differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. Additionally, the orthotopic renal tumor, the patient’s primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a CCRCC tissue microarray suggesting that GABA synthesis is cell-autonomous in at least a subset of renal tumors. Taken together, these data demonstrate that 13C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. PMID:22383401

  17. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  18. Mutational Analysis of Region-cytotoxicity Relationship in Human Transmembrane Tumor Necrosis Factor-alpha

    Institute of Scientific and Technical Information of China (English)

    ZHENGFang; GONGFeili; LIZhuoya; JIANGXiaodan; XIONGPing; FENGWei; XUYong

    2002-01-01

    Objective:To determine the region of human transmembrane tumor necrosis factor-alpha (TM-TNFa), essential for cytotoxic activity a-gainst human breast cancer cell line MCF-7. Methods:Single amino-acid-substituted TM-TNFα mutant proteins (muteins) were produced by in vitro transcription linked translation techniques. The cDNA of TM-TNFα was site-directed mutagenized by recombinant PCR. Results:13 single amino-acid substituted TM-TNFα muteins were generated and assayed for cytotoxic activity. The cytotoxic activities of TM-TNFα muteins, eg, TM-TNFα-71/Lys, -28/Phe and 117/Leu were significantly decreased (P<0.01) compared to that of parent TM-TNFα, 143/Tyr decreased 4-folds, and-17/Thr,-39/Ser,ll9/His,35/Gly,95/Cys and 147/Phe decreased 1.5-2.5-folds, respectively. However, the cytotoxic activities of TM-TNFα-8/Arg, 31/Gly and 87/Phe showed no significant change. Conclusion:These results indicate that the regions associated with cytotoxic-activity of TM-TNFα are different with that of secretory TNF-lpha (S-TNFα). The inner cell region and transmembrane region of TM-TNFα are related to the cytotoxic activity of TM-TNFα.

  19. ANTI-TUMOR ACTIVITY AND IMMUNE RESPONSES INDUCED BY HUMAN CANCER-ASSOCIATED MUCIN CORE PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    Ma Yunguo; Yuan Mei; Fei Lihua; Li Li

    1998-01-01

    Objective: To investigate the immune responses induced by apomucin which is a mixture of mucin core peptide, in mice for elucidating the role of mucin core peptide in the modulation of cancers. Methods:Apomucin was isolated from human pancreatic cancer cell line SW1990. The mice were immunized with this apomucin (10μg/time×6) plus DETOX. Results: When immunized, all mice developed delayed-type hypersensitivity (DTH) after challenged with apomucin or synthetic peptide MUC-2 or MUC-3, while the mice immunized with apomucin alone did not develop DTH.No antibodies were detected by ELISA after immunization. When the spleen cells of vaccinated mice were cocultured with this apomucin (10-50μg/ml) and rhIL-2(50U/ml) in vitro, the proliferated lymphocytes showed cytotoxicity against human cancer cells, including colon cancer, gastric cancer, pancreatic cancer and leukemia as measured by Cr-51 release assay. Antibodies against MUC-2 and MUC-3 could block the cytotoxicity. Conclusion: It was identified that a vaccine combined of apomucin and immune adjuvant DETOX can induce cellular immune response and anti-tumor cytotoxicity in mice.

  20. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    Science.gov (United States)

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  1. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres

    Directory of Open Access Journals (Sweden)

    DeSano Jeffrey

    2008-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs, some of which function as oncogenes or tumor suppressor genes, are involved in carcinogenesis via regulating cell proliferation and/or cell death. MicroRNA miR-34 was recently found to be a direct target of p53, functioning downstream of the p53 pathway as a tumor suppressor. miR-34 targets Notch, HMGA2, and Bcl-2, genes involved in the self-renewal and survival of cancer stem cells. The role of miR-34 in gastric cancer has not been reported previously. In this study, we examined the effects of miR-34 restoration on p53-mutant human gastric cancer cells and potential target gene expression. Methods Human gastric cancer cells were transfected with miR-34 mimics or infected with the lentiviral miR-34-MIF expression system, and validated by miR-34 reporter assay using Bcl-2 3'UTR reporter. Potential target gene expression was assessed by Western blot for proteins, and by quantitative real-time RT-PCR for mRNAs. The effects of miR-34 restoration were assessed by cell growth assay, cell cycle analysis, caspase-3 activation, and cytotoxicity assay, as well as by tumorsphere formation and growth. Results Human gastric cancer Kato III cells with miR-34 restoration reduced the expression of target genes Bcl-2, Notch, and HMGA2. Bcl-2 3'UTR reporter assay showed that the transfected miR-34s were functional and confirmed that Bcl-2 is a direct target of miR-34. Restoration of miR-34 chemosensitized Kato III cells with a high level of Bcl-2, but not MKN-45 cells with a low level of Bcl-2. miR-34 impaired cell growth, accumulated the cells in G1 phase, increased caspase-3 activation, and, more significantly, inhibited tumorsphere formation and growth. Conclusion Our results demonstrate that in p53-deficient human gastric cancer cells, restoration of functional miR-34 inhibits cell growth and induces chemosensitization and apoptosis, indicating that miR-34 may restore p53 function. Restoration of miR-3