WorldWideScience

Sample records for human hippocampus cognitive

  1. The human hippocampus: cognitive maps or relational memory?

    Science.gov (United States)

    Kumaran, Dharshan; Maguire, Eleanor A

    2005-08-03

    The hippocampus is widely accepted to play a pivotal role in memory. Two influential theories offer competing accounts of its fundamental operating mechanism. The cognitive map theory posits a special role in mapping large-scale space, whereas the relational theory argues it supports amodal relational processing. Here, we pit the two theories against each other using a novel paradigm in which the relational processing involved in navigating in a city was matched with similar navigational and relational processing demands in a nonspatial (social) domain. During functional magnetic resonance imaging, participants determined the optimal route either between friends' homes or between the friends themselves using social connections. Separate brain networks were engaged preferentially during the two tasks, with hippocampal activation driven only by spatial relational processing. We conclude that the human hippocampus appears to have a bias toward the processing of spatial relationships, in accordance with the cognitive map theory. Our results both advance our understanding of the nature of the hippocampal contribution to memory and provide insights into how social networks are instantiated at the neural level.

  2. Chewing Maintains Hippocampus-Dependent Cognitive Function.

    Science.gov (United States)

    Chen, Huayue; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2015-01-01

    Mastication (chewing) is important not only for food intake, but also for preserving and promoting the general health. Recent studies have showed that mastication helps to maintain cognitive functions in the hippocampus, a central nervous system region vital for spatial memory and learning. The purpose of this paper is to review the recent progress of the association between mastication and the hippocampus-dependent cognitive function. There are multiple neural circuits connecting the masticatory organs and the hippocampus. Both animal and human studies indicated that cognitive functioning is influenced by mastication. Masticatory dysfunction is associated with the hippocampal morphological impairments and the hippocampus-dependent spatial memory deficits, especially in elderly. Mastication is an effective behavior for maintaining the hippocampus-dependent cognitive performance, which deteriorates with aging. Therefore, chewing may represent a useful approach in preserving and promoting the hippocampus-dependent cognitive function in older people. We also discussed several possible mechanisms involved in the interaction between mastication and the hippocampal neurogenesis and the future directions for this unique fascinating research.

  3. Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus

    Czech Academy of Sciences Publication Activity Database

    Brázdil, M.; Cimbálník, J.; Roman, R.; Shaw, D. J.; Stead, M.; Daniel, P.; Jurák, Pavel; Halámek, Josef

    2015-01-01

    Roč. 16, JULY 25 (2015), 47:1-9 ISSN 1471-2202 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : high-frequency oscillations * hippocampal ripples * epilepsy * human cognition Subject RIV: FH - Neurology Impact factor: 2.304, year: 2015

  4. The human hippocampus beyond the cognitive map: evidence from a densely amnesic patient.

    Science.gov (United States)

    Banta Lavenex, Pamela A; Colombo, Françoise; Ribordy Lambert, Farfalla; Lavenex, Pierre

    2014-01-01

    We tested a densely amnesic patient (P9), with bilateral hippocampal damage resulting from an autoimmune disorder, and 12 age- and sex-matched controls on a series of memory tasks designed to characterize allocentric spatial learning and memory abilities. We compared P9's ability to perform spatial memory tasks with her ability to perform non-spatial, color memory tasks. First, P9's performance was impaired as compared to controls even in the simplest versions of an allocentric spatial memory task, in which she had to find repeatedly over 10 trials the same location(s) of one, two or three illuminating foot pad(s) among 23 pads distributed in an open-field arena. In contrast, she performed as well as controls when she had to find repeatedly over 10 trials the same one, two or three pad(s) marked by color cue(s), whose locations varied between trials. Second, P9's performance was severely impaired in working memory tasks, when she had to learn on a trial-unique basis and remember the location(s) or the color(s) of one, two or three pad(s), while performing an interfering task during the 1-min interval separating encoding and retrieval. Without interference during the retention interval of the trial-unique tasks, P9's performance was partially preserved in the color tasks, whereas it remained severely impaired in the allocentric spatial tasks. Detailed behavioral analyses indicate that P9's memory representations are more limited than those of controls both in their precision (metric coding) and in the number of items that can be maintained in memory (capacity). These findings are consistent with the theory that the hippocampus contributes to the integration or binding of multiple items, in order to produce high-resolution/high-capacity representations of spatial and non-spatial information in the service of short-term/working and long-term memory.

  5. The human hippocampus beyond the cognitive map: Evidence from a densely amnesic patient

    Directory of Open Access Journals (Sweden)

    Pamela A Banta Lavenex

    2014-09-01

    Full Text Available We tested a densely amnesic patient (P9, with bilateral hippocampal damage resulting from an autoimmune disorder, and 12 age- and sex-matched controls on a series of memory tasks designed to characterize allocentric spatial learning and memory abilities. We compared P9’s ability to perform spatial memory tasks with her ability to perform non-spatial, color memory tasks. First, P9’s performance was impaired as compared to controls even in the simplest versions of an allocentric spatial memory task, in which she had to find repeatedly over ten trials the same location(s of one, two or three illuminating foot pad(s among 23 pads distributed in an open-field arena. In contrast, she performed as well as controls when she had to find repeatedly over ten trials the same one, two or three pad(s marked by color cue(s, whose locations varied between trials. Second, P9’s performance was severely impaired in working memory tasks, when she had to learn on a trial-unique basis and remember the location(s or the color(s of one, two or three pad(s, while performing an interfering task during the one-minute interval separating encoding and retrieval. Without interference during the retention interval of the trial-unique tasks, P9’s performance was partially preserved in the color tasks, whereas it remained severely impaired in the allocentric spatial tasks. Detailed behavioral analyses indicate that P9’s memory representations are more limited than those of controls both in their precision (metric coding and in the number of items that can be maintained in memory (capacity. These findings are consistent with the theory that the hippocampus contributes to the integration or binding of multiple items, in order to produce high-resolution/high-capacity representations of spatial and non-spatial information in the service of short-term/working and long-term memory.

  6. Neural dynamics of the cognitive map in the hippocampus.

    Science.gov (United States)

    Wagatsuma, Hiroaki; Yamaguchi, Yoko

    2007-06-01

    The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading to memory formation of behavioral sequences accompanied with asymmetric Hebbian plasticity. The cognitive map theory is apparently outside of the sequence memory view. Therefore, theoretical analysis is necessary to consider the biological neural dynamics for the sequence encoding of the memory of behavioral sequences, providing the cognitive map formation. In this article, we summarize the theoretical neural dynamics of the real-time sequence encoding by theta phase precession, called theta phase coding, and review a series of theoretical models with the theta phase coding that we previously reported. With respect to memory encoding functions, instantaneous memory formation of one-time experience was first demonstrated, and then the ability of integration of memories of behavioral sequences into a network of the cognitive map was shown. In terms of memory retrieval functions, theta phase coding enables the hippocampus to represent the spatial location in the current behavioral context even with ambiguous sensory input when multiple sequences were coded. Finally, for utilization, retrieved temporal sequences in the hippocampus can be available for action selection, through the process of reverting theta rhythm-dependent activities to information in the behavioral time scale. This theoretical approach allows us to investigate how the behavioral sequences are encoded, updated, retrieved and used in the hippocampus, as the real-time interaction with the external environment. It may

  7. Traveling Theta Waves in the Human Hippocampus

    Science.gov (United States)

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  8. Neural dynamics of the cognitive map in the hippocampus

    OpenAIRE

    Wagatsuma, Hiroaki; Yamaguchi, Yoko

    2007-01-01

    The rodent hippocampus has been thought to represent the spatial environment as a cognitive map. In the classical theory, the cognitive map has been explained as a consequence of the fact that different spatial regions are assigned to different cell populations in the framework of rate coding. Recently, the relation between place cell firing and local field oscillation theta in terms of theta phase precession was experimentally discovered and suggested as a temporal coding mechanism leading t...

  9. The hippocampus supports multiple cognitive processes through relational binding and comparison

    Directory of Open Access Journals (Sweden)

    Rosanna Kathleen Olsen

    2012-05-01

    Full Text Available It has been well established that the hippocampus plays a pivotal role in explicit long-term recognition memory. However, findings from amnesia, lesion and recording studies with non-human animals, eye-movement recording studies, and functional neuroimaging have recently converged upon a similar message: the functional reach of the hippocampus extends far beyond explicit recognition memory. Damage to the hippocampus affects performance on a number of cognitive tasks including recognition memory after short and long delays and visual discrimination. Additionally, with the advent of neuroimaging techniques that have fine spatial and temporal resolution, findings have emerged that show the elicitation of hippocampal responses within the first few hundred milliseconds of stimulus/task onset. These responses occur for novel and previously viewed information during a time when perceptual processing is traditionally thought to occur, and long before overt recognition responses are made. We propose that the hippocampus is obligatorily involved in the binding of disparate elements across both space and time, and in the comparison of such relational memory representations. Furthermore, the hippocampus supports relational binding and comparison with or without conscious awareness for the relational representations that are formed, retrieved and/or compared. It is by virtue of these basic binding and comparison functions that the reach of the hippocampus extends beyond long-term recognition memory and underlies task performance in multiple cognitive domains.

  10. Human cognition

    International Nuclear Information System (INIS)

    Norman, D.A.

    1982-01-01

    The study of human cognition encompasses the study of all mental phenomena, from the receipt and interpretation of sensory information to the final control of the motor system in the performance of action. The cognitive scientist examines all intermediary processes, including thought, decision making, and memory and including the effects of motivation, states of arousal and stress, the study of language, and the effects of social factors. The field therefore ranges over an enormous territory, covering all that is known or that should be known about human behavior. It is not possible to summarize the current state of knowledge about cognition with any great confidence that we know the correct answer about any aspect of the work. Nontheless, models provide good characterizations of certain aspects of the data and situations. Even if these models should prove to be incorrect, they do provide good approximate descriptions of people's behavior in some situations, and these approximations will still apply even when the underlying theories have changed. A quick description is provided of models within a number of areas of human cognition and skill and some general theoretical frameworks with which to view human cognition. The frameworks are qualitative descriptions that provide a way to view the development of more detailed, quantitative models and, most important, a way of thinking about human performance and skill

  11. Sleep-dependent directional coupling between human neocortex and hippocampus.

    Science.gov (United States)

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  12. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    DEFF Research Database (Denmark)

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus Kähler

    2013-01-01

    The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes...... in hippocampus. However, any associations between memory functions and the expression of the 5-HT(4) R in the human hippocampus have not been investigated. Using positron emission tomography with the tracer [(11) C]SB207145 and Reys Auditory Verbal Learning Test we aimed to examine the individual variation...... of the 5-HT4R binding in hippocampus in relation to memory acquisition and consolidation in healthy young volunteers. We found significant, negative associations between the immediate recall scores and left and right hippocampal BP(ND) , (p = 0.009 and p = 0.010 respectively) and between the right...

  13. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    Science.gov (United States)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  14. Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat

    Czech Academy of Sciences Publication Activity Database

    Wesierska, M.; Dockery, Colleen; Fenton, André Antonio

    2005-01-01

    Roč. 25, č. 9 (2005), s. 2413-2419 ISSN 0270-6474 Grant - others:European Commission(XE) QLG3-CT-1999-00192 Institutional research plan: CEZ:AV0Z5011922 Keywords : cognition * hippocampus * cognitive disorganization Subject RIV: FH - Neurology Impact factor: 7.506, year: 2005

  15. Asymmetry of Hippocampus and Amygdala Defect in Subjective Cognitive Decline Among the Community Dwelling Chinese

    Directory of Open Access Journals (Sweden)

    Ling Yue

    2018-06-01

    Full Text Available Background: Subjective cognitive decline (SCD may be the first clinical sign of Alzheimer's disease (AD. SCD individuals with normal cognition may already have significant medial temporal lobe atrophy. However, few studies have been devoted to exploring the alteration of left-right asymmetry with hippocampus and amygdala in SCD. The aim of this study was to compare SCD individuals with amnestic mild cognitive impairment (MCI patients and the normal population for volume and asymmetry of hippocampus, amygdala and temporal horn, and to assess their relationship with cognitive function in elderly population living in China.Methods: 111 SCD, 30 MCI, and 67 healthy controls (HC underwent a standard T1-weighted MRI, from which the volumes of the hippocampus and amygdala were calculated and compared. Then we evaluated the pattern and extent of asymmetry in hippocampus and amygdala of these samples. Furthermore, we also investigated the relationship between the altered brain regions and cognitive function.Results: Among the three groups, SCD showed more depressive symptoms (p < 0.001 and higher percentage of heart disease (16.4% vs. 35.1%, p = 0.007 than controls. In terms of brain data, significant differences were found in the volume and asymmetry of both hippocampus and amygdala among the three groups (P < 0.05. In logistic analysis controlled by age, gender, education level, depression symptoms, anxiety symptom, somatic disease and lifestyle in terms of smoking, both SCD and MCI individuals showed significant decreased right hippocampal and amygdala volume than controls. For asymmetry pattern, a ladder-shaped difference of left-larger-than-right asymmetry was found in amygdala with MCI>SCD>HC, and an opposite asymmetry of left-less-than-right pattern was found with HC>SCD>MCI in hippocampus. Furthermore, correlation was shown between the volume of right hippocampus and right amygdala with MMSE and MoCA in SCD group.Conclusion: Our results supported

  16. Sleep in the human hippocampus: a stereo-EEG study.

    Directory of Open Access Journals (Sweden)

    Fabio Moroni

    Full Text Available BACKGROUND: There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: We recorded intracerebral stereo-EEG directly from the hippocampus and neocortical sites in five epileptic patients undergoing presurgical evaluations. The time course of classical EEG frequency bands during the first three NREM-REM sleep cycles of the night was evaluated. We found that delta power shows, also in the hippocampus, the progressive decrease across sleep cycles, indicating that a form of homeostatic regulation of delta activity is present also in this subcortical structure. Hippocampal sleep was also characterized by: i a lower relative power in the slow oscillation range during NREM sleep compared to the scalp EEG; ii a flattening of the time course of the very low frequencies (up to 1 Hz across sleep cycles, with relatively high levels of power even during REM sleep; iii a decrease of power in the beta band during REM sleep, at odds with the typical increase of power in the cortical recordings. CONCLUSIONS/SIGNIFICANCE: Our data imply that cortical slow oscillation is attenuated in the hippocampal structures during NREM sleep. The most peculiar feature of hippocampal sleep is the increased synchronization of the EEG rhythms during REM periods. This state of resonance may have a supportive role for the processing/consolidation of memory.

  17. An experimental model for the study of cognitive disorders: the hippocampus and associative learning in mice.

    Science.gov (United States)

    Delgado-García, José M; Gruart, Agnès

    2008-12-01

    The availability of transgenic mice mimicking selective human neurodegenerative and psychiatric disorders calls for new electrophysiological and microstimulation techniques capable of being applied in vivo in this species. In this article, we will concentrate on experiments and techniques developed in our laboratory during the past few years. Thus we have developed different techniques for the study of learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. These techniques include different trace (tone/SHOCK and shock/SHOCK) conditioning procedures ? that is, a classical conditioning task involving the cerebral cortex, including the hippocampus. We have also developed implantation and recording techniques for evoking long-term potentiation (LTP) in behaving mice and for recording the evolution of field excitatory postsynaptic potentials (fEPSP) evoked in the hippocampal CA1 area by the electrical stimulation of the commissural/Schaffer collateral pathway across conditioning sessions. Computer programs have also been developed to quantify the appearance and evolution of eyelid conditioned responses and the slope of evoked fEPSPs. According to the present results, the in vivo recording of the electrical activity of selected hippocampal sites during classical conditioning of eyelid responses appears to be a suitable experimental procedure for studying learning capabilities in genetically modified mice, and an excellent model for the study of selected neuropsychiatric disorders compromising cerebral cortex functioning.

  18. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction.

    Science.gov (United States)

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-15

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  19. The role of the hippocampus in flexible cognition and social behavior

    Directory of Open Access Journals (Sweden)

    Rachael D Rubin

    2014-09-01

    Full Text Available Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world.

  20. The role of the hippocampus in flexible cognition and social behavior.

    Science.gov (United States)

    Rubin, Rachael D; Watson, Patrick D; Duff, Melissa C; Cohen, Neal J

    2014-01-01

    Successful behavior requires actively acquiring and representing information about the environment and people, and manipulating and using those acquired representations flexibly to optimally act in and on the world. The frontal lobes have figured prominently in most accounts of flexible or goal-directed behavior, as evidenced by often-reported behavioral inflexibility in individuals with frontal lobe dysfunction. Here, we propose that the hippocampus also plays a critical role by forming and reconstructing relational memory representations that underlie flexible cognition and social behavior. There is mounting evidence that damage to the hippocampus can produce inflexible and maladaptive behavior when such behavior places high demands on the generation, recombination, and flexible use of information. This is seen in abilities as diverse as memory, navigation, exploration, imagination, creativity, decision-making, character judgments, establishing and maintaining social bonds, empathy, social discourse, and language use. Thus, the hippocampus, together with its extensive interconnections with other neural systems, supports the flexible use of information in general. Further, we suggest that this understanding has important clinical implications. Hippocampal abnormalities can produce profound deficits in real-world situations, which typically place high demands on the flexible use of information, but are not always obvious on diagnostic tools tuned to frontal lobe function. This review documents the role of the hippocampus in supporting flexible representations and aims to expand our understanding of the dynamic networks that operate as we move through and create meaning of our world.

  1. Social cognition in humans

    DEFF Research Database (Denmark)

    Frith, Christopher; Frith, Uta

    2007-01-01

    We review a diversity of studies of human social interaction and highlight the importance of social signals. We also discuss recent findings from social cognitive neuroscience that explore the brain basis of the capacity for processing social signals. These signals enable us to learn about...

  2. Rhythmic Working Memory Activation in the Human Hippocampus

    Directory of Open Access Journals (Sweden)

    Marcin Leszczyński

    2015-11-01

    Full Text Available Working memory (WM maintenance is assumed to rely on a single sustained process throughout the entire maintenance period. This assumption, although fundamental, has never been tested. We used intracranial electroencephalography (EEG recordings from the human hippocampus in two independent experiments to investigate the neural dynamics underlying WM maintenance. We observed periodic fluctuations between two different oscillatory regimes: Periods of “memory activation” were reflected by load-dependent alpha power reductions and lower levels of cross-frequency coupling (CFC. They occurred interleaved with periods characterized by load-independent high levels of alpha power and CFC. During memory activation periods, a relevant CFC parameter (load-dependent changes of the peak modulated frequency correlated with individual WM capacity. Fluctuations between these two periods predicted successful performance and were locked to the phase of endogenous delta oscillations. These results show that hippocampal maintenance is a dynamic rather than constant process and depends critically on a hierarchy of oscillations.

  3. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  4. Angiotensin IV possibly acts through PKMzeta in the hippocampus to regulate cognitive memory in rats.

    Science.gov (United States)

    Chow, Lok-Hi; Tao, Pao-Luh; Chen, Yuan-Hao; Lin, Yu-Hui; Huang, Eagle Yi-Kung

    2015-10-01

    Ang IV is an endogenous peptide generated from the degradation of angiotensin II. Ang IV was found to enhance learning and memory in CNS. PKMzeta was identified to be a fragment of PKCzeta (protein kinase Czeta). Its continuous activation was demonstrated to be correlated with the formation of memory in the hippocampus. Therefore, we investigated whether PKMzeta participates in the effects of Ang IV on memory. We first examined the effect of Ang IV on non-spatial memory/cognition in modified object recognition test in rats. Our data showed that Ang IV could increase the exploration time on novel object. The co-administration of ZIP (PKMzeta inhibitor) with Ang IV significantly blocked the effect by Ang IV. The effects of Ang IV on hippocampal LTP at the CA1 region were also evaluated. Ang IV significantly increased the amplitude and slope of the EPSPs, which was consistent with other reports. Surprisingly, instead of potentiating LTP, Ang IV caused a failed maintenance of LTP. Moreover, there was no quantitative change in PKMzeta induced by Ang IV and/or ZIP after behavioral experiments. Taken together, our data re-confirmed the finding of the positive effect of Ang IV to enhance memory/cognition. The increased strength of EPSPs with Ang IV could also have certain functional relevance. Since the behavioral results suggested the involvement of PKMzeta, we hypothesized that the enhancement of memory/cognition by Ang IV may rely on an increase in PKMzeta activity. Overall, the present study provided important advances in our understanding of the action of Ang IV in the hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Human reasoning and cognitive science

    NARCIS (Netherlands)

    Stenning, K.; van Lambalgen, M.

    2008-01-01

    In Human Reasoning and Cognitive Science, Keith Stenning and Michiel van Lambalgen—a cognitive scientist and a logician—argue for the indispensability of modern mathematical logic to the study of human reasoning. Logic and cognition were once closely connected, they write, but were "divorced" in the

  6. Effect of complex aerobic physical exercise on PSD-95 in the hippocampus and on cognitive function in juvenile mice

    Science.gov (United States)

    Satriani, W. H.; Redjeki, S.; Kartinah, N. T.

    2017-08-01

    Increased neuroplasticity induced by complex aerobic physical exercise is associated with improved cognitive function in adult mice. Increased cognitive function is assumed to be based on increased synapse formation. One of the regions of the brain that is important in cognitive function is the hippocampus, which plays a role in memory formation. Post synaptic density-95 (PSD-95) is an adhesion protein of the post-synaptic density scaffolding that is essential to synaptic stabilization. As we age, the PSD-95 molecule matures the synapses needed for the formation of the basic circuitry of the nervous system in the brain. However, during the growth period, synapse elimination is higher than its formation. This study aims to determine whether complex aerobic exercise can improve cognitive function and PSD-95 levels in the hippocampus of juvenile mice during their growth stage. The mice performed complex aerobic exercise starting at five weeks of age and continuing for seven weeks with a gradual increase of 8 m/min. At eight weeks it was increased to 10 m/min. The exercise was done for five days of each week. The subjects of the study were tested for cognition one week before being sacrificed (at 12 weeks). The PSD-95 in the hippocampus was measured with ELISA. The results showed that there was a significant difference in cognitive function, where p cognitive ability in adulthood but does not increase the levels of PSD-95 in adults.

  7. Implicit transitive inference and the human hippocampus: does intravenous midazolam function as a reversible hippocampal lesion?

    Directory of Open Access Journals (Sweden)

    Greene Anthony J

    2007-09-01

    Full Text Available Abstract Recent advances have led to an understanding that the hippocampus is involved more broadly than explicit or declarative memory alone. Tasks which involve the acquisition of complex associations involve the hippocampus whether the learning is explicit or implicit. One hippocampal-dependent implicit task is transitive inference (TI. Recently it was suggested that implicit transitive inference does not depend upon the hippocampus (Frank, M. J., O'Reilly, R. C., & Curran, T. 2006. When memory fails, intuition reigns: midazolam enhances implicit inference in humans. Psychological Science, 17, 700–707. The authors demonstrated that intravenous midazolam, which is thought to inactivate the hippocampus, may enhance TI performance. Three critical assumptions are required but not met: 1 that deactivations of other regions could not account for the effect 2 that intravenous midazolam does indeed deactivate the hippocampus and 3 that midazolam influences explicit but not implicit memory. Each of these assumptions is seriously flawed. Consequently, the suggestion that implicit TI does not depend upon the hippocampus is unfounded.

  8. Is there a link between childhood trauma, cognition, and amygdala and hippocampus volume in first-episode psychosis?

    Science.gov (United States)

    Aas, Monica; Navari, Serena; Gibbs, Ayana; Mondelli, Valeria; Fisher, Helen L; Morgan, Craig; Morgan, Kevin; MacCabe, James; Reichenberg, Abraham; Zanelli, Jolanta; Fearon, Paul; Jones, Peter B; Murray, Robin M; Pariante, Carmine M; Dazzan, Paola

    2012-05-01

    Patients with psychosis have higher rates of childhood trauma, which is also associated with adverse effects on cognitive functions such as attention, concentration and mental speed, language, and verbal intelligence. Although the pathophysiological substrate for this association remains unclear, these cognitive deficits may represent the functional correlate of changes observed in relation to trauma exposure in structures such as the amygdala and the hippocampus. Interestingly, these structures are often reported as altered in psychosis. This study investigated the association between childhood trauma, cognitive function and amygdala and hippocampus volume, in first-episode psychosis. We investigated 83 patients with first-episode psychosis and 63 healthy controls. All participants underwent an MRI scan acquired with a GE Sigma 1.5-T system, and a standardized neuropsychological assessment of general cognition, memory, processing speed, executive function, visuo-spatial abilities, verbal intelligence, and language. In a subsample of the patients (N=45) information on childhood trauma was collected with the Childhood Experience of Care and Abuse Questionnaire (CECA.Q). We found that amygdala, but not hippocampus, volume was significantly smaller (p=0.001) in patients compared to healthy controls. There was a trend level interaction for hippocampus volume between group and sex (p=0.056). A history of childhood trauma was associated with both worse cognitive performance and smaller amygdala volume. This smaller amygdala appeared to mediate the relationship between childhood trauma and performance on executive function, language and verbal intelligence in patients with psychosis. This points to a complex relationship between childhood trauma exposure, cognitive function and amygdala volume in first-episode psychosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Study on cognition disorder and morphologic change of neurons in hippocampus area following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 周云涛; 高俊玲

    2002-01-01

    Objective: To explore the correlation between cognition disorder and morphologic change of hippocampal neurons after traumatic brain injury (TBI).   Methods: Wistar rat models with severe TBI were made by Marmarous method. The histopathological change of the neurons in the hippocampus area were studied with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase-mediated X-dUPT nick end labeling (TUNEL), respectively. The cognitive function was evaluated with the Morris water maze test.   Results: The comprehensive neuronal degeneration and necrosis could be observed in CA2-3 regions of hippocampus at 3 days after injury. Apoptotic positive neurons in CA2-4 regions of hippocampus and dentate gyrus increased in the injured group at 24 hours following TBI. They peaked at 7 days and then declined. Significant impairment of spatial learning and memory was observed after injury in the rats.   Conclusions: The rats have obvious disorders in spatial learning and memory after severe TBI. Meanwhile, delayed neuronal necrosis and apoptosis can be observed in the neurons in the hippocampus area. It suggests that delayed hippocampal cell death may contribute to the functional deficit.

  10. Examining the Role of the Human Hippocampus in Approach-Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    O'Neil, Edward B; Newsome, Rachel N; Li, Iris H N; Thavabalasingam, Sathesan; Ito, Rutsuko; Lee, Andy C H

    2015-11-11

    and punishment. Although rodent work has implicated the hippocampus in approach-avoidance conflict processing, there is limited data on whether this role applies to learned, as opposed to innate, incentive values, and whether the human hippocampus plays a similar role. Using functional neuroimaging with a novel decision-making task that controlled for perceptual and mnemonic processing, we found that the human hippocampus was significantly active when approach-avoidance conflict was present for stimuli with learned incentive values. These findings demonstrate a role for the human hippocampus in approach-avoidance decision making that cannot be explained easily by hippocampal-dependent long-term memory or spatial cognition. Copyright © 2015 the authors 0270-6474/15/3515040-11$15.00/0.

  11. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  12. MRI Volumetry of Hippocampus and Amygdala in Normal Aging, Mild Cognitive Impairment and Alzheimer's Disease Subjects

    International Nuclear Information System (INIS)

    Suphaphong, S.; Tritanon, O.; Laothamatas, J.; Sungkarat, W.

    2012-01-01

    The Alzheimer's disease (AD) and mild cognitive impairment (MCI) can affect memory and daily living. Non- invasive diagnostic tools such as MRI can be useful to discriminate the patients from normal group.This study aims to compare the relative volumes of hippocampus and amygdala, to suggest the relative normal volumes, and to evaluate MRI automatic volumetry as a diagnostic tool. The MRI images of 130 subjects were retrospectively studied (Turbo field echo (TFE), acquired with a 3-Tesla Philips scanner). The image data were processed with Free Surfer (automatic segmentation and volumetry). The resultant volumes were corrected for brain size differences with intracranial volumes (ICV), and then analysed with SPSS (v. 17.0). There are differences of hippocampus and amygdala relative volumes between normal, MCI, and AD subjects at p < 0.001. The volume reductions of hippocampus in MCI and AD groups compared to normal group are about 8 % and 28 %, while those of amygdala are about 10 % and 34 %, respectively. The relative volumes of hippocampus (compared to ICV) in normal aging are 0.002617 ± 0.000278 (right) and 0.002553 ± 0.000257 (left), while those of amygdala are 0.001231 ± 0.000165 (right) and 0.001096 ± 0.000144 (left). There are no differences of relative volumes affected by gender in normal, MCI, and AD. There is a highly significant difference of relative volume affected by brain side in normal group (p < 0.001) but not in MCI (p = 0.119 and 0.077) and AD (p = 0.713 and 0.250), for hippocampus and amygdala, respectively. These results demonstrate that there are volume losses of hippocampus and amygdala in both diseases. Automatically measured hippocampus and amygdala volumes can be used as a measure indicating MCI and AD. The abnormal disturbance of volume affected by brain side may indicate the progression of both diseases. The hippocampus and amygdala volumes can be used as one of diagnostic tools to confirm the diagnosis of MCI or AD. The volume

  13. Julius Caesar Arantius (Giulio Cesare Aranzi, 1530-1589) and the hippocampus of the human brain: history behind the discovery.

    Science.gov (United States)

    Bir, Shyamal C; Ambekar, Sudheer; Kukreja, Sunil; Nanda, Anil

    2015-04-01

    Julius Caesar Arantius is one of the pioneer anatomists and surgeons of the 16th century who discovered the different anatomical structures of the human body. One of his prominent discoveries is the hippocampus. At that time, Arantius originated the term hippocampus, from the Greek word for seahorse (hippos ["horse"] and kampos ["sea monster"]). Arantius published his description of the hippocampus in 1587, in the first chapter of his work titled De Humano Foetu Liber. Numerous nomenclatures of this structure, including "white silkworm," "Ammon's horn," and "ram's horn" were proposed by different scholars at that time. However, the term hippocampus has become the most widely used in the literature.

  14. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    Science.gov (United States)

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.

    Science.gov (United States)

    Muhia, Mary; Yee, Benjamin K; Feldon, Joram; Markopoulos, Foivos; Knuesel, Irene

    2010-02-01

    The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.

  16. Prenatal exposure to a novel antipsychotic quetiapine: impact on neuro-architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats.

    Science.gov (United States)

    Singh, K P; Tripathi, Nidhi

    2015-05-01

    Reports on prenatal exposure to some of the first generation antipsychotic drugs like, haloperidol, their effects on fetal neurotoxicity and functional impairments in the offspring, are well documented. But studies on in utero exposure to second generation antipsychotics, especially quetiapine, and its effects on fetal neurotoxicity, apoptotic neurodegeneration, postnatal developmental delay and neurobehavioral consequences are lacking. Therefore, the present study was undertaken to evaluate the effect of prenatal administration to equivalent therapeutic doses of quetiapine on neuro-architectural abnormalities, neurohistopathological changes, apoptotic neurodegeneration in fetal hippocampus, and postnatal development and growth as well as its long-lasting imprint on cognitive impairment in young-adult offspring. Pregnant Wistar rats (n=24) were exposed to selected doses (55 mg, 80 mg and 100mg/kg) of quetiapine, equivalent to human therapeutic doses, from gestation day 6 to 21 orally with control subjects. Half of the pregnant subjects of each group were sacrificed at gestation day 21 for histopathological, confocal and electron microscopic studies and rest of the dams were allowed to deliver naturally. Their pups were reared postnatally up to 10 weeks of age for neurobehavioral observations. In quetiapine treated groups, there was significant alterations in total and differential thickness of three typical layers of hippocampus associated with neuronal cells deficit and enhanced apoptotic neurodegeneration in the CA1 area of fetal hippocampus. Prenatally drug treated rat offspring displayed post-natal developmental delay till postnatal day 70, and these young-adult rats displayed cognitive impairment in Morris water maze and passive avoidance regimes as long-lasting impact of the drug. Therefore, quetiapine should be used with cautions considering its developmental neurotoxicological and neurobehavioral potential in animal model, rat. Copyright © 2015 Elsevier

  17. Hippocampus and Basal Forebrain Volumetry for Dementia and Mild Cognitive Impairment Diagnosis: Could It Be Useful in Primary Care?

    Science.gov (United States)

    Teipel, Stefan J; Keller, Felix; Thyrian, Jochen R; Strohmaier, Urs; Altiner, Attila; Hoffmann, Wolfgang; Kilimann, Ingo

    2017-01-01

    Once a patient or a knowledgeable informant has noticed decline in memory or other cognitive functions, initiation of early dementia assessment is recommended. Hippocampus and cholinergic basal forebrain (BF) volumetry supports the detection of prodromal and early stages of Alzheimer's disease (AD) dementia in highly selected patient populations. To compare effect size and diagnostic accuracy of hippocampus and BF volumetry between patients recruited in highly specialized versus primary care and to assess the effect of white matter lesions as a proxy for cerebrovascular comorbidity on diagnostic accuracy. We determined hippocampus and BF volumes and white matter lesion load from MRI scans of 71 participants included in a primary care intervention trial (clinicaltrials.gov identifier: NCT01401582) and matched 71 participants stemming from a memory clinic. Samples included healthy controls and people with mild cognitive impairment (MCI), AD dementia, mixed dementia, and non-AD related dementias. Volumetric measures reached similar effect sizes and cross-validated levels of accuracy in the primary care and the memory clinic samples for the discrimination of AD and mixed dementia cases from healthy controls. In the primary care MCI cases, volumetric measures reached only random guessing levels of accuracy. White matter lesions had only a modest effect on effect size and diagnostic accuracy. Hippocampus and BF volumetry may usefully be employed for the identification of AD and mixed dementia, but the detection of MCI does not benefit from the use of these volumetric markers in a primary care setting.

  18. A gene-environment study of cytoglobin in the human and rat hippocampus

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Elfving, Betina; Müller, Heidi Kaastrup

    2013-01-01

    Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown C......NOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression.......Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown...... Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (n...

  19. Human mobility, cognition and GISc

    DEFF Research Database (Denmark)

    Welcome to Human Mobility, Cognition and GISc’ - a conference hosted by the University of Copenhagen on November 9, 2015. The present document encloses the abstracts contributed by five invited speakers and eight submitted as responses to a public call made on June 1st 2015. In GIS and related...... the psychological/cognitive and neurophysiological background of our spatial behavior - including our abilities to perceive, memorize, apply and communicate spatial knowledge. It is the aim of the conference to bring together professionals from cognitive, analytical and geo-technical sciences (including...

  20. Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks.

    Science.gov (United States)

    Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno

    2008-08-01

    Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.

  1. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  2. Localized hippocampus measures are associated with Alzheimer pathology and cognition independent of total hippocampal volume.

    NARCIS (Netherlands)

    Carmichael, O.; Xie, J.; Fletcher, E.; Singh, B.; DeCarli, C.; Olde Rikkert, M.; et al.,

    2012-01-01

    Hippocampal injury in the Alzheimer's disease (AD) pathological process is region-specific and magnetic resonance imaging (MRI)-based measures of localized hippocampus (HP) atrophy are known to detect region-specific changes associated with clinical AD, but it is unclear whether these measures

  3. Localized hippocampus measures are associated with Alzheimer pathology and cognition independent of total hippocampal volume

    NARCIS (Netherlands)

    Carmichael, Owen; Xie, Jing; Fletcher, Evan; Singh, Baljeet; Decarli, Charles; A, Saradha; Abdi, Hervé; Abdul Hadi, Normi; Abdulkadir, Ahmed; Abdullah, Afnizanfaizal; Achuthan, Anusha; Adluru, Nagesh; Aggarwal, Namita; Aghajanian, Jania; Agyemang, Alex; Ahdidan, Jamila; Ahmad, Duaa; Ahmed, Shiek; Ahmed, Fareed; Ahmed, Fayeza; Akbarifar, Roshanak; Akhondi-Asl, Alireza; Aksu, Yaman; Alcauter, Sarael; Daniel, Alexander; Alin, Aylin; Alshuft, Hamza; Alvarez-Linera, Juan; Amin-Mansour, Ali; Anderson, Dallas; Anderson, Jeff; Andorn, Anne; Ang, Amma; Angersbach, Steve; Ansarian, Reza; Appaji, Abhishek; Appannah, Arti; Arfanakis, Konstantinos; Armentrout, Steven; Arrighi, Michael; Arumughababu, S. Vethanayaki; Arunagiri, Vidhya; Ashe-McNalley, Cody; Ashford, Wes; Aurelie, Le Page; Avants, Brian; Aviv, Richard; Avula, Ramesh; Richard, Edo; Schmand, Ben

    2012-01-01

    Hippocampal injury in the Alzheimer's disease (AD) pathological process is region-specific and magnetic resonance imaging (MRI)-based measures of localized hippocampus (HP) atrophy are known to detect region-specific changes associated with clinical AD, but it is unclear whether these measures

  4. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse.

    Science.gov (United States)

    Lim, Soonmin; Moon, Minho; Oh, Hyein; Kim, Hyo Geun; Kim, Sun Yeou; Oh, Myung Sook

    2014-10-01

    Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Quantitative multi-modal MRI of the Hippocampus and cognitive ability in community-dwelling older subjects.

    Science.gov (United States)

    Aribisala, Benjamin S; Royle, Natalie A; Maniega, Susana Muñoz; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

    2014-04-01

    Hippocampal structural integrity is commonly quantified using volumetric measurements derived from brain magnetic resonance imaging (MRI). Previously reported associations with cognitive decline have not been consistent. We investigate hippocampal integrity using quantitative MRI techniques and its association with cognitive abilities in older age. Participants from the Lothian Birth Cohort 1936 underwent brain MRI at mean age 73 years. Longitudinal relaxation time (T1), magnetization transfer ratio (MTR), fractional anisotropy (FA) and mean diffusivity (MD) were measured in the hippocampus. General factors of fluid-type intelligence (g), cognitive processing speed (speed) and memory were obtained at age 73 years, as well as childhood IQ test results at age 11 years. Amongst 565 older adults, multivariate linear regression showed that, after correcting for ICV, gender and age 11 IQ, larger left hippocampal volume was significantly associated with better memory ability (β = .11, p = .003), but not with speed or g. Using quantitative MRI and after correcting for multiple testing, higher T1 and MD were significantly associated with lower scores of g (β range = -.11 to -.14, p multi-modal MRI assessments were more sensitive at detecting cognition-hippocampal integrity associations than volumetric measurements, resulting in stronger associations between MRI biomarkers and age-related cognition changes. Copyright © 2014. Published by Elsevier Ltd.

  6. The human hippocampus is not sexually-dimorphic: Meta-analysis of structural MRI volumes.

    Science.gov (United States)

    Tan, Anh; Ma, Wenli; Vira, Amit; Marwha, Dhruv; Eliot, Lise

    2016-01-01

    Hippocampal atrophy is found in many psychiatric disorders that are more prevalent in women. Sex differences in memory and spatial skills further suggest that males and females differ in hippocampal structure and function. We conducted the first meta-analysis of male-female difference in hippocampal volume (HCV) based on published MRI studies of healthy participants of all ages, to test whether the structure is reliably sexually dimorphic. Using four search strategies, we collected 68 matched samples of males' and females' uncorrected HCVs (in 4418 total participants), and 36 samples of male and female HCVs (2183 participants) that were corrected for individual differences in total brain volume (TBV) or intracranial volume (ICV). Pooled effect sizes were calculated using a random-effects model for left, right, and bilateral uncorrected HCVs and for left and right HCVs corrected for TBV or ICV. We found that uncorrected HCV was reliably larger in males, with Hedges' g values of 0.545 for left hippocampus, 0.526 for right hippocampus, and 0.557 for bilateral hippocampus. Meta-regression revealed no effect of age on the sex difference in left, right, or bilateral HCV. In the subset of studies that reported it, both TBV (g=1.085) and ICV (g=1.272) were considerably larger in males. Accordingly, studies reporting HCVs corrected for individual differences in TBV or ICV revealed no significant sex differences in left and right HCVs (Hedges' g ranging from +0.011 to -0.206). In summary, we found that human males of all ages exhibit a larger HCV than females, but adjusting for individual differences in TBV or ICV results in no reliable sex difference. The frequent claim that women have a disproportionately larger hippocampus than men was not supported. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Genetic variation of the RASGRF1 regulatory region affects human hippocampus-dependent memory

    Directory of Open Access Journals (Sweden)

    Adriana eBarman

    2014-04-01

    Full Text Available The guanine nucleotide exchange factor RASGRF1 is an important regulator of intracellular signaling and neural plasticity in the brain. RASGRF1-deficient mice exhibit a complex phenotype with learning deficits and ocular abnormalities. Also in humans, a genome-wide association study has identified the single nucleotide polymorphism (SNP rs8027411 in the putative transcription regulatory region of RASGRF1 as a risk variant of myopia. Here we aimed to assess whether, in line with the RASGRF1 knockout mouse phenotype, rs8027411 might also be associated with human memory function. We performed computer-based neuropsychological learning experiments in two independent cohorts of young, healthy participants. Tests included the Verbal Learning and Memory Test (VLMT and the logical memory section of the Wechsler Memory Scale (WMS. Two sub-cohorts additionally participated in functional magnetic resonance imaging (fMRI studies of hippocampus function. 119 participants performed a novelty encoding task that had previously been shown to engage the hippocampus, and 63 subjects participated in a reward-related memory encoding study. RASGRF1 rs8027411 genotype was indeed associated with memory performance in an allele dosage-dependent manner, with carriers of the T allele (i.e. the myopia risk allele showing better memory performance in the early encoding phase of the VLMT and in the recall phase of the WMS logical memory section. In fMRI, T allele carriers exhibited increased hippocampal activation during presentation of novel images and during encoding of pictures associated with monetary reward. Taken together, our results provide evidence for a role of the RASGRF1 gene locus in hippocampus-dependent memory and, along with the previous association with myopia, point towards pleitropic effects of RASGRF1 genetic variations on complex neural function in humans.

  8. [Impacts of electroacupuncture on left hippocampus NAA/Cr for patients of Uygur and Han nationality with mild cognitive impairment].

    Science.gov (United States)

    Liu, Zhi-Yan; Guo, Hui; Zhang, Xiao-Lin; Liu, Juan; Qu, Hong-Yan; Peng, Wei; Bao, Yi-Mei; Yin, Li-Li; Song, Yi-Xing

    2011-09-01

    To observe the clinical efficacy of electroacupuncture (EA) on mild cognitive impairment (MCI) for patients of Uygur and Han nationality and explore the national diversity among the patients with MCI. Twenty-five cases were divided into Han nationality group (15 cases) and Uygur nationality group (10 cases) according to patient's nationality. In either group, EA was applied to Baihui (GV 20), Fengchi (GB 20), Xuanzhong (GB 39), Fuliu (KI 7), Sanyinjiao (SP 6) and Taixi (KI 3), once per day, 15 treatments made one session and there were 5 days at the interval among the sessions. Totally, 3 sessions of treatment were required. The proton magnetic resonance spectroscopy (1H-MRS) was used to observe the changes in the ratio of N-acetylaspartate and creatine (NAA/Cr) on the left hippocampus for the patients in two groups before and after treatment as well as the changes in the results of the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) separately. NAA/Cr in Uygur nationality group was higher than that in Han nationality group before treatment (1.659 +/- 0.418 vs 1.137 +/- 0.190, P NAA/Cr on the left hippocampus in either group was up-regulated as compared with that before treatment (both P < 0.01). EA can improve the overall cognitive function for the patients with MCI. There is the national diversity in the partial brain metabolite level between Uygur patients and Han patients with MCI.

  9. APOE genotype and age modifies the correlation between cognitive status and metabolites from hippocampus by a 2D 1H-MRS in non-demented elders

    Directory of Open Access Journals (Sweden)

    Zhenyu Yin

    2015-09-01

    Full Text Available Purpose. To examine the associations among age, Apolipoprotein E (APOE genotype, metabolic changes in the hippocampus detected by 2D 1H magnetic resonance spectroscopy (MRS, and neuropsychological measures of cognition in non-demented elders.Materials and Methods. We studied a cohort of 16 cognitively normal controls (CN and 11 amnestic mild cognitive impairment (aMCI patients between 66 and 88 years old who were genotyped for APOE genetic polymorphism. Measurements of 2D1H-MRS metabolites were obtained in the hippocampus region. Adjusting by age among all subjects, the association between metabolic changes and cognitive function was measured by Spearman partial rank-order correlation. The effect of APOE status was measured by separating the subjects into APOE genotype subgroups, including the APOEε4 carriers and APOEε4 non-carriers.Results. In contrast to the CN group matched with age, gender, and education, aMCI patients showed increased myo-inositol (mI/Creatine (Cr ratio only in the right hippocampus. No differences were noted on N-acetylaspartate (NAA/Cr and mI/NAA from bilateral hippocampus, and so was mI/Cr ratio in left hippocampus between aMCI and CN. The mI/Cr ratio from the right hippocampus in non-demented elders was negatively correlated with Montreal Cognitive Assessment (MoCA scores. Whether ε4 genotype or age was added as a covariate, none of the correlation effects remained significant. Additionally, adjusting for age and APOE genotype together, there was no significant correlation between them.Conclusion. Since the higher mI/Cr from the right hippocampus of the patients with aMCI than those from CN, the mI/Cr could be a more specific predictor of general cognitive function in aMCI patients. There is an association between higher mI/Cr in right hippocampus and worse cognitive function for the non-demented older adults, and the correlation could be modified by APOE status and age. That provided a window on objectively

  10. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Science.gov (United States)

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  11. A lower ratio of omega-6 to omega-3 fatty acids predicts better hippocampus-dependent spatial memory and cognitive status in older adults.

    Science.gov (United States)

    Andruchow, Nadia D; Konishi, Kyoko; Shatenstein, Bryna; Bohbot, Véronique D

    2017-10-01

    Evidence from several cross-sectional studies indicates that an increase in omega-6 to omega-3 fatty acids (FAs) may negatively affect cognition in old age. The hippocampus is among the first neural structures affected by age and atrophy in this brain region is associated with cognitive decline. Therefore, we hypothesized that a lower omega-6:3 FA ratio would predict better hippocampus-dependent spatial memory, and a higher general cognitive status. Fifty-two healthy older adults completed a Food Frequency Questionnaire, the Montreal Cognitive Assessment test (MoCA; a test of global cognition) and virtual navigation tasks that assess navigational strategies and spatial memory. In this cross-sectional study, a lower ratio of omega-6 to omega-3 FA intake strongly predicted more accurate hippocampus-dependent spatial memory and faster learning on our virtual navigation tasks, as well as higher cognitive status overall. These results may help elucidate why certain dietary patterns with a lower omega-6:3 FA ratio, like the Mediterranean diet, are associated with reduced risk of cognitive decline. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Directory of Open Access Journals (Sweden)

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  13. Decoding Illusory Self-location from Activity in the Human Hippocampus

    Directory of Open Access Journals (Sweden)

    Arvid eGuterstam

    2015-07-01

    Full Text Available Decades of research have demonstrated a role for the hippocampus in spatial navigation and episodic and spatial memory. However, empirical evidence linking hippocampal activity to the perceptual experience of being physically located at a particular place in the environment is lacking. In this study, we used a multisensory out-of-body illusion to perceptually ‘teleport’ six healthy participants between two different locations in the scanner room during high-resolution functional magnetic resonance imaging (fMRI. The participants were fitted with MRI-compatible head-mounted displays that changed their first-person visual perspective to that of a pair of cameras placed in one of two corners of the scanner room. To elicit the illusion of being physically located in this position, we delivered synchronous visuo-tactile stimulation in the form of an object moving towards the cameras coupled with touches applied to the participant’s chest. Asynchronous visuo-tactile stimulation did not induce the illusion and served as a control condition. We found that illusory self-location could be successfully decoded from patterns of activity in the hippocampus in all of the participants in the synchronous (P0.05. At the group-level, the decoding accuracy was significantly higher in the synchronous than in the asynchronous condition (P=0.012. These findings associate hippocampal activity with the perceived location of the bodily self in space, which suggests that the human hippocampus is involved not only in spatial navigation and memory but also in the construction of our sense of bodily self-location.

  14. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  15. Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task.

    Directory of Open Access Journals (Sweden)

    Isabel Catarina Duarte

    Full Text Available Anterior/posterior long axis specialization is thought to underlie the organization of the hippocampus. However it remains unclear whether antagonistic mechanisms differentially modulate processing of spatial information within the hippocampus. We used fMRI and a virtual reality 3D paradigm to study encoding and retrieval of spatial memory during active visuospatial navigation, requiring positional encoding and retrieval of object landmarks during the path. Both encoding and retrieval elicited BOLD activation of the posterior most portion of hippocampus, while concurrent deactivations (recently shown to reflect decreases in neural responses were found in the most anterior regions. Encoding elicited stronger activity in the posterior right than the left hippocampus. The former structure also showed significantly stronger activity for allocentric vs. egocentric processing during retrieval. The anterior vs. posterior pattern mimics, from a functional point, although at much distinct temporal scales, the previous anatomical findings in London taxi drivers, whereby posterior enlargement was found at the cost of an anterior decrease, and the mirror symmetric findings observed in blind people, in whom the right anterior hippocampus was found to be larger, at the cost of a smaller posterior hippocampus, as compared with sighted people. In sum, we found a functional dichotomy whereby the anterior/posterior hippocampus shows antagonistic processing patterns for spatial encoding and retrieval of 3D spatial information. To our knowledge, this is the first study reporting such a dynamical pattern in a functional study, which suggests that differential modulation of neural responses within the human hippocampus reflects distinct roles in spatial memory processing.

  16. Modularity, comparative cognition and human uniqueness.

    Science.gov (United States)

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  17. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  18. Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice.

    Science.gov (United States)

    Maejima, Hiroshi; Kanemura, Naohiko; Kokubun, Takanori; Murata, Kenji; Takayanagi, Kiyomi

    2018-02-05

    Aerobic exercise is known to increase expression of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), in the hippocampus and to improve cognitive function. Exercise exerts neuroprotective effects in the hippocampus by inducing epigenetic changes, which play crucial roles in aging and neurodegenerative diseases. Specifically, the activity levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate histone acetylation and modulate gene transcription. The objective of the present study was to assess the interactive effects of exercise and aging on cognitive function, expression of neurotrophins (BDNF and neurotrophin-4) and their receptors (tyrosine receptor kinase B and p75), and epigenetic regulations, including the activity of HATs and HADCs in the hippocampus. We used the senescence-accelerated mouse (SAM) model, specifically 13-month-old SAM resistant 1(SAMR1) and SAM prone 1 (SAMP1) lines. Mice were distributed into four groups based on accelerated senescence and exercise status. Mice in the exercise groups exercised on a treadmill for approximately 60min a day, 5days a week. Aerobic exercise for 4 weeks improved cognitive function, accompanied by an increase in BDNF expression and a decrease in p75 transcription in both SAMR1 and SAMP1. In addition, the exercise regimen activated both HAT and HDAC in the hippocampus. Therefore, the present study reveals that despite accelerated senescence, long-term exercise improved cognitive function, upregulated the expression of BDNF, and downregulated p75, a receptor involved in apoptotic signaling. Furthermore, long-term exercise enhanced activity of both HAT and HDAC, which may contribute to the transcriptional regulation underlying the improvement of cognitive function. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cognitive disorganization in hippocampus: a physiological model of the disorganization in psychosis

    Czech Academy of Sciences Publication Activity Database

    Olypher, Andrej Vadimovich; Klement, Daniel; Fenton, André Antonio

    2006-01-01

    Roč. 26, č. 1 (2006), s. 158-168 ISSN 0270-6474 R&D Projects: GA MŠk(CZ) LC554 Grant - others:European Commission(XE) QLG3-CT-1999-00192 Institutional research plan: CEZ:AV0Z5011922 Keywords : cognitive disorganization * reversible lesion * parasitic attractor Subject RIV: FH - Neurology Impact factor: 7.453, year: 2006

  20. Volumetric MRI and {sup 1}H MRS study of hippocampus in unilateral MCAO patients: Relationship between hippocampal secondary damage and cognitive disorder following stroke

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiangyu; Wang, Chengyuan; Xia, Liming [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenhao [Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhao, Lingyun [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenzhen, E-mail: zhuwenzhen@hotmail.com [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China)

    2012-10-15

    Objective: To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. Meterials and methods: Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ({sup 1}H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. Results: The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini–Mental State Examination (MMSE) score. Conclusion: Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and {sup 1}H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment.

  1. Volumetric MRI and 1H MRS study of hippocampus in unilateral MCAO patients: Relationship between hippocampal secondary damage and cognitive disorder following stroke

    International Nuclear Information System (INIS)

    Tang, Xiangyu; Wang, Chengyuan; Xia, Liming; Zhu, Wenhao; Zhao, Lingyun; Zhu, Wenzhen

    2012-01-01

    Objective: To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. Meterials and methods: Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ( 1 H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. Results: The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini–Mental State Examination (MMSE) score. Conclusion: Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and 1 H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment

  2. MRI Measures of Hippocampus in Mild Cognitive Impairment and Alzheimer Patients

    Directory of Open Access Journals (Sweden)

    Çağatay Öncel

    2011-12-01

    Full Text Available OBJECTIVE: In this study we aimed to compare the hippocampal volumes of patients diagnosed as Alzheimer’s Disease (AD, Minimal Cognitive Impairment (MCI and the healthy objects. We also tried to demonstrate whether there was a possible correlation between the cognitive tests and the hippocampal volumes. METHODS: Minimental State Examination, Adas-Cog and Global Deterioration Scale were administrated to the patients having Alzheimer’s Disease (n=20. We also performed Minimental State Examination, and Adas-Cog to MCI patients (n=20 and Minimental State Examination to the healthy control group (n=18. Both right and left hippocampal volumes were measured by a three dimensioned Surf Driver programm with the support of cranial magnetic resonance imaging (MRI. RESULTS: Both right and left hippocampal volumes of the Alzheimer’s Disease group were significantly smaller than the MCI and the control groups. Bilaterally hippocampal volumes of MCI group were also smaller than the control group. (Hippocampal volumes; AD 0.05. CONCLUSION: : Surf Driver method succesfully demonstrated the relative hippocampal atrophy in the AD and the MCI groups when compared with the healthy controls

  3. MRI Measures of Hippocampus in Mild Cognitive Impairment and Alzheimer Patients

    Directory of Open Access Journals (Sweden)

    Çağatay Öncel

    2011-12-01

    Full Text Available OBJECTIVE: In this study we aimed to compare the hippocampal volumes of patients diagnosed as Alzheimer’s Disease (AD, Minimal Cognitive Impairment (MCI and the healthy objects. We also tried to demonstrate whether there was a possible correlation between the cognitive tests and the hippocampal volumes. METHODS: Minimental State Examination, Adas-Cog and Global Deterioration Scale were administrated to the patients having Alzheimer’s Disease (n=20. We also performed Minimental State Examination, and Adas-Cog to MCI patients (n=20 and Minimental State Examination to the healthy control group (n=18. Both right and left hippocampal volumes were measured by a three dimensioned Surf Driver programm with the support of cranial magnetic resonance imaging (MRI. RESULTS: Both right and left hippocampal volumes of the Alzheimer’s Disease group were significantly smaller than the MCI and the control groups. Bilaterally hippocampal volumes of MCI group were also smaller than the control group. (Hippocampal volumes; AD 0.05. CONCLUSION: : Surf Driver method succesfully demonstrated the relative hippocampal atrophy in the AD and the MCI groups when compared with the healthy controls.

  4. Mesocortical dopaminergic function and human cognition

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Chase, T.N.

    1988-01-01

    In summary, we have reviewed rCBF data in humans that suggest that mesoprefrontal dopaminergic activity is involved in human cognition. In patients with Parkinson's disease and possibly in patients with schizophrenia, prefrontal physiological activation during a cognitive task that appears to depend on prefrontal neural systems correlates positively with cognitive performance on the task and with clinical signs of dopaminergic function. It may be possible in the future to examine prefrontal dopamine metabolism directly during prefrontal cognition using positron emission tomography and tracers such as F-18 DOPA. 21 references

  5. Cognitive maps, spatial abilities and human wayfinding.

    OpenAIRE

    Golledge, Reginald G.; Jacobson, R. Daniel; Kitchin, Rob; Blades, Mark

    2000-01-01

    In this paper we discuss the relations between cognitive maps, spatial abilities and human wayfinding, particularly in the context of traveling without the use of sight. Initially we discuss the nature of cognitive maps and the process of cognitive mapping as mechanisms for developing person to object (egocentric) and object to object (allocentric) internal representations. Imperfections in encoding either relations can introduce imperfections in representations of environments in memory. Thi...

  6. Enhancing Human Cognition with Cocoa Flavonoids

    Directory of Open Access Journals (Sweden)

    Valentina Socci

    2017-05-01

    Full Text Available Enhancing cognitive abilities has become a fascinating scientific challenge, recently driven by the interest in preventing age-related cognitive decline and sustaining normal cognitive performance in response to cognitively demanding environments. In recent years, cocoa and cocoa-derived products, as a rich source of flavonoids, mainly the flavanols sub-class, have been clearly shown to exert cardiovascular benefits. More recently, neuromodulation and neuroprotective actions have been also suggested. Here, we discuss human studies specifically aimed at investigating the effects of acute and chronic administration of cocoa flavanols on different cognitive domains, such as executive functions, attention and memory. Through a variety of direct and indirect biological actions, in part still speculative, cocoa and cocoa-derived food have been suggested to possess the potential to counteract cognitive decline and sustain cognitive abilities, particularly among patients at risk. Although still at a preliminary stage, research investigating the relations between cocoa and cognition shows dose-dependent improvements in general cognition, attention, processing speed, and working memory. Moreover, cocoa flavanols administration could also enhance normal cognitive functioning and exert a protective role on cognitive performance and cardiovascular function specifically impaired by sleep loss, in healthy subjects. Together, these findings converge at pointing to cocoa as a new interesting nutraceutical tool to protect human cognition and counteract different types of cognitive decline, thus encouraging further investigations. Future research should include complex experimental designs combining neuroimaging techniques with physiological and behavioral measures to better elucidate cocoa neuromodulatory properties and directly compare immediate versus long-lasting cognitive effects.

  7. Anatomical constraints on visualization of the human hippocampus using echo-planar imaging

    International Nuclear Information System (INIS)

    Asano, Shuichiro; Kirino, Takaaki; Mihara, Ban; Sugishita, Morihiro

    2004-01-01

    Reliable visualization of the hippocampus on echo-planar imaging (EPI) is essential in analyzing memory function using functional magnetic resonance imaging. However, the hippocampal area is notoriously prone to susceptibility artifacts caused by structures at the skull base, and avoiding such artifacts by appropriately selecting the subjects for a study is of practical importance. To elucidate factors affecting the extent of the artifacts we obtained EPI in a total of 62 hippocampi from 31 healthy volunteers and evaluated various anatomical measurements possibly associated with the quality of the images. The hippocampal head was sufficiently well demonstrated on 40 of 62 images (65%), and there were two parameters that significantly differed between the good (n=40) and poor (n=22) imaging studies: The vertical diameter (DV) of the opening of the internal acoustic meatus (IAM) and the pneumatization rate of the sphenoid sinus (RP-SS). From logistic regression analysis with the stepwise method, in addition to these two factors, the distance between the hippocampal body and IAM (Dhippo-IAM) and the distance between the hippocampal head and the middle cranial fossa at the skull base (Dhippo-base) were extracted. DV-IAM, RP-SS, and Dhippo-base were negatively correlated with the good imaging of the hippocampal head. On the other hand, Dhippo-IAM was positively correlated. These easily measurable parameters will be helpful in selecting subjects and in increasing the efficiency of hippocampal visualization in studies on human memory function. (orig.)

  8. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    Science.gov (United States)

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  9. New thinking: the evolution of human cognition.

    Science.gov (United States)

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  10. Spatial cognition in apes and humans.

    Science.gov (United States)

    Gentner, Dedre

    2007-05-01

    The debate on whether language influences cognition is sometimes seen as a simple dichotomy: cognitive development is governed either by innate predispositions or by influences of language and culture. In two recent papers on spatial cognition, Haun and colleagues break new ground in bringing together a comparative cognition approach with a cross-linguistic framework to arrive at a third position: that humans begin with the same spatial reference frames as our near relatives, the great apes, and diverge later owing to the influence of language and culture.

  11. New thinking: the evolution of human cognition

    OpenAIRE

    Heyes, Cecilia

    2012-01-01

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolu...

  12. Regional Metabolic Changes in the Hippocampus and Posterior Cingulate Area Detected with 3-Tesla Magnetic Resonance Spectroscopy in Patients with Mild Cognitive Impairment and Alzheimer Disease

    International Nuclear Information System (INIS)

    Zhiqun Wang; Cheng Zhao; Kuncheng Li; Lei Yu; Weidong Zhou

    2009-01-01

    Background: Magnetic resonance spectroscopy (MRS) plays an important role in early diagnosis of Alzheimer disease (AD). There are many reports on MRS studies among individuals with AD and mild cognitive impairment (MCI). However, very few studies have compared spectroscopic data of different limbic regions among AD and MCI subjects. Purpose: To compare metabolite changes of different regions in the brain of AD and MCI patients by using 3.0T short-echo-time MRS. Material and Methods: Metabolite ratios in the hippocampus and posterior cingulate area were compared in a group of patients with AD (n=16), MCI (n=16), and normal subjects as a control group (n=16). Clinical neuropsychological tests were measured in all subjects. Results: In the hippocampus, there were significant differences in N-acetylaspartate (NAA)/creatine (Cr), myo-inositol (mI)/Cr, and mI/NAA ratios among the three groups. However, there were no significant differences in choline (Cho)/Cr ratio among the three groups. In the posterior cingulate area, there were no significant differences in the NAA/Cr, Cho/Cr, and mI/Cr ratios among the three groups. However, there were significant differences in mI/NAA ratio between patients with AD and the control group, and between the AD and MCI groups. In addition, there was significant correlation between mI/NAA ratio and Mini Mental Status Exam (MMSE) score in subjects with AD and MCI. Conclusion: The study reveals that the elevation of mI/NAA ratio in the hippocampus is more significant than that in the posterior cingulate area, which corresponds to the pathologic procession of AD. The ratios of mI/NAA in the hippocampus and in the posterior cingulate area together provide valuable discrimination among the three groups (AD, MCI, and controls). There is a significant correlation between mI/NAA ratio and cognitive decline

  13. Differential Age-Related Changes in Structural Covariance Networks of Human Anterior and Posterior Hippocampus

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    2018-05-01

    Full Text Available The hippocampus plays an important role in memory function relying on information interaction between distributed brain areas. The hippocampus can be divided into the anterior and posterior sections with different structure and function along its long axis. The aim of this study is to investigate the effects of normal aging on the structural covariance of the anterior hippocampus (aHPC and the posterior hippocampus (pHPC. In this study, 240 healthy subjects aged 18–89 years were selected and subdivided into young (18–23 years, middle-aged (30–58 years, and older (61–89 years groups. The aHPC and pHPC was divided based on the location of uncal apex in the MNI space. Then, the structural covariance networks were constructed by examining their covariance in gray matter volumes with other brain regions. Finally, the influence of age on the structural covariance of these hippocampal sections was explored. We found that the aHPC and pHPC had different structural covariance patterns, but both of them were associated with the medial temporal lobe and insula. Moreover, both increased and decreased covariances were found with the aHPC but only increased covariance was found with the pHPC with age (p < 0.05, family-wise error corrected. These decreased connections occurred within the default mode network, while the increased connectivity mainly occurred in other memory systems that differ from the hippocampus. This study reveals different age-related influence on the structural networks of the aHPC and pHPC, providing an essential insight into the mechanisms of the hippocampus in normal aging.

  14. Modularity, comparative cognition and human uniqueness

    OpenAIRE

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference ...

  15. Human cognitive aging: corriger la fortune?

    Science.gov (United States)

    Lindenberger, Ulman

    2014-10-31

    Human cognitive aging differs between and is malleable within individuals. In the absence of a strong genetic program, it is open to a host of hazards, such as vascular conditions, metabolic syndrome, and chronic stress, but also open to protective and enhancing factors, such as experience-dependent cognitive plasticity. Longitudinal studies suggest that leading an intellectually challenging, physically active, and socially engaged life may mitigate losses and consolidate gains. Interventions help to identify contexts and mechanisms of successful cognitive aging and give science and society a hint about what would be possible if conditions were different. Copyright © 2014, American Association for the Advancement of Science.

  16. Fornix white matter is correlated with resting state functional connectivity of the thalamus and hippocampus in healthy aging but not in mild cognitive impairment- a preliminary study

    Directory of Open Access Journals (Sweden)

    Elizabeth Grace Kehoe

    2015-02-01

    Full Text Available In this study we wished to examine the relationship between the structural connectivity of the fornix, a white matter (WM tract in the limbic system which is affected in amnestic mild cognitive impairment (aMCI and Alzheimer’s disease (AD, and the resting state functional connectivity (FC of two key related subcortical structures, the thalamus and hippocampus. Twenty-two older healthy controls (HC and 18 older adults with aMCI underwent multi-modal MRI scanning. The fornix was reconstructed using constrained-spherical deconvolution (CSD-based tractography. The FC between the thalamus and hippocampus was calculated using a region-of-interest approach from which the mean time series were exacted and correlated. Diffusion tensor imaging (DTI measures of the white matter microstructure of the fornix were correlated against the Fisher Z correlation values from the FC analysis. There was no difference between the groups in the fornix white matter measures, nor in the resting state FC of the thalamus and hippocampus. We did however find that the relationship between functional and structural connectivity differed significantly between the groups. In the HCs there was a significant positive association between linear diffusion (CL in the fornix and the FC of the thalamus and hippocampus, however there was no relationship between these measures in the aMCI group. These preliminary findings suggest that in aMCI, the relationship between the functional and structural connectivity of regions of the limbic system may be significantly altered compared to healthy ageing. The combined use of DWI and fMRI may advance our understanding of neural network changes in aMCI, and elucidate subtle changes in the relationship between structural and functional brain networks.

  17. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  18. A critical role of the human hippocampus in an electrophysiological measure of implicit memory

    Science.gov (United States)

    Addante, Richard James

    2015-01-01

    The hippocampus has traditionally been thought to be critical for conscious explicit memory but not necessary for unconscious implicit memory processing. In a recent study of a group of mild amnesia patients with evidence of MTL damage limited to the hippocampus, subjects were tested on a direct test of item recognition confidence while electroencephalogram (EEG) was acquired, and revealed intact measures of explicit memory from 400–600ms (mid-frontal old-new effect, FN400). The current investigation re-analyzed this data to study event-related potentials (ERPs) of implicit memory, using a recently developed procedure that eliminated declarative memory differences. Prior ERP findings from this technique were first replicated in two independent matched control groups, which exhibited reliable implicit memory effects in posterior scalp regions from 400–600 msec, which were topographically dissociated from the explicit memory effects of familiarity. However, patients were found to be dramatically impaired in implicit memory effects relative to control subjects, as quantified by a reliable condition × group interaction. Several control analysis were conducted to consider alternative factors that could account for the results, including outliers, sample size, age, or contamination by explicit memory, and each of these factors were systematically ruled out. Results suggest that the hippocampus plays a fundamental role in aspects of memory processing that is beyond conscious awareness. The current findings therefore indicate that both memory systems of implicit and explicit memory may rely upon the same neural structures – but function in different physiological ways. PMID:25562828

  19. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.

    Science.gov (United States)

    Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole

    2015-04-01

    Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.

  20. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies.

    Science.gov (United States)

    Schröder, Nadja; Figueiredo, Luciana Silva; de Lima, Maria Noêmia Martins

    2013-01-01

    Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.

  1. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  2. Regional Fluid-Attenuated Inversion Recovery (FLAIR at 7 Tesla correlates with Amyloid beta in Hippocampus and Brainstem of cognitively normal elderly subjects.

    Directory of Open Access Journals (Sweden)

    Simon J Schreiner

    2014-09-01

    Full Text Available Background: Accumulation of amyloid beta (Aβ may occur during healthy aging and is a risk factor for Alzheimer Disease (AD. While individual Aβ-accumulation can be measured non-invasively using Pittsburgh compound-B positron-emission-tomography (PiB-PET, Fluid-Attenuated Inversion Recovery (FLAIR is a Magnetic Resonance Imaging (MRI sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR- intensity. Methods: 14 healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T. Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho, followed by Holm-Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right:rho=0.86; left:rho=0.84, Brainstem (rho=0.85 and left Basal Ganglia vessel region (rho=0.82. Conclusions: Our finding of a significant relationship between PiB- and FLAIR-intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  3. Regional Fluid-Attenuated Inversion Recovery (FLAIR) at 7 Tesla correlates with amyloid beta in hippocampus and brainstem of cognitively normal elderly subjects

    Science.gov (United States)

    Schreiner, Simon J.; Liu, Xinyang; Gietl, Anton F.; Wyss, Michael; Steininger, Stefanie C.; Gruber, Esmeralda; Treyer, Valerie; Meier, Irene B.; Kälin, Andrea M.; Leh, Sandra E.; Buck, Alfred; Nitsch, Roger M.; Pruessmann, Klaas P.; Hock, Christoph; Unschuld, Paul G.

    2014-01-01

    Background: Accumulation of amyloid beta (Aβ) may occur during healthy aging and is a risk factor for Alzheimer Disease (AD). While individual Aβ-accumulation can be measured non-invasively using Pittsburgh Compund-B positron emission tomography (PiB-PET), Fluid-attenuated inversion recovery (FLAIR) is a Magnetic Resonance Imaging (MRI) sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR intensity. Methods: Fourteen healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T). Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho), followed by Holm–Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right: rho = 0.86; left: rho = 0.84), Brainstem (rho = 0.85) and left Basal Ganglia vessel region (rho = 0.82). Conclusions: Our finding of a significant relationship between PiB- and FLAIR intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  4. Directly Converted Human Fibroblasts Mature to Neurons and Show Long-Term Survival in Adult Rodent Hippocampus

    Directory of Open Access Journals (Sweden)

    Natalia Avaliani

    2017-01-01

    Full Text Available Direct conversion of human somatic cells to induced neurons (iNs, using lineage-specific transcription factors has opened new opportunities for cell therapy in a number of neurological diseases, including epilepsy. In most severe cases of epilepsy, seizures often originate in the hippocampus, where populations of inhibitory interneurons degenerate. Thus, iNs could be of potential use to replace these lost interneurons. It is not known, however, if iNs survive and maintain functional neuronal properties for prolonged time periods in in vivo. We transplanted human fibroblast-derived iNs into the adult rat hippocampus and observed a progressive morphological differentiation, with more developed dendritic arborisation at six months as compared to one month. This was accompanied by mature electrophysiological properties and fast high amplitude action potentials at six months after transplantation. This proof-of-principle study suggests that human iNs can be developed as a candidate source for cell replacement therapy in temporal lobe epilepsy.

  5. Exploring Human Cognition Using Large Image Databases.

    Science.gov (United States)

    Griffiths, Thomas L; Abbott, Joshua T; Hsu, Anne S

    2016-07-01

    Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories. Copyright © 2016 Cognitive Science Society, Inc.

  6. Translating cognition from animals to humans.

    Science.gov (United States)

    Keeler, J F; Robbins, T W

    2011-06-15

    Many clinical disorders, whether neurological (e.g. Alzheimer's disease) or neuropsychiatric (e.g. schizophrenia and depression), exhibit cognitive symptoms that require pharmacological treatment. Cognition is multi-faceted and includes processes of perception, attention, working memory, long-term memory, executive function, language and social cognition. This article reviews how it is feasible to model many aspects of human cognition with the use of appropriate animal models and associated techniques, including the use of computer controlled tests (e.g. touch-screens), for optimising translation of experimental research to the clinic. When investigating clinical disorders, test batteries should aim to profile cognitive function in order to determine which aspects are impaired and which are preserved. In this review we have paid particular attention to the validation of translational methods; this may be done through the application of common theoretical principles, by comparing the effects of psychological manipulations and, wherever feasible, with the demonstration of homologous neural circuitry or equivalent pharmacological actions in the animal and human paradigms. Of particular importance is the use of 'back-translation' to ensure that the animal model has validity, for example, in predicting the effects of therapeutic drugs already found in human studies. It is made clear that the choice of appropriate behavioral tests is an important element of animal models of neuropsychiatric or neurological disorder; however, of course it is also important to select appropriate manipulations, whether genetic, neurodevelopmental, neurotoxic, or pharmacological, for simulating the neural substrates relevant to the disorders that lead to predictable behavioral and cognitive impairments, for optimising the testing of candidate compounds. 2011 Elsevier Inc. All rights reserved.

  7. Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology.

    Science.gov (United States)

    Adler, Daniel H; Wisse, Laura E M; Ittyerah, Ranjit; Pluta, John B; Ding, Song-Lin; Xie, Long; Wang, Jiancong; Kadivar, Salmon; Robinson, John L; Schuck, Theresa; Trojanowski, John Q; Grossman, Murray; Detre, John A; Elliott, Mark A; Toledo, Jon B; Liu, Weixia; Pickup, Stephen; Miller, Michael I; Das, Sandhitsu R; Wolk, David A; Yushkevich, Paul A

    2018-04-17

    Although the hippocampus is one of the most studied structures in the human brain, limited quantitative data exist on its 3D organization, anatomical variability, and effects of disease on its subregions. Histological studies provide restricted reference information due to their 2D nature. In this paper, high-resolution (∼200 × 200 × 200 μm 3 ) ex vivo MRI scans of 31 human hippocampal specimens are combined using a groupwise diffeomorphic registration approach into a 3D probabilistic atlas that captures average anatomy and anatomic variability of hippocampal subfields. Serial histological imaging in 9 of the 31 specimens was used to label hippocampal subfields in the atlas based on cytoarchitecture. Specimens were obtained from autopsies in patients with a clinical diagnosis of Alzheimer's disease (AD; 9 subjects, 13 hemispheres), of other dementia (nine subjects, nine hemispheres), and in subjects without dementia (seven subjects, nine hemispheres), and morphometric analysis was performed in atlas space to measure effects of age and AD on hippocampal subfields. Disproportional involvement of the cornu ammonis (CA) 1 subfield and stratum radiatum lacunosum moleculare was found in AD, with lesser involvement of the dentate gyrus and CA2/3 subfields. An association with age was found for the dentate gyrus and, to a lesser extent, for CA1. Three-dimensional patterns of variability and disease and aging effects discovered via the ex vivo hippocampus atlas provide information highly relevant to the active field of in vivo hippocampal subfield imaging.

  8. Thinking After Drinking: Impaired Hippocampal Dependent Cognition in Human Alcoholics and Animal Models of Alcohol Dependence

    Directory of Open Access Journals (Sweden)

    Miranda Staples

    2016-09-01

    Full Text Available Alcohol use disorder currently affects approximately 18 million Americans, with at least half of these individuals having significant cognitive impairments subsequent to their chronic alcohol use. This is most widely apparent as frontal cortex dependent cognitive dysfunction, where executive function and decision making are severely compromised, as well as hippocampus dependent cognitive dysfunction, where contextual and temporal reasoning are negatively impacted. This review discusses the relevant clinical literature to support the theory that cognitive recovery in tasks dependent on the prefrontal cortex and hippocampus is temporally different across extended periods of abstinence from alcohol. Additional studies from preclinical models are discussed to support clinical findings. Finally, the unique cellular composition of the hippocampus and cognitive impairment dependent on the hippocampus is highlighted in the context of alcohol dependence.

  9. Desalted deep-sea water improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus.

    Science.gov (United States)

    Harada, Naoaki; Zhao, Juan; Kurihara, Hiroki; Nakagata, Naomi; Okajima, Kenji

    2011-08-01

    The stimulation of sensory neurons in the gastrointestinal (GI) tract improves cognitive function by increasing the hippocampal production of insulin-like growth factor-I (IGF-I) in mice. In the current study, we examined whether oral administration of desalted deep-sea water (DSW) increases the hippocampal production of IGF-I by stimulating sensory neurons in the GI tract, thereby improving cognitive function in mice. Desalted DSW increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice by activating transient receptor potential vanilloid 1. The plasma levels of IGF-I and tissue levels of CGRP, IGF-I, and IGF-I mRNA in the hippocampus were increased by oral administration of desalted DSW in WT mice. In these animals, nociceptive information originating from the GI tract was transmitted to the hippocampus via the spinothalamic pathway. Improvement of spatial learning was observed in WT mice after administration of desalted DSW. Distilled DSW showed results similar to those of desalted DSW in vitro and in vivo. None of the effects of desalted DSW in WT mice were observed after the administration of desalted DSW in CGRP-knockout (CGRP-/-) mice. No volatile compounds were detected in distilled DSW on GC-MS analysis. These observations suggest that desalted DSW may increase the hippocampal IGF-I production via sensory neuron stimulation in the Gl tract, thereby improving cognitive function in mice. Such effects of desalted DSW might not be dependent on the minerals but are dependent on the function of the water molecule itself. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of hippocampus of rats after sleep deprivation

    Directory of Open Access Journals (Sweden)

    Jiang-hua SI

    2014-04-01

    Full Text Available Objective To investigate the effects of high-altitude environment on cognitive function and ultrastructure in CA1 region of the hippocampus of Wistar rats in sleep deprivation (SD.  Methods SD was induced in Wistar rats by employing "flower pot" technique. Sixty-four rats were randomly divided into 2 groups: Lanzhou group (at an altitude of 1520 m and Kekexili group (at an altitude of 4767 m, and each group was further divided into 4 subgroups according to the time of SD (0, 1, 3 and 5 d. The behaviors of rats were studied by Morris water maze test at given time points. The ultrastructure of hippocampal neurons was observed by transmission electron microscope (TEM.  Results 1 Compared with Lanzhou group, rat behavior of Kekexili group presented excitement-irritation-suppression changes with the extension of SD time, but the extent was weakened gradually, and time of sleepiness increased obviously. 2 Compared with Lanzhou group, neurons in CA1 region of hippocampus showed enlarged cell body, disappeared nuclear membrane, shrunken nuclei and decreased organelle. End-feet of glia cells sticking to capillaries swelled and ruptured, and the typical synaptic structure disappeared. 3 Morris water maze test: as compared with Lanzhou group, the escape latency of Kekexili group prolonged (P < 0.05, for all, the ability of distance exploration increased (P < 0.05, for all, and the times across plot decreased (P < 0.05, for all in 1, 3 and 5 d of SD.  Conclusions High-altitude environment may significantly influence the cognitive function of rats in SD, and there was close correlation between the cognitive disorders and the changes in the ultrastructure of hippocampal CA1 region. doi: 10.3969/j.issn.1672-6731.2014.04.012

  11. Oxytocin, testosterone, and human social cognition.

    Science.gov (United States)

    Crespi, Bernard J

    2016-05-01

    I describe an integrative social-evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co-opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness-enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness-reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self-oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under-developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively 'hyper-developed' social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint

  12. Stress, memory, and the hippocampus.

    Science.gov (United States)

    Wingenfeld, Katja; Wolf, Oliver T

    2014-01-01

    Stress hormones, i.e. cortisol in human and cortisone in rodents, influence a wide range of cognitive functions, including hippocampus-based declarative memory performance. Cortisol enhances memory consolidation, but impairs memory retrieval. In this context glucocorticoid receptor sensitivity and hippocampal integrity play an important role. This review integrates findings on the relationships between the hypothalamus-pituitary-adrenal (HPA) axis, one of the main coordinators of the stress response, hippocampus, and memory. Findings obtained in healthy participants will be compared with selected mental disorders, including major depressive disorder (MDD), posttraumatic stress disorder (PTSD), and borderline personality disorder (BPD). These disorders are characterized by alterations of the HPA axis and hippocampal dysfunctions. Interestingly, the acute effects of stress hormones on memory in psychiatric patients are different from those found in healthy humans. While cortisol administration has failed to affect memory retrieval in patients with MDD, patients with PTSD and BPD have been found to show enhanced rather than impaired memory retrieval after hydrocortisone. This indicates an altered sensitivity to stress hormones in these mental disorders. © 2014 S. Karger AG, Basel

  13. Performance of Hippocampus Volumetry with FSL-FIRST for Prediction of Alzheimer's Disease Dementia in at Risk Subjects with Amnestic Mild Cognitive Impairment.

    Science.gov (United States)

    Suppa, Per; Hampel, Harald; Kepp, Timo; Lange, Catharina; Spies, Lothar; Fiebach, Jochen B; Dubois, Bruno; Buchert, Ralph

    2016-01-01

    MRI-based hippocampus volume, a core feasible biomarker of Alzheimer's disease (AD), is not yet widely used in clinical patient care, partly due to lack of validation of software tools for hippocampal volumetry that are compatible with routine workflow. Here, we evaluate fully-automated and computationally efficient hippocampal volumetry with FSL-FIRST for prediction of AD dementia (ADD) in subjects with amnestic mild cognitive impairment (aMCI) from phase 1 of the Alzheimer's Disease Neuroimaging Initiative. Receiver operating characteristic analysis of FSL-FIRST hippocampal volume (corrected for head size and age) revealed an area under the curve of 0.79, 0.70, and 0.70 for prediction of aMCI-to-ADD conversion within 12, 24, or 36 months, respectively. Thus, FSL-FIRST provides about the same power for prediction of progression to ADD in aMCI as other volumetry methods.

  14. Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats.

    Directory of Open Access Journals (Sweden)

    Shuai Zhang

    Full Text Available Isoflurane anesthesia has been shown to be responsible for cognitive impairment in Alzheimer's disease (AD and development of AD in the older age groups. However, the pathogenesis of AD-related cognitive impairments induced by isoflurane anesthesia remains elusive. Thus, this study was designed to investigate the mechanism by which isoflurane anesthesia caused AD-related cognitive impairments. Aged Wistar rats were randomly divided into 6 groups (n = 12, 1 control group (CONT and 5 isoflurane treated (ISO groups (ISO 0, ISO 0.5D, ISO 1D, ISO 3D and ISO 7D. The CONT group inhaled 30% O2 for 2 h without any anesthesia. ISO groups were placed under anesthesia with 3% isoflurane and then exposed to 1.5% isoflurane delivered in 30% O2 for 2 h. Rats in each ISO group were then analyzed immediately (ISO 0 or at various time points (0.5, 1, 3 or 7 day after this exposure. Cognitive function was assessed using the Morris water maze test. Protein levels of amyloid precursor protein (APP, β-site APP cleavage enzyme-1 (BACE-1 and Aβ42 peptide were analyzed in hippocampal samples by Western blot. β-Amyloid (Abeta plaques were detected in hippocampal sections by Congo red staining. Compared with controls, all ISO groups showed increased escape latency and impaired spatial memory. Isoflurane increased APP mRNA expression and APP protein depletion, promoting Aβ42 overproduction, oligomerization and accumulation. However, isoflurane did not affect BACE-1 expression. Abeta plaques were observed only in those ISO groups sacrificed at 3 or 7 d. Our data indicate that aged rats exposed to isoflurane had increased APP mRNA expression and APP protein depletion, with Aβ42 peptide overproduction and oligomerization, resulting in formation of Abeta plaques in the hippocampus. Such effects might have contributed to cognitive impairments, including in spatial memory, observed in these rats after isoflurane anesthesia.

  15. Cognitive neuroscience robotics B analytic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume B describes to what extent cognitive science and neuroscience have revealed the underlying mechanism of human cognition, and investigates how development of neural engineering and advances in other disciplines could lead to deep understanding of human cognition.

  16. Cognition beyond the brain computation, interactivity and human artifice

    CERN Document Server

    Cowley, Stephen J

    2013-01-01

    Arguing that a collective dimension has given cognitive flexibility to human intelligence, this book shows that traditional cognitive psychology underplays the role of bodies, dialogue, diagrams, tools, talk, customs, habits, computers and cultural practices.

  17. Quantitative Measurements in the Human Hippocampus and Related Areas: Correspondence between Ex-Vivo MRI and Histological Preparations.

    Directory of Open Access Journals (Sweden)

    José Carlos Delgado-González

    Full Text Available The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlate with the decline of cognitive functions in neurodegenerative diseases. This study presents data on the association between MRI quantitative parameters of medial temporal lobe structures and their quantitative estimate in microscopic examination. Twelve control cases had ex-vivo MRI, and thereafter, the temporal lobe of both hemispheres was sectioned from the pole as far as the level of the splenium of the corpus callosum. Nissl stain was used to establish anatomical boundaries between structures in the medial temporal lobe. The study included morphometrical and stereological estimates of the amygdaloid complex, hippocampus, and temporal horn of the lateral ventricle, as well as different regions of grey and white matter in the temporal lobe. Data showed a close association between morphometric MRI images values and those based on the histological determination of boundaries. Only values in perimeter and circularity of the piamater were different. This correspondence is also revealed by the stereological study, although irregular compartments resulted in a lesser agreement. Neither age ( 65 yr nor hemisphere had any effect. Our results indicate that ex-vivo MRI is highly associated with quantitative information gathered by histological examination, and these data could be used as structural MRI biomarker in neurodegenerative diseases.

  18. Pyramid algorithms as models of human cognition

    Science.gov (United States)

    Pizlo, Zygmunt; Li, Zheng

    2003-06-01

    There is growing body of experimental evidence showing that human perception and cognition involves mechanisms that can be adequately modeled by pyramid algorithms. The main aspect of those mechanisms is hierarchical clustering of information: visual images, spatial relations, and states as well as transformations of a problem. In this paper we review prior psychophysical and simulation results on visual size transformation, size discrimination, speed-accuracy tradeoff, figure-ground segregation, and the traveling salesman problem. We also present our new results on graph search and on the 15-puzzle.

  19. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats.

    Science.gov (United States)

    Zhang, Songyun; Li, Hongyan; Zhang, Lihui; Li, Jie; Wang, Ruiying; Wang, Mian

    2017-02-15

    Increasing evidence demonstrates an association between diabetes and hippocampal neuron damage. This study aimed to determine the effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits (GCLM and GCLC) in the hippocampus of streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. At 12weeks after streptozotocin injection, T1DM rats were randomly divided into 4 groups (n=15 each group) to receive no treatment (T1DM), saline (T1DM+saline), alpha-lipoic acid (T1DM+alpha-lipoic acid), and troxerutin (T1DM+troxerutin), respectively, for 6weeks. Meanwhile, 10 control animals (NC group) were assessed in parallel. Learning performance was evaluated by the Morris water maze. After treatment, hippocampi were collected for pathological examination by hematoxylin and eosin (H&E) staining. Next, hippocampal superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and glutathione (GSH) levels were assessed. Finally, glutamate cysteine ligase catalytic (GCLC) and glutamate cysteine ligase modifier (GCLM) subunit mRNA and protein levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Compared with T1DM and T1DM+saline groups, escape latency was overtly reduced in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Significantly increased GCLM and GCLC mRNA levels, GCLC protein amounts, SOD activity, and GSH levels, and reduced MDA amounts were observed in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. In T1DM and T1DM+saline groups, H&E staining showed less pyramidal cells in the hippocampus, with disorganized layers, karyopyknosis, decreased endochylema, and cavitation, effects relieved in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Troxerutin alleviates oxidative stress and promotes learning in streptozotocin-induced T1DM rats, a process involving GCLC expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Elżbieta Krasowska

    Full Text Available Duchenne muscular dystrophy (DMD is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT mice, immunoreactivity of neuroligin2 (NL2, an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT, a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  1. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  2. The hippocampus and visual perception

    Science.gov (United States)

    Lee, Andy C. H.; Yeung, Lok-Kin; Barense, Morgan D.

    2012-01-01

    In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe (MTL). Instead, these studies point toward a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates. PMID:22529794

  3. The hippocampus and visual perception

    Directory of Open Access Journals (Sweden)

    Andy C. H. Lee

    2012-04-01

    Full Text Available In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe. Instead, these studies point towards a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates.

  4. Taurine Pretreatment Prevents Isoflurane-Induced Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in the Hippocampus in Aged Rats.

    Science.gov (United States)

    Zhang, Yanan; Li, Dongliang; Li, Haiou; Hou, Dailiang; Hou, Jingdong

    2016-10-01

    Isoflurane, a commonly used inhalation anesthetic, may induce neurocognitive deficits, especially in elderly patients after surgery. Recent study demonstrated that isoflurane caused endoplasmic reticulum (ER) stress and subsequent neuronal apoptosis in the brain, contributing to cognitive deficits. Taurine, a major intracellular free amino acid, has been shown to inhibit ER stress and neuronal apoptosis in several neurological disorders. Here, we examined whether taurine can prevent isoflurane-induced ER stress and cognitive impairment in aged rats. Thirty minutes prior to a 4-h 1.3 % isoflurane exposure, aged rats were treated with vehicle or taurine at low, middle and high doses. Aged rats without any treatment served as control. The brains were harvested 6 h after isoflurane exposure for molecular measurements, and behavioral study was performed 2 weeks later. Compared with control, isoflurane increased expression of hippocampal ER stress biomarkers including glucose-regulated protein 78, phosphorylated (P-) inositol-requiring enzyme 1, P-eukaryotic initiation factor 2-α (EIF2α), activating transcription factor 4 (ATF-4), cleaved ATF-6 and C/EBP homologous protein, along with activation of apoptosis pathways as indicated by decreased B cell lymphoma 2 (BCL-2)/BCL2-associated X protein, increased expressions of cytochrome-c and cleaved caspase-3. Taurine pretreatment dose-dependently inhibited isoflurane-induced increase in expression of ER stress biomarkers except for P-EIF2α and ATF-4, and reversed isoflurane-induced changes in apoptosis-related proteins. Moreover, isoflurane caused spatial working memory deficits in aged rats, which were prevented by taurine pretreatment. The results indicate that taurine pretreatment prevents anesthetic isoflurane-induced cognitive impairment by inhibiting ER stress-mediated activation of apoptosis pathways in the hippocampus in aged rats.

  5. Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Ginsberg, Stephen D; Malek-Ahmadi, Michael H; Alldred, Melissa J; Che, Shaoli; Elarova, Irina; Chen, Yinghua; Jeanneteau, Freddy; Kranz, Thorsten M; Chao, Moses V; Counts, Scott E; Mufson, Elliott J

    2017-09-09

    Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampus proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). These data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction

  6. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid–Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder

    Science.gov (United States)

    Ruzicka, W. Brad; Subburaju, Sivan; Benes, Francine M.

    2017-01-01

    IMPORTANCE Dysfunction related to γ-aminobutyric acid (GABA)–ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. OBJECTIVE To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. DESIGN, SETTING, AND PARTICIPANTS This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont,Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. MAIN OUTCOMES AND MEASURES Methylation levels at 1308 GAD1 regulatory network–associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing

  7. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid-Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder.

    Science.gov (United States)

    Ruzicka, W Brad; Subburaju, Sivan; Benes, Francine M

    2015-06-01

    Dysfunction related to γ-aminobutyric acid (GABA)-ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8 patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. Methylation levels at 1308 GAD1 regulatory network-associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. A total of

  8. Comparative developmental psychology: how is human cognitive development unique?

    Science.gov (United States)

    Rosati, Alexandra G; Wobber, Victoria; Hughes, Kelly; Santos, Laurie R

    2014-04-29

    The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

  9. Cognitive Technologies: The Design of Joint Human-Machine Cognitive Systems

    OpenAIRE

    Woods, David D.

    1985-01-01

    This article explores the implications of one type of cognitive technology, techniques and concepts to develop joint human-machine cognitive systems, for the application of computational technology by examining the joint cognitive system implicit in a hypothetical computer consultant that outputs some form of problem solution. This analysis reveals some of the problems can occur in cognitive system design-e.g., machine control of the interaction, the danger of a responsibility-authority doubl...

  10. Cognitive Emotional Regulation Model in Human-Robot Interaction

    OpenAIRE

    Liu, Xin; Xie, Lun; Liu, Anqi; Li, Dan

    2015-01-01

    This paper integrated Gross cognitive process into the HMM (hidden Markov model) emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition...

  11. Fully Automated Atlas-Based Hippocampus Volumetry for Clinical Routine: Validation in Subjects with Mild Cognitive Impairment from the ADNI Cohort.

    Science.gov (United States)

    Suppa, Per; Hampel, Harald; Spies, Lothar; Fiebach, Jochen B; Dubois, Bruno; Buchert, Ralph

    2015-01-01

    Hippocampus volumetry based on magnetic resonance imaging (MRI) has not yet been translated into everyday clinical diagnostic patient care, at least in part due to limited availability of appropriate software tools. In the present study, we evaluate a fully-automated and computationally efficient processing pipeline for atlas based hippocampal volumetry using freely available Statistical Parametric Mapping (SPM) software in 198 amnestic mild cognitive impairment (MCI) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI1). Subjects were grouped into MCI stable and MCI to probable Alzheimer's disease (AD) converters according to follow-up diagnoses at 12, 24, and 36 months. Hippocampal grey matter volume (HGMV) was obtained from baseline T1-weighted MRI and then corrected for total intracranial volume and age. Average processing time per subject was less than 4 minutes on a standard PC. The area under the receiver operator characteristic curve of the corrected HGMV for identification of MCI to probable AD converters within 12, 24, and 36 months was 0.78, 0.72, and 0.71, respectively. Thus, hippocampal volume computed with the fully-automated processing pipeline provides similar power for prediction of MCI to probable AD conversion as computationally more expensive methods. The whole processing pipeline has been made freely available as an SPM8 toolbox. It is easily set up and integrated into everyday clinical patient care.

  12. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus.

    Science.gov (United States)

    Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan

    2017-10-01

    Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against

  13. Differential Effect of Neuropeptides on Excitatory Synaptic Transmission in Human Epileptic Hippocampus

    DEFF Research Database (Denmark)

    Ledri, Marco; Sorensen, Andreas T.; Madsen, Marita G.

    2015-01-01

    therapy is an evolving innovative approach that may prove useful for clinical applications. In animal models of temporal lobe epilepsy (TLE), gene therapy treatments based on viral vectors encoding NPY or galanin have been shown to effectively suppress seizures. However, how this translates to human TLE...... remains unknown. A unique possibility to validate these animal studies is provided by a surgical therapeutic approach, whereby resected epileptic tissue from temporal lobes of pharmacoresistant patients are available for neurophysiological studies in vitro. To test whether NPY and galanin have...

  14. Cognitive neuroscience robotics A synthetic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume A describes how human cognitive functions can be replicated in artificial systems such as robots, and investigates how artificial systems could acquire intelligent behaviors through interaction with others and their environment.

  15. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    , oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  16. The importance of motivation and emotion for explaining human cognition.

    Science.gov (United States)

    Güss, C Dominik; Dörner, Dietrich

    2017-01-01

    Lake et al. discuss building blocks of human intelligence that are quite different from those of artificial intelligence. We argue that a theory of human intelligence has to incorporate human motivations and emotions. The interaction of motivation, emotion, and cognition is the real strength of human intelligence and distinguishes it from artificial intelligence.

  17. Cognitive Neuroscience of Human Counterfactual Reasoning

    Directory of Open Access Journals (Sweden)

    Nicole eVan Hoeck

    2015-07-01

    Full Text Available Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame. Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease.

  18. GABAA receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Kwakowsky, Andrea; Calvo-Flores Guzmán, Beatriz; Pandya, Madhavi; Turner, Clinton; Waldvogel, Henry J; Faull, Richard L

    2018-02-27

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABA A Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABA A Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABA A R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus (STG). In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABA A Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABA A R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus (DG). We found a significant increase in GABA A R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABA A R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the STG. We also found a significant decrease in the GABA A R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the DG. In conclusion, these findings indicate that the expression of the GABA A R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABA A R function in the disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Injection of Aβ1-40 into hippocampus induced cognitive lesion associated with neuronal apoptosis and multiple gene expressions in the tree shrew.

    Science.gov (United States)

    Lin, Na; Xiong, Liu-Lin; Zhang, Rong-Ping; Zheng, Hong; Wang, Lei; Qian, Zhong-Yi; Zhang, Piao; Chen, Zhi-Wei; Gao, Fa-Bao; Wang, Ting-Hua

    2016-05-01

    Alzheimer's disease (AD) can incur significant health care costs to the patient, their families, and society; furthermore, effective treatments are limited, as the mechanisms of AD are not fully understood. This study utilized twelve adult male tree shrews (TS), which were randomly divided into PBS and amyloidbetapeptide1-40 (Aβ1-40) groups. AD model was established via an intracerebroventricular (icv) injection of Aβ1-40 after being incubated for 4 days at 37 °C. Behavioral, pathophysiological and molecular changes were evaluated by hippocampal-dependent tasks, magnetic resonance imaging (MRI), silver staining, hematoxylin-eosin (HE) staining, TUNEL assay and gene sequencing, respectively. At 4 weeks post-injection, as compared with the PBS group, in Aβ1-40 injected animals: cognitive impairments happened, and the hippocampus had atrophied indicated by MRI findings; meanwhile, HE staining showed the cells of the CA3 and DG were significantly thinner and smaller. The average number of cells in the DG, but not the CA3, was also significantly reduced; furthermore, silver staining revealed neurotic plaques and neurofibrillary tangles (NFTs) in the hippocampi; TUNEL assay showed many cells exhibited apoptosis, which was associated with downregulated BCL-2/BCL-XL-associated death promoter (Bad), inhibitor of apoptosis protein (IAP), Cytochrome c (CytC) and upregulated tumor necrosis factor receptor 1 (TNF-R1); lastly, gene sequencing reported a total of 924 mobilized genes, among which 13 of the downregulated and 19 of the upregulated genes were common to the AD pathway. The present study not only established AD models in TS, but also reported on the underlying mechanism involved in neuronal apoptosis associated with multiple gene expression.

  20. Cultural Change, Human Activity, and Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Munroe, Robert L.

    2012-01-01

    Differential cognitive performance across cultural contexts has been a standard result in comparative research. Here we discuss how societal changes occurring when a small-scale traditional community incorporates elements from industrialized society may contribute to cognitive development, and we illustrate this with an analysis of the cognitive…

  1. Gender Differences in Human Cognition. Counterpoints: Cognition, Memory, and Language Series.

    Science.gov (United States)

    Caplan, Paula J.; Crawford, Mary; Hyde, Janet Shibley; Richardson, John T. E.

    Noting the fascination of both researchers and the general public with possible gender differences in human cognition and whether these differences originate in biology, childhood influences, or cultural stereotypes, this book summarizes research studies on gender differences in cognition. The book examines social and cultural implications of this…

  2. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  3. Embodied artificial agents for understanding human social cognition.

    Science.gov (United States)

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  4. The multi-instrumentalist hippocampus. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Strange, Bryan A.; Yebra, Mar

    2015-06-01

    Characterizing the neural circuitry of emotion is important not only from a basic science perspective, but also for understanding how these circuits may malfunction in psychiatric disease. A fundamental question for affective neuroscience is whether there are specialised neuroanatomical areas, or "modules", dedicated to the processing of emotional stimuli. In their review, Koelsch and colleagues [1] argue for the existence of a quartet of neuroanatomically distinct cerebral systems involved in the generation of a specific class of affects. Intriguingly, all four systems (brainstem-, diencephalon-, hippocampus-, and orbitofrontal-centred) comprise brain areas whose role in emotional processing is in addition to mediating other specific aspects of cognition. One member of the quartet in which this is particularly apparent is the hippocampus, a structure known to be critical for episodic memory and navigation. If areas involved in emotion also mediate other brain functions, this raises an issue of whether these multiple functions are executed by segregated circuits within each structure - i.e., a "module" for emotion residing in a sub-division of a brain structure - or whether these circuits are superimposed.

  5. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD: Detection of Lipopolysaccharide (LPS in AD Hippocampus

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2017-07-01

    Full Text Available Although the potential contribution of the human gastrointestinal (GI tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis and Escherichia coli (E. coli, secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the confines of the healthy GI tract, are pathogenic and highly detrimental to the homeostatic function of neurons in the central nervous system (CNS. For the first time here we report the presence of bacterial lipopolysaccharide (LPS in brain lysates from the hippocampus and superior temporal lobe neocortex of Alzheimer's disease (AD brains. Mean LPS levels varied from two-fold increases in the neocortex to three-fold increases in the hippocampus, AD over age-matched controls, however some samples from advanced AD hippocampal cases exhibited up to a 26-fold increase in LPS over age-matched controls. This “Perspectives” paper will further highlight some very recent research on GI tract microbiome signaling to the human CNS, and will update current findings that implicate GI tract microbiome-derived LPS as an important internal contributor to inflammatory degeneration in the CNS.

  6. Molecular networks and the evolution of human cognitive specializations.

    Science.gov (United States)

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. CAPTCHA Based on Human Cognitive Factor

    OpenAIRE

    Chowdhury, Mohammad Jabed Morshed; Chakraborty, Narayan Ranjan

    2013-01-01

    A CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an automatic security mechanism used to determine whether the user is a human or a malicious computer program. It is a program that generates and grades tests that are human solvable, but intends to be beyond the capabilities of current computer programs. CAPTCHA should be designed to be very easy for humans but very hard for machines. Unfortunately, the existing CAPTCHA systems while trying to maximize ...

  8. Human Uniqueness, Cognition by Description, and Procedural Memory

    Directory of Open Access Journals (Sweden)

    John Bolender

    2008-06-01

    Full Text Available Evidence will be reviewed suggesting a fairly direct link between the human ability to think about entities which one has never perceived — here called “cognition by description” — and procedural memory. Cognition by description is a uniquely hominid trait which makes religion, science, and history possible. It is hypothesized that cognition by description (in the manner of Bertrand Russell’s “knowledge by description” requires variable binding, which in turn utilizes quantifier raising. Quantifier raising plausibly depends upon the computational core of language, specifically the element of it which Noam Chomsky calls “internal Merge”. Internal Merge produces hierarchical structures by means of a memory of derivational steps, a process plausibly involving procedural memory. The hypothesis is testable, predicting that procedural memory deficits will be accompanied by impairments in cognition by description. We also discuss neural mechanisms plausibly underlying procedural memory and also, by our hypothesis, cognition by description.

  9. Characterizing Cognitive Aging in Humans with Links to Animal Models

    Directory of Open Access Journals (Sweden)

    Gene E Alexander

    2012-09-01

    Full Text Available With the population of older adults expected to grow rapidly over the next two decades, it has become increasingly important to advance research efforts to elucidate the mechanisms associated with cognitive aging, with the ultimate goal of developing effective interventions and prevention therapies. Although there has been a vast research literature on the use of cognitive tests to evaluate the effects of aging and age-related neurodegenerative disease, the need for a set of standardized measures to characterize the cognitive profiles specific to healthy aging has been widely recognized. Here we present a review of selected methods and approaches that have been applied in human research studies to evaluate the effects of aging on cognition, including executive function, memory, processing speed, language, and visuospatial function. The effects of healthy aging on each of these cognitive domains are discussed with examples from cognitive/experimental and clinical/neuropsychological approaches. Further, we consider those measures that have clear conceptual and methodological links to tasks currently in use for non-human animal studies of aging, as well as those that have the potential for translation to animal aging research. Having a complementary set of measures to assess the cognitive profiles of healthy aging across species provides a unique opportunity to enhance research efforts for cross-sectional, longitudinal, and intervention studies of cognitive aging. Taking a cross-species, translational approach will help to advance cognitive aging research, leading to a greater understanding of associated neurobiological mechanisms with the potential for developing effective interventions and prevention therapies for age-related cognitive decline.

  10. Companion Cognitive Systems: A Step toward Human-Level AI

    OpenAIRE

    Forbus, Kenneth D.; Hinrichs, Thomas R.

    2006-01-01

    We are developing Companion Cognitive Systems, a new kind of software that can be effectively treated as a collaborator. Aside from their potential utility, we believe this effort is important because it focuses on three key problems that must be solved to achieve human-level AI: Robust reasoning and learning, interactivity, and longevity. We describe the ideas we are using to develop the first architecture for Companions: analogical processing, grounded in cognitive science for reasoning and...

  11. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  12. The human socio-cognitive niche and its evolutionary origins

    Science.gov (United States)

    Whiten, Andrew; Erdal, David

    2012-01-01

    Hominin evolution took a remarkable pathway, as the foraging strategy extended to large mammalian prey already hunted by a guild of specialist carnivores. How was this possible for a moderately sized ape lacking the formidable anatomical adaptations of these competing ‘professional hunters’? The long-standing answer that this was achieved through the elaboration of a new ‘cognitive niche’ reliant on intelligence and technology is compelling, yet insufficient. Here we present evidence from a diversity of sources supporting the hypothesis that a fuller answer lies in the evolution of a new socio-cognitive niche, the principal components of which include forms of cooperation, egalitarianism, mindreading (also known as ‘theory of mind’), language and cultural transmission, that go far beyond the most comparable phenomena in other primates. This cognitive and behavioural complex allows a human hunter–gatherer band to function as a unique and highly competitive predatory organism. Each of these core components of the socio-cognitive niche is distinctive to humans, but primate research has increasingly identified related capacities that permit inferences about significant ancestral cognitive foundations to the five pillars of the human social cognitive niche listed earlier. The principal focus of the present study was to review and integrate this range of recent comparative discoveries. PMID:22734055

  13. Performance in hippocampus- and PFC-dependent cognitive domains are not concomitantly impaired in rats exposed to 20 cGy of 1 GeV/n 56Fe particles

    Science.gov (United States)

    Britten, Richard A.; Miller, Vania D.; Hadley, Melissa M.; Jewell, Jessica S.; Macadat, Evangeline

    2016-08-01

    NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20 cGy 1 GeV/n 56Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.

  14. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain.

    LENUS (Irish Health Repository)

    Roche, Richard Ap

    2009-01-01

    BACKGROUND: Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1) engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.). An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to measure metabolite levels in seven voxels of interest (VOIs) (including hippocampus) before and after learning. RESULTS: Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal\\/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA\\/(Cr+Cho) ratio. CONCLUSION: Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  15. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain

    Directory of Open Access Journals (Sweden)

    Prendergast Julie

    2009-11-01

    Full Text Available Abstract Background Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1 engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.. An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS was used to measure metabolite levels in seven voxels of interest (VOIs (including hippocampus before and after learning. Results Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA/(Cr+Cho ratio. Conclusion Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  16. Prolonged rote learning produces delayed memory facilitation and metabolic changes in the hippocampus of the ageing human brain.

    Science.gov (United States)

    Roche, Richard Ap; Mullally, Sinéad L; McNulty, Jonathan P; Hayden, Judy; Brennan, Paul; Doherty, Colin P; Fitzsimons, Mary; McMackin, Deirdre; Prendergast, Julie; Sukumaran, Sunita; Mangaoang, Maeve A; Robertson, Ian H; O'Mara, Shane M

    2009-11-20

    Repeated rehearsal is one method by which verbal material may be transferred from short- to long-term memory. We hypothesised that extended engagement of memory structures through prolonged rehearsal would result in enhanced efficacy of recall and also of brain structures implicated in new learning. Twenty-four normal participants aged 55-70 (mean = 60.1) engaged in six weeks of rote learning, during which they learned 500 words per week every week (prose, poetry etc.). An extensive battery of memory tests was administered on three occasions, each six weeks apart. In addition, proton magnetic resonance spectroscopy (1H-MRS) was used to measure metabolite levels in seven voxels of interest (VOIs) (including hippocampus) before and after learning. Results indicate a facilitation of new learning that was evident six weeks after rote learning ceased. This facilitation occurred for verbal/episodic material only, and was mirrored by a metabolic change in left posterior hippocampus, specifically an increase in NAA/(Cr+Cho) ratio. Results suggest that repeated activation of memory structures facilitates anamnesis and may promote neuronal plasticity in the ageing brain, and that compliance is a key factor in such facilitation as the effect was confined to those who engaged fully with the training.

  17. Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain

    Science.gov (United States)

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with...

  18. Impact of video games on plasticity of the hippocampus.

    Science.gov (United States)

    West, G L; Konishi, K; Diarra, M; Benady-Chorney, J; Drisdelle, B L; Dahmani, L; Sodums, D J; Lepore, F; Jolicoeur, P; Bohbot, V D

    2017-08-08

    The hippocampus is critical to healthy cognition, yet results in the current study show that action video game players have reduced grey matter within the hippocampus. A subsequent randomised longitudinal training experiment demonstrated that first-person shooting games reduce grey matter within the hippocampus in participants using non-spatial memory strategies. Conversely, participants who use hippocampus-dependent spatial strategies showed increased grey matter in the hippocampus after training. A control group that trained on 3D-platform games displayed growth in either the hippocampus or the functionally connected entorhinal cortex. A third study replicated the effect of action video game training on grey matter in the hippocampus. These results show that video games can be beneficial or detrimental to the hippocampal system depending on the navigation strategy that a person employs and the genre of the game.Molecular Psychiatry advance online publication, 8 August 2017; doi:10.1038/mp.2017.155.

  19. Cognitive modelling: a basic complement of human reliability analysis

    International Nuclear Information System (INIS)

    Bersini, U.; Cacciabue, P.C.; Mancini, G.

    1988-01-01

    In this paper the issues identified in modelling humans and machines are discussed in the perspective of the consideration of human errors managing complex plants during incidental as well as normal conditions. The dichotomy between the use of a cognitive versus a behaviouristic model approach is discussed and the complementarity aspects rather than the differences of the two methods are identified. A cognitive model based on a hierarchical goal-oriented approach and driven by fuzzy logic methodology is presented as the counterpart to the 'classical' THERP methodology for studying human errors. Such a cognitive model is discussed at length and its fundamental components, i.e. the High Level Decision Making and the Low Level Decision Making models, are reviewed. Finally, the inadequacy of the 'classical' THERP methodology to deal with cognitive errors is discussed on the basis of a simple test case. For the same case the cognitive model is then applied showing the flexibility and adequacy of the model to dynamic configuration with time-dependent failures of components and with consequent need for changing of strategy during the transient itself. (author)

  20. Association between Mastication, the Hippocampus, and the HPA Axis: A Comprehensive Review.

    Science.gov (United States)

    Azuma, Kagaku; Zhou, Qian; Niwa, Masami; Kubo, Kin-Ya

    2017-08-03

    Mastication is mainly involved in food intake and nutrient digestion with the aid of teeth. Mastication is also important for preserving and promoting general health, including hippocampus-dependent cognition. Both animal and human studies indicate that mastication influences hippocampal functions through the end product of the hypothalamic-pituitary-adrenal (HPA) axis, glucocorticoid (GC). Epidemiologic studies suggest that masticatory dysfunction in aged individuals, such as that resulting from tooth loss and periodontitis, acting as a source of chronic stress, activates the HPA axis, leading to increases in circulating GCs and eventually inducing various physical and psychological diseases, such as cognitive impairment, cardiovascular disorders, and osteoporosis. Recent studies demonstrated that masticatory stimulation or chewing during stressful conditions suppresses the hyperactivity of the HPA axis via GCs and GC receptors within the hippocampus, and ameliorates chronic stress-induced hippocampus-dependent cognitive deficits. Here, we provide a comprehensive overview of current research regarding the association between mastication, the hippocampus, and HPA axis activity. We also discuss several potential molecular mechanisms involved in the interactions between mastication, hippocampal function, and HPA axis activity.

  1. [Human interaction, social cognition, and the superior temporal sulcus].

    Science.gov (United States)

    Brunelle, Francis; Saitovitch, Anna; Boddaert, Nathalie; Grevent, David; Cambier, Jean; Lelord, Gilbert; Samson, Yves; Zilbovicius, Monica

    2013-01-01

    Human beings are social animals. This ability to live together is ensured by cognitive functions, the neuroanatomical bases of which are starting to be unraveled by MRI-based studies. The regions and network engaged in this process are known as the "social brain ". The core of this network is the superior temporal sulcus (STS), which integrates sensory and emotional inputs. Modeling studies of healthy volunteers have shown the role of the STS.in recognizing others as biological beings, as well as facial and eye-gaze recognition, intentionality and emotions. This cognitive capacity has been described as the "theory of mind ". Pathological models such as autism, in which the main clinical abnormality is altered social abilities and communication, have confirmed the role of the STS in the social brain. Conceptualisation of this empathic capacity has been described as "meta cognition ", which forms the basis of human social organizationand culture.

  2. Cognitive Factors Affecting Freeze-like Behavior in Humans.

    Science.gov (United States)

    Alban, Michael W; Pocknell, Victoria

    2017-01-01

    Contemporary research on survival-related defensive behaviors has identified physiological markers of freeze/flight/fight. Our research focused on cognitive factors associated with freeze-like behavior in humans. Study 1 tested if an explicit decision to freeze is associated with the psychophysiological state of freezing. Heart rate deceleration occurred when participants chose to freeze. Study 2 varied the efficacy of freezing relative to other defense options and found "freeze" was responsive to variations in the perceived effectiveness of alternative actions. Study 3 tested if individual differences in motivational orientation affect preference for a "freeze" option when the efficacy of options is held constant. A trend in the predicted direction suggested that naturally occurring cognitions led loss-avoiders to select "freeze" more often than reward-seekers. In combination, our attention to the cognitive factors affecting freeze-like behavior in humans represents a preliminary step in addressing an important but neglected research area.

  3. Human cognitive ecology: an instructive framework for comparative primatology.

    Science.gov (United States)

    Keller, Janet Dixon

    2004-03-01

    In this review, research on human cognitive ecology is compared with studies of the cognitive ecologies of apes-especially the common chimpanzee. The objective was to assess the feasibility of extending an activity-theory framework developed in studies of humans to an integrated approach for studying the cognitive accomplishments and skills of other primates living in the wild. Six generalizations were abstracted from studies of humans: 1) Social and material environments are arranged to facilitate production. 2) Human activity is shaped by conceptual and cultural principles that provide underlying logic for working knowledge and practice. 3) Schemata (multimodal, mental representations of procedures, strategies, and techniques) govern performance in a domain. 4) Working knowledge, skills, and social identities are co-constructed in communities of practice. 5) Rehearsal improves skilled performances, from which reputations as well as material products are derived. 6) Planning and emergence are in productive tension in human practices. These generalizations are applied to findings in the literature regarding the behavior of chimpanzees and other apes in the wild to assess the potential utility of a situated-activity approach for comparative studies of primate cognition. It is argued in the Discussion that schemata constitute a common core of higher primate intelligence. Planning, emergence, and alterations of the environment to facilitate production further characterize human and chimpanzee or gorilla behaviors to varying degrees. Less apparent in the nonhuman-primate literature is evidence of governing principles, rehearsal, and skill-based reputations or identities entailing theories of mind. Nonetheless, recent observations in the wild suggest that further research is warranted to explore the rudiments of each of these components to enhance our understanding of the ecology of primate cognition and its evolutionary history. Copyright 2004 Wiley-Liss, Inc.

  4. Technological Augmentation of Human Cognition: An Interdisciplinary Review.

    Science.gov (United States)

    Smithsonian Institution, Washington, DC.

    A series of five interdisciplinary conferences held over a two-year period explored new teaching and training concepts and methodologies which offer powerful, symbiotic means of augmenting human cognition. The basic discussion points of the conferences are summarized. It was felt that the conferences were significant in that they brought together…

  5. CDK5-mediated phosphorylation of p19INK4d avoids DNA damage-induced neurodegeneration in mouse hippocampus and prevents loss of cognitive functions.

    Science.gov (United States)

    Ogara, María Florencia; Belluscio, Laura M; de la Fuente, Verónica; Berardino, Bruno G; Sonzogni, Silvina V; Byk, Laura; Marazita, Mariela; Cánepa, Eduardo T

    2014-07-01

    DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  7. Systemic Cognition: Human Artifice in Life and Language

    DEFF Research Database (Denmark)

    Cowley, Stephen; Vallée-Tourangeau, Frédéric

    2013-01-01

    Rather than rely on functionalist or enactivist principles, Cognition Beyond the Brain traces thinking to human artifice. In pursuing this approach, we gradually developed what can be deemed a third position in cognitive science. This is because, like talking, doing things with artefacts draws...... on both biological and cultural principles. On this systemic view, skills embody beliefs, roles and social practices. Since people rely on interactivity or sense-saturated coordination, action also re-enacts cultural history. Bidirectional dynamics connect embodiment to non-local regularities. Thinking...... simulation to manage thought, feeling and action. The systemic nature of cognition connects now, the adjacent possible, implications for others and, potentially, social and environmental change....

  8. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  9. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Coordinating different representations in the hippocampus

    Czech Academy of Sciences Publication Activity Database

    Kelemen, Eduard; Fenton, A.A.

    2016-01-01

    Roč. 129, Mar 2016 (2016), s. 50-59 ISSN 1074-7427 R&D Projects: GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : dynamic functional grouping * multiple representations * cognitive control * hippocampus * overdispersion Subject RIV: FH - Neurology Impact factor: 3.543, year: 2016

  11. A model for assessing human cognitive reliability in PRA studies

    International Nuclear Information System (INIS)

    Hannaman, G.W.; Spurgin, A.J.; Lukic, Y.

    1985-01-01

    This paper summarizes the status of a research project sponsored by EPRI as part of the Probabilistic Risk Assessment (PRA) technology improvement program and conducted by NUS Corporation to develop a model of Human Cognitive Reliability (HCR). The model was synthesized from features identified in a review of existing models. The model development was based on the hypothesis that the key factors affecting crew response times are separable. The inputs to the model consist of key parameters the values of which can be determined by PRA analysts for each accident situation being assessed. The output is a set of curves which represent the probability of control room crew non-response as a function of time for different conditions affecting their performance. The non-response probability is then a contributor to the overall non-success of operating crews to achieve a functional objective identified in the PRA study. Simulator data and some small scale tests were utilized to illustrate the calibration of interim HCR model coefficients for different types of cognitive processing since the data were sparse. The model can potentially help PRA analysts make human reliability assessments more explicit. The model incorporates concepts from psychological models of human cognitive behavior, information from current collections of human reliability data sources and crew response time data from simulator training exercises

  12. Hippocampus at 25

    Science.gov (United States)

    Eichenbaum, Howard; Amaral, David G.; Buffalo, Elizabeth A.; Buzsáki, György; Cohen, Neal; Davachi, Lila; Frank, Loren; Heckers, Stephan; Morris, Richard G. M.; Moser, Edvard I.; Nadel, Lynn; O'Keefe, John; Preston, Alison; Ranganath, Charan; Silva, Alcino; Witter, Menno

    2017-01-01

    The journal Hippocampus has passed the milestone of 25 years of publications on the topic of a highly studied brain structure, and its closely associated brain areas. In a recent celebration of this event, a Boston memory group invited 16 speakers to address the question of progress in understanding the hippocampus that has been achieved. Here we present a summary of these talks organized as progress on four main themes: (1) Understanding the hippocampus in terms of its interactions with multiple cortical areas within the medial temporal lobe memory system, (2) understanding the relationship between memory and spatial information processing functions of the hippocampal region, (3) understanding the role of temporal organization in spatial and memory processing by the hippocampus, and (4) understanding how the hippocampus integrates related events into networks of memories. PMID:27399159

  13. Hippocampus discovery First steps

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available The first steps of the discovery, and the main discoverers, of the hippocampus are outlined. Arantius was the first to describe a structure he named "hippocampus" or "white silkworm". Despite numerous controversies and alternate designations, the term hippocampus has prevailed until this day as the most widely used term. Duvernoy provided an illustration of the hippocampus and surrounding structures, considered the first by most authors, which appeared more than one and a half century after Arantius' description. Some authors have identified other drawings and texts which they claim predate Duvernoy's depiction, in studies by Vesalius, Varolio, Willis, and Eustachio, albeit unconvincingly. Considering the definition of the hippocampal formation as comprising the hippocampus proper, dentate gyrus and subiculum, Arantius and Duvernoy apparently described the gross anatomy of this complex. The pioneering studies of Arantius and Duvernoy revealed a relatively small hidden formation that would become one of the most valued brain structures.

  14. Linking human factors to corporate strategy with cognitive mapping techniques.

    Science.gov (United States)

    Village, Judy; Greig, Michael; Salustri, Filippo A; Neumann, W Patrick

    2012-01-01

    For human factors (HF) to avoid being considered of "side-car" status, it needs to be positioned within the organization in such a way that it affects business strategies and their implementation. Tools are needed to support this effort. This paper explores the feasibility of applying a technique from operational research called cognitive mapping to link HF to corporate strategy. Using a single case study, a cognitive map is drawn to reveal the complex relationships between human factors and achieving an organization's strategic goals. Analysis of the map for central concepts and reinforcing loops enhances understanding that can lead to discrete initiatives to facilitate integration of HF. It is recommended that this technique be used with senior managers to understand the organizations` strategic goals and enhance understanding of the potential for HF to contribute to the strategic goals.

  15. Associationism and cognition: human contingency learning at 25.

    Science.gov (United States)

    Shanks, David R

    2007-03-01

    A major topic within human learning, the field of contingency judgement, began to emerge about 25 years ago following publication of an article on depressive realism by Alloy and Abramson (1979). Subsequently, associationism has been the dominant theoretical framework for understanding contingency learning but this has been challenged in recent years by an alternative cognitive or inferential approach. This article outlines the key conceptual differences between these approaches and summarizes some of the main methods that have been employed to distinguish between them.

  16. Deciphering CAPTCHAs: what a Turing test reveals about human cognition.

    Directory of Open Access Journals (Sweden)

    Thomas Hannagan

    Full Text Available Turning Turing's logic on its head, we used widespread letter-based Turing Tests found on the internet (CAPTCHAs to shed light on human cognition. We examined the basis of the human ability to solve CAPTCHAs, where machines fail. We asked whether this is due to our use of slow-acting inferential processes that would not be available to machines, or whether fast-acting automatic orthographic processing in humans has superior robustness to shape variations. A masked priming lexical decision experiment revealed efficient processing of CAPTCHA words in conditions that rule out the use of slow inferential processing. This shows that the human superiority in solving CAPTCHAs builds on a high degree of invariance to location and continuous transforms, which is achieved during the very early stages of visual word recognition in skilled readers.

  17. The structure of creative cognition in the human brain

    Directory of Open Access Journals (Sweden)

    Rex Eugene Jung

    2013-07-01

    Full Text Available Creativity is a vast construct, seemingly intractable to scientific inquiry – perhaps due to the vague concepts applied to the field of research. One attempt to limit the purview of creative cognition formulates the construct in terms of evolutionary constraints, namely that of blind variation and selective retention (BVSR. Behaviorally, one can limit the blind variation component to idea generation tests as manifested by measures of divergent thinking. The selective retention component can be represented by measures of convergent thinking, as represented by measures of remote associates. We summarize results from measures of creative cognition, correlated with structural neuroimaging measures including structural magnetic resonance imaging (sMRI, Diffusion Tensor Imaging (DTI, and proton magnetic resonance imaging (1H-MRS. We also review lesion studies, considered to be the gold standard of brain-behavioral studies. What emerges is a picture consistent with theories of disinhibitory brain features subserving creative cognition, as described previously (Martindale, 1981. We provide a perspective, involving aspects of the default mode network, which might provide a first approximation regarding how creative cognition might map on to the human brain.

  18. Resistance exercise improves hippocampus-dependent memory

    Directory of Open Access Journals (Sweden)

    R.C. Cassilhas

    2012-12-01

    Full Text Available It has been demonstrated that resistance exercise improves cognitive functions in humans. Thus, an animal model that mimics this phenomenon can be an important tool for studying the underlying neurophysiological mechanisms. Here, we tested if an animal model for resistance exercise was able to improve the performance in a hippocampus-dependent memory task. In addition, we also evaluated the level of insulin-like growth factor 1/insulin growth factor receptor (IGF-1/IGF-1R, which plays pleiotropic roles in the nervous system. Adult male Wistar rats were divided into three groups (N = 10 for each group: control, SHAM, and resistance exercise (RES. The RES group was submitted to 8 weeks of progressive resistance exercise in a vertical ladder apparatus, while the SHAM group was left in the same apparatus without exercising. Analysis of a cross-sectional area of the flexor digitorum longus muscle indicated that this training period was sufficient to cause muscle fiber hypertrophy. In a step-through passive avoidance task (PA, the RES group presented a longer latency than the other groups on the test day. We also observed an increase of 43 and 94% for systemic and hippocampal IGF-1 concentration, respectively, in the RES group compared to the others. A positive correlation was established between PA performance and systemic IGF-1 (r = 0.46, P < 0.05. Taken together, our data indicate that resistance exercise improves the hippocampus-dependent memory task with a concomitant increase of IGF-1 level in the rat model. This model can be further explored to better understand the effects of resistance exercise on brain functions.

  19. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    Science.gov (United States)

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

  20. Cognitive genomics: Linking genes to behavior in the human brain

    Directory of Open Access Journals (Sweden)

    Genevieve Konopka

    2017-02-01

    Full Text Available Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic localization as well as tissue-specific epigenetics and expression. The use of brain-derived expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts.

  1. Cognition and procedure representational requirements for predictive human performance models

    Science.gov (United States)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  2. In humans IL-6 is released from the brain during and after exercise and paralleled by enhanced IL-6 mRNA expression in the hippocampus of mice

    DEFF Research Database (Denmark)

    Rasmussen, Per; Vedel, J-C; Olesen, J

    2011-01-01

    Aim: Plasma interleukin-6 (IL-6) increases during exercise by release from active muscles and during prolonged exercise also from the brain. The IL-6 release from muscles continues into recovery and we tested whether the brain also releases IL-6 in recovery from prolonged exercise in humans....... Additionally, it was evaluated in mice whether brain release of IL-6 reflected enhanced IL-6 mRNA expression in the brain as modulated by brain glycogen levels. Methods: Nine healthy male subjects completed 4 h of ergometer rowing while the arterio-jugular venous difference (a-v diff) for IL-6 was determined....... The IL-6 mRNA and the glycogen content were determined in mouse hippocampus, cerebellum and cortex before and after 2 h treadmill running (N = 8). Results: At rest, the IL-6 a-v diff was negligible but decreased to -2.2 ± 1.9 pg ml(-1) at the end of exercise and remained low (-2.1 ± 2.1 pg ml(-1) ) 1 h...

  3. Key features of human episodic recollection in the cross-episode retrieval of rat hippocampus representations of space.

    Directory of Open Access Journals (Sweden)

    Eduard Kelemen

    2013-07-01

    Full Text Available Neurophysiological studies focus on memory retrieval as a reproduction of what was experienced and have established that neural discharge is replayed to express memory. However, cognitive psychology has established that recollection is not a verbatim replay of stored information. Recollection is constructive, the product of memory retrieval cues, the information stored in memory, and the subject's state of mind. We discovered key features of constructive recollection embedded in the rat CA1 ensemble discharge during an active avoidance task. Rats learned two task variants, one with the arena stable, the other with it rotating; each variant defined a distinct behavioral episode. During the rotating episode, the ensemble discharge of CA1 principal neurons was dynamically organized to concurrently represent space in two distinct codes. The code for spatial reference frame switched rapidly between representing the rat's current location in either the stationary spatial frame of the room or the rotating frame of the arena. The code for task variant switched less frequently between a representation of the current rotating episode and the stable episode from the rat's past. The characteristics and interplay of these two hippocampal codes revealed three key properties of constructive recollection. (1 Although the ensemble representations of the stable and rotating episodes were distinct, ensemble discharge during rotation occasionally resembled the stable condition, demonstrating cross-episode retrieval of the representation of the remote, stable episode. (2 This cross-episode retrieval at the level of the code for task variant was more likely when the rotating arena was about to match its orientation in the stable episode. (3 The likelihood of cross-episode retrieval was influenced by preretrieval information that was signaled at the level of the code for spatial reference frame. Thus key features of episodic recollection manifest in rat hippocampal

  4. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  5. Oxytocin modulates human communication by enhancing cognitive exploration.

    Science.gov (United States)

    de Boer, Miriam; Kokal, Idil; Blokpoel, Mark; Liu, Rui; Stolk, Arjen; Roelofs, Karin; van Rooij, Iris; Toni, Ivan

    2017-12-01

    Oxytocin is a neuropeptide known to influence how humans share material resources. Here we explore whether oxytocin influences how we share knowledge. We focus on two distinguishing features of human communication, namely the ability to select communicative signals that disambiguate the many-to-many mappings that exist between a signal's form and meaning, and adjustments of those signals to the presumed cognitive characteristics of the addressee ("audience design"). Fifty-five males participated in a randomized, double-blind, placebo controlled experiment involving the intranasal administration of oxytocin. The participants produced novel non-verbal communicative signals towards two different addressees, an adult or a child, in an experimentally-controlled live interactive setting. We found that oxytocin administration drives participants to generate signals of higher referential quality, i.e. signals that disambiguate more communicative problems; and to rapidly adjust those communicative signals to what the addressee understands. The combined effects of oxytocin on referential quality and audience design fit with the notion that oxytocin administration leads participants to explore more pervasively behaviors that can convey their intention, and diverse models of the addressees. These findings suggest that, besides affecting prosocial drive and salience of social cues, oxytocin influences how we share knowledge by promoting cognitive exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Naturalistic Cognition: A Research Paradigm for Human-Centered Design

    Directory of Open Access Journals (Sweden)

    Peter Storkerson

    2010-01-01

    Full Text Available Naturalistic thinking and knowing, the tacit, experiential, and intuitive reasoning of everyday interaction, have long been regarded as inferior to formal reason and labeled primitive, fallible, subjective, superstitious, and in some cases ineffable. But, naturalistic thinking is more rational and definable than it appears. It is also relevant to design. Inquiry into the mechanisms of naturalistic thinking and knowledge can bring its resources into focus and enable designers to create better, human-centered designs for use in real-world settings. This article makes a case for the explicit, formal study of implicit, naturalistic thinking within the fields of design. It develops a framework for defining and studying naturalistic thinking and knowledge, for integrating them into design research and practice, and for developing a more integrated, consistent theory of knowledge in design. It will (a outline historical definitions of knowledge, attitudes toward formal and naturalistic thinking, and the difficulties presented by the co-presence of formal and naturalistic thinking in design, (b define and contrast formal and naturalistic thinking as two distinct human cognitive systems, (c demonstrate the importance of naturalistic cognition in formal thinking and real-world judgment, (d demonstrate methods for researching naturalistic thinking that can be of use in design, and (e briefly discuss the impact on design theory of admitting naturalistic thinking as valid, systematic, and knowable.

  7. The hippocampus - pictorial essay

    International Nuclear Information System (INIS)

    Whan, A.; Mitchell, L.A.

    2002-01-01

    Full text: We aim to demonstrate the anatomy and pathology of the hippocampus. It is important that radiologists distinguish normal and abnormal hippocampal hippocampal MR appearances, since hippocampal sclerosis is the commonest cause of surgically treatable temporal lobe epilepsy. The detailed anatomy of the hippocampus is reviewed and correlated with normal MR appearances. Our radiology database was reviewed to determine both common and unusual pathologies affecting the hippocampus. Most scans were performed for our large Comprehensive Epilepsy Program, for investigation of epilepsy of possible seizures. Less frequent indications included memory loss (acute or chronic), stroke, headache, and altered conscious state. Hippocampal sclerosis was the commonest MR abnormality. This was occasionally bilateral or associated with other pathology. Other common findings included mild hippocampal asymmetry, bilateral atrophy, or normal variants such as choroid fissure cysts. Other pathologies included cortical developmental malformations, infarction, posttraumatic gliosis, herpes, simplex encephalitis, paraneoplastic limbic encephalitis, vascular malformations, sarcoidosis, benign tumours such as gangliogliomas and dysembyoplastic neuroepithelial tumours (DNET) and malignant tumours. The hippocampus has a complex anatomy visible on high resolution MRI. In the clinical context of epilepsy, hippocampal sclerosis is an important pathology, but a range of conditions may affect the hippocampus, readily demonstrated by MRI. Copyright (2002) Blackwell Science Pty Ltd

  8. Impact of Aging Brain Circuits on Cognition

    Science.gov (United States)

    Samson, Rachel D.; Barnes, Carol A.

    2013-01-01

    Brain networks that engage the hippocampus and prefrontal cortex are central for enabling effective interactions with our environment. Some of the cognitive processes that these structures mediate, such as encoding and retrieving episodic experience, wayfinding, working memory and attention are known to be altered across the lifespan. As illustrated by examples given below, there is remarkable consistency across species in the pattern of age-related neural and cognitive change observed in healthy humans and other animals. These include changes in cognitive operations that are known to be dependent on the hippocampus, as well as those requiring intact prefrontal cortical circuits. Certain cognitive constructs that reflect the function of these areas lend themselves to investigation across species allowing brain mechanisms at different levels of analysis to be studied in greater depth. PMID:23773059

  9. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  10. Action and language integration: from humans to cognitive robots.

    Science.gov (United States)

    Borghi, Anna M; Cangelosi, Angelo

    2014-07-01

    The topic is characterized by a highly interdisciplinary approach to the issue of action and language integration. Such an approach, combining computational models and cognitive robotics experiments with neuroscience, psychology, philosophy, and linguistic approaches, can be a powerful means that can help researchers disentangle ambiguous issues, provide better and clearer definitions, and formulate clearer predictions on the links between action and language. In the introduction we briefly describe the papers and discuss the challenges they pose to future research. We identify four important phenomena the papers address and discuss in light of empirical and computational evidence: (a) the role played not only by sensorimotor and emotional information but also of natural language in conceptual representation; (b) the contextual dependency and high flexibility of the interaction between action, concepts, and language; (c) the involvement of the mirror neuron system in action and language processing; (d) the way in which the integration between action and language can be addressed by developmental robotics and Human-Robot Interaction. Copyright © 2014 Cognitive Science Society, Inc.

  11. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal-thalamus-hippocampus network.

    Science.gov (United States)

    Thielen, Jan-Willem; Hong, Donghyun; Rohani Rankouhi, Seyedmorteza; Wiltfang, Jens; Fernández, Guillén; Norris, David G; Tendolkar, Indira

    2018-06-01

    The classical model of the declarative memory system describes the hippocampus and its interactions with representational brain areas in posterior neocortex as being essential for the formation of long-term episodic memories. However, new evidence suggests an extension of this classical model by assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory. In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological interaction (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans. By using MRS, we measured mPFC γ-aminobutyric acid (GABA) and glutamate/glutamine (GLx) concentrations before and after volunteers memorized face-name association. We demonstrate that mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to memory performance. Regarding functional connectivity, we used the subsequent memory paradigm and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and hippocampus for associations subsequently recognized with high confidence as opposed to subsequently recognized with low confidence/forgotten. Taken together, we provide new evidence for an mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory neurotransmitter levels that was associated with better memory and stronger memory-related functional connectivity in a medial prefrontal-thalamus-hippocampus network. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Enabling Robotic Social Intelligence by Engineering Human Social-Cognitive Mechanisms

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Warta, Samantha F.; Barber, Daniel

    2017-01-01

    for artificial cognitive systems. We discuss a recent integrative perspective of social cognition to provide a systematic theoretical underpinning for computational instantiations of these mechanisms. We highlight several commitments of our approach that we refer to as Engineering Human Social Cognition. We...... then provide a series of recommendations to facilitate the development of the perceptual, motor, and cognitive architecture for this proposed artificial cognitive system in future work. For each recommendation, we highlight their relation to the discussed social-cognitive mechanisms, provide the rationale...

  13. "Minding the gap": imagination, creativity and human cognition.

    Science.gov (United States)

    Pelaprat, Etienne; Cole, Michael

    2011-12-01

    Inquiry into the nature of mental images is a major topic in psychology where research is focused on the psychological faculties of imagination and creativity. In this paper, we draw on the work of L.S. Vygotsky to develop a cultural-historical approach to the study of imagination as central to human cognitive processes. We characterize imagination as a process of image making that resolves "gaps" arising from biological and cultural-historical constraints, and that enables ongoing time-space coordination necessary for thought and action. After presenting some basic theoretical considerations, we offer a series of examples to illustrate for the reader the diversity of processes of imagination as image making. Applying our arguments to contemporary digital media, we argue that a cultural-historical approach to image formation is important for understanding how imagination and creativity are distinct, yet inter-penetrating processes.

  14. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  15. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization.

    Science.gov (United States)

    Bowman, Caitlin R; Zeithamova, Dagmar

    2018-02-07

    Memory function involves both the ability to remember details of individual experiences and the ability to link information across events to create new knowledge. Prior research has identified the ventromedial prefrontal cortex (VMPFC) and the hippocampus as important for integrating across events in service of generalization in episodic memory. The degree to which these memory integration mechanisms contribute to other forms of generalization, such as concept learning, is unclear. The present study used a concept-learning task in humans (both sexes) coupled with model-based fMRI to test whether VMPFC and hippocampus contribute to concept generalization, and whether they do so by maintaining specific category exemplars or abstract category representations. Two formal categorization models were fit to individual subject data: a prototype model that posits abstract category representations and an exemplar model that posits category representations based on individual category members. Latent variables from each of these models were entered into neuroimaging analyses to determine whether VMPFC and the hippocampus track prototype or exemplar information during concept generalization. Behavioral model fits indicated that almost three quarters of the subjects relied on prototype information when making judgments about new category members. Paralleling prototype dominance in behavior, correlates of the prototype model were identified in VMPFC and the anterior hippocampus with no significant exemplar correlates. These results indicate that the VMPFC and portions of the hippocampus play a broad role in memory generalization and that they do so by representing abstract information integrated from multiple events. SIGNIFICANCE STATEMENT Whether people represent concepts as a set of individual category members or by deriving generalized concept representations abstracted across exemplars has been debated. In episodic memory, generalized memory representations have been shown

  16. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    Science.gov (United States)

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  17. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    NARCIS (Netherlands)

    G.W.C. Paas (Fred); J. Sweller (John)

    2012-01-01

    textabstractCognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are

  18. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    Science.gov (United States)

    Paas, Fred; Sweller, John

    2012-01-01

    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…

  19. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.

    Science.gov (United States)

    Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan

    2013-04-01

    This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

  20. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  1. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    OpenAIRE

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive cha...

  2. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction.

    Science.gov (United States)

    Park, Dongsun; Lee, Hong Jun; Joo, Seong Soo; Bae, Dae-Kwon; Yang, Goeun; Yang, Yun-Hui; Lim, Inja; Matsuo, Akinori; Tooyama, Ikuo; Kim, Yun-Bae; Kim, Seung U

    2012-04-01

    A human neural stem cell (NSC) line over-expressing human choline acetyltransferase (ChAT) gene was generated and these F3.ChAT NSCs were transplanted into the brain of rat Alzheimer disease (AD) model which was induced by application of ethylcholine mustard aziridinium ion (AF64A) that specifically denatures cholinergic nerves and thereby leads to memory deficit as a salient feature of AD. Transplantation of F3.ChAT human NSCs fully recovered the learning and memory function of AF64A animals, and induced elevated levels of acetylcholine (ACh) in cerebrospinal fluid (CSF). Transplanted F3.ChAT human NSCs were found to migrate to various brain regions including cerebral cortex, hippocampus, striatum and septum, and differentiated into neurons and astrocytes. The present study demonstrates that brain transplantation of human NSCs over-expressing ChAT ameliorates complex learning and memory deficits in AF64A-cholinotoxin-induced AD rat model. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging

    Directory of Open Access Journals (Sweden)

    Daniel A Sternberg

    2013-06-01

    Full Text Available Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity’s collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance.

  4. Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation

    Science.gov (United States)

    Iglói, Kinga; Doeller, Christian F.; Paradis, Anne-Lise; Benchenane, Karim; Berthoz, Alain; Burgess, Neil; Rondi-Reig, Laure

    2015-01-01

    To examine the cerebellar contribution to human spatial navigation we used functional magnetic resonance imaging and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal, and hippocampal cortices in nonmotor aspects of navigation. They further suggest that Crus I belongs to 2 nonmotor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex, and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task. PMID:24947462

  5. Brain Imaging Studies on the Cognitive, Pharmacological and Neurobiological Effects of Cannabis in Humans: Evidence from Studies of Adult Users.

    Science.gov (United States)

    Weinstein, Aviv; Livny, Abigail; Weizman, Abraham

    2016-01-01

    Cannabis is the most widely used illicit drug worldwide. Regular cannabis use has been associated with a range of acute and chronic mental health problems, such as anxiety, depression, psychotic symptoms and neurocognitive impairments and their neural mechanisms need to be examined. This review summarizes and critically evaluates brain-imaging studies of cannabis in recreational and regular cannabis users between January 2000 and January 2016. The search has yielded eligible 103 structural and functional studies. Regular use of cannabis results in volumetric, gray matter and white matter structural changes in the brain, in particular in the hippocampus and the amygdala. Regular use of cannabis affects cognitive processes such as attention, memory, inhibitory control, decision-making, emotional processing, social cognition and their associated brain areas. There is evidence that regular cannabis use leads to altered neural function during attention and working memory and that recruitment of activity in additional brain regions can compensate for it. Similar to other drugs of abuse, cannabis cues activated areas in the reward pathway. Pharmacological studies showed a modest increase in human striatal dopamine transmission after administration of THC in healthy volunteers. Regular cannabis use resulted in reduced dopamine transporter occupancy and reduced dopamine synthesis but not in reduced striatal D2/D3 receptor occupancy compared with healthy control participants. Studies also showed different effects of Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on emotion, cognition and associated brain regions in healthy volunteers, whereby CBD protects against the psychoactive effects of THC. Brain imaging studies using selective high-affinity radioligands for the imaging of cannabinoid CB1 receptor availability in Positron Emission Tomography (PET) showed downregulation of CB1 in regular users of cannabis. In conclusion, regular use of the cannabinoids exerts

  6. Neurobiological toxicity of radiation in hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Son, Yeong Hoon; Kim, Joong Sun [Research center, Dongnam institute of radiological and Medical Sciences (DIRAMS), Busan (Korea, Republic of); Kim, Sung Ho; Moon, Chang Jong [College of Veterinary Medicine, Chonnam National University, Gwangju (Korea, Republic of)

    2014-11-15

    Ionizing radiation affects multiple organs, which differ in their apparent response. Nevertheless, the adult brain is less vulnerable to radiation than other radiosensitive organs. Clinically, patients receive partial large-field or whole-brain irradiation for cancer treatment yearly, long-term survivors increases, and thus, radiation induced side effects, including cognitive impairment, will become a major health problem. Although the most commonly reported noxious effects of irradiation occur via damage to DNA and consequent disruption of protein synthesis, there are also specific effects on biochemical pathways that have indirect effects on DNA transcription. The hippocampus dependent memory dysfunction is consistent with the changes in neurogenesis after 1 and 3 dyas after irradiation. At 30 and 90 days following irradiation, mice displayed significant depression-like behaviors. Hippocampal dysfunction during the chronic phase following cranial irradiation may be associated with decreases in the neurogenesis and synaptic plasticity related signals, concomitant with microglial reduction in the hippocampus.

  7. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability.

    Science.gov (United States)

    Blair, Clancy

    2006-04-01

    This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.

  8. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis.

    Science.gov (United States)

    Herrmann, Esther; Call, Josep; Hernàndez-Lloreda, Maráa Victoria; Hare, Brian; Tomasello, Michael

    2007-09-07

    Humans have many cognitive skills not possessed by their nearest primate relatives. The cultural intelligence hypothesis argues that this is mainly due to a species-specific set of social-cognitive skills, emerging early in ontogeny, for participating and exchanging knowledge in cultural groups. We tested this hypothesis by giving a comprehensive battery of cognitive tests to large numbers of two of humans' closest primate relatives, chimpanzees and orangutans, as well as to 2.5-year-old human children before literacy and schooling. Supporting the cultural intelligence hypothesis and contradicting the hypothesis that humans simply have more "general intelligence," we found that the children and chimpanzees had very similar cognitive skills for dealing with the physical world but that the children had more sophisticated cognitive skills than either of the ape species for dealing with the social world.

  9. Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Bansal, Ravi; Zhu, Hongtu

    2006-01-01

    CONTEXT: Limbic structures are implicated in the genesis of attention-deficit/hyperactivity disorder (ADHD) by the presence of mood and cognitive disturbances in affected individuals and by elevated rates of mood disorders in family members of probands with ADHD. OBJECTIVE: To study the morphology...... of the hippocampus and amygdala in children with ADHD. DESIGN: A cross-sectional case-control study of the hippocampus and amygdala using anatomical magnetic resonance imaging. SETTINGS: University research institute. PATIENTS: One hundred fourteen individuals aged 6 to 18 years, 51 with combined-type ADHD and 63...... healthy controls. MAIN OUTCOME MEASURES: Volumes and measures of surface morphology for the hippocampus and amygdala. RESULTS: The hippocampus was larger bilaterally in the ADHD group than in the control group (t = 3.35; P

  10. The hippocampus is an integral part of the temporal limbic system during emotional processing. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Trost, Wiebke; Frühholz, Sascha

    2015-06-01

    The proposed quartet theory of human emotions by Koelsch and colleagues [1] identifies four different affect systems to be involved in the processing of particular types of emotions. Moreover, the theory integrates both basic emotions and more complex emotion concepts, which include also aesthetic emotions such as musical emotions. The authors identify a particular brain system for each kind of emotion type, also by contrasting them to brain structures that are generally involved in emotion processing irrespective of the type of emotion. A brain system that has been less regarded in emotion theories, but which represents one of the four systems of the quartet to induce attachment related emotions, is the hippocampus.

  11. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  12. Plasticity of Human Spatial Cognition: Spatial Language and Cognition Covary across Cultures

    Science.gov (United States)

    Haun, Daniel B. M.; Rapold, Christian J.; Janzen, Gabriele; Levinson, Stephen C.

    2011-01-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of…

  13. Inverted-U shaped dopamine actions on human working memory and cognitive control

    Science.gov (United States)

    Cools, R; D’Esposito, M

    2011-01-01

    Brain dopamine has long been implicated in cognitive control processes, including working memory. However, the precise role of dopamine in cognition is not well understood, partly because there is large variability in the response to dopaminergic drugs both across different behaviors and across different individuals. We review evidence from a series of studies with experimental animals, healthy humans and patients with Parkinson’s disease, which highlight two important factors that contribute to this large variability. First, the existence of an optimum dopamine level for cognitive function implicates the need to take into account baseline levels of dopamine when isolating dopamine’s effects. Second, cognitive control is a multi-factorial phenomenon, requiring a dynamic balance between cognitive stability and cognitive flexibility. These distinct components might implicate the prefrontal cortex and the striatum respectively. Manipulating dopamine will thus have paradoxical consequences for distinct cognitive control processes depending on distinct basal or optimal levels of dopamine in different brain regions. PMID:21531388

  14. Functional relations and cognitive psychology: Lessons from human performance and animal research.

    Science.gov (United States)

    Proctor, Robert W; Urcuioli, Peter J

    2016-02-01

    We consider requirements for effective interdisciplinary communication and explore alternative interpretations of "building bridges between functional and cognitive psychology." If the bridges are intended to connect radical behaviourism and cognitive psychology, or functional contextualism and cognitive psychology, the efforts are unlikely to be successful. But if the bridges are intended to connect functional relationships and cognitive theory, no construction is needed because the bridges already exist within cognitive psychology. We use human performance and animal research to illustrate the latter point and to counter the claim that the functional approach is unique in offering a close relationship between science and practice. Effective communication will be enhanced and, indeed, may only occur if the goal of functional contextualism extends beyond just "the advancement of functional contextual cognitive and behavioral science and practice" to "the advancement of cognitive and behavioral science and practice" without restriction. © 2015 International Union of Psychological Science.

  15. Face cognition in humans: Psychophysiological, developmental, and cross-cultural aspects

    OpenAIRE

    Chernorizov A. M.; Zhong-qing J.; Petrakova A. V.; Zinchenko Yu. P.

    2016-01-01

    Investigators are finding increasing evidence for cross-cultural specificity in face cognition along with individual characteristics. The functions on which face cognition is based not only are types of general cognitive functions (perception, memory) but are elements of specific mental processes. Face perception, memorization, correct recognition of faces, and understanding the information that faces provide are essential skills for humans as a social species and can be considered as facets ...

  16. Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition

    OpenAIRE

    Phillips, Steven; Wilson, William H.

    2010-01-01

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the P...

  17. Cognitive engineering in the design of human-computer interaction and expert systems

    International Nuclear Information System (INIS)

    Salvendy, G.

    1987-01-01

    The 68 papers contributing to this book cover the following areas: Theories of Interface Design; Methodologies of Interface Design; Applications of Interface Design; Software Design; Human Factors in Speech Technology and Telecommunications; Design of Graphic Dialogues; Knowledge Acquisition for Knowledge-Based Systems; Design, Evaluation and Use of Expert Systems. This demonstrates the dual role of cognitive engineering. On the one hand cognitive engineering is utilized to design computing systems which are compatible with human cognition and can be effectively and be easily utilized by all individuals. On the other hand, cognitive engineering is utilized to transfer human cognition into the computer for the purpose of building expert systems. Two papers are of interest to INIS

  18. The Human Stain: Why Cognitivism Can't Tell Us What Cognition Is & What It Does

    NARCIS (Netherlands)

    Keijzer, F.; Lyon, P.; B. Wallace,

    2007-01-01

    What is cognition? It is now common knowledge that, so far, no one has a ready answer. It is much less generally acknowledged that this is a matter of strong concern when it comes to the further development of the cognitive sciences. We discuss how cognitivism provided a strongly human orientation

  19. Effect of cognitive biases on human-robot interaction: a case study of robot's misattribution

    OpenAIRE

    Biswas, Mriganka; Murray, John

    2014-01-01

    This paper presents a model for developing long-term human-robot interactions and social relationships based on the principle of 'human' cognitive biases applied to a robot. The aim of this work is to study how a robot influenced with human ‘misattribution’ helps to build better human-robot interactions than unbiased robots. The results presented in this paper suggest that it is important to know the effect of cognitive biases in human characteristics and interactions in order to better u...

  20. Comparing and Contrasting the Cognitive Effects of Hippocampal and Ventromedial Prefrontal Cortex Damage: A Review of Human Lesion Studies.

    Science.gov (United States)

    McCormick, Cornelia; Ciaramelli, Elisa; De Luca, Flavia; Maguire, Eleanor A

    2018-03-15

    The hippocampus and ventromedial prefrontal cortex (vmPFC) are closely connected brain regions whose functions are still debated. In order to offer a fresh perspective on understanding the contributions of these two brain regions to cognition, in this review we considered cognitive tasks that usually elicit deficits in hippocampal-damaged patients (e.g., autobiographical memory retrieval), and examined the performance of vmPFC-lesioned patients on these tasks. We then took cognitive tasks where performance is typically compromised following vmPFC damage (e.g., decision making), and looked at how these are affected by hippocampal lesions. Three salient motifs emerged. First, there are surprising gaps in our knowledge about how hippocampal and vmPFC patients perform on tasks typically associated with the other group. Second, while hippocampal or vmPFC damage seems to adversely affect performance on so-called hippocampal tasks, the performance of hippocampal and vmPFC patients clearly diverges on classic vmPFC tasks. Third, although performance appears analogous on hippocampal tasks, on closer inspection, there are significant disparities between hippocampal and vmPFC patients. Based on these findings, we suggest a tentative hierarchical model to explain the functions of the hippocampus and vmPFC. We propose that the vmPFC initiates the construction of mental scenes by coordinating the curation of relevant elements from neocortical areas, which are then funneled into the hippocampus to build a scene. The vmPFC then engages in iterative re-initiation via feedback loops with neocortex and hippocampus to facilitate the flow and integration of the multiple scenes that comprise the coherent unfolding of an extended mental event. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Exploring terra incognita of cognitive science: Lateralization of gene expression at the frontal pole of the human brain

    Directory of Open Access Journals (Sweden)

    Dolina I.A.

    2017-09-01

    Full Text Available Background. Rostral prefrontal cortex, or frontopolar cortex (FPC, also known as Brodmann area 10 (BA10, is the most anterior part of the human brain. It is one of the largest cytoarchitectonic areas of the human brain that has significantly increased its volume during evolution. Anatomically the le (BA10L and right (BA10R parts of FPC show slight asymmetries and they may have distinctive cognitive functions. Objective. In the present study, we investigated differential expression of the transcriptome in the le and right parts of BA10. Design. Postmortem samples of human brain tissue from fourteen donors (male/ female without history of psychiatric and neurological diseases, mean age 39.79±3.23 years old, mean postmortem interval 12.10±1.76 h were obtained using the resources of three institutions: the Partner Institute of Computational Biology of Chinese Academy of Sciences, the Max Planck Institute for Evolutionary Anthropology, and NIH Neuro-BioBank. Results. By using a standard RNA-sequencing followed by bioinformatic analysis, we identified 61 genes with differential expression in the le and right FPC. In general, gene expression was increased in BA10R relative to BA10L: 40 vs. 21 genes, respectively. According to gene ontology analysis, the majority of up-regulated genes in BA10R be- longed to the protein-coding category, whereas protein-coding and non-coding genes were equally up-expressed in BA10L. Most of the up-regulated genes in BA10R were involved in brain plasticity and activity-dependent mechanisms also known for their role in the hippocampus. 24 out of 30 mental disorder-related genes in the dataset were disrupted in schizophrenia. No such a wide association with other mental disorders was found. Conclusion. Discovered differences point at possible causes of hemispheric asymmetries in the human frontal lobes and at the molecular base of higher-order cognitive processes in health and disease.

  2. Expanding perspectives on cognition in humans, animals, and machines.

    Science.gov (United States)

    Gomez-Marin, Alex; Mainen, Zachary F

    2016-04-01

    Over the past decade neuroscience has been attacking the problem of cognition with increasing vigor. Yet, what exactly is cognition, beyond a general signifier of anything seemingly complex the brain does? Here, we briefly review attempts to define, describe, explain, build, enhance and experience cognition. We highlight perspectives including psychology, molecular biology, computation, dynamical systems, machine learning, behavior and phenomenology. This survey of the landscape reveals not a clear target for explanation but a pluralistic and evolving scene with diverse opportunities for grounding future research. We argue that rather than getting to the bottom of it, over the next century, by deconstructing and redefining cognition, neuroscience will and should expand rather than merely reduce our concept of the mind. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of Cognitive Architectures on Human-Computer Interaction

    Science.gov (United States)

    2014-09-01

    activation, reinforced learning, emotion, semantic memory , episodic memory , and visual imagery.12 In 2010 Rosenbloom created a variant of the Soar...being added to almost every new version. In 2004 Nuxoll and Laird added episodic memory to the Soar architecture.11 In 2008 Laird presented...York (NY): Psychology Press; 2014; p. 1–50. 11. Nuxoll A, Laird JE. A cognitive model of episodic memory integrated with a general cognitive

  4. Effects of low-dose recombinant human erythropoietin treatment on cognitive performance

    DEFF Research Database (Denmark)

    Viuff, Søren Lundgaard; Plenge, Ulla; Belhage, Bo

    2017-01-01

    , NUFI or self-reported results between the groups. CONCLUSIONS: In this small study, we found no significant effect of low-dose or micro-dose rhEpo on visual attention, cognitive performance in complex cognitive tasks or self-experienced cognitive performance compared with placebo. FUNDING: The Aase......INTRODUCTION: High-dose recombinant human erythropoietin (rhEpo) has been shown to improve cognitive performance in both healthy volunteers and in patients suffering from diseases affecting the brain. The aim of this study was to examine whether administration of low-dose and even micro-dose rh...

  5. Effects of low-dose recombinant human erythropoietin treatment on cognitive performance

    DEFF Research Database (Denmark)

    Viuff, Søren Lundgaard; Plenge, Ulla; Belhage, Bo

    2017-01-01

    -reported results between the groups. Conclusions: In this small study, we found no significant effect of low-dose or micro-dose rhEpo on visual attention, cognitive performance in complex cognitive tasks or self-experienced cognitive performance compared with placebo. Funding: The Aase and Ejnar Danielsen......Introduction: High-dose recombinant human erythropoietin (rhEpo) has been shown to improve cognitive performance in both healthy volunteers and in patients suffering from diseases affecting the brain. The aim of this study was to examine whether administration of low-dose and even micro-dose rh...

  6. Cognitive penetrability and emotion recognition in human facial expressions

    Directory of Open Access Journals (Sweden)

    Francesco eMarchi

    2015-06-01

    Full Text Available Do our background beliefs, desires, and mental images influence our perceptual experience of the emotions of others? In this paper, we will address the possibility of cognitive penetration of perceptual experience in the domain of social cognition. In particular, we focus on emotion recognition based on the visual experience of facial expressions. After introducing the current debate on cognitive penetration, we review examples of perceptual adaptation for facial expressions of emotion. This evidence supports the idea that facial expressions are perceptually processed as wholes. That is, the perceptual system integrates lower-level facial features, such as eyebrow orientation, mouth angle etc., into facial compounds. We then present additional experimental evidence showing that in some cases, emotion recognition on the basis of facial expression is sensitive to and modified by the background knowledge of the subject. We argue that such sensitivity is best explained as a difference in the visual experience of the facial expression, not just as a modification of the judgment based on this experience. The difference in experience is characterized as the result of the interference of background knowledge with the perceptual integration process for faces. Thus, according to the best explanation, we have to accept cognitive penetration in some cases of emotion recognition. Finally, we highlight a recent model of social vision in order to propose a mechanism for cognitive penetration used in the face-based recognition of emotion.

  7. Bridging Human Reliability Analysis and Psychology, Part 2: A Cognitive Framework to Support HRA

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jing Xing

    2012-06-01

    This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entirety of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.

  8. Diachrony in Human Cognition and Problem Solving

    DEFF Research Database (Denmark)

    Gahrn-Andersen, Rasmus

    2017-01-01

    Problem solving should not be reduced to situated or localized activity since cognizers also draw on non-local resources that are not actually experienced but which nevertheless impart on their situated cognition. A Varelianinspired epistemology neglects this nonlocality, which is a vital trait...

  9. Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH)

    Science.gov (United States)

    2010-10-01

    Measurement Tool We conducted another round of data collection using the daVinci Surgical System at the University of Kentucky Hospital in May. In this...9 3. Tools and Display Technology...considering cognitive and environmental factors such as mental workload, stress, situation awareness, and level of comfort with complex tools . To

  10. THE IMPACT OF ANXIETY UPON COGNITION: PERSPECTIVES FROM HUMAN THREAT OF SHOCK STUDIES

    Directory of Open Access Journals (Sweden)

    Oliver Joe Robinson

    2013-05-01

    Full Text Available Anxiety disorders constitute a sizeable worldwide health burden with profound social and economic consequences. The symptoms are wide-ranging; from hyperarousal to difficulties with concentrating. This latter effect falls under the broad category of altered cognitive performance; in this review we examine studies quantifying such impacts of anxiety on cognition. Specifically, we focus on the translational threat of unpredictable shock paradigm, a method previously used to characterize emotional responses and defensive mechanisms that is now emerging as valuable tool for examining the interaction between anxiety and cognition. In particular, we compare the impact of threat of shock on cognition in humans to that of pathological anxiety disorders. We highlight that both threat of shock and anxiety disorders promote mechanisms associated with harm avoidance across multiple levels of cognition (from perception to attention to learning and executive function – a ‘hot’ cognitive function which can be both adaptive and maladaptive depending upon the circumstances. This mechanism comes at a cost to other functions such as working memory, but leaves some functions, such as planning, unperturbed. We also highlight a number of cognitive effects that differ across anxiety disorders and threat of shock. These discrepant effects are largely seen in ‘cold’ cognitive functions involving control mechanisms and may reveal boundaries between adaptive (e.g. response to threat and maladaptive (e.g. pathological anxiety. We conclude by raising a number of unresolved questions regarding the role of anxiety in cognition that may provide fruitful avenues for future research.

  11. Role of the hippocampus in memory functioning: modern view

    Directory of Open Access Journals (Sweden)

    D. O. Assonov

    2017-12-01

    Full Text Available The purpose of this review was to develop the comprehensive conception of the hippocampus role in the functioning of human memory, based on data obtained by analysis of the latest scientific literature on the topic and make recommendations for further ways of researches in this topic. The scientific literature of the last 5 years on the role of the hippocampus in memory functioning was analyzed. Based on the reviewed literature, we made the next conclusions: the hippocampus is an extremely important for memory structure with various connections for different types of memory; the hippocampus is affected by a variety of substances, most studied now are glucocorticosteroids, whose effect on memory differs depending on the start time of action; the hippocampus volume in mental disorders affecting memory is less than normal, which makes it an important diagnostic criterion; at the moment, various promising methods that can help in the therapy of PTSD, depression, phobias and other disorders associated with memory impairment and based on the knowledge of the hippocampus for the treatment of memory disorders are being developed. Based on these conclusions and data, which were analyzed, we offered the following recommendations: to implement the hippocampal function examination in the diagnostics of mental disorders, which are accompanied by a violation of its work; to use the size of the hippocampus as one of the prognostic factors for the severity of the memory-associated disorders and the therapy progress; to carefully investigate the difference in the effect of various psychotherapies and pharmacotherapies on the hippocampus to determine exactly which of the therapies is the most morphologically reasonable; to find out how significant the decrease in the hippocampal volume is for the memory functioning; to use pathogenetically and morphologically based methods to improve the function of the hippocampus in the treatment of disorders that are

  12. Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory

    Science.gov (United States)

    Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.

    2013-01-01

    Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112

  13. Humanity in the Digital Age: Cognitive, Social, Emotional, and Ethical Implications

    Science.gov (United States)

    Yamamoto, Junko; Ananou, Simeon

    2015-01-01

    Even though technology has brought great benefits to current society, there are also indications that the manner in which people use technology has undermined their humanity in some respects. In this article the authors frame human nature in terms of four dimensions: cognition, social interaction, emotion, and ethics. We argue that while basic…

  14. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    Science.gov (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  15. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  16. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  17. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Directory of Open Access Journals (Sweden)

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  18. Active glass-type human augmented cognition system considering attention and intention

    Science.gov (United States)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  19. Human figure drawing distinguishes Alzheimer's patients: a cognitive screening test study.

    Science.gov (United States)

    Stanzani Maserati, Michelangelo; D'Onofrio, Renato; Matacena, Corrado; Sambati, Luisa; Oppi, Federico; Poda, Roberto; De Matteis, Maddalena; Naldi, Ilaria; Liguori, Rocco; Capellari, Sabina

    2018-05-01

    To study human figure drawing in a group of Alzheimer's disease (AD) patients and compare it with a group of patients with mild cognitive impairment (MCI) and controls. We evaluated consecutive outpatients over a one-year period. Patients were classified as affected by AD or by MCI. All patients and controls underwent a simplified version of the human-figure drawing test and MMSE. A qualitative and quantitative analysis of all human figures was obtained. 112 AD, 100 MCI patients and 104 controls were enrolled. AD patients drew human figures poor in details and globally smaller than MCI patients and controls. Human figures drawn by MCI patients are intermediate in body height between those of the AD patients and the healthy subjects. The head-to-body ratio of human figures drawn by AD patients is greater than controls and MCI patients, while the human figure size-relative-to-page space index is significantly smaller. Body height is an independent predictor of cognitive impairment correlating with its severity and with the number of the figure's details. Human figures drawn by AD patients are different from those drawn by healthy subjects and MCI patients. Human figure drawing test is a useful tool for orienting cognitive impairment's diagnosis.

  20. Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids

    Directory of Open Access Journals (Sweden)

    ZHAI Weixin

    2016-12-01

    Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.

  1. THE HUMAN ACTIVITY AS AFFECTIVE-COGNITIVE UNIT: A HISTORIC-CULTURAL APPROACH

    Directory of Open Access Journals (Sweden)

    Lígia Márcia Martins

    2017-01-01

    Full Text Available This article puts in question the affectional-cognitive unit which sustains the human activity, with the purpose to light incorrectness of approaches which dichotomize reason and emotion. It asserts that such dissociations are founded in theorical-methodological principles which set bounds for explanations about the human psychism, so that the overcoming of referred dualisms puts on as a method matter. For making explicit that assertion, it resorted to Historic-Cultural Psychology, based on that it explains about the psychism as subjective image of objective reality, of Vygotskyan criticisms to Cartesian dualism and the need of a historic-cultural approach on emotion studies, intend to analyzing the human activity as a affective-cognitive unit and the imbricated relations that are waged, within it, among affections, emotions, feelings and thoughts. Once presented the interrelations between emotions and cognitions this exhibition argues that the concepts are necessary as a minimum unit of analysis both of thought and feelings.

  2. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    Science.gov (United States)

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  3. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.

    1989-01-01

    Various studies have shown that intention errors, or cognitive error, are a major contributor to the risk of disaster. Intention formation refers to the cognitive processes by which an agent decides on what actions are appropriate to carry out (information gathering, situation assessment, diagnosis, response selection). Understanding, measuring, predicting and correcting cognitive errors depends on the answers to the question - what are difficult problems? The answer to this question defines what are risky situations from the point of view of what incidents will the human-technical system manage safely and what incidents will the human-technical system manage poorly and evolve towards negative outcomes. The authors have made progress in the development of such measuring devices through an NRC sponsored research program on cognitive modeling of operator performance. The approach is based on the demand-resource match view of human error. In this approach the difficulty of a problem depends on both the nature of the problem itself and on the resources (e.g., knowledge, plans) available to solve the problem. One can test the difficulty posed by a domain incident, given some set of resources by running the incident through a cognitive simulation that carries out the cognitive activities of a limited resource problem solver in a dynamic, uncertain, risky and highly doctrinal (pre-planned routines and procedures) world. The cognitive simulation that they have developed to do this in NPP accidents is called the Cognitive Environment Simulation (CES). They will illustrate the power of this approach by comparing the behavior of operators in variants on a simulated accident to the behavior of CES in the same accidents

  4. Cognitive human reliability analysis for an assessment of the safety significance of complex transients

    International Nuclear Information System (INIS)

    Amico, P.J.; Hsu, C.J.; Youngblood, R.W.; Fitzpatrick, R.G.

    1989-01-01

    This paper reports that as part of a probabilistic assessment of the safety significance of complex transients at certain PWR power plants, it was necessary to perform a cognitive human reliability analysis. To increase the confidence in the results, it was desirable to make use of actual observations of operator response which were available for the assessment. An approach was developed which incorporated these observations into the human cognitive reliability (HCR) modeling approach. The results obtained provided additional insights over what would have been found using other approaches. These insights were supported by the observations, and it is suggested that this approach be considered for use in future probabilistic safety assessments

  5. The application of cognitive models to the evaluation and prediction of human reliability

    International Nuclear Information System (INIS)

    Embrey, D.E.; Reason, J.T.

    1986-01-01

    The first section of the paper provides a brief overview of a number of important principles relevant to human reliability modeling that have emerged from cognitive models, and presents a synthesis of these approaches in the form of a Generic Error Modeling System (GEMS). The next section illustrates the application of GEMS to some well known nuclear power plant (NPP) incidents in which human error was a major contributor. The way in which design recommendations can emerge from analyses of this type is illustrated. The third section describes the use of cognitive models in the classification of human errors for prediction and data collection purposes. The final section addresses the predictive modeling of human error as part of human reliability assessment in Probabilistic Risk Assessment

  6. A neonatal piglet model for investigating brain and cognitive development in small for gestational age human infants.

    Directory of Open Access Journals (Sweden)

    Emily C Radlowski

    Full Text Available The piglet was investigated as a potential model for studying brain and cognitive deficits associated with being born small for gestational age (SGA. Naturally farrowed SGA (0.7-1.0 kg BW and average for gestational age (AGA, 1.3-1.6 kg BW piglets were obtained on postnatal day (PD 2, placed in individual cages, and provided a nutritionally adequate milk replacer diet (285 ml/kg/d. Beginning at PD14, performance in a spatial T-maze task was assessed. At PD28, piglets were anesthetized for magnetic resonance (MR imaging to assess brain structure (voxel-based morphometry, connectivity (diffusion-tensor imaging and metabolites in the hippocampus and corpus callosum (proton MR spectroscopy. Piglets born SGA showed compensatory growth such that BW of SGA and AGA piglets was similar (P>0.05, by PD15. Birth weight affected maze performance, with SGA piglets taking longer to reach criterion than AGA piglets (p<0.01. Total brain volume of SGA and AGA piglets was similar (P<0.05, but overall, SGA piglets had less gray matter than AGA piglets (p<0.01 and tended to have a smaller internal capsule (p = 0.07. Group comparisons between SGA and AGA piglets defined 9 areas (≥ 20 clusters where SGA piglets had less white matter (p<0.01; 2 areas where SGA piglets had more white matter (p<0.01; and 3 areas where SGA piglets had more gray matter (p<0.01. The impact of being born SGA on white matter was supported by a lower (p<0.04 fractional anisotropy value for SGA piglets, suggesting reduced white matter development and connectivity. None of the metabolites measured were different between groups. Collectively, the results show that SGA piglets have spatial learning deficits and abnormal development of white matter. As learning deficits and abnormalities in white matter are common in SGA human infants, the piglet is a tractable translational model that can be used to investigate SGA-associated cognitive deficits and potential interventions.

  7. A Social Cognitive Neuroscience Stance on Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Chaminade Thierry

    2011-12-01

    Full Text Available Robotic devices, thanks to the controlled variations in their appearance and behaviors, provide useful tools to test hypotheses pertaining to social interactions. These agents were used to investigate one theoretical framework, resonance, which is defined, at the behavioral and neural levels, as an overlap between first- and third- person representations of mental states such as motor intentions or emotions. Behaviorally, we found a reduced, but significant, resonance towards a humanoid robot displaying biological motion, compared to a human. Using neuroimaging, we've reported that while perceptual processes in the human occipital and temporal lobe are more strongly engaged when perceiving a humanoid robot than a human action, activity in areas involved in motor resonance depends on attentional modulation for artificial agent more strongly than for human agents. Altogether, these studies using artificial agents offer valuable insights into the interaction of bottom-up and top-down processes in the perception of artificial agents.

  8. Cognitive Human-Machine Interface Applied in Remote Support for Industrial Robot Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Kosicki

    2013-10-01

    Full Text Available An attempt is currently being made to widely introduce industrial robots to Small-Medium Enterprises (SMEs. Since the enterprises usually employ too small number of robot units to afford specialized departments for robot maintenance, they must be provided with inexpensive and immediate support remotely. This paper evaluates whether the support can be provided by means of Cognitive Info-communication – communication in which human cognitive capabilities are extended irrespectively of geographical distances. The evaluations are given with an aid of experimental system that consists of local and remote rooms, which are physically separated – a six-degree-of-freedom NACHI SH133-03 industrial robot is situated in the local room, while the operator, who supervises the robot by means of audio-visual Cognitive Human-Machine Interface, is situated in the remote room. The results of simple experiments show that Cognitive Info-communication is not only efficient mean to provide the support remotely, but is probably also a powerful tool to enhance interaction with any data-rich environment that require good conceptual understanding of system's state and careful attention management. Furthermore, the paper discusses data presentation and reduction methods for data-rich environments, as well as introduces the concepts of Naturally Acquired Data and Cognitive Human-Machine Interfaces.

  9. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  10. Neurolinguistic Relativity: How Language Flexes Human Perception and Cognition.

    Science.gov (United States)

    Thierry, Guillaume

    2016-09-01

    The time has come, perhaps, to go beyond merely acknowledging that language is a core manifestation of the workings of the human mind and that it relates interactively to all aspects of thinking. The issue, thus, is not to decide whether language and human thought may be ineluctably linked (they just are), but rather to determine what the characteristics of this relationship may be and to understand how language influences-and may be influenced by-nonverbal information processing. In an attempt to demystify linguistic relativity, I review neurolinguistic studies from our research group showing a link between linguistic distinctions and perceptual or conceptual processing. On the basis of empirical evidence showing effects of terminology on perception, language-idiosyncratic relationships in semantic memory, grammatical skewing of event conceptualization, and unconscious modulation of executive functioning by verbal input, I advocate a neurofunctional approach through which we can systematically explore how languages shape human thought.

  11. From humans to computers cognition through visual perception

    CERN Document Server

    Alexandrov, Viktor Vasilievitch

    1991-01-01

    This book considers computer vision to be an integral part of the artificial intelligence system. The core of the book is an analysis of possible approaches to the creation of artificial vision systems, which simulate human visual perception. Much attention is paid to the latest achievements in visual psychology and physiology, the description of the functional and structural organization of the human perception mechanism, the peculiarities of artistic perception and the expression of reality. Computer vision models based on these data are investigated. They include the processes of external d

  12. HUMAN DEVELOPMENT, COGNITION AND SCHOOL EDUCATION: REFLECTIONS BELOW THE HISTORICAL-CULTURAL APPROACH

    Directory of Open Access Journals (Sweden)

    Solange Maria Alves

    2016-07-01

    Full Text Available This text is fruit of studies, reflections and dialogues developed with graduate and post-graduate students inteaching and research coordinated by me, allocated in the research group: Human Development, Culture and Education, in rows : Language, Learning and Development and Imaginary Production and Creative Education. Over several years, the task of educational coordinating processes of teaching and research, allowed the construction of synthesis (always provisional, presented here. Having as a foundation the historic-cultural theory of Vygotsky and collaborators, the text reflects about human development, cognition and school education, pursuing the thesis that cognition is human development. To do this, search, in theoretical foundations of historical-cultural conception, the key elements that explain the process by which the biological becomes socio-historical, it takes up more carefully in the explicit about Vygotsky translates as plans or genetic fields of human development, increase the reflection articulating the categories: labor and language.

  13. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    Joshi, Peter K.; Esko, Tonu; Mattsson, Hannele; Eklund, Niina; Gandin, Ilaria; Nutile, Teresa; Jackson, Anne U.; Schurmann, Claudia; Smith, Albert V.; Zhang, Weihua; Okada, Yukinori; Stancakova, Alena; Faul, Jessica D.; Zhao, Wei; Bartz, Traci M.; Concas, Maria Pina; Franceschini, Nora; Enroth, Stefan; Vitart, Veronique; Trompet, Stella; Guo, Xiuqing; Chasman, Daniel I.; O'Connel, Jeffrey R.; Corre, Tanguy; Nongmaithem, Suraj S.; Chen, Yuning; Mangino, Massimo; Ruggiero, Daniela; Traglia, Michela; Farmaki, Aliki-Eleni; Kacprowski, Tim; Bjonnes, Andrew; van der Spek, Ashley; Wu, Ying; Giri, Anil K.; Yanek, Lisa R.; Wang, Lihua; Hofer, Edith; Rietveld, Cornelius A.; McLeod, Olga; Cornelis, Marilyn C.; Pattaro, Cristian; Verweij, Niek; Baumbach, Clemens; Abdellaoui, Abdel; Warren, Helen R.; Vuckovic, Dragana; Mei, Hao; Bouchard, Claude; Perry, John R. B.; Cappellani, Stefania; Mirza, Saira S.; Benton, Miles C.; Broeckel, Ulrich; Medland, Sarah E.; Lind, PenelopeA.; Malerba, Giovanni; Drong, Alexander; Yengo, Loic; Bielak, Lawrence F.; Zhi, Degui; van der Most, Peter J.; Shriner, Daniel; Maegi, Reedik; Hemani, Gibran; Karaderi, Tugce; Wang, Zhaoming; Liu, Tian; Demuth, Ilja; Zhao, Jing Hua; Meng, Weihua; Lataniotis, Lazaros; van der Laan, Sander W.; Bradfield, Jonathan P.; Wood, Andrew R.; Bonnefond, Amelie; Ahluwalia, Tarunveer S.; Hall, LeanneM.; Salvi, Erika; Yazar, Seyhan; Carstensen, Lisbeth; de Haan, Hugoline G.; Abney, Mark; Afzal, Uzma; Allison, Matthew A.; Amin, Najaf; Asselbergs, Folkert W.; Bakker, Stephan J. L.; Barr, R. Graham; Baumeister, Sebastian E.; Benjamin, Daniel J.; Bergmann, Sven; Boerwinkle, Eric; Bottinger, Erwin P.; Campbell, Archie; Chakravarti, Aravinda; Chan, Yingleong; Chanock, Stephen J.; Chen, Constance; Chen, Y. -D. Ida; Collins, Francis S.; Connell, John; Correa, Adolfo; Cupples, L. Adrienne; Smith, George Davey; Davies, Gail; Doerr, Marcus; Ehret, Georg; Ellis, Stephen B.; Feenstra, Bjarke; Feitosa, Mary F.; Ford, Ian; Fox, Caroline S.; Frayling, Timothy M.; Friedrich, Nele; Geller, Frank; Scotland, Generation; Gillham-Nasenya, Irina; Gottesman, Omri; Graff, Misa; Grodstein, Francine; Gu, Charles; Haley, Chris; Hammond, Christopher J.; Harris, Sarah E.; Harris, Tamara B.; Hastie, Nicholas D.; Heard-Costa, Nancy L.; Heikkila, Kauko; Hocking, Lynne J.; Homuth, Georg; Hottenga, Jouke-Jan; Huang, Jinyan; Huffman, Jennifer E.; Hysi, Pirro G.; Ikram, M. Arfan; Ingelsson, Erik; Joensuu, Anni; Johansson, Asa; Jousilahti, Pekka; Jukema, J. Wouter; Kahonen, Mika; Kamatani, Yoichiro; Kanoni, Stavroula; Kerr, Shona M.; Khan, Nazir M.; Koellinger, Philipp; Koistinen, Heikki A.; Kooner, Manraj K.; Kubo, Michiaki; Kuusisto, Johanna; Lahti, Jari; Launer, Lenore J.; Lea, Rodney A.; Lehne, Benjamin; Lehtimaki, Terho; Liewald, David C. M.; Lind, Lars; Loh, Marie; Lokki, Marja-Liisa; London, Stephanie J.; Loomis, Stephanie J.; Loukola, Anu; Lu, Yingchang; Lumley, Thomas; Lundqvist, Annamari; Mannisto, Satu; Marques-Vidal, Pedro; Masciullo, Corrado; Matchan, Angela; Mathias, Rasika A.; Matsuda, Koichi; Meigs, James B.; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Mentch, Frank D.; Mihailov, Evelin; Milani, Lili; Montasser, May E.; Montgomery, GrantW.; Morrison, Alanna; Myers, Richard H.; Nadukuru, Rajiv; Navarro, Pau; Nelis, Mari; Nieminen, Markku S.; Nolte, Ilja M.; O'Connor, George T.; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R.; Pankow, James S.; Patarcic, Inga; Pavani, Francesca; Peyser, Patricia A.; Pietilainen, Kirsi; Poulter, Neil; Prokopenko, Inga; Ralhan, Sarju; Redmond, Paul; Rich, Stephen S.; Rissanen, Harri; Robino, Antonietta; Rose, Lynda M.; Rose, Richard; Sala, Cinzia; Salako, Babatunde; Salomaa, Veikko; Sarin, Antti-Pekka; Saxena, Richa; Schmidt, Helena; Scott, Laura J.; Scott, William R.; Sennblad, Bengt; Seshadri, Sudha; Sever, Peter; Shrestha, Smeeta; Smith, Blair H.; Smith, Jennifer A.; Soranzo, Nicole; Sotoodehnia, Nona; Southam, Lorraine; Stanton, Alice V.; Stathopoulou, Maria G.; Strauch, Konstantin; Strawbridge, Rona J.; Suderman, Matthew J.; Tandon, Nikhil; Tang, Sian-Tsun; Taylor, Kent D.; Tayo, Bamidele O.; Toeglhofer, Anna Maria; Tomaszewski, Maciej; Tsernikova, Natalia; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vaidya, Dhananjay; Vlieg, Astrid van Hylckama; van Setten, Jessica; Vasankari, Tuula; Vedantam, Sailaja; Vlachopoulou, Efthymia; Vozzi, Diego; Vuoksimaa, Eero; Waldenberger, Melanie; Ware, Erin B.; Wentworth-Shields, William; Whitfield, John B.; Wild, Sarah; Willemsen, Gonneke; Yajnik, Chittaranjan S.; Yao, Jie; Zaza, Gianluigi; Zhu, Xiaofeng; Salem, Rany M.; Melbye, Mads; Bisgaard, Hans; Samani, Nilesh J.; Cusi, Daniele; Mackey, David A.; Cooper, Richard S.; Froguel, Philippe; Pasterkamp, Gerard; Grant, Struan F. A.; Hakonarson, Hakon; Ferrucci, Luigi; Scott, Robert A.; Morris, Andrew D.; Palmer, Colin N. A.; Dedoussis, George; Deloukas, Panos; Bertram, Lars; Lindenberger, Ulman; Berndt, Sonja I.; Lindgren, Cecilia M.; Timpson, Nicholas J.; Toenjes, Anke; Munroe, Patricia B.; Sorensen, Thorkild I. A.; Rotimi, Charles N.; Arnett, Donna K.; Oldehinkel, Albertine J.; Kardia, Sharon L. R.; Balkau, Beverley; Gambaro, Giovanni; Morris, Andrew P.; Eriksson, Johan G.; Wright, Margie J.; Martin, Nicholas G.; Hunt, Steven C.; Starr, John M.; Deary, Ian J.; Griffiths, Lyn R.; Tiemeier, Henning; Pirastu, Nicola; Kaprio, Jaakko; Wareham, Nicholas J.; Perusse, Louis; Wilson, James G.; Girotto, Giorgia; Caulfield, Mark J.; Raitakari, Olli; Boomsma, Dorret I.; Gieger, Christian; van der Harst, Pim; Hicks, Andrew A.; Kraft, Peter; Sinisalo, Juha; Knekt, Paul; Johannesson, Magnus; Magnusson, Patrik K. E.; Hamsten, Anders; Schmidt, Reinhold; Borecki, Ingrid B.; Vartiainen, Erkki; Becker, Diane M.; Bharadwaj, Dwaipayan; Mohlke, Karen L.; Boehnke, Michael; van Duijn, Cornelia M.; Sanghera, Dharambir K.; Teumer, Alexander; Zeggini, Eleftheria; Metspalu, Andres; Gasparini, Paolo; Ulivi, Sheila; Ober, Carole; Toniolo, Daniela; Rudan, Igor; Porteous, David J.; Ciullo, Marina; Spector, Tim D.; Hayward, Caroline; Dupuis, Josee; Loos, Ruth J. F.; Wright, Alan F.; Chandak, Giriraj R.; Vollenweider, Peter; Shuldiner, Alan R.; Ridker, Paul M.; Rotter, Jerome I.; Sattar, Naveed; Gyllensten, Ulf; North, Kari E.; Pirastu, Mario; Psaty, Bruce M.; Weir, David R.; Laakso, Markku; Gudnason, Vilmundur; Takahashi, Atsushi; Chambers, John C.; Kooner, Jaspal S.; Strachan, David P.; Campbell, Harry; Hirschhorn, Joel N.; Perola, Markus; Polasek, Ozren; Wilson, James F.

    2015-01-01

    Homozygosity has long been associated with rare, often devastating, Mendelian disorders(1), and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness(2). However, the effect of the more distant parental relatedness that is common in modern human populations is less

  14. Immanuel Kant's Account of Cognitive Experience and Human Rights Education

    Science.gov (United States)

    Bynum, Gregory Lewis

    2012-01-01

    In this essay Gregory Bynum seeks to show that Immanuel Kant's thought, which was conceived in an eighteenth-century context of new, and newly widespread, pressures for nationally institutionalized human rights-based regimes (the American and French revolutions being the most prominent examples), can help us think in new and appreciative ways…

  15. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    P.K. Joshi (Peter); T. Esko (Tõnu); H. Mattsson (Hannele); N. Eklund (Niina); I. Gandin (Ilaria); T. Nutile; A.U. Jackson (Anne); C. Schurmann (Claudia); G.D. Smith; W. Zhang (Weihua); Y. Okada (Yukinori); A. Stancáková (Alena); J.D. Faul (Jessica D.); W. Zhao (Wei); T.M. Bartz (Traci M.); M.P. Concas (Maria Pina); N. Franceschini (Nora); S. Enroth (Stefan); V. Vitart (Veronique); S. Trompet (Stella); X. Guo (Xiuqing); D.I. Chasman (Daniel); J.R. O'Connel (Jeffrey R.); T. Corre (Tanguy); S.S. Nongmaithem (Suraj S.); Y. Chen (Yuning); M. Mangino (Massimo); D. Ruggiero; M. Traglia (Michela); A.-E. Farmaki (Aliki-Eleni); T. Kacprowski (Tim); A. Bjonnes (Andrew); A. van der Spek (Ashley); Y. Wu (Ying); A.K. Giri (Anil K.); L.R. Yanek (Lisa); L. Wang (Lihua); E. Hofer (Edith); C.A. Rietveld (Niels); O. McLeod (Olga); M. Cornelis (Marilyn); C. Pattaro (Cristian); N. Verweij (Niek); C. Baumbach (Clemens); A. Abdellaoui (Abdel); H. Warren (Helen); D. Vuckovic (Dragana); H. Mei (Hao); C. Bouchard (Claude); J.R.B. Perry (John); S. Cappellani (Stefania); S.S. Mirza (Saira); M.C. Benton (Miles C.); U. Broeckel (Ulrich); S.E. Medland (Sarah Elizabeth); P.A. Lind (Penelope); G. Malerba (Giovanni); A. Drong (Alexander); L. Yengo (Loic); L.F. Bielak (Lawrence F.); D. Zhi (Degui); P.J. van der Most (Peter); D. Shriner (Daniel); R. Mägi (Reedik); G. Hemani; T. Karaderi (Tugce); Z. Wang (Zhaoming); T. Liu (Tian); I. Demuth (Ilja); J.H. Zhao (Jing Hua); W. Meng (Weihua); L. Lataniotis (Lazaros); S.W. Van Der Laan (Sander W.); J.P. Bradfield (Jonathan); A.R. Wood (Andrew); A. Bonnefond (Amélie); T.S. Ahluwalia (Tarunveer Singh); L.M. Hall (Leanne M.); E. Salvi (Erika); S. Yazar (Seyhan); L. Carstensen (Lisbeth); H.G. De Haan (Hugoline G.); M. Abney (Mark); U. Afzal (Uzma); M.A. Allison (Matthew); N. Amin (Najaf); F.W. Asselbergs (Folkert W.); S.J.L. Bakker (Stephan); R.G. Barr (Graham); S.E. Baumeister (Sebastian); D.J. Benjamin (Daniel J.); S. Bergmann (Sven); E.A. Boerwinkle (Eric); E.P. Bottinger (Erwin P.); A. Campbell (Archie); A. Chakravarti (Aravinda); Y. Chan (Yingleong); S.J. Chanock (Stephen); C. Chen (Constance); Y.-D.I. Chen (Y.-D. Ida); F.S. Collins (Francis); J. Connell (John); A. Correa (Adolfo); L.A. Cupples (Adrienne); G.D. Smith; G. Davies (Gail); M. Dörr (Marcus); G.B. Ehret (Georg); S.B. Ellis (Stephen B.); B. Feenstra (Bjarke); M.F. Feitosa (Mary Furlan); I. Ford; C.S. Fox (Caroline); T.M. Frayling (Timothy); N. Friedrich (Nele); F. Geller (Frank); G. Scotland (Generation); I. Gillham-Nasenya (Irina); R.F. Gottesman (Rebecca); M.J. Graff (Maud J.L.); F. Grodstein (Francine); C. Gu (Charles); C. Haley (Chris); C.J. Hammond (Christopher); S.E. Harris (Sarah); T.B. Harris (Tamara); N. Hastie (Nick); N.L. Heard-Costa (Nancy); K. Heikkilä (Kauko); L.J. Hocking (Lynne); G. Homuth (Georg); J.J. Hottenga (Jouke Jan); J. Huang (Jian); J.E. Huffman (Jennifer); P.G. Hysi (Pirro); M.A. Ikram (Arfan); E. Ingelsson (Erik); A. Joensuu (Anni); A. Johansson (Åsa); P. Jousilahti (Pekka); J.W. Jukema (Jan Wouter); M. Kähönen (Mika); Y. Kamatani (Yoichiro); S. Kanoni (Stavroula); S.M. Kerr (Shona); N.M. Khan (Nazir M.); Ph.D. Koellinger (Philipp); H.A. Koistinen (Heikki A.); M.K. Kooner (Manraj K.); M. Kubo (Michiaki); J. Kuusisto (Johanna); J. Lahti (Jari); L.J. Launer (Lenore); R.A. Lea (Rodney A.); B. Lehne (Benjamin); T. Lehtimäki (Terho); D.C. Liewald (David C.); L. Lind (Lars); M. Loh (Marie); M.L. Lokki; S.J. London (Stephanie J.); S.J. Loomis (Stephanie J.); A. Loukola (Anu); Y. Lu (Yingchang); T. Lumley (Thomas); A. Lundqvist (Annamari); S. Männistö (Satu); P. Marques-Vidal (Pedro); C. Masciullo (Corrado); A. Matchan (Angela); J. Mathias (Jasmine); K. Matsuda (Koichi); J.B. Meigs (James); C. Meisinger (Christa); T. Meitinger (Thomas); C. Menni (Cristina); F.D. Mentch (Frank); E. Mihailov (Evelin); L. Milani (Lili); M.E. Montasser (May E.); G.W. Montgomery (Grant); A.C. Morrison (Alanna); R.H. Myers (Richard); R. Nadukuru (Rajiv); P. Navarro (Pau); M. Nalis (Mari); M.S. Nieminen (Markku S.); I.M. Nolte (Ilja M.); G.T. O'Connor (George); A. Ogunniyi (Adesola); S. Padmanabhan (Sandosh); W. Palmas (Walter); J.S. Pankow (James); I. Patarcic (Inga); F. Pavani (Francesca); P.A. Peyser (Patricia A.); K.H. Pietilainen (Kirsi Hannele); N.R. Poulter (Neil); I. Prokopenko (Inga); S. Ralhan (Sarju); P. Redmond (Paul); S.S. Rich (Stephen S.); H. Rissanen (Harri); A. Robino (Antonietta); L.M. Rose (Lynda M.); R.J. Rose (Richard J.); C. Sala (Cinzia); B. Salako (Babatunde); V. Salomaa (Veikko); A.-P. Sarin; R. Saxena (Richa); R. Schmidt (Reinhold); L.J. Scott (Laura); W.R. Scott (William R.); B. Sennblad (Bengt); S. Seshadri (Sudha); P. Sever (Peter); S. Shrestha (Smeeta); B.H. Smith (Blair); J.A. Smith (Jennifer A); N. Soranzo (Nicole); N. Sotoodehnia (Nona); L. Southam (Lorraine); A. Stanton (Alice); M.G. Stathopoulou (Maria G); K. Strauch (Konstantin); R.J. Strawbridge (Rona); M.J. Suderman (Matthew J.); N. Tandon (Nikhil); S.-T. Tang (Sian-Tsun); K.D. Taylor (Kent D.); B. Tayo (Bamidele); A.M. Töglhofer (Anna Maria); M. Tomaszewski (Maciej); N. Tsernikova (Natalia); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); D. Vaidya (Dhananjay); A. van Hylckama Vlieg (Astrid); J. van Setten (Jessica); T. Vasankari (Tuula); S. Vedantam (Sailaja); E. Vlachopoulou (Efthymia); D. Vozzi (Diego); E. Vuoksimaa (Eero); M. Waldenberger (Melanie); E.B. Ware (Erin B.); W. Wentworth-Shields (William); J. Whitfield (John); S. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); C.S. Yajnik (Chittaranjan S.); J. Yao (Jie); G. Zaza (Gianluigi); X. Zhu (Xiaofeng); R.M. Salem (Rany); M. Melbye (Mads); H. Bisgaard (Hans); N.J. Samani (Nilesh); D. Cusi (Daniele); D.A. Mackey (David A.); R.S. Cooper (Richard S.); P. Froguel (Philippe); G. Pasterkamp (Gerard); S.F.A. Grant (Struan F.A.); H. Hakonarson (Hakon); L. Ferrucci (Luigi); R.A. Scott (Robert); A.D. Morris (Andrew); C.N.A. Palmer (Colin); G.V. Dedoussis (George V.); P. Deloukas (Panagiotis); L. Bertram (Lars); U. Lindenberger (Ulman); S.I. Berndt (Sonja); C.M. Lindgren (Cecilia); N.J. Timpson (Nicholas); A. Tönjes (Anke); P. Munroe (Patricia); T.I.A. Sørensen (Thorkild I.A.); C. Rotimi (Charles); D.K. Arnett (Donna); A.J. Oldehinkel (Albertine); S.L.R. Kardia (Sharon); B. Balkau (Beverley); G. Gambaro (Giovanni); A.P. Morris (Andrew); J.G. Eriksson (Johan G.); M.J. Wright (Margaret); N.G. Martin (Nicholas); S.C. Hunt (Steven); J.M. Starr (John); I.J. Deary (Ian J.); L.R. Griffiths (Lyn R.); H.W. Tiemeier (Henning); N. Pirastu (Nicola); J. Kaprio (Jaakko); N.J. Wareham (Nick); L. Perusse (Louis); J.G. Wilson (James); S. Girotto; M. Caulfield (Mark); O.T. Raitakari (Olli T.); D.I. Boomsma (Dorret); C. Gieger (Christian); P. van der Harst; A.A. Hicks (Andrew); P. Kraft (Peter); J. Sinisalo (Juha); P. Knekt; M. Johannesson (Magnus); P.K.E. Magnusson (Patrik K. E.); A. Hamsten (Anders); R. Schmidt (Reinhold); I.B. Borecki (Ingrid); E. Vartiainen (Erkki); D.M. Becker (Diane); D. Bharadwaj (Dwaipayan); K.L. Mohlke (Karen); M. Boehnke (Michael); C.M. van Duijn (Cornelia); D.K. Sanghera (Dharambir); A. Teumer (Alexander); E. Zeggini (Eleftheria); A. Metspalu (Andres); P. Gasparini (Paolo); S. Ulivi (Shelia); C. Ober (Carole); D. Toniolo (Daniela); I. Rudan (Igor); D.J. Porteous (David J.); M. Ciullo; T.D. Spector (Timothy); C. Hayward (Caroline); J. Dupuis (Josée); R.J.F. Loos (Ruth); A. Wright (Alan); G.R. Chandak (Giriraj); P. Vollenweider (Peter); A.R. Shuldiner (Alan); P.M. Ridker (Paul); J.I. Rotter (Jerome I.); N. Sattar (Naveed); U. Gyllensten (Ulf); K.E. North (Kari); M. Pirastu (Mario); B.M. Psaty (Bruce); D.R. Weir (David); M. Laakso (Markku); V. Gudnason (Vilmundur); A. Takahashi (Atsushi); J.C. Chambers (John C.); J.S. Kooner (Jaspal S.); D.P. Strachan (David P.); H. Campbell (Harry); J.N. Hirschhorn (Joel N.); M. Perola (Markus); O. Polasek (Ozren); J.F. Wilson (James)

    2015-01-01

    textabstractHomozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is

  16. Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus.

    Science.gov (United States)

    Voss, Joel L; Warren, David E; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Dan; Cohen, Neal J

    2011-08-02

    Effective exploratory behaviors involve continuous updating of sensory sampling to optimize the efficacy of information gathering. Despite some work on this issue in animals, little information exists regarding the cognitive or neural mechanisms for this sort of behavioral optimization in humans. Here we examined a visual exploration phenomenon that occurred when human subjects studying an array of objects spontaneously looked "backward" in their scanning paths to view recently seen objects again. This "spontaneous revisitation" of recently viewed objects was associated with enhanced hippocampal activity and superior subsequent memory performance in healthy participants, but occurred only rarely in amnesic patients with severe damage to the hippocampus. These findings demonstrate the necessity of the hippocampus not just in the aspects of long-term memory with which it has been associated previously, but also in the short-term adaptive control of behavior. Functional neuroimaging showed hippocampal engagement occurring in conjunction with frontocerebellar circuits, thereby revealing some of the larger brain circuitry essential for the strategic deployment of information-seeking behaviors that optimize learning.

  17. A basic experimental study on mental workload for human cognitive work at man-machine interface

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Shimoda, Hiroshi; Wakamori, Osamu; Nagai, Yoshinori

    1995-01-01

    The nature and measurement methods of mental workload (MWL) for human cognitive activity at man-machine interface (MMI) were firstly discussed from the viewpoint of human information process model. Then, a model VDT experiment which simplifies the actual human-computer-interaction situation at MMI, was conducted for several subjects, where two subjects participated in experiment series and tried to solve the same cognitive task in competition. Adopted experimental parameters were (i)different kinds of cognitive task, and (ii)cycle time of information display, to see the influence on MWL characteristics from psycho-physiological viewpoint. A special processing unit for eye camera was developed and used for measuring subjects' eye movement characteristics. Concerning data analysis, total number of display presentation until problem solving (ie., total information needed for problem solving) was assumed as anchoring objective measure for MWL, and the investigations were conducted from two aspects; (i)global interpretation on MWL characteristics seen in the subjects' behavior from viewpoint of human information process model, and (ii)applicability of MWL by means of biocybernetic method. As regards to applicability of biocybernetic method, the nature of MWL characteristics was first divided into two aspects : (i)efficiency of visual information acquisition, and (ii)difficulty of inner cognitive process to solve problem, both in time pressure situation. Then, the data analysis results for eye movement characteristics were correlated to (i), while for heart rate characteristics, (ii). (author)

  18. Collective cognition in humans: groups outperform their best members in a sentence reconstruction task.

    Directory of Open Access Journals (Sweden)

    Romain J G Clément

    Full Text Available Group-living is widespread among animals and one of the major advantages of group-living is the ability of groups to solve cognitive problems that exceed individual ability. Humans also make use of collective cognition and have simultaneously developed a highly complex language to exchange information. Here we investigated collective cognition of human groups regarding language use in a realistic situation. Individuals listened to a public announcement and had to reconstruct the sentence alone or in groups. This situation is often encountered by humans, for instance at train stations or airports. Using recent developments in machine speech recognition, we analysed how well individuals and groups reconstructed the sentences from a syntactic (i.e., the number of errors and semantic (i.e., the quality of the retrieved information perspective. We show that groups perform better both on a syntactic and semantic level than even their best members. Groups made fewer errors and were able to retrieve more information when reconstructing the sentences, outcompeting even their best group members. Our study takes collective cognition studies to the more complex level of language use in humans.

  19. Cognitive Analysis of Chinese-English Metaphors of Animal and Human Body Part Words

    Science.gov (United States)

    Song, Meiying

    2009-01-01

    Metaphorical cognition arises from the mapping of two conceptual domains onto each other. According to the "Anthropocentrism", people tend to know the world first by learning about their bodies including Apparatuses. Based on that, people begin to know the material world, and the human body part metaphorization emerges as the times…

  20. The Cognitive Neuroscience of Human Memory Since H.M

    OpenAIRE

    Squire, Larry R.; Wixted, John T.

    2011-01-01

    Work with patient H.M., beginning in the 1950s, established key principles about the organization of memory that inspired decades of experimental work. Since H.M., the study of human memory and its disorders has continued to yield new insights and to improve understanding of the structure and organization of memory. Here we review this work with emphasis on the neuroanatomy of medial temporal lobe and diencephalic structures important for memory, multiple memory systems, visual perception, im...

  1. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  2. Face cognition in humans: Psychophysiological, developmental, and cross-cultural aspects

    Directory of Open Access Journals (Sweden)

    Chernorizov A. M.

    2016-12-01

    Full Text Available Investigators are finding increasing evidence for cross-cultural specificity in face cognition along with individual characteristics. The functions on which face cognition is based not only are types of general cognitive functions (perception, memory but are elements of specific mental processes. Face perception, memorization, correct recognition of faces, and understanding the information that faces provide are essential skills for humans as a social species and can be considered as facets of social (cultural intelligence. Face cognition is a difficult, multifaceted set of processes. The systems and processes involved in perceiving and recognizing faces are captured by several models focusing on the pertinent functions or including the presumably underlying neuroanatomical substrates. Thus, the study of face-cognition mechanisms is a cross-disciplinary topic. In Russia, Germany, and China there are plans to organize an interdisciplinary crosscultural study of face cognition. The first step of this scientific interaction is conducting psychological and psychophysiological studies of face cognition in multinational Russia within the frame of a grant supported by the Russian Science Foundation and devoted to “cross-cultural tolerance”. For that reason and in the presence of the huge diversity of data concerning face cognition, we suggest for discussion, specifically within the psychological scientific community, three aspects of face cognition: (1 psychophysiological (quantitative data, (2 developmental (qualitative data from developmental psychology, and (3 cross-cultural (qualitative data from cross-cultural studies. These three aspects reflect the different levels of investigations and constitute a comprehensive, multilateral approach to the problem. Unfortunately, as a rule, neuropsychological and psychological investigations are carried out independently of each other. However, for the purposes of our overview here, we assume that the

  3. Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus

    International Nuclear Information System (INIS)

    Baranowska-Bosiacka, I.; Strużyńska, L.; Gutowska, I.; Machalińska, A.; Kolasa, A.; Kłos, P.; Czapski, G.A.; Kurzawski, M.; Prokopowicz, A.; Marchlewicz, M.

    2013-01-01

    Highlights: ► Pre- and neonatal Pb exposure decreased the number of hippocampal neurons. ► Lead caused ultrastructural alterations in CA1 region of hippocampus. ► Hippocampus is highly vulnerable to low level perinatal Pb exposure. ► Lead decreased BDNF level in the developing brain. ► Decreased Bax/Bcl2 ratio may protect hippocampus against Pb-induced apoptosis. -- Abstract: The aim of this paper is to examine if pre- and neonatal exposure to lead (Pb) may intensify or inhibit apoptosis or necroptosis in the developing rat brain. Pregnant experimental females received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring; the control group received distilled water. During the feeding of pups, mothers from the experimental group were still receiving PbAc. Pups were weaned at postnatal day 21 and the young rats of both groups then received only distilled water until postnatal day 28. This treatment protocol resulted in a concentration of Pb in rat offspring whole blood (Pb-B) below the threshold of 10 μg/dL, considered safe for humans.We studied Casp-3 activity and expression, AIF nuclear translocation, DNA fragmentation, as well as Bax, Bcl-2 mRNA and protein expression as well as BDNF concentration in selected structures of the rat brain: forebrain cortex (FC), cerebellum (C) and hippocampus (H). The microscopic examinations showed alterations in hippocampal neurons.Our data shows that pre- and neonatal exposure of rats to Pb, leading to Pb-B below 10 μg/dL, can decrease the number of hippocampus neurons, occurring concomitantly with ultrastructural alterations in this region. We observed no morphological or molecular features of severe apoptosis or necrosis (no active Casp-3 and AIF translocation to nucleus) in young brains, despite the reduced levels of BDNF. The potential protective factor against apoptosis was probably the decreased Bax/Bcl-2 ratio, which requires further investigation. Our

  4. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  5. No Effect of TETRA Hand Portable Transmission Signals on Human Cognitive Function and Symptoms

    DEFF Research Database (Denmark)

    Riddervold, Ingunn Skogstad; Kjærgaard, Søren K.; Pedersen, Gert F.

    2010-01-01

    Current radio frequency radiation exposure guidelines rest on well-established thermal effects. However, recent research into analogue and digital transmission fields at levels covered by the exposure guidelines has indicated possible detrimental effects on human cognitive performance. To investi......Current radio frequency radiation exposure guidelines rest on well-established thermal effects. However, recent research into analogue and digital transmission fields at levels covered by the exposure guidelines has indicated possible detrimental effects on human cognitive performance....... To investigate this, we conducted a controlled climate chamber study of possible changes in cognitive performance in healthy volunteers exposed to transmission signals from TETRA hand portables (TETRA handsets). The trial deployed a balanced, randomized, double-blinded cross-over design. Performance on different...... paper-and-pencil, auditory and computer-based cognitive tasks was monitored in 53 male volunteers (mean age 36.41 years, SD 8.35) during 45-min exposure to a TETRA handset and sham control signals remotely controlled from a laboratory more than 100 km away. The main cognitive outcome was the Trail...

  6. Human preferences for symmetry: subjective experience, cognitive conflict and cortical brain activity.

    Directory of Open Access Journals (Sweden)

    David W Evans

    Full Text Available This study examines the links between human perceptions, cognitive biases and neural processing of symmetrical stimuli. While preferences for symmetry have largely been examined in the context of disorders such as obsessive-compulsive disorder and autism spectrum disorders, we examine various these phenomena in non-clinical subjects and suggest that such preferences are distributed throughout the typical population as part of our cognitive and neural architecture. In Experiment 1, 82 young adults reported on the frequency of their obsessive-compulsive spectrum behaviors. Subjects also performed an emotional Stroop or variant of an Implicit Association Task (the OC-CIT developed to assess cognitive biases for symmetry. Data not only reveal that subjects evidence a cognitive conflict when asked to match images of positive affect with asymmetrical stimuli, and disgust with symmetry, but also that their slowed reaction times when asked to do so were predicted by reports of OC behavior, particularly checking behavior. In Experiment 2, 26 participants were administered an oddball Event-Related Potential task specifically designed to assess sensitivity to symmetry as well as the OC-CIT. These data revealed that reaction times on the OC-CIT were strongly predicted by frontal electrode sites indicating faster processing of an asymmetrical stimulus (unparallel lines relative to a symmetrical stimulus (parallel lines. The results point to an overall cognitive bias linking disgust with asymmetry and suggest that such cognitive biases are reflected in neural responses to symmetrical/asymmetrical stimuli.

  7. Categorial compositionality: a category theory explanation for the systematicity of human cognition.

    Directory of Open Access Journals (Sweden)

    Steven Phillips

    Full Text Available Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes. In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.

  8. Categorial compositionality: a category theory explanation for the systematicity of human cognition.

    Science.gov (United States)

    Phillips, Steven; Wilson, William H

    2010-07-22

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.

  9. Occlusion and brain function: mastication as a prevention of cognitive dysfunction.

    Science.gov (United States)

    Ono, Y; Yamamoto, T; Kubo, K-ya; Onozuka, M

    2010-08-01

    Research in animals and humans has shown that mastication maintains cognitive function in the hippocampus, a brain area important for learning and memory. Reduced mastication, an epidemiological risk factor for the development of dementia in humans, attenuates spatial memory and causes hippocampal neurons to deteriorate morphologically and functionally, especially in aged animals. Active mastication rescues the stress-attenuated hippocampal memory process in animals and attenuates the perception of stress in humans by suppressing endocrinological and autonomic stress responses. Active mastication further improves the performance of sustained cognitive tasks by increasing the activation of the hippocampus and the prefrontal cortex, the brain regions that are essential for cognitive processing. Abnormal mastication caused by experimental occlusal disharmony in animals produces chronic stress, which in turn suppresses spatial learning ability. The negative correlation between mastication and corticosteroids has raised the hypothesis that the suppression of the hypothalamic-pituitary-adrenal (HPA) axis by masticatory stimulation contributes, in part, to preserving cognitive functions associated with mastication. In the present review, we examine research pertaining to the mastication-induced amelioration of deficits in cognitive function, its possible relationship with the HPA axis, and the neuronal mechanisms that may be involved in this process in the hippocampus.

  10. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice.

    Science.gov (United States)

    Chen, Wei; An, Dong; Xu, Hong; Cheng, Xiaoxin; Wang, Shiwei; Yu, Weizhi; Yu, Deqin; Zhao, Dan; Sun, Yiping; Deng, Wuguo; Tang, Yiyuan; Yin, Shengming

    2016-01-01

    It has been reported that social isolation stress could be a key factor that leads to cognitive deficit for both humans and rodent models. However, detailed mechanisms are not yet clear. ADAR1 (Adenosine deaminase acting on RNA) is an enzyme involved in RNA editing that has a close relation to cognitive function. We have hypothesized that social isolation stress may impact the expression of ADAR1 in the brain of mice with cognitive deficit. To test our hypothesis, we evaluated the cognition ability of mice isolated for different durations (2, 4, and 8 weeks) using object recognition and object location tests; we also measured ADAR1 expression in hippocampus and cortex using immunohistochemistry and western blot. Our study showed that social isolation stress induced spatial and non-spatial cognition deficits of the tested mice. In addition, social isolation significantly increased both the immunoreactivity and protein expression of ADAR1 (p110) in the hippocampus and frontal cortex. Furthermore, re-socialization could not only recover the cognition deficits, but also bring ADAR1 (p110) immunoreactivity of hippocampus and frontal cortex, as well as ADAR1 (p110) protein expression of hippocampus back to the normal level for the isolated mice in adolescence. In conclusion, social isolation stress significantly increases ADAR1 (p110) expression in the hippocampus and frontal cortex of the mice with cognitive deficit. This finding may open a window to better understand the reasons (e.g., epigenetic change) that are responsible for social isolation-induced cognitive deficit and help the development of novel therapies for the resulted diseases.

  11. The future of future-oriented cognition in non-humans: theory and the empirical case of the great apes.

    Science.gov (United States)

    Osvath, Mathias; Martin-Ordas, Gema

    2014-11-05

    One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not 'real' future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes 'truly' future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. The Role of Consciousness in Human Cognitive Activity

    Directory of Open Access Journals (Sweden)

    Victor M. Allakhverdov

    2009-01-01

    Full Text Available The problem of consciousness is examined in the article. It is argued that all the existing approaches to consciousness do not explain the role consciousness plays in human life. An attempt of revealing and describing the principles of the mind’s work is made. Experimental phenomena observed by the author and his followers, particularly, the tendency of previously non-realized ideas not to be realized subsequently, are reviewed. The discussion of these phenomena allows to formulate a novel view on the nature of consciousness.

  13. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  14. Consciousness, plasticity, and connectomics: the role of intersubjectivity in human cognition

    DEFF Research Database (Denmark)

    Allen, Micah Galen; Williams, Gary

    2011-01-01

    motivates philosophical and empirical hypotheses regarding the appropriate time-scale and function of neuroplastic adaptation, the relation of high and low-frequency neural activity to consciousness and cognitive plasticity, and the role of ritual social practices in neural development and cognitive...... take up our account of consciousness from the observation of radical cortical neuroplasticity in human development. Accordingly, we draw upon recent research on macroscopic neural networks, including the “default mode,” to illustrate cases in which an individual’s particular “connectome” is shaped...

  15. Foundations for Reasoning in Cognition-Based Computational Representations of Human Decision Making; TOPICAL

    International Nuclear Information System (INIS)

    SENGLAUB, MICHAEL E.; HARRIS, DAVID L.; RAYBOURN, ELAINE M.

    2001-01-01

    In exploring the question of how humans reason in ambiguous situations or in the absence of complete information, we stumbled onto a body of knowledge that addresses issues beyond the original scope of our effort. We have begun to understand the importance that philosophy, in particular the work of C. S. Peirce, plays in developing models of human cognition and of information theory in general. We have a foundation that can serve as a basis for further studies in cognition and decision making. Peircean philosophy provides a foundation for understanding human reasoning and capturing behavioral characteristics of decision makers due to cultural, physiological, and psychological effects. The present paper describes this philosophical approach to understanding the underpinnings of human reasoning. We present the work of C. S. Peirce, and define sets of fundamental reasoning behavior that would be captured in the mathematical constructs of these newer technologies and would be able to interact in an agent type framework. Further, we propose the adoption of a hybrid reasoning model based on his work for future computational representations or emulations of human cognition

  16. The Cognitive Neuroscience of Human Memory Since H.M

    Science.gov (United States)

    Squire, Larry R.; Wixted, John T.

    2011-01-01

    Work with patient H.M., beginning in the 1950s, established key principles about the organization of memory that inspired decades of experimental work. Since H.M., the study of human memory and its disorders has continued to yield new insights and to improve understanding of the structure and organization of memory. Here we review this work with emphasis on the neuroanatomy of medial temporal lobe and diencephalic structures important for memory, multiple memory systems, visual perception, immediate memory, memory consolidation, the locus of long-term memory storage, the concepts of recollection and familiarity, and the question of how different medial temporal lobe structures may contribute differently to memory functions. PMID:21456960

  17. Embodied Niche Construction in the Hominin Lineage: Semiotic Structure and Sustained Attention in Human Embodied Cognition

    Directory of Open Access Journals (Sweden)

    Aaron Jonas Stutz

    2014-08-01

    Full Text Available Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  18. Angiotensin-converting enzyme activity and cognitive impairment during hypoglycaemia in healthy humans

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik; Thomsen, Carsten E; Høgenhaven, Hans

    2008-01-01

    INTRODUCTION: In type 1 diabetes increased risk of severe hypoglycaemia is associated with high angiotensin-converting enzyme (ACE) activity. We tested in healthy humans the hypothesis that this association is explained by the reduced ability of subjects with high ACE activity to maintain normal...... cognitive function during hypoglycaemia. METHODS: Sixteen healthy volunteers selected by either particularly high or low serum ACE activity were subjected to hypoglycaemia (plasma glucose 2.7 mmol/L). Cognitive function was assessed by choice reaction tests. RESULTS: Despite a similar hypoglycaemic stimulus...... in the two groups, only the group with high ACE activity showed significant deterioration in cognitive performance during hypoglycaemia. In the high ACE group mean reaction time (MRT) in the most complex choice reaction task was prolonged and error rate (ER) was increased in contrast to the low ACE group...

  19. Stress Effects on the Hippocampus: A Critical Review

    Science.gov (United States)

    Kim, Eun Joo; Pellman, Blake; Kim, Jeansok J.

    2015-01-01

    Uncontrollable stress has been recognized to influence the hippocampus at various levels of analysis. Behaviorally, human and animal studies have found that stress generally impairs various hippocampal-dependent memory tasks. Neurally, animal studies have revealed that stress alters ensuing synaptic plasticity and firing properties of hippocampal…

  20. Strategic Cognitive Sequencing: A Computational Cognitive Neuroscience Approach

    Directory of Open Access Journals (Sweden)

    Seth A. Herd

    2013-01-01

    Full Text Available We address strategic cognitive sequencing, the “outer loop” of human cognition: how the brain decides what cognitive process to apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present four preliminary neural network models. The first addresses how the prefrontal cortex (PFC and basal ganglia (BG cooperate to perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward, and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or “self-instruction”. The last shows how a constraint satisfaction process can find useful plans. The PFC maintains current and goal states and associates from both of these to find a “bridging” state, an abstract plan. We discuss how these processes could work together to produce strategic cognitive sequencing and discuss future directions in this area.

  1. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions

  2. Evaluation technology of human behavior cognition; Ningen kodo ninchi hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For human engineering and improvement of the living environment, the evaluation technology of human behavior cognition was studied. For the future reformation and creation of economic structure, the following are required: establishment of safe and affluent communities, further improvement of the safety and harmonious balance of people, lives and society, and R & D close to people and social needs. Introduction of Product Liability law and a fail-safe concept are examples of such efforts. However, since many accidents are found in the human society, the relation between human errors and human characteristics should be studied in detail. The cognitive science of human behavior is an objective evaluation technology from the viewpoint of human being, object, environment and society. Based on these social and technological background, the feasibility of the evaluation technology is studied, and the future trend and skeleton of this project are clarified. The domestic and foreign trends of technologies concerned are thus surveyed, and the important points, features, skeleton and ripple effect of the technology are summarized. 500 refs., 70 figs., 5 tabs.

  3. City rats: insight from rat spatial behavior into human cognition in urban environments.

    Science.gov (United States)

    Yaski, Osnat; Portugali, Juval; Eilam, David

    2011-09-01

    The structure and shape of the urban environment influence our ability to find our way about in the city. Understanding how the physical properties of the environment affect spatial behavior and cognition is therefore a necessity. However, there are inherent difficulties in empirically studying complex and large-scale urban environments. These include the need to isolate the impact of specific urban features and to acquire data on the physical activity of individuals. In the present study, we attempted to overcome the above obstacles and examine the relation between urban environments and spatial cognition by testing the spatial behavior of rats. This idea originated from the resemblance in the operative brain functions and in the mechanisms and strategies employed by humans and other animals when acquiring spatial information and establishing an internal representation, as revealed in past studies. Accordingly, we tested rats in arenas that simulated a grid urban layout (e.g. Manhattan streets) and an irregular urban layout (e.g. Jerusalem streets). We found that in the grid layout, rat movement was more structured and extended over a greater area compared with their restricted movement in the irregular layout. These movement patterns recall those of humans in respective urban environments, illustrating that the structure and shape of the environment affect spatial behavior similarly in humans and rats. Overall, testing rats in environments that simulate facets of urban environments can provide new insights into human spatial cognition in urban environments.

  4. Rhythmic Cognition in Humans and Animals: Distinguishing Meter and Pulse Perception

    Directory of Open Access Journals (Sweden)

    W Tecumseh eFitch

    2013-10-01

    Full Text Available This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or 'tactus' from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of 'strength', or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g. to dance. Rhythms, from this metrical perspective, constitute 'trees in time'. Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques. The results from this new animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  5. Effect of a human-type communication robot on cognitive function in elderly women living alone.

    Science.gov (United States)

    Tanaka, Masaaki; Ishii, Akira; Yamano, Emi; Ogikubo, Hiroki; Okazaki, Masatsugu; Kamimura, Kazuro; Konishi, Yasuharu; Emoto, Shigeru; Watanabe, Yasuyoshi

    2012-09-01

    Considering the high prevalence of dementia, it would be of great value to develop effective tools to improve cognitive function. We examined the effects of a human-type communication robot on cognitive function in elderly women living alone. In this study, 34 healthy elderly female volunteers living alone were randomized to living with either a communication robot or a control robot at home for 8 weeks. The shape, voice, and motion features of the communication robot resemble those of a 3-year-old boy, while the control robot was not designed to talk or nod. Before living with the robot and 4 and 8 weeks after living with the robot, experiments were conducted to evaluate a variety of cognitive functions as well as saliva cortisol, sleep, and subjective fatigue, motivation, and healing. The Mini-Mental State Examination score, judgement, and verbal memory function were improved after living with the communication robot; those functions were not altered with the control robot. In addition, the saliva cortisol level was decreased, nocturnal sleeping hours tended to increase, and difficulty in maintaining sleep tended to decrease with the communication robot, although alterations were not shown with the control. The proportions of the participants in whom effects on attenuation of fatigue, enhancement of motivation, and healing could be recognized were higher in the communication robot group relative to the control group. This study demonstrates that living with a human-type communication robot may be effective for improving cognitive functions in elderly women living alone.

  6. The cognitive environment simulation as a tool for modeling human performance and reliability

    International Nuclear Information System (INIS)

    Woods, D.D.; Pople, H. Jr.; Roth, E.M.

    1990-01-01

    The US Nuclear Regulatory Commission is sponsoring a research program to develop improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. Under this program, a tool for simulating how people form intentions to act in NPP emergency situations was developed using artificial intelligence (AI) techniques. This tool is called Cognitive Environment Simulation (CES). The Cognitive Reliability Assessment Technique (or CREATE) was also developed to specify how CBS can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. The next step in the research program was to evaluate the modeling tool and the method for using the tool for Human Reliability Analysis (HRA) in PRAs. Three evaluation activities were conducted. First, a panel of highly distinguished experts in cognitive modeling, AI, PRA and HRA provided a technical review of the simulation development work. Second, based on panel recommendations, CES was exercised on a family of steam generator tube rupture incidents where empirical data on operator performance already existed. Third, a workshop with HRA practitioners was held to analyze a worked example of the CREATE method to evaluate the role of CES/CREATE in HRA. The results of all three evaluations indicate that CES/CREATE represents a promising approach to modeling operator intention formation during emergency operations

  7. Non-visual biological effects of light on human cognition, alertness, and mood

    Science.gov (United States)

    Li, Huaye; Wang, Huihui; Shen, Junfei; Sun, Peng; Xie, Ting; Zhang, Siman; Zheng, Zhenrong

    2017-09-01

    Light exerts non-visual effects on a wide range of biological functions and behavior apart from the visual effect. Light can regulate human circadian rhythms, like the secretion of melatonin and cortisol. Light also has influence on body's physiological parameters, such as blood pressure, heart rate and body temperature. However, human cognitive performance, alertness and mood under different lighting conditions have not been considered thoroughly especially for the complicated visual task like surgical operating procedure. In this paper, an experiment was conducted to investigate the cognition, alertness and mood of healthy participants in a simulated operating room (OR) in the hospital. A LED surgical lamp was used as the light source, which is mixed by three color LEDs (amber, green and blue). The surgical lamp is flexible on both spectrum and intensity. Exposed to different light settings, which are varied from color temperature and luminance, participants were asked to take psychomotor vigilance task (PVT) for alertness measurement, alphabet test for cognitive performance measurement, positive and negative affect schedule (PANAS) for mood measurement. The result showed the participants' cognitive performance, alertness and mood are related to the color temperature and luminance of the LED light. This research will have a guidance for the surgical lighting environment, which can not only enhance doctors' efficiency during the operations, but also create a positive and peaceful surgical lighting environment.

  8. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ho

    2007-02-15

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  9. Human cognitive task distribution model for maintenance support system of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Young Ho

    2007-02-01

    In human factors research, more attention has been devoted to the operation of nuclear power plants (NPPs) than to their maintenance. However, human error related to maintenance is 45% among the total human errors from 1990 to 2005 in Korean nuclear power plants. Therefore, it is necessary to study human factors in the maintenance of an NPP. There is a current trend toward introducing digital technology into both safety and non-safety systems in NPPs. A variety of information about plant conditions can be used digitally. In the future, maintenance support systems will be developed based on an information-oriented NPP. In this context, it is necessary to study the cognitive tasks of the personnel involved in maintenance and the interaction between the personnel and maintenance support systems. The fundamental purpose of this work is how to distribute the cognitive tasks of the personnel involved in the maintenance in order to develop a maintenance support system that considers human factors. The second purpose is to find the causes of errors due to engineers or maintainers and propose system functions that are countermeasures to reduce these errors. In this paper, a cognitive task distribution model of the personnel involved in maintenance is proposed using Rasmussen's decision making model. First, the personnel were divided into three groups: the operators (inspectors), engineers, and maintainers. Second, human cognitive tasks related to maintenance were distributed based on these groups. The operators' cognitive tasks are detection and observation; the engineers' cognitive tasks are identification, evaluation, target state, select target, and procedure: and the maintainers' cognitive task is execution. The case study is an analysis of failure reports related to human error in maintenance over a period of 15years. By using error classification based on the information processing approach, the human errors involved in maintenance were classified

  10. 50-60 Hz electric and magnetic field effects on cognitive function in humans: A review

    International Nuclear Information System (INIS)

    Crasson, M.

    2003-01-01

    This paper reviews the effect of 50-60 Hz weak electric, magnetic and combined electric and magnetic field exposure on cognitive functions such as memory, attention, information processing and time perception, as determined by electroencephalographic methods and performance measures. Overall, laboratory studies, which have investigated the acute effects of power frequency fields on cognitive functioning in humans are heterogeneous, in terms of both electric and magnetic field (EMF) exposure and the experimental design and measures used. Results are inconsistent and difficult to interpret with regard to functional relevance for possible health risks. Statistically significant differences between field and control exposure, when they are found, are small, subtle, transitory, without any clear dose-response relationship and difficult to reproduce. The human performance or event related potentials (ERPs) measures that might specifically be affected by EMF exposure, as well as a possible cerebral structure or function that could be more sensitive to EMF, cannot be better determined. (author)

  11. Linguistic embodiment and verbal constraints: human cognition and the scales of time

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2014-01-01

    Using radical embodied cognitive science, the paper offers the hypothesis that language is symbiotic: its agent-environment dynamics arise as linguistic embodiment is managed under verbal constraints. As a result, co-action grants human agents the ability to use a unique form of phenomenal......, linguistic symbiosis grants access to diachronic resources. On this distributed-ecological view, language can thus be redefined as: “activity in which wordings play a part.”...

  12. A mid-layer model for human reliability analysis: understanding the cognitive causes of human failure events

    International Nuclear Information System (INIS)

    Shen, Song-Hua; Chang, James Y.H.; Boring, Ronald L.; Whaley, April M.; Lois, Erasmia; Langfitt Hendrickson, Stacey M.; Oxstrand, Johanna H.; Forester, John Alan; Kelly, Dana L.; Mosleh, Ali

    2010-01-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  13. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  14. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  15. The role of the hippocampus in memory and mental construction.

    Science.gov (United States)

    Sheldon, Signy; Levine, Brian

    2016-04-01

    Much has been learned about the processes that support the remembrance of past autobiographical episodes and their importance for a number of cognitive tasks. This work has focused on hippocampal contributions to constructing coherent mental representations of scenarios for these tasks, which has opened up new questions about the underlying hippocampal mechanisms. We propose a new framework to answer these questions, which incorporates task demands that prompt hippocampal contributions to mental construction, the online formation of such mental representations, and how these demands relate to the functional organization of the hippocampus. Synthesizing findings from autobiographical memory research, our framework suggests that the interaction of two task characteristics influences the recruitment of the hippocampus: (1) the degree of task open-endedness (quantified by the presence/absence of a retrieval framework) and (2) the degree to which the integration of perceptual details is required. These characteristics inform the relative weighting of anterior and posterior hippocampal involvement, following an organizational model in which the anterior and posterior hippocampus support constructions on the basis of conceptual and perceptual representations, respectively. The anticipated outcome of our framework is a refined understanding of hippocampal contributions to memory and to the host of related cognitive functions. © 2016 New York Academy of Sciences.

  16. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective

    Directory of Open Access Journals (Sweden)

    Aline W. ede Borst

    2015-05-01

    Full Text Available Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, animations, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the Uncanny Valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations.

  17. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective.

    Science.gov (United States)

    de Borst, Aline W; de Gelder, Beatrice

    2015-01-01

    Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations.

  18. Selective increases of AMPA, NMDA and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics

    Directory of Open Access Journals (Sweden)

    Zhe eJin

    2014-01-01

    Full Text Available Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG, orbitofrontal cortex (OFC, and dorso-lateral prefrontal cortex (DL-PFC samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-ylpropanoic acid receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate receptor subunits GluN1, GluN2A, GluN2C, GluN2D and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011. Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.

  19. Receptor autoradiography in the hippocampus of man and rat

    International Nuclear Information System (INIS)

    Zilles, K.

    1988-01-01

    This chapter deals with the following questions: regional distribution of binding sites for 5-HT, glutamate, and acetylcholine in Ammon's horn and the dentate gyrus of rat and human brain; comparison of receptor distribution and neuronal pathways with identified transmitters; correlation of region-specific densities between different receptors and receptor subtypes (colocalization of different receptors on the level of hippocampal layers) and comparison of receptor distribution in human and rat hippocampus

  20. Hippocampus is place of interaction between unconscious and conscious memories.

    Directory of Open Access Journals (Sweden)

    Marc Alain Züst

    Full Text Available Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus-the key structure also recruited for conscious relational (episodic memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked combinations of unfamiliar faces and written occupations ("actor" or "politician". At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation-actor or politician-would facilitate or inhibit the subsequent conscious retrieval of a celebrity's occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity's occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious

  1. Acute Post-Prandial Cognitive Effects of Brown Seaweed Extract in Humans

    Directory of Open Access Journals (Sweden)

    Crystal F. Haskell-Ramsay

    2018-01-01

    Full Text Available (Polyphenols and, specifically, phlorotannins present in brown seaweeds have previously been shown to inhibit α-amylase and α-glucosidase, key enzymes involved in the breakdown and intestinal absorption of carbohydrates. Related to this are observations of modulation of post-prandial glycemic response in mice and increased insulin sensitivity in humans when supplemented with seaweed extract. However, no studies to date have explored the effect of seaweed extract on cognition. The current randomized, placebo-controlled, double-blind, parallel groups study examined the impact of a brown seaweed extract on cognitive function post-prandially in 60 healthy adults (N = 30 per group. Computerized measures of episodic memory, attention and subjective state were completed at baseline and 5 times at 40 min intervals over a 3 h period following lunch, with either seaweed or placebo consumed 30 min prior to lunch. Analysis was conducted with linear mixed models controlling for baseline. Seaweed led to significant improvements to accuracy on digit vigilance (p = 0.035 and choice reaction time (p = 0.043 tasks. These findings provide the first evidence for modulation of cognition with seaweed extract. In order to explore the mechanism underlying these effects, future research should examine effects on cognition in parallel with blood glucose and insulin responses.

  2. The role of the hippocampus in recognition memory.

    Science.gov (United States)

    Bird, Chris M

    2017-08-01

    Many theories of declarative memory propose that it is supported by partially separable processes underpinned by different brain structures. The hippocampus plays a critical role in binding together item and contextual information together and processing the relationships between individual items. By contrast, the processing of individual items and their later recognition can be supported by extrahippocampal regions of the medial temporal lobes (MTL), particularly when recognition is based on feelings of familiarity without the retrieval of any associated information. These theories are domain-general in that "items" might be words, faces, objects, scenes, etc. However, there is mixed evidence that item recognition does not require the hippocampus, or that familiarity-based recognition can be supported by extrahippocampal regions. By contrast, there is compelling evidence that in humans, hippocampal damage does not affect recognition memory for unfamiliar faces, whilst recognition memory for several other stimulus classes is impaired. I propose that regions outside of the hippocampus can support recognition of unfamiliar faces because they are perceived as discrete items and have no prior conceptual associations. Conversely, extrahippocampal processes are inadequate for recognition of items which (a) have been previously experienced, (b) are conceptually meaningful, or (c) are perceived as being comprised of individual elements. This account reconciles findings from primate and human studies of recognition memory. Furthermore, it suggests that while the hippocampus is critical for binding and relational processing, these processes are required for item recognition memory in most situations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. THE PROBLEM OF THE VALUES SUPPORTING REASONING IN THE HUMANITIES: A COGNITIVE-PRAGMATIC APPROACH

    Directory of Open Access Journals (Sweden)

    Tatiana Savtchouk

    2017-04-01

    Full Text Available The main cognitive models of the values supporting reasoning in the discourse of the humanities are identified, the typology of selected schemes is made, their modifications are characterised, the pragmatic differences of the models are determined. Particular attention is paid to the “cause to aim” justification of the value judgments that prevails in the humanities. The regularities of verbal representation of cognitive structures are ascertained, pragmatic properties of argumentative markers are explicated. The author’s typology of tactics that implements rational and emotional value-study strategies is proposed. A number of fallacies in the justification of normative value judgments are revealed, such as “semantic-pragmatic dissonance”, “simulation of reasoning”, “pseudoauthority”, “superfluity of argumentative resource”. The sources of such shortcomings are exemplified by the facts from the evidence base. The conclusion is that the author of the article chooses the cognitive model of argumentation in support of the values, the ways of its verbal presentation and the tactics of reasoning on the basis of pragmatic factors.

  4. Structurally-constrained relationships between cognitive states in the human brain.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2014-05-01

    Full Text Available The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.

  5. Validating cognitive support for operators of complex human-machine systems

    International Nuclear Information System (INIS)

    O'Hara, J.; Wachtel, J.

    1995-01-01

    Modem nuclear power plants (NPPs) are complex systems whose performance is the result of an intricate interaction of human and system control. A complex system may be defined as one which supports a dynamic process involving a large number of elements that interact in many different ways. Safety is addressed through defense-in-depth design and preplanning; i.e., designers consider the types of failures that are most likely to occur and those of high consequence, and design their solutions in advance. However, complex interactions and their failure modes cannot always be anticipated by the designer and may be unfamiliar to plant personnel. These situations may pose cognitive demands on plant personnel, both individually and as a crew. Other factors may contribute to the cognitive challenges of NPP operation as well, including hierarchal processes, dynamic pace, system redundancy and reliability, and conflicting objectives. These factors are discussed in this paper

  6. Cognitive and tactile factors affecting human haptic performance in later life.

    Directory of Open Access Journals (Sweden)

    Tobias Kalisch

    Full Text Available BACKGROUND: Vision and haptics are the key modalities by which humans perceive objects and interact with their environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary. Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or cognitive capacity. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the haptic performance of 81 older adults by means of a cross-modal object recognition test. Additionally, we assessed the subjects' tactile acuity with an apparatus-based two-point discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly correlated with male subjects' haptic performance. CONCLUSIONS: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration of complex, unfamiliar objects. Our data support a disproportionately higher impact of cognition on haptic performance as compared to the impact of tactile acuity. Our findings are in agreement with studies reporting an increase in co-variation between individual sensory performance and general cognitive functioning in old age.

  7. Effects of HZE irradiation on chemical neurotransmission in rodent hippocampus

    Science.gov (United States)

    Machida, Mayumi

    Space radiation represents a significant risk to the CNS (central nervous system) during space missions. Most harmful are the HZE (high mass, highly charged (Z), high energy) particles, e.g. 56Fe, which possess high ionizing ability, dense energy deposition pattern, and high penetrance. Accumulating evidence suggests that radiation has significant impact on cognitive functions. In ground-base experiments, HZE radiation induces pronounced deficits in hippocampus dependent learning and memory in rodents. However, the mechanisms underlying these impairments are mostly unknown. Exposure to HZE radiation elevates the level of oxidation, resulting in cell loss, tissue damage and functional deficits through direct ionization and generation of reactive oxygen species (ROS). When hippocampal slices were exposed to ROS, neuronal excitability was reduced. My preliminary results showed enhanced radio-vulnerability of the hippocampus and reduction in basal and depolarization-evoked [3H]-norepinephrine release after HZE exposure. These results raised the possibility that HZE radiation deteriorates cognitive function through radiation-induced impairments in hippocampal chemical neurotransmission, the hypothesis of this dissertation. In Aim 1 I have focused on the effects of HZE radiation on release of major neurotransmitter systems in the hippocampus. I have further extended my research on the levels of receptors of these systems in Aim 2. In Aim 3, I have studied the level of oxidation in membranes of my samples. My research reveals that HZE radiation significantly reduces hyperosmotic sucrose evoked [3H]-glutamate and [14C]-GABA release both three and six months post irradiation. The same radiation regimen also significantly enhances oxidative stress as indicated by increased levels of lipid peroxidation in the hippocampus, suggesting that increased levels of lipid peroxidation may play a role in reduction of neurotransmitter release. HZE radiation also significantly reduces

  8. Affordances and Cognitive Walkthrough for Analyzing Human-Virtual Human Interaction

    NARCIS (Netherlands)

    Ruttkay, Z.M.; op den Akker, Hendrikus J.A.; Esposito, A.; Bourbakis, N.; Avouris, N.; Hatzilygeroudis, I.

    2008-01-01

    This study investigates how the psychological notion of affordance, known from human computer interface design, can be adopted for the analysis and design of communication of a user with a Virtual Human (VH), as a novel interface. We take as starting point the original notion of affordance, used to

  9. Androgen responsiveness to competition in humans: the role of cognitive variables

    Directory of Open Access Journals (Sweden)

    Oliveira GA

    2014-02-01

    Full Text Available Gonçalo A Oliveira,1 Rui F Oliveira1,2 1Unidade de Investigação em Eco-Etologia, ISPA – Instituto Universitário, Lisbon, Portugal; 2Champalimaud Neuroscience Program, Instituto Gulbenkian de Ciência, Oeiras, Portugal Abstract: Although androgens are commonly seen as male sex hormones, it has been established over the years that in both sexes, androgens also respond to social challenges. To explain the socially driven changes in androgens, two theoretical models have been proposed: the biosocial model and the challenge hypothesis. These models are typically seen as partly overlapping; however, they generate different predictions that are clarified here. In humans, sports competition and nonmetabolic competitive tasks have been used in the laboratory setting, as a proxy for agonistic interactions in animals. The results reviewed here show that the testosterone (T response to competition in humans is highly variable – the studies present postcompetition T levels and changes in T that depend on the contest outcome and that cannot be predicted by the current theoretical models. These conflicting results bring to the foreground the importance of considering cognitive factors that could moderate the androgen response to competition. Among these variables, we elect cognitive appraisal and its components as a key candidate modulating factor. It is known that T also modulates the cognitive processes that are relevant to performance in competition. In this article, we reviewed the evidence arising from studies investigating the effect of administering exogenous T and compare those results with the findings from studies that measured endogenous T levels. Finally, we summarized the importance of also considering the interaction between androgens and other hormones, such as cortisol, when investigating the social modulation of T, as proposed by the dual-hormone hypothesis. Keywords: testosterone, challenge hypothesis, biosocial model, cognitive

  10. Cognitive neuroscience in forensic science: understanding and utilizing the human element

    Science.gov (United States)

    Dror, Itiel E.

    2015-01-01

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour. PMID:26101281

  11. Constructive anthropomorphism: a functional evolutionary approach to the study of human-like cognitive mechanisms in animals.

    Science.gov (United States)

    Arbilly, Michal; Lotem, Arnon

    2017-10-25

    Anthropomorphism, the attribution of human cognitive processes and emotional states to animals, is commonly viewed as non-scientific and potentially misleading. This is mainly because apparent similarity to humans can usually be explained by alternative, simpler mechanisms in animals, and because there is no explanatory power in analogies to human phenomena when these phenomena are not well understood. Yet, because it is also difficult to preclude real similarity and continuity in the evolution of humans' and animals' cognitive abilities, it may not be productive to completely ignore our understanding of human behaviour when thinking about animals. Here we propose that in applying a functional approach to the evolution of cognitive mechanisms, human cognition may be used to broaden our theoretical thinking and to generate testable hypotheses. Our goal is not to 'elevate' animals, but rather to find the minimal set of mechanistic principles that may explain 'advanced' cognitive abilities in humans, and consider under what conditions these mechanisms were likely to enhance fitness and to evolve in animals. We illustrate this approach, from relatively simple emotional states, to more advanced mechanisms, involved in planning and decision-making, episodic memory, metacognition, theory of mind, and consciousness. © 2017 The Author(s).

  12. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    Directory of Open Access Journals (Sweden)

    Maria Priestley

    Full Text Available Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence, content that has been submitted by particularly liked or respected users (model-based bias, content that constitutes evolutionarily salient or relevant information (content bias, and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world.

  13. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    Science.gov (United States)

    Priestley, Maria; Mesoudi, Alex

    2015-01-01

    Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence), content that has been submitted by particularly liked or respected users (model-based bias), content that constitutes evolutionarily salient or relevant information (content bias), and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world.

  14. Imagination in human social cognition, autism, and psychotic-affective conditions.

    Science.gov (United States)

    Crespi, Bernard; Leach, Emma; Dinsdale, Natalie; Mokkonen, Mikael; Hurd, Peter

    2016-05-01

    Complex human social cognition has evolved in concert with risks for psychiatric disorders. Recently, autism and psychotic-affective conditions (mainly schizophrenia, bipolar disorder, and depression) have been posited as psychological 'opposites' with regard to social-cognitive phenotypes. Imagination, considered as 'forming new ideas, mental images, or concepts', represents a central facet of human social evolution and cognition. Previous studies have documented reduced imagination in autism, and increased imagination in association with psychotic-affective conditions, yet these sets of findings have yet to be considered together, or evaluated in the context of the diametric model. We first review studies of the components, manifestations, and neural correlates of imagination in autism and psychotic-affective conditions. Next, we use data on dimensional autism in healthy populations to test the hypotheses that: (1) imagination represents the facet of autism that best accounts for its strongly male-biased sex ratio, and (2) higher genetic risk of schizophrenia is associated with higher imagination, in accordance with the predictions of the diametric model. The first hypothesis was supported by a systematic review and meta-analysis showing that Imagination exhibits the strongest male bias of all Autism Quotient (AQ) subscales, in non-clinical populations. The second hypothesis was supported, for males, by associations between schizophrenia genetic risk scores, derived from a set of single-nucleotide polymorphisms, and the AQ Imagination subscale. Considered together, these findings indicate that imagination, especially social imagination as embodied in the default mode human brain network, mediates risk and diametric dimensional phenotypes of autism and psychotic-affective conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterizing cognitive aging of recognition memory and related processes in animal models and in humans

    Directory of Open Access Journals (Sweden)

    Carol A Barnes

    2012-09-01

    Full Text Available Analyses of complex behaviors across the lifespan of animals can reveal the brain regions that are impacted by the normal aging process, thereby, elucidating potential therapeutic targets. Recent data from rats, monkeys and humans converge, all indicating that recognition memory and complex visual perception are impaired in advanced age. These cognitive processes are also disrupted in animals with lesions of the perirhinal cortex, indicating that the the functional integrity of this structure is disrupted in old age. This current review summarizes these data, and highlights current methodologies for assessing perirhinal cortex-dependent behaviors across the lifespan.

  16. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  17. Directional dominance on stature and cognition in diverse human populations

    DEFF Research Database (Denmark)

    Joshi, Peter K; Esko, Tonu; Mattsson, Hannele

    2015-01-01

    is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been....... confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance...

  18. Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans.

    Science.gov (United States)

    Eliyahu, Ilan; Luria, Roy; Hareuveny, Ronen; Margaliot, Menachem; Meiran, Nachshon; Shani, Gad

    2006-02-01

    The present study examined the effects of exposure to Electromagnetic Radiation emitted by a standard GSM phone at 890 MHz on human cognitive functions. This study attempted to establish a connection between the exposure of a specific area of the brain and the cognitive functions associated with that area. A total of 36 healthy right-handed male subjects performed four distinct cognitive tasks: spatial item recognition, verbal item recognition, and two spatial compatibility tasks. Tasks were chosen according to the brain side they are assumed to activate. All subjects performed the tasks under three exposure conditions: right side, left side, and sham exposure. The phones were controlled by a base station simulator and operated at their full power. We have recorded the reaction times (RTs) and accuracy of the responses. The experiments consisted of two sections, of 1 h each, with a 5 min break in between. The tasks and the exposure regimes were counterbalanced. The results indicated that the exposure of the left side of the brain slows down the left-hand response time, in the second-later-part of the experiment. This effect was apparent in three of the four tasks, and was highly significant in only one of the tests. The exposure intensity and its duration exceeded the common exposure of cellular phone users.

  19. Supporting Clinical Cognition: A Human-Centered Approach to a Novel ICU Information Visualization Dashboard.

    Science.gov (United States)

    Faiola, Anthony; Srinivas, Preethi; Duke, Jon

    2015-01-01

    Advances in intensive care unit bedside displays/interfaces and electronic medical record (EMR) technology have not adequately addressed the topic of visual clarity of patient data/information to further reduce cognitive load during clinical decision-making. We responded to these challenges with a human-centered approach to designing and testing a decision-support tool: MIVA 2.0 (Medical Information Visualization Assistant, v.2). Envisioned as an EMR visualization dashboard to support rapid analysis of real-time clinical data-trends, our primary goal originated from a clinical requirement to reduce cognitive overload. In the study, a convenience sample of 12 participants were recruited, in which quantitative and qualitative measures were used to compare MIVA 2.0 with ICU paper medical-charts, using time-on-task, post-test questionnaires, and interviews. Findings demonstrated a significant difference in speed and accuracy with the use of MIVA 2.0. Qualitative outcomes concurred, with participants acknowledging the potential impact of MIVA 2.0 for reducing cognitive load and enabling more accurate and quicker decision-making.

  20. Capturing cognitive causal paths in human reliability analysis with Bayesian network models

    International Nuclear Information System (INIS)

    Zwirglmaier, Kilian; Straub, Daniel; Groth, Katrina M.

    2017-01-01

    reIn the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this paper we illustrate how BNs can be used to include additional, qualitative causal paths to provide traceability. The proposed framework provides the foundation to resolve several needs frequently expressed by the HRA community. First, the developed extended BN structure reflects the causal paths found in cognitive psychology literature, thereby addressing the need for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction algorithms allows the BN to be condensed to a level of detail at which quantification is as straightforward as the techniques used in existing HRA. We illustrate the framework by developing a BN version of the critical data misperceived crew failure mode in the IDHEAS HRA method, which is currently under development at the US NRC . We illustrate how the model could be quantified with a combination of expert-probabilities and information from operator performance databases such as SACADA. This paper lays the foundations necessary to expand the cognitive and quantitative foundations of HRA. - Highlights: • A framework for building traceable BNs for HRA, based on cognitive causal paths. • A qualitative BN structure, directly showing these causal paths is developed. • Node reduction algorithms are used for making the BN structure quantifiable. • BN quantified through expert estimates and observed data (Bayesian updating). • The framework is illustrated for a crew failure mode of IDHEAS.

  1. Information Is Not a Virus, and Other Consequences of Human Cognitive Limits

    Directory of Open Access Journals (Sweden)

    Kristina Lerman

    2016-05-01

    Full Text Available The many decisions that people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual’s social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: (i information generally fails to spread in social media and (ii highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other social contagions, such as the spread of a virus through a population.

  2. Working Memory: A Cognitive Limit to Non-Human Primate Recursive Thinking Prior to Hominid Evolution

    Directory of Open Access Journals (Sweden)

    Dwight W. Read

    2008-10-01

    Full Text Available In this paper I explore the possibility that recursion is not part of the cognitive repertoire of non-human primates such as chimpanzees due to limited working memory capacity. Multiple lines of data, from nut cracking to the velocity and duration of cognitive development, imply that chimpanzees have a short-term memory size that limits working memory to dealing with two, or at most three, concepts at a time. If so, as a species they lack the cognitive capacity for recursive thinking to be integrated into systems of social organization and communication. If this limited working memory capacity is projected back to a common ancestor for Pan and Homo, it follows that early hominid ancestors would have had limited working memory capacity. Hence we should find evidence for expansion of working memory capacity during hominid evolution reflected in changes in the products of conceptually framed activities such as stone tool production. Data on the artifacts made by our hominid ancestors support this expansion hypothesis for hominid working memory, thereby leading to qualitative differences between Pan and Homo.

  3. A cortical network model of cognitive and emotional influences in human decision making.

    Science.gov (United States)

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study.

    Science.gov (United States)

    Ceccarelli, Antonia; Rocca, Maria Assunta; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2009-11-15

    Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.

  5. The functional organization of human epileptic hippocampus

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Petr; Duque, J. J.; Brinkmann, B.; Gompel, J.V.; Stead, M.; St Louis, E.K.; Halámek, Josef; Jurák, Pavel; Worrell, G. A.

    2016-01-01

    Roč. 115, č. 6 (2016), s. 3140-3145 ISSN 0022-3077 R&D Projects: GA ČR GAP103/11/0933; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : intracranial EEG * epilepsy * seizure onset zone * behavioral state * connectivity Subject RIV: FH - Neurology Impact factor: 2.396, year: 2016

  6. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  7. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  8. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    Directory of Open Access Journals (Sweden)

    P. Bhattacharya

    2007-11-01

    Full Text Available To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i casual or contextual feature, (ii contact feature, (iii contactless feature, and (iv performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA, is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue. We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  9. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Directory of Open Access Journals (Sweden)

    Sundermann Benedikt

    2012-10-01

    Full Text Available Abstract Background The human inferior frontal junction area (IFJ is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control. As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM based on the activation likelihood estimation (ALE method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity and 131 (right IFJ published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional

  10. Do Human-Figure Drawings of Children and Adolescents Mirror Their Cognitive Style and Self-Esteem?

    Science.gov (United States)

    Dey, Anindita; Ghosh, Paromita

    2016-01-01

    The investigation probed relationships among human-figure drawing, field-dependent-independent cognitive style and self-esteem of 10-15 year olds. It also attempted to predict human-figure drawing scores of participants based on their field-dependence-independence and self-esteem. Area, stratified and multi-stage random sampling were used to…

  11. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees,...

  12. Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood

    DEFF Research Database (Denmark)

    Bortz, D M; Jørgensen, Christinna Vangsgaard; Mikkelsen, J D

    2014-01-01

    Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious ...

  13. Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework

    Science.gov (United States)

    Staal, Mark A.

    2004-01-01

    The following literature review addresses the effects of various stressors on cognition. While attempting to be as inclusive as possible, the review focuses its examination on the relationships between cognitive appraisal, attention, memory, and stress as they relate to information processing and human performance. The review begins with an overview of constructs and theoretical perspectives followed by an examination of effects across attention, memory, perceptual-motor functions, judgment and decision making, putative stressors such as workload, thermals, noise, and fatigue and closes with a discussion of moderating variables and related topics. In summation of the review, a conceptual framework for cognitive process under stress has been assembled. As one might imagine, the research literature that addresses stress, theories governing its effects on human performance, and experimental evidence that supports these notions is large and diverse. In attempting to organize and synthesize this body of work, I was guided by several earlier efforts (Bourne & Yaroush, 2003; Driskell, Mullen, Johnson, Hughes, & Batchelor, 1992; Driskell & Salas, 1996; Haridcock & Desmond, 2001; Stokes & Kite, 1994). These authors should be credited with accomplishing the monumental task of providing focused reviews in this area and their collective efforts laid the foundation for this present review. Similarly, the format of this review has been designed in accordance with these previous exemplars. However, each of these previous efforts either simply reported general findings, without sufficient experimental illustration, or narrowed their scope of investigation to the extent that the breadth of such findings remained hidden from the reader. Moreover, none of these examinations yielded an architecture that adequately describes or explains the inter-relations between information processing elements under stress conditions.

  14. Psychedelics and cognitive liberty: Reimagining drug policy through the prism of human rights.

    Science.gov (United States)

    Walsh, Charlotte

    2016-03-01

    This paper reimagines drug policy--specifically psychedelic drug policy--through the prism of human rights. Challenges to the incumbent prohibitionist paradigm that have been brought from this perspective to date--namely by calling for exemptions from criminalisation on therapeutic or religious grounds--are considered, before the assertion is made that there is a need to go beyond such reified constructs, calling for an end to psychedelic drug prohibitions on the basis of the more fundamental right to cognitive liberty. This central concept is explicated, asserted as being a crucial component of freedom of thought, as enshrined within Article 9 of the European Convention on Human Rights (ECHR). It is argued that the right to cognitive liberty is routinely breached by the existence of the system of drug prohibition in the United Kingdom (UK), as encoded within the Misuse of Drugs Act 1971 (MDA). On this basis, it is proposed that Article 9 could be wielded to challenge the prohibitive system in the courts. This legal argument is supported by a parallel and entwined argument grounded in the political philosophy of classical liberalism: namely, that the state should only deploy the criminal law where an individual's actions demonstrably run a high risk of causing harm to others. Beyond the courts, it is recommended that this liberal, rights-based approach also inform psychedelic drug policy activism, moving past the current predominant focus on harm reduction, towards a prioritization of benefit maximization. How this might translate in to a different regulatory model for psychedelic drugs, a third way, distinct from the traditional criminal and medical systems of control, is tentatively considered. However, given the dominant political climate in the UK--with its move away from rights and towards a more authoritarian drug policy--the possibility that it is only through underground movements that cognitive liberty will be assured in the foreseeable future is

  15. Green tea effects on cognition, mood and human brain function: A systematic review.

    Science.gov (United States)

    Mancini, Edele; Beglinger, Christoph; Drewe, Jürgen; Zanchi, Davide; Lang, Undine E; Borgwardt, Stefan

    2017-10-15

    Green tea (Camellia sinensis) is a beverage consumed for thousands of years. Numerous claims about the benefits of its consumption were stated and investigated. As green tea is experiencing a surge in popularity in Western culture and as millions of people all over the world drink it every day, it is relevant to understand its effects on the human brain. To assess the current state of knowledge in the literature regarding the effects of green tea or green tea extracts, l-theanine and epigallocatechin gallate both components of green tea-on general neuropsychology, on the sub-category cognition and on brain functions in humans. We systematically searched on PubMed database and selected studies by predefined eligibility criteria. We then assessed their quality and extracted data. We structured our effort according to the PRISMA statement. We reviewed and assessed 21 studies, 4 of which were randomised controlled trials, 12 cross-over studies (both assessed with an adapted version of the DELPHI-list), 4 were cross-sectional studies and one was a cohort study (both assessed with an adapted version of the Newcastle-Ottawa assessment scale). The average study quality as appraised by means of the DELPHI-list was good (8.06/9); the studies evaluated with the Newcastle-Ottawa-scale were also good (6.7/9). The reviewed studies presented evidence that green tea influences psychopathological symptoms (e.g. reduction of anxiety), cognition (e.g. benefits in memory and attention) and brain function (e.g. activation of working memory seen in functional MRI). The effects of green tea cannot be attributed to a single constituent of the beverage. This is exemplified in the finding that beneficial green tea effects on cognition are observed under the combined influence of both caffeine and l-theanine, whereas separate administration of either substance was found to have a lesser impact. Copyright © 2017. Published by Elsevier GmbH.

  16. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging.

    Science.gov (United States)

    Tarantini, Stefano; Tucsek, Zsuzsanna; Valcarcel-Ares, M Noa; Toth, Peter; Gautam, Tripti; Giles, Cory B; Ballabh, Praveen; Wei, Jeanne Y; Wren, Jonathan D; Ashpole, Nicole M; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f  + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased

  17. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.

    Science.gov (United States)

    Kim, Hong; Lee, Myoung-Hwa; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Lee, Hee-Hyuk; Shin, Min-Chul; Shin, Mal-Soon; Won, Ran; Shin, Hye-Sook; Kim, Chang-Ju

    2006-03-01

    During the prenatal period, the development of individual is influenced by the environmental factors. In the present study, the influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats was investigated. The exposure to the noise during pregnancy caused growth retardation, decreased neurogenesis in the hippocampus, and impaired spatial learning ability in pups. The exposure to music during pregnancy, on the other hand, caused increased neurogenesis in the hippocampus and enhanced spatial learning ability in pups. The present study has shown the importance of the prenatal environmental conditions for the cognition and brain development.

  18. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Directory of Open Access Journals (Sweden)

    Jörn M. Horschig

    2014-06-01

    Full Text Available Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g. communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.

  19. Increasing cognitive load attenuates right arm swing in healthy human walking

    Science.gov (United States)

    Killeen, Tim; Easthope, Christopher S.; Filli, Linard; Lőrincz, Lilla; Schrafl-Altermatt, Miriam; Brugger, Peter; Linnebank, Michael; Curt, Armin; Zörner, Björn; Bolliger, Marc

    2017-01-01

    Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

  20. The impacts of nature experience on human cognitive function and mental health.

    Science.gov (United States)

    Bratman, Gregory N; Hamilton, J Paul; Daily, Gretchen C

    2012-02-01

    Scholars spanning a variety of disciplines have studied the ways in which contact with natural environments may impact human well-being. We review the effects of such nature experience on human cognitive function and mental health, synthesizing work from environmental psychology, urban planning, the medical literature, and landscape aesthetics. We provide an overview of the prevailing explanatory theories of these effects, the ways in which exposure to nature has been considered, and the role that individuals' preferences for nature may play in the impact of the environment on psychological functioning. Drawing from the highly productive but disparate programs of research in this area, we conclude by proposing a system of categorization for different types of nature experience. We also outline key questions for future work, including further inquiry into which elements of the natural environment may have impacts on cognitive function and mental health; what the most effective type, duration, and frequency of contact may be; and what the possible neural mechanisms are that could be responsible for the documented effects. © 2012 New York Academy of Sciences.

  1. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    Science.gov (United States)

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  2. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    Science.gov (United States)

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.

  3. High glycogen levels in the hippocampus of patients with epilepsy

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Madsen, Flemming F; Secher, Niels H

    2006-01-01

    During intense cerebral activation approximately half of the glucose plus lactate taken up by the human brain is not oxidized and could replenish glycogen deposits, but the human brain glycogen concentration is unknown. In patients with temporal lobe epilepsy, undergoing curative surgery, brain......, glycogen was similarly higher than in grey and white matter. Consequently, in human grey and white matter and, particularly, in the hippocampus of patients with temporal lope epilepsy, glycogen constitutes a large, active energy reserve, which may be of importance for energy provision during sustained...

  4. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  5. A methodology for collection and analysis of human error data based on a cognitive model: IDA

    International Nuclear Information System (INIS)

    Shen, S.-H.; Smidts, C.; Mosleh, A.

    1997-01-01

    This paper presents a model-based human error taxonomy and data collection. The underlying model, IDA (described in two companion papers), is a cognitive model of behavior developed for analysis of the actions of nuclear power plant operating crew during abnormal situations. The taxonomy is established with reference to three external reference points (i.e. plant status, procedures, and crew) and four reference points internal to the model (i.e. information collected, diagnosis, decision, action). The taxonomy helps the analyst: (1) recognize errors as such; (2) categorize the error in terms of generic characteristics such as 'error in selection of problem solving strategies' and (3) identify the root causes of the error. The data collection methodology is summarized in post event operator interview and analysis summary forms. The root cause analysis methodology is illustrated using a subset of an actual event. Statistics, which extract generic characteristics of error prone behaviors and error prone situations are presented. Finally, applications of the human error data collection are reviewed. A primary benefit of this methodology is to define better symptom-based and other auxiliary procedures with associated training to minimize or preclude certain human errors. It also helps in design of control rooms, and in assessment of human error probabilities in the probabilistic risk assessment framework. (orig.)

  6. Insights into Working Memory from The Perspective of The EPIC Architecture for Modeling Skilled Perceptual-Motor and Cognitive Human Performance

    National Research Council Canada - National Science Library

    Kieras, David

    1998-01-01

    Computational modeling of human perceptual-motor and cognitive performance based on a comprehensive detailed information- processing architecture leads to new insights about the components of working memory...

  7. Consciousness, Plasticity, and Connectomics: The Role of Intersubjectivity in Human Cognition

    Directory of Open Access Journals (Sweden)

    Micah eAllen

    2011-02-01

    Full Text Available Consciousness is typically construed as being explainable purely in terms of either private, raw feels or higher-order, reflective representations. In contrast to this false dichotomy, we propose a new view of consciousness as an interactive, plastic phenomenon open to sociocultural influence. We take up our account of consciousness from the observation of radical cortical neuroplasticity in human development. Accordingly, we draw upon recent research on macroscopic neural networks, including the default mode, to illustrate cases in which an individual’s particular connectome is shaped by encultured social practices that depend upon and influence phenomenal and reflective consciousness. On our account, the dynamically interacting connectivity of these networks bring about important individual differences in conscious experience and determine what is present in consciousness. Further, we argue that the organization of the brain into discrete anti-correlated networks supports the phenomenological distinction of prereflective and reflective consciousness, but we emphasize that this finding must be interpreted in light of the dynamic, category-resistant nature of consciousness. Our account motivates philosophical and empirical hypotheses regarding the appropriate time-scale and function of neuroplastic adaptation, the relation of high and low frequency neural activity to consciousness and cognitive plasticity, and the role of ritual social practices in neural development and cognitive function.

  8. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    Science.gov (United States)

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity . The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  9. Toward a synthesis of cognitive biases: how noisy information processing can bias human decision making.

    Science.gov (United States)

    Hilbert, Martin

    2012-03-01

    A single coherent framework is proposed to synthesize long-standing research on 8 seemingly unrelated cognitive decision-making biases. During the past 6 decades, hundreds of empirical studies have resulted in a variety of rules of thumb that specify how humans systematically deviate from what is normatively expected from their decisions. Several complementary generative mechanisms have been proposed to explain those cognitive biases. Here it is suggested that (at least) 8 of these empirically detected decision-making biases can be produced by simply assuming noisy deviations in the memory-based information processes that convert objective evidence (observations) into subjective estimates (decisions). An integrative framework is presented to show how similar noise-based mechanisms can lead to conservatism, the Bayesian likelihood bias, illusory correlations, biased self-other placement, subadditivity, exaggerated expectation, the confidence bias, and the hard-easy effect. Analytical tools from information theory are used to explore the nature and limitations that characterize such information processes for binary and multiary decision-making exercises. The ensuing synthesis offers formal mathematical definitions of the biases and their underlying generative mechanism, which permits a consolidated analysis of how they are related. This synthesis contributes to the larger goal of creating a coherent picture that explains the relations among the myriad of seemingly unrelated biases and their potential psychological generative mechanisms. Limitations and research questions are discussed.

  10. Encoding of emotion-paired spatial stimuli in the rodent hippocampus

    Directory of Open Access Journals (Sweden)

    Rebecca eNalloor

    2012-06-01

    Full Text Available Rats can acquire the cognitive component of CS-US associations between sensory and aversive stimuli without a functional basolateral amygdala. Thus, other brain regions should support such associations. Some septal/dorsal CA1 (dCA1 neurons respond to both spatial stimuli and footshock, suggesting that dCA1 could be one such region. We report that, in both dorsal and ventral hippocampus, different neuronal ensembles express immediate-early genes when a place is experienced alone vs. when it is associated with foot shock. We assessed changes in the size and overlap of hippocampal neuronal ensembles activated by two behavioral events using a cellular imaging method, Arc/Homer1a catFISH. The control group (A-A experienced the same place twice, while the experimental group (A-CFC received the same training plus two foot shocks during the second event. During fear conditioning, A-CFC, compared to A-A, rats had a smaller ensemble size in dCA3, dCA1 and vCA3, but not vCA1. Additionally, A-CFC rats had a lower overlap score in dCA1 and vCA3. Locomotion did not correlate with ensemble size. Importantly, foot shocks delivered in a training paradigm that prevents establishing shock-context associations, did not induce significant Arc expression, rejecting the possibility that the observed changes in ensemble size and composition simply reflect experiencing a foot shock. Combined with data that Arc is necessary for lasting synaptic plasticity and long-term memory, the data suggests that Arc/H1a+ hippocampal neuronal ensembles encode aspects of fear conditioning beyond space and time. Rats, like humans, may use the hippocampus to create integrated episodic-like memory during fear conditioning.

  11. Glucose, relational memory, and the hippocampus.

    Science.gov (United States)

    Stollery, Brian; Christian, Leonie

    2015-06-01

    Many studies suggest that glucose can temporarily enhance hippocampal-dependent memories. As the hippocampus plays a key role in associative learning, we examined the influence of glucose on verbal paired associate memory. This study examines how glucose modifies performance on a relational memory task by examining its influence on learning, subsequent forgetting and relearning. A selective reminding procedure was used to show high and low imagability paired associates to 80 participants, who were seen twice. On the first session, they received 25 g glucose pre-learning, 25 g glucose post-learning or placebo. On the second session, 1 week later, they received 25 g glucose or placebo. Cued-recall was evaluated after each learning trial, 1 week later to assess forgetting and after an opportunity to relearn the material forgotten. Glucose did not influence paired associate acquisition. Those given glucose pre-learning tended to forget less material the following week, and independently, glucose at retrieval facilitated cued-recall. Both forms of facilitation were equally apparent on low and high imagability pairs. The benefit of glucose pre-learning was eliminated once the paired associates had been seen again, but the benefit of glucose at retrieval extended into the second relearning trial. The discussion considers the cognitive processes and hippocampal basis for paired associate learning and retention and the implications for glucose's mode of action. It is proposed that glucose during encoding serves to make the delayed memories initially more available, whereas its influence during delayed retrieval makes available memories temporarily more accessible.

  12. Cognitive neuroscience in forensic science: understanding and utilizing the human element.

    Science.gov (United States)

    Dror, Itiel E

    2015-08-05

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Didactic aspects of cognition of human as a bio-psycho-socio-cultural personality.

    Science.gov (United States)

    Palamar, Borys I; Vaskivska, Halyna O; Palamar, Svitlana P

    Modern education, according to leading Ukrainian scientists, requires the development of a new paradigm, which will consider the phenomenon of man holistically. The article describes didactic aspects of cognition of human as a bio-psycho-socio-cultural personality, as social fact, as a phenomenon. For the actualization of the didactic aspects of the problem, the authors used the methods of scientific literature analysis, systemic analysis and generalizations, analysis own practice of didactic and methodological character. Reforming the systems of education and medicine should occur in the context of providing active, creative, productive human life. Practice of system analysis proved that man as a subject of study should be considered as a biological entity, a social being, the bearer of consciousness and culture. A holistic approach to the study of man, viewing him as creatures of the natural (bodily) and social individual (society, culture) and the subject of mental and spiritual (creative and deliberate) activity can reveal its unique originality. The uniqueness of the phenomenon of man as the subject and object of research lies in its indivisibility, which is based on the unity of the laws of nature and society. Therefore, when studying the person should take into account the interests of social and natural Sciences. This once again confirms the idea of the necessity of human studies with the help of a systematic approach, which generates true and holistic view of the person, that involves the development of meta-perception of world and ourselves.

  14. Hippocampus in health and disease: An overview

    Directory of Open Access Journals (Sweden)

    Kuljeet Singh Anand

    2012-01-01

    Full Text Available Hippocampus is a complex brain structure embedded deep into temporal lobe. It has a major role in learning and memory. It is a plastic and vulnerable structure that gets damaged by a variety of stimuli. Studies have shown that it also gets affected in a variety of neurological and psychiatric disorders. In last decade or so, lot has been learnt about conditions that affect hippocampus and produce changes ranging from molecules to morphology. Progresses in radiological delineation, electrophysiology, and histochemical characterization have made it possible to study this archicerebral structure in greater detail. Present paper attempts to give an overview of hippocampus, both in health and diseases.

  15. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    Science.gov (United States)

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  16. Identification of the social and cognitive processes underlying human cumulative culture.

    Science.gov (United States)

    Dean, L G; Kendal, R L; Schapiro, S J; Thierry, B; Laland, K N

    2012-03-02

    The remarkable ecological and demographic success of humanity is largely attributed to our capacity for cumulative culture, with knowledge and technology accumulating over time, yet the social and cognitive capabilities that have enabled cumulative culture remain unclear. In a comparative study of sequential problem solving, we provided groups of capuchin monkeys, chimpanzees, and children with an experimental puzzlebox that could be solved in three stages to retrieve rewards of increasing desirability. The success of the children, but not of the chimpanzees or capuchins, in reaching higher-level solutions was strongly associated with a package of sociocognitive processes-including teaching through verbal instruction, imitation, and prosociality-that were observed only in the children and covaried with performance.

  17. Cognitive environment simulation: An artificial intelligence system for human performance assessment: Cognitive reliability analysis technique: [Technical report, May 1986-June 1987

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.

    1987-11-01

    This report documents the results of Phase II of a three phase research program to develop and validate improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic simulation capability for modeling how people form intentions to act in NPP emergency situations was developed based on techniques from artificial intelligence. This modeling tool, Cognitive Environment Simulation or CES, simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g., errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person-machine system. The Cognitive Reliability Assessment Technique (or CREATE) was also developed in Phase II to specify how CES can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. 34 refs., 7 figs., 1 tab

  18. Collection of human reaction times and supporting health related data for analysis of cognitive and physical performance

    Directory of Open Access Journals (Sweden)

    Petr Brůha

    2018-04-01

    Full Text Available Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions. Keywords: Reaction time, Health related data, Cognitive and physical performance, Chronic disease, Data acquisition, Data collection, Software for data collection

  19. Missing focus on Human Factors - organizational and cognitive ergonomics - in the safety management for the petroleum industry.

    Science.gov (United States)

    Johnsen, Stig O; Kilskar, Stine Skaufel; Fossum, Knut Robert

    2017-08-01

    More attention has recently been given to Human Factors in petroleum accident investigations. The Human Factors areas examined in this article are organizational, cognitive and physical ergonomics. A key question to be explored is as follows: To what degree are the petroleum industry and safety authorities in Norway focusing on these Human Factors areas from the design phase? To investigate this, we conducted an innovative exploratory study of the development of four control centres in Norwegian oil and gas industry in collaboration between users, management and Human Factors experts. We also performed a literature survey and discussion with the professional Human Factors network in Norway. We investigated the Human Factors focus, reasons for not considering Human Factors and consequences of missing Human Factors in safety management. The results revealed an immature focus and organization of Human Factors. Expertise on organizational ergonomics and cognitive ergonomics are missing from companies and safety authorities and are poorly prioritized during the development. The easy observable part of Human Factors (i.e. physical ergonomics) is often in focus. Poor focus on Human Factors in the design process creates demanding conditions for human operators and impact safety and resilience. There is lack of non-technical skills such as communication and decision-making. New technical equipment such as Closed Circuit Television is implemented without appropriate use of Human Factors standards. Human Factors expertise should be involved as early as possible in the responsible organizations. Verification and validation of Human Factors should be improved and performed from the start, by certified Human Factors experts in collaboration with the workforce. The authorities should check-back that the regulatory framework of Human Factors is communicated, understood and followed.

  20. Working memory and the hippocampus.

    Science.gov (United States)

    Baddeley, Alan; Jarrold, Christopher; Vargha-Khadem, Faraneh

    2011-12-01

    A number of studies suggest an important role for the hippocampus in tasks involving visuospatial or relational working memory. We test the generality of this proposal across tasks using a battery designed to investigate the various components of working memory, studying the working memory performance of Jon, who shows a bilateral reduction in hippocampal volume of approximately 50%, comparing him to a group of 48 college students. We measure performance on four complex working memory span measures based on combining visuospatial and verbal storage with visuospatial or verbal concurrent processing as well as measuring Jon's ability to carry out the component storage and processing aspects of these tasks. Jon performed at a consistently high level across our range of tasks. Possible reasons for the apparent disparity between our own findings and earlier studies showing a hippocampal deficit are discussed in terms of both the potential differences in the demands placed on relational memory and of the proposed distinction between egocentric and allocentric visuospatial processing.

  1. The importance of human cognitive models in the safety analysis report of nuclear power plants - a comparative review

    International Nuclear Information System (INIS)

    Alvarenga, Marco A.B.; Araujo Goes, Alexandre G. de

    1997-01-01

    The chapter 18 of the Brazilian NPPs Safety Analysis Report (SAR) deals with Human Factor Engineering (HFE). The chapter evaluation is distributed among ten topics. One of them, the HRA (Human Reliability Analysis) becomes the central subject of the whole analysis, generating information to the other topics, as for example, high risk operational critical sequences. The HRA methods used in the past concerned the approach of modeling the human being as a component (hardware), based in a failure or success bivalent logic. In the last ten years, several human cognitive models were developed to be used in the nuclear field as well as in the conventional industry, mainly in the military aviation. In this paper, we describe their main features, comparing some models to each other, with the main purpose of determining the minimal characteristics acceptable for NPPs licensing, being part of these cognitive models, to be used mainly in the evaluation of HRAs from SARs in the NPPs. (author). 10 refs

  2. Multidimensional human capital formation in a developing country: Health, cognition and locus of control in the Philippines.

    Science.gov (United States)

    Villa, Kira M

    2017-11-01

    Economic success depends on multiple human capital stocks whose production is interrelated and occurs over many life stages. Yet, much empirical work fails to account for human capital's multidimensional nature and limits its focus to specific childhood stages. Using longitudinal data from the Philippines, I estimate a model of multidimensional human capital formation from birth through adulthood where health, cognitive, and noncognitive dimensions are jointly produced. I examine during which developmental stages parental investment is most influential and address the endogeneity of investment using a policy function where investment depends on child characteristics, exogenous conditions at birth and local prices. Findings imply that not only will early human capital disparities persist into adulthood without early remediation but also that cognitive gains yielded from early remediation will be lost without complementary investment in adolescence. Findings further suggest that interventions will be undervalued if their multidimensional effects are not accounted for. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Long Term Depression in Rat Hippocampus and the Effect of Ethanol during Fetal Life

    Directory of Open Access Journals (Sweden)

    Olivier Pierrefiche

    2017-11-01

    Full Text Available Alcohol (ethanol disturbs cognitive functions including learning and memory in humans, non-human primates, and laboratory animals such as rodents. As studied in animals, cellular mechanisms for learning and memory include bidirectional synaptic plasticity, long-term potentiation (LTP, and long-term depression (LTD, primarily in the hippocampus. Most of the research in the field of alcohol has analyzed the effects of ethanol on LTP; however, with recent advances in the understanding of the physiological role of LTD in learning and memory, some authors have examined the effects of ethanol exposure on this particular signal. In the present review, I will focus on hippocampal LTD recorded in rodents and the effects of fetal alcohol exposure on this signal. A synthesis of the findings indicates that prenatal ethanol exposure disturbs LTD concurrently with LTP in offspring and that both glutamatergic and γ-aminobutyric acid (GABA neurotransmissions are altered and contribute to LTD disturbances. Although the ultimate mode of action of ethanol on these two transmitter systems is not yet clear, novel suggestions have recently appeared in the literature.

  4. COMPARABLE MEASURES OF COGNITIVE FUNCTION IN HUMAN INFANTS AND LABORATORY ANIMALS TO IDENTIFY ENVIRONMENTAL HEALTH RISKS TO CHILDREN

    Science.gov (United States)

    The importance of including neurodevelopmental end points in environmental studies is clear. A validated measure of cognitive function in human infants that also has a homologous or parallel test in laboratory animal studies will provide a valuable approach for large-scale studie...

  5. HOMOLOGOUS MEASURES OF COGNITIVE FUNCTION IN HUMAN INFANTS AND LABORATORY ANIMALS TO IDENTIFY ENVIRONMENTAL HEALTH RISKS TO CHILDREN

    Science.gov (United States)

    The importance of including neurodevelopmental endpoints in environmental studies is clear. A validated measure of cognitive fucntion in human infants that also has a parallel test in laboratory animal studies will provide a valuable approach for largescale studies. Such a ho...

  6. Education and Health in Late-Life among High School Graduates: Cognitive versus Psychological Aspects of Human Capital

    Science.gov (United States)

    Herd, Pamela

    2010-01-01

    Just as postsecondary schooling serves as a dividing line between the advantaged and disadvantaged on outcomes like income and marital status, it also serves as a dividing line between the healthy and unhealthy. Why are the better educated healthier? Human capital theory posits that education makes one healthier via cognitive (skill improvements)…

  7. Une approche pragmatique cognitive de l'interaction personne/système informatisé A Cognitive Pragmatic Approach of Human/Computer Interaction

    Directory of Open Access Journals (Sweden)

    Madeleine Saint-Pierre

    1998-06-01

    Full Text Available Dans cet article, nous proposons une approche inférentielle de l'interaction humain/ordinateur. C'est par la prise en compte de l'activité cognitive de l'utilisateur pendant son travail avec un système que nous voulons comprendre ce type d'interaction. Ceci mènera à une véritable évaluation des interfaces/utilisateurs et pourra servir de guide pour des interfaces en développement. Nos analyses décrivent le processus inférentiel impliqué dans le contexte dynamique d'exécution de tâche, grâce à une catégorisation de l'activité cognitive issue des verbalisations recueillies auprès d'utilisateurs qui " pensent à haute voix " en travaillant. Nous présentons des instruments méthodologiques mis au point dans notre recherche pour l'analyses et la catégorisation des protocoles. Les résultats sont interprétés dans le cadre de la théorie de la pertinence de Sperber et Wilson (1995 en termes d'effort cognitif dans le traitement des objets (linguistique, iconique, graphique... apparaissant à l'écran et d'effet cognitif de ces derniers. Cette approche est généralisable à tout autre contexte d'interaction humain/ordinateur comme, par exemple, le télé-apprentissage.This article proposes an inferential approach for the study of human/computer interaction. It is by taking into account the user's cognitive activity while working at a computer that we propose to understand this interaction. This approach leads to a real user/interface evaluation and, hopefully, will serve as guidelines for the design of new interfaces. Our analysis describe the inferential process involved in the dynamics of task performance. The cognitive activity of the user is grasped by the mean of a " thinking aloud " method through which the user is asked to verbalize while working at the computer. Tools developped by our research team for the categorization of the verbal protocols are presented. The results are interpreted within the relevance theory

  8. The impact of human-technology cooperation and distributed cognition in forensic science: biasing effects of AFIS contextual information on human experts*

    OpenAIRE

    Dror, Itiel E.; Wertheim, Kasey; Fraser-Mackenzie, Peter; Walajtys, Jeff

    2012-01-01

    Experts play a critical role in forensic decision making, even when cognition is offloaded and distributed between human and machine. In this paper, we investigated the impact of using Automated Fingerprint Identification Systems (AFIS) on human decision makers. We provided 3680 AFIS lists (a total of 55,200 comparisons) to 23 latent fingerprint examiners as part of their normal casework. We manipulated the position of the matching print in the AFIS list. The data showed that latent fingerpri...

  9. Dosimetric analysis of the alopecia preventing effect of hippocampus sparing whole brain radiation therapy

    International Nuclear Information System (INIS)

    Mahadevan, Anand; Sampson, Carrie; LaRosa, Salvatore; Floyd, Scott R.; Wong, Eric T.; Uhlmann, Erik J.; Sengupta, Soma; Kasper, Ekkehard M.

    2015-01-01

    Whole brain radiation therapy (WBRT) is widely used for the treatment of brain metastases. Cognitive decline and alopecia are recognized adverse effects of WBRT. Recently hippocampus sparing whole brain radiation therapy (HS-WBRT) has been shown to reduce the incidence of memory loss. In this study, we found that multi-field intensity modulated radiation therapy (IMRT), with strict constraints to the brain parenchyma and to the hippocampus, reduces follicular scalp dose and prevents alopecia. Suitable patients befitting the inclusion criteria of the RTOG 0933 trial received Hippocampus sparing whole brain radiation. On follow up, they were noticed to have full scalp hair preservation. 5 mm thickness of follicle bearing scalp in the radiation field was outlined in the planning CT scans. Conventional opposed lateral WBRT radiation fields were applied to these patient-specific image sets and planned with the same nominal dose of 30 Gy in 10 fractions. The mean and maximum dose to follicle bearing skin and Dose Volume Histogram (DVH) data were analyzed for conventional and HS-WBRT. Paired t-test was used to compare the means. All six patients had fully preserved scalp hair and remained clinically cognitively intact 1–3 months after HS-WBRT. Compared to conventional WBRT, in addition to the intended sparing of the Hippocampus, HS-WBRT delivered significantly lower mean dose (22.42 cGy vs. 16.33 cGy, p < 0.0001), V 24 (9 cc vs. 44 cc, p < 0.0000) and V 30 (9 cc vs. 0.096 cc, p = 0.0106) to follicle hair bearing scalp and prevented alopecia. There were no recurrences in the Hippocampus area. HS-WBRT, with an 11-field set up as described, while attempting to conserve hippocampus radiation and maintain radiation dose to brain inadvertently spares follicle-bearing scalp and prevents alopecia

  10. Cosimo: a cognitive simulation model of human decision making and behaviour in complex work environments

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Decortis, F.; Nordvik, J.P.; Drozdowicz, B.; Masson, M.

    1992-01-01

    In this paper the Cognitive Simulation Model (COSIMO), currently implemented at the Ispra JRC, is described, with particular emphasis on its theoretical foundations, on its computational implementation and on a number of simulations cases of man-machine system interactions. COSIMO runs on a lisp machine and it interacts with the simulation of the physical system implemented on a Sun computer. In our case the physical system is a typical Nuclear Power Plant subsystem - the Auxiliary Feed-Water System (AFWS). One basic application is to explore human behaviour in simulated accident situations in order to identify suitable safety recommendations. To be more specific, COSIMO can be used to: - analyse how operators are likely to act given a particular context, - identify difficult problem solving situations, given problem solving resources and constraints (operator knowledge, man-machine interfaces, procedures), - identify situations that can lead to human errors and evaluate their consequences, - identify and test conditions for error recovery, - investigate the effects of changes in the man-machine system. Since the modelling of the AFWS, its control system and procedures have also been the object of a detailed description (Cacciabue et al., 1990a), the objective of this paper is the presentation of the state of the art of the COSIMO simulation

  11. Linguistic embodiment and verbal constraints: human cognition and the scales of time

    Science.gov (United States)

    Cowley, Stephen J.

    2014-01-01

    Using radical embodied cognitive science, the paper offers the hypothesis that language is symbiotic: its agent-environment dynamics arise as linguistic embodiment is managed under verbal constraints. As a result, co-action grants human agents the ability to use a unique form of phenomenal experience. In defense of the hypothesis, I stress how linguistic embodiment enacts thinking: accordingly, I present auditory and acoustic evidence from 750 ms of mother-daughter talk, first, in fine detail and, then, in narrative mode. As the parties attune, they use a dynamic field to co-embody speech with experience of wordings. The latter arise in making and tracking phonetic gestures that, crucially, mesh use of artifice, cultural products and impersonal experience. As observers, living human beings gain dispositions to display and use social subjectivity. Far from using brains to “process” verbal content, linguistic symbiosis grants access to diachronic resources. On this distributed-ecological view, language can thus be redefined as: “activity in which wordings play a part.” PMID:25324799

  12. Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

    Science.gov (United States)

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Roosh, Nahid Rahbar; Omidzahir, Shila

    2011-01-01

    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 µL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group. PMID:21725500

  13. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  14. Cognitive consilience: Primate non-primary neuroanatomical circuits underlying cognition

    Directory of Open Access Journals (Sweden)

    Soren Van Hout Solari

    2011-12-01

    Full Text Available Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis ofcognitive information processing in the mammalian brain. Understanding the principles ofneuroanatomical organization in these structures is critical to understanding the functions theyperform and ultimately how the human brain works. We have manually distilled and synthesizedhundreds of primate neuroanatomy facts into a single interactive visualization. The resultingpicture represents the fundamental neuroanatomical blueprint upon which cognitive functionsmust be implemented. Within this framework we hypothesize and detail 7 functional circuitscorresponding to psychological perspectives on the brain: consolidated long-term declarativememory, short-term declarative memory, working memory/information processing, behavioralmemory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including thecerebral isocortex (9 pyramidal neuronal groups, parahippocampal gyrus and hippocampus,thalamus (4 neuronal groups, basal ganglia (7 neuronal groups, metencephalon, basal forebrainand other subcortical nuclei. We focus on neuroanatomy related to primate non-primary corticalsystems to elucidate the basis underlying the distinct homotypical cognitive architecture. To dis-play the breadth of this review, we introduce a novel method of integrating and presenting datain multiple independent visualizations: an interactive website (www.cognitiveconsilience.comand standalone iPhone and iPad applications. With these tools we present a unique, annotatedview of neuroanatomical consilience (integration of knowledge.

  15. Generalized Information Theory Meets Human Cognition: Introducing a Unified Framework to Model Uncertainty and Information Search.

    Science.gov (United States)

    Crupi, Vincenzo; Nelson, Jonathan D; Meder, Björn; Cevolani, Gustavo; Tentori, Katya

    2018-06-17

    Searching for information is critical in many situations. In medicine, for instance, careful choice of a diagnostic test can help narrow down the range of plausible diseases that the patient might have. In a probabilistic framework, test selection is often modeled by assuming that people's goal is to reduce uncertainty about possible states of the world. In cognitive science, psychology, and medical decision making, Shannon entropy is the most prominent and most widely used model to formalize probabilistic uncertainty and the reduction thereof. However, a variety of alternative entropy metrics (Hartley, Quadratic, Tsallis, Rényi, and more) are popular in the social and the natural sciences, computer science, and philosophy of science. Particular entropy measures have been predominant in particular research areas, and it is often an open issue whether these divergences emerge from different theoretical and practical goals or are merely due to historical accident. Cutting across disciplinary boundaries, we show that several entropy and entropy reduction measures arise as special cases in a unified formalism, the Sharma-Mittal framework. Using mathematical results, computer simulations, and analyses of published behavioral data, we discuss four key questions: How do various entropy models relate to each other? What insights can be obtained by considering diverse entropy models within a unified framework? What is the psychological plausibility of different entropy models? What new questions and insights for research on human information acquisition follow? Our work provides several new pathways for theoretical and empirical research, reconciling apparently conflicting approaches and empirical findings within a comprehensive and unified information-theoretic formalism. Copyright © 2018 Cognitive Science Society, Inc.

  16. Increasing our Understanding of Human Cognition Through the Study of Fragile X Syndrome

    Science.gov (United States)

    Denise, Cook; Erin, Nuro; Keith, K. Murai

    2014-01-01

    Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 147–177, 2014 PMID:23723176

  17. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers.

    Science.gov (United States)

    Bin Sayeed, Muhammad Shahdaat; Asaduzzaman, Md; Morshed, Helal; Hossain, Md Monir; Kadir, Mohammad Fahim; Rahman, Md Rezowanur

    2013-07-30

    Experimental evidences have demonstrated that Nigella sativa Linn. seed (NS) has positive modulation effects on aged rats with memory impairments, prevents against hippocampal pyramidal cell loss and enhances consolidation of recall capability of stored information and spatial memory in rats. NS has neuroprotective, nephroprotective, lung protective, cardioprotective, hepatoprotective activities as established by previous studies on animals. Several clinical trials with NS on human have also demonstrated beneficial effect. The present study was designed to investigate the effects of NS on memory, attention and cognition in healthy elderly volunteers. Furthermore, safety profile of NS was assessed during the nine-week study period. Forty elderly volunteers were recruited and divided randomly into group A and group B--each consisting of 20 volunteers. The treatment procedure for group A was 500 mg NS capsule twice daily for nine weeks and Group B received placebo instead of NS in the similar manner. All the volunteers were assessed for neuropsychological state and safety profile twice before treatment and after nine weeks. The neuropsychological tests were logical memory test, digit span test, Rey-Osterrieth complex figure test, letter cancellation test, trail making test and stroop test. Safety profile was assessed by measuring biochemical markers of Cardiac (total cholesterol, triglycerides and high density lipoprotein cholesterol, very low density lipoprotein, low density lipoprotein cholesterol, creatine kinase-MB); Liver (aspartate aminotransferase, alanin aminotransferase, alkaline phosphatase, total protein, albumin, bilirubin) and Kidney (creatinine and blood urea nitrogen) through using commercial kits. There was significant difference (p0.05) in any of the biochemical markers of cardiac, liver, kidney function during this nine-week study period. The current study demonstrates the role of NS in enhancing memory, attention and cognition. Therefore, whether NS

  18. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice.

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    Full Text Available Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1 and A(2A receptors emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25, mainly glutamatergic (vesicular glutamate transporters, and increased astrogliosis (GFAP immunoreactivity compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A receptors and down-regulated A(1 receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.

  19. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice.

    Science.gov (United States)

    Duarte, João M N; Agostinho, Paula M; Carvalho, Rui A; Cunha, Rodrigo A

    2012-01-01

    Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1) and A(2A) receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A) receptors and down-regulated A(1) receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.

  20. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: Evidence from resting-state fMRI

    International Nuclear Information System (INIS)

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-01-01

    Objective: The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Methods: Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Results: Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Conclusion: Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism

  1. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: Evidence from resting-state fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: will.zhang.1111@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Liu, Xianjun, E-mail: xianjun6.liu@gmail.com [Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Zhang, Yi, E-mail: yi.zhang.0833@gmail.com [Department of Radiology, Sichuan Provincial Corps Hospital, Chinese People' s Armed Police Forces, Leshan 614000 (China); Song, Lingheng, E-mail: songlh1023@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Hou, Jingming, E-mail: jingminghou@hotmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Chen, Bing, E-mail: chenbing3@medmail.com.cn [Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); He, Mei, E-mail: sunnusunny0105@gmail.com [Department of Clinical Psychology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Cai, Ping, E-mail: pingc_ddd@sina.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Lii, Haitao, E-mail: haitaolii023@gmail.com [Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2014-10-15

    Objective: The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Methods: Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Results: Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Conclusion: Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism.

  2. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    Science.gov (United States)

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap.

    Science.gov (United States)

    Snigdha, Shikha; Milgram, Norton W; Willis, Sherry L; Albert, Marylin; Weintraub, S; Fortin, Norbert J; Cotman, Carl W

    2013-07-01

    A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance.

    Directory of Open Access Journals (Sweden)

    Lixin Yang

    Full Text Available As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1, a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3'UTR, where a SNP (rs1042538 exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.

  5. Cognitive Model of Trust Dynamics Predicts Human Behavior within and between Two Games of Strategic Interaction with Computerized Confederate Agents.

    Science.gov (United States)

    Collins, Michael G; Juvina, Ion; Gluck, Kevin A

    2016-01-01

    When playing games of strategic interaction, such as iterated Prisoner's Dilemma and iterated Chicken Game, people exhibit specific within-game learning (e.g., learning a game's optimal outcome) as well as transfer of learning between games (e.g., a game's optimal outcome occurring at a higher proportion when played after another game). The reciprocal trust players develop during the first game is thought to mediate transfer of learning effects. Recently, a computational cognitive model using a novel trust mechanism has been shown to account for human behavior in both games, including the transfer between games. We present the results of a study in which we evaluate the model's a priori predictions of human learning and transfer in 16 different conditions. The model's predictive validity is compared against five model variants that lacked a trust mechanism. The results suggest that a trust mechanism is necessary to explain human behavior across multiple conditions, even when a human plays against a non-human agent. The addition of a trust mechanism to the other learning mechanisms within the cognitive architecture, such as sequence learning, instance-based learning, and utility learning, leads to better prediction of the empirical data. It is argued that computational cognitive modeling is a useful tool for studying trust development, calibration, and repair.

  6. Contagious yawning, social cognition, and arousal: an investigation of the processes underlying shelter dogs' responses to human yawns.

    Science.gov (United States)

    Buttner, Alicia Phillips; Strasser, Rosemary

    2014-01-01

    Studies of contagious yawning have reported inconsistent findings regarding whether dogs exhibit this behavior and whether it is mediated by social-cognitive processes or the result of physiological arousal. We investigated why some dogs yawn in response to human yawns; particularly, whether these dogs are exceptional in their ability to understand human social cues or whether they were more physiologically aroused. Sixty shelter dogs were exposed to yawning and nonyawning control stimuli demonstrated by an unfamiliar human. We took salivary cortisol samples before and after testing to determine the role of arousal in yawn contagion. Dogs were tested on the object-choice task to assess their sensitivity for interpreting human social cues. We found that 12 dogs yawned only in response to human yawns (i.e., appeared to exhibit yawn contagion), though contagious yawning at the population level was not observed. Dogs that exhibited yawn contagion did not perform better on the object-choice task than other dogs, but their cortisol levels remained elevated after exposure to human yawning, whereas other dogs had reduced cortisol levels following yawning stimuli relative to their baseline levels. We interpret these findings as showing that human yawning, when presented in a stressful context, can further influence arousal in dogs, which then causes some to yawn. Although the precise social-cognitive mechanisms that underlie contagious yawning in dogs are still unclear, yawning between humans and dogs may involve some communicative function that is modulated by context and arousal.

  7. A Cognitive System Model for Human/Automation Dynamics in Airspace Management

    Science.gov (United States)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. In order to support that cognitive function definition, we have extended the Man Machine Integrated Design and Analysis System (MIDAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems) operating aircraft, airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The MIDAS operator models have undergone significant development in order to understand the requirements for operator aiding and the impact of that aiding in the complex nondeterminate system of national airspace operations. The operator model's structure has been modified to include attention functions, action priority, and situation assessment. The cognitive function model has been expanded to include working memory operations including retrieval from long-term store, interference, visual-motor and verbal articulatory loop functions, and time-based losses. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. The model's internal

  8. High Plasticity of New Granule Cells in the Aging Hippocampus

    Directory of Open Access Journals (Sweden)

    Mariela F. Trinchero

    2017-10-01

    Full Text Available Summary: During aging, the brain undergoes changes that impair cognitive capacity and circuit plasticity, including a marked decrease in production of adult-born hippocampal neurons. It is unclear whether development and integration of those new neurons are also affected by age. Here, we show that adult-born granule cells (GCs in aging mice are scarce and exhibit slow development, but they display a remarkable potential for structural plasticity. Retrovirally labeled 3-week-old GCs in middle-aged mice were small, underdeveloped, and disconnected. Neuronal development and integration were accelerated by voluntary exercise or environmental enrichment. Similar effects were observed via knockdown of Lrig1, an endogenous negative modulator of neurotrophin receptors. Consistently, blocking neurotrophin signaling by Lrig1 overexpression abolished the positive effects of exercise. These results demonstrate an unparalleled degree of plasticity in the aging brain mediated by neurotrophins, whereby new GCs remain immature until becoming rapidly recruited to the network by activity. : Trinchero et al. show that development of new granule cells born in the adult hippocampus is strongly influenced by age. In the aging hippocampus, new neurons remain immature for prolonged intervals, yet voluntary exercise triggers their rapid growth and functional synaptogenesis. This extensive structural remodeling is mediated by neurotrophins. Keywords: adult neurogenesis, dentate gyrus, functional integration, neurotrophins, synaptogenesis, exercise

  9. Opportunities for New Insights on the Life-Course Risks and Outcomes of Cognitive Decline in the Kavli HUMAN Project.

    Science.gov (United States)

    Langa, Kenneth M; Cutler, David

    2015-09-01

    The Kavli HUMAN Project (KHP) will provide groundbreaking insights into how biological, medical, and social factors interact and impact the risks for cognitive decline from birth through older age. It will richly measure the effect of cognitive decline on the ability to perform key activities of daily living. In addition, due to its family focus, the KHP will measure the impact on family members, including the amount of time that family members spend providing care to older adults with dementia. It will also clarify the division of caregiving duties among family members and the effects on caregivers' work, family life, and balance thereof. At the same time, for care that the family cannot provide, it will clarify the extent to which cognitive decline impacts healthcare utilization and end-of-life decision making.

  10. Social Cognitive Theory Predictors of Human Papillomavirus Vaccination Intentions of College Men at a Southeastern University.

    Science.gov (United States)

    Priest, Hannah M; Knowlden, Adam P; Sharma, Manoj

    2015-01-01

    The purpose of this study was to use social cognitive theory to predict human papillomavirus (HPV) vaccination intentions of college men attending a large, southeastern university. Data collection comprised two phases. Phase I established face and content validity of the instrument by a panel of six experts. Phase II assessed internal consistency reliability using Cronbach's alpha and predicted behavioral intentions applying multiple linear regression. HPV knowledge, expectations, self-efficacy to get HPV vaccine, situational perception, self-efficacy in overcoming barriers to get HPV vaccine, and self-control to get HPV vaccine were regressed on behavioral intentions. Situational perception and self-control to get HPV vaccine were significant predictors, accounting for 22% of variance in behavioral intentions to get vaccinated within the next 6 months. Overall, college men reported low behavioral intentions to getting vaccinated. Future interventions should target situational perception and self-control to increase HPV vaccination intentions. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. The role of play objects and object play in human cognitive evolution and innovation.

    Science.gov (United States)

    Riede, Felix; Johannsen, Niels N; Högberg, Anders; Nowell, April; Lombard, Marlize

    2018-01-01

    In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation's material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life-history model of the costs and benefits of experimentation with a niche-construction perspective. Niche-construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens' niche is the active provisioning of children with play objects - sometimes functional miniatures of adult tools - and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research. © 2018 The Authors Evolutionary Anthropology Published by Wiley Periodicals, Inc.

  12. A Comparative and Evolutionary Analysis of the Cultural Cognition of Humans and Other Apes.

    Science.gov (United States)

    Whiten, Andrew

    2017-01-09

    The comparative and evolutionary analysis of social learning and all manner of cultural processes has become a flourishing field. Applying the 'comparative method' to such phenomena allows us to exploit the good fortunate we have in being able to study them in satisfying detail in our living primate relatives, using the results to reconstruct the cultural cognition of the ancestral forms we share with these species. Here I offer an overview of principal discoveries in recent years, organized through a developing scheme that targets three main dimensions of culture: the patterning of culturally transmitted traditions in time and space; the underlying social learning processes; and the particular behavioral and psychological contents of cultures. I focus on a comparison between humans, particularly children, and our closest primate relative the chimpanzee, for which we now have much the richest database of relevant observational and experimental findings. Commonalities across these sister-species can be identified in each of the three dimensions listed above and in several subcategories within them, but the comparisons also highlight the major contrasts in the nature of culture that have evolved between ourselves and closest primate relatives.

  13. Toward a Method for Exposing and Elucidating Ethical Issues with Human Cognitive Enhancement Technologies.

    Science.gov (United States)

    Hofmann, Bjørn

    2017-04-01

    To develop a method for exposing and elucidating ethical issues with human cognitive enhancement (HCE). The intended use of the method is to support and facilitate open and transparent deliberation and decision making with respect to this emerging technology with great potential formative implications for individuals and society. Literature search to identify relevant approaches. Conventional content analysis of the identified papers and methods in order to assess their suitability for assessing HCE according to four selection criteria. Method development. Amendment after pilot testing on smart-glasses. Based on three existing approaches in health technology assessment a method for exposing and elucidating ethical issues in the assessment of HCE technologies was developed. Based on a pilot test for smart-glasses, the method was amended. The method consists of six steps and a guiding list of 43 questions. A method for exposing and elucidating ethical issues in the assessment of HCE was developed. The method provides the ground work for context specific ethical assessment and analysis. Widespread use, amendments, and further developments of the method are encouraged.

  14. The role of play objects and object play in human cognitive evolution and innovation

    Science.gov (United States)

    Johannsen, Niels N.; Högberg, Anders; Nowell, April; Lombard, Marlize

    2018-01-01

    Abstract In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation's material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life‐history model of the costs and benefits of experimentation with a niche‐construction perspective. Niche‐construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens' niche is the active provisioning of children with play objects — sometimes functional miniatures of adult tools — and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research. PMID:29446561

  15. Evolving building blocks of rhythm: how human cognition creates music via cultural transmission.

    Science.gov (United States)

    Ravignani, Andrea; Thompson, Bill; Grossi, Thomas; Delgado, Tania; Kirby, Simon

    2018-03-06

    Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists focused on musicality, namely the human biocognitive predispositions for music, with an emphasis on cross-cultural similarities. Other scholars investigated music, seen as a cultural product, focusing on the variation in world musical cultures. Recent experiments found deep connections between music and musicality, reconciling these opposing views. Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music. Data from two experiments are analyzed using two complementary techniques. In the experiments, participants hear drumming patterns and imitate them. These patterns are then given to the same or another participant to imitate. The structure of these initially random patterns is tracked along experimental "generations." Frequentist statistics show how participants' biases are amplified by cultural transmission, making drumming patterns more structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model approximates the motif structures participants learned and created. Our data and models suggest that individual biases for musicality may shape the cultural transmission of musical rhythm. © 2018 New York Academy of Sciences.

  16. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion.

    Science.gov (United States)

    Kong, Ru; Li, Jingwei; Orban, Csaba; Sabuncu, Mert R; Liu, Hesheng; Schaefer, Alexander; Sun, Nanbo; Zuo, Xi-Nian; Holmes, Avram J; Eickhoff, Simon B; Yeo, B T Thomas

    2018-06-06

    Resting-state functional magnetic resonance imaging (rs-fMRI) offers the opportunity to delineate individual-specific brain networks. A major question is whether individual-specific network topography (i.e., location and spatial arrangement) is behaviorally relevant. Here, we propose a multi-session hierarchical Bayesian model (MS-HBM) for estimating individual-specific cortical networks and investigate whether individual-specific network topography can predict human behavior. The multiple layers of the MS-HBM explicitly differentiate intra-subject (within-subject) from inter-subject (between-subject) network variability. By ignoring intra-subject variability, previous network mappings might confuse intra-subject variability for inter-subject differences. Compared with other approaches, MS-HBM parcellations generalized better to new rs-fMRI and task-fMRI data from the same subjects. More specifically, MS-HBM parcellations estimated from a single rs-fMRI session (10 min) showed comparable generalizability as parcellations estimated by 2 state-of-the-art methods using 5 sessions (50 min). We also showed that behavioral phenotypes across cognition, personality, and emotion could be predicted by individual-specific network topography with modest accuracy, comparable to previous reports predicting phenotypes based on connectivity strength. Network topography estimated by MS-HBM was more effective for behavioral prediction than network size, as well as network topography estimated by other parcellation approaches. Thus, similar to connectivity strength, individual-specific network topography might also serve as a fingerprint of human behavior.

  17. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    Science.gov (United States)

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  18. The neurobiology of cognitive disorders in temporal lobe epilepsy

    Science.gov (United States)

    Bell, Brian; Lin, Jack J.; Seidenberg, Michael; Hermann, Bruce

    2013-01-01

    Cognitive impairment and especially memory disruption is a major complicating feature of the epilepsies. In this review we begin with a focus on the problem of memory impairment in temporal lobe epilepsy. We start with a brief overview of the early development of knowledge regarding the anatomic substrates of memory disorder in temporal lobe epilepsy, followed by discussion of the refinement of that knowledge over time as informed by the outcomes of epilepsy surgery (anterior temporal lobectomy) and the clinical efforts to predict those patients at greatest risk of adverse cognitive outcomes following epilepsy surgery. These efforts also yielded new theoretical insights regarding the function of the human hippocampus and a few examples of these insights are touched on briefly. Finally, the vastly changing view of temporal lobe epilepsy is examined including findings demonstrating that anatomic abnormalities extend far outside the temporal lobe, cognitive impairments extend beyond memory function, with linkage of these distributed cognitive and anatomic abnormalities pointing to a new understanding of the anatomic architecture of cognitive impairment in epilepsy. Challenges remain in understanding the origin of these cognitive and anatomic abnormalities, their progression over time, and most importantly, how to intervene to protect cognitive and brain health in epilepsy. PMID:21304484

  19. The Interplay of Hippocampus and Ventromedial Prefrontal Cortex in Memory-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Regina A. Weilbächer

    2016-12-01

    Full Text Available Episodic memory and value-based decision making are two central and intensively studied research domains in cognitive neuroscience, but we are just beginning to understand how they interact to enable memory-based decisions. The two brain regions that have been associated with episodic memory and value-based decision making are the hippocampus and the ventromedial prefrontal cortex, respectively. In this review article, we first give an overview of these brain–behavior associations and then focus on the mechanisms of potential interactions between the hippocampus and ventromedial prefrontal cortex that have been proposed and tested in recent neuroimaging studies. Based on those possible interactions, we discuss several directions for future research on the neural and cognitive foundations of memory-based decision making.

  20. Why avoid the hippocampus? A comprehensive review

    International Nuclear Information System (INIS)

    Gondi, Vinai; Tome, Wolfgang A.; Mehta, Minesh P.

    2010-01-01

    In this review article, we provide a detailed and comprehensive discussion of the rationale for using modern IMRT techniques to spare the subgranular zone of the hippocampus during cranial irradiation. We review the literature on neurocognitive effects of cranial irradiation; discuss clinical and preclinical data associating damage to neural progrenitor cells located in subgranular zone of the hippocampus with radiation-induced neurocognitive decline, specifically in terms of short-term memory formation and recall; and present a review of our pilot investigations into the feasibility and risks of sparing the subgranular zone of the hippocampus during whole-brain radiotherapy for brain metastases. We also introduce our phase II cooperative group clinical trial (RTOG 0933) designed to prospectively evaluate the postulated neurocognitive benefit of hippocampal subgranular zone sparing and scheduled to open in 2010.

  1. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition.

    Science.gov (United States)

    Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A

    2016-02-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    Science.gov (United States)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  3. Epistemology – the Theory of Knowledge or Knowing? Appreciating Gregory Bateson’s Contribution to the Cartography of Human Cognition

    Directory of Open Access Journals (Sweden)

    Zdzislaw Wasik

    2017-01-01

    Full Text Available This article aims at a confrontation of two approaches to epistemology in order to answer the question posed in its title whether the theory of knowledge should focus on static or dynamic aspects of human cognition. In the first part, the author presents a metascientific understanding of epistemology defined in his own works as an ordered set of investigative perspectives, which practicing researchers have at their disposal when they are interested to attain a specific state of knowledge, or to support their beliefs about the nature of investigative domains with regard to the existence forms and accessibility of investigated objects. And, in the second, the subject matter of a more detailed presentation constitutes a psychophysiological approach to epistemology pertaining to the human organism preoccupied with sensorial and mental activities as a cognizing subject who aims at achieving a certain kind of information about reality. Common for both approaches to epistemology is the attainment of experiential knowledge. However, when the metascientific epistemology refers to a dispositional-perspectivistic state of knowledge acquired in cognition, the attention of the psychophysiological epistemology is paid to cognitive-constructivists activities of human organisms as subject acquiring their knowledge through personal experiences.

  4. [Cognitive complaints in people with human immunodeficiency virus in Spain: prevalence and related variables].

    Science.gov (United States)

    Muñoz-Moreno, José A; Fuster-Ruiz de Apodaca, Maria J; Fumaz, Carmina R; Ferrer, Maria J; Molero, Fernando; Jaen, Àngels; Clotet, Bonaventura; Dalmau, David

    2014-05-20

    Cognitive complaints have been scarcely studied in people with HIV in Spain. The aim of this research was to know the prevalence of cognitive complaints in HIV-infected people, as well as its potential relationships with demographic, clinical and psychological variables, in the era of combination antiretroviral therapies. Observational multicenter study developed in 4 hospitals and 10 NGOs, in which 791 people with HIV in Spain participated. A self-reported questionnaire was used to evaluate demographic and clinical variables, and an assessment of cognitive complaints, emotional status and quality of life variables was also included. Descriptive and inferential tests were used for statistical analyses. Almost half of the sample (49.8%) referred cognitive complaints, in 72.1% of them an association with interference on daily living activities was found. Memory and attention were the areas most prevalently perceived as affected. The existence of cognitive complaints correlated with a longer HIV infection, lower CD4+ cell count, undetectable viral load and worse quality of life. A discriminant analysis determined that depression, anxiety, older age, living with no partner and low education level allowed to classify optimally HIV-infected people with cognitive complaints. Self-reported cognitive complaints are frequent in people infected with HIV in the current era of combination antiretroviral therapies. This fact is related to emotional disturbances and poor quality of life, but also to impaired immunological and virological status. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  5. Environmental Cognition.

    Science.gov (United States)

    Evans, Gary W.

    1980-01-01

    Research is reviewed on human spatial cognition in real, everyday settings and is organized into five empirical categories: age, familiarity, gender, class and culture, and physical components of settings. (Author/DB)

  6. Cognitive Function

    Science.gov (United States)

    Because chemicals can adversely affect cognitive function in humans, considerable effort has been made to characterize their effects using animal models. Information from such models will be necessary to: evaluate whether chemicals identified as potentially neurotoxic by screenin...

  7. The development of human behavior analysis techniques - A study on knowledge representation methods for operator cognitive model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Park, Young Tack [Soongsil University, Seoul (Korea, Republic of)

    1996-07-01

    The main objective of this project is modeling of human operator in a main control room of Nuclear Power Plant. For this purpose, we carried out research on knowledge representation and inference method based on Rasmussen`s decision ladder structure. And we have developed SACOM(Simulation= Analyzer with a Cognitive Operator Model) using G2 shell on Sun workstations. SACOM consists of Operator Model, Interaction Analyzer, Situation Generator. Cognitive model aims to build a more detailed model of human operators in an effective way. SACOM is designed to model knowledge-based behavior of human operators more easily. The followings are main research topics carried out this year. First, in order to model knowledge-based behavior of human operators, more detailed scenarios are constructed. And, knowledge representation and inference methods are developed to support the scenarios. Second, meta knowledge structures are studied to support human operators 4 types of diagnoses. This work includes a study on meta and scheduler knowledge structures for generate-and-test, topographic, decision tree and case-based approaches. Third, domain knowledge structure are improved to support meta knowledge. Especially, domain knowledge structures are developed to model topographic diagnosis model. Fourth, more applicable interaction analyzer and situation generator are designed and implemented. The new version is implemented in G2 on Sun workstations. 35 refs., 49 figs. (author)

  8. Andrographolide Stimulates Neurogenesis in the Adult Hippocampus

    Directory of Open Access Journals (Sweden)

    Lorena Varela-Nallar

    2015-01-01

    Full Text Available Andrographolide (ANDRO is a labdane diterpenoid component of Andrographis paniculata widely used for its anti-inflammatory properties. We have recently determined that ANDRO is a competitive inhibitor of glycogen synthase kinase-3β (GSK-3β, a key enzyme of the Wnt/β-catenin signaling cascade. Since this signaling pathway regulates neurogenesis in the adult hippocampus, we evaluated whether ANDRO stimulates this process. Treatment with ANDRO increased neural progenitor cell proliferation and the number of immature neurons in the hippocampus of 2- and 10-month-old mice compared to age-matched control mice. Moreover, ANDRO stimulated neurogenesis increasing the number of newborn dentate granule neurons. Also, the effect of ANDRO was evaluated in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. In these mice, ANDRO increased cell proliferation and the density of immature neurons in the dentate gyrus. Concomitantly with the increase in neurogenesis, ANDRO induced the activation of the Wnt signaling pathway in the hippocampus of wild-type and APPswe/PS1ΔE9 mice determined by increased levels of β-catenin, the inactive form of GSK-3β, and NeuroD1, a Wnt target gene involved in neurogenesis. Our findings indicate that ANDRO stimulates neurogenesis in the adult hippocampus suggesting that this drug could be used as a therapy in diseases in which neurogenesis is affected.

  9. Does the endangered Knysna seahorse, Hippocampus capensis ...

    African Journals Online (AJOL)

    Abstract. The Knysna seahorse, Hippocampus capensis, is an endangered teleost confined to three South African estuaries. Its abundance within these systems is low and distributions are patchy. Consequently, monitoring population sizes is labour- intensive. The aim of this study was to establish if Knynsa seahorses are ...

  10. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids

    Directory of Open Access Journals (Sweden)

    Yasushi Hojo

    2018-04-01

    Full Text Available The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo. Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice, a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1–CA3 and granule cells in dentate gyrus (DG] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2, testosterone (T, and dihydrotestosterone (DHT, which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP and long-term depression (LTD, and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running elevated

  11. Humans, Intentionality, Experience And Tools For Learning: Some Contributions From Post-cognitive Theories To The Use Of Technology In Physics Education

    Science.gov (United States)

    Bernhard, Jonte

    2007-11-01

    Human cognition cannot be properly understood if we do not take the use of tools into account. The English word cognition stems from the Latin "cognoscere," meaning "to become acquainted with" or "to come to know." Following the original Latin meaning we should not only study "what happens in the head" if we want to study cognition. Experientially based perspectives, such as pragmatism, phenomenology, phenomenography, and activity theory, stress that we should study person-world relationships. Technologies actively shape the character of human-world relationships. An emergent understanding in modern cognitive research is the co-evolution of the human brain and human use of tools and the active character of perception. Thus, I argue that we must analyze the role of technologies in physics education in order to realize their full potential as tools for learning, and I will provide selected examples from physics learning environments to support this assertion.

  12. The First International Workshop on Human and Machine Cognition, Pensacola, Florida. Topic: The Frame Problem

    OpenAIRE

    Dietrich, Eric

    1990-01-01

    For some of us, the "Frame Problem Workshop" (as it was called) was an opportunity to discuss a methodological question which has become important in AI and cognitive science: Is the frame problem profound or a mistake?

  13. Embodied social interaction constitutes social cognition in pairs of humans: a minimalist virtual reality experiment.

    Science.gov (United States)

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2014-01-14

    Scientists have traditionally limited the mechanisms of social cognition to one brain, but recent approaches claim that interaction also realizes cognitive work. Experiments under constrained virtual settings revealed that interaction dynamics implicitly guide social cognition. Here we show that embodied social interaction can be constitutive of agency detection and of experiencing another's presence. Pairs of participants moved their "avatars" along an invisible virtual line and could make haptic contact with three identical objects, two of which embodied the other's motions, but only one, the other's avatar, also embodied the other's contact sensor and thereby enabled responsive interaction. Co-regulated interactions were significantly correlated with identifications of the other's avatar and reports of the clearest awareness of the other's presence. These results challenge folk psychological notions about the boundaries of mind, but make sense from evolutionary and developmental perspectives: an extendible mind can offload cognitive work into its environment.

  14. Deep Space Spaceflight Hazards Effects on Cognition, Behavioral Health, and Behavioral Biomarkers in Humans

    Science.gov (United States)

    Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Simonsen, L. C.; Antonsen, E.

    2018-02-01

    Deep Space Gateway missions provide testing grounds to identify the risk of both behavioral performance and cognitive perturbations caused by stressors of spaceflight such as radiation, fluid shifts, sleep deprivation, chronic stress, and others.

  15. Cognitive Network Modeling as a Basis for Characterizing Human Communication Dynamics and Belief Contagion in Technology Adoption

    Science.gov (United States)

    Hutto, Clayton; Briscoe, Erica; Trewhitt, Ethan

    2012-01-01

    Societal level macro models of social behavior do not sufficiently capture nuances needed to adequately represent the dynamics of person-to-person interactions. Likewise, individual agent level micro models have limited scalability - even minute parameter changes can drastically affect a model's response characteristics. This work presents an approach that uses agent-based modeling to represent detailed intra- and inter-personal interactions, as well as a system dynamics model to integrate societal-level influences via reciprocating functions. A Cognitive Network Model (CNM) is proposed as a method of quantitatively characterizing cognitive mechanisms at the intra-individual level. To capture the rich dynamics of interpersonal communication for the propagation of beliefs and attitudes, a Socio-Cognitive Network Model (SCNM) is presented. The SCNM uses socio-cognitive tie strength to regulate how agents influence--and are influenced by--one another's beliefs during social interactions. We then present experimental results which support the use of this network analytical approach, and we discuss its applicability towards characterizing and understanding human information processing.

  16. Endogenous synthesis of corticosteroids in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Shimpei Higo

    Full Text Available BACKGROUND: Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC synthase, cytochrome P450(c21. METHODOLOGY/PRINCIPAL FINDINGS: The expression of P450(c21 was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG was demonstrated by metabolism analysis of (3H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21, P450(2D4, P450(11β1 and 3β-hydroxysteroid dehydrogenase (3β-HSD were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM doses of CORT for 1 h. CONCLUSIONS/SIGNIFICANCE: These results imply the complete pathway of corticosteroid synthesis of 'pregnenolone →PROG→DOC→CORT' in the hippocampal neurons. Both P450(c21 and P450(2D4 can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.

  17. Human Capital and Reemployment Success: The Role of Cognitive Abilities and Personality

    OpenAIRE

    Timo Gnambs

    2017-01-01

    Involuntary periods of unemployment represent major negative experiences for many individuals. Therefore, it is important to identify factors determining the speed job seekers are able to find new employment. The present study focused on cognitive and non-cognitive abilities of job seekers that determine their reemployment success. A sample of German adults (N = 1366) reported on their employment histories over the course of six years and provided measures on their fluid and crystallized inte...

  18. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  19. The role of human cognitive neuroscience in drug discovery for the dementias.

    Science.gov (United States)

    Wesnes, Keith A; Edgar, Chris J

    2014-02-01

    Cognitive dysfunction characterizes all the various forms of dementia. Evidence is accumulating that all of the progressive neurodegenerative dementias, such as Alzheimer's disease (AD), are preceded by years, if not decades, of pathological cognitive decline. The limited effectiveness of the four current medications registered for AD together with the failure of dozens of programmes over the last decade has influenced the decision to evaluate treatment at earlier stages of the disease; even before any cognitive symptoms have appeared. However, it has to be acknowledged that treating mild cognitive impairment (MCI) as a prodrome for AD has also had very limited success. Nonetheless a more important problem in MCI research, and dementia in general, has to be laid at the door of the limited effectiveness of the cognitive tests employed. This problem will become even more severe for the latest research direction of treating preclinical AD because such individuals will have levels of cognitive abilities which are in the normal range; and thus many of the scales currently used in dementia research will not be sufficiently demanding to identify change over time. This paper reviews and discusses the methodology and instruments available for research and clinical practice in this major area; with a focus on the challenges involved in test selection and evaluation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cognitive environment simulation: An artificial intelligence system for human performance assessment: Modeling human intention formation: [Technical report, May 1986-June 1987

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1987-11-01

    This report documents the results of Phase II of a three phase research program to develop and validate improved methods to model the cognitive behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic simulation capability for modeling how people form intentions to act in NPP emergency situations was developed based on techniques from artificial intelligence. This modeling tool, Cognitive Environment Simulation or CES, simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g., errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person-machine system. The Cognitive Reliability Assessment Technique (or CREATE) was also developed in Phase II to specify how CES can be used to enhance the measurement of the human contribution to risk in probabilistic risk assessment (PRA) studies. 43 refs., 20 figs., 1 tab

  1. Potential of Cognitive Computing and Cognitive Systems

    Science.gov (United States)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  2. Tuning synaptic transmission in the hippocampus by stress: The CRH system

    Directory of Open Access Journals (Sweden)

    Yuncai eChen

    2012-04-01

    Full Text Available To enhance survival, an organism needs to remember--and learn from--threatening or stressful events. This fact necessitates the presence of mechanisms by which stress can influence synaptic transmission in brain regions, such as hippocampus, that subserve learning and memory. A major focus of this series of monographs is on the role and actions of adrenal-derived hormones, corticosteroids, and of brain-derived neurotransmitters, on synaptic function in the stressed hippocampus. Here we focus on the contribution of hippocampus-intrinsic, stress-activated CRH-CRH receptor signaling to the function and structure of hippocampal synapses. CRH is expressed in interneurons of adult hippocampus, and is released from axon terminals during stress. The peptide exerts time- and dose-dependent effects on learning and memory via modulation of synaptic function and plasticity. Whereas physiological levels of CRH, acting over seconds to minutes, augment memory processes, exposure to presumed severe-stress levels of the peptide results in spine retraction and loss of synapses over more protracted time-frames. Loss of dendritic spines (and hence of synapses takes place through actin cytoskeleton collapse downstream of CRHR1 receptors that reside within excitatory synapses on spine heads. Chronic exposure to stress levels of CRH may promote dying-back (atrophy of spine-carrying dendrites. Thus, the acute effects of CRH may contribute to stress-induced adaptive mechanisms, whereas chronic or excessive exposure to the peptide may promote learning problems and premature cognitive decline.

  3. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality.

    Science.gov (United States)

    Neves, Guilherme; Cooke, Sam F; Bliss, Tim V P

    2008-01-01

    Two facts about the hippocampus have been common currency among neuroscientists for several decades. First, lesions of the hippocampus in humans prevent the acquisition of new episodic memories; second, activity-dependent synaptic plasticity is a prominent feature of hippocampal synapses. Given this background, the hypothesis that hippocampus-dependent memory is mediated, at least in part, by hippocampal synaptic plasticity has seemed as cogent in theory as it has been difficult to prove in practice. Here we argue that the recent development of transgenic molecular devices will encourage a shift from mechanistic investigations of synaptic plasticity in single neurons towards an analysis of how networks of neurons encode and represent memory, and we suggest ways in which this might be achieved. In the process, the hypothesis that synaptic plasticity is necessary and sufficient for information storage in the brain may finally be validated.

  4. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and Degenerative Conditions of Aging: Implications for Cognitive Health

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2012-01-01

    Full Text Available Oxidative stress, disrupted copper homeostasis, and neuroinflammation due to overproduction of proinflammatory cytokines are considered leading causative factors in development of age-associated neurodegenerative conditions. Recently, a new mechanism of aging—detrimental epigenetic modifications—has emerged. Thus, compounds that possess antioxidant, anti-inflammatory activity as well as compounds capable of restoring copper balance and proper gene functioning may be able to prevent age-associated cognitive decline and ward off many common neurodegenerative conditions. The aim of this paper is to bring attention to a compound with a long history of safe use in wound healing and antiaging skin care. The human tripeptide GHK was discovered in 1973 as an activity in human albumin that caused old human liver tissue to synthesize proteins like younger tissue. It has high affinity for copper ions and easily forms a copper complex or GHK-Cu. In addition, GHK possesses a plethora of other regenerative and protective actions including antioxidant, anti-inflammatory, and wound healing properties. Recent studies revealed its ability to up- and downregulate a large number of human genes including those that are critical for neuronal development and maintenance. We propose GHK tripeptide as a possible therapeutic agent against age-associated neurodegeneration and cognitive decline.

  5. Sex differences in the circadian regulation of sleep and waking cognition in humans.

    Science.gov (United States)

    Santhi, Nayantara; Lazar, Alpar S; McCabe, Patrick J; Lo, June C; Groeger, John A; Dijk, Derk-Jan

    2016-05-10

    The sleep-wake cycle and circadian rhythmicity both contribute to brain function, but whether this contribution differs between men and women and how it varies across cognitive domains and subjective dimensions has not been established. We examined the circadian and sleep-wake-dependent regulation of cognition in 16 men and 18 women in a forced desynchrony protocol and quantified the separate contributions of circadian phase, prior sleep, and elapsed time awake on cognition and sleep. The largest circadian effects were observed for reported sleepiness, mood, and reported effort; the effects on working memory and temporal processing were smaller. Although these effects were seen in both men and women, there were quantitative differences. The amplitude of the circadian modulation was larger in women in 11 of 39 performance measures so that their performance was more impaired in the early morning hours. Principal components analysis of the performance measures yielded three factors, accuracy, effort, and speed, which reflect core performance characteristics in a range of cognitive tasks and therefore are likely to be important for everyday performance. The largest circadian modulation was observed for effort, whereas accuracy exhibited the largest sex difference in circadian modulation. The sex differences in the circadian modulation of cognition could not be explained by sex differences in the circadian amplitude of plasma melatonin and electroencephalographic slow-wave activity. These data establish the impact of circadian rhythmicity and sex on waking cognition and have implications for understanding the regulation of brain function, cognition, and affect in shift-work, jetlag, and aging.

  6. Sex differences in the circadian regulation of sleep and waking cognition in humans

    Science.gov (United States)

    Santhi, Nayantara; Lazar, Alpar S.; McCabe, Patrick J.; Lo, June C.; Groeger, John A.; Dijk, Derk-Jan

    2016-01-01

    The sleep–wake cycle and circadian rhythmicity both contribute to brain function, but whether this contribution differs between men and women and how it varies across cognitive domains and subjective dimensions has not been established. We examined the circadian and sleep–wake-dependent regulation of cognition in 16 men and 18 women in a forced desynchrony protocol and quantified the separate contributions of circadian phase, prior sleep, and elapsed time awake on cognition and sleep. The largest circadian effects were observed for reported sleepiness, mood, and reported effort; the effects on working memory and temporal processing were smaller. Although these effects were seen in both men and women, there were quantitative differences. The amplitude of the circadian modulation was larger in women in 11 of 39 performance measures so that their performance was more impaired in the early morning hours. Principal components analysis of the performance measures yielded three factors, accuracy, effort, and speed, which reflect core performance characteristics in a range of cognitive tasks and therefore are likely to be important for everyday performance. The largest circadian modulation was observed for effort, whereas accuracy exhibited the largest sex difference in circadian modulation. The sex differences in the circadian modulation of cognition could not be explained by sex differences in the circadian amplitude of plasma melatonin and electroencephalographic slow-wave activity. These data establish the impact of circadian rhythmicity and sex on waking cognition and have implications for understanding the regulation of brain function, cognition, and affect in shift-work, jetlag, and aging. PMID:27091961

  7. Association between human herpesvirus infections and dementia or mild cognitive impairment: a systematic review protocol.

    Science.gov (United States)

    Warren-Gash, Charlotte; Forbes, Harriet; Breuer, Judith; Hayward, Andrew C; Mavrodaris, Angelique; Ridha, Basil H; Rossor, Martin; Thomas, Sara L; Smeeth, Liam

    2017-06-23

    Persisting neurotropic viruses are proposed to increase the risk of dementia, but evidence of association from robust, adequately powered population studies is lacking. This is essential to inform clinical trials of targeted preventive interventions. We will carry out a comprehensive systematic review of published and grey literature of the association between infection with, reactivation of, vaccination against or treatment of any of the eight human herpesviruses and dementia or mild cognitive impairment. We will search the Cochrane Library, Embase, Global Health, Medline, PsycINFO, Scopus, Web of Science, clinical trials registers, the New York Academy of Medicine Grey Literature Report, Electronic Theses Online Service through the British Library and the ISI Conference Proceedings Citation Index for randomised controlled trials, cohort, caseâ€"control, case crossover or self-controlled case series studies reported in any language up to January 2017. Titles, abstracts and full-text screening will be conducted by two researchers independently. Data will be extracted systematically from eligible studies using a piloted template. We will assess risk of bias of individual studies in line with the Cochrane Collaboration tool. We will conduct a narrative synthesis, grouping studies by exposure and outcome definitions, and will describe any differences by population subgroups and dementia subtypes. We will consider performing meta-analyses if there are adequate numbers of sufficiently homogeneous studies. The overall quality of cumulative evidence will be assessed using selected Grading of Recommendations, Assessment, Development and Evaluations criteria. As this is a review of existing studies, no ethical approval is required. Results will be disseminated through a peer-reviewed publication and at national and international conferences. We anticipate the review will clarify the current extent and quality of evidence for a link between herpesviruses and dementia

  8. Longitudinal association between hippocampus atrophy and episodic-memory decline.

    Science.gov (United States)

    Gorbach, Tetiana; Pudas, Sara; Lundquist, Anders; Orädd, Greger; Josefsson, Maria; Salami, Alireza; de Luna, Xavier; Nyberg, Lars

    2017-03-01

    There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  10. What can other animals tell us about human social cognition?An evolutionary perspective on reflective and reflexive processing

    Directory of Open Access Journals (Sweden)

    Erin E Hecht

    2012-07-01

    Full Text Available Human neuroscience has seen a recent boom in studies on reflective, controlled, explicit social cognitive functions like imitation, perspective‐taking, and empathy. The relationship of these higher‐level functions to lower‐level, reflexive, automatic, implicit functions is an area of current research. As the field continues to address this relationship, we suggest that an evolutionary, comparative approach will be useful, even essential. There is a large body of research on reflexive, automatic, implicit processes in animals. A growing perspective sees social cognitive processes as phylogenically continuous, making findings in other species relevant for understanding our own. One of these phylogenically continuous processes appears to be self‐other matching or simulation. Mice are more sensitive to pain after watching other mice experience pain; geese experience heart rate increases when seeing their mate in conflict; and infant macaques, chimpanzees, and humans automatically mimic adult facial expressions. In this article, we review findings in different species that illustrate how such reflexive processes are related to (higher order reflexive processes, such as cognitive empathy, theory of mind, and learning by imitation. We do so in the context of self‐other matching in three different domains – in the motor domain (somatomotor movements, in the perceptual domain (eye movements and cognition about visual perception, and in the autonomic/emotional domain. We also review research on the developmental origin of these processes and their neural bases across species. We highlight gaps in existing knowledge and point out some questions for future research. We conclude that our understanding of the psychological and neural mechanisms of self‐other mapping and other functions in our own species can be informed by considering the layered complexity these functions in other species.

  11. The hippocampus facilitates integration within a symbolic field.

    Science.gov (United States)

    Cornelius, John Thor

    2017-10-01

    This paper attempts to elaborate a fundamental brain mechanism involved in the creation and maintenance of symbolic fields of thought. It will integrate theories of psychic spaces as explored by Donald Winnicott and Wilfred Bion with the neuroscientific examinations of those with bilateral hippocampal injury to show how evidence from both disciplines sheds important light on this aspect of mind. Possibly originating as a way of maintaining an oriented, first person psychic map, this capacity allows individuals a dynamic narrative access to a realm of layered elements and their connections. If the proposed hypothesis is correct, the hippocampus facilitates the integration of this symbolic field of mind, where narrative forms of thinking, creativity, memory, and dreaming are intertwined. Without the hippocampus, there is an inability to engage many typical forms of thought itself. Also, noting the ways these individuals are not impaired supports theories about other faculties of mind, providing insight into their possible roles within human thought. The evidence of different systems working in conjunction with the symbolic field provides tantalizing clues about these fundamental mechanisms of brain and mind that are normally seamlessly integrated, and hints at future areas of clinical and laboratory research, both within neuroscience and psychoanalysis. © 2017 The Authors. The International Journal of Psychoanalysis published by John Wiley & Sons Ltd on behalf of Institute of Psychoanalysis.

  12. The impact of human-technology cooperation and distributed cognition in forensic science: biasing effects of AFIS contextual information on human experts.

    Science.gov (United States)

    Dror, Itiel E; Wertheim, Kasey; Fraser-Mackenzie, Peter; Walajtys, Jeff

    2012-03-01

    Experts play a critical role in forensic decision making, even when cognition is offloaded and distributed between human and machine. In this paper, we investigated the impact of using Automated Fingerprint Identification Systems (AFIS) on human decision makers. We provided 3680 AFIS lists (a total of 55,200 comparisons) to 23 latent fingerprint examiners as part of their normal casework. We manipulated the position of the matching print in the AFIS list. The data showed that latent fingerprint examiners were affected by the position of the matching print in terms of false exclusions and false inconclusives. Furthermore, the data showed that false identification errors were more likely at the top of the list and that such errors occurred even when the correct match was present further down the list. These effects need to be studied and considered carefully, so as to optimize human decision making when using technologies such as AFIS. © 2011 American Academy of Forensic Sciences.

  13. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  14. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n...

  15. Nine human factors contributing to the user acceptance of telemedicine applications: a cognitive-emotional approach.

    Science.gov (United States)

    Buck, Susanne

    2009-01-01

    Much attention is paid to the technical aspects of telemedicine in the development of new applications, but the enthusiasm about what is technically possible very often leads to the user acceptance of such products being neglected. The number of successful and sustainable telemedicine applications would be much higher if developers concentrated more on matters related to the cognitive-emotional situation of the users involved in telemedicine. The users include the care and cure providers, as well as the care and cure receivers. Based on an informal literature search and discussions with telemedicine implementation staff, nine factors have been identified which are essential for the user acceptance of telemedicine applications. All of them are connected more to the cognitive-emotional than to the cognitive-rational side of information processing. This suggests that in the future the cognitive-emotional side will need more attention. This in turn implies that the nine points mentioned above have to find their way into requirements engineering, development processes and product life cycles.

  16. Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring.

    Science.gov (United States)

    Huizink, Anja C; Mulder, Eduard J H

    2006-01-01

    Teratological investigations have demonstrated that agents that are relatively harmless to the mother may have significant negative consequences to the fetus. Among these agents, prenatal alcohol, nicotine or cannabis exposure have been related to adverse offspring outcomes. Although there is a relatively extensive body of literature that has focused upon birth and behavioral outcomes in newborns and infants after prenatal exposure to maternal smoking, drinking and, to a lesser extent, cannabis use, information on neurobehavioral and cognitive teratogenic findings beyond these early ages is still quite limited. Furthermore, most studies have focused on prenatal exposure to heavy levels of smoking, drinking or cannabis use. Few recent studies have paid attention to low or moderate levels of exposure to these substances. This review endeavors to provide an overview of such studies, and includes animal findings and potential mechanisms that may explain the mostly subtle effects found on neurobehavioral and cognitive outcomes. It is concluded that prenatal exposure to either maternal smoking, alcohol or cannabis use is related to some common neurobehavioral and cognitive outcomes, including symptoms of ADHD (inattention, impulsivity), increased externalizing behavior, decreased general cognitive functioning, and deficits in learning and memory tasks.

  17. Categorial compositionality II: universal constructions and a general theory of (quasi-systematicity in human cognition.

    Directory of Open Access Journals (Sweden)

    Steven Phillips

    2011-08-01

    Full Text Available A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1 syntactically compositional representations; and (2 processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention of employing the same mode of (concatenative compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities. Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages, where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes. An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.

  18. Categorial compositionality II: universal constructions and a general theory of (quasi-)systematicity in human cognition.

    Science.gov (United States)

    Phillips, Steven; Wilson, William H

    2011-08-01

    A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour) must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1) syntactically compositional representations; and (2) processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention) of employing the same mode of (concatenative) compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities). Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages), where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes). An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-)systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.

  19. A Cognitive Neuroscience Perspective on Embodied Language for Human-Robot Cooperation

    Science.gov (United States)

    Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-01-01

    This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the…

  20. Cognitive impairment and antiretroviral treatment in a Peruvian population of patients with human immunodeficiency virus.

    Science.gov (United States)

    Guevara-Silva, E A

    2014-05-01

    HIV-associated cognitive impairment occurs even in the early stages of infection. Short-term memory, psychomotor speed, attention, and executive functioning are the main capacities affected. Controversy exists regarding whether highly active antiretroviral therapy (HAART) is helpful in combating this process. The objective of the present study is to determine the association between cognitive impairment and HAART in HIV-infected patients from Hospital Regional de Huacho. Prospective study of HIV patients meeting criteria to start HAART. Twenty-one HIV-positive patients were recruited between April and July 2011. Researchers administered a standardised neuropsychological test battery before and 4 weeks after onset of HAART. Psychomotor speed, executive function, short term memory (visual and verbal), attention, and visuospatial performance were evaluated. Nineteen patients completed the study (14 males and 5 females). In the pre-HAART evaluation, most patients scored below average on the executive function and psychomotor speed subtests. Psychomotor speed and immediate visual memory improved significantly after four months of treatment with HAART. Some degree of cognitive decline may present even in the early and asymptomatic stages of HIV infection. The benefits of antiretroviral treatment for cognitive performance can be detected after only a few weeks of follow-up. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  1. Development of short-snouted seahorse (Hippocampus hippocampus, L. 1758): osteological and morphological aspects.

    Science.gov (United States)

    Novelli, B; Otero-Ferrer, F; Socorro, J A; Caballero, M J; Segade-Botella, A; Molina Domínguez, L

    2017-06-01

    Information about early development after male release lags behind studies of juveniles and adult seahorses, and newborn seahorses, similar in shape to adults, are considered juveniles or fry. During early life, Hippocampus hippocampus present behavioural (shift in habitat, from planktonic to benthic) and morphological changes; for this reasons, the aims of this study are to define the stage of development of H. hippocampus after they are expelled from the male brood pouch and to establish direct or indirect development through an osteological analysis. The ossification process was studied in 120 individuals, from their release to 30 days after birth. To analyse the osteological development, Alcian Blue-Alizarin Red double staining technique for bone and cartilage was adapted to this species. At birth, H. hippocampus presents a mainly cartilaginous structure that ossifies in approximately 1 month. The bony armour composed of bony rings and plates develops in 10 days. The caudal fin, a structure absent in juveniles and adult seahorses, is present at birth and progressively disappears with age. The absence of adult osteological structure in newborns, like coronet, bony rings and plates, head spines and components allowing tail prehensile abilities, suggests a metamorphosis before the juvenile stage. During the indirect development, the metamorphic stage started inside brood pouch and followed outside and leads up to reconsider the status of H. hippocampus newborns.

  2. The role of the thalamus and hippocampus in episodic memory performance in patients with multiple sclerosis.

    Science.gov (United States)

    Koenig, Katherine A; Rao, Stephen M; Lowe, Mark J; Lin, Jian; Sakaie, Ken E; Stone, Lael; Bermel, Robert A; Trapp, Bruce D; Phillips, Micheal D

    2018-03-01

    Episodic memory loss is one of the most common cognitive symptoms in patients with multiple sclerosis (MS), but the pathophysiology of this symptom remains unclear. Both the hippocampus and thalamus have been implicated in episodic memory and show regional atrophy in patients with MS. In this work, we used functional magnetic resonance imaging (fMRI) during a verbal episodic memory task, lesion load, and volumetric measures of the hippocampus and thalamus to assess the relative contributions to verbal and visual-spatial episodic memory. Functional activation, lesion load, and volumetric measures from 32 patients with MS and 16 healthy controls were used in a predictive analysis of episodic memory function. After adjusting for disease duration, immediate recall performance on a visual-spatial episodic memory task was significantly predicted by hippocampal volume ( p memory measures, functional activation of the thalamus during encoding was more predictive than that of volume measures ( p episodic memory loss in patients with MS.

  3. Lasting Differential Effects on Plasticity Induced by Prenatal Stress in Dorsal and Ventral Hippocampus

    Directory of Open Access Journals (Sweden)

    Gayane Grigoryan

    2016-01-01

    Full Text Available Early life adversaries have a profound impact on the developing brain structure and functions that persist long after the original traumatic experience has vanished. One of the extensively studied brain structures in relation to early life stress has been the hippocampus because of its unique association with cognitive processes of the brain. While the entire hippocampus shares the same intrinsic organization, it assumes different functions in its dorsal and ventral sectors (DH and VH, resp., based on different connectivity with other brain structures. In the present review, we summarize the differences between DH and VH and discuss functional and structural effects of prenatal stress in the two sectors, with the realization that much is yet to be explored in understanding the opposite reactivity of the DH and VH to stressful stimulation.

  4. Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.

    Science.gov (United States)

    Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine

    2017-04-01

    The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The investigation of biometric characteristics of seahorse species [Hippocampus hippocampus (Linnaeus,

    Directory of Open Access Journals (Sweden)

    Şule Gürkan

    2015-12-01

    Full Text Available Bu çalışma, İzmir Körfezi’nde dağılım gösteren Syngnathidae familyasına ait denizatı türlerini ve bu türlerin biyometrik özelliklerini belirlemek amacıyla yapılmıştır. Şubat 2000 tarihinde bölgede avlanan balıkçılardan 29 adet Hippocampus hippocampus, ve 200 adet Hippocampus guttulatus örneği temin edilmiştir. Elde edilen örneklerin metrik ve meristik özellikleri ve boy-ağırlık ilişkileri ile boy ve ağırlık frekans değerleri verilmiştir

  6. The Tractable Cognition Thesis

    Science.gov (United States)

    van Rooij, Iris

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the "Tractable Cognition thesis": Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories…

  7. The Tractable Cognition thesis

    NARCIS (Netherlands)

    Rooij, I.J.E.I. van

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the Tractable Cognition thesis: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by

  8. 1H-MR spectroscopy of the rat hippocampus after whole brain irradiation: an in vivo study

    International Nuclear Information System (INIS)

    Ding Weijun; Yang Haihua; Wang Xufeng; Hu Wei; Lei Hao; Li Chunxia; Fang Fang; Fang Zhouxi

    2008-01-01

    Objective: To study the relationships between dynamic changes of the hippocampus metabolites, cognitive impairment and ultrastructural changes of hippocampus in rats during the initial 4 weeks after 6 MV X-ray whole-brain irradiation. Methods: 65 rats were randomly divided into foul groups as sham control (n=5), 10 Gy, 20 Gy and 30 Gy groups (n=20). The learning and memory ability was measured with the Y maze test 4, 8 weeks, 2, 6 months after irradiation. 1 H-MRS was performed after 2 or 4 weeks' brain irradiation. The ultrastructural changes of the hippocampus were observed by electronic microscope. Results: The learning and memorizing ability of irradiation groups was significantly different from that of control group. Compared with control group, the NAA/Ct and Cho/Cr ratio in the left hippocampus in 10 Gy, 20 Gy and 30 Gy groups at 2 weeks and 4 weeks decreased significantly. Neuronal mitochondria edema, endothelial cells swelling and lamina dissociation in myelin sheath were demonstrated in various degrees by electromicroscope at 4 weeks following whole brain irradiation. Conclusions: 1 H-MRS can be used to non-invasively monitor the metabolic changes, both quantitatively and dynamically, of the irradiated rat brain, 1 H-MRS is superior to MRI in detecting early abnormality of the brain. The NAA/Cr and Cho/Cr ratio in irradiated hippocampus could reflect the severity of the brain injury to some extent. (authors)

  9. A Spatial Cognitive Map and a Human-Like Memory Model Dedicated to Pedestrian Navigation in Virtual Urban Environments

    Science.gov (United States)

    Thomas, Romain; Donikian, Stéphane

    Many articles dealing with agent navigation in an urban environment involve the use of various heuristics. Among them, one is prevalent: the search of the shortest path between two points. This strategy impairs the realism of the resulting behaviour. Indeed, psychological studies state that such a navigation behaviour is conditioned by the knowledge the subject has of its environment. Furthermore, the path a city dweller can follow may be influenced by many factors like his daily habits, or the path simplicity in term of minimum of direction changes. It appeared interesting to us to investigate how to mimic human navigation behavior with an autonomous agent. The solution we propose relies on an architecture based on a generic model of informed environment, a spatial cognitive map model merged with a human-like memory model, representing the agent's temporal knowledge of the environment, it gained along its experiences of navigation.

  10. Quantitative developments in the cognitive reliability and error analysis method (CREAM) for the assessment of human performance

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Librizzi, Massimo

    2006-01-01

    The current 'second generation' approaches in human reliability analysis focus their attention on the contextual conditions under which a given action is performed rather than on the notion of inherent human error probabilities, as was done in the earlier 'first generation' techniques. Among the 'second generation' methods, this paper considers the Cognitive Reliability and Error Analysis Method (CREAM) and proposes some developments with respect to a systematic procedure for computing probabilities of action failure. The starting point for the quantification is a previously introduced fuzzy version of the CREAM paradigm which is here further extended to include uncertainty on the qualification of the conditions under which the action is performed and to account for the fact that the effects of the common performance conditions (CPCs) on performance reliability may not all be equal. By the proposed approach, the probability of action failure is estimated by rating the performance conditions in terms of their effect on the action

  11. Mind and body: concepts of human cognition, physiology and false belief in children with autism or typical development.

    Science.gov (United States)

    Peterson, Candida C

    2005-08-01

    This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.

  12. Testing the hypothesis on cognitive evolution of modern humans' learning ability: current status of past-climatic approaches.

    Science.gov (United States)

    Yoneda, Minoru; Abe-Ouchi, Ayako; Kawahata, Hodaka; Yokoyama, Yusuke; Oguchi, Takashi

    2014-05-01

    The impact of climate change on human evolution is important and debating topic for many years. Since 2010, we have involved in a general joint project entitled "Replacement of Neanderthal by Modern Humans: Testing Evolutional Models of Learning", which based on a theoretical prediction that the cognitive ability related to individual and social learning divide fates of ancient humans in very unstable Late Pleistocene climate. This model predicts that the human populations which experienced a series of environmental changes would have higher rate of individual learners, while detailed reconstructions of global climate change have reported fluent and drastic change based on ice cores and stalagmites. However, we want to understand the difference between anatomically modern human which survived and the other archaic extinct humans including European Neanderthals and Asian Denisovans. For this purpose the global synchronized change is not useful for understanding but the regional difference in the amplitude and impact of climate change is the information required. Hence, we invited a geophysicist busing Global Circulation Model to reconstruct the climatic distribution and temporal change in a continental scale. At the same time, some geochemists and geographers construct a database of local climate changes recorded in different proxies. At last, archaeologists and anthropologists tried to interpret the emergence and disappearance of human species in Europe and Asia on the reconstructed past climate maps using some tools, such as Eco-cultural niche model. Our project will show the regional difference in climate change and related archaeological events and its impact on the evolution of learning ability of modern humans.

  13. An autonomous, automated and mobile device to concurrently assess several cognitive functions in group-living non-human primates.

    Science.gov (United States)

    Fizet, Jonas; Rimele, Adam; Pebayle, Thierry; Cassel, Jean-Christophe; Kelche, Christian; Meunier, Hélène

    2017-11-01

    Research methods in cognitive neuroscience using non-human primates have undergone notable changes over the last decades. Recently, several research groups have described freely accessible devices equipped with a touchscreen interface. Two characteristics of such systems are of particular interest: some apparatuses include automated identification of subjects, while others are mobile. Here, we designed, tested and validated an experimental system that, for the first time, combine automatization and mobility. Moreover, our system allows autonomous learning and testing of cognitive performance in group-living subjects, including follow-up assessments. The mobile apparatus is designed to be available 24h a day, 7days a week, in a typical confined primate breeding and housing facility. Here we present as proof of concept, the results of two pilot studies. We report that rhesus macaques (Macaca mulatta) learned the tasks rapidly and achieved high-level of stable performance. Approaches of this kind should be developed for future pharmacological and biomedical studies in non-human primates. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. City rats: From rat behaviour to human spatial cognition in urban environments

    OpenAIRE

    David Eilam; Juval Portugali; Osnat Yaski

    2010-01-01

    The structure and shape of an urban environment influence our ability to find our way about in the city^1-2^. Indeed, urban designers who face the challenge of planning environments that facilitate wayfinding^3^, have a consequent need to understand the relations between the urban environment and spatial cognition^4^. Previous studies have suggested that certain qualities of city elements, such as a distinct contrast with the background (e.g. The Eiffel Tower in Paris), or a clear morphology ...

  15. Evolutionary Musicology Meets Embodied Cognition: Biocultural Coevolution and the Enactive Origins of Human Musicality

    Directory of Open Access Journals (Sweden)

    Dylan van der Schyff

    2017-09-01

    Full Text Available Despite evolutionary musicology's interdisciplinary nature, and the diverse methods it employs, the field has nevertheless tended to divide into two main positions. Some argue that music should be understood as a naturally selected adaptation, while others claim that music is a product of culture with little or no relevance for the survival of the species. We review these arguments, suggesting that while interesting and well-reasoned positions have been offered on both sides of the debate, the nature-or-culture (or adaptation vs. non-adaptation assumptions that have traditionally driven the discussion have resulted in a problematic either/or dichotomy. We then consider an alternative “biocultural” proposal that appears to offer a way forward. As we discuss, this approach draws on a range of research in theoretical biology, archeology, neuroscience, embodied and ecological cognition, and dynamical systems theory (DST, positing a more integrated model that sees biological and cultural dimensions as aspects of the same evolving system. Following this, we outline the enactive approach to cognition, discussing the ways it aligns with the biocultural perspective. Put simply, the enactive approach posits a deep continuity between mind and life, where cognitive processes are explored in terms of how self-organizing living systems enact relationships with the environment that are relevant to their survival and well-being. It highlights the embodied and ecologically situated nature of living agents, as well as the active role they play in their own developmental processes. Importantly, the enactive approach sees cognitive and evolutionary processes as driven by a range of interacting factors, including the socio-cultural forms of activity that characterize the lives of more complex creatures such as ourselves. We offer some suggestions for how this approach might enhance and extend the biocultural model. To conclude we briefly consider the

  16. Evolutionary Musicology Meets Embodied Cognition: Biocultural Coevolution and the Enactive Origins of Human Musicality.

    Science.gov (United States)

    van der Schyff, Dylan; Schiavio, Andrea

    2017-01-01

    Despite evolutionary musicology's interdisciplinary nature, and the diverse methods it employs, the field has nevertheless tended to divide into two main positions. Some argue that music should be understood as a naturally selected adaptation, while others claim that music is a product of culture with little or no relevance for the survival of the species. We review these arguments, suggesting that while interesting and well-reasoned positions have been offered on both sides of the debate, the nature-or-culture (or adaptation vs. non-adaptation) assumptions that have traditionally driven the discussion have resulted in a problematic either/or dichotomy. We then consider an alternative "biocultural" proposal that appears to offer a way forward. As we discuss, this approach draws on a range of research in theoretical biology, archeology, neuroscience, embodied and ecological cognition, and dynamical systems theory (DST), positing a more integrated model that sees biological and cultural dimensions as aspects of the same evolving system. Following this, we outline the enactive approach to cognition, discussing the ways it aligns with the biocultural perspective. Put simply, the enactive approach posits a deep continuity between mind and life, where cognitive processes are explored in terms of how self-organizing living systems enact relationships with the environment that are relevant to their survival and well-being. It highlights the embodied and ecologically situated nature of living agents, as well as the active role they play in their own developmental processes. Importantly, the enactive approach sees cognitive and evolutionary processes as driven by a range of interacting factors, including the socio-cultural forms of activity that characterize the lives of more complex creatures such as ourselves. We offer some suggestions for how this approach might enhance and extend the biocultural model. To conclude we briefly consider the implications of this approach for

  17. ACT-R/E: An Embodied Cognitive Architecture for Human-Robot Interaction

    Science.gov (United States)

    2013-01-01

    Threaded Cognition: An Integrated Theory of Concurrent Multitasking . Psychological Review, 115(1), 101–130, http://dx.doi.org/10.1037/0033-295X...Trafton, Naval Research Laboratory, Washington, DC, USA Email : greg.trafton@nrl.navy.mil Laura Hiatt, Naval Research Laboratory, Washington, DC, USA Email ...laura.hiatt@nrl.navy.mil Anthony Harrison, Naval Research Laboratory, Washington, DC, USA Email : anthony.harrison@nrl.navy.mil Frank Tamborello, Naval

  18. Becker meets Ricardo: A social and cognitive skills model of human capabilities

    OpenAIRE

    Xianwen Shi; Ronald Wolthoff; Aloysius Siow; Robert McCann

    2012-01-01

    This paper studies an equilibrium model of social and cognitive skills interactions in school, work and marriage. The model uses a common team production function in each sector which integrates the complementarity concerns of Becker with the task assigment and comparative advantage concerns of Ricardo. The theory delivers full task specialization in the labor and education markets, incomplete task specialization in marriage. It rationalizes many to one matching, a common feature in labor mar...

  19. Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans

    Science.gov (United States)

    Carter, Lawrence P.; Reissig, Chad J.; Johnson, Matthew W.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2012-01-01

    BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg /70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6 hours. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5 mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse. PMID:22989498

  20. Evolutionary Musicology Meets Embodied Cognition: Biocultural Coevolution and the Enactive Origins of Human Musicality

    Science.gov (United States)

    van der Schyff, Dylan; Schiavio, Andrea

    2017-01-01

    Despite evolutionary musicology's interdisciplinary nature, and the diverse methods it employs, the field has nevertheless tended to divide into two main positions. Some argue that music should be understood as a naturally selected adaptation, while others claim that music is a product of culture with little or no relevance for the survival of the species. We review these arguments, suggesting that while interesting and well-reasoned positions have been offered on both sides of the debate, the nature-or-culture (or adaptation vs. non-adaptation) assumptions that have traditionally driven the discussion have resulted in a problematic either/or dichotomy. We then consider an alternative “biocultural” proposal that appears to offer a way forward. As we discuss, this approach draws on a range of research in theoretical biology, archeology, neuroscience, embodied and ecological cognition, and dynamical systems theory (DST), positing a more integrated model that sees biological and cultural dimensions as aspects of the same evolving system. Following this, we outline the enactive approach to cognition, discussing the ways it aligns with the biocultural perspective. Put simply, the enactive approach posits a deep continuity between mind and life, where cognitive processes are explored in terms of how self-organizing living systems enact relationships with the environment that are relevant to their survival and well-being. It highlights the embodied and ecologically situated nature of living agents, as well as the active role they play in their own developmental processes. Importantly, the enactive approach sees cognitive and evolutionary processes as driven by a range of interacting factors, including the socio-cultural forms of activity that characterize the lives of more complex creatures such as ourselves. We offer some suggestions for how this approach might enhance and extend the biocultural model. To conclude we briefly consider the implications of this approach

  1. Extending network approach to language dynamics and human cognition. Comment on "Approaching human language with complex networks" by Cong and Liu

    Science.gov (United States)

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2014-12-01

    By analyzing complex networks constructed from authentic language data, Cong and Liu [1] advance linguistics research into the big data era. The network approach has revealed many intrinsic generalities and crucial differences at both the macro and micro scales between human languages. The axiom behind this research is that language is a complex adaptive system [2]. Although many lexical, semantic, or syntactic features have been discovered by means of analyzing the static and dynamic linguistic networks of world languages, available network-based language studies have not explicitly addressed the evolutionary dynamics of language systems and the correlations between language and human cognition. This commentary aims to provide some insights on how to use the network approach to study these issues.

  2. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus.

    Science.gov (United States)

    Bhakta, Ami; Gavini, Kartheek; Yang, Euitaek; Lyman-Henley, Lani; Parameshwaran, Kodeeswaran

    2017-09-29

    Chronic stress in humans can result in multiple adverse psychiatric and neurobiological outcomes, including memory deficits. These adverse outcomes can be more severe if each episode of stress is very traumatic. When compared to acute or short term stress relatively little is known about the effects of chronic traumatic stress on memory and molecular changes in hippocampus, a brain area involved in memory processing. Here we studied the effects of chronic traumatic stress in mice by exposing them to adult Long Evan rats for 28 consecutive days and subsequently analyzing behavioral outcomes and the changes in the hippocampus. Results show that stressed mice developed memory deficits when assayed with radial arm maze tasks. However, chronic traumatic stress did not induce anxiety, locomotor hyperactivity or anhedonia. In the hippocampus of stressed mice interleukin-1β protein expression was increased along with decreased corticotropin releasing hormone (CRH) gene expression. Furthermore, there was a reduction in acetylcholine levels in the hippocampus of stressed mice. There were no changes in brain derived neurotrophic factor (BDNF) or nerve growth factor (NGF) levels in the hippocampus of stressed mice. Gene expression of immediate early genes (Zif268, Arc, C-Fos) as well as glucocorticoid and mineralocorticoid receptors were also not affected by chronic stress. These data demonstrate that chronic traumatic stress followed by a recovery period might lead to development of resilience resulting in the development of selected, most vulnerable behavioral alterations and molecular changes in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Human Capital and Reemployment Success: The Role of Cognitive Abilities and Personality

    Directory of Open Access Journals (Sweden)

    Timo Gnambs

    2017-03-01

    Full Text Available Involuntary periods of unemployment represent major negative experiences for many individuals. Therefore, it is important to identify factors determining the speed job seekers are able to find new employment. The present study focused on cognitive and non-cognitive abilities of job seekers that determine their reemployment success. A sample of German adults (N = 1366 reported on their employment histories over the course of six years and provided measures on their fluid and crystallized intelligence, mathematical and reading competence, and the Big Five of personality. Proportional hazard regression analyses modeled the conditional probability of finding a new job at a given time dependent on the cognitive and personality scores. The results showed that fluid and crystallized intelligence as well as reading competence increased the probability of reemployment. Moreover, emotionally stable job seekers had higher odds of finding new employment. Other personality traits of the Big Five were less relevant for reemployment success. Finally, crystallized intelligence and emotional stability exhibited unique predictive power after controlling for the other traits and showed incremental effects with regard to age, education, and job type. These findings highlight that stable individual differences have a systematic, albeit rather small, effect on unemployment durations.

  4. Interface technology based on human cognition and understanding for the operation and maintenance of advanced human cooperative plants

    International Nuclear Information System (INIS)

    Numano, Masayoshi; Niwa, Yasuyuki; Itoh, Hiroko; Miyazaki, Keiko; Fukuto, Junji; Okazaki, Tadatsugi; Matsukura, Hiroshi; Tanaka, Kunihiko; Matsuoka, Takeshi; Liu, Qiao; Mitomo, Nobuo

    2006-01-01

    'Development of Intelligent Systems Technology for Advanced Human Cooperative Plants' was implemented as 'Nuclear Energy Fundamentals Crossover Research' by 3 institutes (The Institute of Physical and Chemical Research; RIKEN, National Institute of Advanced Industrial Science and Technology; AIST and National Maritime Research Institute; NMRI). Aiming at appropriate interaction between human and agents in Digital Maintenance Field which spreads widely in time and space, NMRI developed technologies on contraction of plant information, generalization and intuition of the information through visual presentation. Intuitive presentation gave on-site information for identifying the source of abnormalities to human operators. And a human-machine cooperation infrastructure for plant maintenance was proposed and developed, where an overview display was used to show position and state information of all the agents in the plant and each agent view was used to show the corresponding agent's information in detail. A part of this technology was implemented in a demonstration program. Two agents were developed to support human operators' plant maintenance activities in this program. This demonstration showed the effectiveness of human-agent cooperation for early plant abnormality detection. (author)

  5. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning.

    Science.gov (United States)

    Hamson, Dwayne K; Roes, Meighen M; Galea, Liisa A M

    2016-06-13

    Sex differences in neurological disease exist in incidence, severity, progression, and symptoms and may ultimately influence treatment. Cognitive disturbances are frequent in neuropsychiatric disease with men showing greater cognitive impairment in schizophrenia, but women showing more severe dementia and cognitive decline with Alzheimer's disease. Although there are no overall differences in intelligence between the sexes, men, and women demonstrate slight but consistent differences in a number of cognitive domains. These include a male advantage, on average, in some types of spatial abilities and a female advantage on some measures of verbal fluency and memory. Sex differences in traits or behaviors generally indicate the involvement of sex hormones, such as androgens and estrogens. We review the literature on whether adult levels of testosterone and estradiol influence spatial ability in both males and females from rodent models to humans. We also include information on estrogens and their ability to modulate verbal memory in men and women. Estrone and progestins are common components of hormone therapies, and we also review the existing literature concerning their effects on cognition. We also review the sex differences in the hippocampus and prefrontal cortex as they relate to cognitive performance in both rodents and humans. There has been greater recognition in the scientific literature that it is important to study both sexes and also to analyze study findings with sex as a variable. Only by examining these sex differences can we progress to finding treatments that will improve the cognitive health of both men and women. © 2016 American Physiological Society. Compr Physiol 6:1295-1337, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  6. Music cognition and the cognitive sciences.

    Science.gov (United States)

    Pearce, Marcus; Rohrmeier, Martin

    2012-10-01

    Why should music be of interest to cognitive scientists, and what role does it play in human cognition? We review three factors that make music an important topic for cognitive scientific research. First, music is a universal human trait fulfilling crucial roles in everyday life. Second, music has an important part to play in ontogenetic development and human evolution. Third, appreciating and producing music simultaneously engage many complex perceptual, cognitive, and emotional processes, rendering music an ideal object for studying the mind. We propose an integrated status for music cognition in the Cognitive Sciences and conclude by reviewing challenges and big questions in the field and the way in which these reflect recent developments. Copyright © 2012 Cognitive Science Society, Inc.

  7. When is the hippocampus involved in recognition memory?

    OpenAIRE

    Barker, Gareth R. I.; Warburton, Elizabeth C.

    2011-01-01

    The role of the hippocampus in recognition memory is controversial. Recognition memory judgments may be made using different types of information, including object familiarity, an object's spatial location, or when an object was encountered. Experiment 1 examined the role of the hippocampus in recognition memory tasks that required the animals to use these different types of mnemonic information. Rats with bilateral cytotoxic lesions in the hippocampus or perirhinal or prefrontal cortex were ...

  8. THE RELATIONSHIP OF ART AND SCIENTIFIC HUMAN COGNITION IN THE WORKS OF F. DOSTOEVSKY AND A. UKHTOMSKY

    Directory of Open Access Journals (Sweden)

    Korjova, E.

    2017-06-01

    Full Text Available The paper analyses the intertwining and unity of artistic and scientific ways of human cognition on example of the F. Dostoevsky and A. Ukhtomsky of creativity. Russian literature is characterized by a depth of the person transfer attitude and spiritual aspirations. The works of the great Russian writer Dostoevsky have become one of the sources of scientific heritage of the great Russian scientist Ukhtomsky in discovery of the law of dominants as well as the laws of double and honored companion. Dostoevsky not only the writer but the thinker psychologically accurately has revealed the contradictory nature of human existence, the patterns of the struggle between good and evil in the human soul. Ukhtomsky has used a deep insight about the person of Dostoevsky and organically has bound natural-scientific ideas about behavior with the laws of moral behavior deriving the meaning of human life beyond the natural, purely physiological limits. Dominant determine the direction of internal activity and perception of the world as a whole. The laws of double and honored interlocutor reflect moral self-identity.

  9. Enhancing Human-Machine System Performance by Introducing Artificial Cognition in Vehicle Guidance Work Systems

    Science.gov (United States)

    2009-10-01

    evaluated after each mission using the NASA - TLX method [21]. Moreover, they were interviewed to be able to state problems and suggest system...France, 3 rd -4 th September 2008. [21] Sandra G. Hart & Lowell E. Staveland (1988). Development of NASA - TLX (Task Load Index): Results of...o b s e rv a b le b e h a v io u r o f C P = A C U b e h a v io u r Interpretation Figure 11: The Cognitive Process for generating knowledge

  10. Olfactory memory: a bridge between humans and animals in models of cognitive aging.

    Science.gov (United States)

    Eichenbaum, Howard; Robitsek, R Jonathan

    2009-07-01

    Odor-recognition memory in rodents may provide a valuable model of cognitive aging. In a recent study we used signal detection analyses to distinguish odor recognition based on recollection versus that based on familiarity. Aged rats were selectively impaired in recollection, with relative sparing of familiarity, and the deficits in recollection were correlated with spatial memory impairments. These results complement electrophysiological findings indicating age-associated deficits in the ability of hippocampal neurons to differentiate contextual information, and this information-processing impairment may underlie the common age-associated decline in olfactory and spatial memory.

  11. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study.

    Science.gov (United States)

    Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J

    2010-09-01

    Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.

  12. Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.

    Science.gov (United States)

    Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas

    2013-04-01

    More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Circadian Oscillations within the Hippocampus Support Hippocampus-dependent Memory Processing

    Directory of Open Access Journals (Sweden)

    Kristin Lynn Eckel-Mahan

    2012-04-01

    Full Text Available The ability to sustain memories over long periods of time, sometimes even a lifetime, is one of the most remarkable properties of the brain. Much knowledge has been gained over the past few decades regarding the molecular correlates of memory formation. Once a memory is forged, however, the molecular events that provide permanence are as of yet unclear. Studies in multiple organisms have revealed that circadian rhythmicity is important for the formation, stability, and recall of memories [1]. The neuronal events that provide this link need to be explored further. This article will discuss the findings related to the circadian regulation of memory-dependent processes in the hippocampus. Specifically, the circadian-controlled MAP kinase and cAMP signal transduction pathway plays critical roles in the consolidation of hippocampus-dependent memory. A series of studies have revealed the circadian oscillation of this pathway within the hippocampus, an activity that is absent in memory-deficient, transgenic mice lacking Ca2+-stimulated adenylyl cyclases. Interference with these oscillations proceeding the cellular memory consolidation period impairs the persistence of hippocampus-dependent memory. These data suggest that the persistence of long-term memories may depend upon reactivation of this signal transduction pathway in the hippocampus during the circadian cycle. New data reveals the dependence of hippocampal oscillation in MAPK activity on the SCN, again underscoring the importance of this region in maintaining the circadian physiology of memory. Finally, the downstream ramification of these oscillations in terms of gene expression and epigenetics should be considered, as emerging evidence is pointing strongly to a circadian link between epigenetics and long term synaptic plasticity.

  14. An Enquiry concerning the nature of Conceptual Categories: a case-study on the social dimension of human cognition

    Directory of Open Access Journals (Sweden)

    John eStewart

    2014-06-01

    Full Text Available Cognitive Science, in all its guises, has not yet accorded any fundamental importance to the social dimension of human cognition. In order to illustrate the possibilities that have not so far been developed, this article seeks to pursue the idea, first put forward by Durkheim, that the major categories which render conceptual thought possible may actually have a social origin. Durkheim illustrated his thesis, convincingly enough, by examining the societies of Australian aborigines. The aim here is to extend this idea to cover the case of the conceptual categories underpinning modern Western science, as they developed historically first in Ancient Greece, and then at the Renaissance. These major non-empirical concepts include those of abstract Space (Euclidean space, perfectly homogeneous in all its dimensions; abstract Time (conceived as spatially linearized, with the possibility of imaginatively going back and forth; and a number of canonical logical categories (equality, abstract quantity, essential versus accidental properties, the continuous and the discontinuous, the transcendental…. Sohn-Rethel has proposed that the heart of the conceptual categories in question is to be found in an analysis of the exchange abstraction. This hypothesis will be fleshed out by examining the co-emergence of new social structures and new forms of conceptual thought in the course of historical evolution. This includes the Renaissance, which saw the emergence of both Capitalism and Modern Science; and on the contemporary situation, where the form of social life is dominated by financial speculation which goes together with the advent of automation in the processes of production. It is concluded that Cognitive Science, and in particular the nascent paradigm of Enaction, would do well to broaden its transdisciplinary scope to include the dimensions of sociology and anthropology.

  15. An enquiry concerning the nature of conceptual categories: a case-study on the social dimension of human cognition.

    Science.gov (United States)

    Stewart, John

    2014-01-01

    Cognitive Science, in all its guises, has not yet accorded any fundamental importance to the social dimension of human cognition. In order to illustrate the possibilities that have not so far been developed, this article seeks to pursue the idea, first put forward by Durkheim, that the major categories which render conceptual thought possible may actually have a social origin. Durkheim illustrated his thesis, convincingly enough, by examining the societies of Australian aborigines. The aim here is to extend this idea to cover the case of the conceptual categories underpinning modern Western science, as they developed historically first in Ancient Greece, and then at the Renaissance. These major non-empirical concepts include those of abstract Space (Euclidean space, perfectly homogeneous in all its dimensions); abstract Time (conceived as spatially linearized, with the possibility of imaginatively going back and forth); and a number of canonical logical categories (equality, abstract quantity, essential versus accidental properties, the continuous and the discontinuous, the transcendental…). Sohn-Rethel (1978) has proposed that the heart of the conceptual categories in question is to be found in an analysis of the exchange abstraction. This hypothesis will be fleshed out by examining the co-emergence of new social structures and new forms of conceptual thought in the course of historical evolution. This includes the Renaissance, which saw the emergence of both Capitalism and Modern Science; and on the contemporary situation, where the form of social life is dominated by financial speculation which goes together with the advent of automation in the processes of production. It is concluded that Cognitive Science, and in particular the nascent paradigm of Enaction, would do well to broaden its transdisciplinary scope to include the dimensions of sociology and anthropology.

  16. Optimization of automation: I. Estimation method of cognitive automation rates reflecting the effects of automation on human operators in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Kim, Jong Hyun; Seong, Poong Hyun

    2014-01-01

    Highlights: • We propose an estimation method of the automation rate by taking the advantages of automation as the estimation measures. • We conduct the experiments to examine the validity of the suggested method. • The higher the cognitive automation rate is, the greater the decreased rate of the working time will be. • The usefulness of the suggested estimation method is proved by statistical analyses. - Abstract: Since automation was introduced in various industrial fields, the concept of the automation rate has been used to indicate the inclusion proportion of automation among all work processes or facilities. Expressions of the inclusion proportion of automation are predictable, as is the ability to express the degree of the enhancement of human performance. However, many researchers have found that a high automation rate does not guarantee high performance. Therefore, to reflect the effects of automation on human performance, this paper proposes a new estimation method of the automation rate that considers the effects of automation on human operators in nuclear power plants (NPPs). Automation in NPPs can be divided into two types: system automation and cognitive automation. Some general descriptions and characteristics of each type of automation are provided, and the advantages of automation are investigated. The advantages of each type of automation are used as measures of the estimation method of the automation rate. One advantage was found to be a reduction in the number of tasks, and another was a reduction in human cognitive task loads. The system and the cognitive automation rate were proposed as quantitative measures by taking advantage of the aforementioned benefits. To quantify the required human cognitive task loads and thus suggest the cognitive automation rate, Conant’s information-theory-based model was applied. The validity of the suggested method, especially as regards the cognitive automation rate, was proven by conducting

  17. Rats use hippocampus to recognize positions of objects located in an inaccessible space

    Czech Academy of Sciences Publication Activity Database

    Levčík, David; Nekovářová, Tereza; Stuchlík, Aleš; Klement, Daniel

    2013-01-01

    Roč. 23, č. 2 (2013), s. 153-161 ISSN 1050-9631 R&D Projects: GA MZd(CZ) NT13386; GA ČR(CZ) GBP304/12/G069 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : hippocampus * object-position recognition * operant conditioning * muscimol * spatial cognition Subject RIV: FH - Neurology Impact factor: 4.302, year: 2013

  18. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Mita, Tsuneyuki; Furukawa-Hibi, Yoko; Takeuchi, Hideyuki; Hattori, Hisashi; Yamada, Kiyofumi; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2015-10-15

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by a decline in cognitive abilities and the appearance of β-amyloid plaques in the brain. Although the pathogenic mechanisms associated with AD are not fully understood, activated microglia releasing various neurotoxic factors, including pro-inflammatory cytokines and oxidative stress mediators, appear to play major roles. Here, we investigated the therapeutic benefits of a serum-free conditioned medium (CM) derived from the stem cells of human exfoliated deciduous teeth (SHEDs) in a mouse model of AD. The intranasal administration of SHEDs in these mice resulted in substantially improved cognitive function. SHED-CM contained factors involved in multiple neuroregenerative mechanisms, such as neuroprotection, axonal elongation, neurotransmission, the suppression of inflammation, and microglial regulation. Notably, SHED-CM attenuated the pro-inflammatory responses induced by β-amyloid plaques, and generated an anti-inflammatory/tissue-regenerating environment, which was accompanied by the induction of anti-inflammatory M2-like microglia. Our data suggest that SHED-CM may provide significant therapeutic benefits for AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Lukas M. von Ziegler

    2018-03-01

    Full Text Available Summary: The hippocampal formation is a brain structure essential for higher-order cognitive functions. It has a complex anatomical organization and cellular composition, and hippocampal subregions have different properties and functional roles. In this study, we used SWATH-MS to determine whether the proteomes of hippocampus areas CA1 and CA3 can explain the commonalities or specificities of these subregions in basal conditions and after recognition memory. We show that the proteomes of areas CA1 and CA3 are largely different in basal conditions and that differential changes and dynamics in protein expression are induced in these areas after recognition of an object or object location. While changes are consistent across both recognition paradigms in area CA1, they are not in area CA3, suggesting distinct proteomic responses in areas CA1 and CA3 for memory formation. : How does the proteome differ in hippocampus areas CA1 and CA3? von Ziegler et al. identify the proteomes of areas CA1 and CA3 and characterize their dynamics during different recognition processes in adult mice. Keywords: hippocampus, areas CA1 and CA3, proteome, dynamics, object memory, object location memory, mass spectrometry, SWATH-MS, mice, bioinformatic tools

  20. Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Apiwat Sirichoat

    2015-10-01

    Full Text Available Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol while treated rats received asiatic acid (30 mg/kg orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis.

  1. Hebb, pandemonium and catastrophic hypermnesia: the hippocampus as a suppressor of inappropriate associations.

    Science.gov (United States)

    McNaughton, Neil; Wickens, Jeff

    2003-01-01

    The hippocampus has been proposed as a key component of a "behavioural inhibition system". We explore the implications of this idea for the nature of associative memory--i.e. learning that is distinct from the moulding of response sequences by error correction and reinforcement. It leads to the view that all associative memory depends on purely Hebbian mechanisms. Memories involve acquisition of new goals not the strengthening of new stimulus-response links. Critically, memories will consist of affectively positive and affectively negative associations as well "purely cognitive" information. The hippocampus is seen as a supervisor that is normally "just checking" information about current available goals. When one available goal is pre-eminent there is no hippocampal output and the goal controls the response system. When two or more goals are similarly and highly primed there is conflict. This is detected by the hippocampus which sends output that increases the valence of affectively negative perceptions and so resolves the conflict by suppressing more aversive goals. Such conflict resolution occurs with innate as well as acquired goals and is fundamentally non-memorial. But, in memory paradigms, it can often act to suppress interference on the current trial and, through Hebbian association of the increase in negative affect, decrease the probability of interference on later trials and during consolidation. Both memory-driven and innate behaviour is made hippocampal-dependent by innate and acquired conflicting tendencies and not the class of stimulus presented.

  2. Deficient plasticity in the hippocampus and the spiral of addiction: focus on adult neurogenesis.

    Science.gov (United States)

    Canales, Juan J

    2013-01-01

    Addiction is a complex neuropsychiatric disorder which causes disruption at multiple levels, including cognitive, emotional, and behavioral domains. Traditional biological theories of addiction have focused on the mesolimbic dopamine pathway and the nucleus accumbens as anatomical substrates mediating addictive-like behaviors. More recently, we have begun to recognize the engagement and dynamic influence of a much broader circuitry which encompasses the frontal cortex, the amygdala, and the hippocampus. In particular, neurogenesis in the adult hippocampus has become a major focus of attention due to its ability to influence memory, motivation, and affect, all of which are disrupted in addiction. First, I summarize toxicological data that reveal strongly suppressive effects of drug exposure on adult hippocampal neurogenesis. Then, I discuss the impact of deficient neurogenesis on learning and memory function, stress responsiveness and affective behavior, as they relate to addiction. Finally, I examine recent behavioral observations that implicate neurogenesis in the adult hippocampus in the emergence and maintenance of addictive behavior. The evidence reviewed here suggests that deficient neurogenesis is associated with several components of the downward spiraling loop that characterizes addiction, including elevated sensitivity to drug-induced reward and reinforcement, enhanced neurohormonal responsiveness, emergence of a negative affective state, memory impairment, and inflexible behavior.

  3. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus.

    Science.gov (United States)

    Connor, David A; Kutlu, Munir G; Gould, Thomas J

    2017-07-01

    Learned safety, a learning process in which a cue becomes associated with the absence of threat, is disrupted in individuals with post-traumatic stress disorder (PTSD). A bi-directional relationship exists between smoking and PTSD and one potential explanation is that nicotine-associated changes in cognition facilitate PTSD emotional dysregulation by disrupting safety associations. Therefore, we investigated whether nicotine would disrupt learned safety by enhancing fear associated with a safety cue. In the present study, C57BL/6 mice were administered acute or chronic nicotine and trained over three days in a differential backward trace conditioning paradigm consisting of five trials of a forward conditioned stimulus (CS)+ (Light) co-terminating with a footshock unconditioned stimulus followed by a backward CS- (Tone) presented 20 s after cessation of the unconditioned stimulus. Summation testing found that acute nicotine disrupted learned safety, but chronic nicotine had no effect. Another group of animals administered acute nicotine showed fear when presented with the backward CS (Light) alone, indicating the formation of a maladaptive fear association with the backward CS. Finally, we investigated the brain regions involved by administering nicotine directly into the dorsal hippocampus, ventral hippocampus, and prelimbic cortex. Infusion of nicotine into the dorsal hippocampus disrupted safety learning.

  4. Response of extracellular zinc in the ventral hippocampus against novelty stress.

    Science.gov (United States)

    Takeda, Atsushi; Sakurada, Naomi; Kanno, Shingo; Minami, Akira; Oku, Naoto

    2006-10-01

    An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.

  5. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  6. Modulating Arm Swing Symmetry with Cognitive Load: A Window on Rhythmic Spinal Locomotor Networks in Humans?

    Science.gov (United States)

    Killeen, Tim; Easthope, Christopher S; Filli, Linard; Linnebank, Michael; Curt, Armin; Bolliger, Marc; Zörner, Björn

    2017-05-15

    In healthy subjects, changes in arm swing symmetry while walking are observed when a cognitive dual task is added, with a tendency toward left-dominant arm swing as cognitive load increases. We applied a modified Stroop word/color naming paradigm to investigate this effect in spinal cord injured (SCI) patients. Six patients with cervical SCI (cSCI), 6 with thoracic injuries (tSCI; all 12 patients American Spinal Injury Association [ASIA] Injury Score [AIS]D), and 12 healthy, matched controls underwent three-dimensional 3D gait analysis while walking normally at a comfortable speed (NW) and when performing an additional congruent (CS) and incongruent (IS) Stroop task. An arm swing symmetry index (ASI)-in which positive values indicate proportionally more movement on the left and vice versa-was calculated. Even in the baseline NW condition, all three subject groups showed larger arm movements on the left. In controls, ASI increased (NW, 13.7 ± 6.3; CS, 16.6 ± 6.4; IS, 19.6 ± 7.8) as the task became more demanding. A larger shift in tSCI patients (NW, 15.8 ± 6.0; CS, 23.4 ± 3.8; IS, 30.7 ± 4.4) was driven by a significant reduction in right wrist trajectory (p = 0.014), whereas cSCI patients showed a small reduction in mean ASI with high variability (NW, 14.2 ± 10.7; CS, 9.3 ± 13.5; IS, 6.0 ± 12.9). The effect of the IS task on ASI compared to baseline (NW) was significantly different between tSCI (+12.5 ± 6.3) and cSCI (-8.2 ± 6.0) patients (p = 0.011). Disruption of the long propriospinal connections coordinating arm and leg movements during walking may explain the heightened sensitivity to manipulation of cognitive load in tSCI, whereas the more robust automaticity in cSCI may be attributed to impaired supraspinal inputs in the context of preserved intraspinal pathways.

  7. Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition.

    Science.gov (United States)

    Pezzulo, Giovanni; Kemere, Caleb; van der Meer, Matthijs A A

    2017-05-01

    Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors. The same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with specific functional networks. Theta sequences arise when inference is coupled to the animal's action-perception cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when the animal is decoupled from the action-perception cycle and may support offline cognitive processing, such as memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can shed light on the mechanisms of future-oriented cognition in humans. © 2017 New York Academy of Sciences.

  8. W(h)ither the Oracle? Cognitive biases and other human challenges of integrated environmental modeling

    Science.gov (United States)

    Glynn, Pierre D.; Ames, D.P.; Quinn, N. W. T.; Rizzoli, A.E.

    2014-01-01

    Integrated environmental modeling (IEM) can organize and increase our knowledge of the complex, dynamic ecosystems that house our natural resources and control the quality of our environments. Human behavior, however, must be taken into account. Human biases/heuristics reflect adaptation over our evolutionary past to frequently experienced situations that affected our survival and that provided sharply distinguished feedbacks at the level of the individual. Unfortunately, human behavior is not adapted to the more diffusely experienced, less frequently encountered, problems and issues that IEM typically seeks to address in the simulation of natural resources and environments. While seeking inspiration from the prophetic traditions of the Oracle of Delphi, several human biases are identified that may affect how the science base of IEM is assembled, and how IEM results are interpreted and used. These biases are supported by personal observations, and by the findings of behavioral scientists. A process for critical analysis is proposed that solicits explicit accounting and cognizance of potential human biases. A number of suggestions are made to address the human challenges of IEM, in addition to maintaining attitudes of watchful humility, open-mindedness, honesty, and transparent accountability. These include creating a new area of study in the behavioral biogeosciences, using structured processes for engaging the modeling and stakeholder community in IEM, and using “red teams” to increase resilience of IEM constructs and use.

  9. Design of an Adaptive Human-Machine System Based on Dynamical Pattern Recognition of Cognitive Task-Load.

    Science.gov (United States)

    Zhang, Jianhua; Yin, Zhong; Wang, Rubin

    2017-01-01

    This paper developed a cognitive task-load (CTL) classification algorithm and allocation strategy to sustain the optimal operator CTL levels over time in safety-critical human-machine integrated systems. An adaptive human-machine system is designed based on a non-linear dynamic CTL classifier, which maps a set of electroencephalogram (EEG) and electrocardiogram (ECG) related features to a few CTL classes. The least-squares support vector machine (LSSVM) is used as dynamic pattern classifier. A series of electrophysiological and performance data acquisition experiments were performed on seven volunteer participants under a simulated process control task environment. The participant-specific dynamic LSSVM model is constructed to classify the instantaneous CTL into five classes at each time instant. The initial feature set, comprising 56 EEG and ECG related features, is reduced to a set of 12 salient features (including 11 EEG-related features) by using the locality preserving projection (LPP) technique. An overall correct classification rate of about 80% is achieved for the 5-class CTL classification problem. Then the predicted CTL is used to adaptively allocate