WorldWideScience

Sample records for human hiv-specific immune

  1. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  2. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  3. Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection

    DEFF Research Database (Denmark)

    Hoof, Ilka; Kesmir, Can; Lund, Ole

    2008-01-01

    and the progression rate to AIDS. Chimpanzees control HIV-1 viral replication and develop a chronic infection without progressing to AIDS. A similar course of disease is observed in human long-term non-progressors. Objective: To investigate if long-term non-progressors and chimpanzees have functional similarities...... in their MHC class I repertoire. Methods: We compared the specificity of groups of human MHC molecules associated with different levels of viremia in HIV-1 infected individuals with those of chimpanzee. Results and conclusion: We demonstrate that human MHC with control of HIV-1 viral load share binding motifs...... with chimpanzee MHC. Moreover, we find that chimpanzee and human MHC associated with low viral load are predicted to elicit broader Gag-specific immune responses than human MHC associated with high viral load, thus supporting earlier findings that Gag-specific immune responses are essential for HIV-1 control....

  4. Natural controlled HIV infection: Preserved HIV-specific immunity despite undetectable replication competent virus

    International Nuclear Information System (INIS)

    Kloosterboer, Nico; Groeneveld, Paul H.P.; Jansen, Christine A.; Vorst, Teun J.K. van der; Koning, Fransje; Winkel, Carel N.; Duits, Ashley J.; Miedema, Frank; Baarle, Debbie van; Rij, Ronald P. van; Brinkman, Kees; Schuitemaker, Hanneke

    2005-01-01

    Long-term non-progressive HIV infection, characterized by low but detectable viral load and stable CD4 counts in the absence of antiviral therapy, is observed in about 5% of HIV-infected patients. Here we identified four therapy naive individuals who are strongly seropositive for HIV-1 but who lack evidence of detectable HIV p24 antigen, plasma RNA, and proviral DNA in routine diagnostic testing. With an ultrasensitive PCR, we established that frequencies of pol proviral DNA sequences were as low as 0.2-0.5 copies/10 6 PBMC. HIV could not be isolated using up to 30 x 10 6 patient PBMC. One individual was heterozygous for CCR5 Δ32, but CCR5 expression on CD4 + T cells was normal to high in all four individuals. In vitro R5 and X4 HIV-1 susceptibility of CD8-depleted PBMC of all study subjects was significantly lower than the susceptibility of CD8-depleted PBMC of healthy blood donors. All individuals expressed protective HLA-B*58s alleles and showed evidence of HIV-specific cellular immunity either by staining with HLA-B*57 tetramers folded with an HIV RT or gag peptide or after stimulation with HIV-1 p24 gag, RT, or nef peptides in ELIspot analysis. HIV-specific CD4 + T helper cells were demonstrated by proliferation of CD4 + T cells and intracellular staining for IL-2 and IFNγ after stimulation with an HIV-gag peptide pool. Sera of all individuals showed antibody-mediated neutralization of both R5 and X4 HIV-1 variants. These data implicate that very low-level antigen exposure is sufficient for sustained HIV-specific immunity and suggest the possibility of a multi-factorial control of HIV infection

  5. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  6. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  7. HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis

    Science.gov (United States)

    2018-01-01

    ABSTRACT Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the

  8. Decreased HIV-specific T-regulatory responses are associated with effective DC-vaccine induced immunity.

    Directory of Open Access Journals (Sweden)

    Vedran Brezar

    2015-03-01

    Full Text Available The role of regulatory T cells (Tregs in vaccination has been poorly investigated. We have reported that vaccination with ex vivo-generated dendritic-cells (DC loaded with HIV-lipopeptides (LIPO-5-DC vaccine in HIV-infected patients was well tolerated and highly immunogenic. These responses and their relation to viral replication following analytical treatment interruption (ATI were variable. Here, we investigated whether the presence of HIV-specific Tregs might explain these differences. Co-expression of CD25, CD134, CD39 and FoxP3 was used to delineate both antigen-specific Tregs and effectors T cells (Teffs. Median LIPO-5 specific-CD25+CD134+ polyfunctional T cells increased from 0.1% (IQR 0-0.3 before vaccination (week -4 to 2.1% (IQR 1.1-3.9 at week 16 following 4 immunizations (p=0.001 and were inversely correlated with maximum viral load following ATI (r=-0.77, p=0.001. Vaccinees who displayed lower levels of HIV-specific CD4+CD134+CD25+CD39+FoxP3+ Tregs responded better to the LIPO-5-DC vaccine. After vaccination, the frequency of HIV-specific Tregs decreased (from 69.3 at week -4 to 31.7% at week 16 and inversely correlated with HIV-specific IFN-γ-producing cells (r=-0.64, p=0.002. We show that therapeutic immunization skewed the HIV-specific response from regulatory to effector phenotype which impacts on the magnitude of viral replication following ATI.

  9. Insights into pathogenic events of HIV-associated Kaposi sarcoma and immune reconstitution syndrome related Kaposi sarcoma

    Directory of Open Access Journals (Sweden)

    Lemmer Johan

    2008-01-01

    Full Text Available Abstract A decrease in the incidence of human immune deficiency virus-associated Kaposi sarcoma (HIV-KS and regression of some established HIV-KS lesions is evident after the introduction of highly active anti-retroviral treatment (HAART, and is attributed to generalized immune restoration, to the reconstitution of human herpesvirus (HHV-8 specific cellular immune responses, and to the decrease in HIV Tat protein and HHV-8 loads following HAART. However, a small subset of HIV-seropositive subjects with a low CD4+ T cell count at the time of introduction of HAART, may develop HIV-KS as immune reconstitution inflammatory syndrome (IRIS within 8 weeks thereafter.

  10. The Immune System of HIV-Exposed Uninfected Infants.

    Science.gov (United States)

    Abu-Raya, Bahaa; Kollmann, Tobias R; Marchant, Arnaud; MacGillivray, Duncan M

    2016-01-01

    Infants born to human immunodeficiency virus (HIV) infected women are HIV-exposed but the majority remains uninfected [i.e., HIV-exposed uninfected (HEU)]. HEU infants suffer greater morbidity and mortality from infections compared to HIV-unexposed (HU) peers. The reason(s) for these worse outcomes are uncertain, but could be related to an altered immune system state. This review comprehensively summarizes the current literature investigating the adaptive and innate immune system of HEU infants. HEU infants have altered cell-mediated immunity, including impaired T-cell maturation with documented hypo- as well as hyper-responsiveness to T-cell activation. And although prevaccination vaccine-specific antibody levels are often lower in HEU than HU, most HEU infants mount adequate humoral immune response following primary vaccination with diphtheria toxoid, haemophilus influenzae type b, whole cell pertussis, measles, hepatitis B, tetanus toxoid, and pneumococcal conjugate vaccines. However, HEU infants are often found to have lower absolute neutrophil counts as compared to HU infants. On the other hand, an increase of innate immune cytokine production and expression of co-stimulatory markers has been noted in HEU infants, but this increase appears to be restricted to the first few weeks of life. The immune system of HEU children beyond infancy remains largely unexplored.

  11. Recognition of HIV-1 peptides by host CTL is related to HIV-1 similarity to human proteins.

    Directory of Open Access Journals (Sweden)

    Morgane Rolland

    Full Text Available BACKGROUND: While human immunodeficiency virus type 1 (HIV-1-specific cytotoxic T lymphocytes preferentially target specific regions of the viral proteome, HIV-1 features that contribute to immune recognition are not well understood. One hypothesis is that similarities between HIV and human proteins influence the host immune response, i.e., resemblance between viral and host peptides could preclude reactivity against certain HIV epitopes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the extent of similarity between HIV-1 and the human proteome. Proteins from the HIV-1 B consensus sequence from 2001 were dissected into overlapping k-mers, which were then probed against a non-redundant database of the human proteome in order to identify segments of high similarity. We tested the relationship between HIV-1 similarity to host encoded peptides and immune recognition in HIV-infected individuals, and found that HIV immunogenicity could be partially modulated by the sequence similarity to the host proteome. ELISpot responses to peptides spanning the entire viral proteome evaluated in 314 individuals showed a trend indicating an inverse relationship between the similarity to the host proteome and the frequency of recognition. In addition, analysis of responses by a group of 30 HIV-infected individuals against 944 overlapping peptides representing a broad range of individual HIV-1B Nef variants, affirmed that the degree of similarity to the host was significantly lower for peptides with reactive epitopes than for those that were not recognized. CONCLUSIONS/SIGNIFICANCE: Our results suggest that antigenic motifs that are scarcely represented in human proteins might represent more immunogenic CTL targets not selected against in the host. This observation could provide guidance in the design of more effective HIV immunogens, as sequences devoid of host-like features might afford superior immune reactivity.

  12. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects.

    Directory of Open Access Journals (Sweden)

    Ece A Mutlu

    2014-02-01

    Full Text Available HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy.

  13. Differential susceptibility of HIV strains to innate immune factors in human cervical-vaginal secretions

    Directory of Open Access Journals (Sweden)

    Mimi Ghosh

    2010-07-01

    Full Text Available Mimi Ghosh, John V Fahey, Charles R WiraDepartment of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, USAAbstract: The female reproductive tract (FRT is protected by innate and adaptive immune mechanisms, which work in concert to defend against human immunodeficiency virus (HIV and other sexually transmitted infections (STIs. Under the control of sex hormones throughout a woman’s life, the immune system in the FRT has evolved to meet the challenges of protection against STIs, coupled with the need to sustain the development of new life. The studies presented in this review focus on the threat of HIV infection and the levels of protection present in the FRT during the menstrual cycle. Studies from our laboratory and others, examined the presence and variability of immune components against viral infection in the FRT. Our findings indicate that there are some factors in the FRT secretions that inhibit and enhance infectivity of individual strains of HIV. Given the complexities of hormonal regulation, identification of the elements involved in susceptibility to and protection against HIV in women must involve a careful analysis of transmitted viruses and a clear understanding of immune protection in the FRT.Keywords: HIV susceptibility, CVL

  14. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  15. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...

  16. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    Science.gov (United States)

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  17. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  18. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  19. Immune Interventions to Eliminate the HIV Reservoir.

    Science.gov (United States)

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  20. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  1. Induction of human immunodeficiency virus (HIV-1 envelope specific cell-mediated immunity by a non-homologous synthetic peptide.

    Directory of Open Access Journals (Sweden)

    Ammar Achour

    2007-11-01

    Full Text Available Cell mediated immunity, including efficient CTL response, is required to prevent HIV-1 from cell-to-cell transmission. In previous investigations, we have shown that B1 peptide derived by Fourier transformation of HIV-1 primary structures and sharing no sequence homology with the parent proteins was able to generate antiserum which recognizes envelope and Tat proteins. Here we have investigated cellular immune response towards a novel non-homologous peptide, referred to as cA1 peptide.The 20 amino acid sequence of cA1 peptide was predicted using the notion of peptide hydropathic properties; the peptide is encoded by the complementary anti-sense DNA strand to the sense strand of previously described non-homologous A1 peptide. In this report we demonstrate that the cA1 peptide can be a target for major histocompatibility complex (MHC class I-restricted cytotoxic T lymphocytes in HIV-1-infected or envelope-immunized individuals. The cA1 peptide is recognized in association with different MHC class I allotypes and could prime in vitro CTLs, derived from gp160-immunized individuals capable to recognize virus variants.For the first time a theoretically designed immunogen involved in broad-based cell-immune memory activation is described. Our findings may thus contribute to the advance in vaccine research by describing a novel strategy to develop a synthetic AIDS vaccine.

  2. Recent progress in immune-based interventions to prevent HIV-1 transmission to children.

    Science.gov (United States)

    Voronin, Yegor; Jani, Ilesh; Graham, Barney S; Cunningham, Coleen K; Mofenson, Lynne M; Musoke, Philippa M; Permar, Sallie R; Scarlatti, Gabriella

    2017-12-01

    Globally, 150,000 new paediatric human immunodeficiency virus type 1 (HIV-1) infections occurred in 2015. There remain complex challenges to the global elimination of paediatric HIV-1 infection. Thus, for the global community to achieve elimination of new paediatric HIV-1 infections, innovative approaches need to be explored. Immune-based approaches to prevention of mother-to-child transmission (MTCT) may help fill some of the remaining gaps and provide new opportunities to achieve an AIDS-free generation. Immune-based interventions to prevent MTCT of HIV-1 may include paediatric HIV vaccines and passive immunization approaches. Recent discoveries providing evidence of robust immune responses to HIV in infants open new and exciting prospects for paediatric HIV vaccines. Moreover, successful vaccination of infants has a different set of requirements than vaccination of adults and may be easier to achieve. Proof-of-concept has been established over the last two decades that passively administered HIV-1 Env-specific monoclonal antibody (mAbs) can prevent chimeric simian human immunodeficiency virus (SHIV) transmission to newborn nonhuman primates. There has been tremendous progress in isolating and characterizing broadly neutralizing antibodies to HIV, and clinical testing of these antibodies for treatment and prevention in both infants and adults is a major effort in the field. Immune-based interventions need to be actively explored as they can provide critically important tools to address persistent challenges in MTCT prevention. It is a pivotal time for the field with active discussions on the best strategy to further reduce HIV infection of infants and accomplish the World Health Organization Fast-Track 2030 goals to eliminate new paediatric HIV infections. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.

  3. Natural Immunity to HIV: A Template for Vaccine Strategies.

    Science.gov (United States)

    Fourcade, Lyvia; Poudrier, Johanne; Roger, Michel

    2018-04-23

    Africa accounts for the majority of global human immunodeficiency virus (HIV) infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN) individuals among African female commercial sex workers (CSWs). Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4⁺ and CD8⁺ T-cells as well as immunoglobulins (Igs), and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ) B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  4. Natural Immunity to HIV: A Template for Vaccine Strategies

    Directory of Open Access Journals (Sweden)

    Lyvia Fourcade

    2018-04-01

    Full Text Available Africa accounts for the majority of global human immunodeficiency virus (HIV infections, most of which affect women through heterosexual intercourse. Currently, there is no cure for HIV and the development of vaccines and microbicides remains the best solution to eradicate the pandemic. We and others have identified HIV highly-exposed seronegative (HESN individuals among African female commercial sex workers (CSWs. Analyses of genital samples from HESNs have demonstrated potent innate and anti-inflammatory conditions, HIV-specific CD4+ and CD8+ T-cells as well as immunoglobulins (Igs, and increased regulatory cell populations, all of which support a delicate balance between strength and control against HIV intrusion. Moreover, we have recently shown that frequencies of innate marginal zone (MZ B-cells are decreased in the blood of HESNs when compared to HIV-uninfected non-CSW women, suggesting their recruitment to peripheral sites. This coincides with the fact that levels of B lymphocyte stimulator (BLyS/BAFF, known to shape the MZ pool and whose overexpression leads to MZ deregulation in HIV-infected progressors, are significantly lower in the blood of HESNs when compared to both HIV-infected CSWs and HIV-uninfected non-CSW women. Interestingly, MZ B-cells can bind HIV gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions in HESNs. HESN individuals provide an exceptional opportunity to identify important clues for the development of protective devices, and efforts should aim at soliciting immune responses observed in the context of their natural immunity to HIV.

  5. HIV and Immunizations

    Science.gov (United States)

    ... AIDS Drugs Clinical Trials Apps skip to content HIV Treatment Home Understanding HIV/AIDS Fact Sheets HIV ... 4 p.m. ET) Send us an email HIV and Immunizations Last Reviewed: February 6, 2018 Key ...

  6. Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Pathologically elevated immune activation and inflammation contribute to HIV disease progression and immunodeficiency, potentially mediated by elevated levels of prostaglandin E2, which suppress HIV-specific T cell responses. We have previously shown that a high dose of the cyclooxygenase-2 inhibitor celecoxib can reduce HIV-associated immune activation and improve IgG responses to T cell-dependent vaccines. In this follow-up study, we included 56 HIV-infected adults, 28 antiretroviral therapy (ART-naïve and 28 on ART with undetectable plasma viremia but CD4 counts below 500 cells/μL. Patients in each of the two study groups were randomized to receive 90 mg qd of the cyclooxygenase-2 inhibitor etoricoxib for six months, two weeks or to a control arm, respectively. T cell activation status, HIV Gag-specific T cell responses and plasma inflammatory markers, tryptophan metabolism and thrombin generation were analyzed at baseline and after four months. In addition, patients received tetanus toxoid, conjugated pneumococcal and seasonal influenza vaccines, to which IgG responses were determined after four weeks. In ART-naïve patients, etoricoxib reduced the density of the activation marker CD38 in multiple CD8+ T cell subsets, improved Gag-specific T cell responses, and reduced in vitro plasma thrombin generation, while no effects were seen on plasma markers of inflammation or tryptophan metabolism. No significant immunological effects of etoricoxib were observed in ART-treated patients. Patients receiving long-term etoricoxib treatment had poorer tetanus toxoid and conjugated pneumococcal vaccine responses than those receiving short-course etoricoxib. Cyclooxygenase-2 inhibitors may attenuate harmful immune activation in HIV-infected patients without access to ART.

  7. Natural Immunity to HIV: A Delicate Balance between Strength and Control

    Directory of Open Access Journals (Sweden)

    Johanne Poudrier

    2012-01-01

    Full Text Available Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host’s capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.

  8. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control.

    Directory of Open Access Journals (Sweden)

    Margaret E Ackerman

    2016-01-01

    Full Text Available Elite controllers (ECs represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune-recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.

  9. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy.

    Directory of Open Access Journals (Sweden)

    Benjamin Krämer

    2017-05-01

    Full Text Available Innate lymphocyte cells (ILCs, a novel family of innate immune cells are considered to function as key orchestrators of immune defences at mucosal surfaces and to be crucial for maintaining an intact intestinal barrier. Accordingly, first data suggest depletion of ILCs to be involved in human immunodeficiency virus (HIV-associated damage of the intestinal mucosa and subsequent microbial translocation. However, although ILCs are preferentially localized at mucosal surfaces, only little is known regarding distribution and function of ILCs in the human gastrointestinal tract. Here, we show that in HIV(- individuals composition and functional capacity of intestinal ILCs is compartment-specific with group 1 ILCs representing the major fraction in the upper gastrointestinal (GI tract, whereas ILC3 are the predominant population in ileum and colon, respectively. In addition, we present first data indicating that local cytokine concentrations, especially that of IL-7, might modulate composition of gut ILCs. Distribution of intestinal ILCs was significantly altered in HIV patients, who displayed decreased frequency of total ILCs in ileum and colon owing to reduced numbers of both CD127(+ILC1 and ILC3. Of note, frequency of colonic ILC3 was inversely correlated with serum levels of I-FABP and sCD14, surrogate markers for loss of gut barrier integrity and microbial translocation, respectively. Both expression of the IL-7 receptor CD127 on ILCs as well as mucosal IL-7 mRNA levels were decreased in HIV(+ patients, especially in those parts of the GI tract with reduced ILC frequencies, suggesting that impaired IL-7 responses of ILCs might contribute to incomplete reconstitution of ILCs under effective anti-retroviral therapy. This is the first report comparing distribution and function of ILCs along the intestinal mucosa of the entire human gastrointestinal tract in HIV(+ and HIV(- individuals.

  10. Can measuring immunity to HIV during antiretroviral therapy (ART ...

    African Journals Online (AJOL)

    The vexing issue of whether the immune system can be reconstituted during HIV infection by supplying antiretroviral therapy (ART) has been a question asked about HIV-infected adults and children receiving therapy.1-9 Knowing that the immune system is sufficiently plastic in adults to show restoration of specific and ...

  11. Cytomegalovirus-specific T-cells are associated with immune senescence, but not with systemic inflammation, in people living with HIV

    DEFF Research Database (Denmark)

    Ballegaard, Vibe; Brændstrup, Peter; Pedersen, Karin Kaereby

    2018-01-01

    In people living with HIV (PLWHIV), coinfection with cytomegalovirus (CMV) has been associated with inflammation, immunological ageing, and increased risk of severe non-AIDS related comorbidity. The effect of CMV-specific immune responses on systemic inflammation, immune activation and T-cell sen...

  12. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection

    Science.gov (United States)

    Liu, Fengliang; Fan, Xiuzhen; Auclair, Sarah; Ferguson, Monique; Sun, Jiaren; Soong, Lynn; Hou, Wei; Redfield, Robert R.; Birx, Deborah L.; Ratto-Kim, Silvia; Robb, Merlin L.; Kim, Jerome H.; Michael, Nelson L.; Hu, Haitao

    2016-01-01

    Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. PMID:27280548

  13. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  14. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Mucosae-associated epithelial chemokine (MEC or CCL28 binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB Virus-like particles (VLPs. Mice receiving either HIV-1(IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+ splenocytes of HIV-1(IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.

  15. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  16. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2014-01-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1-specific dendritic cell (DC vaccines have been applied to clinical trials that show only induction of some degree of immune responses, warranting the search of other more efficient vaccine strategies. Since HIV-1-specific CD8+ cytotoxic T lymphocytes (CTLs have been found to recognize some HIV-1 structural protein Gag conserved and cross-strain epitopes, Gag has become one of the most attractive target candidates for HIV-1 vaccine development. In this study, we generated HIV-1 Gag-specific Gag-Texo vaccine by using ConA-stimulated polyclonal CD8+ T-cells with uptake of Gag-expressing adenoviral vector AdVGag-transfected DC (DCGag-released exosomes (EXOs, and assessed its stimulation of Gag-specific CD8+ CTL responses and antitumor immunity. We demonstrate that Gag-Texo and DCGag vaccines comparably stimulate Gag-specific effector CD8+ CTL responses. Gag-Texo-stimulated CTL responses result in protective immunity against Gag-expressing BL6-10Gag melanoma in 8/8 wild-type C57BL/6 mice. In addition, we show that Gag-Texo vaccine also induces CTL responses leading to protective and long-term immunity against Gag/HLA-A2-expressing BL6-10Gag/A2 melanoma in 8/8 and 2/8 transgenic HLA-A2 mice, respectively. The average number of lung tumor colonies in mice with 30-days post-immunization is only 23, which is significantly less than that (>300 in control ConA-T-immunized HLA-A2 mice. Furthermore, Gag-Texo vaccine also induces some degree of therapeutic immunity. The average number (50 and size (0.23 mm in diameter of lung tumor colonies in Gag-Texo-immunized HLA-A2 mice bearing 6-day-established lung BL6-10Gag/A2 melanoma metastasis are significantly less than the average number (>300 and size (1.02 mm in diameter in control ConA-T-immunized HLA-A2 mice. Taken together, HIV-1 Gag-Texo vaccine capable of stimulating Gag-specific CTL responses and therapeutic immunity may be useful as a new immunotherapeutic

  17. Salk's HIV immunogen: an immune-based therapy in human trials since 1988.

    Science.gov (United States)

    Jonas Salk, the developer of the first polio vaccine, has created a therapeutic vaccine for HIV which helps the immune system fight disease progression. Salk uses inactivated HIV-1 virus combined with Incomplete Freund's Adjuvant (IFA) in the vaccine preparation. The resulting HIV-1 immunogen was first studied in 1987, and since then, 235 seropositive individuals have received inoculations without serious adverse effects. Data from the first 25 subjects indicate that immunization with the HIV-1 immunogen results in improvement of cell-mediated response against the virus, a slower increase in the amount of virus present, and a reduced rate of clinical progression. Subsequent studies also show that higher doses of immunogen may produce stronger cell-mediated responses and high HIV-DTH (delayed-type hypersensitivity responsiveness immunogen) is associated with better outcome. Additional trials of HIV-1 immunogen are awaiting Food and Drug Administration approval.

  18. Immune recovery among HIV-infected patients in northwestern ...

    African Journals Online (AJOL)

    Background: The use of antiretroviral therapy (ART) for the treatment of human immunodeficiency virus (HIV) is associated with significant and sustained decrease in the viral RNA levels that allows the immune system to recover. The extent of this immune recovery depends on the baseline CD4 count. Evidence on the ...

  19. Increased sequence diversity coverage improves detection of HIV-Specific T cell responses

    DEFF Research Database (Denmark)

    Frahm, N.; Kaufmann, D.E.; Yusim, K.

    2007-01-01

    The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss res...

  20. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  1. Immunity in the Vagina (Part II): Anti-HIV Activity and Antiviral Content of Human Vaginal Secretions

    Science.gov (United States)

    Patel, Mickey V.; Ghosh, Mimi; Fahey, John V.; Ochsenbauer, Christina; Rossoll, Richard M.; Wira, Charles R.

    2015-01-01

    Problem Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions changes across the menstrual cycle is unknown. Method of Study Using a menstrual cup, vaginal secretions from premenopausal women were recovered at the proliferative (d6–8), mid-cycle (d13–15) and secretory (d21–23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. Results CCL20, RANTES, elafin, HBD2, SDF-1α and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women, and in consecutive cycles from the same woman. Conclusion The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and inter-individual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. PMID:24806967

  2. Innate immunity in the vagina (Part II): Anti-HIV activity and antiviral content of human vaginal secretions.

    Science.gov (United States)

    Patel, Mickey V; Ghosh, Mimi; Fahey, John V; Ochsenbauer, Christina; Rossoll, Richard M; Wira, Charles R

    2014-07-01

    Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions change across the menstrual cycle is unknown. Using a menstrual cup, vaginal secretions from pre-menopausal women were recovered at the proliferative (d6-8), mid-cycle (d13-15), and secretory (d21-23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. CCL20, RANTES, elafin, HBD2, SDF-1α, and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women and in consecutive cycles from the same woman. The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and interindividual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. © 2014 John Wiley & Sons Ltd.

  3. HIV-Specific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection

    Directory of Open Access Journals (Sweden)

    Angeline Rouers

    2017-07-01

    Full Text Available HIV-specific broadly neutralizing antibodies (bnAbs have been isolated from patients with high viremia but also from HIV controllers that repress HIV-1 replication. In these elite controllers (ECs, multiple parameters contribute to viral suppression, including genetic factors and immune responses. Defining the immune correlates associated with the generation of bnAbs may help in designing efficient immunotherapies. In this study, in ECs either positive or negative for the HLA-B*57 protective allele, in treated HIV-infected and HIV-negative individuals, we characterized memory B cell compartments and HIV-specific memory B cells responses using flow cytometry and ELISPOT. ECs preserved their memory B cell compartments and in contrast to treated patients, maintained detectable HIV-specific memory B cell responses. All ECs presented IgG1+ HIV-specific memory B cells but some individuals also preserved IgG2+ or IgG3+ responses. Importantly, we also analyzed the capacity of sera from ECs to neutralize a panel of HIV strains including transmitted/founder virus. 29% and 21% of HLA-B*57+ and HLA-B*57− ECs, respectively, neutralized at least 40% of the viral strains tested. Remarkably, in HLA-B*57+ ECs the frequency of HIV-Env-specific memory B cells correlated positively with the neutralization breadth suggesting that preservation of HIV-specific memory B cells might contribute to the neutralizing responses in these patients.

  4. Effects of antiretroviral therapy on immunity in patients infected with HIV.

    Science.gov (United States)

    Feola, D J; Thornton, A C; Garvy, B A

    2006-01-01

    Drug therapy for human immunodeficiency virus (HIV) is highly effective in suppressing viral replication and restoring immune function in patients with HIV. However, this same treatment can also be associated with immunotoxicity. For example, zidovudine and various other antiretroviral agents are capable of causing bone marrow suppression. Agents used to treat opportunistic infections in these individuals, including ganciclovir, foscarnet, and sulfamethoxazole-trimethoprim, can cause additional hematotoxicity. Drug-drug interactions must also be considered and managed in order to control iatrogenic causes of immunotoxicity. In this review, we examine the normal immune response to HIV, and the benefits of antiretroviral therapy in prolonging immune function. We then discuss immune-related adverse effects of drugs used to treat HIV and the opportunistic infections that are common among these patients. Finally, we address in vitro, animal, and clinical evidence of toxicity associated with various combination use of these agents.

  5. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    Science.gov (United States)

    Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.

  6. Immunological changes in human immunodeficiency virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment

    DEFF Research Database (Denmark)

    Ullum, H; Katzenstein, T; Aladdin, H

    1999-01-01

    The present study examines the influence of effective anti-retroviral treatment on immune function, evaluated by a broad array of immunological tests. We followed 12 individuals infected with human immunodeficiency virus (HIV) for 6 months after initiation of combination anti-retroviral treatment...... including a protease inhibitor. Unstimulated and pokeweed mitogen (PWM)-, interleukin (IL)-2- and phytohaemagglutinin (PHA)-stimulated lymphocyte proliferative responses increased during follow-up reaching average levels from 1.3-fold (PHA) to 3.7-fold (PWM) above baseline values. The total CD4+ lymphocyte...

  7. Association of High-Risk Human Papillomavirus with Genital Tract Mucosal Immune Factors In HIV-Infected Women

    Science.gov (United States)

    Buckley, Niall; Huber, Ashley; Lo, Yungtai; Castle, Philip E.; Kemal, Kimdar; Burk, Robert D.; Strickler, Howard D.; Einstein, Mark H.; Young, Mary; Anastos, Kathryn; Herold, Betsy C.

    2015-01-01

    Problem High-risk human papillomavirus (HR-HPV) is prevalent in HIV-infected women and may be associated with mucosal changes that promote HIV replication. Method of Study Innate immune molecules, antimicrobial activity, HIV RNA, and HPV DNA genotypes were measured in a cross-sectional study of 128 HIV-infected women categorized into HPV-16 (n=8), other HR-HPV (n=41), and non-HR-HPV controls (n=79). Results Compared to controls, HR-HPV groups had higher plasma viral loads (p=0.004), lower CD4 cells (p=0.02), more genital tract HIV RNA (p=0.03), greater number of different HPV types (p<0.001), higher cervicovaginal lavage (CVL) IL-1α (p=0.03) and human beta defensin 2 (HBD2) (p=0.049), and less anti-HIVBal activity (p=0.03). HPV-16 remained significantly associated with higher HBD2 (p=0.03), higher IL-1α (p=0.009), and lower anti-HIVBaL activity (p=0.03) compared to controls after adjusting for plasma viral load and CD4 T cell count. Conclusion HR-HPV is associated with mucosal changes in HIV-infected women that could adversely impact genital tract health. PMID:26685115

  8. HIV restriction by APOBEC3 in humanized mice.

    Directory of Open Access Journals (Sweden)

    John F Krisko

    2013-03-01

    Full Text Available Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3 family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV, Hepatitis B virus (HBV, Human Papilloma virus (HPV, and Human T Cell Leukemia virus (HTLV. The best characterized members of this family are APOBEC3G (A3G and APOBEC3F (A3F and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif. Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

  9. Human immune cell targeting of protein nanoparticles - caveospheres

    Science.gov (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  10. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice

    Science.gov (United States)

    Wang, Weimin; Cheng, Yan; Makarov, Edward; Ganesan, Murali; Gebhart, Catherine L.; Gorantla, Santhi; Osna, Natalia

    2018-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis. This article has an associated First Person interview with the first author of the paper. PMID:29361613

  11. Human hepatocyte depletion in the presence of HIV-1 infection in dual reconstituted humanized mice

    Directory of Open Access Journals (Sweden)

    Raghubendra Singh Dagur

    2018-02-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection impairs liver function, and liver diseases have become a leading cause of morbidity in infected patients. The immunopathology of liver damage caused by HIV-1 remains unclear. We used chimeric mice dually reconstituted with a human immune system and hepatocytes to address the relevance of the model to pathobiology questions related to human hepatocyte survival in the presence of systemic infection. TK-NOG males were transplanted with mismatched human hematopoietic stem/progenitor cells and hepatocytes, human albumin concentration and the presence of human immune cells in blood were monitored for hepatocytes and immune reconstitution, and mice were infected with HIV-1. HIV-1-infected animals showed a decline in human albumin concentration with a significant reduction in percentage of human hepatocytes compared to uninfected mice. The decrease in human albumin levels correlated with a decline in CD4+ cells in the liver and with an increase in HIV-1 viral load. HIV-1 infection elicited proinflammatory response in the immunological milieu of the liver in HIV-infected mice compared to uninfected animals, as determined by upregulation of IL23, CXCL10 and multiple toll-like receptor expression. The inflammatory reaction associated with HIV-1 infection in vivo could contribute to the depletion and dysfunction of hepatocytes. The dual reconstituted TK-NOG mouse model is a feasible platform to investigate hepatocyte-related HIV-1 immunopathogenesis. This article has an associated First Person interview with the first author of the paper.

  12. Immune Recognition of Latency-insitigating Pathogens by Human Dendritic Cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov

    for society. Consequently there is a pressing need to search for new treatment strategies. Nowadays it is known that HIV-1 and Mtb have acquired the ability to escape the removal from the body by exploiting the immune system for their own benefits. Dendritic cells (DCs) determine the way the immune response......Latent infections with the human pathogenic microorganisms Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) are creating some of the most devastating pandemics to date, with great impact on the infected people’s lives, their expected lifetime, as well as general costs...... unfolds by signaling other immune cells how to respond. An early deregulation of the DCs may therefore propagate into detrimental effects in later stages of the immune response, and may permit HIV-1 and Mtb to become latent. Hence, understanding the way HIV-1 and Mtb interacts with DCs could lead to novel...

  13. Association of Neisseria gonorrhoeae Opa(CEA with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Directory of Open Access Journals (Sweden)

    Qigui Yu

    Full Text Available Infection with Neisseria gonorrhoeae (N. gonorrhoeae can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte (CTL responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs are professional antigen presenting cells (APCs that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain

  14. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses.

    Science.gov (United States)

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J

    2013-08-23

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.

  15. Induction of immunity to human immunodeficiency virus type-1 by vaccination.

    Science.gov (United States)

    McElrath, M Juliana; Haynes, Barton F

    2010-10-29

    Recent findings have brought optimism that development of a successful human immunodeficiency virus type-1 (HIV-1) vaccine lies within reach. Studies of early events in HIV-1 infection have revealed when and where HIV-1 is potentially vulnerable to vaccine-targeted immune responses. With technical advances in human antibody production, clues about how antibodies recognize HIV-1 envelope proteins have uncovered new targets for immunogen design. A recent vaccine regimen has shown modest efficacy against HIV-1 acquisition. However, inducing long-term T and B cell memory and coping with HIV-1 diversity remain high priorities. Mediators of innate immunity may play pivotal roles in blocking infection and shaping immunity; vaccine strategies to capture these activities are under investigation. Challenges remain in integrating basic, preclinical and clinical research to improve predictions of types of immunity associated with vaccine efficacy, to apply these insights to immunogen design, and to accelerate evaluation of vaccine efficacy in persons at-risk for infection. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies.

    Science.gov (United States)

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C; Kalyanaraman, V S; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J; Murthy, Krishna K; Srivastava, Indresh; Barnett, Susan W; Robert-Guroff, Marjorie

    2005-08-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.

  17. Advancing Toward HIV-1 Vaccine Efficacy through the Intersections of Immune Correlates

    Directory of Open Access Journals (Sweden)

    Georgia D. Tomaras

    2013-12-01

    Full Text Available Interrogating immune correlates of infection risk for efficacious and non-efficacious HIV-1 vaccine clinical trials have provided hypotheses regarding the mechanisms of induction of protective immunity to HIV-1. To date, there have been six HIV-1 vaccine efficacy trials (VAX003, Vaxgen, Inc., San Francisco, CA, USA, VAX004 (Vaxgen, Inc., HIV-1 Vaccine Trials Network (HVTN 502 (Step, HVTN 503 (Phambili, RV144 (sponsored by the U.S. Military HIV Research Program, MHRP and HVTN 505. Cellular, humoral, host genetic and virus sieve analyses of these human clinical trials each can provide information that may point to potentially protective mechanisms for vaccine-induced immunity. Critical to staying on the path toward development of an efficacious vaccine is utilizing information from previous human and non-human primate studies in concert with new discoveries of basic HIV-1 host-virus interactions. One way that past discoveries from correlate analyses can lead to novel inventions or new pathways toward vaccine efficacy is to examine the intersections where different components of the correlate analyses overlap (e.g., virus sieve analysis combined with humoral correlates that can point to mechanistic hypotheses. Additionally, differences in durability among vaccine-induced T- and B-cell responses indicate that time post-vaccination is an important variable. Thus, understanding the nature of protective responses, the degree to which such responses have, or have not, as yet, been induced by previous vaccine trials and the design of strategies to induce durable T- and B-cell responses are critical to the development of a protective HIV-1 vaccine.

  18. Breastfeeding Behaviors and the Innate Immune System of Human Milk: Working Together to Protect Infants against Inflammation, HIV-1, and Other Infections.

    Science.gov (United States)

    Henrick, Bethany M; Yao, Xiao-Dan; Nasser, Laila; Roozrogousheh, Ava; Rosenthal, Kenneth L

    2017-01-01

    The majority of infants' breastfeeding from their HIV-infected mothers do not acquire HIV-1 infection despite exposure to cell-free virus and cell-associated virus in HIV-infected breast milk. Paradoxically, exclusive breastfeeding regardless of the HIV status of the mother has led to a significant decrease in mother-to-child transmission (MTCT) compared with non-exclusive breastfeeding. Although it remains unclear how these HIV-exposed infants remain uninfected despite repeated and prolonged exposure to HIV-1, the low rate of transmission is suggestive of a multitude of protective, short-lived bioactive innate immune factors in breast milk. Indeed, recent studies of soluble factors in breast milk shed new light on mechanisms of neonatal HIV-1 protection. This review highlights the role and significance of innate immune factors in HIV-1 susceptibility and infection. Prevention of MTCT of HIV-1 is likely due to multiple factors, including innate immune factors such as lactoferrin and elafin among many others. In pursuing this field, our lab was the first to show that soluble toll-like receptor 2 (sTLR2) directly inhibits HIV infection, integration, and inflammation. More recently, we demonstrated that sTLR2 directly binds to selective HIV-1 proteins, including p17, gp41, and p24, leading to significantly reduced NFκB activation, interleukin-8 production, CCR5 expression, and HIV infection in a dose-dependent manner. Thus, a clearer understanding of soluble milk-derived innate factors with known antiviral functions may provide new therapeutic insights to reduce vertical HIV-1 transmission and will have important implications for protection against HIV-1 infection at other mucosal sites. Furthermore, innate bioactive factors identified in human milk may serve not only in protecting infants against infections and inflammation but also the elderly; thus, opening the door for novel innate immune therapeutics to protect newborns, infants, adults, and the elderly.

  19. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras

    Science.gov (United States)

    Wheeler, Lee Adam; Trifonova, Radiana; Vrbanac, Vladimir; Basar, Emre; McKernan, Shannon; Xu, Zhan; Seung, Edward; Deruaz, Maud; Dudek, Tim; Einarsson, Jon Ivar; Yang, Linda; Allen, Todd M.; Luster, Andrew D.; Tager, Andrew M.; Dykxhoorn, Derek M.; Lieberman, Judy

    2011-01-01

    The continued spread of the HIV epidemic underscores the need to interrupt transmission. One attractive strategy is a topical vaginal microbicide. Sexual transmission of herpes simplex virus type 2 (HSV-2) in mice can be inhibited by intravaginal siRNA application. To overcome the challenges of knocking down gene expression in immune cells susceptible to HIV infection, we used chimeric RNAs composed of an aptamer fused to an siRNA for targeted gene knockdown in cells bearing an aptamer-binding receptor. Here, we showed that CD4 aptamer-siRNA chimeras (CD4-AsiCs) specifically suppress gene expression in CD4+ T cells and macrophages in vitro, in polarized cervicovaginal tissue explants, and in the female genital tract of humanized mice. CD4-AsiCs do not activate lymphocytes or stimulate innate immunity. CD4-AsiCs that knock down HIV genes and/or CCR5 inhibited HIV infection in vitro and in tissue explants. When applied intravaginally to humanized mice, CD4-AsiCs protected against HIV vaginal transmission. Thus, CD4-AsiCs could be used as the active ingredient of a microbicide to prevent HIV sexual transmission. PMID:21576818

  20. DNA damage repair machinery and HIV escape from innate immune sensing

    Directory of Open Access Journals (Sweden)

    Christelle eBregnard

    2014-04-01

    Full Text Available Viruses have been long known to perturb cell cycle regulators and key players of the DNA damage response to benefit their life cycles. In the case of the human immunodeficiency virus (HIV, the viral auxiliary protein Vpr activates the structure-specific endonuclease SLX4 complex to promote escape from innate immune sensing and, as a side effect, induces replication stress in cycling cells and subsequent cell cycle arrest at the G2/M transition. This novel pathway subverted by HIV to prevent accumulation of viral reverse transcription by-products adds up to facilitating effects of major cellular exonucleases that degrade pathological DNA species. Within this review we discuss the impact of this finding on our understanding of the interplay between HIV replication and nucleic acid metabolism and its implications for cancer-related chronic inflammation.

  1. Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults : results of the "COPA" pilot randomized trial

    NARCIS (Netherlands)

    Gori, A.; Rizzardini, G.; van't Land, B.; Amor, K. B.; van Schaik, J.; Torti, C.; Quirino, T.; Tincati, C.; Bandera, A.; Knol, J.; Benlhassan-Chahour, K.; Trabattoni, D.; Bray, D.; Vriesema, A.; Welling, G.; Garssen, J.; Clerici, M.

    Intestinal mucosal immune system is an early target for human immunodeficiency virus type 1 (HIV-1) infection, resulting in CD4(+) T-cell depletion, deterioration of gut lining, and fecal microbiota composition. We evaluated the effects of a prebiotic oligosaccharide mixture in highly active

  2. The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa

    Directory of Open Access Journals (Sweden)

    Mabaso Musawenkosi LH

    2011-10-01

    Full Text Available Abstract Background The convergent distribution of the Human Immunodeficiency Virus (HIV and helminth infections has led to the suggestion that infection with helminths exacerbates the HIV epidemic in developing countries. In South Africa, it is estimated that 57% of the population lives in poverty and carries the highest burden of both HIV and helmith infections, however, the disease interactions are under-researched. Methods We employed both coproscopy and Ascaris lumbricoides-specific serum IgE to increase diagnostic sensitivity and to distinguish between different helminth infection phenotypes and their effects on immune responses in HIV co-infected individuals. Coproscopy was done by formol ether and Kato Katz methods. HIV positive and negative adults were stratified according to the presence or absence of A. lumbricoides and/or Trichuris trichuria eggs with or without elevated Ascaris IgE. Lymphocyte subsets were phenotyped by flow cytometry. Viral loads, serum total IgE and eosinophils were also analysed. Lymphocyte activation markers (CCR5, HLA-DR, CD25, CD38 and CD71 were determined. Non parametric statistics were used to describe differences in the variables between the subgroups. Results Helminth prevalence ranged between 40%-60%. Four distinct subgroups of were identified, and this included egg positive/high Ascaris-specific IgE (egg+IgEhi, egg positive/low IgE (egg+IgElo, egg negative/high IgE (egg-IgEhi and egg negative/low IgE (egg-IgElo individuals. The egg+IgEhi subgroup displayed lymphocytopenia, eosinophilia, (low CD4+ counts in HIV- group, high viral load (in HIV+ group, and an activated lymphocyte profile. High Ascaris IgE subgroups (egg+IgEhi and egg-IgEhi had eosinophilia, highest viral loads, and lower CD4+ counts in the HIV- group. Egg excretion and low IgE (egg+IgElo status demonstrated a modified Th2 immune profile with a relatively competent response to HIV. Conclusions People with both helminth egg excretion and high

  3. Humanized mouse models to study pathophysiology and treatment of HIV infection.

    Science.gov (United States)

    Masse-Ranson, Guillemette; Mouquet, Hugo; Di Santo, James P

    2018-03-01

    Immunodeficient mice that lack all lymphocyte subsets and have phagocytic cells that are tolerant of human cells can be stably xenografted with human hematopoietic stem cell as well as other human tissues (fetal liver and thymus) creating 'human immune system' (HIS) mice. HIS mice develop all major human lymphocyte classes (B, T, natural killer, and innate lymphoid cell) and their specialized subsets as well as a variety of myeloid cells (dendritic cell, monocytes, and macrophages) thereby providing a small animal model in which to interrogate human immune responses to infection. HIS mouse models have been successfully used to study several aspects of HIV-1 biology, including viral life cycle (entry, restriction, replication, and spread) as well as virus-induced immunopathology (CD4 T-cell depletion, immune activation, and mucosal inflammation). Recent work has shown that HIV reservoirs can be established in HIV-infected HIS mice after treatment with combinations of antiretroviral drugs thereby providing a model to test new approaches to eliminate latently infected cells. HIS mice provide cost-effective preclinical platform to assess combination immunotherapies that can target HIV reservoirs. Therapeutic strategies validated in HIS mice should be considered in designing the roadmap toward HIV 'cure'.

  4. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection.

    Science.gov (United States)

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  5. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope.

    Science.gov (United States)

    Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W

    2005-05-31

    Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.

  6. HIV-1-negative female sex workers sustain high cervical IFNɛ, low immune activation, and low expression of HIV-1-required host genes.

    Science.gov (United States)

    Abdulhaqq, S A; Zorrilla, C; Kang, G; Yin, X; Tamayo, V; Seaton, K E; Joseph, J; Garced, S; Tomaras, G D; Linn, K A; Foulkes, A S; Azzoni, L; VerMilyea, M; Coutifaris, C; Kossenkov, A V; Showe, L; Kraiselburd, E N; Li, Q; Montaner, L J

    2016-07-01

    Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: PHIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses.

  7. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    International Nuclear Information System (INIS)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia; Piubelli, Orlando; Alves de Brito, Cyro; Fusaro, Ana Elisa; Eurico de Alencar, Liciana Xavier; August, Thomas; Torres Azevedo Marques, Ernesto; Silva Duarte, Alberto Jose da; Sato, Maria Notomi

    2010-01-01

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses, as measured by the breadth of the Gag peptide-specific IFN-γ, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.

  8. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    Directory of Open Access Journals (Sweden)

    Shelly J Krebs

    Full Text Available Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab responses toward conserved regions of the viral Envelope (Env. However, the generation of neutralizing Abs (NAbs targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.

  9. Relationship of HIV Reservoir Characteristics with Immune Status and Viral Rebound Kinetics in an HIV Therapeutic Vaccine Study

    Science.gov (United States)

    Li, Jonathan Z.; Heisey, Andrea; Ahmed, Hayat; Wang, Hongying; Zheng, Lu; Carrington, Mary; Wrin, Terri; Schooley, Robert T.; Lederman, Michael M.; Kuritzkes, Daniel R.

    2014-01-01

    Objectives To evaluate the impact of therapeutic HIV vaccination on the HIV reservoir, and assess the relationship of the viral reservoir with HIV-specific immune status and viral rebound kinetics. Design Retrospective analysis of ACTG A5197, a randomized, placebo-controlled trial of a therapeutic rAd5 HIV-1 gag vaccine. Methods Participants received vaccine/placebo at weeks 0, 4, and 26 prior to a 16-week analytic treatment interruption (ATI) at week 38. Cell-associated HIV-1 RNA and DNA (CA-RNA and CA-DNA) and HIV-1 residual viremia (RV) were quantified at weeks 0, 8, and 38. HIV-specific CD4+/CD8+ activity were assessed by an intracellular cytokine staining assay. Results At study entry, CA-RNA and CA-DNA levels were correlated inversely with the numbers of HIV-specific CD4+ interferon-γ-producing cells (CA-RNA: r = −0.23, P=0.03 and CA-DNA: r = −0.28, P<0.01, N=93). Therapeutic HIV vaccination induced HIV-specific CD4+ activity, but did not significantly affect levels of CA-RNA or CA-DNA. Vaccine recipients with undetectable RV at week 8 had higher frequencies of HIV-specific CD4+ and CD8+ interferon-γ-producing cells (undetectable versus detectable RV: 277 versus 161 CD4+ cells/106 lymphocytes, P=0.03 and 1326 versus 669 CD8+ cells/106 lymphocytes, P=0.04). Pre-ATI CA-RNA and CA-DNA were associated with post-ATI plasma HIV set point (CA-RNA: r = 0.51, P<0.01 and CA-DNA: r = 0.47, P<0.01). Conclusions Vaccine-induced T-cell responses were associated with a modest transient effect on RV, but more potent immune responses and/or combination treatment with latency-reversing agents are needed to reduce the HIV reservoir. HIV reservoir measures may act as biomarkers of post-ATI viral rebound kinetics. PMID:25254301

  10. Risky sexual behaviour and human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) among healthcare workers.

    Science.gov (United States)

    Khamisa, Natasha; Mokgobi, Maboe

    2018-01-01

    South Africa is known to have one of the highest prevalence rates of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) globally, with one in seven healthcare workers being HIV-positive. An HIV-positive healthcare workforce is less equipped to respond to the increasing spread of the epidemic. Assessment of the factors contributing to high HIV prevalence rates among healthcare workers is important in planning the development of human resources. This review sought to identify and understand predominant risky sexual behaviours among healthcare workers in HIV and AIDS-affected countries. This study reviewed articles focusing on sexual behaviour among healthcare workers. Major health science databases (e.g. ProQuest, Cochrane, PubMed and CINAHL) were searched for combinations of keywords including 'healthcare workers', 'risky sexual behaviour' and 'HIV and AIDS'. Articles from a range of countries met inclusion and exclusion criteria. Findings of the study revealed three main contributing factors: unprotected sex, multiple sex partners and sexual violence. Sexual violence emerged as the dominant risk factor in the majority of the studies. Most research was conducted in developed countries where the HIV infection rate is much lower than it is in developing countries. More research needs to be conducted in developing countries and appropriate strategies should be implemented to reduce sexual violence among healthcare workers. Appropriate procedures on reporting sexual violence coupled with education on HIV and AIDS as well as influencing attitudes and belief systems could assist in reducing the spread of HIV and AIDS within the healthcare workforce while minimising the effect on patient care.

  11. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    2017-12-01

    Full Text Available An HIV-1 vaccine continues to be a major target to halt the AIDS pandemic. The limited efficacy of the RV144 phase III clinical trial with the canarypox virus-based vector ALVAC and a gp120 protein component led to the conclusion that improved immune responses to HIV antigens are needed for a more effective vaccine. In non-human primates, the New York vaccinia virus (NYVAC poxvirus vector has a broader immunogenicity profile than ALVAC and has been tested in clinical trials. We therefore analysed the HIV immune advantage of NYVAC after removing viral genes that act on several signalling pathways (Toll-like receptors—TLR—interferon, cytokines/chemokines, as well as genes of unknown immune function. We generated a series of NYVAC deletion mutants and studied immune behaviour (T and B cell to HIV antigens and to the NYVAC vector in mice. Our results showed that combined deletion of selected vaccinia virus (VACV genes is a valuable strategy for improving the immunogenicity of NYVAC-based vaccine candidates. These immune responses were differentially modulated, positive or negative, depending on the combination of gene deletions. The deletions also led to enhanced antigen- or vector-specific cellular and humoral responses. These findings will facilitate the development of optimal NYVAC-based vaccines for HIV and other diseases.

  12. Innate immune factors associated with HIV-1 transmission

    NARCIS (Netherlands)

    Pollakis, Georgios; Stax, Martijn J.; Paxton, William A.

    2011-01-01

    Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response

  13. NKT cell depletion in humans during early HIV infection.

    Science.gov (United States)

    Fernandez, Caroline S; Kelleher, Anthony D; Finlayson, Robert; Godfrey, Dale I; Kent, Stephen J

    2014-08-01

    Natural killer T (NKT) cells bridge across innate and adaptive immune responses and have an important role in chronic viral infections such as human immunodeficiency virus (HIV). NKT cells are depleted during chronic HIV infection, but the timing, drivers and implications of this NKT cell depletion are poorly understood. We studied human peripheral blood NKT cell levels, phenotype and function in 31 HIV-infected subjects not on antiretroviral treatment from a mean of 4 months to 2 years after HIV infection. We found that peripheral CD4(+) NKT cells were substantially depleted and dysfunctional by 4 months after HIV infection. The depletion of CD4(+) NKT cells was more marked than the depletion of total CD4(+) T cells. Further, the early depletion of NKT cells correlated with CD4(+) T-cell decline, but not HIV viral levels. Levels of activated CD4(+) T cells correlated with the loss of NKT cells. Our studies suggest that the early loss of NKT cells is associated with subsequent immune destruction during HIV infection.

  14. Risky sexual behaviour and human immunodeficiency virus (HIV and acquired immune deficiency syndrome (AIDS among healthcare workers

    Directory of Open Access Journals (Sweden)

    Natasha Khamisa

    2018-01-01

    Full Text Available Background: South Africa is known to have one of the highest prevalence rates of human immunodeficiency virus (HIV and acquired immune deficiency syndrome (AIDS globally, with one in seven healthcare workers being HIV-positive. An HIV-positive healthcare workforce is less equipped to respond to the increasing spread of the epidemic. Objectives: Assessment of the factors contributing to high HIV prevalence rates among healthcare workers is important in planning the development of human resources. This review sought to identify and understand predominant risky sexual behaviours among healthcare workers in HIV and AIDS-affected countries. Methods: This study reviewed articles focusing on sexual behaviour among healthcare workers. Major health science databases (e.g. ProQuest, Cochrane, PubMed and CINAHL were searched for combinations of keywords including ‘healthcare workers’, ‘risky sexual behaviour’ and ‘HIV and AIDS’. Articles from a range of countries met inclusion and exclusion criteria. Results: Findings of the study revealed three main contributing factors: unprotected sex, multiple sex partners and sexual violence. Sexual violence emerged as the dominant risk factor in the majority of the studies. Most research was conducted in developed countries where the HIV infection rate is much lower than it is in developing countries. Conclusion: More research needs to be conducted in developing countries and appropriate strategies should be implemented to reduce sexual violence among healthcare workers. Appropriate procedures on reporting sexual violence coupled with education on HIV and AIDS as well as influencing attitudes and belief systems could assist in reducing the spread of HIV and AIDS within the healthcare workforce while minimising the effect on patient care.

  15. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System

    Science.gov (United States)

    Evering, Teresa H.; Tsuji, Moriya

    2018-01-01

    Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development. PMID:29670623

  16. Sequential immunization with V3 peptides from primary human immunodeficiency virus type 1 produces cross-neutralizing antibodies against primary isolates with a matching narrow-neutralization sequence motif.

    Science.gov (United States)

    Eda, Yasuyuki; Takizawa, Mari; Murakami, Toshio; Maeda, Hiroaki; Kimachi, Kazuhiko; Yonemura, Hiroshi; Koyanagi, Satoshi; Shiosaki, Kouichi; Higuchi, Hirofumi; Makizumi, Keiichi; Nakashima, Toshihiro; Osatomi, Kiyoshi; Tokiyoshi, Sachio; Matsushita, Shuzo; Yamamoto, Naoki; Honda, Mitsuo

    2006-06-01

    An antibody response capable of neutralizing not only homologous but also heterologous forms of the CXCR4-tropic human immunodeficiency virus type 1 (HIV-1) MNp and CCR5-tropic primary isolate HIV-1 JR-CSF was achieved through sequential immunization with a combination of synthetic peptides representing HIV-1 Env V3 sequences from field and laboratory HIV-1 clade B isolates. In contrast, repeated immunization with a single V3 peptide generated antibodies that neutralized only type-specific laboratory-adapted homologous viruses. To determine whether the cross-neutralization response could be attributed to a cross-reactive antibody in the immunized animals, we isolated a monoclonal antibody, C25, which neutralized the heterologous primary viruses of HIV-1 clade B. Furthermore, we generated a humanized monoclonal antibody, KD-247, by transferring the genes of the complementary determining region of C25 into genes of the human V region of the antibody. KD-247 bound with high affinity to the "PGR" motif within the HIV-1 Env V3 tip region, and, among the established reference antibodies, it most effectively neutralized primary HIV-1 field isolates possessing the matching neutralization sequence motif, suggesting its promise for clinical applications involving passive immunizations. These results demonstrate that sequential immunization with B-cell epitope peptides may contribute to a humoral immune-based HIV vaccine strategy. Indeed, they help lay the groundwork for the development of HIV-1 vaccine strategies that use sequential immunization with biologically relevant peptides to overcome difficulties associated with otherwise poorly immunogenic epitopes.

  17. Optimizing HIV-1-specific CD8+ T-cell induction by recombinant BCG in prime-boost regimens with heterologous viral vectors.

    Science.gov (United States)

    Hopkins, Richard; Bridgeman, Anne; Bourne, Charles; Mbewe-Mvula, Alice; Sadoff, Jerald C; Both, Gerald W; Joseph, Joan; Fulkerson, John; Hanke, Tomáš

    2011-12-01

    The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. HIV subtype influences HLA-B*07:02-associated HIV disease outcome

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; Adland, Emily; Koyanagi, Madoka

    2014-01-01

    Genetic polymorphisms within the MHC encoding region have the strongest impact on HIV disease progression of any in the human genome and provide important clues to the mechanisms of HIV immune control. Few analyses have been undertaken of HLA alleles associated with rapid disease progression. HLA......% versus 43% in HLA-B*07:02-negative subjects). These data support earlier studies suggesting that increased breadth of the Gag-specific CD8(+) T cell response may contribute to improved HIV immune control irrespective of the particular HLA molecules expressed....

  19. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control.

    Directory of Open Access Journals (Sweden)

    Adam R Hersperger

    2010-05-01

    Full Text Available Many immune correlates of CD8(+ T-cell-mediated control of HIV replication, including polyfunctionality, proliferative ability, and inhibitory receptor expression, have been discovered. However, no functional correlates using ex vivo cells have been identified with the known ability to cause the direct elimination of HIV-infected cells. We have recently discovered the ability of human CD8(+ T-cells to rapidly upregulate perforin--an essential molecule for cell-mediated cytotoxicity--following antigen-specific stimulation. Here, we examined perforin expression capability in a large cross-sectional cohort of chronically HIV-infected individuals with varying levels of viral load: elite controllers (n = 35, viremic controllers (n = 29, chronic progressors (n = 27, and viremic nonprogressors (n = 6. Using polychromatic flow cytometry and standard intracellular cytokine staining assays, we measured perforin upregulation, cytokine production, and degranulation following stimulation with overlapping peptide pools encompassing all proteins of HIV. We observed that HIV-specific CD8(+ T-cells from elite controllers consistently display an enhanced ability to express perforin directly ex vivo compared to all other groups. This ability is not restricted to protective HLA-B haplotypes, does not require proliferation or the addition of exogenous factors, is not restored by HAART, and primarily originates from effector CD8(+ T-cells with otherwise limited functional capability. Notably, we found an inverse relationship between HIV-specific perforin expression and viral load. Thus, the capability of HIV-specific CD8(+ T-cells to rapidly express perforin defines a novel correlate of control in HIV infection.

  20. Multiphasic and multifocal cryptococcal immune reconstitution inflammatory syndrome in an HIV-infected patient: interplay of infection and immunity.

    Science.gov (United States)

    Katchanov, Juri; Zimmermann, Ulrike; Branding, Gordian; Tintelnot, Kathrin; Müller, Markus; Arastéh, Keikawus; Stocker, Hartmut

    2014-01-01

    We report a case of cryptococcal immune reconstitution inflammatory syndrome affecting the lungs, and 10 months later the cervical lymph nodes, in the absence of cryptococcal meningitis, in advanced HIV infection. Our report demonstrates the organ-specificity of the timing of the inflammatory response and illustrates the organ-specific interplay of immunity and infection in cryptococcal disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  2. Attenuation of Pathogenic Immune Responses during Infection with Human and Simian Immunodeficiency Virus (HIV/SIV) by the Tetracycline Derivative Minocycline

    Science.gov (United States)

    Drewes, Julia L.; Szeto, Gregory L.; Engle, Elizabeth L.; Liao, Zhaohao; Shearer, Gene M.; Zink, M. Christine; Graham, David R.

    2014-01-01

    HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo. PMID:24732038

  3. Short-course TLR9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals with HIV infection

    DEFF Research Database (Denmark)

    Vibholm, Line; Schleimann, Mariane H; Højen, Jesper F

    2017-01-01

    Background.: Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized...... that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. Methods.: We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN.......: In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P

  4. Long-term nonprogression and broad HIV-1-specific proliferative T-cell responses

    Directory of Open Access Journals (Sweden)

    Nesrina eImami

    2013-03-01

    Full Text Available Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1+ patients during early stages of disease, and are maintained in long-term nonprogressing subjects. In the vast majority of HIV-1+ patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilising cure, involving clearance of virus from the host, remains a primary aim, a functional cure may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilised in future strategies designed to improve upon existing therapy. The aim will be to induce long-term nonprogressor or elite controller status in every infected host, through immune-mediated control of viraemia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.

  5. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    Science.gov (United States)

    Korber, Bette T [Los Alamos, NM; Perkins, Simon [Los Alamos, NM; Bhattacharya, Tanmoy [Los Alamos, NM; Fischer, William M [Los Alamos, NM; Theiler, James [Los Alamos, NM; Letvin, Norman [Boston, MA; Haynes, Barton F [Durham, NC; Hahn, Beatrice H [Birmingham, AL; Yusim, Karina [Los Alamos, NM; Kuiken, Carla [Los Alamos, NM

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  6. The rate of immune escape vanishes when multiple immune responses control an HIV infection

    NARCIS (Netherlands)

    van Deutekom, Hanneke W. M.; Wijnker, Gilles; de Boer, Rob J.

    2013-01-01

    During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most

  7. Mucosal immunity in the female genital tract, HIV/AIDS.

    Science.gov (United States)

    Reis Machado, Juliana; da Silva, Marcos Vinícius; Cavellani, Camila Lourencini; dos Reis, Marlene Antônia; Monteiro, Maria Luiza Gonçalves dos Reis; Teixeira, Vicente de Paula Antunes; Miranda Corrêa, Rosana Rosa

    2014-01-01

    Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.

  8. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Clovis S. Palmer

    2018-01-01

    Full Text Available An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of “inflammaging”, a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV+ individuals.

  9. An improved protocol for efficient engraftment in NOD/LTSZ-SCIDIL-2Rγnull mice allows HIV replication and development of anti-HIV immune responses.

    Directory of Open Access Journals (Sweden)

    Maneesh Singh

    Full Text Available Cord blood hematopoietic progenitor cells (CB-HPCs transplanted immunodeficient NOD/LtsZ-scidIL2Rγ(null (NSG and NOD/SCID/IL2Rγ(null (NOG mice need efficient human cell engraftment for long-term HIV-1 replication studies. Total body irradiation (TBI is a classical myeloablation regimen used to improve engraftment levels of human cells in these humanized mice. Some recent reports suggest the use of busulfan as a myeloablation regimen to transplant HPCs in neonatal and adult NSG mice. In the present study, we further ameliorated the busulfan myeloablation regimen with fresh CB-CD34+cell transplantation in 3-4 week old NSG mice. In this CB-CD34+transplanted NSG mice engraftment efficiency of human CD45+cell is over 90% in peripheral blood. Optimal engraftment promoted early and increased CD3+T cell levels, with better lymphoid tissue development and prolonged human cell chimerism over 300 days. These humanized NSG mice have shown long-lasting viremia after HIV-1JRCSF and HIV-1Bal inoculation through intravenous and rectal routes. We also saw a gradual decline of the CD4+T cell count, widespread immune activation, up-regulation of inflammation marker and microbial translocation after HIV-1 infection. Humanized NSG mice reconstituted according to our new protocol produced, moderate cellular and humoral immune responses to HIV-1 postinfection. We believe that NSG mice reconstituted according to our easy to use protocol will provide a better in vivo model for HIV-1 replication and anti-HIV-1 therapy trials.

  10. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  11. 6. THE ROLE OF SELENIUM IN HUMAN IMMUNITY

    African Journals Online (AJOL)

    Esem

    lymphocyte (CD3+) immune response was enhanced in persons that ... Selenium and Disease Conditions ... In China, Keshan and Kashin-Beck diseases are human. 21,22,23 ... and cytotoxic cell activities that act against the HIV virus.

  12. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-gamma)-producing CD8(+) T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode...

  13. Highly Tissue Substructure-Specific Effects of Human Papilloma Virus in Mucosa of HIV-Infected Patients Revealed by Laser-Dissection Microscopy-Assisted Gene Expression Profiling

    Science.gov (United States)

    Baumgarth, Nicole; Szubin, Richard; Dolganov, Greg M.; Watnik, Mitchell R.; Greenspan, Deborah; Da Costa, Maria; Palefsky, Joel M.; Jordan, Richard; Roederer, Mario; Greenspan, John S.

    2004-01-01

    Human papilloma virus (HPV) causes focal infections of epithelial layers in skin and mucosa. HIV-infected patients on highly active antiretroviral therapy (HAART) appear to be at increased risk of developing HPV-induced oral warts. To identify the mechanisms that allow long-term infection of oral epithelial cells in these patients, we used a combination of laser-dissection microscopy (LDM) and highly sensitive and quantitative, non-biased, two-step multiplex real-time RT-PCR to study pathogen-induced alterations of specific tissue subcompartments. Expression of 166 genes was compared in three distinct epithelial and subepithelial compartments isolated from biopsies of normal mucosa from HIV-infected and non-infected patients and of HPV32-induced oral warts from HIV-infected patients. In contrast to the underlying HIV infection and/or HAART, which did not significantly elaborate tissue substructure-specific effects, changes in oral warts were strongly tissue substructure-specific. HPV 32 seems to establish infection by selectively enhancing epithelial cell growth and differentiation in the stratum spinosum and to evade the immune system by actively suppressing inflammatory responses in adjacent underlying tissues. With this highly sensitive and quantitative method tissue-specific expression of hundreds of genes can be studied simultaneously in a few cells. Because of its large dynamic measurement range it could also become a method of choice to confirm and better quantify results obtained by microarray analysis. PMID:15331396

  14. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... inhibitors (PIs), have resulted in significant suppression of viral replication. ... thymus, with the potential for immune reconstitution when ..... HIV-exposed but uninfected Gambian women [published erratum appears in. Nat Med ...

  15. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age.

    Science.gov (United States)

    Rinaldi, Stefano; Pallikkuth, Suresh; George, Varghese K; de Armas, Lesley R; Pahwa, Rajendra; Sanchez, Celeste M; Pallin, Maria Fernanda; Pan, Li; Cotugno, Nicola; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Gonzalez, Louis; Palma, Paolo; Pahwa, Savita

    2017-04-01

    Combination antiretroviral therapies (cART)can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative "healthy controls" (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (aged (40-59yrs) or old ( > 60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction.

  16. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age

    Science.gov (United States)

    George, Varghese K.; de Armas, Lesley R.; Pahwa, Rajendra; Sanchez, Celeste M.; Pallin, Maria Fernanda; Pan, Li; Cotugno, Nicola; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Gonzalez, Louis; Palma, Paolo; Pahwa, Savita

    2017-01-01

    Combination antiretroviral therapies (cART) can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative “healthy controls” (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old (≥60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction. PMID:28448963

  17. HIV-specific antibodies but not t-cell responses are associated with protection in seronegative partners of HIV-1-infected individuals in Cambodia.

    Science.gov (United States)

    Nguyen, Marie; Pean, Polidy; Lopalco, Lucia; Nouhin, Janin; Phoung, Viseth; Ly, Nary; Vermisse, Pierre; Henin, Yvette; Barré-Sinoussi, Françoise; Burastero, Samuele E; Reynes, Jean-Marc; Carcelain, Guislaine; Pancino, Gianfranco

    2006-08-01

    To study biological factors related to protection against HIV-1 infection in Cambodia, we recruited 48 partners of HIV-1-infected patients who remained uninfected (exposed uninfected individuals, EUs) despite unprotected sexual intercourse for more than 1 year and 49 unexposed controls (UCs). HIV-1-specific antibodies (IgA anti-gp41 and IgG anti-CD4-gp120 complex), T-cell responses, and cellular factors that may be involved in protection (peripheral blood mononuclear cell [PBMC] resistance to HIV-1 infection and beta-chemokine production) were evaluated. Anti-HIV-1 antibodies were higher in EUs than those in UCs (P = 0.01 and P = 0.04 for anti-gp41 and anti-CD4-gp120, respectively). We observed a decreased susceptibility to a primary Cambodian isolate, HIV-1KH019, in EU PBMCs as compared with UC PBMCs (P = 0.03). A weak T-cell response to one pool of HIV-1 Gag peptides was found by ELISpot in 1 of 19 EUs. Whereas T-cell specific immunity was not associated to protection, our results suggest that HIV-specific humoral immunity and reduced cell susceptibility to infection may contribute to protection against HIV-1 infection in Cambodian EUs.

  18. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    Science.gov (United States)

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  19. Virological Mechanisms in the Coinfection between HIV and HCV

    Directory of Open Access Journals (Sweden)

    Maria Carla Liberto

    2015-01-01

    Full Text Available Due to shared transmission routes, coinfection with Hepatitis C Virus (HCV is common in patients infected by Human Immunodeficiency Virus (HIV. The immune-pathogenesis of liver disease in HIV/HCV coinfected patients is a multifactorial process. Several studies demonstrated that HIV worsens the course of HCV infection, increasing the risk of cirrhosis and hepatocellular carcinoma. Also, HCV might increase immunological defects due to HIV and risk of comorbidities. A specific cross-talk among HIV and HCV proteins in coinfected patients modulates the natural history, the immune responses, and the life cycle of both viruses. These effects are mediated by immune mechanisms and by a cross-talk between the two viruses which could interfere with host defense mechanisms. In this review, we focus on some virological/immunological mechanisms of the pathogenetic interactions between HIV and HCV in the human host.

  20. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  1. The cytosolic exonuclease TREX1 inhibits the innate immune response to HIV-1

    Science.gov (United States)

    Yan, Nan; Regalado-Magdos, Ashton D.; Stiggelbout, Bart; Lee-Kirsch, Min Ae; Lieberman, Judy

    2010-01-01

    Viral infection triggers innate immune sensors to produce type I interferons (IFN). However, HIV infection of T cells and macrophages does not trip these alarms. How HIV avoids activating nucleic acid sensors is unknown. The cytosolic exonuclease TREX1 suppressed IFN triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA interference, cytosolic HIV DNA accumulated, and HIV infection induced type I IFN that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate IFN expression via a TBK1, STING and IRF3 dependent pathway. HIV-stimulated IFN production in cells deficient in TREX1 did not involve known nucleic acid sensors. PMID:20871604

  2. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  3. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  4. Apoptosis of antigen-specific CTLs contributes to low immune response in gut-associated lymphoid tissue post vaccination.

    Science.gov (United States)

    Shimada, Masaru; Yoshizaki, Shinji; Ichino, Motohide; Klinman, Dennis M; Okuda, Kenji

    2014-09-08

    The gut-associated lymphoid tissue (GALT) represents a major reservoir of HIV in infected individuals. Vaccines can induce strong systemic immune responses but these have less impact on CD4 T cells activity and numbers in GALT. In this study, we vaccinated mice with an adenovirus vector that expressed the envelope gene from HIV and observed immune responses in the peripheral blood, spleen, liver, mesenteric lymph nodes, and Peyer's patches. We found that (1) the number of HIV-specific CD8 T cells was dramatically lower in GALT than in other tissues; (2) the programmed cell death protein-1 (PD-1) was expressed at high levels in HIV-specific CD8 T cells including memory T cells in GALT; and (3) high levels of HIV-specific CD8 T cell apoptosis were occurring in GALT. These results suggest that contributing to GALT becoming an HIV reservoir during infection is a combination of exhaustion and/or dysfunction of HIV-specific CTLs at that site. These results emphasize the importance of developing of an effective mucosal vaccine against HIV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Alemtuzumab-induced elimination of HIV-1-infected immune cells.

    Science.gov (United States)

    Ruxrungtham, Kiat; Sirivichayakul, Sunee; Buranapraditkun, Supranee; Krause, Werner

    2016-01-01

    Currently, there is no drug known that is able to eradicate either HIV or HIV-infected host cells. The effectiveness of all available treatments is based on the prevention of viral replication. We investigated whether the monoclonal, CD52 receptor-targeting antibody, alemtuzumab, which is currently approved for the treatment of multiple sclerosis, is able to eliminate HIV-infected immune cells. In blood samples from healthy donors and from HIV-1-infected subjects who were either treatment-naïve or resistant to HAART, we studied whether the CD52 expression on T cells and their subsets (CD3, CD4, CD8), B cells (CD19), dendritic cells (CD123) and monocytes (CD11c) is retained in HIV-1 infection and whether alemtuzumab is able to eradicate infected cells, using four-colour flow cytometry. We found that CD52 expression on immune cells is retained in HIV-1 infection regardless of CD4 cell count, viral load and treatment status, and is amenable to alemtuzumab-induced depletion. For the first time it could be shown in vitro that HIV-1-infected immune cells can be eliminated by using the monoclonal antibody alemtuzumab.

  6. Aflatoxin-Related Immune Dysfunction in Health and in Human Immunodeficiency Virus Disease

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2008-01-01

    Full Text Available Both aflatoxin and the human immunodeficiency virus (HIV cause immune suppression and millions of HIV-infected people in developing countries are chronically exposed to aflatoxin in their diets. We investigated the possible interaction of aflatoxin and HIV on immune suppression by comparing immune parameters in 116 HIV positive and 80 aged-matched HIV negative Ghanaians with high (≥0.91 pmol/mg albumin and low (<0.91 pmol/mg albumin aflatoxin B1 albumin adduct (AF-ALB levels. AF-ALB levels and HIV viral load were measured in plasma and the percentages of leukocyte immunophenotypes and cytokine expression were determined using flow cytometry. The cross-sectional comparisons found that (1 among both HIV positive and negative participants, high AF-ALB was associated with lower perforin expression on CD8+ T-cells (P=.012; (2 HIV positive participants with high AF-ALB had significantly lower percentages of CD4+ T regulatory cells (Tregs; P=.009 and naive CD4+ T cells (P=.029 compared to HIV positive participants with low AF-ALB; and (3 HIV positive participants with high AF-ALB had a significantly reduced percentage of B-cells (P=.03 compared to those with low AF-ALB. High AF-ALB appeared to accentuate some HIV associated changes in T-cell phenotypes and in B-cells in HIV positive participants.

  7. HIV-derived vectors for gene therapy targeting dendritic cells.

    Science.gov (United States)

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  8. FOXP3-specific immunity

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2013-01-01

    Forkhead box P3 (FOXP3)-specific cytotoxic CD8(+) T cells are present among human peripheral blood mononuclear cells (PBMCs), especially in cancer patients. Such T lymphocytes are able not only to specifically recognize dendritic cells (DCs) that have been exposed to recombinant FOXP3 and regulat...... and regulatory T cells, but also to kill FOXP3(+) malignant T cells. The natural occurrence of FOXP3-specific cytotoxic T lymphocytes among human PBMCs suggests a general role for these cells in the complex network of immune regulation....

  9. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging

    OpenAIRE

    Palmer, Clovis S.; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M.

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impa...

  10. HIV-1 Reservoir Association with Immune Activation

    Directory of Open Access Journals (Sweden)

    Alejandro Vallejo

    2015-09-01

    Full Text Available In this issue of EBioMedicine, Ruggiero and colleagues describe immune activation biomarkers associated with the size of the HIV reservoir in a carefully designed cross-sectional study. The cohort consists of a homogeneous sample of HIV-1-infected patients with long-term plasma HIV-1 RNA suppression under antiretroviral treatment (ART. It is crucial to explore the potential utility of biomarkers that are easier (less labor intensive, less expensive to measure than integrated HIV DNA load, in order to quickly and accurately quantify cellular reservoirs of HIV.

  11. Pulmonary Immune-Compartment-Specific Interferon Gamma Responses in HIV-Infected Individuals with Active Tuberculosis (TB in an Area of High TB Prevalence

    Directory of Open Access Journals (Sweden)

    S. Buldeo

    2012-01-01

    Full Text Available There is a paucity of data on the pulmonary immune-compartment interferon gamma (IFNγ response to M. tuberculosis, particularly in settings of high tuberculosis (TB prevalence and in HIV-coinfected individuals. This data is necessary to understand the diagnostic potential of commercially available interferon gamma release assays (IGRAs in both the pulmonary immune-compartment and peripheral blood. We used intracellular cytokine staining by flow cytometry to assess the IFNγ response to purified protein derivative (PPD and early secretory antigen 6 (ESAT6 in induced sputa (ISp and blood samples from HIV-infected, smear-negative, TB suspects. We found that individuals with active TB disease produced significantly less IFNγ in response to PPD in their induced sputa samples than individuals with non-active TB (control group. This difference was not reflected in the peripheral blood, even within the CD27− CD4+ memory T lymphocyte population. These findings suggest that progression to active TB disease may be associated with the loss of IFNγ secretion at the site of primary infection. Our findings highlight the importance of studying pulmonary immune-compartment M. tuberculosis specific responses to elucidate IFNγ secretion across the spectrum of TB disease.

  12. Abundance of early functional HIV-specific CD8+ T cells does not predict AIDS-free survival time.

    Directory of Open Access Journals (Sweden)

    Ingrid M M Schellens

    Full Text Available BACKGROUND: T-cell immunity is thought to play an important role in controlling HIV infection, and is a main target for HIV vaccine development. HIV-specific central memory CD8(+ and CD4(+ T cells producing IFNgamma and IL-2 have been associated with control of viremia and are therefore hypothesized to be truly protective and determine subsequent clinical outcome. However, the cause-effect relationship between HIV-specific cellular immunity and disease progression is unknown. We investigated in a large prospective cohort study involving 96 individuals of the Amsterdam Cohort Studies with a known date of seroconversion whether the presence of cytokine-producing HIV-specific CD8(+ T cells early in infection was associated with AIDS-free survival time. METHODS AND FINDINGS: The number and percentage of IFNgamma and IL-2 producing CD8(+ T cells was measured after in vitro stimulation with an overlapping Gag-peptide pool in T cells sampled approximately one year after seroconversion. Kaplan-Meier survival analysis and Cox proportional hazard models showed that frequencies of cytokine-producing Gag-specific CD8(+ T cells (IFNgamma, IL-2 or both shortly after seroconversion were neither associated with time to AIDS nor with the rate of CD4(+ T-cell decline. CONCLUSIONS: These data show that high numbers of functional HIV-specific CD8(+ T cells can be found early in HIV infection, irrespective of subsequent clinical outcome. The fact that both progressors and long-term non-progressors have abundant T cell immunity of the specificity associated with low viral load shortly after seroconversion suggests that the more rapid loss of T cell immunity observed in progressors may be a consequence rather than a cause of disease progression.

  13. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    NARCIS (Netherlands)

    Sondergaard, J.N.; Vinner, L.; Brix, S.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far

  14. Characterization of HIV-1 gp120 antibody specificities induced in anogenital secretions of RV144 vaccine recipients after late boost immunizations.

    Directory of Open Access Journals (Sweden)

    Siriwat Akapirat

    Full Text Available Sexual transmission is the principal driver of the human immunodeficiency virus (HIV pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080 efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2 previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE and Case A2 (subtype B in cervico-vaginal mucus (CVM, seminal plasma (SP and rectal secretions (RS from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively, followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11-17 fold and SP (2 fold two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS, gp70V1V2 92TH023 (CVM, SP, and Case A2 (CVM correlated with plasma IgG levels (p<0.001. Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.

  15. Human immunodeficiency virus-like particles activate multiple types of immune cells

    International Nuclear Information System (INIS)

    Sailaja, Gangadhara; Skountzou, Ioanna; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo

    2007-01-01

    The rapid spread of human immunodeficiency virus (HIV) worldwide makes it a high priority to develop an effective vaccine. Since live attenuated or inactivated HIV is not likely to be approved as a vaccine due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are safe due to the lack of a viral genome. Although HIV VLPs have been shown to induce humoral and cellular immune responses, it is important to understand the mechanisms by which they induce such responses and to improve their immunogenicity. We generated HIV VLPs, and VLPs containing Flt3 ligand (FL), a dendritic cell growth factor, to target VLPs to dendritic cells, and investigated the roles of these VLPs in the initiation of adaptive immune responses in vitro and in vivo. We found that HIV-1 VLPs induced maturation of dendritic cells and monocyte/macrophage populations in vitro and in vivo, with enhanced expression of maturation markers and cytokines. Dendritic cells pulsed with VLPs induced activation of splenocytes resulting in increased production of cytokines. VLPs containing FL were found to increase dendritic cells and monocyte/macrophage populations in the spleen when administered to mice. Administration of VLPs induced acute activation of multiple types of cells including T and B cells as indicated by enhanced expression of the early activation marker CD69 and down-regulation of the homing receptor CD62L. VLPs containing FL were an effective form of antigen in activating immune cells via dendritic cells, and immunization with HIV VLPs containing FL resulted in enhanced T helper type 2-like immune responses

  16. Introduction and immunopathogenesis of acquired immune deficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sudharshan S

    2008-01-01

    Full Text Available India has a large number of patients with acquired immune deficiency syndrome (AIDS, the third largest population of this group in the world. This disease was first described in patients with Pneumocystis pneumonia in 1981. Ocular lesions can occur at any stage of the disease but are more commonly seen at the late stages. Human immunodeficiency virus (HIV, the causative agent of AIDS is a retrovirus with RNA genome and a unique ′Reverse transcriptase enzyme′ and is of two types, HIV-1 and 2. Most human diseases are caused by HIV-1. The HIV-1 subtypes prevalent in India are A, B and C. They act predominantly by reducing the CD4+ cells and thus the patient becomes susceptible to opportunistic infections. High viral titers in the peripheral blood during primary infection lead to decrease in the number of CD4+ T lymphocytes. Onset of HIV-1-specific cellular immune response with synthesis of HIV-1 specific antibodies leads to the decline of plasma viral load and chronification of HIV-1 infection. However, the asymptomatic stage of infection may lead to persistent viral replication and a rapid turnover of plasma virions which is the clinical latency. During this period, there is further decrease in the CD4+ counts which makes the patient′s immune system incapable of controlling opportunistic pathogens and thus life-threatening AIDS-defining diseases emerge. Advent of highly active antiretroviral treatment (HAART has revolutionized the management of AIDS though there is associated increased development of immune recovery uveitis in a few of these patients.

  17. Systemic Immune Activation and HIV Shedding in the Female Genital Tract.

    Science.gov (United States)

    Spencer, LaShonda Y; Christiansen, Shawna; Wang, Chia-Hao H; Mack, Wendy J; Young, Mary; Strickler, Howard D; Anastos, Kathryn; Minkoff, Howard; Cohen, Mardge; Geenblatt, Ruth M; Karim, Roksana; Operskalski, Eva; Frederick, Toni; Homans, James D; Landay, Alan; Kovacs, Andrea

    2016-02-01

    Plasma HIV RNA is the most significant determinant of cervical HIV shedding. However, shedding is also associated with sexually transmitted infections (STIs) and cervical inflammation. The mechanism by which this occurs is poorly understood. There is evidence that systemic immune activation promotes viral entry, replication, and HIV disease progression. We hypothesized that systemic immune activation would be associated with an increase in HIV genital shedding. Clinical assessments, HIV RNA in plasma and genital secretions, and markers of immune activation (CD38(+)DR(+) and CD38(-)DR(-)) on CD4(+) and CD8(+) T cells in blood were evaluated in 226 HIV+ women enrolled in the Women's Interagency HIV Study. There were 569 genital evaluations of which 159 (28%) exhibited HIV RNA shedding, defined as HIV viral load >80 copies per milliliter. We tested associations between immune activation and shedding using generalized estimating equations with logit link function. In the univariate model, higher levels of CD4(+) and CD8(+) T-cell activation in blood were significantly associated with genital tract shedding. However, in the multivariate model adjusting for plasma HIV RNA, STIs, and genital tract infections, only higher levels of resting CD8(+) T cells (CD38(-)DR(-)) were significantly inversely associated with HIV shedding in the genital tract (odds ratios = 0.44, 95% confidence interval: 0.21 to 0.9, P = 0.02). The association of systemic immune activation with genital HIV shedding is multifactorial. Systemic T-cell activation is associated with genital tract shedding in univariate analysis but not when adjusting for plasma HIV RNA, STIs, and genital tract infections. In addition, women with high percentage of resting T cells are less likely to have HIV shedding compared with those with lower percentages. These findings suggest that a higher percentage of resting cells, as a result of maximal viral suppression with treatment, may decrease local genital activation, HIV

  18. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses.

    Science.gov (United States)

    Macal, M; Sankaran, S; Chun, T-W; Reay, E; Flamm, J; Prindiville, T J; Dandekar, S

    2008-11-01

    Human immunodeficiency virus (HIV) infection leads to severe CD4+ T-cell depletion in gut-associated lymphoid tissue (GALT) that persists despite the initiation of highly active antiretroviral therapy (HAART). It is not known whether restoration of gut mucosal CD4+ T cells and their functions is feasible during therapy and how that relates to immune correlates and viral reservoirs. Intestinal biopsies and peripheral blood samples from HIV-infected patients who were either HAART naive or on long-term HAART were evaluated. Our data demonstrated that gut CD4+ T-cell restoration ranged from modest (50%), compared with uninfected controls. Despite persistent CD4+ T-cell proviral burden and residual immune activation in GALT during HAART, effective CD4+ T-cell restoration (>50%) was achieved, which was associated with enhanced Th17 CD4+ T-cell accumulation and polyfunctional anti-HIV cellular responses. Our findings suggest that a threshold of>50% CD4+ T-cell restoration may be sufficient for polyfunctional HIV-specific T cells with implications in the evaluation of vaccines and therapeutics.

  19. HIV-specific CD8+ T cells: serial killers condemned to die?

    Science.gov (United States)

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  20. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    Science.gov (United States)

    Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566

  1. HIV controllers exhibit enhanced frequencies of major histocompatibility complex class II tetramer+ Gag-specific CD4+ T cells in chronic clade C HIV-1 infection

    DEFF Research Database (Denmark)

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos

    2017-01-01

    Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibilit...

  2. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    Science.gov (United States)

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Variable processing and cross-presentation of HIV by dendritic cells and macrophages shapes CTL immunodominance and immune escape.

    Directory of Open Access Journals (Sweden)

    Jens Dinter

    2015-03-01

    Full Text Available Dendritic cells (DCs and macrophages (Møs internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8⁺ T cells (CTL. However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.

  4. HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation.

    Science.gov (United States)

    Wang, Hongyin; Kotler, Donald P

    2014-07-01

    Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.

  5. HIV-1 Infection Is Associated with Depletion and Functional Impairment of Mycobacterium tuberculosis-Specific CD4 T Cells in Individuals with Latent Tuberculosis Infection.

    Science.gov (United States)

    Day, Cheryl L; Abrahams, Deborah A; Harris, Levelle D; van Rooyen, Michele; Stone, Lynnett; de Kock, Marwou; Hanekom, Willem A

    2017-09-15

    Coinfection with HIV is the single greatest risk factor for reactivation of latent Mycobacterium tuberculosis infection (LTBI) and progression to active tuberculosis disease. HIV-associated dysregulation of adaptive immunity by depletion of CD4 Th cells most likely contributes to loss of immune control of LTBI in HIV-infected individuals, although the precise mechanisms whereby HIV infection impedes successful T cell-mediated control of M. tuberculosis have not been well defined. To further delineate mechanisms whereby HIV impairs protective immunity to M. tuberculosis , we evaluated the frequency, phenotype, and functional capacity of M. tuberculosis -specific CD4 T cells in HIV-infected and HIV-uninfected adults with LTBI. HIV infection was associated with a lower total frequency of cytokine-producing M. tuberculosis -specific CD4 T cells, and preferential depletion of a discrete subset of M. tuberculosis -specific IFN-γ + IL-2 - TNF-α + CD4 T cells. M. tuberculosis -specific CD4 T cells in HIV-infected individuals expressed significantly higher levels of Ki67, compared with HIV-uninfected individuals, thus indicating recent activation and turnover of these cells in vivo. The ex vivo proliferative capacity of M. tuberculosis -specific CD4 T cells was markedly impaired in HIV-infected individuals, compared with HIV-uninfected individuals. Moreover, HIV infection was associated with increased M. tuberculosis Ag-induced CD4 T cell death ex vivo, indicating a possible mechanism contributing to impaired proliferative capacity of M. tuberculosis -specific CD4 T cells in HIV-infected individuals. These data provide new insights into the parameters of M. tuberculosis -specific CD4 T cell immunity that are impaired in HIV-infected individuals with LTBI, which may contribute to their increased risk of developing active tuberculosis disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Neurotuberculosis immune reconstitution inflammatory syndrome in the setting of HIV infection: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Deepasree Jaganmohan

    2016-01-01

    Full Text Available Immune reconstitution inflammatory syndrome (IRIS is an exaggerated immune response which can occur with various coinfections in human immunodeficiency virus (HIV infected patients, of which the most commonly implicated in central nervous system (CNS-IRIS are progressive multifocal leukoencephalopathy (PML, cryptococcosis, and tuberculosis (TB. TB-IRIS is a known complication of pulmonary TB or TB lymphadenitis coinfection in HIV infected patients who are on antituberculosis treatment (ATT after the initiation of antiretroviral therapy (ART. However, development of IRIS in extrapulmonary TB such as CNS TB is very rare. Our case is that of an isolated CNS-TB-IRIS, presenting as increase in the size and perilesional edema of the ring enhancing lesions in the brain, which was observed in two sequential magnetic resonance imaging done over a period of 2 months in a retropositive patient who presented with clinical deterioration after commencement of ART. As prompt diagnosis was made and specific management aimed at IRIS was started without delay, the patient improved symptomatically.

  7. Incomplete immune recovery in HIV infection

    DEFF Research Database (Denmark)

    Gaardbo, Julie C; Hartling, Hans J; Gerstoft, Jan

    2012-01-01

    -infected patients do not achieve optimal immune reconstitution despite suppression of viral replication. These patients are referred to as immunological nonresponders (INRs). INRs present with severely altered immunological functions, including malfunction and diminished production of cells within lymphopoetic...... tissue, perturbed frequencies of immune regulators such as regulatory T cells and Th17 cells, and increased immune activation, immunosenescence, and apoptosis. Importantly, INRs have an increased risk of morbidity and mortality compared to HIV-infected patients with an optimal immune reconstitution....... Additional treatment to HAART that may improve immune reconstitution has been investigated, but results thus far have proved disappointing. The reason for immunological nonresponse is incompletely understood. This paper summarizes the known and unknown factors regarding the incomplete immune reconstitution...

  8. Unraveling the relationship between microbial translocation and systemic immune activation in HIV infection

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F.

    2014-01-01

    Chronic immune activation is a key factor in HIV-1 disease progression. The translocation of microbial products from the intestinal lumen into the systemic circulation occurs during HIV-1 infection and is associated closely with immune activation; however, it has not been determined conclusively whether microbial translocation drives immune activation or occurs as a consequence of HIV-1 infection. In an important study in this issue of the JCI, Kristoff and colleagues describe the role of microbial translocation in producing immune activation in an animal model of HIV-1 infection, SIV infection of pigtailed macaques. Blocking translocation of intestinal bacterial LPS into the circulation dramatically reduced T cell activation and proliferation, production of proinflammatory cytokines, and plasma SIV RNA levels. This study directly demonstrates that microbial translocation promotes the systemic immune activation associated with HIV-1/SIV infection. PMID:24837427

  9. Dense genotyping of immune-related loci identifies variants associated with clearance of HPV among HIV-positive women in the HIV epidemiology research study (HERS.

    Directory of Open Access Journals (Sweden)

    Staci L Sudenga

    Full Text Available Persistent high-risk human papillomavirus (HR-HPV is a necessary and causal factor of cervical cancer. Most women naturally clear HPV infections; however, the biological mechanisms related to HPV pathogenesis have not been clearly elucidated. Host genetic factors that specifically regulate immune response could play an important role. All HIV-positive women in the HIV Epidemiology Research Study (HERS with a HR-HPV infection and at least one follow-up biannual visit were included in the study. Cervicovaginal lavage samples were tested for HPV using type-specific HPV hybridization assays. Type-specific HPV clearance was defined as two consecutive HPV-negative tests after a positive test. DNA from participants was genotyped for 196,524 variants within 186 known immune related loci using the custom ImmunoChip microarray. To assess the influence of each single-nucleotide polymorphism (SNP with HR-HPV clearance, the Cox proportional hazards model with the Wei-Lin-Weissfeld approach was used, adjusting for CD4+ count, low risk HPV (LR-HPV co-infection, and relevant confounders. Three analytical models were performed: race-specific (African Americans (n = 258, European Americans (n = 87, Hispanics (n = 55, race-adjusted combined analysis, and meta-analysis of pooled independent race-specific analyses. Women were followed for a median time of 1,617 days. Overall, three SNPs (rs1112085, rs11102637, and rs12030900 in the MAGI-3 gene and one SNP (rs8031627 in the SMAD3 gene were associated with HR-HPV clearance (p<10(-6. A variant (rs1633038 in HLA-G were also significantly associated in African American. Results from this study support associations of immune-related genes, having potential biological mechanism, with differential cervical HR-HPV infection outcomes.

  10. HIV/AIDS and Alcohol

    Science.gov (United States)

    ... Psychiatric Disorders Other Substance Abuse HIV/AIDS HIV/AIDS Human immunodeficiency virus (HIV) targets the body’s immune ... and often leads to acquired immune deficiency syndrome (AIDS). The U.S. CDC reported that in 2015, 39, ...

  11. Functional simian immunodeficiency virus Gag-specific CD8+ intraepithelial lymphocytes in the mucosae of SIVmac251- or simian-human immunodeficiency virus KU2-infected macaques

    International Nuclear Information System (INIS)

    Stevceva, Liljana; Moniuszko, Marcin; Alvarez, Xavier; Lackner, Andrew A.; Franchini, Genoveffa

    2004-01-01

    The vaginal and rectal mucosae are the first line of cellular immune defense to sexually transmitted human immunodeficiency virus type 1 (HIV-1) entry. Thus, intraepithelial lymphocytes (IELs) may be important in the immune response to HIV infection. Here we investigated whether functional IELs in mucosal compartments could be visualized by direct staining with a tetrameric complex specific for the simian immunodeficiency virus (SIV) immunodominant Gag epitope in either separated IEL cells or tissues of macaques infected with SIVmac251. Of the 15 Mamu-A*01-positive macaques studied here, eight were chronically infected with either SIVmac251 or simian-human immunodeficiency virus (SHIV) KU2 and the remaining seven were exposed mucosally to SIVmac251 and sacrificed within 48 h to assess the local immune response. Gag-specific CD8+ T-cells were found in separated IELs from the rectum, colon, jejunum, and vagina of most infected animals. Direct staining of tetramers also revealed their presence in intact tissue. These Gag-specific IELs expressed the activation marker CD69 and produced IFN-γ, suggesting an active immune response in this locale

  12. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  13. Immune Responses in the Central Nervous System Are Anatomically Segregated in a Non-Human Primate Model of Human Immunodeficiency Virus Infection

    Directory of Open Access Journals (Sweden)

    Barbara Tavano

    2017-03-01

    Full Text Available The human immunodeficiency virus (HIV accesses the central nervous system (CNS early during infection, leading to HIV-associated cognitive impairment and establishment of a viral reservoir. Here, we describe a dichotomy in inflammatory responses in different CNS regions in simian immunodeficiency virus (SIV-infected macaques, a model for HIV infection. We found increased expression of inflammatory genes and perivascular leukocyte infiltration in the midbrain of SIV-infected macaques. Conversely, the frontal lobe showed downregulation of inflammatory genes associated with interferon-γ and interleukin-6 pathways, and absence of perivascular cuffing. These immunologic alterations were not accompanied by differences in SIV transcriptional activity within the tissue. Altered expression of genes associated with neurotoxicity was observed in both midbrain and frontal lobe. The segregation of inflammatory responses to specific regions of the CNS may both account for HIV-associated neurological symptoms and constitute a critical hurdle for HIV eradication by shielding the CNS viral reservoir from antiviral immunity.

  14. Human and Animal Isolates of Yersinia enterocolitica Show Significant Serotype-Specific Colonization and Host-Specific Immune Defense Properties

    Science.gov (United States)

    Schaake, Julia; Kronshage, Malte; Uliczka, Frank; Rohde, Manfred; Knuuti, Tobias; Strauch, Eckhard; Fruth, Angelika; Wos-Oxley, Melissa

    2013-01-01

    Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans. PMID:23959720

  15. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    International Nuclear Information System (INIS)

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC 50 s ranging from 0.1 to 7.4 μg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: →Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. →MVCs inhibited infection by T cell line-adapted viruses. →MVCs inhibited infection by primary isolates of HIV-1. →MVCs inhibited Env-mediated membrane fusion.

  16. A stochastic spatial model of HIV dynamics with an asymmetric battle between the virus and the immune system

    International Nuclear Information System (INIS)

    Lin Hai; Shuai, J W

    2010-01-01

    A stochastic spatial model based on the Monte Carlo approach is developed to study the dynamics of human immunodeficiency virus (HIV) infection. We aim to propose a more detailed and realistic simulation frame by incorporating many important features of HIV dynamics, which include infections, replications and mutations of viruses, antigen recognitions, activations and proliferations of lymphocytes, and diffusions, encounters and interactions of virions and lymphocytes. Our model successfully reproduces the three-phase pattern observed in HIV infection, and the simulation results for the time distribution from infection to AIDS onset are also in good agreement with the clinical data. The interactions of viruses and the immune system in all the three phases are investigated. We assess the relative importance of various immune system components in the acute phase. The dynamics of how the two important factors, namely the viral diversity and the asymmetric battle between HIV and the immune system, result in AIDS are investigated in detail with the model.

  17. HIV/AIDS

    Science.gov (United States)

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV most ...

  18. Human Leukocyte Antigen (HLA and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections?

    Directory of Open Access Journals (Sweden)

    Nicole B. Crux

    2017-07-01

    Full Text Available The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV and hepatitis C virus (HCV, is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C, class Ib (HLA-E, -F, -G, -H, and class II (HLA-DR, -DQ, -DM, and -DP in immune regulation and viral pathogenesis (e.g., HIV and HCV. To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.

  19. Immune recovery in acute and chronic HIV infection and the impact of thymic stromal lymphopoietin

    DEFF Research Database (Denmark)

    Gelpi, Marco; Hartling, Hans J; Thorsteinsson, Kristina

    2016-01-01

    was comparable in all groups, and no differences in immune homeostasis were found between primary HIV infection and early presenters, whereas differences in absolute counts and proportions of CD4+ T cell subpopulations were found between primary HIV infection and late presenters. TSLP was elevated in primary HIV...... thymic output, but not with immune recovery. These findings indicate a possible role of TSLP in immune homeostasis in HIV infection but do not support TSLP to affect immune recovery in primary HIV infection.......BACKGROUND: Symptomatic primary HIV infection is associated with an adverse prognosis, and immediate initiation of combination antiretroviral therapy (cART) is recommended. However, little is known about immunological predictors of immune recovery. Thymic Stromal Lymphopoietin (TSLP) is a cytokine...

  20. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells.

    Science.gov (United States)

    Liao, Hsin-Kai; Gu, Ying; Diaz, Arturo; Marlett, John; Takahashi, Yuta; Li, Mo; Suzuki, Keiichiro; Xu, Ruo; Hishida, Tomoaki; Chang, Chan-Jung; Esteban, Concepcion Rodriguez; Young, John; Izpisua Belmonte, Juan Carlos

    2015-03-10

    To combat hostile viruses, bacteria and archaea have evolved a unique antiviral defense system composed of clustered regularly interspaced short palindromic repeats (CRISPRs), together with CRISPR-associated genes (Cas). The CRISPR/Cas9 system develops an adaptive immune resistance to foreign plasmids and viruses by creating site-specific DNA double-stranded breaks (DSBs). Here we adapt the CRISPR/Cas9 system to human cells for intracellular defense against foreign DNA and viruses. Using HIV-1 infection as a model, our results demonstrate that the CRISPR/Cas9 system disrupts latently integrated viral genome and provides long-term adaptive defense against new viral infection, expression and replication in human cells. We show that engineered human-induced pluripotent stem cells stably expressing HIV-targeted CRISPR/Cas9 can be efficiently differentiated into HIV reservoir cell types and maintain their resistance to HIV-1 challenge. These results unveil the potential of the CRISPR/Cas9 system as a new therapeutic strategy against viral infections.

  1. Morphologic changes in the placentas of HIV-positive women and their association with degree of immune suppression.

    Science.gov (United States)

    Vermaak, Anine; Theron, Gerhard B; Schubert, Pawel T; Kidd, Martin; Rabie, Ursula; Adjiba, Benedict M; Wright, Colleen A

    2012-12-01

    To provide baseline information regarding a possible association between specific histopathologic features of the placentas of HIV-positive women and the degree of immune suppression. A prospective single-blinded laboratory-based pilot study was conducted at Tygerberg Hospital, South Africa. The macroscopic and microscopic features of placentas from HIV-positive (n=91) and HIV-negative women (n=89) were compared and recorded using a standard template. Investigators were blinded to the participants' HIV status and CD4-positive cell count. Placentas from the HIV-positive group were characterized by decreased weight and increased number of marginal infarcts relative to the HIV-negative group. The most important microscopic finding was the increased presence of villitis of unknown etiology (VUE) among the group of untreated HIV-positive women with CD4 cell counts of 200 cells/mm(3) or below. Both macroscopic and microscopic differences relating to the degree of immune suppression were identified, which seemingly contradicts previous reports. Larger studies are warranted to define the function of antiretroviral therapy and VUE in the mechanism of mother-to-fetus transmission of HIV. Furthermore, the potential role of VUE in the pathophysiology of the compromised immune response observed among HIV-exposed but uninfected infants should be investigated. Copyright © 2012 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Abnormal humoral immune response to influenza vaccination in pediatric type-1 human immunodeficiency virus infected patients receiving highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Carlos J Montoya

    2007-06-01

    Full Text Available Given that highly active antiretroviral therapy (HAART has been demonstrated useful to restore immune competence in type-1 human immunodeficiency virus (HIV-1-infected subjects, we evaluated the specific antibody response to influenza vaccine in a cohort of HIV-1-infected children on HAART so as to analyze the quality of this immune response in patients under antiretroviral therapy. Sixteen HIV-1-infected children and 10 HIV-1 seronegative controls were immunized with a commercially available trivalent inactivated influenza vaccine containing the strains A/H1N1, A/H3N2, and B. Serum hemagglutinin inhibition (HI antibody titers were determined for the three viral strains at the time of vaccination and 1 month later. Immunization induced a significantly increased humoral response against the three influenza virus strains in controls, and only against A/H3N2 in HIV-1-infected children. The comparison of post-vaccination HI titers between HIV-1+ patients and HIV-1 negative controls showed significantly higher HI titers against the three strains in controls. In addition, post vaccination protective HI titers (defined as equal to or higher than 1:40 against the strains A/H3N2 and B were observed in a lower proportion of HIV-1+ children than in controls, while a similar proportion of individuals from each group achieved protective HI titers against the A/H1N1 strain. The CD4+ T cell count, CD4/CD8 T cells ratio, and serum viral load were not affected by influenza virus vaccination when pre- vs post-vaccination values were compared. These findings suggest that despite the fact that HAART is efficient in controlling HIV-1 replication and in increasing CD4+ T cell count in HIV-1-infected children, restoration of immune competence and response to cognate antigens remain incomplete, indicating that additional therapeutic strategies are required to achieve a full reconstitution of immune functions.

  3. Simultaneous approach using systemic, mucosal and transcutaneous routes of immunization for development of protective HIV-1 vaccines.

    Science.gov (United States)

    Belyakov, I M; Ahlers, J D

    2011-01-01

    Mucosal tissues are major sites of HIV entry and initial infection. Induction of a local mucosal cytotoxic T lymphocyte response is considered an important goal in developing an effective HIV vaccine. In addition, activation and recruitment of memory CD4(+) and CD8(+) T cells in systemic lymphoid circulation to mucosal effector sites might provide the firewall needed to prevent virus spread. Therefore a vaccine that generates CD4(+) and CD8(+) responses in both mucosal and systemic tissues might be required for protection against HIV. However, optimal routes and number of vaccinations required for the generation of long lasting CD4(+) and CD8(+) CTL effector and memory responses are not well understood especially for mucosal T cells. A number of studies looking at protective immune responses against diverse mucosal pathogens have shown that mucosal vaccination is necessary to induce a compartmentalized immune response including maximum levels of mucosal high-avidity CD8(+) CTL, antigen specific mucosal antibodies titers (especially sIgA), as well as induction of innate anti-viral factors in mucosa tissue. Immune responses are detectable at mucosal sites after systemic delivery of vaccine, and prime boost regimens can amplify the magnitude of immune responses in mucosal sites and in systemic lymphoid tissues. We believe that the most optimal mucosal and systemic HIV/SIV specific protective immune responses and innate factors might best be achieved by simultaneous mucosal and systemic prime and boost vaccinations. Similar principals of vaccination may be applied for vaccine development against cancer and highly invasive pathogens that lead to chronic infection.

  4. Identification of Interleukin-27 (IL-27)/IL-27 Receptor Subunit Alpha as a Critical Immune Axis for In Vivo HIV Control.

    Science.gov (United States)

    Ruiz-Riol, M; Berdnik, D; Llano, A; Mothe, B; Gálvez, C; Pérez-Álvarez, S; Oriol-Tordera, B; Olvera, A; Silva-Arrieta, S; Meulbroek, M; Pujol, F; Coll, J; Martinez-Picado, J; Ganoza, C; Sanchez, J; Gómez, G; Wyss-Coray, T; Brander, C

    2017-08-15

    Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (>50,000) or low (HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia ( P HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/β-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor ( IL27RA ) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells communicate with each other by secreting signaling proteins, and

  5. Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen.

    Science.gov (United States)

    Arias, Mauricio A; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin

    2011-02-01

    Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen M. Merino

    2017-12-01

    Full Text Available Monocytes/macrophages are a diverse group of cells that act as first responders in innate immunity and then as mediators for adaptive immunity to help clear infections. In performing these functions, however, the macrophage inflammatory responses can also contribute to pathogenesis. Various monocyte and tissue macrophage subsets have been associated with inflammatory disorders and tissue pathogeneses such as occur during HIV infection. Non-human primate research of simian immunodeficiency virus (SIV has been invaluable in better understanding the pathogenesis of HIV infection. The question of HIV/SIV-infected macrophages serving as a viral reservoir has become significant for achieving a cure. In the rhesus macaque model, SIV-infected macrophages have been shown to promote pathogenesis in several tissues resulting in cardiovascular, metabolic, and neurological diseases. Results from human studies illustrated that alveolar macrophages could be an important HIV reservoir and humanized myeloid-only mice supported productive HIV infection and viral persistence in macrophages during ART treatment. Depletion of CD4+ T cells is considered the primary cause for terminal progression, but it was reported that increasing monocyte turnover was a significantly better predictor in SIV-infected adult macaques. Notably, pediatric cases of HIV/SIV exhibit faster and more severe disease progression than adults, yet neonates have fewer target T cells and generally lack the hallmark CD4+ T cell depletion typical of adult infections. Current data show that the baseline blood monocyte turnover rate was significantly higher in neonatal macaques compared to adults and this remained high with disease progression. In this review, we discuss recent data exploring the contribution of monocytes and macrophages to HIV/SIV infection and progression. Furthermore, we highlight the need to further investigate their role in pediatric cases of infection.

  7. Targeting cFMS signaling to restore immune function and eradicate HIV reservoirs

    Science.gov (United States)

    Gerngross, Lindsey

    -associated CNS injury and AIDS pathogenesis. Through immunohistochemical studies using a relevant animal model of HIV infection, SIV infected rhesus macaques, we reported the presence of M-CSF and IL-34 in the brains of seronegative and SIV+ animals, for the first time, and identified spatial differences in the expression of these ligands. Important to our interest in viral persistence in the CNS, we observed the predominance of M-CSF expression in brain to be by cells that comprise perivascular cuffs and nodular lesions, which contain monocytes/ macrophages that have migrated into the CNS. IL-34 appeared to be a tissue-specific ligand expressed by resident microglia. Like M-CSF, we found that IL-34 also increased the frequency of CD16 +CD163+ monocytes in vitro. We further investigated the potential of cFMS inhibition as a means to abrogate macrophage-2-like immune polarization using the small molecule tyrosine kinase inhibitor (TKI), GW2580. The addition of GW2580 abolished cFMS ligand-mediated increases in CD16+CD163+ monocyte frequency in human peripheral blood mononuclear cells (PBMC) as well as virus production in HIV infected primary human microglia. Furthermore, we found cFMS-mediated upregulation of CD16 and CD163 to be relevant to an additional disease process, high-grade astrocytomas, suggesting that M-CSF and IL-34 may be mediators of other neuroinflammatory diseases, as well. We hope these findings will provide insight into the role of altered monocyte/macrophage homeostasis in HIV disease and identify a novel strategy for targeting long-lived cellular reservoirs of HIV infection through restored immune homeostasis.

  8. The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment

    Directory of Open Access Journals (Sweden)

    Rowan Mark R

    2011-08-01

    Full Text Available Abstract Substantial improvements have been made in recent years in the ability to engraft human cells and tissues into immunodeficient mice. The use of human hematopoietic stem cells (HSCs leads to multi-lineage human hematopoiesis accompanied by production of a variety of human immune cell types. Population of murine primary and secondary lymphoid organs with human cells occurs, and long-term engraftment has been achieved. Engrafted cells are capable of producing human innate and adaptive immune responses, making these models the most physiologically relevant humanized animal models to date. New models have been successfully infected by a variety of strains of Human Immunodeficiency Virus Type 1 (HIV-1, accompanied by virus replication in lymphoid and non-lymphoid organs, including the gut-associated lymphoid tissue, the male and female reproductive tracts, and the brain. Multiple forms of virus-induced pathogenesis are present, and human T cell and antibody responses to HIV-1 are detected. These humanized mice are susceptible to a high rate of rectal and vaginal transmission of HIV-1 across an intact epithelium, indicating the potential to study vaccines and microbicides. Antiviral drugs, siRNAs, and hematopoietic stem cell gene therapy strategies have all been shown to be effective at reducing viral load and preventing or reversing helper T cell loss in humanized mice, indicating that they will serve as an important preclinical model to study new therapeutic modalities. HIV-1 has also been shown to evolve in response to selective pressures in humanized mice, thus showing that the model will be useful to study and/or predict viral evolution in response to drug or immune pressures. The purpose of this review is to summarize the findings reported to date on all new humanized mouse models (those transplanted with human HSCs in regards to HIV-1 sexual transmission, pathogenesis, anti-HIV-1 immune responses, viral evolution, pre- and post

  9. Epidemiology of infections with intestinal parasites and human immunodeficiency virus (HIV) among sugar-estate residents in Ethiopia

    NARCIS (Netherlands)

    Fontanet, A. L.; Sahlu, T.; Rinke de Wit, T.; Messele, T.; Masho, W.; Woldemichael, T.; Yeneneh, H.; Coutinho, R. A.

    2000-01-01

    Intestinal parasitic infections could play an important role in the progression of infection with human immunodeficiency virus (HIV), by further disturbing the immune system whilst it is already engaged in the fight against HIV. HIV and intestinal parasitic infections were investigated in 1239,

  10. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers.

    Science.gov (United States)

    Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel

    2017-08-01

    We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.

  11. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited.

    Science.gov (United States)

    Clark, Gary F

    2014-03-01

    Emerging data suggest that mechanisms to evade the human immune system may be shared by the conceptus, tumour cells, persistent pathogens and viruses. It is therefore timely to revisit the human fetoembryonic defense system (Hu-FEDS) hypothesis that was proposed in two papers in the 1990s. The initial paper suggested that glycoconjugates expressed in the human reproductive system inhibited immune responses directed against gametes and the developing human by employing their carbohydrate sequences as functional groups. These glycoconjugates were proposed to block specific binding interactions and interact with lectins linked to signal transduction pathways that modulated immune cell functions. The second article suggested that aggressive tumour cells and persistent pathogens (HIV, H. pylori, schistosomes) either mimicked or acquired the same carbohydrate functional groups employed in this system to evade immune responses. This subterfuge enabled these pathogens and tumour cells to couple their survival to the human reproductive imperative. The Hu-FEDS model has been repeatedly tested since its inception. Data relevant to this model have also been obtained in other studies. Herein, the Hu-FEDS hypothesis is revisited in the context of these more recent findings. Far more supportive evidence for this model now exists than when it was first proposed, and many of the original predictions have been validated. This type of subterfuge by pathogens and tumour cells likely applies to all sexually reproducing metazoans that must protect their gametes from immune responses. Intervention in these pathological states will likely remain problematic until this system of immune evasion is fully understood and appreciated.

  12. HIV-positive patient with herpes zoster: a manifestation of the immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Lutwak, Nancy; Dill, Curt

    2012-01-01

    Herpes zoster is a common illness that can lead to serious morbidity. There is now evidence that HIV-infected patients who have been treated with antiretroviral therapy are at greater risk of developing herpes zoster not when they are severely immunocompromised but, paradoxically, when their immune system is recovering. This is a manifestation of the immune reconstitution inflammatory syndrome. The objectives of this report are to (1) inform health care providers that HIV-infected patients may develop multiple infectious, autoimmune, and oncological manifestations after treatment with antiretroviral medication, as they have immune system reconstitution, and (2) discuss herpes zoster, one of the possible manifestations. The patient is a 68-year-old HIV-positive man who presented with herpes zoster after being treated with highly active antiretroviral therapy (HAART) when his immune system was recovering, not when he was most immunosuppressed. Emergency department physicians should be aware that HIV-infected patients treated with HAART may have clinical deterioration despite immune system strengthening. This immune reconstitution inflammatory syndrome can present with infectious, autoimmune, or oncological manifestations. Our case patient, an HIV-positive man with immune system recovery after treatment with HAART, presented with an infectious manifestation, herpes zoster.

  13. Borderline tuberculoid leprosy: A manifestation of immune reconstitution inflammatory syndrome in a human immunodeficiency virus infected person

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Partha

    2006-01-01

    Full Text Available Immune reconstitution inflammatory syndrome describes a collection of inflammatory disorders associated with paradoxical deterioration of various pre-existing processes following start of highly active antiretroviral therapy (HAART in human immunodeficiency virus (HIV-infected patients. Leprosy as an opportunistic infection in immune reconstitution syndrome has been rarely reported in literature. A case of a 30-year-old HIV positive man with extrapulmonary tuberculosis of left foot on HAART having developed borderline tuberculoid leprosy as opportunistic infection in immune reconstitution syndrome has been reported.

  14. Imaging of the brain in the HIV-positive child

    International Nuclear Information System (INIS)

    Safriel, Y.I.

    2000-01-01

    The prevalence of human immune-deficiency virus (HIV) infection around the world, coupled with increasing population movement, make it likely that many physicians will treat HIV-infected patients. New treatment protocols for the specific manifestations of acquired immune-deficiency syndrome (AIDS) make distinguishing the different neurological diseases of great importance. The pattern of disease in children differs from those of adults both in its distribution and etiology. This article encapsulates the salient aspects relating to the imaging of the brain in HIV-positive children, paying particular attention to recent advances and the different features of the various pathological conditions affecting the HIV-infected brain in children. (orig.)

  15. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis

    Science.gov (United States)

    Zhou, Yun; Zhang, Ying; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhan S

    2014-01-01

    Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules. PMID:24965611

  16. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  17. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Uninfected Women.

    Science.gov (United States)

    Reimers, Laura L; Mehta, Supriya D; Massad, L Stewart; Burk, Robert D; Xie, Xianhong; Ravel, Jacques; Cohen, Mardge H; Palefsky, Joel M; Weber, Kathleen M; Xue, Xiaonan; Anastos, Kathryn; Minkoff, Howard; Atrio, Jessica; D'Souza, Gypsyamber; Ye, Qian; Colie, Christine; Zolnik, Christine P; Spear, Gregory T; Strickler, Howard D

    2016-11-01

     Bacterial vaginosis (BV) is characterized by low abundance of Lactobacillus species, high pH, and immune cell infiltration and has been associated with an increased risk of human papillomavirus (HPV) infection. We molecularly assessed the cervicovaginal microbiota over time in human immunodeficiency virus (HIV)-infected and HIV-uninfected women to more comprehensively study the HPV-microbiota relationship, controlling for immune status.  16S ribosomal RNA gene amplicon pyrosequencing and HPV DNA testing were conducted annually in serial cervicovaginal lavage specimens obtained over 8-10 years from African American women from Chicago, of whom 22 were HIV uninfected, 22 were HIV infected with a stable CD4 + T-cell count of > 500 cells/mm 3 , and 20 were HIV infected with progressive immunosuppression. Vaginal pH was serially measured.  The relative abundances of Lactobacillus crispatus and other Lactobacillus species were inversely associated with vaginal pH (all P < .001). High (vs low) L. crispatus relative abundance was associated with decreased HPV detection (odds ratio, 0.48; 95% confidence interval, .24-.96; P trend = .03) after adjustment for repeated observation and multiple covariates, including pH and study group. However, there were no associations between HPV and the relative abundance of Lactobacillus species as a group, nor with Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii individually.  L. crispatus may have a beneficial effect on the burden of HPV in both HIV-infected and HIV-uninfected women (independent of pH). © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  18. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2017-10-01

    Full Text Available Human immunodeficiency virus (HIV hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR. This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS. Quantitative enzyme-linked immunoadsorption assays (ELISA demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10−8 to 10−9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.

  19. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status.

    Directory of Open Access Journals (Sweden)

    William G Branton

    Full Text Available The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12, other disease controls [ODC] (n = 14 and in cerebral surgical resections for epilepsy [SURG] (n = 6. Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4 and ODC (n = 4 patients and SURG (n = 2 groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1⁻/⁻ mouse brains. Intracerebral implantation of human brain homogenates into RAG1⁻/⁻ mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain

  20. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    Science.gov (United States)

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Directory of Open Access Journals (Sweden)

    Genevieve E Martin

    Full Text Available Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women.This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+ T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays.HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001, soluble CD163 (sCD163, p = 0.001, sCD14 (p = 0.022, neopterin (p = 0.029 and an increased proportion of CD16(+ monocytes (p = 0.009 compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+ monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002 suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+ T lymphocytes.Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  2. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Science.gov (United States)

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  3. Immune reconstitution inflammatory syndrome in HIV and sporotrichosis coinfection: report of two cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Marcelo Rosandiski Lyra

    2014-12-01

    Full Text Available We report 2 cases of patients with immune reconstitution inflammatory syndrome (IRIS associated with cutaneous disseminated sporotrichosis and human immunodeficiency virus (HIV coinfection. The patients received specific treatment for sporotrichosis. However, after 4 and 5 weeks from the beginning of antiretroviral therapy, both patients experienced clinical exacerbation of skin lesions despite increased T CD4+ cells (T cells cluster of differentiation 4 positive count and decreased viral load. Despite this exacerbation, subsequent mycological examination after systemic corticosteroid administration did not reveal fungal growth. Accordingly, they were diagnosed with IRIS. However, the sudden withdrawal of the corticosteroids resulted in the recurrence of IRIS symptoms. No serious adverse effects could be attributed to prednisone. We recommend corticosteroid treatment for mild-to-moderate cases of IRIS in sporotrichosis and HIV coinfection with close follow-up.

  4. Immune reconstitution inflammatory syndrome in HIV and sporotrichosis coinfection: report of two cases and review of the literature.

    Science.gov (United States)

    Lyra, Marcelo Rosandiski; Nascimento, Maria Letícia Fernandes Oliveira; Varon, Andréa Gina; Pimentel, Maria Inês Fernandes; Antonio, Liliane de Fátima; Saheki, Maurício Naoto; Bedoya-Pacheco, Sandro Javier; Valle, Antonio Carlos Francesconi do

    2014-01-01

    We report 2 cases of patients with immune reconstitution inflammatory syndrome (IRIS) associated with cutaneous disseminated sporotrichosis and human immunodeficiency virus (HIV) coinfection. The patients received specific treatment for sporotrichosis. However, after 4 and 5 weeks from the beginning of antiretroviral therapy, both patients experienced clinical exacerbation of skin lesions despite increased T CD4+ cells (T cells cluster of differentiation 4 positive) count and decreased viral load. Despite this exacerbation, subsequent mycological examination after systemic corticosteroid administration did not reveal fungal growth. Accordingly, they were diagnosed with IRIS. However, the sudden withdrawal of the corticosteroids resulted in the recurrence of IRIS symptoms. No serious adverse effects could be attributed to prednisone. We recommend corticosteroid treatment for mild-to-moderate cases of IRIS in sporotrichosis and HIV coinfection with close follow-up.

  5. Replicating Rather than Nonreplicating Adenovirus-Human Immunodeficiency Virus Recombinant Vaccines Are Better at Eliciting Potent Cellular Immunity and Priming High-Titer Antibodies

    OpenAIRE

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C.; Kalyanaraman, V. S.; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J.; Murthy, Krishna K.; Srivastava, Indresh; Barnett, Susan W.; Robert-Guroff, Marjorie

    2005-01-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1MNenv/rev recombinants and boosting wit...

  6. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.

    Science.gov (United States)

    Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael

    2012-11-01

    In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.

  7. Comparative transcriptome analysis of PBMC from HIV patients pre- and post-antiretroviral therapy

    DEFF Research Database (Denmark)

    Zhao, Fang-Jie; Ma, Jinmin; Huang, Lihua

    2017-01-01

    Infections of the human immunodeficiency virus (HIV) trigger host immune responses, but the virus can destroy the immune system and cause acquired immune deficiency syndrome (AIDS). Highly active antiretroviral therapy (HAART) can suppress viral replication and restore the impaired immune function......, minimum numbers of patients (one HIV alone; one HIV + tuberculosis, TB; one HIV + TB with immune reconstitution inflammatory syndrome during HAART) and two HIV negative volunteers were used. More than 15,000 gene transcripts were detected in each individual sample. Fourteen HAART up-regulated and eleven...... down-regulated DEGs were specifically identified in the HIV patients. Among them, nine up-regulated (CXCL1, S100P, AQP9, BASP1, MMP9, SOD2, LIMK2, IL1R2 and BCL2A1) and nine down-regulated DEGs (CD160, CD244, CX3CR1, IFIT1, IFI27, IFI44, IFI44L, MX1 and SIGLEC1) have already been reported as relevant...

  8. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility.

    Science.gov (United States)

    Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu

    2018-01-01

    Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Functional comparison of innate immune signaling pathways in primates.

    Directory of Open Access Journals (Sweden)

    Luis B Barreiro

    2010-12-01

    Full Text Available Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host-virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV-interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.

  10. Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia

    Science.gov (United States)

    Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Robb, Merlin L.; Michael, Nelson L.; Bolton, Diane

    2015-01-01

    ABSTRACT CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are

  11. Impact of HIV/aids epidemic on human capital development in West Africa.

    Science.gov (United States)

    Dauda, Rasaki Stephen

    2018-01-12

    West Africa occupies the third position with respect to the burden of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) globally, after Southern and East Africa. About 5 million adults and children are infected with the disease in the subregion, while HIV prevalence in the general population hovers around 2% and 5%. This paper attempts to investigate the impact of HIV/AIDS epidemic on human capital development in 11 West African countries over the period 1990 to 2011. The study used a dynamic panel data modeling approach, using first difference, difference generalized methods of moment, and system generalized methods of moment estimating techniques. Four measures of HIV/AIDS and 2 human capital measures were used in the study. The findings revealed that HIV/AIDS pandemic had negative and significant impact on human capital in West Africa. However, the statistical significance was more pronounced on life expectancy (a measure of human capital), while the negative impact on school enrolment (another human capital measure) was not significant. It is therefore recommended that the spread of HIV/AIDS disease in West Africa should be effectively controlled, while the number of infected persons undergoing antiretroviral therapy in the subregion should be increased to a near 100% coverage. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Clinical outcomes and immune benefits of anti-epileptic drug therapy in HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Krentz Hartmut B

    2010-06-01

    Full Text Available Abstract Background Anti-epileptic drugs (AEDs are frequently prescribed to persons with HIV/AIDS receiving combination antiretroviral therapy (cART although the extent of AED use and their interactions with cART are uncertain. Herein, AED usage, associated toxicities and immune consequences were investigated. Methods HIV replication was analysed in proliferating human T cells during AED exposure. Patients receiving AEDs in a geographically-based HIV care program were assessed using clinical and laboratory variables in addition to assessing AED indication, type, and cumulative exposures. Results Valproate suppressed proliferation in vitro of both HIV-infected and uninfected T cells (p 0.05 but AED exposures did not affect HIV production in vitro. Among 1345 HIV/AIDS persons in active care between 2001 and 2007, 169 individuals were exposed to AEDs for the following indications: peripheral neuropathy/neuropathic pain (60%, seizure/epilepsy (24%, mood disorder (13% and movement disorder (2%. The most frequently prescribed AEDs were calcium channel blockers (gabapentin/pregabalin, followed by sodium channel blockers (phenytoin, carbamazepine, lamotrigine and valproate. In a nested cohort of 55 AED-treated patients receiving cART and aviremic, chronic exposure to sodium and calcium channel blocking AEDs was associated with increased CD4+ T cell levels (p 0.05 with no change in CD8+ T cell levels over 12 months from the beginning of AED therapy. Conclusions AEDs were prescribed for multiple indications without major adverse effects in this population but immune status in patients receiving sodium or calcium channel blocking drugs was improved.

  13. A High Frequency of HIV-Specific Circulating Follicular Helper T Cells Is Associated with Preserved Memory B Cell Responses in HIV Controllers.

    Science.gov (United States)

    Claireaux, M; Galperin, M; Benati, D; Nouël, A; Mukhopadhyay, M; Klingler, J; de Truchis, P; Zucman, D; Hendou, S; Boufassa, F; Moog, C; Lambotte, O; Chakrabarti, L A

    2018-05-08

    Follicular helper T cells (Tfh) play an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4 + T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh) in patients from the ANRS CO21 CODEX cohort who naturally controlled HIV-1 replication to undetectable levels and compared them to treated patients with similarly low viral loads. HIV-specific cTfh (Tet + ), detected by Gag-major histocompatibility complex class II (MHC-II) tetramer labeling in the CD45RA - CXCR5 + CD4 + T cell population, proved more frequent in the controller group ( P = 0.002). The frequency of PD-1 expression in Tet + cTfh was increased in both groups (median, >75%) compared to total cTfh (<30%), but the intensity of PD-1 expression per cell remained higher in the treated patient group ( P = 0.02), pointing to the persistence of abnormal immune activation in treated patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production but proved significantly more efficient in the controller group when measuring HIV-specific IgG production. The frequency of Tet + cTfh correlated with HIV-specific IgG production ( R = 0.71 for Gag-specific and R = 0.79 for Env-specific IgG, respectively). Taken together, our findings indicate that key cTfh-B cell interactions are preserved in controlled HIV infection, resulting in potent memory B cell responses that may play an underappreciated role in HIV control. IMPORTANCE The rare patients who spontaneously control HIV replication in the absence of therapy provide a unique model to identify determinants of an effective anti-HIV immune response. HIV controllers show signs of particularly efficient antiviral T cell responses, while their humoral response was until recently

  14. Longitudinal dynamics of the HIV-specific B cell response during intermittent treatment of primary HIV infection.

    Directory of Open Access Journals (Sweden)

    Godelieve J de Bree

    Full Text Available Neutralizing antibodies develop in natural HIV-1 infection. Their development often takes several years and may rely on chronic virus exposure. At the same time recent studies show that treatment early in infection may provide opportunities for immune preservation. However, it is unknown how intermittent treatment in early infection affects development of the humoral immune response over time. We investigate the effect of cART in early HIV infection on the properties of the memory B cell compartment following 6 months of cART or in the absence of treatment. The patients included participated in the Primo-SHM trial where patients with an early HIV-1 infection were randomized to no treatment or treatment for 24 or 60 weeks.Primo-SHM trial patients selected for the present study were untreated (n = 23 or treated for 24 weeks (n = 24. Here we investigate memory B cell properties at viral set-point and at a late time point (respectively median 54 and 73 weeks before (re-initiation of treatment.At viral set-point, the memory B cell compartment in treated patients demonstrated significantly lower fractions of antigen-primed, activated, memory B cells (p = 0.006. In contrast to untreated patients, in treated patients the humoral HIV-specific response reached a set point over time. At a transcriptional level, sets of genes that showed enhanced expression in memory B cells at viral setpoint in untreated patients, conversely showed rapid increase of expression of the same genes in treated patients at the late time point.These data suggest that, although the memory B cell compartment is phenotypically preserved until viral setpoint after treatment interruption, the development of the HIV-specific antibody response may benefit from exposure to HIV. The effect of viral exposure on B cell properties is also reflected by longitudinal changes in transcriptional profile in memory B cells over time in early treated patients.

  15. Effect of Probiotic Bacteria on Microbial Host Defense, Growth, and Immune Function in Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Stig Bengmark

    2011-12-01

    Full Text Available The hypothesis that probiotic administration protects the gut surface and could delay progression of Human Immunodeficiency Virus type1 (HIV-1 infection to the Acquired Immunodeficiency Syndrome (AIDS was proposed in 1995. Over the last five years, new studies have clarified the significance of HIV-1 infection of the gut associated lymphoid tissue (GALT for subsequent alterations in the microflora and breakdown of the gut mucosal barrier leading to pathogenesis and development of AIDS. Current studies show that loss of gut CD4+ Th17 cells, which differentiate in response to normal microflora, occurs early in HIV-1 disease. Microbial translocation and suppression of the T regulatory (Treg cell response is associated with chronic immune activation and inflammation. Combinations of probiotic bacteria which upregulate Treg activation have shown promise in suppressing pro inflammatory immune response in models of autoimmunity including inflammatory bowel disease and provide a rationale for use of probiotics in HIV-1/AIDS. Disturbance of the microbiota early in HIV-1 infection leads to greater dominance of potential pathogens, reducing levels of bifidobacteria and lactobacillus species and increasing mucosal inflammation. The interaction of chronic or recurrent infections, and immune activation contributes to nutritional deficiencies that have lasting consequences especially in the HIV-1 infected child. While effective anti-retroviral therapy (ART has enhanced survival, wasting is still an independent predictor of survival and a major presenting symptom. Congenital exposure to HIV-1 is a risk factor for growth delay in both infected and non-infected infants. Nutritional intervention after 6 months of age appears to be largely ineffective. A meta analysis of randomized, controlled clinical trials of infant formulae supplemented with Bifidobacterium lactis showed that weight gain was significantly greater in infants who received B. lactis compared to

  16. HIV/AIDS in Women

    Science.gov (United States)

    HIV stands for human immunodeficiency virus. It harms your immune system by destroying the white blood cells ... It is the final stage of infection with HIV. Not everyone with HIV develops AIDS. HIV often ...

  17. Oxidized lipoproteins are associated with markers of inflammation and immune activation in HIV-1 infection

    Science.gov (United States)

    Kelesidis, T; Jackson, N; McComsey, GA; Wang, X; Elashoff, D; Dube, MP; Brown, TT; Yang, OO; Stein, JH; Currier, JS

    2016-01-01

    Objective The pathogenesis of immune dysfunction in chronic HIV-1 infection is unclear, and a potential role for oxidized lipids has been suggested. We hypothesize that both oxidized low- and high-density lipoproteins (HDLox, LDLox) contribute to HIV-1 related immune dysfunction. Study In the AIDS Clinical Trials Group (ACTG) A5260, 234 HIV-infected antiretroviral therapy (ART)-naïve participants were randomized to receive tenofovir-emtricitabine plus protease inhibitors or raltegravir and had HIV-1 RNA lipoproteins may contribute to persistent immune activation on ART. PMID:27603288

  18. Correlation of immune activation with HIV-1 RNA levels assayed by real-time RT-PCR in HIV-1 Subtype C infected patients in Northern India

    Science.gov (United States)

    Agarwal, Atima; Sankaran, Sumathi; Vajpayee, Madhu; Sreenivas, V; Seth, Pradeep; Dandekar, Satya

    2014-01-01

    Background Assays with specificity and cost effectiveness are needed for the measurement of HIV-1 burden to monitor disease progression or response to anti-retroviral therapy (ART) in HIV-1 subtype C infected patients. Objectives The objective of this study was to develop and validate an affordable; one step Real-Time RT-PCR assay with high specificity and sensitivity to measure plasma HIV-1 loads in HIV-1 subtype C infected patients. Results We developed an RT-PCR assay to detect and quantitate plasma HIV-1 levels in HIV-1 subtype C infected patients. An inverse correlation between plasma viral loads (PVL) and CD4+ T-cell numbers was detected at all CDC stages. Significant correlations were found between CD8+ T-cell activation and PVL, as well as with the clinical and immunological status of the patients. Conclusions The RT-PCR assay provides a sensitive method to measure PVL in HIV-1 subtype C infected patients. Viral loads correlated with immune activation and can be used to monitor HIV care in India. PMID:17962068

  19. Role of immune activation in CD4+ T-cell depletion in HIV-1 infected Indian patients.

    Science.gov (United States)

    Vajpayee, M; Kaushik, S; Sreenivas, V; Mojumdar, K; Mendiratta, S; Chauhan, N K

    2009-01-01

    The correlation of immune activation with CD4(+) depletion and HIV-1 disease progression has been evidenced by several studies involving mainly clade B virus. However, this needs to be investigated in developing countries such as India predominately infected with clade C virus. In a cross-sectional study of 68 antiretroviral treatment naïve, HIV-1 infected Indian patients, we studied the association between CD4(+) T cells, plasma HIV-1 RNA levels, and immune activation markers using unadjusted and adjusted correlative analyses. Significant negative correlations of higher magnitude were observed between the CD4(+) T cell percentages and plasma HIV-1 RNA levels in the study population when adjusted for the effects of immune activation markers. However, the negative association of CD4(+) T cells with immune activation markers remained unaffected when controlled for the effects of plasma HIV-1 RNA levels. Our results support the important role of immune activation in CD4(+) T cell depletion and disease progression during untreated HIV-1 infection.

  20. HIV-1 specific IgA detected in vaginal secretions of HIV uninfected women participating in a microbicide trial in Southern Africa are primarily directed toward gp120 and gp140 specificities.

    Directory of Open Access Journals (Sweden)

    Kelly E Seaton

    Full Text Available Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035. We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.

  1. Reviewing independent access to HIV testing, counselling and treatment for adolescents in HIV-specific laws in sub-Saharan Africa: implications for the HIV response

    Science.gov (United States)

    Eba, Patrick M.; Lim, HyeYoung

    2017-01-01

    Abstract Introduction: AIDS is a leading cause of death among adolescents in sub-Saharan Africa. Yet, legal, policy and social barriers continue to restrict their access to HIV services. In recent years, access to independent HIV testing and treatment for adolescents has gained increased attention. The 2013 WHO Guidance on HIV testing and counselling and care for adolescents living with HIV (WHO Guidance) calls for reviewing legal and regulatory frameworks to facilitate adolescents’ access to comprehensive HIV services. As of 31 March 2017, some 28 countries in sub-Saharan Africa have adopted HIV-specific legislation. But there is limited understanding of the provisions of these laws on access to HIV services for adolescents and their implication on efforts to scale up HIV prevention, testing, treatment and care among this population. Methods: A desk review of 28 HIV-specific laws in sub-Saharan Africa complemented with the review of HIV testing policies in four countries using human rights norms and key public health recommendations from the 2013 WHO Guidance. These recommendations call on countries to (i) lower the age of consent to HIV testing and counselling and allow mature adolescents who have not reached the age of consent to independently access HIV testing, (ii) ensure access to HIV counselling for adolescents, (iii) protect the confidentiality of adolescents living with HIV and (iv) facilitate access to HIV treatment for adolescents living with HIV. Results: Most HIV-specific laws fail to take into account human rights principles and public health recommendations for facilitating adolescents’ access to HIV services. None of the countries with HIV-specific laws has adopted all four recommendations for access to HIV services for adolescents. Discrepancies exist between HIV laws and national policy documents. Inadequate and conflicting provisions in HIV laws are likely to hinder access to HIV testing, counselling and treatment for adolescents

  2. Reviewing independent access to HIV testing, counselling and treatment for adolescents in HIV-specific laws in sub-Saharan Africa: implications for the HIV response.

    Science.gov (United States)

    Eba, Patrick M; Lim, HyeYoung

    2017-08-11

    AIDS is a leading cause of death among adolescents in sub-Saharan Africa. Yet, legal, policy and social barriers continue to restrict their access to HIV services. In recent years, access to independent HIV testing and treatment for adolescents has gained increased attention. The 2013 WHO Guidance on HIV testing and counselling and care for adolescents living with HIV (WHO Guidance) calls for reviewing legal and regulatory frameworks to facilitate adolescents' access to comprehensive HIV services. As of 31 March 2017, some 28 countries in sub-Saharan Africa have adopted HIV-specific legislation. But there is limited understanding of the provisions of these laws on access to HIV services for adolescents and their implication on efforts to scale up HIV prevention, testing, treatment and care among this population. A desk review of 28 HIV-specific laws in sub-Saharan Africa complemented with the review of HIV testing policies in four countries using human rights norms and key public health recommendations from the 2013 WHO Guidance. These recommendations call on countries to (i) lower the age of consent to HIV testing and counselling and allow mature adolescents who have not reached the age of consent to independently access HIV testing, (ii) ensure access to HIV counselling for adolescents, (iii) protect the confidentiality of adolescents living with HIV and (iv) facilitate access to HIV treatment for adolescents living with HIV. Most HIV-specific laws fail to take into account human rights principles and public health recommendations for facilitating adolescents' access to HIV services. None of the countries with HIV-specific laws has adopted all four recommendations for access to HIV services for adolescents. Discrepancies exist between HIV laws and national policy documents. Inadequate and conflicting provisions in HIV laws are likely to hinder access to HIV testing, counselling and treatment for adolescents. Efforts to end legal barriers to access to HIV services

  3. Antiretroviral therapy, immune suppression and renal impairment in HIV-positive persons

    DEFF Research Database (Denmark)

    Nielsen, Lene Ryom; Mocroft, Amanda; Lundgren, Jens D

    2014-01-01

    The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field.......The purpose of this article is to review recent literature on antiretroviral treatment (ART) and immune suppression as risk factors for renal impairment in HIV-positive persons, and to discuss pending research questions within this field....

  4. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov; Vinner, Lasse; Pedersen, Susanne Brix

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far...... or viable HIV-1 particles with various degrees of mannosylation were cultured with pDCs. Activation of pDCs was determined by assaying secretion of IFN-alpha, viability, and upregulation of several pDC-activation markers: CD40, CD86, HLA-DR, CCR7, and PD-L1. The level of activation negatively correlated...

  5. Construction of a humanized antibody to hepatitis B surface antigen by specificity-determining residues (SDR)-grafting and de-immunization.

    Science.gov (United States)

    Kim, Keun-Soo; Kim, Hyun-Jung; Han, Byung Woo; Myung, Pyung-Keun; Hong, Hyo Jeong

    2010-05-28

    We previously constructed a humanized antibody, HuS10, by grafting the complementarity-determining regions (CDRs) of a parental murine monoclonal antibody into the homologous human antibody sequences. This process is termed CDR grafting. Some residues that were thought to affect the CDR loops and stabilize the structure of the variable regions were retained in the framework region. HuS10 exhibited in vivo virus-neutralizing activity, but its murine content had the potential to elicit immune responses in patients. In this study, to minimize the immunogenic potential of HuS10, we replaced 17 mouse residues in HuS10 with the comparable human residues using specificity-determining residue (SDR)-grafting and de-immunization methods. The resultant humanized antibody, HzS-III, had the same affinity and epitope specificity as HuS10 and had reduced immunogenic potential, as assessed by T-cell epitope analysis. Thus, SDR grafting in combination with de-immunization may be a useful strategy for minimizing the immunogenicity of humanized antibodies. In addition, HzS-III may be a good candidate for immunoprophylaxis of HBV infection. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. Deworming and the immune status of HIV positive pre-antiretroviral therapy individuals in Arba Minch, Chencha and Gidole hospitals, Southern Ethiopia.

    Science.gov (United States)

    Abossie, Ashenafi; Petros, Beyene

    2015-09-28

    Helminths/HIV co-infections are very common in developing countries, especially in Africa. The effect of overlapping distribution of HIV and helminths becomes important because concomitant infection may exacerbate disease outcome of HIV infection. The study aimed at determining the effect of deworming on the immune status of helminth/HIV coinfected Pre-ART HIV patients attending three health institutions in Southern Ethiopia. 97 HIV-positive Pre-ART individuals were observed into 2 groups on the basis of helminth co-infection and no infection. Out of these, 66 study participants were helminths/HIV co-infected and the remaining 31 study participants were helminths (-)/HIV (+) control. Helminth/HIV co-infected participants CD4+ T-cell count was done at baseline, after 15 weeks and 6 months after antihelminthics treatment. Data were analyzed using SPSS version 16. Ascaris lumbricoides was the highest prevalent soil transmitted helminths in Pre-ART individuals in this study. CD4+ T-cell count in the Ascaris lumricoides/HIV co-infected was significantly higher (P = 0.05) and (P intestinal helminth parasites detected in the study. In conclusion, this finding on Ascaris lumbricoides-specific nature of immune interaction in helminth/HIV co-infection may partly explain the inconsistent reports on the role of intestinal helminths on progression of HIV infection to AIDS. Therefore, a well-designed longitudinal study on helminth species-specific HIV/helminth co-infection will be needed to fully establish the possible benefits of deworming in intestinal helminth/HIV co-infection.

  7. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging [version 1; referees: 4 approved

    OpenAIRE

    Clovis S. Palmer; Riya Palchaudhuri; Hassan Albargy; Mohamed Abdel-Mohsen; Suzanne M. Crowe

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impa...

  8. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  9. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection.

    Directory of Open Access Journals (Sweden)

    Joseph P Casazza

    2009-10-01

    Full Text Available Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1alpha and MIP-1beta mRNA, resulting in a rapid increase in production of MIP-1alpha and MIP-1beta after cognate antigen stimulation. Production of beta-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of beta-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1beta contained 10 times less Gag DNA than did those which failed to produce MIP-1beta. These data suggest that CD4+ T cells which produce MIP-1alpha and MIP-1beta bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.

  10. TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Lee Adam Wheeler

    2016-05-01

    Full Text Available Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3–4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not.

  11. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection

    NARCIS (Netherlands)

    An, Dong Sung; Poon, Betty; Tsong Fang, Raphael Ho; Weijer, Kees; Blom, Bianca; Spits, Hergen; Chen, Irvin S. Y.; Uittenbogaart, Christel H.

    2007-01-01

    The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2(-/-)gamma(c)(-/-) mice that are neonatally injected with human CD34(+) cells develop a functional human immune system

  12. Risk factors for increased immune reconstitution in response to Mycobacterium tuberculosis antigens in tuberculosis HIV-infected, antiretroviral-naïve patients.

    Science.gov (United States)

    da Silva, Tatiana Pereira; Giacoia-Gripp, Carmem Beatriz Wagner; Schmaltz, Carolina A; Sant'Anna, Flavia Marinho; Saad, Maria Helena; Matos, Juliana Arruda de; de Lima E Silva, Julio Castro Alves; Rolla, Valeria Cavalcanti; Morgado, Mariza Gonçalves

    2017-09-06

    Little is known regarding the restoration of the specific immune response after combined antiretroviral therapy (cART) and anti-tuberculosis (TB) therapy introduction among TB-HIV patients. In this study, we examined the immune response of TB-HIV patients to Mycobacterium tuberculosis (Mtb) antigens to evaluate the response dynamics to different antigens over time. Moreover, we also evaluated the influence of two different doses of efavirenz and the factors associated with immune reconstitution. This is a longitudinal study nested in a clinical trial, where cART was initiated during the baseline visit (D0), which occurred 30 ± 10 days after the introduction of anti-TB therapy. Follow-up visits were performed at 30, 60, 90 and 180 days after cART initiation. The production of IFN-γ upon in vitro stimulation with Mtb antigens purified protein derivative (PPD), ESAT-6 and 38 kDa/CFP-10 using ELISpot was examined at baseline and follow-up visits. Sixty-one patients, all ART-naïve, were selected and included in the immune reconstitution analysis; seven (11.5%) developed Immune Reconstitution Inflammatory Syndrome (IRIS). The Mtb specific immune response was higher for the PPD antigen followed by 38 kDa/CFP-10 and increased in the first 60 days after cART initiation. In multivariate analysis, the variables independently associated with increased IFN-γ production in response to PPD antigen were CD4 + T cell counts tuberculosis, 800 mg efavirenz dose and follow-up CD4 + T cell counts. Moreover, the factors associated with the production of IFN-γ in response to 38 kDa/CFP-10 were detectable HIV viral load (VL) and CD4 + T cell counts at follow-up visits of ≥200 cells/mm 3 . These findings highlight the differences in immune response according to the specificity of the Mtb antigen, which contributes to a better understanding of TB-HIV immunopathogenesis. IFN-γ production elicited by PPD and 38 kDa/CFP-10 antigens have a greater magnitude compared to ESAT-6

  13. Knowledge and attitude of Indian clinical dental students towards the dental treatment of patients with human immunodeficiency virus (HIV)/acquired immune-deficiency syndrome (AIDS).

    Science.gov (United States)

    Oberoi, Sukhvinder Singh; Marya, Charu Mohan; Sharma, Nilima; Mohanty, Vikrant; Marwah, Mohita; Oberoi, Avneet

    2014-12-01

    Oral health care of patients with human immunodeficiency virus (HIV)/acquired immune-deficiency syndrome (AIDS) is a growing area of concern. Information on HIV- and AIDS-related knowledge among dental students provides a crucial foundation for efforts aimed at developing an appropriate dental curriculum on HIV and AIDS. The purpose of this study was to assess the knowledge and attitude of Indian clinical dental students towards the treatment of patients with HIV/AIDS and perceived sources of information regarding HIV-related issues. Data were collected from clinical dental students (third year, fourth year and internship) from three dental institutions in Delhi National Capital Region (NCR). The questions assessed the knowledge and attitude towards treatment of patients with HIV and the perceived source of information related to HIV. The willingness to treat HIV-positive patients among dental students was 67.0%, and 74.20% were confident of treating a patient with HIV/AIDS. The potential problems in rendering treatment to these patients were effect on the attitude of other patients (49.90%) and staff fears (52.50%). The correct knowledge regarding the infection-control practice (barrier technique) was found among only 15.50% of respondents. The respondents had sufficient knowledge regarding the oral manifestations of HIV/AIDS. There was no correlation between the knowledge and attitude score, demonstrating a gap between knowledge and attitude among dental students regarding treatment of HIV-infected patients. Appropriate knowledge has to be delivered through the dental education curriculum, which can instil confidence in students about their ability to manage HIV-positive patients. © 2014 FDI World Dental Federation.

  14. Pre-existing adenovirus immunity modifies a complex mixed Th1 and Th2 cytokine response to an Ad5/HIV-1 vaccine candidate in humans.

    Directory of Open Access Journals (Sweden)

    Samuel O Pine

    2011-04-01

    Full Text Available The results of the recent Step Study highlight a need to clarify the effects of pre-existing natural immunity to a vaccine vector on vaccine-induced T-cell responses. To investigate this interaction, we examined the relationship between pre-existing Ad5 immunity and T-cell cytokine response profiles in healthy, HIV-uninfected recipients of MRKAd5 HIV-1 gag vaccine (HVTN 050, ClinicalTrials.gov #NCT00849732. Participants were grouped by baseline Ad5 neutralizing antibody titer as either Ad5-seronegative (titer ≤18; n = 36 or Ad5-seropositive (titer >200; n = 34. Samples from vaccine recipients were analyzed for immune responses to either HIV-1 Gag peptide pools or Ad5 empty vector using an ex vivo assay that measures thirty cytokines in the absence of long-term culture. The overall profiles of cytokine responses to Gag and Ad5 had similar combinations of induced Th1- and Th2-type cytokines, including IFN-γ, IL-2, TNF-α, IP-10, IL-13, and IL-10, although the Ad5-specific responses were uniformly higher than the Gag-specific responses (p<0.0001 for 9 out of 11 significantly expressed analytes. At the peak response time point, PBMC from Ad5-seronegative vaccinees secreted significantly more IP-10 in response to Gag (p = 0.008, and significantly more IP-10 (p = 0.0009, IL-2 (p = 0.006 and IL-10 (p = 0.05 in response to Ad5 empty vector than PBMC from Ad5-seropositive vaccinees. Additionally, similar responses to the Ad5 vector prior to vaccination were observed in almost all subjects, regardless of Ad5 neutralizing antibody status, and the levels of secreted IFN-γ, IL-10, IL-1Ra and GM-CSF were blunted following vaccination. The cytokine response profile of Gag-specific T cells mirrored the Ad5-specific response present in all subjects before vaccination, and included a number of Th1- and Th2-associated cytokines not routinely assessed in current vaccine trials, such as IP-10, IL-10, IL-13, and GM-CSF. Together, these

  15. HIV Molecular Immunology 2014

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States); Koup, Richard [Vaccine Research Center National Institutes of Health (United States); de Boer, Rob [Utrecht Univ. (Netherlands). Dept. of Biology; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Brander, Christian [Institucioi Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Walker, Bruce D. [Ragon Institute of Massachusetts General Hospital, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  16. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  17. Human immunodeficiency virus (HIV) specific antibodies among ...

    African Journals Online (AJOL)

    obtained from each sample was tested using parallel testing algorithm with DETERMINE® HIV-1/2 and HIV-1/2 STAT-PAK® test was used for statistical analysis of the data. The overall prevalence of HIV-1/2 antibodies was 29.1% (n = 199). Seroprevalence of 39.4 and 19.0% were observed for the CSWs and the PW, ...

  18. The effects of HIV/AIDS on economic growth and human capitals: a panel study evidence from Asian countries.

    Science.gov (United States)

    Roy, Shongkour

    2014-01-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) affects economic growths by reducing the human capitals are among the most poorly understood aspect of the AIDS epidemic. This article analyzes the effects of the prevalence of HIV and full-blown AIDS on a country's human capitals and economic growths. Using a fixed effect model for panel data 1990-2010 from the Asia, I explored the dynamic relationships among HIV/AIDS, economic growths, and human capitals within countries over time. The econometric effects concerned that HIV/AIDS plays an important role in the field of economic growths and it is measured as a change in real gross domestic product (GDP) per capita and human capitals. The modeling results for the Asian countries indicates HIV/AIDS prevalence that has a hurtful effect on GDP per capita by reducing human capitals within countries over time.

  19. Progressive Hypertrophic Genital Herpes in an HIV-Infected Woman despite Immune Recovery on Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Mark H. Yudin

    2008-01-01

    Full Text Available Most HIV-infected individuals are coinfected by Herpes simplex virus type 2 (HSV-2. HSV-2 reactivates more frequently in HIV-coinfected individuals with advanced immunosuppression, and may have very unusual clinical presentations, including hypertrophic genital lesions. We report the case of a progressive, hypertrophic HSV-2 lesion in an HIV-coinfected woman, despite near-complete immune restoration on antiretroviral therapy for up to three years. In this case, there was prompt response to topical imiquimod. The immunopathogenesis and clinical presentation of HSV-2 disease in HIV-coinfected individuals are reviewed, with a focus on potential mechanisms for persistent disease despite apparent immune reconstitution. HIV-infected individuals and their care providers should be aware that HSV-2 may cause atypical disease even in the context of near-comlpete immune reconstitution on HAART.

  20. Natural immunity and HIV disease progression

    DEFF Research Database (Denmark)

    Ullum, H; Cozzi-Lepri, A; Aladdin, H

    1999-01-01

    OBJECTIVE: To investigate the clinical implications of impaired levels of the natural immunity mediated by natural killer (NK) cells and lymphokine activated killer (LAK) cells during infection with HIV-1. DESIGN: Data used were from 172 individuals with an estimated measure of NK cell activity...... and 146 with an estimated measure of LAK cell activity. Patients had active HIV infection at the time of enrolment in the study and have been followed-up prospectively for a median of 3.0 years. METHODS: The lytic activity of NK cells and LAK cells, the CD4 T lymphocyte count, and the concentration of CD......16/CD56 NK cells were measured at enrolment. HIV RNA in plasma was measured retrospectively. Survival analysis was performed considering three main endpoints: CD4 cell counts below 100 x 10(6) cells/l, clinical AIDS, and death. RESULTS: In unadjusted analysis and after adjustment for age, CD4 T...

  1. Antibodies from the sera of HIV-infected patients efficiently hydrolyze all human histones.

    Science.gov (United States)

    Baranova, Svetlana V; Buneva, Valentina N; Nevinsky, Georgy A

    2016-08-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Here, using ELISA it was shown that sera of HIV-infected patients and healthy donors contain autoantibodies against histones. Autoantibodies with enzymic activities (abzymes) are a distinctive feature of autoimmune diseases. It was interesting whether antibodies from sera of HIV-infected patients can hydrolyze human histones. Electrophoretically and immunologically homogeneous IgGs were isolated from sera of HIV-infected patients by chromatography on several affinity sorbents. We present first evidence showing that 100% of IgGs purified from the sera of 32 HIV-infected patients efficiently hydrolyze from one to five human histones. Several rigid criteria have been applied to show that the histone-hydrolyzing activity is an intrinsic property of IgGs of HIV-infected patients. The relative efficiency of hydrolysis of histones (H1, H2a, H2b, H3, and H4) significantly varied for IgGs of different patients. IgGs from the sera of 40% of healthy donors also hydrolyze histones but with an average efficiency approximately 16-fold lower than that of HIV-infected patients. Similar to proteolytic abzymes from the sera of patients with several autoimmune diseases, histone-hydrolyzing IgGs from HIV-infected patients were inhibited by specific inhibitors of serine and of metal-dependent proteases, but an unexpected significant inhibition of the activity by specific inhibitor of thiol-like proteases was also observed. Because IgGs can efficiently hydrolyze histones, a negative role of abzymes in development of acquired immune deficiency syndrome cannot be

  2. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment

    Directory of Open Access Journals (Sweden)

    Monajemi Mahdis

    2012-04-01

    Full Text Available Abstract The enzyme APOBEC3G (A3G mutates the human immunodeficiency virus (HIV genome by converting deoxycytidine (dC to deoxyuridine (dU on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G’s standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.

  3. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+ T cell responses in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Núria Climent

    Full Text Available Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B in human monocyte-derived dendritic cells (MDDC and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α. MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

  4. Effect of traditional Chinese medicine for treating human immunodeficiency virus infections and acquired immune deficiency syndrome: Boosting immune and alleviating symptoms.

    Science.gov (United States)

    Zou, Wen; Wang, Jian; Liu, Ying

    2016-01-01

    To respond to the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) epidemic in China, the integration of antiretroviral therapy (ART) and traditional Chinese medicine (TCM) has important implications in health outcomes, especially in China where the use of TCM is widespread. The National Free TCM Pilot Program for HIV Infected People began in 5 provinces (Henan, Hebei, Anhui, Hubei, and Guangdong) in 2004, and quickly scaled up to 19 provinces, autonomous regions, and municipalities in China including some places with high prevalence, 26,276 adults have been treated thus far. Usually, people with HIV infection seek TCM for four main reasons: to enhance immune function, to treat symptoms, to improve quality of life, and to reduce side effects related to medications. Evidences from randomized controlled clinical trials suggested some beneficial effects of use of traditional Chinese herbal medicine for HIV infections and AIDS. More proofs from large, well-designed, rigorous trials is needed to give firm support. Challenges include interaction between herbs and antiretroviral drugs, stigma and discrimination. The Free TCM Program has made considerable progress in providing the necessary alternative care and treatment for HIV-infected people in China, and has strong government support for continued improvement and expansion, establishing and improving a work mechanism integrating Chinese and Western medicines.

  5. Non-specific immunization against babesiosis

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1980-01-01

    The rodent babesias, Babesia rodhaini and the less virulent B. microti, are useful models with which to study immunity to and immunization against babesiosis. In contrast with the difficulty in inducing specific immunity to these parasites it is comparatively easy to induce non-specific immunity by prior exposure to related and unrelated intra-erythrocytic protozoa, micro-organisms such as Mycobacterium bovis (BCG) and Corynebacterium parvum, microbial extracts and muramyl dipeptide. This non-specific immunity is long lasting and extremely effective. It is characterized by the facts that (a) it occurs early in the infection at the height of the first peak of parasitaemia, and (b) it involves the intra-erythrocytic death of the parasites. After the primary parasitaemia has resolved, some parasites continue to persist at a low level and when introduced into clean mice produce only low-level 'attenuated' infections in these. Non-specific immunity is not equally effective in all strains of mice. It is suggested that immunity to babesiosis, and infections caused by other intra-erythrocytic protozoa, involves two mechanisms, the first non-specific and the second specific. The actual balance between these two mechanisms varies from parasite to parasite and from host to host. An effective vaccine would have to be based on an understanding of the roles of non-specific immunity in the actual disease under consideration, and would ideally combine an adjuvant that would also stimulate non-specific immunity and an attenuated strain of parasite that would induce a specific response. (author)

  6. Immune reconstitution syndrome in a human immunodeficiency virus infected child due to giardiasis leading to shock

    Directory of Open Access Journals (Sweden)

    Sneha Nandy

    2015-01-01

    Full Text Available Human immunodeficiency virus (HIV-associated immune reconstitution inflammatory syndrome has been reported in association with tuberculosis, herpes zoster (shingles, Cryptococcus neoformans, Kaposi′s sarcoma, Pneumocystis pneumonia, hepatitis B virus, hepatitis C virus, herpes simplex virus, Histoplasma capsulatum, human papillomavirus, and Cytomegalovirus. However, it has never been documented with giardiasis. We present a 7-year-old HIV infected girl who developed diarrhea and shock following the initiation of antiretroviral therapy, and her stool showed the presence of giardiasis.

  7. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation

    DEFF Research Database (Denmark)

    Yusim, K.; Kesmir, Can; Gaschen, B.

    2002-01-01

    The human cytotoxic T-lymphocyte (CTL) response to human immunodeficiency virus type 1 (HIV-1) has been intensely studied, and hundreds of CTL epitopes have been experimentally defined, published, and compiled in the HIV Molecular Immunology Database. Maps of CTL epitopes on HIV-1 protein sequenc...

  8. Dilemma of concepts and strategies for the prevention of spread of HIV in relation to human behavior, law and human rights

    Science.gov (United States)

    Dennin, Reinhard H.; Lafrenz, Michael; Sinn, Arndt; Li, Lan-juan

    2011-01-01

    The new prevalence data regarding the estimated global number of human immunodeficiency virus positive (HIV+) cases, i.e., including people who are either aware or unaware of their HIV infection in 2010, lead many to wonder why the increase in incidence has reached today’s unprecedented level and escalated within such a short time. This, in spite of prevention campaigns in countries affected by HIV/acquired immune deficiency syndrome (AIDS) with their urgent messages aimed at preventing HIV transmission by promoting changes in individual’s behavior. This article analyzes the background of the prevention strategies, in particular their political, social and legal concepts in terms of human rights, and reveals traits of human behavior not considered thus far. A radical reappraisal is necessary, at social and legislative levels, as well as options additional to current concepts. When ethical issues come up, they become blamed for outmoded moralistic positions. However, ignoring the reality has led to dire consequences from prioritizing individual human rights over society’s collective need to prevent the spread of HIV. PMID:21726067

  9. Immune activation in HIV-infected aging women on antiretrovirals--implications for age-associated comorbidities: a cross-sectional pilot study.

    Directory of Open Access Journals (Sweden)

    Maria L Alcaide

    Full Text Available Persistent immune activation and microbial translocation associated with HIV infection likely place HIV-infected aging women at high risk of developing chronic age-related diseases. We investigated immune activation and microbial translocation in HIV-infected aging women in the post-menopausal ages.Twenty-seven post-menopausal women with HIV infection receiving antiretroviral treatment with documented viral suppression and 15 HIV-negative age-matched controls were enrolled. Levels of immune activation markers (T cell immune phenotype, sCD25, sCD14, sCD163, microbial translocation (LPS and biomarkers of cardiovascular disease and impaired cognitive function (sVCAM-1, sICAM-1 and CXCL10 were evaluated.T cell activation and exhaustion, monocyte/macrophage activation, and microbial translocation were significantly higher in HIV-infected women when compared to uninfected controls. Microbial translocation correlated with T cell and monocyte/macrophage activation. Biomarkers of cardiovascular disease and impaired cognition were elevated in women with HIV infection and correlated with immune activation.HIV-infected antiretroviral-treated aging women who achieved viral suppression are in a generalized status of immune activation and therefore are at an increased risk of age-associated end-organ diseases compared to uninfected age-matched controls.

  10. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    Science.gov (United States)

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  11. Tissue Pharmacologic and Virologic Determinants of Duodenal and Rectal Gastrointestinal-Associated Lymphoid Tissue Immune Reconstitution in HIV-Infected Patients Initiating Antiretroviral Therapy.

    Science.gov (United States)

    Asmuth, David M; Thompson, Corbin G; Chun, Tae-Wook; Ma, Zhong-Min; Mann, Surinder; Sainz, Talia; Serrano-Villar, Sergio; Utay, Netanya S; Garcia, Juan Carlos; Troia-Cancio, Paolo; Pollard, Richard B; Miller, Christopher J; Landay, Alan; Kashuba, Angela D

    2017-10-17

    Plasma, duodenal, and rectal tissue antiretroviral therapy (ART) drug concentrations, human immunodeficiency virus (HIV) RNA and HIV DNA copy numbers, and recovery of mucosal immunity were measured before and 9 months after initiation of 3 different ART regimens in 26 subjects. Plasma and tissue HIV RNA correlated at baseline and when 9-month declines were compared, suggesting that these compartments are tightly associated. Antiretroviral tissue:blood penetration ratios were above the 50% inhibitory concentration values in almost 100% of cases. There were no correlations between drug concentrations and HIV DNA/RNA. Importantly, no evidence was found for residual viral replication or deficient tissue drug penetration to account for delayed gastrointestinal-associated lymphoid tissue immune recovery. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. HIV Molecular Immunology 2015

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Korber, Bette Tina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Brander, Christian [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States). Division of Vaccine Research; de Boer, Rob [Utrecht University, Utrecht (Netherlands). Faculty of Biology; Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Koup, Richard [National Inst. of Health (NIH), Bethesda, MD (United States). Vaccine Research Center; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Walker, Bruce D. [Ragon Institute, Cambridge, MA (United States); Watkins, David [Wisconsin Regional Primate Research Center, Madison, WI (United States)

    2016-04-05

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins

  13. HIV Persistence in Adipose Tissue Reservoirs.

    Science.gov (United States)

    Couturier, Jacob; Lewis, Dorothy E

    2018-02-01

    The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence. Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots. The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and

  14. Human Milk Oligosaccharide 2′-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model

    Directory of Open Access Journals (Sweden)

    Ling Xiao

    2018-03-01

    Full Text Available BackgroundHuman milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2′-Fucosyllactose (2′FL is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk.AimTo determine the effect of 2′FL on vaccination responsiveness (both innate and adaptive in a murine influenza vaccination model and elucidate mechanisms involved.MethodsA dose range of 0.25–5% (w/w dietary 2′FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d. challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH. Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs to study the effects of 2′FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2′FL were confirmed using in vitro BMDCs T-cell cocultures.ResultsDietary 2′FL significantly (p < 0.05 enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27 expression on splenic B-cells was detected in mice receiving 2′FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2′FL as compared to control mice, which were

  15. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... the Facts What are HIV and AIDS? HIV (human immunodeficiency virus) is the virus that causes AIDS ( ... is crucial to the normal function of the human immune system. Loss of these CD4+ cells in ...

  16. Modeling the Mechanisms by Which HIV-Associated Immunosuppression Influences HPV Persistence at the Oral Mucosa.

    Science.gov (United States)

    Verma, Meghna; Erwin, Samantha; Abedi, Vida; Hontecillas, Raquel; Hoops, Stefan; Leber, Andrew; Bassaganya-Riera, Josep; Ciupe, Stanca M

    2017-01-01

    Human immunodeficiency virus (HIV)-infected patients are at an increased risk of co-infection with human papilloma virus (HPV), and subsequent malignancies such as oral cancer. To determine the role of HIV-associated immune suppression on HPV persistence and pathogenesis, and to investigate the mechanisms underlying the modulation of HPV infection and oral cancer by HIV, we developed a mathematical model of HIV/HPV co-infection. Our model captures known immunological and molecular features such as impaired HPV-specific effector T helper 1 (Th1) cell responses, and enhanced HPV infection due to HIV. We used the model to determine HPV prognosis in the presence of HIV infection, and identified conditions under which HIV infection alters HPV persistence in the oral mucosa system. The model predicts that conditions leading to HPV persistence during HIV/HPV co-infection are the permissive immune environment created by HIV and molecular interactions between the two viruses. The model also determines when HPV infection continues to persist in the short run in a co-infected patient undergoing antiretroviral therapy. Lastly, the model predicts that, under efficacious antiretroviral treatment, HPV infections will decrease in the long run due to the restoration of CD4+ T cell numbers and protective immune responses.

  17. Modeling the Mechanisms by Which HIV-Associated Immunosuppression Influences HPV Persistence at the Oral Mucosa.

    Directory of Open Access Journals (Sweden)

    Meghna Verma

    Full Text Available Human immunodeficiency virus (HIV-infected patients are at an increased risk of co-infection with human papilloma virus (HPV, and subsequent malignancies such as oral cancer. To determine the role of HIV-associated immune suppression on HPV persistence and pathogenesis, and to investigate the mechanisms underlying the modulation of HPV infection and oral cancer by HIV, we developed a mathematical model of HIV/HPV co-infection. Our model captures known immunological and molecular features such as impaired HPV-specific effector T helper 1 (Th1 cell responses, and enhanced HPV infection due to HIV. We used the model to determine HPV prognosis in the presence of HIV infection, and identified conditions under which HIV infection alters HPV persistence in the oral mucosa system. The model predicts that conditions leading to HPV persistence during HIV/HPV co-infection are the permissive immune environment created by HIV and molecular interactions between the two viruses. The model also determines when HPV infection continues to persist in the short run in a co-infected patient undergoing antiretroviral therapy. Lastly, the model predicts that, under efficacious antiretroviral treatment, HPV infections will decrease in the long run due to the restoration of CD4+ T cell numbers and protective immune responses.

  18. Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1-infected CD4+ T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Ting Pan

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection is characterized by progressive depletion of CD4+ T lymphocytes and dysfunction of the immune system. The numbers of CD4+ T lymphocytes in the human body are maintained constantly by homeostatic mechanisms that failed during HIV-1 infection, resulting in progressive loss of CD4+ T cells mainly via apoptosis. Recently, a non-apoptotic form of necrotic programmed cell death, named necroptosis, has been investigated in many biological and pathological processes. We then determine whether HIV-1-infected cells also undergo necroptosis. In this report, we demonstrate that HIV-1 not only induces apoptosis, but also mediates necroptosis in the infected primary CD4+ T lymphocytes and CD4+ T-cell lines. Necroptosis-dependent cytopathic effects are significantly increased in HIV-1-infected Jurkat cells that is lack of Fas-associated protein-containing death domain (FADD, indicating that necroptosis occurs as an alternative cell death mechanism in the absence of apoptosis. Unlike apoptosis, necroptosis mainly occurs in HIV-infected cells and spares bystander damage. Treatment with necrostatin-1(Nec-1, a RIP1 inhibitor that specifically blocks the necroptosis pathway, potently restrains HIV-1-induced cytopathic effect and interestingly, inhibits the formation of HIV-induced syncytia in CD4+ T-cell lines. This suggests that syncytia formation is mediated, at least partially, by necroptosis-related processes. Furthermore, we also found that the HIV-1 infection-augmented tumor necrosis factor-alpha (TNF-α plays a key role in inducing necroptosis and HIV-1 Envelope and Tat proteins function as its co-factors. Taken together,necroptosis can function as an alternative cell death pathway in lieu of apoptosis during HIV-1 infection, thereby also contributing to HIV-1-induced cytopathic effects. Our results reveal that in addition to apoptosis, necroptosis also plays an important role in HIV-1-induced pathogenesis.

  19. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection.

    Science.gov (United States)

    Vibholm, Line; Schleimann, Mariane H; Højen, Jesper F; Benfield, Thomas; Offersen, Rasmus; Rasmussen, Katrine; Olesen, Rikke; Dige, Anders; Agnholt, Jørgen; Grau, Judith; Buzon, Maria; Wittig, Burghardt; Lichterfeld, Mathias; Petersen, Andreas Munk; Deng, Xutao; Abdel-Mohsen, Mohamed; Pillai, Satish K; Rutsaert, Sofie; Trypsteen, Wim; De Spiegelaere, Ward; Vandekerchove, Linos; Østergaard, Lars; Rasmussen, Thomas A; Denton, Paul W; Tolstrup, Martin; Søgaard, Ole S

    2017-06-15

    Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN1703 subcutaneously twice weekly for 4 weeks. We characterized plasmacytoid dendritic cell, natural killer (NK), and T-cell activation using flow cytometry on baseline and after 4 weeks of treatment. HIV-1 transcription was quantified by measuring plasma HIV-1 RNA during MGN1703 administration. In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P 1500 copies/mL (range, 21-1571 copies/mL) during treatment. TLR9 agonist treatment in HIV infection has a dual potential by increasing HIV-1 transcription and enhancing cytotoxic NK cell activation, both of which are key outcomes in HIV-1 eradication therapy. NCT02443935. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Human cryptosporidiosis: detection of specific antibodies in the serum by an indirect immunofluorescence

    Directory of Open Access Journals (Sweden)

    Braz Lúcia M.A.

    1996-01-01

    Full Text Available Cryptosporidium sp., a coccidian parasite usually found in the faeces of cattle, has been recently implicated as an agent of human intestinal disease, mainly in immunocompromised patients. In the study realized, by an indirect immunofluorescence technique, specific immunoglobulins (IgG and IgM have been demonstrated in human serum against Cryptosporidium oocysts. Purified oocysts were used as antigens in the indirect immunofluorecence assay. After analyzing this test in sera from selected groups of patients, the frequency of both specific IgG and IgM of immunocompetent children who were excreting oocysts in their faeces was 62% and in children with negative excretion of oocysts was 20% and 40%, respectively. In adults infected with the human immunodeficiency virus (HIV and who were excreting Cryptosporidium in their stools, the frequency was 57% for IgG but only 2% for IgM. Twenty three percent of immunocompromised adults with not determined excretion of oocysts in their stools had anti-Cryptosporidium IgG in their sera. Children infected with human immunodeficiency virus had no IgM and only 14% had IgG detectable in their sera. The indirect immunoflorescence assay, when used with other parasitological techniques appears to be useful for retrospective population studies and for diagnosis of acute infection. The humoral immune response of HIV positive patients to this protozoan agent needs clarification.

  1. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Beltrán LM

    2015-01-01

    Full Text Available Luis M Beltrán,1 Alfonso Rubio-Navarro,2 Juan Manuel Amaro-Villalobos,2 Jesús Egido,2–4 Juan García-Puig,1 Juan Antonio Moreno21Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain; 2Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain; 3Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, Madrid, Spain; 4Fundación Renal Iñigo Alvarez de Toledo-Instituto Reina Sofía de Investigaciones Nefrológicas (FRIAT-IRSIN, Madrid, SpainAbstract: Patients infected with the human immunodeficiency virus (HIV have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.Keywords: HIV, cardiovascular disease, immune activation, inflammation, antiretroviral therapy

  2. The impact of pregnancy on the HIV-1-specific T cell function in infected pregnant women.

    Science.gov (United States)

    Hygino, Joana; Vieira, Morgana M; Kasahara, Taissa M; Xavier, Luciana F; Blanco, Bernardo; Guillermo, Landi V C; Filho, Renato G S; Saramago, Carmen S M; Lima-Silva, Agostinho A; Oliveira, Ariane L; Guimarães, Vander; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-12-01

    Evidences indicate that pregnancy can alter the Ag-specific T-cell responses. This work aims to evaluate the impact of pregnancy on the in vitro HIV-1-specific immune response. As compared with non-pregnant patients, lower T-cell proliferation and higher IL-10 production were observed in T-cell cultures from pregnant patients following addition of either mitogens or HIV-1 antigens. In our system, the main T lymphocyte subset involved in producing IL-10 was CD4(+)FoxP3(-). Depletion of CD4(+) cells elevated TNF-α and IFN-γ production. Interestingly, the in vitro HIV-1 replication was lower in cell cultures from pregnant patients, and it was inversely related to IL-10 production. In these cultures, the neutralization of IL-10 by anti-IL-10 mAb elevated TNF-α release and HIV-1 replication. In conclusion, our results reveal that pregnancy-related events should favor the expansion of HIV-1-specific IL-10-secreting CD4(+) T-cells in HIV-1-infected women, which should, in the scenario of pregnancy, help to reduce the risk of vertical HIV-1 transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Oral mucosal lesions and immune status in HIV-infected Indian children.

    Science.gov (United States)

    Subramaniam, Priya; Kumar, Krishna

    2015-04-01

    Pediatric HIV is growing at an alarming rate in developing countries. Due to their compromised immune status, children infected with HIV are prone to a number of opportunistic infections. Oral manifestations are the first signs of the disease in many of them. To assess the oral mucosal status of Indian children with HIV, based on their CD4 cell counts. Two hundred and twenty one HIV infected children aged 6-18 years from various HIV centers, were divided into three groups, based on their CD4 cell counts; Group 1: ≥500, Group 2: 201-499 and Group 3: ≤200 cells. The children in each group were further considered as 'prior to antiretroviral treatment (ART)' and 'on ART'. Oral mucosal examination was done based on presumptive criteria given by Ramos-Gomez for diagnosis of oro-facial lesions commonly associated with HIV infection in children. Data obtained was subjected to statistical analysis. Angular cheilitis and pseudomembranous candidiasis were the frequently seen oral lesions. Children with CD4 cell count ≥500 had significantly fewer oral lesions each. A high percentage of HIV-infected children were affected with oral mucosal lesions. There was a significant association between immune status and frequency of oral lesions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Schistosomiasis and HIV in rural Zimbabwe: efficacy of treatment of schistosomiasis in individuals with HIV coinfection

    DEFF Research Database (Denmark)

    Kallestrup, Per; Zinyama, Rutendo; Gomo, Exnevia

    2006-01-01

    There is evidence from experimental models that the praziquantel-induced clearance of schistosomiasis is dependent on the host's immune response. Consequently, human immunodeficiency virus (HIV)-related immunodeficiency may impair the effect of praziquantel treatment.......There is evidence from experimental models that the praziquantel-induced clearance of schistosomiasis is dependent on the host's immune response. Consequently, human immunodeficiency virus (HIV)-related immunodeficiency may impair the effect of praziquantel treatment....

  5. Host-specific adaptation of HIV-1 subtype B in the Japanese population.

    Science.gov (United States)

    Chikata, Takayuki; Carlson, Jonathan M; Tamura, Yoshiko; Borghan, Mohamed Ali; Naruto, Takuya; Hashimoto, Masao; Murakoshi, Hayato; Le, Anh Q; Mallal, Simon; John, Mina; Gatanaga, Hiroyuki; Oka, Shinichi; Brumme, Zabrina L; Takiguchi, Masafumi

    2014-05-01

    The extent to which HIV-1 clade B strains exhibit population-specific adaptations to host HLA alleles remains incompletely known, in part due to incomplete characterization of HLA-associated HIV-1 polymorphisms (HLA-APs) in different global populations. Moreover, it remains unknown to what extent the same HLA alleles may drive significantly different escape pathways across populations. As the Japanese population exhibits distinctive HLA class I allele distributions, comparative analysis of HLA-APs between HIV-1 clade B-infected Japanese and non-Asian cohorts could shed light on these questions. However, HLA-APs remain incompletely mapped in Japan. In a cohort of 430 treatment-naive Japanese with chronic HIV-1 clade B infection, we identified 284 HLA-APs in Gag, Pol, and Nef using phylogenetically corrected methods. The number of HLA-associated substitutions in Pol, notably those restricted by HLA-B*52:01, was weakly inversely correlated with the plasma viral load (pVL), suggesting that the transmission and persistence of B*52:01-driven Pol mutations could modulate the pVL. Differential selection of HLA-APs between HLA subtype members, including those differing only with respect to substitutions outside the peptide-binding groove, was observed, meriting further investigation as to their mechanisms of selection. Notably, two-thirds of HLA-APs identified in Japan had not been reported in previous studies of predominantly Caucasian cohorts and were attributable to HLA alleles unique to, or enriched in, Japan. We also identified 71 cases where the same HLA allele drove significantly different escape pathways in Japan versus predominantly Caucasian cohorts. Our results underscore the distinct global evolution of HIV-1 clade B as a result of host population-specific cellular immune pressures. Cytotoxic T lymphocyte (CTL) escape mutations in HIV-1 are broadly predictable based on the HLA class I alleles expressed by the host. Because HLA allele distributions differ among

  6. Mother-to-Child HIV-1 Transmission Events Are Differentially Impacted by Breast Milk and Its Components from HIV-1-Infected Women.

    Directory of Open Access Journals (Sweden)

    Ruizhong Shen

    Full Text Available Breast milk is a vehicle of infection and source of protection in post-natal mother-to-child HIV-1 transmission (MTCT. Understanding the mechanism by which breast milk limits vertical transmission will provide critical insight into the design of preventive and therapeutic approaches to interrupt HIV-1 mucosal transmission. However, characterization of the inhibitory activity of breast milk in human intestinal mucosa, the portal of entry in postnatal MTCT, has been constrained by the limited availability of primary mucosal target cells and tissues to recapitulate mucosal transmission ex vivo. Here, we characterized the impact of skimmed breast milk, breast milk antibodies (Igs and non-Ig components from HIV-1-infected Ugandan women on the major events of HIV-1 mucosal transmission using primary human intestinal cells and tissues. HIV-1-specific IgG antibodies and non-Ig components in breast milk inhibited the uptake of Ugandan HIV-1 isolates by primary human intestinal epithelial cells, viral replication in and transport of HIV-1- bearing dendritic cells through the human intestinal mucosa. Breast milk HIV-1-specific IgG and IgA, as well as innate factors, blocked the uptake and transport of HIV-1 through intestinal mucosa. Thus, breast milk components have distinct and complementary effects in reducing HIV-1 uptake, transport through and replication in the intestinal mucosa and, therefore, likely contribute to preventing postnatal HIV-1 transmission. Our data suggests that a successful preventive or therapeutic approach would require multiple immune factors acting at multiple steps in the HIV-1 mucosal transmission process.

  7. Use of etanercept in human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients.

    Science.gov (United States)

    Ting, Patricia T; Koo, John Y

    2006-06-01

    Etanercept (Enbrel, Amgen, Thousand Oaks, CA), a soluble p75 tumor necrosis factor receptor:FC (TNFR:FC) fusion protein for plasma cytokines, specifically tumor necrosis factor-alpha (TNF-alpha), is used in the treatment of immune-mediated rheumatic diseases. To our knowledge, the use of etanercept in patients with human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) is relatively uncommon. The main purpose of this short review is to examine the safety of etanercept in patients with HIV/AIDS. A Medline search was conducted using the keywords etanercept and HIV and/or AIDS for any published articles between 1966 to the present (September 2004). A case report, one case series, and one clinical trial pertained to the use of etanercept in HIV patients. No reports were found on the use of etanercept in AIDS. In addition, two case reports were found documenting the use of infliximab in HIV patients. Preliminary reports indicate that the administration of etanercept does not appear to increase the morbidity or mortality rates in HIV. The inhibition of TNF-alpha may actually improve the symptoms of HIV/AIDS-associated aphthous ulcers, cachexia, dementia, fatigue, and fever, as well as help manage concomitant rheumatic diseases and psoriasis. The use of etanercept shows promise for applications in disease management in patients with HIV/AIDS. Continued research efforts are necessary to establish the long-term safety and efficacy of etanercept and other biologic agents in this patient population.

  8. A genetically engineered live-attenuated simian-human immunodeficiency virus that co-expresses the RANTES gene improves the magnitude of cellular immunity in rhesus macaques

    International Nuclear Information System (INIS)

    Shimizu, Yuya; Inaba, Katsuhisa; Kaneyasu, Kentaro; Ibuki, Kentaro; Himeno, Ai; Okoba, Masashi; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi

    2007-01-01

    Regulated-on-activation-normal-T-cell-expressed-and-secreted (RANTES), a CC-chemokine, enhances antigen-specific T helper (Th) type-1 responses against HIV-1. To evaluate the adjuvant effects of RANTES against HIV vaccine candidate in SHIV-macaque models, we genetically engineered a live-attenuated SHIV to express the RANTES gene (SHIV-RANTES) and characterized the virus's properties in vivo. After the vaccination, the plasma viral loads were same in the SHIV-RANTES-inoculated monkeys and the parental nef-deleted SHIV (SHIV-NI)-inoculated monkeys. SHIV-RANTES provided some immunity in monkeys by remarkably increasing the antigen-specific CD4 + Th cell-proliferative response and by inducing an antigen-specific IFN-γ ELISpot response. The magnitude of the immunity in SHIV-RANTES-immunized animals, however, failed to afford greater protection against a heterologous pathogenic SHIV (SHIV-C2/1) challenge compared to control SHIV-NI-immunized animals. SHIV-RANTES immunized monkeys, elicited robust cellular CD4 + Th responses and IFN-γ ELISpot responses after SHIV-C2/1 challenge. These findings suggest that the chemokine RANTES can augment vaccine-elicited, HIV-specific CD4 + T cell responses

  9. Reevaluation of immune activation in the era of cART and an aging HIV-infected population.

    Science.gov (United States)

    de Armas, Lesley R; Pallikkuth, Suresh; George, Varghese; Rinaldi, Stefano; Pahwa, Rajendra; Arheart, Kristopher L; Pahwa, Savita

    2017-10-19

    Biological aging is associated with immune activation (IA) and declining immunity due to systemic inflammation. It is widely accepted that HIV infection causes persistent IA and premature immune senescence despite effective antiretroviral therapy and virologic suppression; however, the effects of combined HIV infection and aging are not well defined. Here, we assessed the relationship between markers of IA and inflammation during biological aging in HIV-infected and -uninfected populations. Antibody response to seasonal influenza vaccination was implemented as a measure of immune competence and relationships between IA, inflammation, and antibody responses were explored using statistical modeling appropriate for integrating high-dimensional data sets. Our results show that markers of IA, such as coexpression of HLA antigen D related (HLA-DR) and CD38 on CD4+ T cells, exhibit strong associations with HIV infection but not with biological age. Certain variables that showed a strong relationship with aging, such as declining naive and CD38+ CD4 and CD8+ T cells, did so regardless of HIV infection. Interestingly, the variable of biological age was not identified in a predictive model as significantly impacting vaccine responses in either group, while distinct IA and inflammatory variables were closely associated with vaccine response in HIV-infected and -uninfected populations. These findings shed light on the most relevant and persistent immune defects during virological suppression with antiretroviral therapy.

  10. Immune defence against HIV-1 infection in HIV-1-exposed seronegative persons.

    Science.gov (United States)

    Schmechel, S C; Russell, N; Hladik, F; Lang, J; Wilson, A; Ha, R; Desbien, A; McElrath, M J

    2001-11-01

    Rare individuals who are repeatedly exposed to HIV-1 through unprotected sexual contact fail to acquire HIV-1 infection. These persons represent a unique study population to evaluate mechanisms by which HIV-1 replication is either prevented or controlled. We followed longitudinally a group of healthy HIV-1 seronegative persons each reporting repeated high-risk sexual activities with their HIV-1-infected partner at enrollment. The volunteers were primarily (90%) male homosexuals, maintaining high risk activities with their known infected partner (45%) or multiple other partners (61%). We evaluated the quantity and specificity of HIV-1-specific T cells in 31 exposed seronegatives (ES) using a IFN-gamma ELISPOT assay to enumerate T cells recognizing epitopes within HIV-1 Env, Gag, Pol and Nef. PBMC from only three of the 31 volunteers demonstrated ex vivo HIV-1-specific IFN-gamma secretion, in contrast to nearly 30% exhibiting cytolytic responses in previous studies. These findings suggest that if T cell responses in ES are induced by HIV-1 exposure, the frequency is at low levels in most of them, and below the level of detection using the ELISPOT assay. Alternative approaches to improve the sensitivity of detection may include use of dendritic cells as antigen-presenting cells in the ex vivo assay and more careful definition of the risk behavior and extent of HIV-1 exposure in conjunction with the evaluation of T cell responses.

  11. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania☆,☆☆

    Science.gov (United States)

    Bakari, Muhammad; Aboud, Said; Nilsson, Charlotta; Francis, Joel; Buma, Deus; Moshiro, Candida; Aris, Eric A.; Lyamuya, Eligius F.; Janabi, Mohamed; Godoy-Ramirez, Karina; Joachim, Agricola; Polonis, Victoria R.; Bråve, Andreas; Earl, Patricia; Robb, Merlin; Marovich, Mary; Wahren, Britta; Pallangyo, Kisali; Biberfeld, Gunnel; Mhalu, Fred; Sandström, Eric

    2016-01-01

    Background We conducted a phase I/II randomized placebo-controlled trial with the aim of exploring whether priming with a low intradermal dose of a multiclade, multigene HIV-1 DNA vaccine could improve the immunogenicity of the same vaccine given intramuscularly prior to boosting with a heterologous HIV-1 MVA among healthy adults in Dar es Salaam, Tanzania. Methods Sixty HIV-uninfected volunteers were randomized to receive DNA plasmid vaccine 1 mg intradermally (id), n = 20, or 3.8 mg intramuscularly (im), n = 20, or placebo, n = 20, using a needle-free injection device. DNA plasmids encoding HIV-1 genes gp160 subtype A, B, C; rev B; p17/p24 gag A, B and Rtmut B were given at weeks 0, 4 and 12. Recombinant MVA (108 pfu) expressing HIV-1 Env, Gag, Pol of CRF01_AE or placebo was administered im at month 9 and 21. Results The vaccines were well tolerated. Two weeks after the third HIV-DNA injection, 22/38 (58%) vaccinees had IFN-γ ELISpot responses to Gag. Two weeks after the first HIV-MVA boost all 35 (100%) vaccinees responded to Gag and 31 (89%) to Env. Two to four weeks after the second HIV-MVA boost, 28/29 (97%) vaccinees had IFN-γ ELISpot responses, 27 (93%) to Gag and 23 (79%) to Env. The id-primed recipients had significantly higher responses to Env than im recipients. Intracellular cytokine staining for Gag-specific IFN-γ/IL-2 production showed both CD8+ and CD4+ T cell responses. All vaccinees had HIV-specific lymphoproliferative responses. All vaccinees reacted in diagnostic HIV serological tests and 26/29 (90%) had antibodies against gp160 after the second HIV-MVA boost. Furthermore, while all of 29 vaccinee sera were negative for neutralizing antibodies against clade B, C and CRF01 AE pseudoviruses in the TZM-bl neutralization assay, in a PBMC assay, the response rate ranged from 31% to 83% positives, depending upon the clade B or CRF01_AE virus tested. This vaccine approach is safe and highly immunogenic. Low dose, id HIV-DNA priming elicited higher

  12. IL-27 Found to Play Significant Role in Conferring HIV Resistance | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer The human immunodeficiency virus (HIV) targets specific immune cells in the body known as macrophages because these are the cells that eliminate foreign material such as bacteria or viruses. HIV is able to reproduce and spread throughout the body if it can avoid destruction by macrophages. A recent study by Lue Dai, Ph.D., and colleagues revealed

  13. Applications of the FIV Model to Study HIV Pathogenesis

    Directory of Open Access Journals (Sweden)

    Craig Miller

    2018-04-01

    Full Text Available Feline immunodeficiency virus (FIV is a naturally-occurring retrovirus that infects domestic and non-domestic feline species, producing progressive immune depletion that results in an acquired immunodeficiency syndrome (AIDS. Much has been learned about FIV since it was first described in 1987, particularly in regard to its application as a model to study the closely related lentivirus, human immunodeficiency virus (HIV. In particular, FIV and HIV share remarkable structure and sequence organization, utilize parallel modes of receptor-mediated entry, and result in a similar spectrum of immunodeficiency-related diseases due to analogous modes of immune dysfunction. This review summarizes current knowledge of FIV infection kinetics and the mechanisms of immune dysfunction in relation to opportunistic disease, specifically in regard to studying HIV pathogenesis. Furthermore, we present data that highlight changes in the oral microbiota and oral immune system during FIV infection, and outline the potential for the feline model of oral AIDS manifestations to elucidate pathogenic mechanisms of HIV-induced oral disease. Finally, we discuss advances in molecular biology, vaccine development, neurologic dysfunction, and the ability to apply pharmacologic interventions and sophisticated imaging technologies to study experimental and naturally occurring FIV, which provide an excellent, but often overlooked, resource for advancing therapies and the management of HIV/AIDS.

  14. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato- lymphoid immune...Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Bio...normal wound repair and regeneration, we hypothesize that the preponderance of human-specific genes expressed in human inflammatory cells is commensurate

  15. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... What are HIV and AIDS? HIV (human immunodeficiency virus) is the virus that causes AIDS (acquired immune deficiency syndrome). AIDS ... but no cure, at the present time. The virus (HIV) and the disease it causes (AIDS) are ...

  16. Expression of human immunodeficiency virus in cerebrospinal fluid of children with progressive encephalopathy

    NARCIS (Netherlands)

    Epstein, L. G.; Goudsmit, J.; Paul, D. A.; Morrison, S. H.; Connor, E. M.; Oleske, J. M.; Holland, B.

    1987-01-01

    The retrovirus that causes acquired immune deficiency syndrome (AIDS) is now designated the human immunodeficiency virus (HIV). The cerebrospinal fluid (CSF) of 27 children with HIV infection was assayed for intra-blood-brain barrier (IBBB) synthesis of HIV-specific antibodies and for the presence

  17. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    Science.gov (United States)

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  18. HIV: current opinion in escapology.

    Science.gov (United States)

    Klenerman, Paul; Wu, Ying; Phillips, Rodney

    2002-08-01

    Much recent work strongly supports the hypothesis that CD8(+) T lymphocytes (CTLs) exert important immune control over HIV and so are a major selective force in its evolution. We analyse this host-pathogen interplay and focus on new data that describe the overall 'effectiveness' of CTL responses (strength, spread, specificity and 'stamina') and the mechanisms by which HIV may evade this suppressive activity. CTLs directed against HIV recognise very large numbers of distinct epitopes across the genome, are largely functional, turn over rapidly, and possess a phenotype that is distinct from CD8(+) lymphocytes specific for other viruses. Mutation of HIV epitopes that alters or abolishes CTL recognition altogether appears to be the most important immune escape mechanism, as the variation that HIV generates defies the limits of the T cell repertoire. However, this immune evasion is still only well-studied in a few patients. The rules that govern immune escape, and the ultimate limits of CTL capacity to deal with the variant epitopes that currently circulate, are not understood. This information will determine the feasibility of current vaccine approaches that, so far, make no provision for the enormous antigenic plasticity of HIV.

  19. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection.

    Science.gov (United States)

    French, Martyn A; Abudulai, Laila N; Fernandez, Sonia

    2013-08-09

    The development of vaccines to treat and prevent human immunodeficiency virus (HIV) infection has been hampered by an incomplete understanding of "protective" immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8⁺ T-cell responses restricted by "protective" HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK) cell responses and plasmacytoid dendritic cell (pDC) responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  20. Isotype Diversification of IgG Antibodies to HIV Gag Proteins as a Therapeutic Vaccination Strategy for HIV Infection

    Directory of Open Access Journals (Sweden)

    Sonia Fernandez

    2013-08-01

    Full Text Available The development of vaccines to treat and prevent human immunodeficiency virus (HIV infection has been hampered by an incomplete understanding of “protective” immune responses against HIV. Natural control of HIV-1 infection is associated with T-cell responses against HIV-1 Gag proteins, particularly CD8+ T-cell responses restricted by “protective” HLA-B alleles, but other immune responses also contribute to immune control. These immune responses appear to include IgG antibodies to HIV-1 Gag proteins, interferon-a-dependant natural killer (NK cell responses and plasmacytoid dendritic cell (pDC responses. Here, it is proposed that isotype diversification of IgG antibodies against HIV-1 Gag proteins, to include IgG2, as well as IgG3 and IgG1 antibodies, will broaden the function of the antibody response and facilitate accessory cell responses against HIV-1 by NK cells and pDCs. We suggest that this should be investigated as a vaccination strategy for HIV-1 infection.

  1. Are Clade Specific HIV Vaccines a Necessity? An Analysis Based on Mathematical Models

    Directory of Open Access Journals (Sweden)

    Dobromir Dimitrov

    2015-12-01

    Full Text Available As HIV-1 envelope immune responses are critical to vaccine related protection, most candidate HIV vaccines entering efficacy trials are based upon a clade specific design. This need for clade specific vaccine prototypes markedly reduces the implementation of potentially effective HIV vaccines. We utilized a mathematical model to determine the effectiveness of immediate roll-out of a non-clade matched vaccine with reduced efficacy compared to constructing clade specific vaccines, which would take considerable time to manufacture and test in safety and efficacy trials. We simulated the HIV epidemic in San Francisco (SF and South Africa (SA and projected effectiveness of three vaccination strategies: i immediate intervention with a 20–40% vaccine efficacy (VE non-matched vaccine, ii delayed intervention by developing a 50% VE clade-specific vaccine, and iii immediate intervention with a non-matched vaccine replaced by a clade-specific vaccine when developed. Immediate vaccination with a non-clade matched vaccine, even with reduced efficacy, would prevent thousands of new infections in SF and millions in SA over 30 years. Vaccination with 50% VE delayed for five years needs six and 12 years in SA to break-even with immediate 20 and 30% VE vaccination, respectively, while not able to surpass the impact of immediate 40% VE vaccination over 30 years. Replacing a 30% VE with a 50% VE vaccine after 5 years reduces the HIV acquisition by 5% compared to delayed vaccination. The immediate use of an HIV vaccine with reduced VE in high risk communities appears desirable over a short time line but higher VE should be the pursued to achieve strong long-term impact. Our analysis illustrates the importance of developing surrogate markers (correlates of protection to allow bridging types of immunogenicity studies to support more rapid assessment of clade specific vaccines.

  2. The Role of Nuclear Medicine in the Staging and Management of Human Immune Deficiency Virus Infection and Associated Diseases.

    Science.gov (United States)

    Ankrah, Alfred O; Glaudemans, Andor W J M; Klein, Hans C; Dierckx, Rudi A J O; Sathekge, Mike

    2017-06-01

    Human immune deficiency virus (HIV) is a leading cause of death. It attacks the immune system, thereby rendering the infected host susceptible to many HIV-associated infections, malignancies and neurocognitive disorders. The altered immune system affects the way the human host responds to disease, resulting in atypical presentation of these disorders. This presents a diagnostic challenge and the clinician must use all diagnostic avenues available to diagnose and manage these conditions. The advent of highly active antiretroviral therapy (HAART) has markedly reduced the mortality associated with HIV infection but has also brought in its wake problems associated with adverse effects or drug interaction and may even modulate some of the HIV-associated disorders to the detriment of the infected human host. Nuclear medicine techniques allow non-invasive visualisation of tissues in the body. By using this principle, pathophysiology in the body can be targeted and the treatment of diseases can be monitored. Being a functional imaging modality, it is able to detect diseases at the molecular level, and thus it has increased our understanding of the immunological changes in the infected host at different stages of the HIV infection. It also detects pathological changes much earlier than conventional imaging based on anatomical changes. This is important in the immunocompromised host as in some of the associated disorders a delay in diagnosis may have dire consequences. Nuclear medicine has played a huge role in the management of many HIV-associated disorders in the past and continues to help in the diagnosis, prognosis, staging, monitoring and assessing the response to treatment of many HIV-associated disorders. As our understanding of the molecular basis of disease increases nuclear medicine is poised to play an even greater role. In this review we highlight the functional basis of the clinicopathological correlation of HIV from a metabolic view and discuss how the use of

  3. The role of nuclear medicine in the staging and management of human immune deficiency virus infection and associated diseases

    International Nuclear Information System (INIS)

    Ankrah, Alfred O.; Sathekge, Mike; Glaudemans, Andor W. J. M.; Klein, Hans; Dierckx, Rudi A. J. O.

    2017-01-01

    Human immune deficiency virus (HIV) is a leading cause of death. It attacks the immune system, thereby rendering the infected host susceptible to many HIV-associated infections, malignancies and neurocognitive disorders. The altered immune system affects the way the human host responds to disease, resulting in atypical presentation of these disorders. This presents a diagnostic challenge and the clinician must use all diagnostic avenues available to diagnose and manage these conditions. The advent of highly active antiretroviral therapy (HAART) has markedly reduced the mortality associated with HIV infection but has also brought in its wake problems associated with adverse effects or drug interaction and may even modulate some of the HIV-associated disorders to the detriment of the infected human host. Nuclear medicine techniques allow non-invasive visualisation of tissues in the body. By using this principle, pathophysiology in the body can be targeted and the treatment of diseases can be monitored. Being a functional imaging modality, it is able to detect diseases at the molecular level, and thus it has increased our understanding of the immunological changes in the infected host at different stages of the HIV infection. It also detects pathological changes much earlier than conventional imaging based on anatomical changes. This is important in the immunocompromised host as in some of the associated disorders a delay in diagnosis may have dire consequences. Nuclear medicine has played a huge role in the management of many HIV-associated disorders in the past and continues to help in the diagnosis, prognosis, staging, monitoring and assessing the response to treatment of many HIV-associated disorders. As our understanding of the molecular basis of disease increases nuclear medicine is poised to play an even greater role. In this review we highlight the functional basis of the clinicopathological correlation of HIV from a metabolic view and discuss how the use of

  4. The role of nuclear medicine in the staging and management of human immune deficiency virus infection and associated diseases

    Energy Technology Data Exchange (ETDEWEB)

    Ankrah, Alfred O.; Sathekge, Mike [Dept. of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria (South Africa); Glaudemans, Andor W. J. M.; Klein, Hans; Dierckx, Rudi A. J. O. [University of Groningen, University Medical Centre Groningen, Groningen (Netherlands)

    2017-06-15

    Human immune deficiency virus (HIV) is a leading cause of death. It attacks the immune system, thereby rendering the infected host susceptible to many HIV-associated infections, malignancies and neurocognitive disorders. The altered immune system affects the way the human host responds to disease, resulting in atypical presentation of these disorders. This presents a diagnostic challenge and the clinician must use all diagnostic avenues available to diagnose and manage these conditions. The advent of highly active antiretroviral therapy (HAART) has markedly reduced the mortality associated with HIV infection but has also brought in its wake problems associated with adverse effects or drug interaction and may even modulate some of the HIV-associated disorders to the detriment of the infected human host. Nuclear medicine techniques allow non-invasive visualisation of tissues in the body. By using this principle, pathophysiology in the body can be targeted and the treatment of diseases can be monitored. Being a functional imaging modality, it is able to detect diseases at the molecular level, and thus it has increased our understanding of the immunological changes in the infected host at different stages of the HIV infection. It also detects pathological changes much earlier than conventional imaging based on anatomical changes. This is important in the immunocompromised host as in some of the associated disorders a delay in diagnosis may have dire consequences. Nuclear medicine has played a huge role in the management of many HIV-associated disorders in the past and continues to help in the diagnosis, prognosis, staging, monitoring and assessing the response to treatment of many HIV-associated disorders. As our understanding of the molecular basis of disease increases nuclear medicine is poised to play an even greater role. In this review we highlight the functional basis of the clinicopathological correlation of HIV from a metabolic view and discuss how the use of

  5. Immune Status and Epidemiological Characteristics of Human Immunodeficiency Virus Seroconverters in Korea, 1999–2009

    OpenAIRE

    Wang, Jin-Sook; Kim, Na-young; Sim, Hyo Jung; Choi, Byeong-Sun; Kee, Mee-Kyung

    2012-01-01

    Objectives The detection of HIV seroconverters increased annually since HIV antigen/antibody testing kits have been available widely in South Korea. This study aimed to identify the epidemiological characteristics of HIV seroconverters and their immune level at HIV diagnosis. Method We analyzed the epidemiological and immunological characteristics of 341 HIV seroconverters among 6,008 HIV-diagnosed individuals from 1999 and 2009. The analysis of immune level and epidemiological factors of HIV...

  6. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis

    OpenAIRE

    Laura B. Jaeger; Avindra Nath

    2012-01-01

    It is well established that infection with the human immunodeficiency virus (HIV) leads to immune suppression. Less well known is the fact that long-term, progressive HIV disease is associated with the development of cognitive deficits. Since the introduction of combined antiretroviral therapy (cART), the clinical presentation of HIV infection has evolved into a chronic illness with very low levels of viral replication and chronic immune activation, with compliant affected individuals survivi...

  7. Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS

    NARCIS (Netherlands)

    Lange, J. M.; Paul, D. A.; Huisman, H. G.; de Wolf, F.; van den Berg, H.; Coutinho, R. A.; Danner, S. A.; van der Noordaa, J.; Goudsmit, J.

    1986-01-01

    Sequential serum samples from 13 homosexual men who seroconverted for antibodies to human immunodeficiency virus (HIV) were tested for HIV antigen. In one of these men, who developed the acquired immune deficiency syndrome (AIDS), HIV antigenaemia preceded the onset of AIDS by more than a year and

  8. FINE SPECIFICITY OF CELLULAR IMMUNE-RESPONSES IN HUMANS TO HUMAN CYTOMEGALOVIRUS IMMEDIATE-EARLY 1-PROTEIN

    NARCIS (Netherlands)

    ALP, NJ; ALLPORT, TD; VANZANTEN, J; RODGERS, B; SISSONS, JGP; BORYSIEWICZ, LK

    Cell-mediated immunity is important in maintaining the virus-host equilibrium in persistent human cytomegalovirus (HCMV) infection. The HCMV 72-kDa major immediate early 1 protein (IE1) is a target for CD8+ cytotoxic T cells in humans, as is the equivalent 89-kDa protein in mouse. Less is known

  9. Adaptation to human populations is revealed by within-host polymorphisms in HIV-1 and hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Art F Y Poon

    2007-03-01

    Full Text Available CD8(+ cytotoxic T-lymphocytes (CTLs perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1 and hepatitis C virus (HCV. As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately "toggle" in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1- (n > or = 3,000 and HCV-infected patients (n > or = 2,600 by screening bulk RT-PCR sequences for sequencing "mixtures" (i.e., ambiguous nucleotides, which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design.

  10. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  11. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    Science.gov (United States)

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Linking susceptibility to infectious diseases to immune system abnormalities among HIV Exposed Uninfected Infants

    Directory of Open Access Journals (Sweden)

    Candice Ruck

    2016-08-01

    Full Text Available HIV exposed, uninfected (HEU infants have been shown to have an increase in overall mortality from infectious causes when compared to HIV unexposed, uninfected (HU infants. This is the case in both resource-rich and resource-limited settings. We explore here the concept that specific types of infectious diseases that are more common among HEU infants could provide clues as to the potential underlying immunological abnormalities. The most commonly reported infections in HEU vs. HU are caused by encapsulated bacteria; this suggests the existence of a less effective humoral (antibody, complement immune response. Decreased transplacental transfer of protective maternal antibodies has been seen consistently among HEU newborns, suggesting that this may indeed be one of the key drivers of their susceptibility to infections with encapsulated bacteria. Reassuringly, HEU humoral response to vaccination appears to be well conserved. While there appears to be an increase in overall incidence of acute viral infections, no specific pattern of acute viral infections has emerged; and while there is evidence of increased chronic viral infection from perinatal transmission of hepatitis C and CMV, no data exist to suggest an increase in adverse outcomes. Thus, no firm conclusions about anti-viral effector mechanisms can be drawn. However, the most unusual of reported infections among the HEU have been opportunistic infections, suggesting the possibility of underlying defects in CD4 helper and overall immune regulatory function. This may relate to the observation that the immunological profile of HEUs indicate more activated T cell profile as well as a more inflammatory innate immune response. However, both of these observations appear temporary, marked in early infancy, but no longer evident later in life. The causes of these changes in early life immune profile are likely multifactorial and may be related to in utero exposure to HIV, but also to increased

  13. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  14. Characterization of HIV-Specific CD4+T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage

    DEFF Research Database (Denmark)

    Buggert, Marcus; Norstrom, Melissa M.; Czarnecki, Chris

    2012-01-01

    for the identification of HIV-specific CD4+ T cells targeting broadly reactive epitopes in populations with diverse ethnic background stems from the vast genomic variation of HIV and the diversity of the host cellular immune system. Here, we describe a novel epitope selection strategy, PopCover, that aims to resolve...... this challenge, and identify a set of potential HLA class II-restricted HIV epitopes that in concert will provide optimal viral and host coverage. Using this selection strategy, we identified 64 putative epitopes (peptides) located in the Gag, Nef, Env, Pol and Tat protein regions of HIV. In total, 73...... II-restricted epitopes. All together, selection strategies, such as PopCover, might with success be used for the evaluation of antigen-specific CD4+ T cell responses and design of future vaccines....

  15. 'Omics investigations of HIV and SIV pathogenesis and innate immunity.

    Science.gov (United States)

    Palermo, Robert E; Fuller, Deborah H

    2013-01-01

    In the 30 years since the advent of the AIDS epidemic, the biomedical community has put forward a battery of molecular therapies that are based on the accumulated knowledge of a limited number of viral targets. Despite these accomplishments, the community still confronts unanswered foundational questions about HIV infection. What are the cellular or biomolecular processes behind HIV pathogenesis? Can we elucidate the characteristics that distinguish those individuals who are naturally resistant to either infection or disease progression? The discovery of simian immunodeficiency viruses (SIVs) and the ensuing development of in vivo, nonhuman primate (NHP) infection models was a tremendous advance, especially in abetting the exploration of vaccine strategies. And while there have been numerous NHP infection models and vaccine trials performed, fundamental questions remain regarding host-virus interactions and immune correlates of protection. These issues are, perhaps, most starkly illustrated with the appreciation that many species of African nonhuman primates are naturally infected with strains of SIV that do not cause any appreciable disease while replicating to viral loads that match or exceed those seen with pathogenic SIV infections in Asian species of nonhuman primates. The last decade has seen the establishment of high-throughput molecular profiling tools, such as microarrays for transcriptomics, SNP arrays for genome features, and LC-MS techniques for proteins or metabolites. These provide the capacity to interrogate a biological model at a comprehensive, systems level, in contrast to historical approaches that characterized a few genes or proteins in an experiment. These methods have already had revolutionary impacts in understanding human diseases originating within the host genome such as genetic disorders and cancer, and the methods are finding increasing application in the context of infectious disease. We will provide a review of the use of such 'omics

  16. Maternal HIV infection alters the immune balance in the mother and fetus; implications for pregnancy outcome and infant health.

    Science.gov (United States)

    Pfeifer, Caroline; Bunders, Madeleine J

    2016-03-01

    With the rapid roll-out of combination antiretroviral therapy to prevent mother-to-child transmission of HIV, there is an annual increase in the number of uninfected infants born to HIV-infected women. Although the introduction of combination antiretroviral therapy has vastly improved pregnancy outcome and the health of infants born to HIV-infected women, concerns remain regarding the impact the maternal HIV infection on the pregnancy outcome and the health of HIV-exposed uninfected infants. Maternal HIV infection is associated with negative pregnancy outcomes such as low birth weight. In addition, an increased susceptibility to infections is reported in HIV-exposed uninfected infants compared with infants born to uninfected women. Studies have shown that HIV-exposure affects the maternal/fetal unit, with increase of proinflammatory cytokine produced by placental cells, as well as altered infant immune responses. These changes could provide the underlying conditions for negative pregnancy outcomes and facilitate mother-to-child transmission of HIV in the infant. Further studies are required to understand the underlying mechanisms and investigate whether these altered infant immune responses persist and have clinical consequences beyond childhood. HIV infection in pregnant women is associated with altered immune responses in HIV-infected women and their offspring with clinical consequences for pregnancy outcome and the HIV-exposed uninfected infant. Further studies are required to address the origin and long-term consequences of prenatal HIV-exposure and subsequent immune activation for infant health.

  17. Mucosal immunity in HIV infection: what can be done to restore gastrointestinal-associated lymphoid tissue function?

    Science.gov (United States)

    George, Michael D; Asmuth, David M

    2014-06-01

    This review describes the impact of HIV infection on gut-associated lymphoid tissue, the mechanisms for persistent gut-associated lymphoid tissue dysfunction despite effective antiretroviral therapy, and potential strategies to restore gut-associated lymphoid tissue function and promote immune reconstitution. Recent studies indicate that unresolved microbial translocation and intestinal dysbiosis may continue to promote enteropathy as well as HIV-associated and non-HIV-associated conditions in many HIV patients who otherwise maintain therapeutic control of systemic viral replication. Several novel therapeutic approaches to reduce intestinal inflammation and mitigate microbial translocation may hold promise for restoring gastrointestinal health and thereby increasing the efficacy of immune reconstitution in HIV-infected patients undergoing antiretroviral therapy.

  18. The impact of strain-specific immunity on Lyme disease incidence is spatially heterogeneous.

    Science.gov (United States)

    Khatchikian, Camilo E; Nadelman, Robert B; Nowakowski, John; Schwartz, Ira; Wormser, Gary P; Brisson, Dustin

    2017-12-01

    Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne infection in the US. Recent studies have demonstrated that the incidence of human Lyme disease would have been even greater were it not for the presence of strain-specific immunity, which protects previously infected patients against subsequent infections by the same B. burgdorferi strain. Here, spatial heterogeneity is incorporated into epidemiological models to accurately estimate the impact of strain-specific immunity on human Lyme disease incidence. The estimated reduction in the number of Lyme disease cases is greater in epidemiologic models that explicitly include the spatial distribution of Lyme disease cases reported at the county level than those that utilize nationwide data. strain-specific immunity has the greatest epidemiologic impact in geographic areas with the highest Lyme disease incidence due to the greater proportion of people that have been previously infected and have developed strain-specific immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial.

    Science.gov (United States)

    Viegas, Edna Omar; Tembe, Nelson; Nilsson, Charlotta; Meggi, Bindiya; Maueia, Cremildo; Augusto, Orvalho; Stout, Richard; Scarlatti, Gabriella; Ferrari, Guido; Earl, Patricia L; Wahren, Britta; Andersson, Sören; Robb, Merlin L; Osman, Nafissa; Biberfeld, Gunnel; Jani, Ilesh; Sandström, Eric

    2017-11-27

    We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 10 8 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.

  20. Cellular specificity of HIV-1 replication can be controlled by LTR sequences

    International Nuclear Information System (INIS)

    Reed-Inderbitzin, Edward; Maury, Wendy

    2003-01-01

    Two well-established determinants of retroviral tropism are envelope sequences that regulate entry and LTR sequences that can regulate viral expression in a cell-specific manner. Studies with human immunodeficiency virus-1 (HIV-1) have demonstrated that tropism of this virus maps primarily to variable envelope sequences. Studies have demonstrated that T cell and macrophage-specific transcription factor binding motifs exist in the upstream region of the LTR U3; however, the ability of the core enhancer/promoter proximal elements (two NF-κB and three Sp1 sites) to function well in macrophages and T cells have led many to conclude that HIV LTR sequences are not primary determinants of HIV tropism. To determine if cellular specificity could be imparted to HIV by the core enhancer elements, the enhancer/promoter proximal region of the HIV LTR was substituted with motifs that control gene expression in a myeloid-specific manner. The enhancer region from equine infectious anemia virus (EIAV) when substituted for the HIV enhancer/promoter proximal region was found to drive expression in a macrophage-specific manner and was responsive to HIV Tat. The addition of a 5' methylation-dependent binding site (MDBP) and a promoter proximal Sp1 motif increased expression without altering cellular specificity. Spacing between the promoter proximal region and the TATA box was also found to influence LTR activity. Infectivity studies using chimeric LTRs within the context of a dual-tropic infectious molecular clone established that these LTRs directed HIV replication and production of infectious virions in macrophages but not primary T cells or T cell lines. This investigation demonstrates that cellular specificity can be imparted onto HIV-1 replication at the level of viral transcription and not entry

  1. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs.

    Science.gov (United States)

    Cheng, Liang; Ma, Jianping; Li, Jingyun; Li, Dan; Li, Guangming; Li, Feng; Zhang, Qing; Yu, Haisheng; Yasui, Fumihiko; Ye, Chaobaihui; Tsao, Li-Chung; Hu, Zhiyuan; Su, Lishan; Zhang, Liguo

    2017-01-03

    Despite the efficient suppression of HIV-1 replication that can be achieved with combined antiretroviral therapy (cART), low levels of type I interferon (IFN-I) signaling persist in some individuals. This sustained signaling may impede immune recovery and foster viral persistence. Here we report studies using a monoclonal antibody to block IFN-α/β receptor (IFNAR) signaling in humanized mice (hu-mice) that were persistently infected with HIV-1. We discovered that effective cART restored the number of human immune cells in HIV-1-infected hu-mice but did not rescue their immune hyperactivation and dysfunction. IFNAR blockade fully reversed HIV-1-induced immune hyperactivation and rescued anti-HIV-1 immune responses in T cells from HIV-1-infected hu-mice. Finally, we found that IFNAR blockade in the presence of cART reduced the size of HIV-1 reservoirs in lymphoid tissues and delayed HIV-1 rebound after cART cessation in the HIV-1-infected hu-mice. We conclude that low levels of IFN-I signaling contribute to HIV-1-associated immune dysfunction and foster HIV-1 persistence in cART-treated hosts. Our results suggest that blocking IFNAR may provide a potential strategy to enhance immune recovery and reduce HIV-1 reservoirs in individuals with sustained elevations in IFN-I signaling during suppressive cART.

  2. HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal

    DEFF Research Database (Denmark)

    Wu, Guoxin; Swanson, Michael; Talla, Aarthi

    2017-01-01

    Promising therapeutic approaches for eradicating HIV include transcriptional activation of provirus from latently infected cells using latency-reversing agents (LRAs) and immune-mediated clearance to purge reservoirs. Accurate detection of cells capable of producing viral antigens and virions......, and the measurement of clearance of infected cells, is essential to assessing therapeutic efficacy. Here, we apply enhanced methodology extending the sensitivity limits for the rapid detection of subfemtomolar HIV gag p24 capsid protein in CD4+ T cells from ART-suppressed HIV+ individuals, and we show viral protein...... induction following treatment with LRAs. Importantly, we demonstrate that clinical administration of histone deacetylase inhibitors (HDACis; vorinostat and panobinostat) induced HIV gag p24, and ex vivo stimulation produced sufficient viral antigen to elicit immune-mediated cell killing using anti-gp120/CD3...

  3. Evaluation of Different Parameters of Humoral and Cellular Immune Responses in HIV Serodiscordant Heterosexual Couples: Humoral Response Potentially Implicated in Modulating Transmission Rates

    Directory of Open Access Journals (Sweden)

    María Julia Ruiz

    2017-12-01

    Full Text Available As the HIV/AIDS pandemic still progresses, understanding the mechanisms governing viral transmission as well as protection from HIV acquisition is fundamental. In this context, cohorts of HIV serodiscordant heterosexual couples (SDC represent a unique tool. The present study was aimed to evaluate specific parameters of innate, cellular and humoral immune responses in SDC. Specifically, plasma levels of cytokines and chemokines, HIV-specific T-cell responses, gp120-specific IgG and IgA antibodies, and HIV-specific antibody-dependent cellular cytotoxicity (ADCC activity were assessed in nine HIV-exposed seronegative individuals (ESN and their corresponding HIV seropositive partners (HIV+-P, in eighteen chronically infected HIV subjects (C, nine chronically infected subjects known to be HIV transmitters (CT and ten healthy HIV− donors (HD. Very low magnitude HIV-specific cellular responses were found in two out of six ESN. Interestingly, HIV+-P had the highest ADCC magnitude, the lowest IgA levels and the highest IgG/IgA ratio, all compared to CT. Positive correlations between CD4+ T-cell counts and both IgG/IgA ratios and %ADCC killing uniquely distinguished HIV+-P. Additionally, evidence of IgA interference with ADCC responses from HIV+-P and CT is provided. These data suggest for the first time a potential role of ADCC and/or gp120-specific IgG/IgA balance in modulating heterosexual transmission. In sum, this study provides key information to understand the host factors that influence viral transmission, which should be considered in both the development of prophylactic vaccines and novel immunotherapies for HIV-1 infection.

  4. Genital herpes simplex virus type 2 infection in humanized HIV-transgenic mice triggers HIV shedding and is associated with greater neurological disease.

    Science.gov (United States)

    Nixon, Briana; Fakioglu, Esra; Stefanidou, Martha; Wang, Yanhua; Dutta, Monica; Goldstein, Harris; Herold, Betsy C

    2014-02-15

    Epidemiological studies consistently demonstrate synergy between herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1). Higher HIV-1 loads are observed in coinfected individuals, and conversely, HIV-1 is associated with more-severe herpetic disease. A small animal model of coinfection would facilitate identification of the biological mechanisms underlying this synergy and provide the opportunity to evaluate interventions. Mice transgenic for HIV-1 provirus and human cyclin T1 under the control of a CD4 promoter (JR-CSF/hu-cycT1) were intravaginally infected with HSV-2 and evaluated for disease progression, HIV shedding, and mucosal immune responses. HSV-2 infection resulted in higher vaginal HIV loads and genital tissue expression of HIV RNA, compared with HSV-uninfected JR-CSF/hu-cycT1 mice. There was an increase in genital tract inflammatory cells, cytokines, chemokines, and interferons in response to HSV-2, although the kinetics of the response were delayed in HIV-transgenic, compared with control mice. Moreover, the JR-CSF/hu-cycT1 mice exhibited earlier and more-severe neurological disease. The latter was associated with downregulation of secretory leukocyte protease inhibitor expression in neuronal tissue, a molecule with antiinflammatory, antiviral, and neuroprotective properties. JR-CSF/hu-cycT1 mice provide a valuable model to study HIV/HSV-2 coinfection and identify potential mechanisms by which HSV-2 facilitates HIV-1 transmission and HIV modulates HSV-2-mediated disease.

  5. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... Military Opioid Overdose Reversal with Naloxone (Narcan, ... HIV (human immunodeficiency virus) is the virus that causes AIDS (acquired immune deficiency syndrome). AIDS is a disease of the immune system ...

  6. T-lymphocyte subsets in HIV-infected and high-risk HIV-uninfected adolescents - Retention of naive T lymphocytes in HIV-infected adolescents

    NARCIS (Netherlands)

    Douglas, SD; Rudy, B; Muenz, L; Starr, SE; Campbell, DE; Wilson, C; Holland, C; Crowley-Nowick, P; Vermund, SH

    Background: The capacity of the immune system of adolescents to generate and repopulate naive and memory cell populations under conditions of normal homeostasis and human immunodeficiency virus (HIV) infection is largely unknown. Objective: To assess lymphocyte subsets in HIV-infected and high-risk

  7. Regulation of HIV-Gag Expression and Targeting to the Endolysosomal/Secretory Pathway by the Luminal Domain of Lysosomal-Associated Membrane Protein (LAMP-1) Enhance Gag-Specific Immune Response

    Science.gov (United States)

    Lucas, Carolina Gonçalves de Oliveira; Rigato, Paula Ordonhez; Gonçalves, Jorge Luiz Santos; Sato, Maria Notomi; Maciel, Milton; Peçanha, Ligia Maria Torres; August, J. Thomas; de Azevedo Marques, Ernesto Torres; de Arruda, Luciana Barros

    2014-01-01

    We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field. PMID:24932692

  8. A morphological study of penile chancroid lesions in human immunodeficiency virus (HIV)-positive and -negative African men with a hypothesis concerning the role of chancroid in HIV transmission.

    Science.gov (United States)

    Magro, C M; Crowson, A N; Alfa, M; Nath, A; Ronald, A; Ndinya-Achola, J O; Nasio, J

    1996-10-01

    Chancroid, the most common cause of genital ulceration in Africa, is known to be associated epidemiologically with heterosexual transmission of human immunodeficiency virus (HIV). The pathophysiological mechanisms by which chancroid might facilitate the spread of HIV are obscure. To investigate the role of chancroid in HIV transmission, the authors studied the histological features of biopsies from 11 men with penile chancroid lesions including five who were serologically positive for HIV. The histomorphologic and immunophenotypic nature of the inflammatory infiltrates suggests that there is a significant role for cell-mediated immunity in the host response to Hemophilus ducreyi infection. This response may be critical to the role of chancroid in HIV transmission.

  9. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  10. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Directory of Open Access Journals (Sweden)

    Louis de Repentigny

    2015-06-01

    Full Text Available IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC. Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.

  11. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... HIV (human immunodeficiency virus) is the virus that causes AIDS (acquired immune deficiency syndrome). AIDS is a ... time. The virus (HIV) and the disease it causes (AIDS) are often linked and referred to as " ...

  12. Effect of zinc on immune recovery in HIV patients. Medellín 2013. Randomized controlled trial

    OpenAIRE

    Contreras-Martínez, Heidy; Duque-Molina, Marcela; Vásquez-Trespalacios, Elsa Maria; Sánchez-Garzón, Juliana

    2017-01-01

    Abstract Introduction: The human immunodeficiency virus (HIV) infection progressively destroys the immune system and increases the susceptibility to opportunistic infections. The aim of this study was to assess the benefits and safety of zinc supplements at nutritional doses. Methods: A randomized, double-blind, placebo control trial was performed in 40 adult patients that received either zinc sulfate or placebo daily during 12 weeks. The CD4 lymphocytes count was evaluated at the beginni...

  13. Escape from Human Immunodeficiency Virus Type 1 (HIV-1 Entry Inhibitors

    Directory of Open Access Journals (Sweden)

    Carol D. Weiss

    2012-12-01

    Full Text Available The human immunodeficiency virus (HIV enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.

  14. Hashimoto's Thyroiditis Presenting as Acute Painful Thyroiditis and as a Manifestation of an Immune Reconstitution Inflammatory Syndrome in a Human Immunodeficiency Virus-Seropositive Patient.

    NARCIS (Netherlands)

    Visser, R.; Mast, Q. de; Netea-Maier, R.T.; Ven, A.J.A.M. van der

    2012-01-01

    Background: An immune reconstitution inflammatory syndrome (IRIS) may complicate immune restoration following start of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected patients. The occurrence of Graves' disease in the setting of an IRIS is well recognized. We hereby

  15. Non-specific immunization against parasites

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1981-01-01

    Non-specific resistance to tumours can be induced by pretreating animals with micro-organisms, microbial extracts or various synthetic substances. Mycobacterium bovis, Corynebacterium parvum and a number of other micro-organisms also protect mice against rodent piroplasms and there is evidence that they are also protective against other parasites including Schistosoma mansoni. The actual mechanisms of non-specific immunity are still unclear but it is influenced by both the genetic make-up of the host and the nature of the parasite. Non-specific immunization may be a possible alternative to specific immunization and may avoid many of the potential immunopathological changes induced during parasite infections. Irradiated vaccines (Dictyocaulus viviparus, schistomiasis) are mentioned marginally only

  16. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... function of the human immune system. Loss of these CD4+ cells in people with HIV is a ... HIV/AIDS, and what to do to counter these trends. Online Resources NIDA for Teens Web site : ...

  17. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... HIV destroys a certain kind of white blood cell (CD4+) that is crucial to the normal function ... the human immune system. Loss of these CD4+ cells in people with HIV is a key predictor ...

  18. Are cultural values and beliefs included in U.S. based HIV interventions?

    Science.gov (United States)

    Wyatt, Gail E; Williams, John K; Gupta, Arpana; Malebranche, Dominique

    2012-11-01

    To determine the extent to which current United States based human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) prevention and risk reduction interventions address and include aspects of cultural beliefs in definitions, curricula, measures and related theories that may contradict current safer sex messages. A comprehensive literature review was conducted to determine which published human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) prevention and risk reduction interventions incorporated aspects of cultural beliefs. This review of 166 human immunodeficiency virus (HIV) prevention and risk reduction interventions, published between 1988 and 2010, identified 34 interventions that varied in cultural definitions and the integration of cultural concepts. human immunodeficiency virus (HIV) interventions need to move beyond targeting specific populations based upon race/ethnicity, gender, sexual, drug and/or risk behaviors and incorporate cultural beliefs and experiences pertinent to an individual's risk. Theory based interventions that incorporate cultural beliefs within a contextual framework are needed if prevention and risk reduction messages are to reach targeted at risk populations. Implications for the lack of uniformity of cultural definitions, measures and related theories are discussed and recommendations are made to ensure that cultural beliefs are acknowledged for their potential conflict with safer sex skills and practices. Copyright © 2011. Published by Elsevier Inc.

  19. cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites.

    Science.gov (United States)

    Xu, Shuting; Ducroux, Aurélie; Ponnurangam, Aparna; Vieyres, Gabrielle; Franz, Sergej; Müsken, Mathias; Zillinger, Thomas; Malassa, Angelina; Ewald, Ellen; Hornung, Veit; Barchet, Winfried; Häussler, Susanne; Pietschmann, Thomas; Goffinet, Christine

    2016-10-12

    Upon sensing cytoplasmic retroviral DNA in infected cells, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide cGAMP, which activates STING to trigger a type I interferon (IFN) response. We find that membrane fusion-inducing contact between donor cells expressing the HIV envelope (Env) and primary macrophages endogenously expressing the HIV receptor CD4 and coreceptor enable intercellular transfer of cGAMP. This cGAMP exchange results in STING-dependent antiviral IFN responses in target macrophages and protection from HIV infection. Furthermore, under conditions allowing cell-to-cell transmission of HIV-1, infected primary T cells, but not cell-free virions, deliver cGAMP to autologous macrophages through HIV-1 Env and CD4/coreceptor-mediated membrane fusion sites and induce a STING-dependent, but cGAS-independent, IFN response in target cells. Collectively, these findings identify an infection-specific mode of horizontal transfer of cGAMP between primary immune cells that may boost antiviral responses, particularly in infected tissues in which cell-to-cell transmission of virions exceeds cell-free infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Different profiles of immune reconstitution in children and adults with HIV-infection after highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Leal Manuel

    2006-07-01

    Full Text Available Abstract Background Recent advances in characterizing the immune recovery of HIV-1-infected people have highlighted the importance of the thymus for peripheral T-cell diversity and function. The aim of this study was to investigate differences in immune reconstitution profiles after highly active antiretroviral therapy (HAART between HIV-children and adults. Methods HIV patients were grouped according to their previous clinical and immunological status: 9 HIV-Reconstituting-adults (HIV-Rec-adults and 10 HIV-Reconstituting-children (HIV-Rec-children on HAART with viral load (VL ≤400 copies/ml and CD4+ ≥500 cells/μL at least during 6 months before the study and CD4+ ≤300 cells/μL anytime before. Fifteen healthy-adults and 20 healthy-children (control subjects were used to calculate Z-score values to unify value scales between children and adults to make them comparable. Results HIV-Rec-children had higher T-cell receptor excision circles (TREC and lower interleukin (IL-7 levels than HIV-Rec-adults (p + (CD4+CD45RA hi+CD27+, naïve CD8+ (CD8+CD45RA hi+CD27+, and memory CD8+ (CD8+CD45RO+ cells/μl than HIV-Rec-adults, but similar memory CD4+ (CD4+CD45RO+ counts. HIV-Rec-children had lower naïve CD8+ Z-score values than HIV-Rec-adults (p = 0.05. Conclusion Our data suggest that HIV-Rec-children had better thymic function than HIV-Rec-adults and this fact affects the peripheral T-cell subsets. Thus, T-cell recovery after HAART in HIV-Rec-adults could be the consequence of antigen-independent peripheral T-cell expansion while in HIV-Rec-children thymic output could play a predominant role in immune reconstitution.

  1. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... that is crucial to the normal function of the human immune system. Loss of these CD4+ cells in ... AIDS. Drugs of abuse and HIV both affect the brain. Research has shown that HIV causes greater injury ...

  2. Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-07-01

    Full Text Available Abstract Background Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively. However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i to assemble and construct zinc finger arrays and nucleases (ZFN with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii to advance a model for pre-clinically testing lentiviral vectors (LV that deliver and transduce either ZFN genotype. Methods and Results First, we computationally generated the consensus sequences of (a 114 dsDNA-binding zinc finger (Zif arrays (ZFAs or ZifHIV-pol and (b two zinc-finger nucleases (ZFNs which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN. Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN. Second, a model for constructing lentiviral vectors (LVs that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively is proposed. Third, two preclinical models for controlled testing of

  3. Proviral HIV-genome-wide and pol-gene specific zinc finger nucleases: usability for targeted HIV gene therapy.

    Science.gov (United States)

    Wayengera, Misaki

    2011-07-22

    Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger arrays and nucleases (ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype. First, we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) arrays (ZFAs or ZifHIV-pol) and (b) two zinc-finger nucleases (ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN). Second, a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively) is proposed. Third, two preclinical models for controlled testing of the safety and efficacy of either of these

  4. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    Science.gov (United States)

    Richardson, Simone I; Chung, Amy W; Natarajan, Harini; Mabvakure, Batsirai; Mkhize, Nonhlanhla N; Garrett, Nigel; Abdool Karim, Salim; Moore, Penny L; Ackerman, Margaret E; Alter, Galit; Morris, Lynn

    2018-04-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  5. HIV-induced immune activation - pathogenesis and clinical relevance

    Directory of Open Access Journals (Sweden)

    Stellbrink HJ

    2010-01-01

    Full Text Available Abstract This manuscript is communicated by the German AIDS Society (DAIG http://www.daignet.de. It summarizes a series of presentations and discussions during a workshop on immune activation due to HIV infection. The workshop was held on November 22nd 2008 in Hamburg, Germany. It was organized by the ICH Hamburg under the auspices of the German AIDS Society (DAIG e.V..

  6. Cyclic GMP-AMP Synthase is an Innate Immune Sensor of HIV and Other Retroviruses

    OpenAIRE

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J.

    2013-01-01

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic-GMP-AMP (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type-I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse transcribed HIV DNA triggers the...

  7. Feasibility of Measuring Immune Resp, Activation in Foreskin/Mucosa in HIV-, Uncircumcised High-HIV-risk MSM, Lima Peru

    Science.gov (United States)

    2015-12-10

    HIV Infections; Acquired Immunodeficiency Syndrome; Lentivirus Infections; Retroviridae Infections; RNA Virus Infections; Virus Diseases; Sexually Transmitted Diseases, Viral; Sexually Transmitted Diseases; Immunologic Deficiency Syndromes; Immune System Diseases; Slow Virus Diseases

  8. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  9. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    Science.gov (United States)

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  10. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  11. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  12. [The comparative study of specificity of test-systems in diagnostic of HIV-infection on categories of samples of blood serum of pregnant women].

    Science.gov (United States)

    Sharipova, I N; Khodak, N M; Puzirev, V F; Burkov, A N; Ulanova, T I

    2015-03-01

    The detection of false positive serological reactions (FPSR) on HIV-infection under screening examination of pregnant women is an actual problem of practical health care. The original observations testify that under analysis of the same samples of blood serum of pregnant women using screening immune enzyme test-systems of various manufacturers the unmatched data concerning FPSR can be obtained. The purpose of this study was to implement comparative evaluation of specificity of immune enzyme test-systems of three different manufacturers: "DS-IFA-HIV-AGAT-SCREEN" ("Diagnostic Systems"), "Genscreen Ultra HIV Ag-Ab" "Bio Rad" France) and "The CombiBest HIV-1,2 AG/AT" ("Vector-Best" Novosibirsk). The sampling of 440 samples of blood serums of pregnant women from various medical institutions of Nizhnii Novgorod was analyzed. The results of the study demonstrated that FPSR were detected in all test-systems and at that spectrum of samples differed. The identical specificity of compared test-systems amounted to 98.64%. The alternative approach to FPSR to HIV issue under screening examinations of pregnant women was proposed. The proposed mode consisted of consistent application of two test-systems of fourth generation with different format of setup of reaction.

  13. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  14. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... is crucial to the normal function of the human immune system. Loss of these CD4+ cells in people with HIV is a key predictor of the development of AIDS. Because of their compromised immune system, ...

  15. Interdisciplinary Evaluation of Broadly-Reactive HLA Class II Restricted Epitopes Eliciting HIV-Specific CD4+T Cell Responses

    DEFF Research Database (Denmark)

    Buggert, M.; Norström, M.; Lundegaard, Claus

    2011-01-01

    , the functional and immunodominant discrepancies of CD4+ T cell responses targeting promiscuous MHC II restricted HIV epitopes remains poorly defined. Thus, utilization of interdisciplinary approaches might aid revealing broadly- reactive peptides eliciting CD4 + T cell responses. Methods: We utilized the novel...... bioinformatic prediction program NetMHCIIpan to select 64 optimized MHC II restricted epitopes located in the HIV Gag, Pol, Env, Nef and Tat regions. The epitopes were selected to cover the global diversity of the virus (multiple subtypes) and the human immune system(diverse MHC II types). Optimized...

  16. B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of Rhesus macaques

    Science.gov (United States)

    Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutr...

  17. Health and human rights in today’s fight against HIV/AIDS

    Science.gov (United States)

    Stemple, Lara

    2012-01-01

    The development of the health and human rights framework coincided with the beginning of the rapid spread of HIV/AIDS. Since then, the international community has increasingly turned to human rights language and instruments to address the disease. Not only are human rights essential to addressing a disease that impacts marginalized groups most severely, but the spread of HIV/AIDS itself exacerbates inequality and impedes the realization of a range of human rights. Policy developments of the past decade include the United Nations (UN) Committee on Economic, Social and Cultural Rights’ General Comment on the ‘Right to Health’, the UN Declaration of Commitment on HIV/AIDS, and the UN’s International Guidelines on HIV/AIDS and Human Rights, among others. Rights-related setbacks include the failure of the Declaration and its 5-year follow-up specifically to address men who have sex with men, sex workers, and intravenous drug users, political restrictions placed on urgently needed US President’s Emergency Plan for AIDS Relief (PEPFAR) funds, and the failure of many countries to decriminalize same-sex sex and outlaw discrimination against people living with HIV/AIDS. Male circumcision as an HIV prevention measure is a topic around which important debate, touching on gender, informed consent and children’s rights, serves to illustrate the ongoing vitality of the health and human rights dialogue. Mechanisms to increase state accountability for addressing HIV/AIDS should be explored in greater depth. Such measures might include an increase in the use of treaty-based judicial mechanisms, the linking of human rights compliance with preferential trade agreements, and rights requirements tied to HIV/ AIDS funding. PMID:18641463

  18. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  19. The interferon-induced antiviral protein PML (TRIM19) promotes the restriction and transcriptional silencing of lentiviruses in a context-specific, isoform-specific fashion.

    Science.gov (United States)

    Masroori, Nasser; Merindol, Natacha; Berthoux, Lionel

    2016-03-22

    The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-α and IFN-β treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has

  20. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  1. [Vaccine for human immunodeficiency virus (HIV)--relevance of these days].

    Science.gov (United States)

    Laiskonis, Alvydas; Pukenyte, Evelina

    2005-01-01

    Since 1980 more than 25 million people have died from acquired immunodeficiency syndrome (AIDS), which results from infection with human immunodeficiency virus (HIV). Number of new cases increases very threateningly. One and the most effective method to stop the progress of epidemic is the development of the vaccine for HIV. There is the presentation of the first stage of the vaccine for HIV testing (structure, methodology), which is now on trial in St. Pierre hospital, Brussels University. HIV characteristics which inflame the process of the vaccine development, historical facts and facts about vaccines on trial in these days are reviewed in this article. More than 10,000 volunteers have been participating in various clinical trials since 1987. The development of the vaccine is a very difficult, long-terming (about 8-10 years) and costly process. The process of the vaccine testing is very difficult in developing countries where the infection spreads the most rapidly. Available data confirm that the vaccine must be multi-componential, inducing cellular, humoral immunity against various subtypes of HIV. The vaccine cannot protect fully but the changes of the natural infection course could decrease virulence, distance the stage of AIDS, and retard the spread of the epidemic.

  2. Factors influencing HIV seroprevalence rate among pregnant ...

    African Journals Online (AJOL)

    Human immune deficiency virus (HIV) seroprevalence among pregnant women in Calabar was studied. The aims were to establish HIV seroprevalence rate and to identify factors which influence this rate in our pregnant women. HIV seroprevalence rate of 2.7% among antenatal women in Calabar was recorded with a ...

  3. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Simone I Richardson

    2018-04-01

    Full Text Available While the induction of broadly neutralizing antibodies (bNAbs is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP, complement deposition (ADCD, cellular cytotoxicity (ADCC and cellular trogocytosis (ADCT were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  4. Immunogenicity and safety of two doses of catch-up immunization with Haemophilus influenzae type b conjugate vaccine in Indian children living with HIV.

    Science.gov (United States)

    Arya, Bikas K; Bhattacharya, Sangeeta Das; Sutcliffe, Catherine G; Saha, Malay K; Bhattacharyya, Subhasish; Niyogi, Swapan Kumar; Moss, William J; Panda, Samiran; Das, Ranjan Saurav; Mallick, Mausom; Mandal, Sutapa

    2016-04-27

    Children living with HIV are at increased risk of disease from Haemophilus influenzae type b (Hib). Data are limited on the immunogenicity of a two-dose, catch-up schedule for Hib conjugate vaccine (HibCV) among HIV-infected children accessing antiretroviral therapy (ART) late. The objectives of the study were to: (1) evaluate baseline immunity to Hib and the immunogenicity and safety of two doses of HibCV among HIV-infected Indian children; and (2) document the threshold antibody level required to prevent Hib colonization among HIV-infected children following immunization. We conducted a prospective cohort study among HIV-infected children 2-15 years of age and HIV-uninfected children 2-5 years of age. HIV-infected children received two doses of HibCV and uninfected children received one. Serum anti-Hib PRP IgG antibodies were measured at baseline and two months after immunization in the HIV-infected children. Nasopharyngeal (NP) swabs were collected at baseline and follow-up. 125 HIV-infected and 44 uninfected children participated. 40% of HIV-infected children were receiving ART and 26% had a viral load >100,000 copies/mL. The geometric mean concentration of serum anti-Hib PRP antibody increased from 0.25 μg/mL at baseline to 2.65 μg/mL after two doses of HibCV, representing a 10.6-fold increase (pchildren mounted an immune response. Moderate or severe immune suppression, trimethoprim/sulfamethoxazole prophylaxis, and lower baseline antibody levels were associated with lower post-vaccine serum anti-Hib PRP IgG antibodies. A serum anti-Hib PRP IgG antibody level ≥ 3.3 μg/mL was protective against Hib NP colonization. There were no differences in adverse events between HIV-infected and uninfected children. Including a catch-up immunization schedule for older HIV infected children in countries introducing Hib vaccines is important. Older HIV-infected children with delayed access to ART and without suppressed viral loads mounted an adequate immune response

  5. Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses

    International Nuclear Information System (INIS)

    Ganusov, Vitaly V; Neher, Richard A; Perelson, Alan S

    2013-01-01

    Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the absence of treatment leads to AIDS and death in almost all infected individuals. HIV infection elicits a vigorous immune response starting about 2–3 weeks postinfection that can lower the amount of virus in the body, but which cannot eradicate the virus. How HIV establishes a chronic infection in the face of a strong immune response remains poorly understood. It has been shown that HIV is able to rapidly change its proteins via mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an HIV-infected patient will generate 4–12 CTL responses specific for parts of viral proteins called epitopes. Such CTL responses lead to strong selective pressure to change the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the viral population ‘escapes’ from about half of the CTL responses by mutation in the first year. Here we review experimental data on HIV evolution in response to CTL pressure, mathematical models developed to explain this evolution, and highlight problems associated with the data and previous modeling efforts. We show that estimates of the strength of the epitope-specific CTL response depend on the method used to fit models to experimental data and on the assumptions made regarding how mutants are generated during infection. We illustrate that allowing CTL responses to decay over time may improve the model fit to experimental data and provides higher estimates of the killing efficacy of HIV-specific CTLs. We also propose a novel method for simultaneously estimating the killing efficacy of multiple CTL populations specific for different epitopes of HIV using stochastic simulations. Lastly, we show that current estimates of the efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by more frequent sampling of viral sequences and by combining data on sequence evolution with

  6. Role of sex hormones and the vaginal microbiome in susceptibility and mucosal immunity to HIV-1 in the female genital tract.

    Science.gov (United States)

    Vitali, Danielle; Wessels, Jocelyn M; Kaushic, Charu

    2017-09-12

    While the prevalence of Human immunodeficiency virus-1 (HIV-1) infection has stabilized globally, it continues to be the leading cause of death among women of reproductive age. The majority of new infections are transmitted heterosexually, and women have consistently been found to be more susceptible to HIV-1 infection during heterosexual intercourse compared to men. This emphasizes the need for a deeper understanding of how the microenvironment in the female genital tract (FGT) could influence HIV-1 acquisition. This short review focuses on our current understanding of the interplay between estrogen, progesterone, and the cervicovaginal microbiome and their immunomodulatory effects on the FGT. The role of hormonal contraceptives and bacterial vaginosis on tissue inflammation, T cell immunity and HIV-1 susceptibility is discussed. Taken together, this review provides valuable information for the future development of multi-purpose interventions to prevent HIV-1 infection in women.

  7. Beneficial effect of TRAIL on HIV burden, without detectable immune consequences.

    Directory of Open Access Journals (Sweden)

    Brett D Shepard

    2008-08-01

    Full Text Available During uncontrolled HIV disease, both TNF-related apoptosis inducing ligand (TRAIL and TRAIL receptor expression are increased. Enhanced TRAIL sensitivity is due to TRAIL receptor up-regulation induced by gp120. As a result of successful antiretroviral therapy TRAIL is down-regulated, and there are fewer TRAIL-sensitive cells. In this setting, we hypothesized that all cells that contain virus, including those productively- and latently-infected, have necessarily been "primed" by gp120 and remain TRAIL-sensitive, whereas uninfected cells remain relatively TRAIL-resistant.We evaluated the immunologic and antiviral effects of TRAIL in peripheral blood lymphocytes collected from HIV-infected patients with suppressed viral replication. The peripheral blood lymphocytes were treated with recombinant TRAIL or an equivalent amount of bovine serum albumin as a negative control. Treated cells were then analyzed by quantitative flow cytometry, ELISPOT for CD4+ and CD8+ T-cell function, and limiting dilution microculture for viral burden. Alterations in the cytokine milieu of treated cells were assessed with a multiplex cytokine assay. Treatment with recombinant TRAIL in vitro reduced viral burden in lymphocytes collected from HIV-infected patients with suppressed viral load. TRAIL treatment did not alter the cytokine milieu of treated cells. Moreover, treatment with recombinant TRAIL had no adverse effect on either the quantity or function of immune cells from HIV-infected patients with suppressed viral replication.TRAIL treatment may be an important adjunct to antiretroviral therapy, even in patients with suppressed viral replication, perhaps by inducing apoptosis in cells with latent HIV reservoirs. The absence of adverse effect on the quantity or function of immune cells from HIV-infected patients suggests that there is not a significant level of "bystander death" in uninfected cells.

  8. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS.

    Science.gov (United States)

    Maelfait, Jonathan; Seiradake, Elena; Rehwinkel, Jan

    2014-07-01

    HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design. © 2014 The Authors. Bioessays published by WILEY Periodicals, Inc.

  9. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  10. Associations between immune depression and cardiovascular events in HIV infection

    DEFF Research Database (Denmark)

    Sabin, Caroline A.; Nielsen, Lene Ryom; De Wit, Stephane

    2013-01-01

    To consider associations between the latest/nadir CD4 cell count, and time spent with CD4 cell count less than 200 cells/μl (duration of immune depression), and myocardial infarction (MI), coronary heart disease (CHD), stroke, or cardiovascular disease (CVD) (CHD or stroke) in 33 301 HIV...

  11. Reversal of Human Papillomavirus-Specific T Cell Immune Suppression through TLR Agonist Treatment of Langerhans Cells Exposed to Human Papillomavirus Type 161

    Science.gov (United States)

    Fahey, Laura M.; Raff, Adam B.; Da Silva, Diane M.; Kast, W. Martin

    2009-01-01

    Human papillomavirus (HPV) type 16 infects the epithelial layer of cervical mucosa and is causally associated with the generation of cervical cancer. Langerhans cells (LC) are the resident antigen-presenting cells at the site of infection and therefore are responsible for initiating an immune response against HPV16. On the contrary, LC exposed to HPV16 do not induce a specific T cell immune response, which leads to the immune evasion of HPV16. Demonstrating that Toll-like receptor 7 (TLR7) and TLR8 are expressed on human LC, we hypothesized that imidazoquinolines would activate LC exposed to HPV16, leading to the induction of an HPV16-specific cell-mediated immune response. Surprisingly both phenotypic and functional hallmarks of activation are not observed when LC are exposed to HPV16 virus-like particles (VLP) and treated with imiquimod (TLR7 agonist). However, we found that LC are activated by 3M-002 (TLR8 agonist) and resiquimod (TLR8/7 agonist). LC exposed to HPV16 VLP and subsequently treated with 3M-002 or resiquimod highly up-regulate surface activation markers, secrete pro-inflammatory cytokines and chemokines, induce CCL21-directed migration, and initiate an HPV16-specific CD8+ T cell response. These data strongly indicate that 3M-002 and resiquimod are promising therapeutics for treatment of HPV-infections and HPV-induced cervical lesions. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third

  12. The involvement of plasmacytoid cells in HIV infection and pathogenesis.

    Science.gov (United States)

    Aiello, Alessandra; Giannessi, Flavia; Percario, Zulema A; Affabris, Elisabetta

    2018-04-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden.

    Science.gov (United States)

    Spudich, Serena; Gisslen, Magnus; Hagberg, Lars; Lee, Evelyn; Liegler, Teri; Brew, Bruce; Fuchs, Dietmar; Tambussi, Giuseppe; Cinque, Paola; Hecht, Frederick M; Price, Richard W

    2011-09-01

    Central nervous system (CNS) human immunodeficiency virus (HIV) infection and immune activation lead to brain injury and neurological impairment. Although HIV enters the nervous system soon after transmission, the magnitude of infection and immunoactivation within the CNS during primary HIV infection (PHI) has not been characterized. This cross-sectional study analyzed cerebrospinal fluid (CSF) and blood from 96 participants with PHI and compared them with samples from neuroasymptomatic participants with chronic infection and ≥ 200 or < 200 blood CD4 T cells/μL, and with samples from HIV-seronegative participants with respect to CSF and plasma HIV RNA, CSF to serum albumin ratio, and CSF white blood cell counts (WBC), neopterin levels, and concentrations of chemokines CXCL10 and CCL2. The PHI participants (median 77 days post transmission) had CSF HIV RNA, WBC, neopterin, and CXCL10 concentrations similar to the chronic infection participants but uniquely high albumin ratios. 18 participants had ≤ 100 copies/mL CSF HIV RNA, which was associated with low CSF to plasma HIV ratios and levels of CSF inflammation lower than in other PHI participants but higher than in HIV-seronegative controls. Prominent CNS infection and immune activation is evident during the first months after HIV transmission, though a proportion of PHI patients demonstrate relatively reduced CSF HIV RNA and inflammation during this early period.

  14. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants.

    Directory of Open Access Journals (Sweden)

    Gavin Churchyard

    Full Text Available The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM, SAAVI MVA-C (2.9 x 109 pfu IM and Novartis V2-deleted subtype C gp140 (100 mcg with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa.Participants at three South African sites were randomized (1:1:1:1 to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P; concurrent MVA/gp140 (MP/MP; DNA prime, sequential MVA boost (D/D/M/M; DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP or placebo. Peak HIV specific humoral and cellular responses were measured.184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens.The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen.ClinicalTrials.gov NCT01418235.

  15. HIV-1–Infected Individuals in Antiretroviral Therapy React Specifically With Polyfunctional T-Cell Responses to Gag p24

    DEFF Research Database (Denmark)

    Brandt, Lea; Benfield, Thomas; Kronborg, Gitte

    2013-01-01

    Still no effective HIV-1 prophylactic or therapeutic vaccines are available. However, as the proportion of HIV-1-infected individuals on antiretroviral treatment is increasing, knowledge about the residual immune response is important for the possible development of an HIV-1 vaccine.......Still no effective HIV-1 prophylactic or therapeutic vaccines are available. However, as the proportion of HIV-1-infected individuals on antiretroviral treatment is increasing, knowledge about the residual immune response is important for the possible development of an HIV-1 vaccine....

  16. Vaccines and immunization

    African Journals Online (AJOL)

    Prof Ezechukwu

    vaccines for malaria and HIV infection. Despite the ... decades, effective vaccines against the major causes of ... challenge antibodies, specific helper and effector T lymphocytes ... materials to produced immunity to a disease. It was originally ...

  17. Lipoprotein(a) and HIV: Allele-Specific Apolipoprotein(a) Levels Predict Carotid Intima-Media Thickness in HIV-Infected Young Women in the Women's Interagency HIV Study.

    Science.gov (United States)

    Enkhmaa, Byambaa; Anuurad, Erdembileg; Zhang, Wei; Li, Chin-Shang; Kaplan, Robert; Lazar, Jason; Merenstein, Dan; Karim, Roksana; Aouizerat, Brad; Cohen, Mardge; Butler, Kenneth; Pahwa, Savita; Ofotokun, Igho; Adimora, Adaora A; Golub, Elizabeth; Berglund, Lars

    2017-05-01

    In the general population, lipoprotein(a) [Lp(a)] has been established as an independent causal risk factor for cardiovascular disease. Lp(a) levels are to a major extent regulated by a size polymorphism in the apolipoprotein(a) [apo(a)] gene. The roles of Lp(a)/apo(a) in human immunodeficiency virus (HIV)-related elevated cardiovascular disease risk remain unclear. The associations between total plasma Lp(a) level, allele-specific apo(a) level, an Lp(a) level carried by individual apo(a) alleles, and common carotid artery intima-media thickness were assessed in 150 HIV-infected and 100 HIV-uninfected women in the WIHS (Women's Interagency HIV Study). Linear regression analyses with and without adjustments were used. The cohort was young (mean age, ≈31 years), with the majority being Blacks (≈70%). The prevalence of a small size apo(a) (≤22 Kringle repeats) or a high Lp(a) level (≥30 mg/dL) was similar by HIV status. Total plasma Lp(a) level ( P =0.029) and allele-specific apo(a) level carried by the smaller apo(a) sizes ( P =0.022) were significantly associated with carotid artery intima-media thickness in the HIV-infected women only. After accounting for confounders (age, race, smoking, body mass index, blood pressure, hepatitis C virus coinfection, menopause, plasma lipids, treatment status, CD4 + T cell count, and HIV/RNA viral load), the association remained significant for both Lp(a) ( P =0.035) and allele-specific apo(a) level carried by the smaller apo(a) sizes ( P =0.010) in the HIV-infected women. Notably, none of the other lipids/lipoproteins was associated with carotid artery intima-media thickness. Lp(a) and allele-specific apo(a) levels predict carotid artery intima-media thickness in HIV-infected young women. Further research is needed to identify underlying mechanisms of an increased Lp(a) atherogenicity in HIV infection. © 2017 American Heart Association, Inc.

  18. Treating depression in HIV-positive patients affects adherence

    African Journals Online (AJOL)

    2012-09-02

    Sep 2, 2012 ... reported that the number of people newly infected with HIV and the number .... and immunity. Subjects were ... of change in adherence as a response ..... retroviral drugs: Theorising contextual relationships. ... Drug-resistant HIV-1: The virus strikes back. ... persons with human immunodeficiency virus (HIV).

  19. Human-Specific Endogenous Retroviruses

    Directory of Open Access Journals (Sweden)

    Anton Buzdin

    2007-01-01

    Full Text Available This review focuses on a small family of human-specific genomic repetitive elements, presented by 134 members that shaped ~330 kb of the human DNA. Although modest in terms of its copy number, this group appeared to modify the human genome activity by endogenizing ~50 functional copies of viral genes that may have important implications in the immune response, cancer progression, and antiretroviral host defense. A total of 134 potential promoters and enhancers have been added to the human DNA, about 50% of them in the close gene vicinity and 22% in gene introns. For 60 such human-specific promoters, their activity was confirmed by in vivo assays, with the transcriptional level varying ~1000-fold from hardly detectable to as high as ~3% of β-actin transcript level. New polyadenylation signals have been provided to four human RNAs, and a number of potential antisense regulators of known human genes appeared due to human-specific retroviral insertional activity. This information is given here in the context of other major genomic changes underlining differences between human and chimpanzee DNAs. Finally, a comprehensive database, is available for download, of human-specific and polymorphic endogenous retroviruses is presented, which encompasses the data on their genomic localization, primary structure, encoded viral genes, human gene neighborhood, transcriptional activity, and methylation status.

  20. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target.

    Science.gov (United States)

    Manocha, Monika; Pal, Pramod Chandra; Chitralekha, K T; Thomas, Beena Elizabeth; Tripathi, Vinita; Gupta, Siddhartha Dutta; Paranjape, Ramesh; Kulkarni, Smita; Rao, D Nageswara

    2005-12-01

    The predominant route of HIV infection is through the sexual transmission via M cells. Most of the peptide and protein vaccines show poor transport across the epithelial barrier and are commonly administered by parenteral route. In the present study four HIV peptides from envelope (gp 41-LZ (leucine zipper), gp 41-FD (fusion domain) and gp120-C2) and regulatory (Nef) region in poly lactic-co-glycolide (PLG) micro-particle delivery were evaluated in mice of outbred and with different genetic background to compare immune response versus MHC restriction. Out of the combinational and single routes of immunization attempted, the single route maintained the IgG, IgA and sIgA in sera and washes for longer duration as compared to combinational routes in which the response was declined. The study demonstrated that single intranasal immunization offered significantly higher immune response (pPP>or=SP. The cytokine measurement profile of IL-2, IFN-gamma and IL-6 and low levels of IL-4 in the cultural supernatants of SP, PP and LP showed mixed CD4(+) Th1 and Th2 immune response. The p24 assay showed high percent inhibition of HIV-IIIB virus with sera and washes obtained from intranasal route. Thus, overall the study highlighted the combination of UEA-1 lectin with HIV peptides in micro-particles through intranasal immunization generated systemic as well as mucosal immune response.

  1. Analysis of the Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells to Discriminate Latent from Active Tuberculosis in HIV-Uninfected and HIV-Infected Individuals

    Directory of Open Access Journals (Sweden)

    Catherine Riou

    2017-08-01

    Full Text Available Several immune-based assays have been suggested to differentiate latent from active tuberculosis (TB. However, their relative performance as well as their efficacy in HIV-infected persons, a highly at-risk population, remains unclear. In a study of 81 individuals, divided into four groups based on their HIV-1 status and TB disease activity, we compared the differentiation (CD27 and KLRG1, activation (HLA-DR, homing potential (CCR4, CCR6, CXCR3, and CD161 and functional profiles (IFNγ, IL-2, and TNFα of Mycobacterium tuberculosis (Mtb-specific CD4+ T cells using flow cytometry. Active TB disease induced major changes within the Mtb-responding CD4+ T cell population, promoting memory maturation, elevated activation and increased inflammatory potential when compared to individuals with latent TB infection. Moreover, the functional profile of Mtb-specific CD4+ T cells appeared to be inherently related to their degree of differentiation. While these specific cell features were all capable of discriminating latent from active TB, irrespective of HIV status, HLA-DR expression showed the best performance for TB diagnosis [area-under-the-curve (AUC = 0.92, 95% CI: 0.82–1.01, specificity: 82%, sensitivity: 84% for HIV− and AUC = 0.99, 95% CI: 0.98–1.01, specificity: 94%, sensitivity: 93% for HIV+]. In conclusion, these data support the idea that analysis of T cell phenotype can be diagnostically useful in TB.

  2. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID “Meet the Experts” 2015 Workshop Summary

    Science.gov (United States)

    Akkina, Ramesh; Allam, Atef; Balazs, Alejandro B.; Blankson, Joel N.; Burnett, John C.; Casares, Sofia; Garcia, J. Victor; Hasenkrug, Kim J.; Kitchen, Scott G.; Klein, Florian; Kumar, Priti; Luster, Andrew D.; Poluektova, Larisa Y.; Rao, Mangala; Shultz, Leonard D.; Zack, Jerome A.

    2016-01-01

    Abstract The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chainnull (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting. PMID:26670361

  4. Is an HIV vaccine possible?

    Directory of Open Access Journals (Sweden)

    Nancy A. Wilson

    Full Text Available The road to the discovery of a vaccine for HIV has been arduous and will continue to be difficult over the ensuing twenty years. Most vaccines are developed by inducing neutralizing antibodies against the target pathogen or by using attenuated strains of the particular pathogen to engender a variety of protective immune responses. Unfortunately, simple methods of generating anti-HIV antibodies have already failed in a phase III clinical trial. While attenuated SIV variants work well against homologous challenges in non-human primates, the potential for reversion to a more pathogenic virus and recombination with challenge viruses will preclude the use of attenuated HIV in the field. It has been exceedingly frustrating to vaccinate for HIV-specific neutralizing antibodies given the enormous diversity of the Envelope (Env glycoprotein and its well-developed glycan shield. However, there are several antibodies that will neutralize many different strains of HIV and inducing these types of antibodies in vaccinees remains the goal of a vigorous effort to develop a vaccine for HIV based on neutralizing antibodies. Given the difficulty in generating broadly reactive neutralizing antibodies, the HIV vaccine field has turned its attention to inducing T cell responses against the virus using a variety of vectors. Unfortunately, the results from Merck's phase IIb STEP trial proved to be disappointing. Vaccinees received Adenovirus type 5 (Ad5 expressing Gag, Pol, and Nef of HIV. This vaccine regimen failed to either prevent infection or reduce the level of HIV replication after challenge. These results mirrored those in non-human primate testing of Ad5 using rigorous SIV challenge models. This review will focus on recent developments in HIV vaccine development. We will deal largely with attempts to develop a T cell-based vaccine using the non-human primate SIV challenge model.

  5. Epstein-Barr virus infects B and non-B lymphocytes in HIV-1-infected children and adolescents

    NARCIS (Netherlands)

    Bekker, Vincent; Scherpbier, Henriëtte; Beld, Marcel; Piriou, Erwan; van Breda, Alex; Lange, Joep; van Leth, Frank; Jurriaans, Suzanne; Alders, Sophie; Wertheim-van Dillen, Pauline; van Baarle, Debbie; Kuijpers, Taco

    2006-01-01

    Epstein-Barr virus (EBV) is a widespread, persistent herpesvirus that can transform B cells and that is associated with malignant lymphomas. EBV dynamics and specific immunity in human immunodeficiency virus (HIV)-1-infected children are unknown. We found that, in 74% of EBV-seropositive,

  6. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  7. Differential profiles of immune mediators and in vitro HIV infectivity between endocervical and vaginal secretions from women with Chlamydia trachomatis infection: a pilot study.

    Science.gov (United States)

    Sperling, Rhoda; Kraus, Thomas A; Ding, Jian; Veretennikova, Alina; Lorde-Rollins, Elizabeth; Singh, Tricia; Lo, Yungtai; Quayle, Alison J; Chang, Theresa L

    2013-09-01

    Chlamydia trachomatis infection is one of the most prevalent bacterial STIs in the USA and worldwide, and women with C. trachomatis infection are at increased risk of acquiring HIV. Because immune activation at the genital mucosa facilitates HIV/SIV infection, C. trachomatis-mediated cytokine induction may contribute to increased HIV transmission in asymptomatic women. To begin to elucidate the mechanisms, we longitudinally analyzed profiles of innate immune factors and HIV infectivity in genital secretions from anatomically specific sites in asymptomatic women during C. trachomatis infection and post-antibiotic treatment. We found higher levels of cytokines and chemokines in endocervical secretions than vaginal secretions. Compared with the convalescent state, G-CSF, IL-1α, and RANTES were elevated in endocervical secretions, IFN-γ and TNF-α were elevated in vaginal secretions, and IFNγ, IL-1β, and MIP1-α were elevated in cervicolavage fluid (CVL), before adjustment of multiple comparisons. Elevated endocervical levels of IP-10 and MCP-1 were associated with the use of hormonal contraception in infected women after successful treatment, suggesting the role of hormonal contraception in inflammation independent of STIs. Importantly, soluble factors found in endocervical secretions during infection enhanced HIV infectivity while no difference in HIV infectivity was found with vaginal secretions or CVL during infection or at convalescence. Taken together, the profiles of immune mediators and in vitro HIV infectivity indicate that the endocervical and vaginal mucosa are immunologically distinct. Our results underscore the importance of considering anatomical site and local sampling methodology when measuring mucosal responses, particularly in the presence of C. trachomatis infection. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... the human immune system. Loss of these CD4+ cells in people with HIV is a key predictor of the development of AIDS. Because of their compromised immune system, people with AIDS often develop serious infections or cancers, and they frequently suffer dangerous weight loss, and ...

  9. Human Immunodeficiency Virus Type 1-Hepatitis C Virus Coinfection: Intraindividual Comparison of Cellular Immune Responses against Two Persistent Viruses

    OpenAIRE

    Lauer, Georg M.; Nguyen, Tam N.; Day, Cheryl L.; Robbins, Gregory K.; Flynn, Theresa; McGowan, Katherine; Rosenberg, Eric S.; Lucas, Michaela; Klenerman, Paul; Chung, Raymond T.; Walker, Bruce D.

    2002-01-01

    Both human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) lead to chronic infection in a high percentage of persons, and an expanding epidemic of HIV-1-HCV coinfection has recently been identified. These individuals provide an opportunity for simultaneous assessment of immune responses to two viral infections associated with chronic plasma viremia. In this study we analyzed the breadth and magnitude of the CD8+- and CD4+-T-lymphocyte responses in 22 individuals infected wit...

  10. HIV reservoirs and immune surveillance evasion cause the failure of structured treatment interruptions: a computational study.

    Directory of Open Access Journals (Sweden)

    Emiliano Mancini

    Full Text Available Continuous antiretroviral therapy is currently the most effective way to treat HIV infection. Unstructured interruptions are quite common due to side effects and toxicity, among others, and cannot be prevented. Several attempts to structure these interruptions failed due to an increased morbidity compared to continuous treatment. The cause of this failure is poorly understood and often attributed to drug resistance. Here we show that structured treatment interruptions would fail regardless of the emergence of drug resistance. Our computational model of the HIV infection dynamics in lymphoid tissue inside lymph nodes, demonstrates that HIV reservoirs and evasion from immune surveillance themselves are sufficient to cause the failure of structured interruptions. We validate our model with data from a clinical trial and show that it is possible to optimize the schedule of interruptions to perform as well as the continuous treatment in the absence of drug resistance. Our methodology enables studying the problem of treatment optimization without having impact on human beings. We anticipate that it is feasible to steer new clinical trials using computational models.

  11. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  12. HIV-1 Infection of Primary CD4+ T Cells Regulates the Expression of Specific Human Endogenous Retrovirus HERV-K (HML-2) Elements.

    Science.gov (United States)

    Young, George R; Terry, Sandra N; Manganaro, Lara; Cuesta-Dominguez, Alvaro; Deikus, Gintaras; Bernal-Rubio, Dabeiba; Campisi, Laura; Fernandez-Sesma, Ana; Sebra, Robert; Simon, Viviana; Mulder, Lubbertus C F

    2018-01-01

    Endogenous retroviruses (ERVs) occupy extensive regions of the human genome. Although many of these retroviral elements have lost their ability to replicate, those whose insertion took place more recently, such as the HML-2 group of HERV-K elements, still retain intact open reading frames and the capacity to produce certain viral RNA and/or proteins. Transcription of these ERVs is, however, tightly regulated by dedicated epigenetic control mechanisms. Nonetheless, it has been reported that some pathological states, such as viral infections and certain cancers, coincide with ERV expression, suggesting that transcriptional reawakening is possible. HML-2 elements are reportedly induced during HIV-1 infection, but the conserved nature of these elements has, until recently, rendered their expression profiling problematic. Here, we provide comprehensive HERV-K HML-2 expression profiles specific for productively HIV-1-infected primary human CD4 + T cells. We combined enrichment of HIV-1 infected cells using a reporter virus expressing a surface reporter for gentle and efficient purification with long-read single-molecule real-time sequencing. We show that three HML-2 proviruses-6q25.1, 8q24.3, and 19q13.42-are upregulated on average between 3- and 5-fold in HIV-1-infected CD4 + T cells. One provirus, HML-2 12q24.33, in contrast, was repressed in the presence of active HIV replication. In conclusion, this report identifies the HERV-K HML-2 loci whose expression profiles differ upon HIV-1 infection in primary human CD4 + T cells. These data will help pave the way for further studies on the influence of endogenous retroviruses on HIV-1 replication. IMPORTANCE Endogenous retroviruses inhabit big portions of our genome. Moreover, although they are mainly inert, some of the evolutionarily younger members maintain the ability to express both RNA and proteins. We have developed an approach using long-read single-molecule real-time (SMRT) sequencing that produces long reads that

  13. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

    Science.gov (United States)

    Chung, Hachung; Pamp, Sünje J.; Hill, Jonathan A.; Surana, Neeraj K.; Edelman, Sanna M.; Troy, Erin B.; Reading, Nicola C.; Villablanca, Eduardo J.; Wang, Sen; Mora, Jorge R.; Umesaki, Yoshinori; Mathis, Diane; Benoist, Christophe; Relman, David A.; Kasper, Dennis L.

    2012-01-01

    SUMMARY Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression–all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system. PMID:22726443

  14. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Directory of Open Access Journals (Sweden)

    Stephanie Ascough

    2018-03-01

    Full Text Available Respiratory syncytial virus (RSV and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell

  15. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus

    Science.gov (United States)

    Ascough, Stephanie; Paterson, Suzanna; Chiu, Christopher

    2018-01-01

    Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and

  16. Modified Vaccinia Virus Ankara Vector Induces Specific Cellular and Humoral Responses in the Female Reproductive Tract, the Main HIV Portal of Entry.

    Science.gov (United States)

    Marlin, Romain; Nugeyre, Marie-Thérèse; Tchitchek, Nicolas; Parenti, Matteo; Hocini, Hakim; Benjelloun, Fahd; Cannou, Claude; Dereuddre-Bosquet, Nathalie; Levy, Yves; Barré-Sinoussi, Françoise; Scarlatti, Gabriella; Le Grand, Roger; Menu, Elisabeth

    2017-09-01

    The female reproductive tract (FRT) is one of the major mucosal invasion sites for HIV-1. This site has been neglected in previous HIV-1 vaccine studies. Immune responses in the FRT after systemic vaccination remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized specific immune responses in all compartments of the FRT of nonhuman primates after systemic vaccination. Memory T cells were preferentially found in the lower tract (vagina and cervix), whereas APCs and innate lymphoid cells were mainly located in the upper tract (uterus and fallopian tubes). This compartmentalization of immune cells in the FRT was supported by transcriptomic analyses and a correlation network. Polyfunctional MVA-specific CD8 + T cells were detected in the blood, lymph nodes, vagina, cervix, uterus, and fallopian tubes. Anti-MVA IgG and IgA were detected in cervicovaginal fluid after a second vaccine dose. Thus, systemic vaccination with an MVA vector elicits cellular and Ab responses in the FRT. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Cytomegalovirus (CMV) Epitope-Specific CD4+ T Cells Are Inflated in HIV+ CMV+ Subjects.

    Science.gov (United States)

    Abana, Chike O; Pilkinton, Mark A; Gaudieri, Silvana; Chopra, Abha; McDonnell, Wyatt J; Wanjalla, Celestine; Barnett, Louise; Gangula, Rama; Hager, Cindy; Jung, Dae K; Engelhardt, Brian G; Jagasia, Madan H; Klenerman, Paul; Phillips, Elizabeth J; Koelle, David M; Kalams, Spyros A; Mallal, Simon A

    2017-11-01

    Select CMV epitopes drive life-long CD8 + T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4 + T cells specific for human CMV (HCMV) are elevated in HIV + HCMV + subjects. To determine whether HCMV epitope-specific CD4 + T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4 + T cells in coinfected HLA-DR7 + long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4 + T cells were inflated among these HIV + subjects compared with those from an HIV - HCMV + HLA-DR7 + cohort or with HLA-DR7-restricted CD4 + T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4 + T cells consisted of effector memory or effector memory-RA + subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX 3 CR1, CD38, or HLA-DR but less often coexpressed CD38 + and HLA-DR + The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4 + T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Mucosal immunization with PLGA-microencapsulated DNA primes a SIV-specific CTL response revealed by boosting with cognate recombinant modified vaccinia virus Ankara

    International Nuclear Information System (INIS)

    Sharpe, Sally; Hanke, Tomas; Tinsley-Bown, Anne; Dennis, Mike; Dowall, Stuart; McMichael, Andrew; Cranage, Martin

    2003-01-01

    Systemically administered DNA encoding a recombinant human immunodeficiency virus (HIV) derived immunogen effectively primes a cytotoxic T lymphocyte (CTL) response in macaques. In this further pilot study we have evaluated mucosal delivery of DNA as an alternative priming strategy. Plasmid DNA, pTH.HW, encoding a multi-CTL epitope gene, was incorporated into poly(D,L-lactic-co-glycolic acid) microparticles of less than 10 μm in diameter. Five intrarectal immunizations failed to stimulate a circulating vaccine-specific CTL response in 2 Mamu-A*01 + rhesus macaques. However, 1 week after intradermal immunization with a cognate modified vaccinia virus Ankara vaccine MVA.HW, CTL responses were detected in both animals that persisted until analysis postmortem, 12 weeks after the final boost. In contrast, a weaker and less durable response was seen in an animal vaccinated with the MVA construct alone. Analysis of lymphoid tissues revealed a disseminated CTL response in peripheral and regional lymph nodes but not the spleen of both mucosally primed animals

  19. Systemic and Terminal Ileum Mucosal Immunity Elicited by Oral Immunization With the Ty21a Typhoid Vaccine in HumansSummary

    Directory of Open Access Journals (Sweden)

    Jayaum S. Booth

    2017-11-01

    Full Text Available Background & Aims: Systemic cellular immunity elicited by the Ty21a oral typhoid vaccine has been extensively characterized. However, very limited data are available in humans regarding mucosal immunity at the site of infection (terminal ileum [TI]. Here we investigated the host immunity elicited by Ty21a immunization on terminal ileum–lamina propria mononuclear cells (LPMC and peripheral blood in volunteers undergoing routine colonoscopy. Methods: We characterized LPMC-T memory (TM subsets and assessed Salmonella enterica serovar Typhi (S Typhi–specific responses by multichromatic flow cytometry. Results: No differences were observed in cell yields and phenotypes in LPMC CD8+-TM subsets following Ty21a immunization. However, Ty21a immunization elicited LPMC CD8+ T cells exhibiting significant S Typhi–specific responses (interferon-γ, tumor necrosis factor-α, interleukin-17A, and/or CD107a in all major TM subsets (T-effector/memory [TEM], T-central/memory, and TEM-CD45RA+, although each TM subset exhibited unique characteristics. We also investigated whether Ty21a immunization elicited S Typhi–specific multifunctional effectors in LPMC CD8+ TEM. We observed that LPMC CD8+ TEM responses were mostly multifunctional, except for those cells exhibiting the characteristics associated with cytotoxic responses. Finally, we compared mucosal with systemic responses and made the important observation that LPMC CD8+ S Typhi–specific responses were unique and distinct from their systemic counterparts. Conclusions: This study provides the first demonstration of S Typhi–specific responses in the human terminal ileum mucosa and provides novel insights into the generation of mucosal immune responses following oral Ty21a immunization. Keywords: Lamina Propria Mononuclear Cells, Multifunctional T Cells, CD8+-T Memory Cells, Typhoid, Vaccines

  20. Immune reconstitution inflammatory syndrome after initiating highly active antiretroviral therapy in HIV-infected children

    International Nuclear Information System (INIS)

    Kilborn, Tracy; Zampoli, Marco

    2009-01-01

    The outcome of HIV infection has improved since the widespread availability of highly active antiretroviral therapy (HAART). Some patients, however, develop a clinical and radiological deterioration following initiation of HAART due to either the unmasking of occult subclinical infection or an enhanced inflammatory response to a treated infection. This phenomenon is believed to result from the restored ability to mount an immune response and is termed immune reconstitution inflammatory syndrome (IRIS) or immune reconstitution disease. IRIS is widely reported in the literature in adult patients, most commonly associated with mycobacterial infections. There is, however, a paucity of data documenting the radiological findings of IRIS in children. Radiologists need to be aware of this entity. As a diagnosis of exclusion it is essential that the radiological findings be assessed in the context of the clinical presentation. This article reviews the common clinical and radiological manifestations of IRIS in HIV-infected children. (orig.)

  1. Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo

    International Nuclear Information System (INIS)

    Muthumani, Karuppiah; Zhang Donghui; Dayes, Nathanael S.; Hwang, Daniel S.; Calarota, Sandra A.; Choo, Andrew Y.; Boyer, Jean D.; Weiner, David B.

    2003-01-01

    HIV-1 sequences are highly diverse due to the inaccuracy of the viral reverse transcriptase. This diversity has been studied and used to categorize HIV isolates into subtypes or clades, which are geographically distinct. To develop effective vaccines against HIV-1, immunogens representing different subtypes may be important for induction of cross-protective immunity, but little data exist describing and comparing the immunogenicity induced by different subtype-based vaccines. This issue is further complicated by poor expression of HIV structural antigens due to rev dependence. One costly approach is to codon optimize each subtype construct to be examined. Interestingly, cis-acting transcriptional elements (CTE) can also by pass rev restriction by a rev independent export pathway. We reasoned that rev+CTE constructs might have advantages for such expression studies. A subtype A envelope sequence from a viral isolate from east Africa was cloned into a eukaryotic expression vector under the control of the CMV-IE promoter. The utility of inclusion of the Mason-Pfizer monkey virus (MPV)-CTE with/without rev for driving envelope expression and immunogenicity was examined. Expression of envelope (gp120) was confirmed by immunoblot analysis and by pseudotype virus infectivity assays. The presence of rev and the CTE together increased envelope expression and viral infection. Furthermore the CTE+rev construct was significantly more immunogenic then CTE alone vector. Isotype analysis and cytokine profiles showed strong Th1 response in plasmid-immunized mice, which also demonstrated the superior nature of the rev+CTE construct. These responses were of similar or greater magnitude to a codon-optimized construct. The resulting cellular immune responses were highly cross-reactive with a HIV-1 envelope subtype B antigen. This study suggests a simple strategy for improving the expression and immunogenicity of HIV subtype-specific envelope antigens as plasmid or vector

  2. 21 CFR 640.100 - Immune Globulin (Human).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Immune Globulin (Human). 640.100 Section 640.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Immune Globulin (Human) § 640.100 Immune...

  3. HAART in HIV/AIDS Treatments: Future Trends.

    Science.gov (United States)

    Lu, Da-Yong; Wu, Hong-Ying; Yarla, Nagendra Sastry; Xu, Bin; Ding, Jian; Lu, Ting-Ren

    2018-01-01

    AIDS (acquired immune deficient syndrome) is a deadly human viral infectious disease caused by HIV (human immune-deficient virus) infection. Almost every AIDS patient losses his/her life before mid 1990s. AIDS was once the 1st disease killer in US (1993). After one decade hard work, antiviral drug cocktails-high active anti-retroviral therapy (HAART) have been invented for almost all HIV infection treatments. Due to the invention of HAART, 80-90% HIV/AIDS patients still effectively response to HAART for deadly AIDS episode controls and life saving. Yet, this type of HIV therapeutics is incurable. HIV/AIDS patients need to take HAART medications regularly and even life-long. To counteract this therapeutic drawback, more revolutionary efforts (different angles of therapeutic modes/attempts) are urgently needed. In this article, the major progresses and drawbacks of HIV/AIDS chemotherapy (HAART) to HIV/AIDS patients have been discussed. Future trends (updating pathogenesis study, next generations of drug developments, new drug target discovery, different scientific disciplinary and so on) are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. HIV and the eye | Visser | Continuing Medical Education

    African Journals Online (AJOL)

    In an area of high HIV prevalence, HIV-related ocular lesions are relatively common. It is estimated that there are 5.6 million people in South Africa living with the human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS). A relatively small percentage of them are on highly active ...

  5. Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV Vulnerable to Clearance by CD8 T Cells

    Directory of Open Access Journals (Sweden)

    Julia A. Sung

    2017-09-01

    Full Text Available Latently human immunodeficiency virus (HIV-infected cells are transcriptionally quiescent and invisible to clearance by the immune system. To demonstrate that the latency reversing agent vorinostat (VOR induces a window of vulnerability in the latent HIV reservoir, defined as the triggering of viral antigen production sufficient in quantity and duration to allow for recognition and clearance of persisting infection, we developed a latency clearance assay (LCA. The LCA is a quantitative viral outgrowth assay (QVOA that includes the addition of immune effectors capable of clearing cells expressing viral antigen. Here we show a reduction in the recovery of replication-competent virus from VOR exposed resting CD4 T cells following addition of immune effectors for a discrete period. Take home message: VOR exposure leads to sufficient production of viral protein on the cell surface, creating a window of vulnerability within this latent reservoir in antiretroviral therapy (ART-suppressed HIV-infected individuals that allows the clearance of latently infected cells by an array of effector mechanisms.

  6. Study of Patterns and Markers of Human Immune Deficiency Virus -1 (HIV-1) Progression and Unemployment Rate among Patients from Alexandria, Egypt.

    Science.gov (United States)

    Ghoneim, Faika M; Raouf, May M; Elshaer, Noha S; Abdelhamid, Sarah M; Noor Eldeen, Reem A

    2017-12-04

    Middle East and North Africa (MENA) new HIV cases show the highest increase among all regions in the world. Even though Egypt has a low prevalence among the general population (< 0.02%), a national HIV epidemic occurs in certain population risk groups. The current study was conducted to asses clinical and immunological disease progression; following up viral load (VL) and detecting delta-32 CCR5 genotype polymorphism in selected cases, determining unemployment rate and identify predictors of employment for HIV-cases. A cross sectional design was adopted. HIV infected cases attending Alexandria Fever Hospital (AFH) for one year. Interview questionnaire and four CD+4 counts were done for all patients, HIV VL and delta-32 CCR5 polymorphism were done for selected cases. Sexual transmission and drug abuse are the most important risk factors. Infectious comorbidity increases the rate of HIV progression. CD4+ count at the end of the study; CD+4 (4), count was significantly higher than all other CD4+ readings among the whole cohort and among the treated group. Also, VL at the end of the study; VL(2), was significantly higher than VL(1) among the untreated group. Unemployment rate was 40%. Male gender and obtaining vocational training were significant predictors of employment. It can be concluded that having a family member living with HIV and drug abusers are high risk groups for HIV acquisition. Factors responsible for progression of HIV should be further investigated. Antiretroviral therapy is very effective in checking HIV replication rate, delaying the progression of HIV, reconstituting the immune response and should be available for all cases detected.

  7. Weaker HLA Footprints on HIV in the Unique and Highly Genetically Admixed Host Population of Mexico.

    Science.gov (United States)

    Soto-Nava, Maribel; Avila-Ríos, Santiago; Valenzuela-Ponce, Humberto; García-Morales, Claudia; Carlson, Jonathan M; Tapia-Trejo, Daniela; Garrido-Rodriguez, Daniela; Alva-Hernández, Selma N; García-Tellez, Thalía A; Murakami-Ogasawara, Akio; Mallal, Simon A; John, Mina; Brockman, Mark A; Brumme, Chanson J; Brumme, Zabrina L; Reyes-Teran, Gustavo

    2018-01-15

    HIV circumvents HLA class I-restricted CD8 + T-cell responses through selection of escape mutations that leave characteristic mutational "footprints," also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation. IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We

  8. HIV-Infected Children Have Elevated Levels of PD-1+ Memory CD4 T Cells With Low Proliferative Capacity and High Inflammatory Cytokine Effector Functions.

    Science.gov (United States)

    Foldi, Julia; Kozhaya, Lina; McCarty, Bret; Mwamzuka, Mussa; Marshed, Fatma; Ilmet, Tiina; Kilberg, Max; Kravietz, Adam; Ahmed, Aabid; Borkowsky, William; Unutmaz, Derya; Khaitan, Alka

    2017-09-15

    During human immunodeficiency virus (HIV) disease, chronic immune activation leads to T-cell exhaustion. PD-1 identifies "exhausted" CD8 T cells with impaired HIV-specific effector functions, but its role on CD4 T cells and in HIV-infected children is poorly understood. In a Kenyan cohort of vertically HIV-infected children, we measured PD-1+ CD4 T-cell frequencies and phenotype by flow cytometry and their correlation with HIV disease progression and immune activation. Second, in vitro CD4 T-cell proliferative and cytokine responses to HIV-specific and -nonspecific stimuli were assessed with and without PD-1 blockade. HIV-infected children have increased frequencies of PD-1+ memory CD4 T cells that fail to normalize with antiretroviral treatment. These cells are comprised of central and effector memory subsets and correlate with HIV disease progression, measured by viral load, CD4 percentage, CD4:CD8 T-cell ratio, and immune activation. Last, PD-1+ CD4 T cells predict impaired proliferative potential yet preferentially secrete the Th1 and Th17 cytokines interferon-γ and interleukin 17A, and are unresponsive to in vitro PD-1 blockade. This study highlights differences in PD-1+ CD4 T-cell memory phenotype and response to blockade between HIV-infected children and adults, with implications for potential immune checkpoint therapies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Tracking Human Immunodeficiency Virus-1 Infection in the Humanized DRAG Mouse Model

    OpenAIRE

    Jiae Kim; Jiae Kim; Kristina K. Peachman; Kristina K. Peachman; Ousman Jobe; Ousman Jobe; Elaine B. Morrison; Atef Allam; Atef Allam; Linda Jagodzinski; Sofia A. Casares; Mangala Rao

    2017-01-01

    Humanized mice are emerging as an alternative model system to well-established non-human primate (NHP) models for studying human immunodeficiency virus (HIV)-1 biology and pathogenesis. Although both NHP and humanized mice have their own strengths and could never truly reflect the complex human immune system and biology, there are several advantages of using the humanized mice in terms of using primary HIV-1 for infection instead of simian immunodeficiency virus or chimera simian/HIV. Several...

  10. Tingkat Pengetahuan dan Sikap Pelajar SMA Negeri Siabu Mandailing Natal Angkatan 2011 tentang HIV/ AIDS Tahun

    OpenAIRE

    Nasution, Yusda Rahayu

    2012-01-01

    HIV is a retrovirus that damage the immune system while AIDS (Acquired Immune Deficiency Syndrome) is a set of symptoms that caused by the lower of body immune system caused by HIV (Human Immunodeficiency virus) infection. HIV/AIDS is one of diseases that cause the higher mortality rate and the number of patient is increase over time. Therefore, the student must has knowledge and good understanding about HIV/AIDS. This research aims to study the knowledge level and attitude of student abou...

  11. Chromatin Regulation and the Histone Code in HIV Latency
.

    Science.gov (United States)

    Turner, Anne-Marie W; Margolis, David M

    2017-06-01

    The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.

  12. Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection

    Science.gov (United States)

    Nath Chatterjee, Amar; Roy, Priti Kumar

    2012-02-01

    Recent development in antiretroviral treatment against HIV can help AIDS patients to fight against HIV. But the question that whether the disease is to be partially or totally eradicated from HIV infected individuals still remains unsolved. Usually, the most effective treatment for the disease is HAART which can only control the disease progression. But as the immune system becomes weak, the patients can not fight against other diseases. Immune cells are activated and proliferated by IL-2 after the identification of antigen. IL-2 production is impaired in HIV positive patients and intermitted administration of immune activator IL-2 together with HAART which is a more effective treatment to fight against the disease. Thus, its expediency is essential and is yet to be explored. In this article we anticipated a mathematical model of the effect of IL-2 together with RTIs therapy in HIV positive patients. Our analytical as well as numerical study shows that the optimal schedule of treatment for best result is to be obtained by systematic drug therapy. But at the last stage of treatment, the infection level raises again due to minimisation of drug dosage. Thus we study the perfect adherence of the drugs and found out if RTIs are taken with sufficient interval then for fixed interval of IL-2 therapy, certain amount of drug dosages may be able to sustain the immune system at pre-infection stage and the infected CD4+T cells are going towards extinction.

  13. Mathematical modeling provides kinetic details of the human immune response to vaccination

    Directory of Open Access Journals (Sweden)

    Dustin eLe

    2015-01-01

    Full Text Available With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combine mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response is determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increases slowly, the slow increase can still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model describes well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization are derived from the population of circulating antibody-secreting cells. Taken together, our analysis provides novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlight challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  14. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    Science.gov (United States)

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  15. Research progress of HIV-associated myelopathy

    Directory of Open Access Journals (Sweden)

    Kun HONG

    2016-08-01

    Full Text Available The wide usage of highly active antiretroviral therapy (HAART leads to reduction of the occurence rate of focal or diffuse neurological damage caused by human immunodeficiency virus (HIV infection, which prominently improves the living quality of HIV-infected patients. Despite this progress, about 70% of HIV-infected patients develop neurological complications. Although neurological disease typically occurs in the advanced stage of the disease or after severe damage of immune functions, it may also occur during early stage of the infection. HIV-associated myelopathy is a common complication of immunodeficiency syndrome and its typical pathological appearence is vacuolar degeneration. In many patients the clinical manifestations of vacuolar myelopathy are in fact limited to non-specific sphincter or sexual dysfunction, and may remain completely asymptomatic. Even when motor and sensory symptoms become evident, the diagnosis is often complicated by a concomitant peripheral neuropathy. The purpose of this study is to summarize pathogenesis, clinical manifestations, pathological features, diagnosis and treatment of HIV-associated myelopathy. DOI: 10.3969/j.issn.1672-6731.2016.08.004

  16. Stigma, HIV and AIDS: An Exploration and Elaboration of the Illness Trajectory Surrounding HIV Infection and AIDS.

    Science.gov (United States)

    Alonzo, Angelo A.; Reynolds, Nancy R.

    In this paper, human immunodeficiency virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS) are analyzed in terms of stigma and illness trajectory. The primary purpose is to conceptualize how individuals with HIV/AIDS experience stigma and to demonstrate how these experiences are affected by the social and biophysical dimensions of the…

  17. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    Science.gov (United States)

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  18. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology.

    Science.gov (United States)

    Kishida, Tsunao; Ejima, Akika; Mazda, Osam

    2016-01-01

    Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN-HIV by electroporation. The target sequence was destructed in approximately 10-95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat-HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection.

  19. Regulatory T Cells As Potential Targets for HIV Cure Research

    Science.gov (United States)

    Kleinman, Adam J.; Sivanandham, Ranjit; Pandrea, Ivona; Chougnet, Claire A.; Apetrei, Cristian

    2018-01-01

    T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.

  20. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    Science.gov (United States)

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  1. Thymic involvement in immune recovery during antiretroviral treatment of HIV infection in adults; comparison of CT and sonographic findings

    DEFF Research Database (Denmark)

    Kolte, Lilian; Strandberg, Charlotte; Dreves, Anne-Mette

    2002-01-01

    In adult HIV-infected patients, thymic size evaluated from CT scans seems to be important to the degree of immune reconstitution obtainable during treatment with highly active antiretroviral therapy (HAART). To examine whether ultrasound is as reliable as CT for estimating thymic size...... and predicting immune recovery, CT and ultrasound scans were performed in 25 adult HIV-infected patients and 10 controls. CD4 counts and naive CD4 counts were measured in order to determine immune reconstitution. Furthermore, the CD4+ T-cell receptor excision circle (TREC) frequency and T-cell receptor (TCR...

  2. Induction of Mucosal and Systemic Immunity to a Recombinant Simian Immunodeficiency Viral Protein

    Science.gov (United States)

    Lehner, T.; Bergmeier, L. A.; Panagiotidi, C.; Tao, L.; Brookes, R.; Klavinskis, L. S.; Walker, P.; Walker, J.; Ward, R. G.; Hussain, L.; Gearing, A. J. H.; Adams, S. E.

    1992-11-01

    Heterosexual transmission through the cervico-vaginal mucosa is the principal route of human immunodeficiency virus (HIV) infection in Africa and is increasing in the United States and Europe. Vaginal immunization with simian immunodeficiency virus (SIV) had not yet been studied in nonhuman primates. Immune responses in macaques were investigated by stimulation of the genital and gut-associated lymphoid tissue with a recombinant, particulate SIV antigen. Vaginal, followed by oral, administration of the vaccine elicited three types of immunity: (i) gag protein p27-specific, secretory immunoglobulin A (IgA) and immunoglobulin G (IgG) in the vaginal fluid, (ii) specific CD4^+ T cell proliferation and helper function in B cell p27-specific IgA synthesis in the genital lymph nodes, and (iii) specific serum IgA and IgG, with CD4^+ T cell proliferative and helper functions in the circulating blood.

  3. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  4. Chimeric peptide-mediated siRNA transduction to inhibit HIV-1 infection.

    Science.gov (United States)

    Bivalkar-Mehla, Shalmali; Mehla, Rajeev; Chauhan, Ashok

    2017-04-01

    Persistent human immunodeficiency virus 1 (HIV-1) infection provokes immune activation and depletes CD4 +  lymphocytes, leading to acquired immunodeficiency syndrome. Uninterrupted administration of combination antiretroviral therapy (cART) in HIV-infected patients suppresses viral replication to below the detectable level and partially restores the immune system. However, cART-unresponsive residual HIV-1 infection and elusive transcriptionally silent but reactivatable viral reservoirs maintain a permanent viral DNA blue print. The virus rebounds within a few weeks after interruption of suppressive therapy. Adjunct gene therapy to control viral replication by ribonucleic acid interference (RNAi) is a post-transcriptional gene silencing strategy that could suppress residual HIV-1 burden and overcome viral resistance. Small interfering ribonucleic acids (siRNAs) are efficient transcriptional inhibitors, but need delivery systems to reach inside target cells. We investigated the potential of chimeric peptide (FP-PTD) to deliver specific siRNAs to HIV-1-susceptible and permissive cells. Chimeric FP-PTD peptide was designed with an RNA binding domain (PTD) to bind siRNA and a cell fusion peptide domain (FP) to enter cells. FP-PTD-siRNA complex entered and inhibited HIV-1 replication in susceptible cells, and could be a candidate for in vivo testing.

  5. Identifying HIV-1 dual infections

    Directory of Open Access Journals (Sweden)

    Cornelissen Marion

    2007-09-01

    Full Text Available Abstract Transmission of human immunodeficiency virus (HIV is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus and superinfections (second infection after a specific immune response to the first infecting strain has developed can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA, counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the

  6. Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

    Directory of Open Access Journals (Sweden)

    Engström Gunnel

    2007-07-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types in vitro. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed. Results The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs. Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8+ T cell memory responses, whereas MVA-encoded nef induced CD4+ T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate

  7. Cellular and molecular interaction in HIV infection: A review | Timbo ...

    African Journals Online (AJOL)

    Objective: To review the cellular and molecular interactions between HIV and the host immune system that lead to full-blown AIDS. Data Sources: Published reports on HIV/host interaction during a fifteen year period beginning from 1987. Study selection: Only those studies involving humans and non-human primates were ...

  8. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    Full Text Available Coinfection with human immunodeficiency virus (HIV and hepatitis C virus (HCV challenges the immune system with two viruses that elicit distinct immune responses. Chronic immune activation is a hallmark of HIV infection and an accurate indicator of disease progression. Suppressing HIV viremia by antiretroviral therapy (ART effectively prolongs life and significantly improves immune function. HIV/HCV coinfected individuals have peripheral immune activation despite effective ART control of HIV viral load. Here we examined freshly isolated CD14 monocytes for gene expression using high-density cDNA microarrays and analyzed T cell subsets, CD4 and CD8, by flow cytometry to characterize immune activation in monoinfected HCV and HIV, and HIV-suppressed coinfected subjects. To determine the impact of coinfection on cognition, subjects were evaluated in 7 domains for neuropsychological performance, which were summarized as a global deficit score (GDS. Monocyte gene expression analysis in HIV-suppressed coinfected subjects identified 43 genes that were elevated greater than 2.5 fold. Correlative analysis of subjects' GDS and gene expression found eight genes with significance after adjusting for multiple comparisons. Correlative expression of six genes was confirmed by qPCR, five of which were categorized as type 1 IFN response genes. Global deficit scores were not related to plasma lipopolysaccharide levels. In the T cell compartment, coinfection significantly increased expression of activation markers CD38 and HLADR on both CD4 and CD8 T cells but did not correlate with GDS. These findings indicate that coinfection is associated with a type 1 IFN monocyte activation profile which was further found to correlate with cognitive impairment, even in subjects with controlled HIV infection. HIV-suppressed coinfected subjects with controlled HIV viral load experiencing immune activation could benefit significantly from successful anti-HCV therapy and may be

  9. Mortality in Severe Human Immunodeficiency Virus-Tuberculosis Associates With Innate Immune Activation and Dysfunction of Monocytes.

    Science.gov (United States)

    Janssen, Saskia; Schutz, Charlotte; Ward, Amy; Nemes, Elisa; Wilkinson, Katalin A; Scriven, James; Huson, Mischa A; Aben, Nanne; Maartens, Gary; Burton, Rosie; Wilkinson, Robert J; Grobusch, Martin P; Van der Poll, Tom; Meintjes, Graeme

    2017-07-01

    Case fatality rates among hospitalized patients diagnosed with human immunodeficiency virus (HIV)-associated tuberculosis remain high, and tuberculosis mycobacteremia is common. Our aim was to define the nature of innate immune responses associated with 12-week mortality in this population. This prospective cohort study was conducted at Khayelitsha Hospital, Cape Town, South Africa. Hospitalized HIV-infected tuberculosis patients with CD4 counts tuberculosis blood cultures were performed in all. Ambulatory HIV-infected patients without active tuberculosis were recruited as controls. Whole blood was stimulated with Escherichia coli derived lipopolysaccharide, heat-killed Streptococcus pneumoniae, and Mycobacterium tuberculosis. Biomarkers of inflammation and sepsis, intracellular (flow cytometry) and secreted cytokines (Luminex), were assessed for associations with 12-week mortality using Cox proportional hazard models. Second, we investigated associations of these immune markers with tuberculosis mycobacteremia. Sixty patients were included (median CD4 count 53 cells/µL (interquartile range [IQR], 22-132); 16 (27%) died after a median of 12 (IQR, 0-24) days. Thirty-one (52%) grew M. tuberculosis on blood culture. Mortality was associated with higher concentrations of procalcitonin, activation of the innate immune system (% CD16+CD14+ monocytes, interleukin-6, tumour necrosis factor-ɑ and colony-stimulating factor 3), and antiinflammatory markers (increased interleukin-1 receptor antagonist and lower monocyte and neutrophil responses to bacterial stimuli). Tuberculosis mycobacteremia was not associated with mortality, nor with biomarkers of sepsis. Twelve-week mortality was associated with greater pro- and antiinflammatory alterations of the innate immune system, similar to those reported in severe bacterial sepsis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  10. Inhibition of human immunodeficiency virus type 1 (HIV-1) nuclear import via Vpr-Importin α interactions as a novel HIV-1 therapy

    International Nuclear Information System (INIS)

    Suzuki, Tatsunori; Yamamoto, Norio; Nonaka, Mizuho; Hashimoto, Yoshie; Matsuda, Go; Takeshima, Shin-nosuke; Matsuyama, Megumi; Igarashi, Tatsuhiko; Miura, Tomoyuki; Tanaka, Rie; Kato, Shingo; Aida, Yoko

    2009-01-01

    The development of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus (HIV) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. One such target is the interaction between Vpr, one of the accessory gene products of HIV-1 and Importin α, which is crucial, not only for the nuclear import of Vpr, but also for HIV-1 replication in macrophages. We have identified a potential parent compound, hematoxylin, which suppresses Vpr-Importin α interaction, thereby inhibiting HIV-1 replication in a Vpr-dependent manner. Analysis by real-time PCR demonstrated that hematoxylin specifically inhibited nuclear import step of pre-integration complex. Thus, hematoxylin is a new anti-HIV-1 inhibitor that targets the nuclear import of HIV-1 via the Vpr-Importin α interaction, suggesting that a specific inhibitor of the interaction between viral protein and the cellular factor may provide a new strategy for HIV-1 therapy.

  11. The effect of aging, nutrition, and exercise during HIV infection

    Directory of Open Access Journals (Sweden)

    Gabriel Somarriba

    2010-09-01

    Full Text Available Gabriel Somarriba, Daniela Neri, Natasha Schaefer, Tracie L MillerDivision of Pediatric Clinical Research, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, USAAbstract: Medical advances continue to change the face of human immunodeficiency virus–acquired immunodeficiency syndrome (HIV/AIDS. As life expectancy increases, the number of people living with HIV rises, presenting new challenges for the management of a chronic condition. Aging, nutrition, and physical activity can influence outcomes in other chronic conditions, and emerging data show that each of these factors can impact viral replication and the immune system in HIV. HIV infection results in a decline of the immune system through the depletion of CD4+ T cells. From initial infection, viral replication is a continuous phenomenon. Immunosenescence, a hallmark of aging, results in an increased susceptibility to infections secondary to a delayed immune response, and this phenomenon may be increased in HIV-infected patients. Optimal nutrition is an important adjunct in the clinical care of patients with HIV. Nutritional interventions may improve the quality and span of life and symptom management, support the effectiveness of medications, and improve the patient’s resistance to infections and other disease complications by altering immunity. Moderate physical activity can improve many immune parameters, reduce the risk of acute infection, and combat metabolic abnormalities. As people with HIV age, alternative therapies such as nutrition and physical activity may complement medical management.Keywords: HIV replication, aging, diet, nutrition, exercise, immunity

  12. Induction of immune response in macaque monkeys infected with simian-human immunodeficiency virus having the TNF-α gene at an early stage of infection

    International Nuclear Information System (INIS)

    Shimizu, Yuya; Miyazaki, Yasuyuki; Ibuki, Kentaro; Suzuki, Hajime; Kaneyasu, Kentaro; Goto, Yoshitaka; Hayami, Masanori; Miura, Tomoyuki; Haga, Takeshi

    2005-01-01

    TNF-α has been implicated in the pathogenesis of, and the immune response against, HIV-1 infection. To clarify the roles of TNF-α against HIV-1-related virus infection in an SHIV-macaque model, we genetically engineered an SHIV to express the TNF-α gene (SHIV-TNF) and characterized the virus's properties in vivo. After the acute viremic stage, the plasma viral loads declined earlier in the SHIV-TNF-inoculated monkeys than in the parental SHIV (SHIV-NI)-inoculated monkeys. SHIV-TNF induced cell death in the lymph nodes without depletion of circulating CD4 + T cells. SHIV-TNF provided some immunity in monkeys by increasing the production of the chemokine RANTES and by inducing an antigen-specific proliferation of lymphocytes. The monkeys immunized with SHIV-TNF were partly protected against a pathogenic SHIV (SHIV-C2/1) challenge. These findings suggest that TNF-α contributes to the induction of an effective immune response against HIV-1 rather than to the progression of disease at the early stage of infection

  13. Polyfunctional analysis of Gag and Nef specific CD8+ T-cell responses in HIV-1 infected Indian individuals.

    Science.gov (United States)

    Mendiratta, Sanjay; Vajpayee, Madhu; Mojumdar, Kamalika; Chauhan, Neeraj K; Sreenivas, Vishnubhatla

    2011-02-01

    Polyfunctional CD8+ T-cells have been described as most competent in controlling viral replication. We studied the impact of antigen persistence on the polyfunctional immune responses of CD8+ T-lymphocytes to HIV Gag and Nef peptides and polyclonal stimuli in 40 ART naïve HIV infected individuals and analyzed the alterations in T-cell functionality in early and late stages of infection. Significantly elevated level of global response and polyfunctional profile of CD8+ T-cells were observed to polyclonal stimulation, than HIV specific antigens in chronically infected individuals. However no key differences were observed in CD8+ T-cell functional profile in any of the 15 unique subsets for Gag and Nef specific antigens. The subjects in early stage of infection (defined as a gap of 6 months or less between seroconversion and enrolment and with no apparent clinical symptoms) had a higher degree of response functionality (4+ or 3+ different functions simultaneously) than in the late stage infection (defined as time duration since seroconversion greater than 6 months). The data suggest that persistence of antigen during chronic infection leads to functional impairment of HIV specific responses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Mucosal IgA Responses: Damaged in Established HIV Infection—Yet, Effective Weapon against HIV Transmission

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    2017-11-01

    Full Text Available HIV infection not only destroys CD4+ T cells but also inflicts serious damage to the B-cell compartment, such as lymphadenopathy, destruction of normal B-cell follicle architecture, polyclonal hypergammaglobulinemia, increased apoptosis of B cells, and irreversible loss of memory B-cell responses with advanced HIV disease. Subepithelial B cells and plasma cells are also affected, which results in loss of mucosal IgG and IgA antibodies. This leaves the mucosal barrier vulnerable to bacterial translocation. The ensuing immune activation in mucosal tissues adds fuel to the fire of local HIV replication. We postulate that compromised mucosal antibody defenses also facilitate superinfection of HIV-positive individuals with new HIV strains. This in turn sets the stage for the generation of circulating recombinant forms of HIV. What can the mucosal B-cell compartment contribute to protect a healthy, uninfected host against mucosal HIV transmission? Here, we discuss proof-of-principle studies we have performed using passive mucosal immunization, i.e., topical administration of preformed anti-HIV monoclonal antibodies (mAbs as IgG1, dimeric IgA1 (dIgA1, and dIgA2 isotypes, alone or in combination. Our data indicate that mucosally applied anti-HIV envelope mAbs can provide potent protection against mucosal transmission of simian-human immunodeficiency virus. Our review also discusses the induction of mucosal antibody defenses by active vaccination and potential strategies to interrupt the vicious cycle of bacterial translocation, immune activation, and stimulation of HIV replication in individuals with damaged mucosal barriers.

  15. Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Saurabh Mehandru

    2006-12-01

    Full Text Available During acute and early HIV-1 infection (AEI, up to 60% of CD4(+ T cells in the lamina propria of the lower gastrointestinal (GI tract are lost as early as 2-4 wk after infection. Reconstitution in the peripheral blood during therapy with highly active antiretroviral therapy (HAART is well established. However, the extent of immune reconstitution in the GI tract is unknown.Fifty-four AEI patients and 18 uninfected control participants underwent colonic biopsy. Forty of the 54 AEI patients were followed after initiation of antiretroviral therapy (18 were studied longitudinally with sequential biopsies over a 3-y period after beginning HAART, and 22 were studied cross sectionally after 1-7 y of uninterrupted therapy. Lymphocyte subsets, markers of immune activation and memory in the peripheral blood and GI tract were determined by flow cytometry and immunohistochemistry. In situ hybridization was performed in order to identify persistent HIV-1 RNA expression. Of the patients studied, 70% maintained, on average, a 50%-60% depletion of lamina propria lymphocytes despite 1-7 y of HAART. Lymphocytes expressing CCR5 and both CCR5 and CXCR4 were persistently and preferentially depleted. Levels of immune activation in the memory cell population, CD45RO+ HLA-DR+, returned to levels seen in the uninfected control participants in the peripheral blood, but were elevated in the GI tract of patients with persistent CD4+ T cell depletion despite therapy. Rare HIV-1 RNA-expressing cells were detected by in situ hybridization.Apparently suppressive treatment with HAART during acute and early infection does not lead to complete immune reconstitution in the GI mucosa in the majority of patients studied, despite immune reconstitution in the peripheral blood. Though the mechanism remains obscure, the data suggest that there is either viral or immune-mediated accelerated T cell destruction or, possibly, alterations in T cell homing to the GI tract. Although clinically

  16. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis.

    Science.gov (United States)

    Jaeger, Laura B; Nath, Avindra

    2012-05-01

    It is well established that infection with the human immunodeficiency virus (HIV) leads to immune suppression. Less well known is the fact that long-term, progressive HIV disease is associated with the development of cognitive deficits. Since the introduction of combined antiretroviral therapy (cART), the clinical presentation of HIV infection has evolved into a chronic illness with very low levels of viral replication and chronic immune activation, with compliant affected individuals surviving for decades with a high quality of life. Despite these advances, many HIV-infected individuals develop some degree of neurodegeneration and cognitive impairment. The underlying pathophysiological mechanisms are not well understood, and there are no effective treatments. Thus, there is an unmet need for animal models that enable the study of HIV-associated neurocognitive disorders (HAND) and the testing of new therapeutic approaches to combat them. Here, we review the pros and cons of existing mouse models of HIV infection for addressing these aims and propose a detailed strategy for developing a new mouse model of HIV infection.

  17. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis

    Directory of Open Access Journals (Sweden)

    Laura B. Jaeger

    2012-05-01

    Full Text Available It is well established that infection with the human immunodeficiency virus (HIV leads to immune suppression. Less well known is the fact that long-term, progressive HIV disease is associated with the development of cognitive deficits. Since the introduction of combined antiretroviral therapy (cART, the clinical presentation of HIV infection has evolved into a chronic illness with very low levels of viral replication and chronic immune activation, with compliant affected individuals surviving for decades with a high quality of life. Despite these advances, many HIV-infected individuals develop some degree of neurodegeneration and cognitive impairment. The underlying pathophysiological mechanisms are not well understood, and there are no effective treatments. Thus, there is an unmet need for animal models that enable the study of HIV-associated neurocognitive disorders (HAND and the testing of new therapeutic approaches to combat them. Here, we review the pros and cons of existing mouse models of HIV infection for addressing these aims and propose a detailed strategy for developing a new mouse model of HIV infection.

  18. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  19. Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice.

    Science.gov (United States)

    Badamchi-Zadeh, Alexander; Tartaglia, Lawrence J; Abbink, Peter; Bricault, Christine A; Liu, Po-Ting; Boyd, Michael; Kirilova, Marinela; Mercado, Noe B; Nanayakkara, Ovini S; Vrbanac, Vladimir D; Tager, Andrew M; Larocca, Rafael A; Seaman, Michael S; Barouch, Dan H

    2018-04-01

    Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Copyright © 2018 Badamchi-Zadeh et al.

  20. Human immunodeficiency virus (HIV) specific antibodies among ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: HIV-1/2 antibody prevalence, pregnant women, commercial sex workers, risk factors, Nigeria. INTRODUCTION. There are two .... Africa. However, among Japanese and Chilean female. SWs, Miyazaki et al. .... STIs (P = 0.0001, OR = 6.0), level of education (P = 0.0001, OR = 40.7) and age (P ...

  1. Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants

    Science.gov (United States)

    2014-01-01

    Background Following transmission, HIV-1 evolves into a diverse population, and next generation sequencing enables us to detect variants occurring at low frequencies. Studying viral evolution at the level of whole genomes was hitherto not possible because next generation sequencing delivers relatively short reads. Results We here provide a proof of principle that whole HIV-1 genomes can be reliably reconstructed from short reads, and use this to study the selection of immune escape mutations at the level of whole genome haplotypes. Using realistically simulated HIV-1 populations, we demonstrate that reconstruction of complete genome haplotypes is feasible with high fidelity. We do not reconstruct all genetically distinct genomes, but each reconstructed haplotype represents one or more of the quasispecies in the HIV-1 population. We then reconstruct 30 whole genome haplotypes from published short sequence reads sampled longitudinally from a single HIV-1 infected patient. We confirm the reliability of the reconstruction by validating our predicted haplotype genes with single genome amplification sequences, and by comparing haplotype frequencies with observed epitope escape frequencies. Conclusions Phylogenetic analysis shows that the HIV-1 population undergoes selection driven evolution, with successive replacement of the viral population by novel dominant strains. We demonstrate that immune escape mutants evolve in a dependent manner with various mutations hitchhiking along with others. As a consequence of this clonal interference, selection coefficients have to be estimated for complete haplotypes and not for individual immune escapes. PMID:24996694

  2. Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study.

    Science.gov (United States)

    Walker, Naomi F; Wilkinson, Katalin A; Meintjes, Graeme; Tezera, Liku B; Goliath, Rene; Peyper, Janique M; Tadokera, Rebecca; Opondo, Charles; Coussens, Anna K; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T

    2017-07-01

    Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS. © The Author 2017. Published by Oxford

  3. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia.

    Science.gov (United States)

    Klein, Britta; Haggeney, Thomas; Fietz, Daniela; Indumathy, Sivanjah; Loveland, Kate L; Hedger, Mark; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Schuppe, Hans-Christian

    2016-10-01

    Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b

  4. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era

    Directory of Open Access Journals (Sweden)

    Koollawat Chupradit

    2017-09-01

    Full Text Available Human immunodeficiency virus (HIV is a causative agent of acquired immune deficiency syndrome (AIDS. Highly active antiretroviral therapy (HAART can slow down the replication of HIV-1, leading to an improvement in the survival of HIV-1-infected patients. However, drug toxicities and poor drug administration has led to the emergence of a drug-resistant strain. HIV-1 immunotherapy has been continuously developed, but antibody therapy and HIV vaccines take time to improve its efficiency and have limitations. HIV-1-specific chimeric antigen receptor (CAR-based immunotherapy founded on neutralizing antibodies is now being developed. In HIV-1 therapy, anti-HIV chimeric antigen receptors showed promising data in the suppression of HIV-1 replication; however, autologous transfusion is still a problem. This has led to the development of effective peptides and proteins for an alternative HIV-1 treatment. In this paper, we provide a comprehensive review of potent anti-HIV-1 peptides and proteins that reveal promising therapeutic activities. The inhibitory mechanisms of each therapeutic molecule in the different stages of the HIV-1 life cycle will be discussed herein.

  5. The brain-specific factor FEZ1 is a determinant of neuronal susceptibility to HIV-1 infection.

    LENUS (Irish Health Repository)

    Haedicke, Juliane

    2009-08-18

    Neurons are one of the few cell types in the human body that do not support HIV type-1 (HIV-1) replication. Although the lack of key receptors is a major obstacle to infection, studies suggest that additional functions inhibit virus replication to explain the exquisite resistance of neurons to HIV-1. However, specific neuronal factors that may explain this resistance remain to be discovered. In a screen for antiviral factors using a fibroblast line chemically mutagenized and selected for resistance to retroviral infection, we recently identified induction of rat FEZ1 (fasciculation and elongation protein zeta-1), a brain-specific protein, as the cause of this resistance. When exogenously expressed in nonneuronal cell lines rat FEZ1 blocked nuclear entry of retroviral DNA. Here, we demonstrate that among human brain cells, neurons naturally express high levels of FEZ1 compared to astrocytes or microglia cells and are correspondingly less susceptible to infection with pseudotyped HIV-1 that bypasses receptor-mediated viral entry. Demonstrating that endogenous FEZ1 was functionally important in the resistance of neurons to HIV-1 infection, siRNA-mediated knockdown of endogenous FEZ1 increased the infectivity of neurons while sensitive brain cell types like microglia became more resistant upon FEZ1 overexpression. In addition, FEZ1 expression was not induced in response to IFN treatment. As such, in contrast to other widely expressed, IFN-inducible antiviral factors, FEZ1 appears to represent a unique neuron-specific determinant of cellular susceptibility to infection in a cell type that is naturally resistant to HIV-1.

  6. Prevalence and risk factors of poor immune recovery among adult HIV patients attending care and treatment centre in northwestern Tanzania following the use of highly active antiretroviral therapy: a retrospective study.

    Science.gov (United States)

    Gunda, Daniel W; Kilonzo, Semvua B; Kamugisha, Erasmus; Rauya, Engelbert Z; Mpondo, Bonaventura C

    2017-06-08

    Highly Active Antiretroviral therapy (HAART) reverses the effect of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) by durably suppressing viral replication. This allows CD4 gain to levels that are adequate enough to restore the body's capability to fight against opportunistic infections (OIs). Patients with poor immune recovery have been shown to have higher risk of developing both AIDS and non AIDS related clinical events. This study aimed at assessing the proportions and risk factors of poor immune recovery in adult HIV-infected patients on 48 months of HAART attending care and treatment center (CTC) in northwestern Tanzania. A retrospective analysis of adult HIV patients' data attending CTC at Sekou Toure hospital and who initiated HAART between February 2004 and January 2008 was done. Poor immune recovery was defined as a CD4 count less than 350 cells/µl on follow up as used in other studies. A total of 734 patients were included in the study. In this study 50.25% of patients attending CTC at Sekou Toure hospital were found to have poor immune recovery. The risk of developing inadequate immune recovery was independently associated with male gender, age older than 50 years, low baseline CD4 counts, and advanced World Health Organization (WHO) clinical stage. Poor immune recovery is prevalent among adult HIV patients attending CTC at Sekou Toure hospital in Northwestern part of Tanzania and opportunistic infections are common in this sub group of patients. Clinicians in resource limited countries need to identify these patients timely and plan them for targeted viral assessment and close clinical follow up to improve their long term clinical outcome.

  7. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  8. Effect of HIV Infection on Human Papillomavirus Types Causing Invasive Cervical Cancer in Africa

    OpenAIRE

    Clifford, Gary M.; de Vuyst, Hugo; Tenet, Vanessa; Plummer, Martyn; Tully, Stephen; Franceschi, Silvia

    2016-01-01

    Objectives: HIV infection is known to worsen the outcome of cervical human papillomavirus (HPV) infection and may do so differentially by HPV type. Design: Twenty-one studies were included in a meta-analysis of invasive cervical cancers (ICC) among women infected with HIV in Africa. Method: Type-specific HPV DNA prevalence was compared with data from a similar meta-analysis of HIV-negative ICC using prevalence ratios (PR). Results: HPV detection was similar in 770 HIV-positive (91.2%) and 384...

  9. The effect of HIV/AIDS on sexuality among HIV positive females ...

    African Journals Online (AJOL)

    Introduction: The impact and stigma associated with Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS) has led to different sexual behaviours in affected individuals the resultant lack of proper sexual information and various accompanying misconception has led to a high transmission of HIV ...

  10. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Jacob D. Estes

    2018-03-01

    Full Text Available Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses, tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.

  11. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis.

    Directory of Open Access Journals (Sweden)

    Joseph N Jarvis

    2015-04-01

    Full Text Available Understanding the host immune response during cryptococcal meningitis (CM is of critical importance for the development of immunomodulatory therapies. We profiled the cerebrospinal fluid (CSF immune-response in ninety patients with HIV-associated CM, and examined associations between immune phenotype and clinical outcome. CSF cytokine, chemokine, and macrophage activation marker concentrations were assayed at disease presentation, and associations between these parameters and microbiological and clinical outcomes were examined using principal component analysis (PCA. PCA demonstrated a co-correlated CSF cytokine and chemokine response consisting primarily of Th1, Th2, and Th17-type cytokines. The presence of this CSF cytokine response was associated with evidence of increased macrophage activation, more rapid clearance of Cryptococci from CSF, and survival at 2 weeks. The key components of this protective immune-response were interleukin (IL-6 and interferon-γ, IL-4, IL-10 and IL-17 levels also made a modest positive contribution to the PC1 score. A second component of co-correlated chemokines was identified by PCA, consisting primarily of monocyte chemotactic protein-1 (MCP-1 and macrophage inflammatory protein-1α (MIP-1α. High CSF chemokine concentrations were associated with low peripheral CD4 cell counts and CSF lymphocyte counts and were predictive of immune reconstitution inflammatory syndrome (IRIS. In conclusion CSF cytokine and chemokine profiles predict risk of early mortality and IRIS in HIV-associated CM. We speculate that the presence of even minimal Cryptococcus-specific Th1-type CD4+ T-cell responses lead to increased recruitment of circulating lymphocytes and monocytes into the central nervous system (CNS, more effective activation of CNS macrophages and microglial cells, and faster organism clearance; while high CNS chemokine levels may predispose to over recruitment or inappropriate recruitment of immune cells to the CNS and

  12. Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody.

    Directory of Open Access Journals (Sweden)

    Maria Trott

    Full Text Available HIV neutralizing antibodies (nAbs represent an important tool in view of prophylactic and therapeutic applications for HIV-1 infection. Patients chronically infected by HIV-1 represent a valuable source for nAbs. HIV controllers, including long-term non-progressors (LTNP and elite controllers (EC, represent an interesting subgroup in this regard, as here nAbs can develop over time in a rather healthy immune system and in the absence of any therapeutic selection pressure. In this study, we characterized two particular antibodies that were selected as scFv antibody fragments from a phage immune library generated from an LTNP with HIV neutralizing antibodies in his plasma. The phage library was screened on recombinant soluble gp140 envelope (Env proteins. Sequencing the selected peptide inserts revealed two major classes of antibody sequences. Binding analysis of the corresponding scFv-Fc derivatives to various trimeric and monomeric Env constructs as well as to peptide arrays showed that one class, represented by monoclonal antibody (mAb A2, specifically recognizes an epitope localized in the pocket binding domain of the C heptad repeat (CHR in the ectodomain of gp41, but only in the trimeric context. Thus, this antibody represents an interesting tool for trimer identification. MAb A7, representing the second class, binds to structural elements of the third variable loop V3 and neutralizes tier 1 and tier 2 HIV-1 isolates of different subtypes with matching critical amino acids in the linear epitope sequence. In conclusion, HIV controllers are a valuable source for the selection of functionally interesting antibodies that can be selected on soluble gp140 proteins with properties from the native envelope spike.

  13. Focus on the therapeutic efficacy of 3BNC117 against HIV-1: In vitro studies, in vivo studies, clinical trials and challenges.

    Science.gov (United States)

    Liu, Zhi-Jun; Bai, Jing; Liu, Feng-Li; Zhang, Xiang-Yang; Wang, Jing-Zhang

    2017-11-01

    3BNC117, which was discovered in 2011, is a broadly neutralizing antibody (bNAb) and specifically neutralizes the human immunodeficiency virus type-1 (HIV-1) by targeting the CD4-binding site. This is the first comprehensive review that focuses on the role of 3BNC117 in the prevention of HIV-1 and acquired immune deficiency syndrome (AIDS). Briefly, 3BNC117 neutralizes many HIV/SHIV strains in vitro, blocks HIV-1 acquisition in animal models via a pre-exposure prophylaxis, alleviates HIV-1-associated viremia via a post-exposure therapeutic effect, prevents the establishment of latent HIV-1 reservoirs, and induces both humoral and cellular anti-HIV immune responses in vivo. The outcomes of Phase I and Phase IIa clinical trials in 2015 and 2016 showed the safety, tolerability, and therapeutic efficacy of 3BNC117 in HIV-1-infected human individuals. Nevertheless, anti-3BNC117 antibodies and HIV-1 strains resistant to 3BNC117 pose clinical challenges to immunotherapy with 3BNC117, so potential strategies for optimizing the potency of 3BNC117 are suggested here. Predictably, HIV-1 prevention and AIDS treatment will benefit from combinational immunotherapies with 3BNC117 and other pharmaceuticals (bNAbs, antiretroviral medicines, viral inducers, etc.) in the near future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Possible transmission of HIV Infection due to human bite

    Directory of Open Access Journals (Sweden)

    Bandivdekar Atmaram H

    2011-03-01

    Full Text Available Abstract The potential risk of HIV-1 infection following human bite although epidemiologically insignificant, but it is biologically possible. There are anecdotal reports of HIV transmission by human bites particularly if saliva is mixed with blood. The oral tissues support HIV replication and may serve as a previously unrecognized HIV reservoir. The HIV infected individuals have more viruses in blood than saliva, possibly due to the potent HIV-inhibitory properties of saliva. The case presented here is of a primary HIV infections following a human bite where in the saliva was not blood stained but it got smeared on a raw nail bed of a recipient. The blood and saliva of the source and blood of the recipient showed a detectable viral load with 91% sequence homology of C2-V3 region of HIV gp120 between the two individuals. The recipient did not receive PEP [post exposure prophylaxis] as his family physician was unaware of salivary transmission. The family physician should have taken PEP decision after proper evaluation of the severe and bleeding bite. Hence it is necessary to treat the HIV infected human bites with post exposure prophylaxis.

  15. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Meteyer, Carol U; Barber, Daniel; Mandl, Judith N

    2012-11-15

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  16. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    Science.gov (United States)

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  17. Depression and Anxiety are Common in Acute HIV Infection and Associate with Plasma Immune Activation.

    Science.gov (United States)

    Hellmuth, Joanna; Colby, Donn; Valcour, Victor; Suttichom, Duanghathai; Spudich, Serena; Ananworanich, Jintanat; Prueksakaew, Peeriya; Sailasuta, Napapon; Allen, Isabel; Jagodzinski, Linda L; Slike, Bonnie; Ochi, Derek; Paul, Robert

    2017-11-01

    This observational study of 123 Thai participants sought to determine the rate and severity of affective symptoms during acute HIV infection (AHI) and possible associations to disease mechanisms. At diagnosis, just prior to starting combination antiretroviral therapy (cART), AHI participants completed assessments of depression and anxiety symptoms that were repeated at 4, 12, and 24 weeks. Blood markers of HIV infection and immune activation were measured at study entry, with optional cerebrospinal fluid measures. A high frequency of participants reported symptoms that exceeded published thresholds supportive of depression (55.0%) and anxiety (65.8%) at diagnosis, with significant reductions after starting cART. Meeting a threshold for clinically relevant depressive symptoms at study entry was associated with higher baseline plasma HIV RNA (5.98 vs. 5.50, t = 2.46, p = 0.015), lower CD4 counts (328 vs. 436 cells/mm 3 , t = 3.46, p = 0.001), and higher plasma neopterin, a marker of macrophage activation (2694 vs. 1730 pg/mL, Mann-Whitney U = 152.5, p = 0.011). Controlling for plasma HIV RNA and CD4 count, higher baseline plasma neopterin correlated with worse initial depression and anxiety scores. Depression and anxiety symptoms are frequent in acute HIV infection, associate with plasma immune activation, and can improve concurrent with cART.

  18. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation.

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Mohsen

    2016-06-01

    Full Text Available Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART, and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9 potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002, more potently than vorinostat (p = 0.02. rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05. rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006 and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02 and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009, suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.

  19. Neurological complication in HIV patients

    Science.gov (United States)

    Ritarwan, K.

    2018-03-01

    Human Immunodeficiency Virus (HIV) is neurotropic and immunotropic, making themassive destruction of both systems. Although their amount has been reduced, there is still neurological presentations and complications of HIV remain common in the era of combination antiretroviral therapy (cART). Neurological opportunistic infections (OI) occur in advanced HIV diseases such as primary cerebral lymphoma, cryptococcal meningitis, cerebral toxoplasmosis, and progressive multifocal encephalopathy. Neurological problem directly related to HIV appear at any stage in the progress of HIV disease, from AIDS-associated dementia to the aseptic meningitis of primary HIV infection observed in subjects with an immune deficiency. The replication of peripheral HIV viral is able to be controlled in the era of effective antiretroviral therapy. Non-HIV-related neurological disease such as stroke increased important as the HIV population ages.

  20. The analysis of HIV/AIDS drug-resistant on networks

    Science.gov (United States)

    Liu, Maoxing

    2014-01-01

    In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.

  1. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160ΔV1V2 is strongly immunogenic

    International Nuclear Information System (INIS)

    Guerbois, Mathilde; Moris, Arnaud; Combredet, Chantal; Najburg, Valerie; Ruffie, Claude; Fevrier, Michele; Cayet, Nadege; Brandler, Samantha; Schwartz, Olivier; Tangy, Frederic

    2009-01-01

    Although a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160ΔV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV.

  2. Preparation of antisera specific for human B cells by immunization of rabbits with immune complexes

    International Nuclear Information System (INIS)

    Welsh, K.I.; Turner, M.J.

    1976-01-01

    Three rabbit antisera are described which are specific without absorption (titer 1:100) for separated human B cells, as measured by complement and non-complement fixing assays. The method of production of these sera involved injections of rabbits with precipitin lines formed between 10μ1 of three separate detergent solubilized membrane preparations and 4μ1 aliquots of rabbit antisera to human B cells. In addition to being B cell specific, the three sera block the MLC reaction, inhibit aggregated IgG binding to B cells, and show differential degrees of B cell lysis when tested on a panel of separated B and T cells. These and other properties suggest that the target specificities of the antibodies are the human equivalent of the murine Ia antigens. (author)

  3. Probiotics to Target the Intestinal and Vaginal Microbiota in HIV

    NARCIS (Netherlands)

    R.B.S. Hummelen (Ruben)

    2011-01-01

    textabstractThe human immunodeficiency virus (HIV) preferentially targets, infects and kills CD4+ lymphocytes, which are essential for initiating an immune response against invading micro-organisms. Ultimately the immune response becomes severely compromised and opportunistic infections and

  4. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure.

    Science.gov (United States)

    Khan, Shahzada; Telwatte, Sushama; Trapecar, Martin; Yukl, Steven; Sanjabi, Shomyseh

    2017-11-01

    The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4 + T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4 + T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.

  5. Transient nature of long-term nonprogression and broad virus-specific proliferative T-cell responses with sustained thymic output in HIV-1 controllers.

    Directory of Open Access Journals (Sweden)

    Samantha J Westrop

    Full Text Available HIV-1(+ individuals who, without therapy, conserve cellular anti-HIV-1 responses, present with high, stable CD4(+ T-cell numbers, and control viral replication, facilitate analysis of atypical viro-immunopathology. In the absence of universal definition, immune function in such HIV controllers remains an indication of non-progression.CD4 T-cell responses to a number of HIV-1 proteins and peptide pools were assessed by IFN-gamma ELISpot and lymphoproliferative assays in HIV controllers and chronic progressors. Thymic output was assessed by sjTRECs levels. Follow-up of 41 HIV-1(+ individuals originally identified as "Long-term non-progressors" in 1996 according to clinical criteria, and longitudinal analysis of two HIV controllers over 22 years, was also performed. HIV controllers exhibited substantial IFN-gamma producing and proliferative HIV-1-specific CD4 T-cell responses to both recombinant proteins and peptide pools of Tat, Rev, Nef, Gag and Env, demonstrating functional processing and presentation. Conversely, HIV-specific T-cell responses were limited to IFN-gamma production in chronic progressors. Additionally, thymic output was approximately 19 fold higher in HIV controllers than in age-matched chronic progressors. Follow-up of 41 HIV-1(+ patients identified as LTNP in 1996 revealed the transitory characteristics of this status. IFN-gamma production and proliferative T-cell function also declines in 2 HIV controllers over 22 years.Although increased thymic output and anti-HIV-1 T-cell responses are observed in HIV controllers compared to chronic progressors, the nature of nonprogressor/controller status appears to be transitory.

  6. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells.

    Science.gov (United States)

    Ramsuran, Veron; Naranbhai, Vivek; Horowitz, Amir; Qi, Ying; Martin, Maureen P; Yuki, Yuko; Gao, Xiaojiang; Walker-Sperling, Victoria; Del Prete, Gregory Q; Schneider, Douglas K; Lifson, Jeffrey D; Fellay, Jacques; Deeks, Steven G; Martin, Jeffrey N; Goedert, James J; Wolinsky, Steven M; Michael, Nelson L; Kirk, Gregory D; Buchbinder, Susan; Haas, David; Ndung'u, Thumbi; Goulder, Philip; Parham, Peter; Walker, Bruce D; Carlson, Jonathan M; Carrington, Mary

    2018-01-05

    The highly polymorphic human leukocyte antigen ( HLA ) locus encodes cell surface proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease. Copyright © 2017, American Association for the Advancement of Science.

  7. Friend or Foe: Innate Sensing of HIV in the Female Reproductive Tract.

    Science.gov (United States)

    Roan, Nadia R; Jakobsen, Martin R

    2016-02-01

    The female reproductive tract (FRT) is a major site for human immunodeficiency virus (HIV) infection. There currently exists a poor understanding of how the innate immune system is activated upon HIV transmission and how this activation may affect systemic spread of HIV from the FRT. However, multiple mechanisms for how HIV is sensed have been deciphered using model systems with cell lines and peripheral blood-derived cells. The aim of this review is to summarize recent progress in the field of HIV innate immune sensing and place this in the context of the FRT. Because HIV is somewhat unique as an STD that thrives under inflammatory conditions, the response of cells upon sensing HIV gene products can either promote or limit HIV infection depending on the context. Future studies should include investigations into how FRT-derived primary cells sense and respond to HIV to confirm conclusions drawn from non-mucosal cells. Understanding how cells of the FRT participate in and effect innate immune sensing of HIV will provide a clearer picture of what parameters during the early stages of HIV exposure determine transmission success. Such knowledge could pave the way for novel approaches for preventing HIV acquisition in women.

  8. Differential Relationships among Circulating Inflammatory and Immune Activation Biomediators and Impact of Aging and Human Immunodeficiency Virus Infection in a Cohort of Injection Drug Users

    Directory of Open Access Journals (Sweden)

    Gregory D. Kirk

    2017-10-01

    Full Text Available As individuals with human immunodeficiency virus (HIV infection live longer, aging and age-related chronic conditions have become major health concerns for this vulnerable population. Substantial evidence suggests that chronic inflammation and immune activation contribute significantly to chronic conditions in people aging with or without HIV infection. As a result, increasing numbers of inflammation and immune activation biomediators have been measured. While very few studies describe their in vivo relationships, such studies can serve as an important and necessary initial step toward delineating the complex network of chronic inflammation and immune activation. In this study, we evaluated in vivo relationships between serum levels of neopterin, a biomediator of immune activation, and four commonly described inflammatory biomediators: soluble tumor necrosis factor (TNF-α receptor (sTNFR-1, sTNFR-2, interleukin (IL-6, and C-reactive protein (CRP, as well as the impact of HIV infection and aging in the AIDS Linked to the Intravenous Experience (ALIVE study, a community-recruited observational study of former and current injection drug users (IDUs with or at high risk for HIV infection in Baltimore, MD, USA. The study included 1,178 participants in total with 316 HIV-infected (HV+ and 862 HIV-uninfected (HIV− IDUs. Multivariate regression analyses were employed, adjusting for age, sex, body mass index, smoking, hepatitis C virus co-infection, injection drug use, comorbidities, and HIV status (for all participants, and HIV viral load, CD4+ T-cell counts, and antiretroviral therapy (for HIV+ participants. The results showed significant impact of aging on all five biomediators and that of HIV infection on all but sTNFR-1. In the adjusted model, neopterin had positive associations with sTNFR-1 and sTNFR-2 (partial correlation coefficients: 0.269 and 0.422, respectively, for all participants; 0.292 and 0.354 for HIV+; and 0.262 and 0.435 for HIV

  9. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  10. Antigen-specific tolerance of human alpha1-antitrypsin induced by helper-dependent adenovirus.

    Science.gov (United States)

    Cerullo, V; McCormack, W; Seiler, M; Mane, V; Cela, R; Clarke, C; Rodgers, J R; Lee, B

    2007-12-01

    As efficient and less toxic virus-derived gene therapy vectors are developed, a pressing problem is to avoid immune response to the therapeutic gene product. Secreted therapeutic proteins potentially represent a special problem, as they are readily available to professional antigen-presenting cells throughout the body. Some studies suggest that immunity to serum proteins can be avoided in some mouse strains by using tissue-specific promoters. Here we show that expression of human alpha1-antitrypsin (AAT) was nonimmunogenic in the immune-responsive strain C3H/HeJ, when expressed from helper-dependent (HD) vectors using ubiquitous as well as tissue-specific promoters. Coadministration of less immunogenic HD vectors with an immunogenic first-generation vector failed to immunize, suggesting immune suppression rather than immune stealth. Indeed, mice primed with HD vectors were tolerant to immune challenge with hAAT emulsified in complete Freund's adjuvant. Such animals developed high-titer antibodies to coemulsified human serum albumin, showing that tolerance was antigen specific. AAT-specific T cell responses were depressed in tolerized animals, suggesting that tolerance affects both T and B cells. These results are consistent with models of high-dose tolerance of B cells and certain other suppressive mechanisms, and suggest that a high level of expression from HD vectors can be sufficient to induce specific immune tolerance to serum proteins.

  11. Human immunodeficiency virus (HIV) is highly associated with giant idiopathic esophageal ulcers in acquired immunodeficiency syndrome (AIDS) patients.

    Science.gov (United States)

    Lv, Bei; Cheng, Xin; Gao, Jackson; Zhao, Hong; Chen, Liping; Wang, Liwei; Huang, Shaoping; Fan, Zhenyu; Zhang, Renfang; Shen, Yinzhong; Li, Lei; Liu, Baochi; Qi, Tangkai; Wang, Jing; Cheng, Jilin

    2016-01-01

    This study aimed to determine whether the human immunodeficiency virus (HIV) exists in giant idiopathic esophageal ulcers in the patients with acquired immune deficiency syndrome (AIDS). 16 AIDS patients with a primary complaint of epigastric discomfort were examined by gastroscopy. Multiple and giant esophageal ulcers were biopsied and analyzed with pathology staining and reverse transcription-polymerase chain reaction (RT-PCR) to determine the potential pathogenic microorganisms, including HIV, cytomegalovirus (CMV) and herpes simplex viruses (HSV). HIV was detected in ulcer samples from 12 out of these 16 patients. Ulcers in 2 patients were infected with CMV and ulcers in another 2 patients were found HSV positive. No obvious cancerous pathological changes were found in these multiple giant esophageal ulcer specimens. HIV may be one of the major causative agents of multiple benign giant esophageal ulcers in AIDS patients.

  12. HIV-1 p24(gag derived conserved element DNA vaccine increases the breadth of immune response in mice.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available Viral diversity is considered a major impediment to the development of an effective HIV-1 vaccine. Despite this diversity, certain protein segments are nearly invariant across the known HIV-1 Group M sequences. We developed immunogens based on the highly conserved elements from the p24(gag region according to two principles: the immunogen must (i include strictly conserved elements of the virus that cannot mutate readily, and (ii exclude both HIV regions capable of mutating without limiting virus viability, and also immunodominant epitopes located in variable regions. We engineered two HIV-1 p24(gag DNA immunogens that express 7 highly Conserved Elements (CE of 12-24 amino acids in length and differ by only 1 amino acid in each CE ('toggle site', together covering >99% of the HIV-1 Group M sequences. Altering intracellular trafficking of the immunogens changed protein localization, stability, and also the nature of elicited immune responses. Immunization of C57BL/6 mice with p55(gag DNA induced poor, CD4(+ mediated cellular responses, to only 2 of the 7 CE; in contrast, vaccination with p24CE DNA induced cross-clade reactive, robust T cell responses to 4 of the 7 CE. The responses were multifunctional and composed of both CD4(+ and CD8(+ T cells with mature cytotoxic phenotype. These findings provide a method to increase immune response to universally conserved Gag epitopes, using the p24CE immunogen. p24CE DNA vaccination induced humoral immune responses similar in magnitude to those induced by p55(gag, which recognize the virus encoded p24(gag protein. The inclusion of DNA immunogens composed of conserved elements is a promising vaccine strategy to induce broader immunity by CD4(+ and CD8(+ T cells to additional regions of Gag compared to vaccination with p55(gag DNA, achieving maximal cross-clade reactive cellular and humoral responses.

  13. Modeling age-specific mortality for countries with generalized HIV epidemics.

    Directory of Open Access Journals (Sweden)

    David J Sharrow

    Full Text Available In a given population the age pattern of mortality is an important determinant of total number of deaths, age structure, and through effects on age structure, the number of births and thereby growth. Good mortality models exist for most populations except those experiencing generalized HIV epidemics and some developing country populations. The large number of deaths concentrated at very young and adult ages in HIV-affected populations produce a unique 'humped' age pattern of mortality that is not reproduced by any existing mortality models. Both burden of disease reporting and population projection methods require age-specific mortality rates to estimate numbers of deaths and produce plausible age structures. For countries with generalized HIV epidemics these estimates should take into account the future trajectory of HIV prevalence and its effects on age-specific mortality. In this paper we present a parsimonious model of age-specific mortality for countries with generalized HIV/AIDS epidemics.The model represents a vector of age-specific mortality rates as the weighted sum of three independent age-varying components. We derive the age-varying components from a Singular Value Decomposition of the matrix of age-specific mortality rate schedules. The weights are modeled as a function of HIV prevalence and one of three possible sets of inputs: life expectancy at birth, a measure of child mortality, or child mortality with a measure of adult mortality. We calibrate the model with 320 five-year life tables for each sex from the World Population Prospects 2010 revision that come from the 40 countries of the world that have and are experiencing a generalized HIV epidemic. Cross validation shows that the model is able to outperform several existing model life table systems.We present a flexible, parsimonious model of age-specific mortality for countries with generalized HIV epidemics. Combined with the outputs of existing epidemiological and

  14. Evolutionary genomics and HIV restriction factors.

    Science.gov (United States)

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  15. Preventing HIV infection without targeting the virus: how reducing HIV target cells at the genital tract is a new approach to HIV prevention.

    Science.gov (United States)

    Lajoie, Julie; Mwangi, Lucy; Fowke, Keith R

    2017-09-12

    For over three decades, HIV infection has had a tremendous impact on the lives of individuals and public health. Microbicides and vaccines studies have shown that immune activation at the genital tract is a risk factor for HIV infection. Furthermore, lower level of immune activation, or what we call immune quiescence, has been associated with a lower risk of HIV acquisition. This unique phenotype is observed in highly-exposed seronegative individuals from different populations including female sex workers from the Pumwani cohort in Nairobi, Kenya. Here, we review the link between immune activation and susceptibility to HIV infection. We also describe a new concept in prevention where, instead of targeting the virus, we modulate the host immune system to resist HIV infection. Mimicking the immune quiescence phenotype might become a new strategy in the toolbox of biomedical methods to prevent HIV infection. Clinical trial registration on clinicaltrial.gov: #NCT02079077.

  16. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  17. The Association Between Post-traumatic Stress Disorder and Markers of Inflammation and Immune Activation in HIV-Infected Individuals With Controlled Viremia.

    Science.gov (United States)

    Siyahhan Julnes, Peter; Auh, Sungyoung; Krakora, Rebecca; Withers, Keenan; Nora, Diana; Matthews, Lindsay; Steinbach, Sally; Snow, Joseph; Smith, Bryan; Nath, Avindra; Morse, Caryn; Kapetanovic, Suad

    2016-01-01

    Post-traumatic stress disorder (PTSD) may be associated with chronic immune dysregulation and a proinflammatory state. Among HIV-infected individuals, PTSD is associated with greater morbidity and mortality, but the association with immune dysfunction has not been evaluated. This study explores the association between PTSD and selected markers of inflammation and immune activation in a cohort of HIV-infected, virally-suppressed individuals. HIV-infected adults who were virologically controlled on antiretroviral medications were recruited through a screening protocol for studies of HIV-related neurocognitive disorders. Each participant underwent blood draws, urine toxicology screen, and completed the Client Diagnostic Questionnaire, a semistructured psychiatric interview. Of 114 eligible volunteers, 72 (63%) were male, 77 (68%) African American, and 34 (30%) participants met criteria for PTSD. Participants with PTSD were more likely to be current smokers (79%) than those without (60%) (p = 0.05). The PTSD cohort had significantly higher total white blood cell counts (5318 and 6404 cells/uL, p = 0.03), absolute neutrophil count (2767 and 3577 cells/uL, p = 0.02), CD8% (43 and 48, p = 0.05), and memory CD8% (70 and 78%, p = 0.04); lower naïve CD8% (30 and 22%, p = 0.04) and higher rate of high-sensitivity C-reactive protein >3mg/L (29 and 20, p = 0.03). A high prevalence of PTSD was identified in this cohort of HIV-infected adults who were virally suppressed. These results suggest that PTSD may be associated with immune dysregulation even among antiretroviral therapy-adherent HIV-infected individuals. Published by Elsevier Inc.

  18. An advanced BLT-humanized mouse model for extended HIV-1 cure studies.

    Science.gov (United States)

    Lavender, Kerry J; Pace, Craig; Sutter, Kathrin; Messer, Ronald J; Pouncey, Dakota L; Cummins, Nathan W; Natesampillai, Sekar; Zheng, Jim; Goldsmith, Joshua; Widera, Marek; Van Dis, Erik S; Phillips, Katie; Race, Brent; Dittmer, Ulf; Kukolj, George; Hasenkrug, Kim J

    2018-01-02

    Although bone marrow, liver, thymus (BLT)-humanized mice provide a robust model for HIV-1 infection and enable evaluation of cure strategies dependent on endogenous immune responses, most mice develop graft versus host disease (GVHD), limiting their utility for extended HIV cure studies. This study aimed to: evaluate the GVHD-resistant C57 black 6 (C57BL/6) recombination activating gene 2 (Rag2)γcCD47 triple knockout (TKO)-BLT mouse as a model to establish HIV-1 latency. Determine whether TKO-BLT mice could be maintained on antiretroviral therapy (ART) for extended periods of time. Assess the rapidity of viral rebound following therapy interruption. TKO-BLT mice were HIV-1 infected, treated with various ART regimens over extended periods of time and assayed for viral rebound following therapy interruption. Daily subcutaneous injection and oral ART-mediated suppression of HIV-1 infection was tested at various doses in TKO-BLT mice. Mice were monitored for suppression of viremia and cellular HIV-1 RNA and DNA prior to and following therapy interruption. Mice remained healthy for 45 weeks posthumanization and could be treated with ART for up to 18 weeks. Viremia was suppressed to less than 200 copies/ml in the majority of mice with significant reductions in cellular HIV-1 RNA and DNA. Treatment interruption resulted in rapid viral recrudescence. HIV-1 latency can be maintained in TKO-BLT mice over extended periods on ART and rapid viral rebound occurs following therapy removal. The additional 15-18 weeks of healthy longevity compared with other BLT models provides sufficient time to examine the decay kinetics of the latent reservoir as well as observe delays in recrudescence in HIV-1 cure studies.

  19. The role of CC chemokine receptor 5 in antiviral immunity

    DEFF Research Database (Denmark)

    Nansen, Anneline; Christensen, Jan Pravsgaard; Andreasen, Susanne Ørding

    2002-01-01

    The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune...

  20. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice.

    Science.gov (United States)

    Nogueira, Raquel Tayar; Sahi, Vincent; Huang, Jing; Tsuji, Moriya

    2017-08-01

    Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. Mother-to-child transmission of human immunodeficiency virus (HIV) among HIV-infected pregnant women on highly active anti-retroviral therapy with premature rupture of membranes at term.

    Science.gov (United States)

    Eleje, George Uchenna; Edokwe, Emeka Stephen; Ikechebelu, Joseph Ifeanyichukwu; Onubogu, Chinyere Ukamaka; Ugochukwu, Ebele Francesca; Okam, Princeston Chukwuemeka; Ibekwe, Adaobi Maryann

    2018-01-01

    To determine mother-to-child transmission (MTCT) rate and associated risk factors of human immune-deficiency virus (HIV) among HIV-infected pregnant women with term premature rupture of membranes (PROM) in comparison with those without PROM at term. All optimally managed HIV-positive pregnant women of Nnamdi Azikiwe University Teaching Hospital, on highly active anti-retroviral therapy (HAART) who had PROM at term were enrolled. Maternal HIV-1 viral load was not assessed. Follow up was for a minimum of 18 months for evidence of HIV infection. Of the 121 women with PROM at term, 46 (38.0%) were HIV sero-positive, 22/46 (47.8%) of which had their babies followed up till 18 months. The mean latency period was 10.5 ± 5.3 h in PROM group. Apart from duration of PROM (OR = 0.01; 95%CI = 0.00-0.13; p  0.05). Of the 22 (47.8%) babies followed-up in the PROM group and 13 in non-PROM group, none tested positive to HIV, given an MTCT rate of 0%. MTCT rate was 0% following term PROM and in women without PROM. Since maternal HIV-1 viral load was not assessed, we need to be critical while interpreting the findings.

  2. Ranitidine improves certain cellular immune responses in asymptomatic HIV-infected individuals

    DEFF Research Database (Denmark)

    Nielsøn, H J; Svenningsen, A; Moesgaard, F

    1991-01-01

    Human immunodeficiency virus (HIV) infection is characterized by a progressive impairment in immunocompetence leading to severe opportunistic infections and malignancies. In a double-blind, placebo-controlled study, the potential impact of immunomodulation by oral ranitidine, 600 mg daily, for 28...... days was studied in 18 HIV-positive patients (CDC group II). All were without clinical signs of infections and were not treated with other known immunomodulating agents. Several immunological parameters related to HIV infection were studied and confirmed to be impaired early in HIV infection...... shown in this study is small, the present result indicates the need for further trials with immunomodulation by ranitidine in HIV-infected individuals....

  3. Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays.

    Science.gov (United States)

    Zaric, Marija; Becker, Pablo Daniel; Hervouet, Catherine; Kalcheva, Petya; Ibarzo Yus, Barbara; Cocita, Clement; O'Neill, Lauren Alexandra; Kwon, Sung-Yun; Klavinskis, Linda Sylvia

    2017-12-28

    The generation of tissue resident memory (T RM ) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag. We demonstrate rapid dissolution kinetics of the microneedles in skin. Moreover, a consequence of MA vaccine cargo release was the generation of long-lived antigen-specific CD8 + T cells that accumulate in mucosal tissues, including the female genital and respiratory tract. The memory CD8 + T cell population maintained in the peripheral mucosal tissues was attributable to a MA delivered AdHu5 vaccine instructing CD8 + T cell expression of CXCR3 + , CD103 +, CD49a + , CD69 + , CD127 + homing, retention and survival markers. Furthermore, memory CD8 + T cells generated by MA immunization significantly expanded upon locally administered antigenic challenge and showed a predominant poly-functional profile producing high levels of IFNγ and Granzyme B. These data demonstrate that skin vaccine delivery using microneedle technology induces mobilization of long lived, poly-functional CD8 + T cells to peripheral tissues, phenotypically displaying hallmarks of residency and yields new insights into how to design and deliver effective vaccine candidates with properties to exert local immunosurveillance at the mucosal surfaces. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  5. Detection of HIV-1 and Human Proteins in Urinary Extracellular Vesicles from HIV+ Patients

    Directory of Open Access Journals (Sweden)

    Samuel I. Anyanwu

    2018-01-01

    Full Text Available Background. Extracellular vesicles (EVs are membrane bound, secreted by cells, and detected in bodily fluids, including urine, and contain proteins, RNA, and DNA. Our goal was to identify HIV and human proteins (HPs in urinary EVs from HIV+ patients and compare them to HIV− samples. Methods. Urine samples were collected from HIV+ (n=35 and HIV− (n=12 individuals. EVs were isolated by ultrafiltration and characterized using transmission electron microscopy, tandem mass spectrometry (LC/MS/MS, and nanoparticle tracking analysis (NTA. Western blots confirmed the presence of HIV proteins. Gene ontology (GO analysis was performed using FunRich and HIV Human Interaction database (HHID. Results. EVs from urine were 30–400 nm in size. More EVs were in HIV+ patients, P<0.05, by NTA. HIV+ samples had 14,475 HPs using LC/MS/MS, while only 111 were in HIV−. HPs in the EVs were of exosomal origin. LC/MS/MS showed all HIV+ samples contained at least one HIV protein. GO analysis showed differences in proteins between HIV+ and HIV− samples and more than 50% of the published HPs in the HHID interacted with EV HIV proteins. Conclusion. Differences in the proteomic profile of EVs from HIV+ versus HIV− samples were found. HIV and HPs in EVs could be used to detect infection and/or diagnose HIV disease syndromes.

  6. Weak anti-HIV CD8+ T-cell effector activity in HIV primary infection

    Science.gov (United States)

    Dalod, Marc; Dupuis, Marion; Deschemin, Jean-Christophe; Goujard, Cécile; Deveau, Christiane; Meyer, Laurence; Ngo, Nicole; Rouzioux, Christine; Guillet, Jean-Gérard; Delfraissy, Jean-François; Sinet, Martine; Venet, Alain

    1999-01-01

    HIV-specific CD8+ T cells play a major role in the control of virus during HIV primary infection (PI) but do not completely prevent viral replication. We used IFN-γ enzyme-linked immunospot assay and intracellular staining to characterize the ex vivo CD8+ T-cell responses to a large variety of HIV epitopic peptides in 24 subjects with early HIV PI. We observed HIV-specific responses in 71% of subjects. Gag and Nef peptides were more frequently recognized than Env and Pol peptides. The number of peptides recognized was low (median 2, range 0–6). In contrast, a much broader response was observed in 30 asymptomatic subjects with chronic infection: all were responders with a median of 5 peptides recognized (range 1–13). The frequency of HIV-specific CD8+ T cells among PBMC for a given peptide was of the same order of magnitude in both groups. The proportion of HIV-specific CD8+CD28– terminally differentiated T cells was much lower in PI than at the chronic stage of infection. The weakness of the immune response during HIV PI could partially account for the failure to control HIV. These findings have potential importance for defining immunotherapeutic strategies and establishing the goals for effective vaccination. J. Clin. Invest. 104:1431–1439 (1999). PMID:10562305

  7. Existentially informed HIV-related psychotherapy.

    Science.gov (United States)

    Farber, Eugene W

    2009-09-01

    This article describes an existentially informed approach to conducting psychotherapy with individuals living with the human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS). Uses of existential concepts to guide a holistic conceptualization of the individual and illuminate core existential concerns and dilemmas in confronting HIV-related challenges are delineated. Applications of existential ideas regarding psychotherapy process and technique in HIV-related psychotherapy also are illustrated. It is concluded that existential psychotherapy offers a conceptual framework that is especially well suited to the work of psychotherapy with individuals living with HIV disease, although the approach has received only limited attention in the HIV-related psychotherapy literature. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  8. Regulatory T cells in human immunodeficiency virus-infected patients are elevated and independent of immunological and virological status, as well as initiation of highly active anti-retroviral therapy

    DEFF Research Database (Denmark)

    Gaardbo, J.C.; Nielsen, S.D.; Vedel, S.J.

    2008-01-01

    Infection with human immunodeficiency virus (HIV) causes a dysregulation of the immune system. This is caused by HIV-specific as well as non-specific mechanisms and has not been explained fully. In particular, knowledge is lacking about the potential role of host-mediated immunosuppressive mechan......(regs) was found to be independent of both immunological and virological status, indicating that initiation of HAART has minor effects on the T(reg) level in HIV-infected patients....

  9. The role of drugs in HIV prevention

    Science.gov (United States)

    Kembaren, T.

    2018-03-01

    WHO reports 36.7 million people are living with Human Immunodeficiency Virus (HIV) worldwide by 2016 with about 1.8 million new infections each year. It will be a specific health problem for the world in both developed and developing countries so it is necessary strategies to reduce HIV transmission to the community. HIV transmission in people with risk factors is largely determined by the amount of virus in the blood of people who are the source of infection. Antiretroviral (ARV) therapy has long been used in HIV patients, which serves to suppress viral replication so that the patient’s immunity increases; opportunistic infections are resolved and prolong the lifespan and lower transmission rates. In the HIV Prevention Trials Network (HPTN) study 052 there was a 96% reduction in transmission in earlier antiretroviral. ARV is also used in the prevention of transmission in people exposed to HIV virus that is Postexposure Prophylaxis as well as in people at risk before exposure (Pre-exposure Prophylaxis). Three prevention strategies with the provision of ARV is expected to be guided as a means of prevention of transmission in addition to behavioral changes has long been declared since the beginning of the HIV epidemic.

  10. Human prealbumin fraction: effects on cell-mediated immunity and tumor rejection

    International Nuclear Information System (INIS)

    Leung, K.H.; Ehrke, M.J.; Bercsenyi, K.; Mihich, E.

    1982-01-01

    The effect of human prealbumin fraction as allogeneic cell-mediated immunity in primary sensitization cultures of murine spleen cells was studied by 3H-thymidine uptake and specific 51Cr release assays. Prealbumin caused a dose-dependent augmentation of these responses. Human serum albumin, bovine serum albumin, and calf-thymosin fraction 5 had little effect. Prealbumin was active when added on day 0 or 1 but not thereafter. Prealbumin added to effector cells from immunized mice did not change their lytic activity. Prealbumin, but not human serum albumin or thymosin fraction 5, augmented secondary cell-mediated immunity in culture after primary immunization in mice. A slow growing mammary tumor line, which originated as a spontaneous mammary tumor in a DBA/2 HaDD breeder mouse, initially grows in 100% of DBA/2J mice but is then rejected in 10 to 20% of them. When prealbumin (59 microgram/day) was given subcutaneously for 2 weeks to DBA/2J mice and the tumor implanted 2 weeks later. 78% of the mice rejected the tumor and were then resistant to a rechallenge

  11. Plasma levels of soluble CD14 independently predict mortality in HIV infection

    DEFF Research Database (Denmark)

    Sandler, Netanya G; Wand, Handan; Roque, Annelys

    2011-01-01

    Chronic human immunodeficiency virus (HIV) infection is associated with intestinal permeability and microbial translocation that contributes to systemic immune activation, which is an independent predictor of HIV disease progression. The association of microbial translocation with clinical outcom...

  12. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  13. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Science.gov (United States)

    Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo

    2011-01-01

    To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  14. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  15. AWARENESS, KNOWLEDGE, AND BEHAVIOR REGARDING HIV/AIDS AMONG FRESHMAN STUDENTS AT OAKLAND UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Sean Mackman

    2017-05-01

    Full Text Available Human immunodeficiency virus (HIV causes a sexually transmitted disease (STD affecting the human immune system. It is mainly transmitted through sexual intercourse, blood transfusions, hypodermic needles, and parenterally. Multiple actions can be taken to prevent the spread of HIV/AIDS, such as condom and sterile needle use and HIV testing for pregnant women. This study aims to assess freshmen students’ awareness, knowledge, attitudes, and behavioral perceptions regarding HIV/AIDS at Oakland University (OU in Michigan. This study is a cross-sectional survey targeting freshman students at OU. The questionnaire is comprised of seven sections including demographics, risk perception, protection measures, alcohol tendencies, health-seeking behaviors, culturally sensitive issues, and methods of dissemination of information. The mean age of respondents was 20. The majority of respondents knew that HIV is transmitted sexually (98% and by sharing needles (98%. Many misconceptions about transmission of HIV were expressed by 53%. Data showed that while there was good knowledge regarding HIV transmission and prevention, some misconceptions still prevailed. Our results indicate the need to develop educational programs with specific interventions to raise awareness about preventive measures, clear misconceptions, and promote healthy lifestyle in order to prevent new HIV infections among young college students.

  16. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    International Nuclear Information System (INIS)

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-01-01

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K b transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8 + T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8 + T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  17. Persistence of hepatitis A virus antibodies after primary immunization and response to revaccination in children and adolescents with perinatal HIV exposure

    Science.gov (United States)

    Gouvêa, Aída de Fátima Thomé Barbosa; Pinto, Maria Isabel de Moraes; Miyamoto, Maristela; Machado, Daisy Maria; Pessoa, Silvana Duarte; do Carmo, Fabiana Bononi; Beltrão, Suênia Cordeiro de Vasconcelos; Succi, Regina Célia de Menezes

    2015-01-01

    OBJECTIVE: To assess possible factors associated with the loss of antibodies to hepatitis A 7 years after the primary immunization in children of HIV-infected mothers and the response to revaccination in patients seronegative for hepatitis A. METHODS: Quantification of HAV antibodies by electrochemiluminescence was performed in 39 adolescents followed up at the Pediatric Aids Clinic of Federal University of São Paulo (Unifesp): 29 HIV-infected (HIV group) (median age: 12.8 years) and 10 HIV-exposed but non-infected (ENI group) (median age: 13.4 years). All of them received two doses of HAV vaccine (Havrix(r)) in 2002. RESULTS: The median age at primary immunization (PI) was 5.4 years for HIV group and 6.5 years for ENI group. All children, from both groups, had antibodies to HAV >20 mIU/mL after PI. Seven years later, the ENI group showed a median concentration of antibodies = 253.5 mIU/mL, while the HIV group = 113.0 mIU/mL (Mann-Whitney test, p=0.085). All ENI group and 23/29 (79.3%) from HIV group mantained HAV antibodies 7 years after PI. The levels of hepatitis A antibodies in the primary vaccination were the only factor independently associated with maintaining these antibodies for 7 years. The group that lost HAV seropositivity was revaccinated and 83.3% (5/6) responded with antibodies >20 mUI/mL. CONCLUSIONS: The antibodies levels acquired in the primary vaccination in the HIV group were the main factor associated with antibodies loss after HAV immunization. PMID:25918013

  18. Immune Reconstitution Inflammatory Syndrome (IRIS): What pathologists should know.

    Science.gov (United States)

    Nelson, Ann Marie; Manabe, Yukari C; Lucas, Sebastian B

    2017-07-01

    Antiretroviral therapy has significantly improved the quality and length of life for those patients able to access effective and sustained treatment. The resulting restoration of the immune response is associated with a change in the clinical presentation of opportunistic infections, and the histologic reaction to pathogens. A complex combination of alterations in host response across the stages of HIV infection has been documented over the past 3 decades. The defects are seen in both acute and chronic phases of inflammation and involve innate and adaptive immunity. In advanced stages of HIV infection, the marked disruption of lymphoid tissue and loss of follicular dendritic cells limits the host's ability to process antigen and mount specific responses to pathogens. There are qualitative and quantitative defects in CD4 T cells due to HIV infection. The resulting indirect effects include loss of cytokine production, dysregulation of B-cell function, loss of cellular mediated immunity and "holes" in the immunologic repertoire that may not be restored with the use of antiretroviral therapy. Immune reconstitution allows the host to respond to and control infection, but a significant number of patients will have atypical inflammatory syndromes during the recovery period. We briefly discuss the impact of HIV infection on the immune system and give an overview of the spectrum of conditions attributed to the Immune Reconstitution Inflammatory syndrome (IRIS). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Human Immunodeficiency Virus (HIV) Seropositivity In African ...

    African Journals Online (AJOL)

    A seroprevalence study of Human immunodeficiency virus (HIV) infection in new patients attending the eye clinic of LAUTECH Teaching Hospital in Osogbo, Osun State, Nigeria showed that twenty-nine patients 2.7%) were positive to HIV1. No patient was positive to HIV 2. There were 21 males (72.4%) and 8 females ...

  20. Opportunistic Infections and Complications in Human Immunodeficiency Virus-1-Infected Children: Correlation with immune status

    Directory of Open Access Journals (Sweden)

    Jaivinder Yadav

    2014-10-01

    Full Text Available Objectives: The aim of this study was to ascertain the correlation between various opportunistic infections and complications in human immunodeficiency virus (HIV-1-infected children and the immune status of these patients, evaluated by absolute cluster of differentiation 4 (CD4 count and CD4 percentage. Methods: This study was conducted from January 2009 to June 2010 at the Antiretroviral Treatment Centre of the Pt. B.D. Sharma Post Graduate Institute of Medical Sciences, a tertiary care hospital in Rohtak, Haryana, in northern India. A total of 20 HIV-1-infected children aged 4–57 months were studied. Demographic and baseline investigations were performed prior to the start of highly active antiretroviral therapy (HAART. A fixed-dose combination of HAART was given based on the patient’s weight. Baseline investigations were repeated after six months of HAART. Results: There was a significant increase in the patients’ haemoglobin, weight, height and CD4 count after six months of HAART. Significant improvements (P <0.05 were also noted in the patients’ immune status, graded according to the World Health Organization. Conclusion: This study observed that the severity and frequency of opportunistic complications in paediatric patients with HIV-1 increased with a fall in the CD4 count. The treatment of opportunistic infections, along with antiretroviral therapy, may lead to both clinical and immunological recovery as well as a decreased incidence of future opportunistic infections. The CD4 count may give treating physicians an initial idea about the immune status of each child and could also be used as a biological marker of HAART efficacy. Patient compliance must be ensured during HAART as this is a key factor in improving outcomes.

  1. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics.

    Directory of Open Access Journals (Sweden)

    Andreas Schweizer

    2008-07-01

    Full Text Available Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.

  2. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis.

    Science.gov (United States)

    Zhu, Ping; Li, Xiao-Yan; Wang, Hong-Kun; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Fan, Chun-Mei

    2007-01-01

    Oral antigen is an attractive approach for the treatment of autoimmune and inflammatory diseases. Establishment of immune markers and methods in evaluating the effects of antigen-specific cellular and humoral immune responses will help the application of oral tolerance in the treatment of human diseases. The present article observed the effects of chicken collagen II (CII), the recombinant polymerized human collagen II 250-270 (rhCII 250-270) peptide and synthesized human CII 250-270 (syCII 250-270) peptide on the induction of antigen-specific autoimmune response in rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMC) and on the specific cellular and humoral immune response in collagen-induced arthritis (CIA) and mice fed with CII (250-270) prior to immunization with CII. In the study, proliferation, activation and intracellular cytokine production of antigen-specific T lymphocytes were simultaneously analyzed by bromodeoxyuridine (BrdU) incorporation and flow cytometry at the single-cell level. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively. CII (250-270) was found to have stimulated the response of specific lymphocytes in PBMC from RA patients, including the increase expression of surface activation antigen marker CD69 and CD25, and DNA synthesis. Mice, fed with CII (250-270) before CII immunization, had significantly lower arthritic scores than the mice immunized with CII alone, and the body weight of the former increased during the study period. Furthermore, the specific T cell activity, proliferation and secretion of interferon (IFN)-gamma in spleen cells were actively suppressed in CII (250-270)-fed mice, and the serum anti-CII, anti-CII (250-270) antibody activities and the frequency of specific antibody-forming spleen cells were significantly lower in CII (250-270)-fed mice than in mice immunized with CII alone. These observations suggest that oral administration of CII (250-270) can

  3. Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.

    Science.gov (United States)

    McCarthy, Alex J; Lindsay, Jodi A

    2013-10-01

    Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights

  4. Risk of AIDS related complex and AIDS in homosexual men with persistent HIV antigenaemia

    NARCIS (Netherlands)

    de Wolf, F.; Goudsmit, J.; Paul, D. A.; Lange, J. M.; Hooijkaas, C.; Schellekens, P.; Coutinho, R. A.; van der Noordaa, J.

    1987-01-01

    One hundred and ninety eight men seropositive for human immunodeficiency virus (HIV) antibody and 58 HIV antibody seroconverters were studied for an average of 19.3 (SEM 0.5) months to assess the relation between HIV antigenaemia and the risk of developing the acquired immune deficiency syndrome

  5. [Specific iatrogenic risks to patients with HIV infection].

    Science.gov (United States)

    De Tournemire, R; Yeni, P

    1994-01-01

    Human immunodeficiency virus-infected patients are exposed to more or less specific iatrogenic diseases. The main characteristics of the risks encountered in this field are described: drug intolerance, mostly to sulfamethoxazole-trimethoprim, is extremely frequent; nucleoside analogue antiviral toxicity is reminiscent of that of chemotherapy; nosocomial infections, in general, are more prominent than in HIV-non infected patients. Intravenous line infections are particularly frequent, but these devices are necessary for prolonged intravenous therapies such as anti-CMV treatment of parenteral nutrition. An improved understanding of different etiopathogenic mechanisms and a better approach of the toxicity/efficacy ratio for each treatment would allow to reduce the excessive morbidity due to iatrogenicity.

  6. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  7. Determinants of subjective health status of HIV positive mothers in ...

    African Journals Online (AJOL)

    BACKGROUND: Acquired immune deficiency syndrome (AIDS) caused by human immune deficiency virus (HIV), once dominated by infected males has become feminized especially in sub-Saharan Africa where the majority of adults living with the condition are females. Positive life styles, belonging to social support ...

  8. Biomarkers of Progression after HIV Acute/Early Infection: Nothing Compares to CD4+ T-cell Count?

    Directory of Open Access Journals (Sweden)

    Gabriela Turk

    2018-01-01

    Full Text Available Progression of HIV infection is variable among individuals, and definition disease progression biomarkers is still needed. Here, we aimed to categorize the predictive potential of several variables using feature selection methods and decision trees. A total of seventy-five treatment-naïve subjects were enrolled during acute/early HIV infection. CD4+ T-cell counts (CD4TC and viral load (VL levels were determined at enrollment and for one year. Immune activation, HIV-specific immune response, Human Leukocyte Antigen (HLA and C-C chemokine receptor type 5 (CCR5 genotypes, and plasma levels of 39 cytokines were determined. Data were analyzed by machine learning and non-parametric methods. Variable hierarchization was performed by Weka correlation-based feature selection and J48 decision tree. Plasma interleukin (IL-10, interferon gamma-induced protein (IP-10, soluble IL-2 receptor alpha (sIL-2Rα and tumor necrosis factor alpha (TNF-α levels correlated directly with baseline VL, whereas IL-2, TNF-α, fibroblast growth factor (FGF-2 and macrophage inflammatory protein (MIP-1β correlated directly with CD4+ T-cell activation (p < 0.05. However, none of these cytokines had good predictive values to distinguish “progressors” from “non-progressors”. Similarly, immune activation, HIV-specific immune responses and HLA/CCR5 genotypes had low discrimination power. Baseline CD4TC was the most potent discerning variable with a cut-off of 438 cells/μL (accuracy = 0.93, κ-Cohen = 0.85. Limited discerning power of the other factors might be related to frequency, variability and/or sampling time. Future studies based on decision trees to identify biomarkers of post-treatment control are warrantied.

  9. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  10. Is phototherapy safe for HIV-infected individuals?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Houpt, K.R.; Cruz, P.D. Jr. [Texas Univ., Dallas, TX (United States). Southwestern Medical Center

    1996-08-01

    Patients infected with human immunodeficiency virus (HIV) have a high prevalence of UV radiation-responsive skin diseases including psoriasis, pruitus, eosinophillic folliculitis and eczemas. On the other hand, UV has been shown to suppress T cell-mediated immune responses and to induce activation and replication of HIV. These developments have prompted clinicians and investigators to question whether phototherapy is safe for HIV-infected individuals. We have reviewed these issues and hereby provide a summary and critique of relevant laboratory and clinical evidence. (Author).

  11. Rebuilding immunity with Remune.

    Science.gov (United States)

    Whitfield, L

    1998-01-01

    Remune, an immune response therapy composed of inactivated HIV, is designed to enhance the immune system's ability to recognize and kill HIV proteins. Developed by Dr. Jonas Salk, researchers hope Remune's actions can alter the course of HIV infection and slow disease progression. Remune has gained Food and Drug Administration (FDA) approval to enter the critical Phase III trial stage. Two clinical trials are tracking Remune's immunogenicity (ability to provoke an immune response), its immunogenicity relative to dose level, and its effect on viral load. An ongoing trial, approved in February of 1996, enrolled 2,500 patients at 74 sites. The manufacturer, Immune Response Corporation (IRC), announced earlier this year that treatment with Remune induces an immune response to HIV that cross-reacts with different strains of the virus. This immune response is crucial for developing an effective worldwide treatment. Remune decreases levels of tumor necrosis factor alpha (TNF-a). IRC recently began a Phase I clinical trial in Great Britain that combines Remune with a protease inhibitor, two antiviral nucleoside analogues, and Interleukin-2. The trial is designed to determine the role that the drug may play in restoring immune response.

  12. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects

    NARCIS (Netherlands)

    de Jong, Annemieke; van der Burg, Sjoerd H.; Kwappenberg, Kitty M. C.; van der Hulst, Jeanette M.; Franken, Kees L. M. C.; Geluk, Annemieke; van Meijgaarden, Krista E.; Drijfhout, Jan Wouter; Kenter, Gemma; Vermeij, Pieter; Melief, Cornelis J. M.; Offringa, Rienk

    2002-01-01

    The incidence of genital human papillomavirus (HPV) infections is high in young, sexually active individuals. Most infections are cleared within 1 year after infection. The targets for the cellular immune response in this process of viral clearance remain to be identified, but the expression pattern

  13. Disruption of gut homeostasis by opioids accelerates HIV disease progression

    Directory of Open Access Journals (Sweden)

    Jingjing eMeng

    2015-06-01

    Full Text Available Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.

  14. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    Science.gov (United States)

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  15. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  16. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice.

    Directory of Open Access Journals (Sweden)

    Gene-Errol E Ringpis

    Full Text Available Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA. However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR. Here, we report that human CD4(+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4(+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4(+ T-cells ex vivo. Furthermore, levels of gene-marked CD4(+ T-cells in peripheral blood increased despite systemic infection with either

  17. The RNA helicase DDX1 is involved in restricted HIV-1 Rev function in human astrocytes

    International Nuclear Information System (INIS)

    Fang Jianhua; Acheampong, Edward; Dave, Rajnish; Wang Fengxiang; Mukhtar, Muhammad; Pomerantz, Roger J.

    2005-01-01

    Productive infection by human immunodeficiency virus type I (HIV-1) in the central nervous system (CNS) involves mainly macrophages and microglial cells. A frequency of less than 10% of human astrocytes is estimated to be infectable with HIV-1. Nonetheless, this relatively low percentage of infected astrocytes, but associated with a large total number of astrocytic cells in the CNS, makes human astrocytes a critical part in the analyses of potential HIV-1 reservoirs in vivo. Investigations in astrocytic cell lines and primary human fetal astrocytes revealed that limited HIV-1 replication in these cells resulted from low-level viral entry, transcription, viral protein processing, and virion maturation. Of note, a low ratio of unspliced versus spliced HIV-1-specific RNA was also investigated, as Rev appeared to act aberrantly in astrocytes, via loss of nuclear and/or nucleolar localization and diminished Rev-mediated function. Host cellular machinery enabling Rev function has become critical for elucidation of diminished Rev activity, especially for those factors leading to RNA metabolism. We have recently identified a DEAD-box protein, DDX1, as a Rev cellular co-factor and now have explored its potential importance in astrocytes. Cells were infected with HIV-1 pseudotyped with envelope glycoproteins of amphotropic murine leukemia viruses (MLV). Semi-quantitative reverse transcriptase-polymerase chain reactions (RT-PCR) for unspliced, singly-spliced, and multiply-spliced RNA clearly showed a lower ratio of unspliced/singly-spliced over multiply-spliced HIV-1-specific RNA in human astrocytes as compared to Rev-permissive, non-glial control cells. As well, the cellular localization of Rev in astrocytes was cytoplasmically dominant as compared to that of Rev-permissive, non-glial controls. This endogenous level of DDX1 expression in astrocytes was demonstrated directly to lead to a shift of Rev sub-cellular distribution dominance from nuclear and/or nucleolar to

  18. Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients

    Directory of Open Access Journals (Sweden)

    Wim Adriaensen

    2018-01-01

    Full Text Available Patients with visceral leishmaniasis (VL–human immunodeficiency virus (HIV coinfection experience increased drug toxicity and treatment failure rates compared to VL patients, with more frequent VL relapse and death. In the era of VL elimination strategies, HIV coinfection is progressively becoming a key challenge, because HIV-coinfected patients respond poorly to conventional VL treatment and play an important role in parasite transmission. With limited chemotherapeutic options and a paucity of novel anti-parasitic drugs, new interventions that target host immunity may offer an effective alternative. In this review, we first summarize current views on how VL immunopathology is significantly affected by HIV coinfection. We then review current clinical and promising preclinical immunomodulatory interventions in the field of VL and discuss how these may operate in the context of a concurrent HIV infection. Caveats are formulated as these interventions may unpredictably impact the delicate balance between boosting of beneficial VL-specific responses and deleterious immune activation/hyperinflammation, activation of latent provirus or increased HIV-susceptibility of target cells. Evidence is lacking to prioritize a target molecule and a more detailed account of the immunological status induced by the coinfection as well as surrogate markers of cure and protection are still required. We do, however, argue that virologically suppressed VL patients with a recovered immune system, in whom effective antiretroviral therapy alone is not able to restore protective immunity, can be considered a relevant target group for an immunomodulatory intervention. Finally, we provide perspectives on the translation of novel theories on synergistic immune cell cross-talk into an effective treatment strategy for VL–HIV-coinfected patients.

  19. Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients

    Science.gov (United States)

    Adriaensen, Wim; Dorlo, Thomas P. C.; Vanham, Guido; Kestens, Luc; Kaye, Paul M.; van Griensven, Johan

    2018-01-01

    Patients with visceral leishmaniasis (VL)–human immunodeficiency virus (HIV) coinfection experience increased drug toxicity and treatment failure rates compared to VL patients, with more frequent VL relapse and death. In the era of VL elimination strategies, HIV coinfection is progressively becoming a key challenge, because HIV-coinfected patients respond poorly to conventional VL treatment and play an important role in parasite transmission. With limited chemotherapeutic options and a paucity of novel anti-parasitic drugs, new interventions that target host immunity may offer an effective alternative. In this review, we first summarize current views on how VL immunopathology is significantly affected by HIV coinfection. We then review current clinical and promising preclinical immunomodulatory interventions in the field of VL and discuss how these may operate in the context of a concurrent HIV infection. Caveats are formulated as these interventions may unpredictably impact the delicate balance between boosting of beneficial VL-specific responses and deleterious immune activation/hyperinflammation, activation of latent provirus or increased HIV-susceptibility of target cells. Evidence is lacking to prioritize a target molecule and a more detailed account of the immunological status induced by the coinfection as well as surrogate markers of cure and protection are still required. We do, however, argue that virologically suppressed VL patients with a recovered immune system, in whom effective antiretroviral therapy alone is not able to restore protective immunity, can be considered a relevant target group for an immunomodulatory intervention. Finally, we provide perspectives on the translation of novel theories on synergistic immune cell cross-talk into an effective treatment strategy for VL–HIV-coinfected patients. PMID:29375567

  20. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry

    OpenAIRE

    Segerstrom, Suzanne C.; Miller, Gregory E.

    2004-01-01

    The present report meta-analyzes more than 300 empirical articles describing a relationship between psychological stress and parameters of the immune system in human participants. Acute stressors (lasting minutes) were associated with potentially adaptive upregulation of some parameters of natural immunity and downregulation of some functions of specific immunity. Brief naturalistic stressors (such as exams) tended to suppress cellular immunity while preserving humoral immunity. Chronic stres...

  1. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    Science.gov (United States)

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  2. Construction of Nef-positive doxycycline-dependent HIV-1 variants using bicistronic expression elements

    Energy Technology Data Exchange (ETDEWEB)

    Velden, Yme U. van der; Kleibeuker, Wendy; Harwig, Alex; Klaver, Bep; Siteur-van Rijnstra, Esther; Frankin, Esmay; Berkhout, Ben; Das, Atze T., E-mail: a.t.das@amc.uva.nl

    2016-01-15

    Conditionally replicating HIV-1 variants that can be switched on and off at will are attractive tools for HIV research. We previously developed a genetically modified HIV-1 variant that replicates exclusively when doxycycline (dox) is administered. The nef gene in this HIV-rtTA variant was replaced with the gene encoding the dox-dependent rtTA transcriptional activator. Because loss of Nef expression compromises virus replication in primary cells and precludes studies on Nef function, we tested different approaches to restore Nef production in HIV-rtTA. Strategies that involved translation via an EMCV or synthetic internal ribosome entry site (IRES) failed because these elements were incompatible with efficient virus replication. Fusion protein approaches with the FMDV 2A peptide and human ubiquitin were successful and resulted in genetically-stable Nef-expressing HIV-rtTA strains that replicate more efficiently in primary T-cells and human immune system (HIS) mice than Nef-deficient variants, thus confirming the positive effect of Nef on in vivo virus replication. - Highlights: • Different approaches to encode additional proteins in the HIV-1 genome were tested. • IRES translation elements are incompatible with efficient HIV-1 replication. • Ubiquitin and 2A fusion protein approaches allow efficient HIV-1 replication. • Doxycycline-controlled HIV-1 variants that encode all viral proteins were developed. • Nef stimulates HIV-rtTA replication in primary cells and human immune system mice.

  3. Performance evaluation of the Bio-Rad Laboratories GS HIV Combo Ag/Ab EIA, a 4th generation HIV assay for the simultaneous detection of HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma.

    Science.gov (United States)

    Bentsen, Christopher; McLaughlin, Lisa; Mitchell, Elizabeth; Ferrera, Carol; Liska, Sally; Myers, Robert; Peel, Sheila; Swenson, Paul; Gadelle, Stephane; Shriver, M Kathleen

    2011-12-01

    A multi-center study was conducted to evaluate the Bio-Rad GS HIV Combo Ag/Ab EIA, a 4th generation HIV-1/HIV-2 assay for the simultaneous detection of HIV p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma in adult and pediatric populations. The objectives of the study were to assess assay performance for the detection of acute HIV infections; sensitivity in known HIV positive samples; percent agreement with HIV status; specificity in low and high risk individuals of unknown HIV status; and to compare assay performance to a 3rd generation HIV assay. The evaluation included testing 9150 samples at four U.S. clinical trial sites, using three kit lots. Unlinked samples were from routine testing, repositories or purchased from vendors. GS HIV Combo Ag/Ab EIA detection in samples from individuals in two separate populations with acute HIV infection was 95.2% (20/21) and 86.4% (38/44). Sensitivity was 100% (1603/1603) in known antibody positive [HIV-1 Groups M and O, and HIV-2] samples. HIV p24 antigen detection was 100% (53/53) in HIV-1 culture supernatants. HIV-1 seroconversion panel detection improved by a range of 0-20 days compared to a 3rd generation HIV test. Specificity was 99.9% (5989/5996) in low risk, 99.9% (959/960) in high risk and 100% (100/100) in pediatric populations. The GS HIV Combo Ag/Ab EIA significantly reduced the diagnostic window when compared to the 3rd generation screening assay, enabling earlier diagnosis of HIV infection. The performance parameters of the Bio-Rad GS HIV Combo Ag/Ab EIA are well suited for use in HIV diagnostic settings. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy

    NARCIS (Netherlands)

    Pakker, NG; Otto, SA; Hall, D; Wit, FWNM; Hamann, D; van der Ende, Marchina E.; Claessen, FAP; Kauffmann, RH; Koopmans, PP; Sprenger, HG; Weigel, HM; Montaner, JSG; Lange, JMA; Reiss, P; Schellekens, PTA; Miedema, F; Ten Napel, Chris H. H.

    1999-01-01

    Background: Current antiretroviral treatment can induce significant and sustained virological and immunological responses in HIV-1-infected persons over at least the short- to mid-term. Objectives: In this study, long-term immune reconstitution was investigated during highly active antiretroviral

  5. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    International Nuclear Information System (INIS)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos; Knowlton, Caitlin; Kim, Baek; Sawyer, Sara L.; Diaz-Griffero, Felipe

    2014-01-01

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs

  6. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States); Knowlton, Caitlin; Kim, Baek [Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Sawyer, Sara L. [Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712 (United States); Diaz-Griffero, Felipe, E-mail: Felipe.Diaz-Griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States)

    2014-07-15

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.

  7. Increased intrahepatic apoptosis but reduced immune activation in HIV-HBV co-infected patients with advanced immunosuppression.

    Science.gov (United States)

    Iser, David M; Avihingsanon, Anchalee; Wisedopas, Naruemon; Thompson, Alexander J; Boyd, Alison; Matthews, Gail V; Locarnini, Stephen A; Slavin, John; Desmond, Paul V; Lewin, Sharon R

    2011-01-14

    to determine if intrahepatic immune activation is increased in HIV-hepatitis B virus (HBV) co-infected patients compared to HBV mono-infected patients and whether this reduced following HBV-active antiretroviral therapy (ART) in HIV-HBV co-infected patients. : Case-control observational study. we examined liver biopsies for markers of T-cell and monocyte infiltration and activation, natural killer cells, hepatic stellate cell (HSC) activation (staining for alpha smooth muscle actin) and apoptosis [using terminal dUTP nick-end labelling (TUNEL)] in treatment-naive Asian HIV-HBV co-infected (n = 16) and HBV mono-infected patients matched for age and HBV e-antigen status (n = 16). Liver biopsies from a subset of co-infected patients (n = 15) were also compared prior to and following 48 weeks of HBV-active ART. HIV-HBV co-infected patients had a median CD4 T-cell count of 25 cells/microl and lower alanine aminotransferase levels than HBV mono-infected patients (P = 0.03). In HIV-HBV co-infected patients, hepatocyte apoptosis was increased (P = 0.04) but there were fewer intrahepatic CD4 and CD8 T cells (P < 0.001), lower activation of intrahepatic T cells, Kupffer cells and HSC (P = 0.002, 0.008 and < 0.001, respectively). Following ART, there was a significant decrease in intrahepatic HBsAg staining (P = 0.04) and Kupffer cell activation (P = 0.003). we found no evidence of increased intrahepatic mononuclear and HSC activation in this cohort of HIV-HBV co-infected individuals with advanced immune suppression. An increase in intra-hepatic apoptosis in HIV-HBV co-infected individuals may potentially contribute to accelerated fibrosis in this setting. 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  8. ANALYSIS OF HIV SUBTYPES AND CLINICAL STAGING OF HIV DISEASE/AIDS IN EAST JAVA

    Directory of Open Access Journals (Sweden)

    Yulia Ismail

    2012-04-01

    Full Text Available Human Immunodeficiency Virus type 1 (HIV-1 known to cause Acquired Immune Deficiency Syndrome (AIDS disease are divided into several subtypes (A, B, C, D, F, G, H, J, K and Circulating Recombinant Form (CRF. Different characteristics of subtype of the virus and its interaction with the host can affect the severity of the disease. This study was to analyze HIV-1 subtypes circulating in HIV/AIDS patients from the East Java region descriptively and to analyze its relationship with clinical stadiums of HIV/AIDS. Information from this research was expected to complement the data of mocular epidemiology of HIV in Indonesia. This study utilited blood plasma from patients who had been tested to be HIV positive who sected treatment to or were reffered to the Intermediate Care Unit of Infectious Disease (UPIPI Dr. Soetomo Hospital Surabaya from various area representing the East Java regions. Plasma was separated from blood samples by centrifugation for use in the the molecular biology examination including RNA extraction, nested PCR using specific primer for HIV gp120 env gene region, DNA purifying, DNA sequencing, and homology and phylogenetic analysis. Based on the nucleotide sequence of the HIV gp120 env gene, it was found that the most dominant subtypes in East Java were in one group of Circulating Recombinant Form (CRF that is CRF01_AE, CRF33_01B and CRF34_01B which was also found in Southeast Asia. In the phylogenetic tree, most of HIV samples (30 samples are in the same branch with CRF01_AE, CRF33_01B and CRF34_01B, except for one sample (HIV40 which is in the same branch with subtype B. HIV subtypes are associated with clinical stadiums (disease severity since samples from different stages of HIV disease have the same subtype.

  9. Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes

    DEFF Research Database (Denmark)

    Kloverpris, Henrik; Karlsson, Ingrid; Bonde, Jesper

    2009-01-01

    OBJECTIVE:: To investigate the potential to induce additional cytotoxic T-lymphocyte (CTL) immunity during chronic HIV-1 infection. DESIGN:: We selected infrequently targeted or subdominant but conserved HLA-A*0201-binding epitopes in Gag, Pol, Env, Vpu and Vif. These relatively immune silent...... epitopes were modified as anchor-optimized peptides to improve immunogenicity and delivered on autologous monocyte-derived dendritic cells (MDDCs). METHODS:: Twelve treatment-naïve HLA-A*0201 HIV-1-infected Danish individuals received 1 x 10 MDDCs subcutaneously (s.c.) (weeks 0, 2, 4 and 8), pulsed......-cell counts was observed. CONCLUSION:: These data show that it is possible to generate new T-cell responses in treatment-naive HIV-1-infected individuals despite high viral loads, and thereby redirect immunity to target new multiple and rationally selected subdominant CTL epitopes. Further optimization could...

  10. The Epidemiology of Immune Thrombocytopenia

    Directory of Open Access Journals (Sweden)

    Walter F Schlech

    1992-01-01

    Full Text Available Three cases of immune thrombocytopenia (ITP associated with human immunodeficiency virus (HIV infection prompted a review of community-acquired thrombocytopenia in Nova Scotia from January 1980 to December 1987. Two hundred and seven patients meeting the case definition of ITP were identified. The incidence of ITP rose from 2.0×105 in 1980 to 3.3×105 in 1987. More cases of ITP in the sexually active population occurred between 1984 and 1987 than in the previous four years (P=0.034. All three cases of known HIV associated ITP were captured in the retrospective surveillance system. The study concluded that increases in community-acquired ITP in a sexually active population may be a surrogate marker of the HIV epidemic, even in geographic areas with a low seroprevalence for HIV. Serological tests for HIV infection should be a routine part of the diagnostic investigation of ITP in all sexually active patients or those with other potential risk factors for HIV infection.

  11. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Immunoendocrine Interactions during HIV-TB Coinfection: Implications for the Design of New Adjuvant Therapies

    Directory of Open Access Journals (Sweden)

    Guadalupe Veronica Suarez

    2015-01-01

    Full Text Available Worldwide, around 14 million individuals are coinfected with both tuberculosis (TB and human immunodeficiency virus (HIV. In coinfected individuals, both pathogens weaken immunological system synergistically through mechanisms that are not fully understood. During both HIV and TB infections, there is a chronic state of inflammation associated to dramatic changes in immune cytokine and endocrine hormone levels. Despite this, the relevance of immunoendocrine interaction on both the orchestration of an effective immune response against both pathogens and the control of the chronic inflammation induced during HIV, TB, or both infections is still controversial. The present study reviews immunoendocrine interactions occurring during HIV and TB infections. We also expose our own findings on immunoendocrine cross talk in HIV-TB coinfection. Finally, we evaluate the use of adrenal hormones and their derivatives in immune-therapy and discuss the use of some of these compounds like the adjuvant for the prevention and treatment of TB in HIV patients.

  13. Elevated Cancer-Specific Mortality Among HIV-Infected Patients in the United States.

    Science.gov (United States)

    Coghill, Anna E; Shiels, Meredith S; Suneja, Gita; Engels, Eric A

    2015-07-20

    Despite advances in the treatment of HIV, HIV-infected people remain at increased risk for many cancers, and the number of non-AIDS-defining cancers is increasing with the aging of the HIV-infected population. No prior study has comprehensively evaluated the effect of HIV on cancer-specific mortality. We identified cases of 14 common cancers occurring from 1996 to 2010 in six US states participating in a linkage of cancer and HIV/AIDS registries. We used Cox regression to examine the association between patient HIV status and death resulting from the presenting cancer (ascertained from death certificates), adjusting for age, sex, race/ethnicity, year of cancer diagnosis, and cancer stage. We included 1,816,461 patients with cancer, 6,459 (0.36%) of whom were HIV infected. Cancer-specific mortality was significantly elevated in HIV-infected compared with HIV-uninfected patients for many cancers: colorectum (adjusted hazard ratio [HR], 1.49; 95% CI, 1.21 to 1.84), pancreas (HR, 1.71; 95% CI, 1.35 to 2.18), larynx (HR, 1.62; 95% CI, 1.06 to 2.47), lung (HR, 1.28; 95% CI, 1.17 to 1.39), melanoma (HR, 1.72; 95% CI, 1.09 to 2.70), breast (HR, 2.61; 95% CI, 2.06 to 3.31), and prostate (HR, 1.57; 95% CI, 1.02 to 2.41). HIV was not associated with increased cancer-specific mortality for anal cancer, Hodgkin lymphoma, or diffuse large B-cell lymphoma. After further adjustment for cancer treatment, HIV remained associated with elevated cancer-specific mortality for common non-AIDS-defining cancers: colorectum (HR, 1.40; 95% CI, 1.09 to 1.80), lung (HR, 1.28; 95% CI, 1.14 to 1.44), melanoma (HR, 1.93; 95% CI, 1.14 to 3.27), and breast (HR, 2.64; 95% CI, 1.86 to 3.73). HIV-infected patients with cancer experienced higher cancer-specific mortality than HIV-uninfected patients, independent of cancer stage or receipt of cancer treatment. The elevation in cancer-specific mortality among HIV-infected patients may be attributable to unmeasured stage or treatment differences as well

  14. Radioimmunoassay for a human prostate specific antigen

    International Nuclear Information System (INIS)

    Machida, T.; Miki, M.; Ohishi, Y.; Kido, A.; Morikawa, J.; Ogawa, Y.

    1983-01-01

    As a marker for prostatic cancer, a prostate-specific antigen was purified from human prostatic tissues. Double antibody radioimmunoassay utilizing immune reaction was developed on the basis of the purified prostatic antigen (PA). Measurement results have revealed that PA radioimmunoassay is much better than prostatic acid phosphatase (PAP) radioimmunoassay in the diagnosis of prostatic cancer

  15. Immune reconstitution and risk of Kaposi sarcoma and non-Hodgkin lymphoma in HIV-infected adults

    NARCIS (Netherlands)

    Jaffe, Harold W.; de Stavola, Bianca L.; Carpenter, Lucy M.; Porter, Kholoud; Cox, David R.; del Amo, Julia; Meyer, Laurence; Bucher, Heiner C.; Chêne, Geneviève; Hamouda, Osamah; Pillay, Deenan; Prins, Maria; Rosinska, Magda; Sabin, Caroline; Touloumi, Giota; Lodi, Sara; Coughlin, Kate; Walker, Sarah; Babiker, Abdel; de Luca, Andrea; Fisher, Martin; Muga, Roberto; Zangerle, Robert; Kelleher, A. D.; Cooper, D. A.; Grey, Pat; Finlayson, Robert; Bloch, Mark; Kelleher, Tony; Ramacciotti, Tim; Gelgor, Linda; Cooper, David; Gill, John; Jørgensen, Louise B.; Tartu, U.; Lutsar, Irja; Dabis, Francois; Thiebaut, Rodolphe; Masquelier, Bernard; Costagliola, Dominique; Guiguet, Marguerite; Vanhems, Philippe; Chaix, Marie-Laure; Ghosn, Jade; Boufassa, Faroudy; Kücherer, Claudia; Bartmeyer, Barbara; Geskus, Ronald; van der Helm, Jannie; Schuitemaker, Hanneke

    2011-01-01

    Given the well documented occurrence of immune reconstitution inflammatory syndrome (IRIS) in HIV-infected patients who recently started combination antiretroviral therapy (cART), we examined whether cART initiation increased the risk of Kaposi sarcoma and non-Hodgkin lymphoma (NHL) using data from

  16. Evaluation of Cellular Phenotypes Implicated in Immunopathogenesis and Monitoring Immune Reconstitution Inflammatory Syndrome in HIV/Leprosy Cases

    Science.gov (United States)

    Giacoia-Gripp, Carmem Beatriz Wagner; Sales, Anna Maria; Nery, José Augusto da Costa; Santos-Oliveira, Joanna Reis; de Oliveira, Ariane Leite; Sarno, Euzenir Nunes; Morgado, Mariza Gonçalves

    2011-01-01

    Background It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR). However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. Methods/Principal Findings Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%), dropping significantly (pleprosy individuals at risk for IRIS/RR. So, a comparative investigation to leprosy patients at RR should be conducted. PMID:22205964

  17. Poor functional immune recovery in aged HIV-1-infected patients following successfully treatment with antiretroviral therapy.

    Science.gov (United States)

    Kasahara, Taissa M; Hygino, Joana; Andrade, Regis M; Monteiro, Clarice; Sacramento, Priscila M; Andrade, Arnaldo F B; Bento, Cleonice A M

    2015-10-01

    Aging is now a well-recognized characteristic of the HIV-infected population and both AIDS and aging are characterized by a deficiency of the T-cell compartment. The objective of the present study was to evaluate the impact of antiretroviral (ARV) therapy in recovering functional response of T cells to both HIV-1-specific ENV peptides (ENV) and tetanus toxoid (TT), in young and aged AIDS patients who responded to ARV therapy by controlling virus replication and elevating CD4(+) T cell counts. Here, we observed that proliferative response of T-cells to either HIV-1-specific Env peptides or tetanus toxoid (TT) was significantly lower in older antiretroviral (ARV)-treated patients. With regard to cytokine profile, lower levels of IFN-γ, IL-17 and IL-21, associated with elevated IL-10 release, were produced by Env- or TT-stimulated T-cells from older patients. The IL-10 neutralization by anti-IL-10 mAb did not elevate IFN-γ and IL-21 release in older patients. Finally, even after a booster dose of TT, reduced anti-TT IgG titers were quantified in older AIDS patients and it was related to both lower IL-21 and IFN-γ production and reduced frequency of central memory T-cells. Our results reveal that ARV therapy, despite the adequate recovery of CD4(+) T cell counts and suppression of viremia, was less efficient in recovering adequate immune response in older AIDS patients. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Identification of amino acids in the human tetherin transmembrane domain responsible for HIV-1 Vpu interaction and susceptibility.

    Science.gov (United States)

    Kobayashi, Tomoko; Ode, Hirotaka; Yoshida, Takeshi; Sato, Kei; Gee, Peter; Yamamoto, Seiji P; Ebina, Hirotaka; Strebel, Klaus; Sato, Hironori; Koyanagi, Yoshio

    2011-01-01

    Tetherin, also known as BST-2/CD317/HM1.24, is an antiviral cellular protein that inhibits the release of HIV-1 particles from infected cells. HIV-1 viral protein U (Vpu) is a specific antagonist of human tetherin that might contribute to the high virulence of HIV-1. In this study, we show that three amino acid residues (I34, L37, and L41) in the transmembrane (TM) domain of human tetherin are critical for the interaction with Vpu by using a live cell-based assay. We also found that the conservation of an additional amino acid at position 45 and two residues downstream of position 22, which are absent from monkey tetherins, are required for the antagonism by Vpu. Moreover, computer-assisted structural modeling and mutagenesis studies suggest that an alignment of these four amino acid residues (I34, L37, L41, and T45) on the same helical face in the TM domain is crucial for the Vpu-mediated antagonism of human tetherin. These results contribute to the molecular understanding of human tetherin-specific antagonism by HIV-1 Vpu.

  19. Family Structure and Functions Identified by Persons Living with HIV/AIDS.

    Science.gov (United States)

    Wong-Wylie, Gina; Doherty-Poirier, Maryanne; Kieren, Dianne

    1999-01-01

    A study looked at the structural and functional aspects of family from the perspective of six people living with acquired immune deficiency syndrome (AIDS) or human immunodeficiency virus (HIV). Results showing how HIV/AIDS affects all members of the sufferer's family have implications for family practitioners. (Author/JOW)

  20. Early ART Results in Greater Immune Reconstitution Benefits in HIV-Infected Infants: Working with Data Missingness in a Longitudinal Dataset.

    Directory of Open Access Journals (Sweden)

    Livio Azzoni

    Full Text Available Early initiation of anti-retroviral treatment (ART decreases mortality as compared to deferred treatment, but whether it preserves immune cells from early loss or promotes their recovery remains undefined. Determination of complex immunological endpoints in infants is often marred by missing data due to missed visits and/or inadequate sampling. Specialized methods are required to address missingness and facilitate data analysis.We characterized the changes in cellular and humoral immune parameters over the first year of life in 66 HIV-infected infants (0-1 year of age enrolled in the CHER study starting therapy within 12 weeks of birth (n = 42 or upon disease progression (n = 24. A convenience cohort of 23 uninfected infants aged 0-6 months born to mothers with HIV-1 infection was used as controls. Flow cytometry and ELISA were used to evaluate changes in natural killer (NK cells, plasmacytoid dendritic cells (pDC, and CD4+ or CD8+ T-cell frequencies. Data missingness was assessed using Little's test. Complete datasets for analysis were created using Multiple Imputation (MI or Bayesian modeling and multivariate analysis was conducted on the imputed datasets.HIV-1-infected infants had greater frequency of CD4+ T cells with naïve phenotype, as well as higher serum IL-7 levels than HIV exposed/uninfected infants. The elevated data missingness was completely at random, allowing the use of both MI and Bayesian modeling. Both methods indicate that early ART initiation results in higher CD4+ T cell frequency, lower expression of CD95 in CD8+ T cell, and preservation of naïve T cell subsets. In contrast, innate immune effectors appeared to be similar independently of the timing of ART initiation.Early ART initiation in infants with perinatal HIV infection reduces immune activation and preserves an early expansion of naïve T-cells with undiminished innate cell numbers, giving greater immune reconstitution than achieved with deferred ART. Both

  1. Immunogenicity in pig-tailed macaques of poliovirus replicons expressing HIV-1 and SIV antigens and protection against SHIV-89.6P disease

    International Nuclear Information System (INIS)

    Fultz, Patricia N.; Stallworth, Jackie; Porter, Donna; Novak, Miroslav; Anderson, Marie J.; Morrow, Casey D.

    2003-01-01

    In the search for an effective vaccine against the human immunodeficiency virus (HIV), novel ways to deliver viral antigens are being evaluated. One such approach is the use of nonreplicating viral vectors encoding HIV and/or SIV genes that are expressed after infection of host cells. Nonreplicating poliovirus vectors, termed replicons, that expressed HIV-1/HXB2 and SIVmac239 gag and various HIV-1 env genes from different clades were tested for immunogenicity and protective efficacy against intravenous challenge of pig-tailed macaques with SHIV-89.6P. To maximize both cellular and humoral immune responses, a prime-boost regimen was used. Initially, macaques were immunized four times over 35 weeks by either the intranasal and intrarectal or the intramuscular (im) route with mixtures of poliovirus replicons expressing HIV-1 gag and multiple env genes. Immunization with replicons alone induced both serum antibodies and lymphocyte proliferative responses. After boosting with purified Env protein, neutralizing antibodies to SHIV-89.6P were induced in four of five immunized animals. In a second experiment, four macaques were immunized im three times over 27 weeks with replicons expressing the SIVmac239 gag and HIV-1/HXB2 env genes. All immunized animals were then boosted twice with purified HIV-1-89.6 rgp140-Env and SIVmac239 p55-Gag proteins. Four control animals received only the two protein inoculations. Immunized and control animals were then challenged intravenously with the pathogenic SHIV-89.6P. After challenge the animals were monitored for virus isolation from peripheral blood mononuclear cells and plasma viremia and for changes in virus-specific antibody titers. Naieve pig-tailed macaques experienced rapid loss of CD4 + T cells and died between 38 and 62 weeks after infection. In contrast, macaques immunized with replicons and proteins rapidly cleared plasma virus and did not experience sustained loss of CD4 + lymphocytes. Furthermore, two of the four macaques

  2. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    Science.gov (United States)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  3. Decision making under explicit risk is impaired in individuals with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Fujiwara, Esther; Tomlinson, Sara E; Purdon, Scot E; Gill, M John; Power, Christopher

    2015-01-01

    Human immunodeficiency virus (HIV) can affect the frontal-striatal brain regions, which are known to subserve decision-making functions. Previous studies have reported impaired decision making among HIV+ individuals using the Iowa Gambling Task, a task that assesses decision making under ambiguity. Previous study populations often had significant comorbidities such as past or present substance use disorders and/or hepatitis C virus coinfection, complicating conclusions about the unique contributions of HIV-infection to decision making. Decision making under explicit risk has very rarely been examined in HIV+ individuals and was tested here using the Game of Dice Task (GDT). We examined decision making under explicit risk in the GDT in 20 HIV+ individuals without substance use disorder or HCV coinfection, including a demographically matched healthy control group (n = 20). Groups were characterized on a standard neuropsychological test battery. For the HIV+ group, several disease-related parameters (viral load, current and nadir CD4 T-cell count) were included. Analyses focused on the GDT and spanned between-group (t-tests; analysis of covariance, ANCOVA) as well as within-group comparisons (Pearson/Spearman correlations). HIV+ individuals were impaired in the GDT, compared to healthy controls (p = .02). Their decision-making impairments were characterized by less advantageous choices and more random choice strategies, especially towards the end of the task. Deficits in the GDT in the HIV+ group were related to executive dysfunctions, slowed processing/motor speed, and current immune system status (CD4+ T-cell levels, ps Decision making under explicit risk in the GDT can occur in HIV-infected individuals without comorbidities. The correlational patterns may point to underlying fronto-subcortical dysfunctions in HIV+ individuals. The GDT provides a useful measure to assess risky decision making in this population and should be tested in larger studies.

  4. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  5. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease

    Science.gov (United States)

    McLane, Laura M.; Steblyanko, Maria; Anikeeva, Nadia; Ablanedo-Terrazas, Yuria; Demers, Korey; Eller, Michael A.; Streeck, Hendrik; Jansson, Marianne; Sönnerborg, Anders; Canaday, David H.; Naji, Ali; Wherry, E. John; Robb, Merlin L.; Reyes-Teran, Gustavo; Sykulev, Yuri; Betts, Michael R.

    2018-01-01

    CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. PMID:29652923

  6. First Evidence for the Disease-Stage, Cell-Type, and Virus Specificity of microRNAs during Human Immunodeficiency Virus Type-1 Infection

    Directory of Open Access Journals (Sweden)

    Lauren Fowler

    2016-05-01

    Full Text Available The potential involvement of host microRNAs (miRNAs in HIV infection is well documented, and evidence suggests that HIV modulates and also dysregulates host miRNAs involved in maintaining the host innate immune system. Moreover, the dysregulation of host miRNAs by HIV also effectively interferes directly with the host gene expression. In this study, we have simultaneously evaluated the expression of host miRNAs in both CD4+ and CD8+ T-cells derived from HIV-positive (HIV+ individuals (viremic and aviremic individuals while receiving highly active antiretroviral therapy (HAART, therapy-naïve long-term non-progressors (LTNP, and HIV-negative (HIV– healthy controls. miRNAs were run on Affymetrix V2 chips, and the differential expression between HIV+ and HIV− samples, along with intergroup comparisons, was derived using PARTEK software, using an FDR of 5% and an adjusted p-value < 0.05. The miR-199a-5p was found to be HIV-specific and expressed in all HIV+ groups as opposed to HIV– controls. Moreover, these are the first studies to reveal clearly the highly discriminatory miRNAs at the level of the disease state, cell type, and HIV-specific miRNAs.

  7. Opportunistic infection of HIV/AIDS patients in West Papua

    Science.gov (United States)

    Witaningrum, A. M.; Khairunisa, S. Q.; Yunifiar, M. Q.; Bramanthi, R.; Rachman, B. E.; Nasronudin

    2018-03-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) had a major impact on health problemin Indonesia. HIV type 1 (HIV-1) epidemic is currently infected with HIV viruses developing rapidly in Indonesia.Papua provinces have the highest prevalence rate of human immunodeficiency virus type 1 (HIV-1) infection in Indonesia; however, data on opportunistic infection of HIV-1 are limited. The study using medical records as a research sample was conducted among HIV patients from January 2013 - December 2014 in Sele be Solu hospital among 49 patients. Opportunistic infections commonly occur in HIV-infected patients. The aim of the study was to know theprevalence of opportunistic infection among HIV positive patients in West Papua. Forty-nine HIV-1 patients were collected in Sele be Solu Hospital, West Papua.Opportunistic infection was identified such as tuberculosis, tuberculosis Pulmo, tuberculosis and candidiasis, candidiasis and diarrhea. The clinical sign appeared in HIV infected patients such as itchy, cough and loss weight. The prevalence of opportunistic infection indicated the necessity of monitoring the opportunistic infection of HIV/AIDS patients in Indonesia.

  8. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations.

    Science.gov (United States)

    Faria, Nuno R; Rambaut, Andrew; Suchard, Marc A; Baele, Guy; Bedford, Trevor; Ward, Melissa J; Tatem, Andrew J; Sousa, João D; Arinaminpathy, Nimalan; Pépin, Jacques; Posada, David; Peeters, Martine; Pybus, Oliver G; Lemey, Philippe

    2014-10-03

    Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations. Copyright © 2014, American Association for the Advancement of Science.

  9. Association of sex work with reduced activation of the mucosal immune system.

    Science.gov (United States)

    Lajoie, Julie; Kimani, Makubo; Plummer, Francis A; Nyamiobo, Francis; Kaul, Rupert; Kimani, Joshua; Fowke, Keith R

    2014-07-15

    Unprotected intercourse and seminal discharge are powerful activators of the mucosal immune system and are important risk factors for transmission of human immunodeficiency virus (HIV). This study was designed to determine if female sex work is associated with changes in the mucosal immunity. Cervicovaginal lavage and plasma from 122 HIV-uninfected female sex workers (FSW) and 44 HIV-uninfected low-risk non-FSW from the same socioeconomic district of Nairobi were analyzed for evidence of immune activation (IA). The cervico-mononuclear cells (CMC) were analyzed for cellular activation by flow cytometry. Lower IA was observed in FSW compared to the low-risk women as demonstrated by the lower level of MIP-3α (P sex work and increased with duration of sex work. This study showed that sex work is associated with important changes in the mucosal immune system. By analyzing chemokine/cytokine levels and CMC activation, we observed a lower mucosal IA in HIV-uninfected FSW compared to low-risk women. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. People who use drugs, HIV, and human rights.

    Science.gov (United States)

    Jürgens, Ralf; Csete, Joanne; Amon, Joseph J; Baral, Stefan; Beyrer, Chris

    2010-08-07

    We reviewed evidence from more than 900 studies and reports on the link between human rights abuses experienced by people who use drugs and vulnerability to HIV infection and access to services. Published work documents widespread abuses of human rights, which increase vulnerability to HIV infection and negatively affect delivery of HIV programmes. These abuses include denial of harm-reduction services, discriminatory access to antiretroviral therapy, abusive law enforcement practices, and coercion in the guise of treatment for drug dependence. Protection of the human rights of people who use drugs therefore is important not only because their rights must be respected, protected, and fulfilled, but also because it is an essential precondition to improving the health of people who use drugs. Rights-based responses to HIV and drug use have had good outcomes where they have been implemented, and they should be replicated in other countries. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The Prevalence of Different Human Immunodeficiency Virus Transmission Routes and Knowledge about AIDS in Infected People with HIV in Sirjan

    Directory of Open Access Journals (Sweden)

    Mahin Behzadpour

    2012-06-01

    Full Text Available Background & Objective: The immune system of Patients with Acquired Immune Deficiency Syndrome (AIDS is weekend because of Human immunodeficiency virus (HIV infection, and they become vulnerable to several opportunistic and non-opportunistic pathogens and different carcinomas. IV drug abuse, sexual contact, occupational transmission, blood transfusion and maternal-fetal transmission are well known transmission routes for HIV infection. This study was under taken to investigate the prevalence of HIV transmission routs in the HIV infected population of Sirjan, and their knowledge about the disease, in order to plan better preventive strategies. Materials & Methods: A cross sectional study was planned. During a 6-month period in 2010, all of the HIV infected people in Sirjan (old and new cases who had a file at the consultation center for high risk behavior, completed a valid and reliable questionnaire. Results: The definite route of transmission was not clear in any of the patients because they had more than one suspicious route. Injected drug abusers were the most common (88.4% followed by those who got tattoos (79.1%, invasive therapeutic procedures, dentistry, surgery and endoscopy (56.1%, high risk sexual behavior (62.8%, bloodletting (9.3%, injuries in the barbershop (9.3% and blood transfusion (2.3%. Conclusion: All of the HIV infected cases in Sirjan were involved with several high risk behaviors, but the major route of transmission, similar to other parts of the country was injected drug abuse. Educational programs for prevention of AIDS should be followed seriously and special attention should be paid to groups with multiple high risk behaviors.

  12. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  13. [Persistence of hepatitis A virus antibodies after primary immunization and response to revaccination in children and adolescents with perinatal HIV exposure].

    Science.gov (United States)

    Gouvêa, Aída de Fátima Thomé Barbosa; Pinto, Maria Isabel de Moraes; Miyamoto, Maristela; Machado, Daisy Maria; Pessoa, Silvana Duarte; Carmo, Fabiana Bononi do; Beltrão, Suênia Cordeiro de Vasconcelos; Succi, Regina Célia de Menezes

    2015-01-01

    To assess possible factors associated with the loss of antibodies to hepatitis A 7 years after the primary immunization in children of HIV-infected mothers and the response to revaccination in patients seronegative for hepatitis A. Quantification of HAV antibodies by electrochemiluminescence was performed in 39 adolescents followed up at the Pediatric Aids Clinic of Federal University of São Paulo (Unifesp): 29 HIV-infected (HIVgroup) (median age: 12.8 years) and 10 HIV-exposed but non-infected (ENI group) (median age: 13.4 years). All of them received two doses of HAV vaccine (Havrix(®)) in 2002. The median age at primary immunization (PI) was 5.4 years for HIV group and 6.5 years for ENI group. All children, from both groups, had antibodies to HAV >20 mIU/mL after PI. Seven years later, the ENI group showed a median concentration of antibodies = 253.5 mIU/mL, while the HIV group = 113.0 mIU/mL (Mann-Whitney test, p=0.085). All ENI group and 23/29 (79.3%) from HIV group mantained HAV antibodies 7 years after PI. The levels of hepatitis A antibodies in the primary vaccination were the only factor independently associated with maintaining these antibodies for 7 years. The group that lost HAV seropositivity was revaccinated and 83.3% (5/6) responded with antibodies >20 mUI/mL. The antibodies levels acquired in the primary vaccination in the HIV group were the main factor associated with antibodies loss after HAV immunization. Copyright © 2015 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  14. Insect immunity shows specificity in protection upon secondary pathogen exposure.

    Science.gov (United States)

    Sadd, Ben M; Schmid-Hempel, Paul

    2006-06-20

    Immunological memory in vertebrates, conferring lasting specific protection after an initial pathogen exposure, has implications for a broad spectrum of evolutionary, epidemiological, and medical phenomena . However, the existence of specificity in protection upon secondary pathogen exposure in invertebrates remains controversial . To separate this functional phenomenon from a particular mechanism, we refer to it as specific immune priming. We investigate the presence of specific immune priming in workers of the social insect Bombus terrestris. Using three bacterial pathogens, we test whether a prior homologous pathogen exposure gives a benefit in terms of long-term protection against a later challenge, over and above a heterologous combination. With a reciprocally designed initial and second-exposure protocol (i.e., all combinations of bacteria were tested), we demonstrate, even several weeks after the clearance of a first exposure, increased protection and narrow specificity upon secondary exposure. This demonstrates that the invertebrate immune system is functionally capable of unexpectedly specific and durable induced protection. Ultimately, despite general broad differences between vertebrates and invertebrates, the ability of both immune systems to show specificity in protection suggests that their immune defenses have found comparable solutions to similar selective pressures over evolutionary time.

  15. Immune recovery after starting ART in HIV-infected patients presenting and not presenting with tuberculosis in South Africa.

    Science.gov (United States)

    Schomaker, Michael; Egger, Matthias; Maskew, Mhairi; Garone, Daniela; Prozesky, Hans; Hoffmann, Christopher J; Boulle, Andrew; Fenner, Lukas

    2013-05-01

    We studied the immune response after starting antiretroviral treatment (ART) in 15,646 HIV-infected patients with or without tuberculosis (TB) at presentation in 3 ART programs in South Africa between 2003 and 2010. Patients presenting with TB had similar increases in CD4 cells compared with all other patients (adjusted difference 4.9 cells/µL per 6 months, 95% confidence interval: 0.2 to 9.7). Younger age, advanced clinical stage, female sex, and lower CD4 cell count at ART start were all associated with steeper CD4 slopes. In South Africa, HIV-infected patients presenting with TB experience immune recovery after starting ART that is no worse than in other patients.

  16. A systemic review of tuberculosis with HIV coinfection in children

    International Nuclear Information System (INIS)

    Naidoo, Jaishree; Mahomed, Nasreen; Moodley, Halvani

    2017-01-01

    The epidemiology of tuberculosis is adversely impacted by the human immunodeficiency virus (HIV) coinfection. HIV-infected patients are more prone to opportunistic infections, most commonly tuberculosis, and the risk of death in coinfected patients is higher than in those without HIV. Due to the impaired cellular immunity and reduced immunological response in HIV-infected patients, the classic imaging features of tuberculosis usually seen in patients without HIV may present differently. The aim of this review article is to highlight the imaging features that may assist in the diagnosis of tuberculosis in patients with HIV coinfection. (orig.)

  17. A systemic review of tuberculosis with HIV coinfection in children

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, Jaishree; Mahomed, Nasreen; Moodley, Halvani [University of the Witwatersrand, Department of Radiology, Johannesburg (South Africa)

    2017-09-15

    The epidemiology of tuberculosis is adversely impacted by the human immunodeficiency virus (HIV) coinfection. HIV-infected patients are more prone to opportunistic infections, most commonly tuberculosis, and the risk of death in coinfected patients is higher than in those without HIV. Due to the impaired cellular immunity and reduced immunological response in HIV-infected patients, the classic imaging features of tuberculosis usually seen in patients without HIV may present differently. The aim of this review article is to highlight the imaging features that may assist in the diagnosis of tuberculosis in patients with HIV coinfection. (orig.)

  18. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gregory G Simon

    2010-01-01

    Full Text Available This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d and HLA-DR4 (DRA1*0101, DRB1*0401 transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag chimera antigen. Three immunization protocols were compared: 1 primary subcutaneous immunization with 1x10(5 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2 primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3 immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b the value of HLA transgenic mice as a model system for the identification and evaluation

  19. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong (Yale); (VA); (UCSD)

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  20. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br [Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, MG 36036-900 (Brazil); Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States); Weller, Peter F. [Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States)

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.