WorldWideScience

Sample records for human hepatoma g2

  1. [Ursodeoxycholic acid induced apoptosis of human hepatoma cells HepG2 and SMMC-7721 bymitochondrial-mediated pathway].

    Science.gov (United States)

    Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin

    2014-12-02

    To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.

  2. Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Gabriel Yarmush

    2016-01-01

    Full Text Available Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2 by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.

  3. Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-05-01

    Full Text Available Sulforaphane (SFN exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane-N-acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H2O2 challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2-antioxidant response element (ARE pathway and the induction of intracellular glutathione (GSH played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.

  4. Chylomicron remnant-vitamin A metabolism by the human hepatoma cell line HepG2

    International Nuclear Information System (INIS)

    Lenich, C.M.

    1985-01-01

    The binding and metabolism of [ 3 H] vitamin A-containing chylomicron remnants (CMR) by the human hepatoma cell line Hep G2 was studied. Mesenteric lymph chylomicrons (CM) were collected from [ 3 H] retinol-fed rats and incubated with lipoprotein-lipase to obtain CMR. At 4 0 C, specific CMR binding was inhibited by excess unlabeled CMR. Specific binding predominated at low concentrations and approached saturation while total binding continued to increase over an extensive concentration range (0.45-32 μg triglyceride/ml). CMR uptake at 37 0 C was greater than that of CM and at least 100 times more efficient than the fluid-phase pinocytosis of sucrose. CMR binding increased as the extent of lipolysis obtained by incubation with lipoprotein-lipase increased. Addition of human apolipoprotein E enhanced both CMR and CM binding. After internalization, Hep G2 cells hydrolyzed CMR-[ 3 H]retinyl esters and radiolabeled metabolites accumulated as a function of time and temperature. As a function of the concentration of [ 3 H] VA initially cell-bound, retinol and retinyl esters accumulated as the major cell-associated metabolites. By contrast, retinol was the major metabolite in the medium only at low VA concentrations as other more polar metabolites accumulated at higher concentrations (> 110 pmol VA/mg cell protein). The accumulation of CMR-VA metabolites in the medium was reduced when cells were preincubated in retinol-supplemented media. Also, the specific activity of retinol in the medium closely resembled that in the cell indicating that CMR-VA mixed with the cellular store prior to its secretion

  5. Enhancement of esculetin on Taxol-induced apoptosis in human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Kuo, H.-C.; Lee, H.-J.; Hu, C.-C.; Shun, H.-I; Tseng, T.-H.

    2006-01-01

    The potential use of low dose chemotherapy has been appealing since lower dosages are more attainable during cancer therapy and cause less toxicity in patients. Combination therapy of Taxol, a promising frontline chemotherapy agent, with natural anti-tumor agents that are considerably less toxic with a capability of activating additional apoptotic signals or inhibiting survival signals may provide a rational molecular basis for novel chemotherapeutic strategies. Esculetin, a well-known lipoxygenase inhibitor, showed an inhibitory effect on the cell cycle progression of HL-60 cells in our previous study. In this report, the effects of a concomitant administration of esculetin and Taxol were investigated in human hepatoma HepG2 cells. Firstly, esculetin alone could exert an antiproliferation effect together with an inhibitory effect on the activation of ERKs and p38 MAPK. As compared to the treatment with Taxol only, a co-administration with esculetin and Taxol could result in a further enhancement of apoptosis as revealed by DNA fragmentation assay and Annexin-V-based assay. Meanwhile, immunoblotting analysis also showed that the co-administration of esculetin and Taxol could increase the expression of Bax and the cytosolic release of cytochrome C and enhance the expression of Fas and Fas ligand while the activation of caspase-8 and caspase-3 was also increased. Finally, the ERK cascade was proven to be involved in the enhancement of esculetin on the Taxol-induced apoptosis

  6. Radiosensitization by inhibiting survivin in human hepatoma HepG2 cells to high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Wu Qingfeng; Li Ping; Gong Li; Hao Jifang; Dai Zhongying; Matsumoto, Yoshitaka; Furusawa, Yoshiya

    2011-01-01

    In this study, whether survivin plays a direct role in mediating high-linear energy transfer (LET) radiation resistance in human hepatoma cells was investigated. Small interfering RNA (siRNA) targeting survivin mRNA was designed and transfected into human hepatoma HepG2 cells. Real-time polymerase chain reaction (PCR) and western blotting analyses revealed that survivin expression in HepG2 cells decreased at both transcriptional and post-transcriptional levels after treatment with survivin-specific siRNA. Caspase-3 activity was determined with a microplate reader assay as well. Following exposure to high-LET carbon ions, a reduced clonogenic survival effect, increased apoptotic rates and caspase-3 activity were observed in the cells treated with the siRNA compared to those untreated with the siRNA. The cells with transfection of the survivin-specific siRNA also increased the level of G 2 /M arrest. These results suggest that survivin definitely plays a role in mediating the resistance of HepG2 cells to high-LET radiation and depressing survivin expression might be useful to improve the therapeutic efficacy of heavy ions for radioresistant solid tumors. (author)

  7. microRNA-mediated resistance to hypoglycemia in the HepG2 human hepatoma cell line

    International Nuclear Information System (INIS)

    Ueki, Satomi; Murakami, Yuko; Yamada, Shoji; Kimura, Masaki; Saito, Yoshimasa; Saito, Hidetsugu

    2016-01-01

    It is generally accepted that the energy resources of cancer cells rely on anaerobic metabolism or the glycolytic system, even if they have sufficient oxygen. This is known as the Warburg effect. The cells skillfully survive under hypoglycemic conditions when their circumstances change, which probably at least partly involves microRNA (miRNA)-mediated regulation. To determine how cancer cells exploit miRNA-mediated epigenetic mechanisms to survive in hypoglycemic conditions, we used DNA microarray analysis to comprehensively and simultaneously compare the expression of miRNAs and mRNAs in the HepG2 human hepatoma cell line and in cultured normal human hepatocytes. The hypoglycemic condition decreased the expression of miRNA-17-5p and -20a-5p in hepatoma cells and consequently upregulated the expression of their target gene p21. These regulations were also confirmed by using antisense inhibitors of these miRNAs. In addition to this change, the hypoglycemic condition led to upregulated expression of heat shock proteins and increased resistance to caspase-3-induced apoptosis. However, we could not identify miRNA-mediated regulations, despite using comprehensive detection. Several interesting genes were also found to be upregulated in the hypoglycemic condition by the microarray analysis, probably because of responding to this cellular stress. These results suggest that cancer cells skillfully survive in hypoglycemic conditions, which frequently occur in malignancies, and that some of the gene regulation of this process is manipulated by miRNAs. The online version of this article (doi:10.1186/s12885-016-2762-7) contains supplementary material, which is available to authorized users

  8. Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2

    International Nuclear Information System (INIS)

    Niklas, Jens; Noor, Fozia; Heinzle, Elmar

    2009-01-01

    Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given compound at concentrations considerably below EC 50 values are usually not evaluated. These subtoxic effects are difficult to identify but may eventually cause severe and costly long term problems such as idiosyncratic hepatotoxicity. We determined the toxicity of three hepatotoxic compounds, namely amiodarone, diclofenac and tacrine on the human hepatoma cell line Hep G2 using an online kinetic respiration assay and analysed the effects of subtoxic concentrations of these drugs on the cellular metabolism by using metabolic flux analysis. Several changes in the metabolism could be detected upon exposure to subtoxic concentrations of the test compounds. Upon exposure to diclofenac and tacrine an increase in the TCA-cycle activity was observed which could be a signature of an uncoupling of the oxidative phosphorylation. The results indicate that metabolic flux analysis could serve as an invaluable novel tool for the investigation of the effects of drugs. The described methodology enables tracking the toxicity of compounds dynamically using the respiration assay in a range of concentrations and the metabolic flux analysis permits interesting insights into the changes in the central metabolism of the cell upon exposure to drugs.

  9. Tyramine-O-sulfate is produced and secreted by human hepatoma cells, line HepG2

    International Nuclear Information System (INIS)

    Liu, M.C.; Yu, S.; Suiko, M.

    1987-01-01

    Human hepatoma cells, line HepG2, were metabolically labeled with [ 35 S]sulfate. The spent medium separated following 24 hr labeling was subjected to ultrafiltration using an Amicon Centricon unit. The filtrate obtained was analyzed by a two-dimensional separation procedure combining high-voltage electrophoresis and thin-layer chromatography. The autoradiograph taken from the cellulose thin-layer plate following the analysis revealed the presence of tyramine-O-[ 35 ]sulfate in addition to tyrosine-O-[ 35 ]sulfate. Using adenosine, 3'-phosphate, 5'-phospho[ 35 S]sulfate as the sulfate donor, it was shown that tyramine was actively sulfated to form tyramine-O-[ 35 S]sulfate as catalyzed by the sulfotransferase(s) present in dog liver homogenate. Attempts to decarboxylate tyrosine-O-sulfate to tyramine-O-sulfate using intrinsic p-tyrosine decarboxylase present in dog liver homogenate, however, were unsuccessful. Employing purified Streptococcus faecalis tyrosine decarboxylase, it was shown that L-tyrosine was actively decarboxylated to tyramine, whereas tyrosine-O-sulfate could not serve as a substrate

  10. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Shi Lixin

    2011-01-01

    Full Text Available Abstract Cadmium telluride quantum dots (Cdte QDs have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  11. GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 signaling and cell migration in human hepatoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    ZhenZhen Hu

    Full Text Available BACKGROUND: Epidermal growth factor (EGF signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis.

  12. Effects of PARP-1 inhibitors AG-014699 and AZD2281 on proliferation and apoptosis of human hepatoma cell line HepG2

    Directory of Open Access Journals (Sweden)

    DU Senrong

    2015-06-01

    Full Text Available ObjectiveTo observe the inhibitory and pro-apoptotic effects of two poly(ADP-ribose polymerase (PARP-1 inhibitors, AG-014699 and AZD2281, on human hepatoma HepG2 cells and preliminarily explore the mechanism by which AG-014699 induces HepG2 cell apoptosis, and to provide a new therapeutic target for hepatoma. MethodsThe effects of different concentrations of AG-014699 and AZD2281 on HepG2 cell proliferation were determined by MTT assay. The cell apoptosis rate was measured by flow cytometry. The expression levels of caspase-3 and caspase-8 were measured by Western Blot. Inter-group comparison was made by t test. ResultsBoth AG-014699 and AZD2281 suppressed HepG2 cell proliferation in a time- and dose-dependent manner. However, the sensitivity of HepG2 cells to the two PARP-1 inhibitors was different. The half-maximal inhibitory concentrations of AG-014699 and AZD2281 at 48 h determined by MTT assay were about 20 μmol/L and 400 μmol/L, respectively. Flow cytometry and Western blot were not used to evaluate the apoptosis of HepG2 cells exposed to AZD2281 to which these cells were not sensitive. HepG2 cell apoptosis could be induced by 10, 30, and 50 μmol/L AG-014699, and the highest apoptosis rate at 48 h was significantly higher than that of the control group (3100%±2.13% vs 09%±0013%, P<0.01. Compared with those in the control group, the protein levels of caspase-3 and caspase-8 in HepG2 cells after 48-h exposure to 30, and 50 μmol/L AG-014699 increased. ConclusionThe two PARP-1 inhibitors AG-014699 and AZD2281 can inhibit the proliferation of HepG2 cells, which showed different sensitivities to the two inhibitors. AG-014699 can induce HepG2 cell apoptosis by up-regulating the protein expression of caspase-3 and caspase-8.

  13. Effects of the peroxisome proliferator clofibric acid on superoxide dismutase expression in the human HepG2 hepatoma cell line.

    Science.gov (United States)

    Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M

    1999-09-15

    We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.

  14. Basil extract inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1′-hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Delatour, T.; Rietjens, I.M.C.M.

    2008-01-01

    The effects of a basil extract on the sulfation and concomitant DNA adduct formation of the proximate carcinogen 1′-hydroxyestragole were studied using rat and human liver S9 homogenates and the human hepatoma cell line HepG2. Basil was chosen since it contains the procarcinogen estragole that can

  15. Basil extract inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1'-hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Delatour, T.; Rietjens, I.M.C.M.

    2008-01-01

    The effects of a basil extract on the sulfation and concomitant DNA adduct formation of the proximate carcinogen 1¿-hydroxyestragole were studied using rat and human liver S9 homogenates and the human hepatoma cell line HepG2. Basil was chosen since it contains the procarcinogen estragole that can

  16. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2 and human breast (MCF7 cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  17. 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells.

    Science.gov (United States)

    Lamy, Evelyn; Kassie, Fekadu; Gminski, Richard; Schmeiser, Heinz H; Mersch-Sundermann, Volker

    2004-01-15

    3-Nitrobenzanthrone (3-NBA), identified in diesel exhaust and in airborne particulate matter, is a potent mutagen in Salmonella, induces micronuclei formation in mice and in human cells and DNA adducts in rats. In the present study, we investigated the genotoxic potency of 3-NBA in human HepG2 cells using the micronucleus (MN) assay and the single cell gel electrophoresis (SCGE). 3-NBA caused a genotoxic effect at concentrations > or =12 nM in both assays. In the micronucleus assay, we found 98.7+/-10.3 MN/1000 BNC at a concentration of 100 nM 3-NBA in comparison to 27.3+/-0.6 MN/1000 BNC with the negative control. At the same concentration, the DNA-migration (SCGE) showed an Olive tail moment (OTM) of 2.7+/-0.45 and %DNA in the tail of 8.28+/-0.76; OTM and %DNA in the tail of cells treated with the negative control were 0.73+/-0.08 and 2.81+/-0.30, respectively. The results are discussed under consideration of former studies.

  18. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  19. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  20. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  1. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  2. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    Science.gov (United States)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. Copyright © 2013. Published by

  3. Rosemary Extracts Upregulate Nrf2, Sestrin2, and MRP2 Protein Level in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-pei Tong

    2017-01-01

    Full Text Available In the past few decades, the incidence of liver cancer has been rapidly rising across the world. Rosemary is known to possess antioxidant activity and is used as natural antioxidant food preservative. It is proposed to have anticancer activity in treating different tumor models. In this study, we try to explore the impact of rosemary extracts on upregulating the level of Nrf2 and Nrf2-regulatory proteins, Sestrin2 and MRP2 in HepG2 cells, and to speculate its potential mechanism. The anticancer activity of rosemary extract, including its polyphenolic diterpenes carnosic acid and carnosol, was evaluated to understand the potential effect on HepG2 cells. Rosemary extract, carnosic acid, and carnosol induced the expression of Sestrin2 and MRP2 associate with enhancement of Nrf2 protein level in HepG2 cells, in which carnosic acid showed most obvious effect. Although the activation pathway of Nrf2/ARE was not exactly assessed, it can be assumed that the enhancement of expression of Sestrin2 and MRP2 may result from upregulation of Nrf2.

  4. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5.

    Science.gov (United States)

    Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi

    2013-03-01

    Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.

  5. 2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms

    International Nuclear Information System (INIS)

    Wang Shuchi; Chung, Jing-Gung; Chen, C.-H.; Chen, S.-C.

    2006-01-01

    4-Aminobiphenyl (4-ABP) and its analogue, 2-aminobiphenyl (2-ABP), were examined for their ability to induce oxidative DNA damage in Hep G2 cells. Using the alkaline comet assay, we showed that 2-ABP and 4-ABP (25-200 μM) were able to induce the DNA damage in Hep G2 cells. With both compounds, formation of intracellular reactive oxygen species (ROS) was detected using flow cytometry analysis. Post-treatment of 2-ABP and 4-ABP-treated cells by endonuclease III (Endo III) or formamidopyrimidine-DNA glycosylase (Fpg) to determine the formation of oxidized pyrimidines or oxidized purines showed a significant increase of the extent of DNA migration. This indicated that oxidative DNA damage occurs in Hep G2 cells after exposure to 2-ABP and 4-ABP. This assumption was further substantiated by the fact that the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-α-phenylnitrone (PBN), decreased DNA damage significantly. Furthermore, addition of the catalase (100 U/ml) caused a decrease in the DNA damage induced by 2-ABP or 4-ABP, indicating that H 2 O 2 is involved in ABP-induced DNA damage. Pre-incubation of the cells with the iron chelator desferrioxamine (DFO) (1 mM) and with the copper chelator neocupronine (NC) (100 μM) also decreased DNA damage in cells treated with 200 μM 2-ABP or 200 μM 4-ABP, while the calcium chelator {1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester}(BAPTA/AM) (10 μM) decreased only DNA strand breaks in cells exposed to 4-ABP. This suggested that ions are involved in the formation of DNA strand breaks. Using RT-PCR and Western blotting, lower inhibition of the expression of the OGG1 gene and of the OGG1 protein was observed in cells treated with 4-ABP, and 2-ABP-treated cells showed a marked reduction in the expression of OGG1 gene and OGG1 protein. Taken together, our finding indicated the mechanisms of induced oxidative DNA damage in Hep G2 cell by 2-ABP and 4-ABP are different, although both

  6. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2.

    Science.gov (United States)

    Maisanaba, Sara; Hercog, Klara; Filipic, Metka; Jos, Ángeles; Zegura, Bojana

    2016-03-05

    Montmorillonite, also known as Cloisite(®)Na(+) (CNa(+)), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa(+) arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa(+) (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa(+) on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa(+) increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa(+) is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa(+) are needed for hazard identification and human safety assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Saponins isolated from Asparagus induce apoptosis in human hepatoma cell line HepG2 through a mitochondrial-mediated pathway

    Science.gov (United States)

    Ji, Y.; Ji, C.; Yue, L.; Xu, H.

    2012-01-01

    Objective Many scientific studies have shown that Asparagus officinalis has an antitumour effect and enhances human immunity, but the active components and the antitumour mechanisms are unclear. We investigated the effects of saponins isolated from Asparagus on proliferation and apoptosis in the human hepatoma cell line HepG2. Methods HepG2 cells were treated with varying concentrations of Asparagus saponins at various times. Using mtt and flow cytometry assays, we evaluated the effects of Asparagus saponins on the growth and apoptosis of HepG2 cells. Transmission electron microscopy was used to observe the morphology of cell apoptosis. Confocal laser scanning microscopy was used to analyze intracellular calcium ion concentration, mitochondrial permeability transition pore (mptp), and mitochondrial membrane potential (mmp). Spectrophotometry was applied to quantify the activity of caspase-9 and caspase-3. Flow cytometry was used to investigate the levels of reactive oxygen species (ros) and pH, and the expressions of Bcl2, Bax, CytC, and caspase-3, in HepG2 cells. Results Asparagus saponins inhibited the growth of HepG2 cells in a dose-dependent manner. The median inhibitory concentration (IC50) was 101.15 mg/L at 72 hours. The apoptosis morphology at 72 hours of treatment was obvious, showing cell protuberance, concentrated cytoplasm, and apoptotic bodies. The apoptotic rates at 72 hours were 30.9%, 51.7%, and 62.1% (for saponin concentrations of 50 mg/L, 100 mg/L, 200 mg/L). Treatment with Asparagus saponins for 24 hours increased the intracellular level of ros and Ca2+, lowered the pH, activated intracellular mptp, and decreased mmp in a dose-dependent manner. Treatment also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl2, upregulated the expression of Bax, and induced release of CytC and activation of caspase-3. Conclusions Asparagus saponins induce apoptosis in HepG2 cells through a mitochondrial-mediated and caspase

  8. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-07-01

    Full Text Available Xi Liu,1–4 Yan Liu,1–4 Pengcheng Zhang,1–4 Xiaodong Jin,1–3 Xiaogang Zheng,1–4 Fei Ye,1–4 Weiqiang Chen,1–3 Qiang Li1–3 1Institute of Modern Physics, 2Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, 3Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 4School of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract: Reductive drug-functionalized gold nanoparticles (AuNPs have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ moiety, and then thioctyl TPZ (TPZs-modified AuNPs (TPZs-AuNPs were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. Keywords: AuNPs, radiation enhancement, synergistic effect, human hepatoma cells, hydroxyl radical production

  9. Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Maisanaba, Sara, E-mail: saramh@us.es [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Hercog, Klara; Filipic, Metka [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Jos, Ángeles [Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González no. 2, 41012 Seville (Spain); Zegura, Bojana [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Vecna pot 111, 1000 Ljubljana (Slovenia)

    2016-03-05

    Highlights: • Cloisite{sup ®}Na{sup +} has a wide range of well-documented and novel applications. • Cloisite{sup ®}Na{sup +} induces micronucleus, but not nuclear bridges or nuclear buds in HepG2 cells. • Cloisite{sup ®}Na{sup +} induces changes in the gene expression. • Gene alteration is presented mainly after 24 h of exposure to Cloisite{sup ®}Na{sup +}. - Abstract: Montmorillonite, also known as Cloisite{sup ®}Na{sup +} (CNa{sup +}), is a natural clay with a wide range of well-documented and novel applications, such as pharmaceutical products or food packaging. Although considered a low toxic product, the expected increased exposure to CNa{sup +} arises concern on the potential consequences on human and environmental health especially as its genotoxicity has scarcely been investigated so far. Thus, we investigated, for the first time, the influence of non-cytotoxic concentrations of CNa{sup +} (15.65, 31.25 and 62.5 μg/mL) on genomic instability of human hepatoma cell line (HepG2) by determining the formation of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) with the Cytokinesis block micronucleus cytome assay. Further on we studied the influence of CNa{sup +} on the expression of several genes involved in toxicity mechanisms using the real-time quantitative PCR. The results showed that CNa{sup +} increased the number of MNi, while the numbers of NBUDs and NPBs were not affected. In addition it deregulated genes in all the groups studied, mainly after longer time of exposure. These findings provide the evidence that CNa{sup +} is potentially genotoxic. Therefore further studies that will elucidate the molecular mechanisms involved in toxic activity of CNa{sup +} are needed for hazard identification and human safety assessment.

  10. Measuring and modeling of binary mixture effects of pharmaceuticals and nickel on cell viability/cytotoxicity in the human hepatoma derived cell line HepG2

    International Nuclear Information System (INIS)

    Rudzok, S.; Schlink, U.; Herbarth, O.; Bauer, M.

    2010-01-01

    The interaction of drugs and non-therapeutic xenobiotics constitutes a central role in human health risk assessment. Still, available data are rare. Two different models have been established to predict mixture toxicity from single dose data, namely, the concentration addition (CA) and independent action (IA) model. However, chemicals can also act synergistic or antagonistic or in dose level deviation, or in a dose ratio dependent deviation. In the present study we used the MIXTOX model (EU project ENV4-CT97-0507), which incorporates these algorithms, to assess effects of the binary mixtures in the human hepatoma cell line HepG2. These cells possess a liver-like enzyme pattern and a variety of xenobiotic-metabolizing enzymes (phases I and II). We tested binary mixtures of the metal nickel, the anti-inflammatory drug diclofenac, and the antibiotic agent irgasan and compared the experimental data to the mathematical models. Cell viability was determined by three different methods the MTT-, AlamarBlue (registered) and NRU assay. The compounds were tested separately and in combinations. We could show that the metal nickel is the dominant component in the mixture, affecting an antagonism at low-dose levels and a synergism at high-dose levels in combination with diclofenac or irgasan, when using the NRU and the AlamarBlue assay. The dose-response surface of irgasan and diclofenac indicated a concentration addition. The experimental data could be described by the algorithms with a regression of up to 90%, revealing the HepG2 cell line and the MIXTOX model as valuable tool for risk assessment of binary mixtures for cytotoxic endpoints. However the model failed to predict a specific mode of action, the CYP1A1 enzyme activity.

  11. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    Science.gov (United States)

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  12. Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells.

    Science.gov (United States)

    Pezdirc, Marko; Žegura, Bojana; Filipič, Metka

    2013-09-01

    Heterocyclic aromatic amines (HAAs) are potential human carcinogens formed in well-done meats and fish. The most abundant are 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-Amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ). HAAs exert genotoxic activity after metabolic transformation by CYP1A enzymes, that is well characterized, however the genomic and intervening responses are not well explored. We have examined cellular and genomic responses of human hepatoma HepG2 cells after 24h exposure to HAAs. Comet assay revealed increase in formation of DNA strand breaks by PhIP, MeIQx and IQ but not 4,8-DiMeIQx, whereas increased formation of micronuclei was not observed. The four HAAs up-regulated expression of genes encoding metabolic enzymes CYP1A1, CYP1A2 and UGT1A1 and expression of TP53 and its downstream regulated genes CDKN1A, GADD45α and BAX. Consistent with the up-regulation of CDKN1A and GADD45α the cell-cycle analysis showed arrest in S-phase by PhIP and IQ, and in G1-phase by 4,8-DiMeIQx and MeIQx. The results indicate that upon exposure to HAAs the cells respond with the cell-cycle arrest, which enables cells to repair the damage or eliminate them by apoptosis. However, elevated expression of BCL2 and down-regulation of BAX may indicate that HAAs could suppress apoptosis meaning higher probability of damaged cells to survive and mutate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    International Nuclear Information System (INIS)

    Wu Qingfeng; Li Qiang; Jin Xiaodong; Liu Xinguo; Dai Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  14. Over-expression and siRNA of a novel environmental lipopolysaccharide-responding gene on the cell cycle of the human hepatoma-derived cell line HepG2

    International Nuclear Information System (INIS)

    Du Kejun; Chai Yubo; Hou Lichao; Chang Wenhui; Chen Suming; Luo Wenjing; Cai Tongjian; Zhang Xiaonan; Chen Nanchun; Chen Yaoming; Chen Jingyuan

    2008-01-01

    Lipopolysaccharide (LPS) is the toxic determinant for Gram-negative bacterium infection. The individual response to LPS was related to its gene background. It is necessary to identify new molecules and signaling transduction pathways about LPS. The present study was undertaken to evaluate the effects of a novel environmental lipopolysaccharide-responding (Elrg) gene on the regulation of proliferation and cell cycle of the hepatoma-derived cell line, HepG2. By means of RT-PCR, the new molecule of Elrg was generated from a human dental pulp cell cDNA library. Expression level of Elrg in HepG2 cells was remarkably upgraded by the irritation of LPS. Localization of Elrg in HepG2 cells was positioned mainly in cytoplasm. HepG2 cells were markedly arrested in the G1 phase by over-expressing Elrg. The percentage of HepG2 cells in G1 phase partly decreased after Elrg-siRNA. In conclusion, Elrg is probably correlative with LPS responding. Elrg is probably a new protein in cytoplasm which plays an important role in regulating cell cycle. The results will deepen our understanding about the potential effects of Elrg on the human hepatoma-derived cell line HepG2

  15. [Pseudolaric acid B induces G2/M arrest and inhibits invasion and migration in HepG2 hepatoma cells].

    Science.gov (United States)

    Li, Shuai; Guo, Lianyi

    2018-01-01

    Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.

  16. Induction of apoptosis by pistachio (Pistacia vera L.) hull extract and its molecular mechanisms of action in human hepatoma cell line HepG2.

    Science.gov (United States)

    Fathalizadeh, J; Bagheri, V; Khorramdelazad, H; Kazemi Arababadi, M; Jafarzadeh, A; Mirzaei, M R; Shamsizadeh, A; Hajizadeh, M R

    2015-11-30

    Several important Pistacia species such as P. vera have been traditionally used for treating a wide range of diseases (for instance, liver-related disorders). There is a relative lack of research into pharmacological aspects of pistachio hull. Hence, this study was aimed at investigating whether pistachio rosy hull (PRH) extract exerts apoptotic impacts on HepG2 liver cancer cell line. In order to evaluate cell viability and apoptosis in response to treatment with the extract, MTT assay and Annexin-V-fluorescein/propidium iodide (PI) double staining were performed, respectively. Moreover, molecular mechanism of apoptosis induced by the extract was determined using human apoptosis PCR array. Our findings showed that PRH extract treatment reduced cell viability (IC50 ~ 0.3 mg/ml) in a dose-dependent manner. Flow cytometric analysis revealed that the extract significantly induced apoptosis in HepG2 cells. In addition, quantitative PCR array results demonstrated the regulation of a considerable number of apoptosis-related genes belonging to the TNF, BCL2, IAP, TRAF, and caspase families. We observed altered expression of both pro-apoptotic and anti-apoptotic genes associated with the extrinsic and intrinsic apoptosis signaling pathways. These results suggest that the aqueous extract of PRH possesses apoptotic activity through cytotoxic and apoptosis-inducing effects on HepG2 cells.

  17. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    Science.gov (United States)

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  18. Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells

    Directory of Open Access Journals (Sweden)

    Burgoon Lyle D

    2011-04-01

    Full Text Available Abstract Background 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is an environmental contaminant that elicits a broad spectrum of toxic effects in a species-specific manner. Current risk assessment practices routinely extrapolate results from in vivo and in vitro rodent models to assess human risk. In order to further investigate the species-specific responses elicited by TCDD, temporal gene expression responses in human HepG2, mouse Hepa1c1c7 and rat H4IIE cells were compared. Results Microarray analysis identified a core set of conserved gene expression responses across species consistent with the role of AhR in mediating adaptive metabolic responses. However, significant species-specific as well as species-divergent responses were identified. Computational analysis of the regulatory regions of species-specific and -divergent responses suggests that dioxin response elements (DREs are involved. These results are consistent with in vivo rat vs. mouse species-specific differential gene expression, and more comprehensive comparative DRE searches. Conclusions Comparative analysis of human HepG2, mouse Hepa1c1c7 and rat H4IIE TCDD-elicited gene expression responses is consistent with in vivo rat-mouse comparative gene expression studies, and more comprehensive comparative DRE searches, suggesting that AhR-mediated gene expression is species-specific.

  19. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells.

    Science.gov (United States)

    Dai, Qinsheng; Yin, Qian; Wei, Libin; Zhou, Yuxin; Qiao, Chen; Guo, Yongjian; Wang, Xiaotang; Ma, Shiping; Lu, Na

    2016-08-01

    Metabolic alteration in cancer cells is one of the most conspicuous characteristics that distinguish cancer cells from normal cells. In this study, we investigated the influence and signaling ways of oroxylin A affecting cancer cell energy metabolism under hypoxia. The data showed that oroxylin A remarkably reduced the generation of lactate and glucose uptake under hypoxia in HepG2 cells. Moreover, oroxylin A inhibited HIF-1α expression and its stability. The downstream targets (PDK1, LDHA, and HK II), as well as their mRNA levels were also suppressed by oroxylin A under hypoxia. The silencing or the overexpression of HIF-1α assays suggested that HIF-1α is required for metabolic effect of oroxylin A in HepG2 cells during hypoxia. Furthermore, oroxylin A could reduce the expression of complex III in mitochondrial respiratory chain, and then decrease the accumulation of ROS at moderate concentrations (0-50 µM) under hypoxia, which was benefit for its inhibition on glycolytic activity by decreasing ROS-mediated HIF-1 expression. Besides, oroxylin A didn't cause the loss of MMP under hypoxia and had no obvious effects on the expression of OXPHOS complexes, suggesting that oroxylin A did not affect mitochondrial mass at the moderate stress of oroxylin A. The suppressive effect of oroxylin A on glycolysis led to a significantly repress of ATP generation, for ATP generation mostly depends on glycolysis in HepG2 cells. This study revealed a new aspect of glucose metabolism regulation of oroxylin A under hypoxia, which may contribute to its new anticancer mechanism. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Bioluminescence-based cytotoxicity assay for simultaneous evaluation of cell viability and membrane damage in human hepatoma HepG2 cells.

    Science.gov (United States)

    Uno, Katsuhiro; Murotomi, Kazutoshi; Kazuki, Yasuhiro; Oshimura, Mitsuo; Nakajima, Yoshihiro

    2018-05-01

    We have developed a bioluminescence-based non-destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)-targeted copepod luciferase (GLuc-KDEL), respectively, by using multi-integrase mouse artificial chromosome (MI-MAC) vector. We have demonstrated that the time-dependent concentration response curves of ELuc luminescence intensity and WST-1 assay, and GLuc-KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant-treated ELuc- and GLuc-KDEL-expressing HepG2 stable cell lines. We have clarified that the increase of GLuc-KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc-KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc-KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc-KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules. Copyright © 2018 John Wiley & Sons, Ltd.

  1. GADD45a Regulates Olaquindox-Induced DNA Damage and S-Phase Arrest in Human Hepatoma G2 Cells via JNK/p38 Pathways

    Directory of Open Access Journals (Sweden)

    Daowen Li

    2017-01-01

    Full Text Available Olaquindox, a quinoxaline 1,4-dioxide derivative, is widely used as a feed additive in many countries. The potential genotoxicity of olaquindox, hence, is of concern. However, the proper mechanism of toxicity was unclear. The aim of the present study was to investigate the effect of growth arrest and DNA damage 45 alpha (GADD45a on olaquindox-induced DNA damage and cell cycle arrest in HepG2 cells. The results showed that olaquindox could induce reactive oxygen species (ROS-mediated DNA damage and S-phase arrest, where increases of GADD45a, cyclin A, Cdk 2, p21 and p53 protein expression, decrease of cyclin D1 and the activation of phosphorylation-c-Jun N-terminal kinases (p-JNK, phosphorylation-p38 (p-p38 and phosphorylation-extracellular signal-regulated kinases (p-ERK were involved. However, GADD45a knockdown cells treated with olaquindox could significantly decrease cell viability, exacerbate DNA damage and increase S-phase arrest, associated with the marked activation of p-JNK, p-p38, but not p-ERK. Furthermore, SP600125 and SB203580 aggravated olaquindox-induced DNA damage and S-phase arrest, suppressed the expression of GADD45a. Taken together, these findings revealed that GADD45a played a protective role in olaquindox treatment and JNK/p38 pathways may partly contribute to GADD45a regulated olaquindox-induced DNA damage and S-phase arrest. Our findings increase the understanding on the molecular mechanisms of olaquindox.

  2. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells.

    Science.gov (United States)

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-10-19

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin - another DPP-4 inhibitor - induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans.

  3. Radiation induced bystander effect on hepatoma HepG2 cells under hypoxia condition

    International Nuclear Information System (INIS)

    Zhang Jianghong; Jin Yizun; Shao Chunlin; Prise KM

    2009-01-01

    Objective: To investigate radiation induced bystander effect and its mechanism on hepatoma HepG2 cells under hypoxia condition. Methods: Non-irradiated bystander hepatoma cells were co-cultured with irradiated cells or treated with the conditioned medium (CM) from irradiated cells, then micronuclei (MN) were measured for both irradiated cells and bystander cells. Results: The MN yield of irradiated HepG2 cells under hypoxic condition was significantly lower than that under normoxia, the oxygen enhancement ratio of HepG2 cells of MN was 1.6. For both hypoxic and normoxic condition, the MN yield of bystander cells were obviously enhanced to a similar high level after co-culturing with irradiated cells or with CM treatment, and it also correlated with the irradiation dose. When the hypoxic HepG2 cells were treated with either DMSO, a scavenger of reactive oxygen species (ROS), or aminoguanidine, an iNOS inhibitor, the yield of bystander MN was partly diminished, and the reducing rate of DMSO was 42.2%-46.7%, the reducing rate of aminoguanidine was 42% . Conclusion: ROS, NO and their downstream signal factors are involved in the radiation induced bystander effect of hypoxic HepG2 cells. (authors)

  4. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2

    Science.gov (United States)

    Yang, Hongchao; Li, Jingjuan; Cui, Lin; Ren, Yanqing; Niu, Liying; Wang, Xinguo; Huang, Yun; Cui, Lijian

    2018-03-01

    The influences of caffeine, lysozyme and the joint application of them on the hepatoma cell line HepG2 proliferation inhibition and cell apoptosis were observed by 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and Hoechst 33342, which showed the proliferation inhibition rate of the joint application on HepG2 cells was 47.21%, significantly higher than caffeine or lysozyme, and the joint application promoted the apoptosis of HepG2 cells obviously. Van't Hoff classical thermodynamics formula, the Föster theory of non-radiation energy transfer and fluorescence phase diagram were used to manifest that the process of lysozyme binding to caffeine followed a two-state model, which was spontaneous at low temperature driven by enthalpy change, and the predominant intermolecular force was hydrogen bonding or Van der Waals force to stabilize caffeine-lysozyme complex with the distance 5.86 nm. The attenuated total reflection-Fourier transform infrared spectra indicated that caffeine decreased the relative contents of α-helix and β-turn, which inferred the structure of lysozyme tended to be "loose". Synchronous fluorescence spectra and ultraviolet spectra supported the above conclusion. The amino acid residues in the cleft of lysozyme were exposed and electropositivity was increased attributing to the loose structure, which were conducive to increasing caffeine concentration on the HepG2 cell surface by electrostatic interaction to show synergistic effect. The great quantities of microvilli on the liver cancer cell membrane surface, is beneficial for the lysozyme-caffeine compound to aggregate on cell surface to increase the concentration of caffeine to play stronger physiological role by electrostatic effect.

  5. [Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].

    Science.gov (United States)

    Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan

    2018-02-01

    Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.

  6. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  7. Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2018-04-05

    Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.

  8. Salmonella typhimurium strain SL7207 induces apoptosis and inhibits the growth of HepG2 hepatoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Baowei Li

    2012-12-01

    Full Text Available Salmonella typhimurium is probably most extensively studied tumor-targeting bacteria and SL7207 is one of its attenuated strains. SL7207 was first made for bacterial vaccine development and its therapeutic efficacy and safety for hepatocellular carcinoma has not been characterized. In this study, the inhibitory ability of SL7207-lux on human hepatoma HepG2 cells was tested in vitro and in vivo. A bacterial luminescent gene cluster (lux CDABE was transfected into SL7207 to better monitor the invasion of the bacteria. The results show that SL7207-lux can rapidly enter HepG2 cells and localize in the cytoplasm. This invasion represses cell proliferation and induces apoptosis. In vivo real-time invasion studies showed that the bacteria gradually accumulate in the tumor. This enrichment was confirmed by anatomic observation at 5 days after inoculation. About 40% of tumor growth was inhibited by SL7207-lux at 34 days post-treatment without significant loss of body weight. The area of necrosis of tumor tissue was clearly increased in the treated group. Bacterial quantification showed that the number of colony-forming units per gram of bacteria within tumor tissue was approximately 1000-fold higher than that of liver and spleen. These data suggest that attenuated S. typhimurium strain SL7207 has potential for the treatment of cancers.

  9. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  10. Inhibitory effect of chitosan oligosaccharide on human hepatoma ...

    African Journals Online (AJOL)

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. Materials and Methods: MTT assay was applied to detect cell ...

  11. Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines

    International Nuclear Information System (INIS)

    Brandon, Esther F.A.; Bosch, Tessa M.; Deenen, Maarten J.; Levink, Rianne; Wal, Everdina van der; Meerveld, Joyce B.M. van; Bijl, Monique; Beijnen, Jos H.; Schellens, Jan H.M.; Meijerman, Irma

    2006-01-01

    Human cell lines are often used for in vitro biotransformation and transport studies of drugs. In vivo, genetic polymorphisms have been identified in drug-metabolizing enzymes and ABC-drug transporters leading to altered enzyme activity, or a change in the inducibility of these enzymes. These genetic polymorphisms could also influence the outcome of studies using human cell lines. Therefore, the aim of our study was to pharmacogenotype four cell lines frequently used in drug metabolism and transport studies, HepG2, IGROV-1, CaCo-2 and LS180, for genetic polymorphisms in biotransformation enzymes and drug transporters. The results indicate that, despite the presence of some genetic polymorphisms, no real effects influencing the activity of metabolizing enzymes or drug transporters in the investigated cell lines are expected. However, this characterization will be an aid in the interpretation of the results of biotransformation and transport studies using these in vitro cell models

  12. Fibronectin synthesized by a human hepatoma cell line

    International Nuclear Information System (INIS)

    Glasgow, J.E.; Colman, R.W.

    1984-01-01

    Fibronectin is a family of immunologically similar glycoproteins which mediate a variety of cell-cell and cell-substratum interactions. It is a constituent of the extracellular matrix of connective tissue and circulates in plasma. When suspension and adherent cultures of a human hepatoma cell line (SK-HEP-1) were incubated in serum-free medium, the resulting conditioned medium contained material which was specifically immunoprecipitated by antisera to human plasma fibronectin. By double immunodiffusion, a component in the conditioned culture medium was shown to form a line of identity with fibronectin in human plasma and to migrate as an alpha 2- to beta-globulin during immunoelectrophoresis. Human fibronectin was quantified in conditioned medium by electroimmunodiffusion, and was found to increase for at least three days at about 0.1 micrograms/10(6) cells/day. Adherent cultures of SK-HEP-1 cells were incubated with L-[ 35 S]methionine to label newly synthesized proteins. Labeled fibronectin in conditioned medium or in cell extracts comigrated with fibronectin in human plasma as shown by autoradiography following crossed-immunoelectrophoresis. Fibronectin was demonstrated in the extra-cellular matrix of adherent SK-HEP-1 cultures by immunofluorescence. It was shown previously that SK-HEP-1 cells synthesize alpha 1-protease inhibitor, one of the products of normal hepatocytes. The finding that these hepatoma cells also synthesize fibronectin supports the concept that the hepatocyte may be one source of circulating fibronectin, a possibility consistent with the established role of this cell type in blood plasma protein synthesis

  13. Analysis of changes in energy and redox states in HepG2 hepatoma and C6 glioma cells upon exposure to cadmium

    International Nuclear Information System (INIS)

    Yang, M.S.; Yu, L.C.; Gupta, R.C.

    2004-01-01

    The energy and redox states of the HepG2 hepatoma and the C6 glioma cells were studied by quantifying the levels of ATP, ADP, AMP, GSH, and GSSG. These values were used to calculate the energy charge potential (ECP = [ATP + 0.5ADP]/TAN), total adenosine nucleotides (TAN = ATP + ADP + AMP), total glutathione (TG = [GSH + GSSG]/TAN), and the redox state (GSH/GSSG ratio). For comparison between cell types, the level of each energy metabolite (ATP, ADP, and AMP) was normalized against TAN of the respective cell. The results showed that ATP:ADP:AMP ratio was 0.76:0.11:0.13 for the HepG2 cells and 0.80:0.11:0.09 for the C6 glioma cells. ECP was 0.81 ± 0.01 and 0.85 ± 0.01 for the HepG2 and the C6 glioma cells, respectively. GSH/GSSG ratio was 2.66 ± 0.16 and 3.63 ± 0.48 for HepG2 and C6 glioma cells, respectively. TG was 3.2 ± 0.54 for the HepG2 cells and 2.43 ± 0.18 for the C6 glioma cells, indicating that the level of total glutathione is more than two to three times higher than the total energy metabolites in these cell lines. Following a 3-h incubation in medium containing different concentrations of Cd, there was a dose-dependent decrease in cell viability. The 3-h LC 50 for the HepG2 cells was 0.5 mM and that for the C6 glioma cells was 0.4 mM. Cellular TAN decreased with a decrease in cell viability. Upon careful analysis of the energy state, there was a significant increase in relative amount of ATP and decrease in ADP and AMP in both cells as Cd concentration increased from 0 to 0.1, 0.2, and 0.6 mM. However, ECP in both cell lines increased, which indicated that the level of high energy phosphate was adequate. There was also a significant increase in TG and a significant decrease in GSH/GSSG in the C6 glioma cells when cells were exposed to as low as 0.1 mM Cd, which suggested that the cellular redox state was compromised. The HepG2 cells, on the other hand, showed no significant change in both TG and GSH/GSSG level until Cd concentration reached 0.6 m

  14. Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7)

    International Nuclear Information System (INIS)

    Arai, Ryoichi; Yoshikawa, Seiko; Murayama, Kazutaka; Imai, Yuzuru; Takahashi, Ryosuke; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2006-01-01

    The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way as UbcH7. The human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7) is involved in protein degradation, including a process known as endoplasmic reticulum-associated degradation (ERAD). The crystal structure of human UBE2G2/UBC7 was solved at 2.56 Å resolution. The UBE2G2 structure comprises a single domain consisting of an antiparallel β-sheet with four strands, five α-helices and two 3 10 -helices. Structural comparison of human UBE2G2 with yeast Ubc7 indicated that the overall structures are similar except for the long loop region and the C-terminal helix. Superimposition of UBE2G2 on UbcH7 in a c-Cbl–UbcH7–ZAP70 ternary complex suggested that the two loop regions of UBE2G2 interact with the RING domain in a similar way to UbcH7. In addition, the extra loop region of UBE2G2 may interact with the RING domain or its neighbouring region and may be involved in the binding specificity and stability

  15. Regulation of low density lipoprotein receptor function in a human hepatoma cell line

    International Nuclear Information System (INIS)

    Leichtner, A.M.; Krieger, M.; Schwartz, A.L.

    1984-01-01

    Low density lipoprotein (LDL) processing was investigated in a human hepatoma-derived cell line, Hep G2. Hep G2 cells bound, internalized and degraded LDL via a saturable, high affinity pathway similar to that present in other mammalian cells. Although 80% of the uptake and degradation of 125 I-LDL was inhibited by 40-fold excess native LDL, the same concentration of methylated LDL, which cannot bind to LDL receptors, had virtually no effect on processing. When added at low concentrations, the lysosomotropic agent, chloroquine, inhibited degradation without affecting the rate of lipoprotein internalization. Receptor activity was decreased 60% by preincubation of the cells in medium containing a source of cholesterol (LDL or unesterified cholesterol) and increased 1.7-fold by preincubation with compactin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. The Hep G2 cell line may prove a useful system both for the further study of hepatic lipoprotein metabolism and for the evaluation of new antihypercholesterolemic agents

  16. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  17. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  18. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  19. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines.

    Directory of Open Access Journals (Sweden)

    Yuki Haga

    Full Text Available Despite recent advances in treatment strategies, it is still difficult to cure patients with hepatocellular carcinoma (HCC. Sorafenib is the only approved multiple kinase inhibitor for systemic chemotherapy in patients with advanced HCC. The majority of advanced HCC patients are resistant to sorafenib. The mechanisms of sorafenib resistance are still unknown.The expression of molecules involved in the mitogen-activated protein kinase (MAPK signaling pathway in human hepatoma cell lines was examined in the presence or absence of sorafenib. Apoptosis of human hepatoma cells treated with sorafenib was investigated, and the expression of Jun proto-oncogene (c-Jun was measured.The expression and phosphorylation of c-Jun were enhanced in human hepatoma cell lines after treatment with sorafenib. Inhibiting c-Jun enhanced sorafenib-induced apoptosis. The overexpression of c-Jun impaired sorafenib-induced apoptosis. The expression of osteopontin, one of the established AP-1 target genes, was enhanced after treatment with sorafenib in human hepatoma cell lines.The protein c-Jun plays a role in sorafenib resistance in human hepatoma cell lines. The modulation and phosphorylation of c-Jun could be a new therapeutic option for enhancing responsiveness to sorafenib. Modulating c-Jun may be useful for certain HCC patients with sorafenib resistance.

  20. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    International Nuclear Information System (INIS)

    Yang, Wei; Sun, Ting; Cao, Jianping; Liu, Fenju; Tian, Ye; Zhu, Wei

    2012-01-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1α (HIF-1α) and miR-210 expression and cell arrest in the G 0 /G 1 phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G 0 /G 1 phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: ► miR-210 downregulation radiosensitized hypoxic hepatoma. ► AIFM3 was identified as a direct target gene of miR-210. ► miR-210 might be a therapeutic target to hypoxic hepatoma.

  1. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Sun, Ting [Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou (China); Cao, Jianping; Liu, Fenju [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Tian, Ye [Department of Radiotherapy and Oncology, The Second Affiliated Hospital, Soochow University, Suzhou (China); Zhu, Wei [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China)

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  2. Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells

    International Nuclear Information System (INIS)

    Devanand Venkatasubbu, G.; Ramasamy, S.; Avadhani, G. S.; Palanikumar, L.; Kumar, J.

    2012-01-01

    Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO 2 ) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO 2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO 2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.

  3. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    International Nuclear Information System (INIS)

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-01-01

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: → Baicalein inhibits several essential steps in the onset of metastasis.

  4. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  5. Antihepatoma activity of Physalis angulata and P. peruviana extracts and their effects on apoptosis in human Hep G2 cells.

    Science.gov (United States)

    Wu, Shu-Jing; Ng, Lean-Teik; Chen, Ching-Hsein; Lin, Doung-Liang; Wang, Shyh-Shyan; Lin, Chun-Ching

    2004-03-05

    Physalis angulata and P. peruviana are herbs widely used in folk medicine. In this study, the aqueous and ethanol extracts prepared from the whole plant of these species were evaluated for their antihepatoma activity. Using XTT assay, three human hepatoma cells, namely Hep G2, Hep 3B and PLC/PRF/5 were tested. The results showed that ethanol extract of P. peruviana (EEPP) possessed the lowest IC50 value against the Hep G2 cells. Interestingly, all extracts showed no cytotoxic effect on normal mouse liver cells. Treatment with carbonyl cyanide m-chlorophenyl hydrazone, a protonophore, caused a reduction of membrane potential (Deltapsim) by mitochondrial membrane depolarization. At high concentrations, EEPP was shown to induce cell cycle arrest and apoptosis through mitochondrial dysfunction as demonstrated by the following observations: (i) EEPP induced the collapse of Deltapsim and the depletion of glutathione content in a dose dependent manner; (ii) pretreatment with the antioxidant (1.0 microg/ml vitamin E) protected cells from EEPP-induced release of ROS; and (iii) at concentrations 10 to 50 microg/ml, EEPP displayed a dose-dependent accumulation of the Sub-G1 peak (hypoploid) and caused G0/G1-phase arrest. Apoptosis was elicited when the cells were treated with 50 microg/ml EEPP as characterized by the appearance of phosphatidylserine on the outer surface of the plasma membrane. The results conclude that EEPP possesses potent antihepatoma activity and its effect on apoptosis is associated with mitochondrial dysfunction.

  6. Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703

    OpenAIRE

    Liu, Kun; Liu, Feng; Zhang, Nannan; Liu, Shiying; Jiang, Yuyang

    2012-01-01

    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of P...

  7. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    International Nuclear Information System (INIS)

    Singaravelu, Ragunath; Lyn, Rodney K.; Srinivasan, Prashanth; Delcorde, Julie; Steenbergen, Rineke H.; Tyrrell, D. Lorne; Pezacki, John P.

    2013-01-01

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway

  8. Human serum activates CIDEB-mediated lipid droplet enlargement in hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Singaravelu, Ragunath [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Lyn, Rodney K. [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Srinivasan, Prashanth [National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Delcorde, Julie [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Steenbergen, Rineke H.; Tyrrell, D. Lorne [Department of Medical Microbiology and Immunology, University of Alberta (Canada); Li Ka Shing Institute of Virology, Katz Centre for Pharmacy and Health Research, Edmonton, Alberta T6G 2S2 (Canada); Pezacki, John P., E-mail: John.Pezacki@nrc-cnrc.gc.ca [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2013-11-15

    Highlights: •Human serum induced differentiation of hepatoma cells increases cellular lipid droplet (LD) size. •The observed increase in LD size correlates with increased PGC-1α and CIDEB expression. •Induction of CIDEB expression correlates with rescue of VLDL secretion and loss of ADRP. •siRNA knockdown of CIDEB impairs the human serum mediated increase in LD size. •This system represents a cost-efficient model to study CIDEB’s role in lipid biology. -- Abstract: Human hepatocytes constitutively express the lipid droplet (LD) associated protein cell death-inducing DFFA-like effector B (CIDEB). CIDEB mediates LD fusion, as well as very-low-density lipoprotein (VLDL) maturation. However, there are limited cell culture models readily available to study CIDEB’s role in these biological processes, as hepatoma cell lines express negligible levels of CIDEB. Recent work has highlighted the ability of human serum to differentiate hepatoma cells. Herein, we demonstrate that culturing Huh7.5 cells in media supplemented with human serum activates CIDEB expression. This activation occurs through the induced expression of PGC-1α, a positive transcriptional regulator of CIDEB. Coherent anti-Stokes Raman scattering (CARS) microscopy revealed a correlation between CIDEB levels and LD size in human serum treated Huh7.5 cells. Human serum treatment also resulted in a rapid decrease in the levels of adipose differentiation-related protein (ADRP). Furthermore, individual overexpression of CIDEB was sufficient to down-regulate ADRP protein levels. siRNA knockdown of CIDEB revealed that the human serum mediated increase in LD size was CIDEB-dependent. Overall, our work highlights CIDEB’s role in LD fusion, and presents a new model system to study the PGC-1α/CIDEB pathway’s role in LD dynamics and the VLDL pathway.

  9. Localization of 131I-chTNT in a nude mice model with human hepatoma

    International Nuclear Information System (INIS)

    Chen Shaoliang; Sun Xiaoguang; Xiu Yan; Zhong Gaoren; Qiao Weiwei; Xu Lanwen; Li Wenzheng

    1998-01-01

    Purpose: In order to evaluate the targeting activity in the animal model with human hepatoma, the 131 I-chTNT radioimmunoimaging was explored. Methods: Radioimmunoimages were taken on different intervals after injection of 131 I-chTNT 5.55 MBq to the nude mice, and tissue distribution was measured. The results of 131 I-chTNT monoclonal antibody group were compared with that of 131 I control group. Results: The experimental group developed tumor positive images after one day of radio-labelled monoclonal antibodies injection and held on until the end of the experiment. The radioactivity in tumor mass was stable, and the half life of 131 I-chTNT in hepatoma mass was 6.0 +- 1.6 days. there was no special radioactivity accumulation in normal liver tissue in the nude mice and the radioactivity in it disappeared rapidly. Statistics indicated the tumor/liver ratio in 1, 2, 3, 5, 7 days were 1.03, 2.43, 5.71, 7.96, 10.67, respectively. Conclusions: The results suggest that 131 I-chTNT monoclonal antibody has a considerable targeting activity, and provide an evidence for that it can be used as a new radiopharmaceutical agent for the imaging and radio therapy of hepatoma

  10. Coating independent cytotoxicity of citrate- and PEG-coated silver nanoparticles on a human hepatoma cell line.

    Science.gov (United States)

    Bastos, Verónica; Ferreira-de-Oliveira, José M P; Carrola, Joana; Daniel-da-Silva, Ana L; Duarte, Iola F; Santos, Conceição; Oliveira, Helena

    2017-01-01

    The antibacterial potential of silver nanoparticles (AgNPs) resulted in their increasing incorporation into consumer, industrial and biomedical products. Therefore, human and environmental exposure to AgNPs (either as an engineered product or a contaminant) supports the emergent research on the features conferring them different toxicity profiles. In this study, 30nm AgNPs coated with citrate or poly(ethylene glycol) (PEG) were used to assess the influence of coating on the effects produced on a human hepatoma cell line (HepG2), namely in terms of viability, apoptosis, apoptotic related genes, cell cycle and cyclins gene expression. Both types of coated AgNPs decreased cell proliferation and viability with a similar toxicity profile. At the concentrations used (11 and 5μg/mL corresponding to IC50 and ~IC10 levels, respectively) the amount of cells undergoing apoptosis was not significant and the apoptotic related genes BCL2 (anti-apoptotic gene) and BAX (pro-apoptotic gene) were both downregulated. Moreover, both AgNPs affected HepG2 cell cycle progression at the higher concentration (11μg/mL) by increasing the percentage of cells in S (synthesis phase) and G2 (Gap 2 phase) phases. Considering the cell-cycle related genes, the expression of cyclin B1 and cyclin E1 genes were decreased. Thus, this work has shown that citrate- and PEG-coated AgNPs impact on HepG2 apoptotic gene expression, cell cycle dynamics and cyclin regulation in a similar way. More research is needed to determine the properties that confer AgNPs at lower toxicity, since their use has proved helpful in several industrial and biomedical contexts. Copyright © 2016. Published by Elsevier B.V.

  11. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  12. Comparison of the effect of interferon on two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M; Schoub, B D; Lyons, S F; Chiu, M N [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Virology

    1985-06-01

    Two human hepatoma cell lines, the PLC/PRF/5 and the Mahlavu cells, which differ in their production of the hepatitis B surface antigen (HBsAg), responded differently to interferon (IFN). After IFN treatment both cell lines were able to inhibit Sindbis virus replication. Oligo A synthetase (E enzyme) could be activated in the PLC/PRF/5 cells although they were not sensitive to exogenous 2 - 5 oligoadenylic acid (2 - 5 A). In contrast, the Mahlavu cells were sensitive to exogenous 2 - 5 A, but unable to activate the E enzyme. Both cell lines were unable to stimulate phosphorylation of the exogenous initiator factor eIF-2.

  13. Anti-hepatocarcinoma effects of resveratrol nanoethosomes against human HepG2 cells

    Science.gov (United States)

    Meng, Xiang-Ping; Zhang, Zhen; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Resveratrol (Res) has been widely investigated with its strong anti-tumor activity. However, its low oral bioavailability restricts its wide application. In this study, we prepared resveratrol nanoethosomes (ResN) via ethanol injection method. The in vitro anti-hepatocarcinoma effects of ResN relative to efficacy of bulk Res were evaluated on proliferation and apoptosis of human HepG2 cells. ResN were spherical vesicles and its particle diameter, zeta potential were (115.8 +/- 1.3) nm and (-12.8 +/- 1.9) mV, respectively. ResN exhibited significant inhibitory effects against human HepG2 cells by MTT assay, and the IC50 value was 49.2 μg/ml (105.4 μg/ml of Res bulk solution). By flow cytometry assay, there was an increase in G2/M phase cells treated with ResN. The results demonstrated ResN could effectively block the G2/M phase of HepG2 cells, which can also enhance the inhibitory effect of Res against HepG2 cells.

  14. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  15. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K; Lin, Y; McPhie, P [Chang-Gung College of Medicine and Technology, Graduate Institute of Clinical Medicine, Taoyuan (Taiwan, Province of China); Cheng, S [National Cancer Inst., Bethesda, MD (United States)

    1994-12-31

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TR{beta}1 and TR{alpha} genes was evaluated at both the mRNA and protein levels. The expression of TR{beta}1 and TR{alpha}1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRaplha1 protein is low in all cell lines examined. However, TR{Beta}1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TR{beta}1 is overexpressed is stimulated by the thyroid hormone, 3,3`,5- triiodo-L-thyronine. These results suggest that TR{beta}1, not TR{alpha}1, is probably involved in the prolifaration of hepatoma cells.

  16. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    International Nuclear Information System (INIS)

    Lin, K.; Lin, Y.; McPhie, P.; Cheng S.

    1994-01-01

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TRβ and TRα genes was evaluated at both the mRNA and protein levels. The expression of TRβ1 and TRα1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRα1 protein is low in all cell lines examined. However, TRβ1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low in HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TRβ1 is overexpressed is stimulated by the thyroid hormone, 3,3',5-triiodo-L-thyronine. These results suggest that TRβ1 not TRα1, is probably involved in the proliferation of hepatoma cells

  17. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1 C YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+) s evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  18. Antioxidative and apoptotic properties of polyphenolic extracts from edible part of artichoke (Cynara scolymus L.) on cultured rat hepatocytes and on human hepatoma cells.

    Science.gov (United States)

    Miccadei, Stefania; Di Venere, Donato; Cardinali, Angela; Romano, Ferdinando; Durazzo, Alessandra; Foddai, Maria Stella; Fraioli, Rocco; Mobarhan, Sohrab; Maiani, Giuseppe

    2008-01-01

    Cultured rat hepatocytes and human hepatoma HepG2 cells were used to evaluate the hepatoprotective properties of polyphenolic extracts from the edible part of artichoke (AE). The hepatocytes were exposed to H2O2generated in situ by glucose oxidase and were treated with either AE, or pure chlorogenic acid (ChA) or with the well known antioxidant, N, N'-diphenyl-p-phenilenediamine (DPPD). Addition of glucose oxidase to the culture medium caused depletion of intracellular glutathione (GSH) content, accumulation of malondialdehyde (MDA) in the cultures, as a lipid peroxidation indicator, and cell death. These results demonstrated that AE protected cells from the oxidative stress caused by glucose oxidase, comparable to DPPD. Furthermore, AE, as well as ChA, prevented the loss of total GSH and the accumulation of MDA. Treatment of HepG2 cells for 24 h with AE reduced cell viability in a dose-dependent manner, however, ChA had no prominent effects on the cell death rate. Similarly, AE rather than ChA induced apoptosis, measured by flow cytometric analysis of annexin and by activation of caspase-3, in HepG2 cells. Our findings indicate that AE had a marked antioxidative potential that protects hepatocytes from an oxidative stress. Furthermore, AE reduced cell viability and had an apoptotic activity on a human liver cancer cell line.

  19. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression.

    Science.gov (United States)

    Wu, Xin-Jiang; Lu, Wen-qing; Roos, Peter H; Mersch-Sundermann, Volker

    2005-10-15

    Vinclozolin, a widely used fungicide, can be identified as a residue in numerous vegetable and fruit samples. To get insight in its genetic toxicity, we investigated the genotoxic effect of vinclozolin in the human derived hepatoma cell line HepG2 using the micronucleus (MN) assay. Additionally, to evaluate the co- or anti-mutagenic potency of vinclozolin, we treated HepG2 cells with different concentrations of vinclozolin for 24 h. Subsequently, the cells were exposed to benzo[a]pyrene (BaP) for 1h. Exposure of HepG2 cells to 50-400 microM vinclozolin alone did not cause any induction of micronuclei. However, a pronounced co-mutagenic effect was observed. MN frequencies caused by BaP increased by 30.6%, 52.8% and 65.3% after pretreatment of the cell cultures with 50, 100 and 200 microM vinclozolin, respectively. The highest concentration (400 microM) of vinclozolin tested caused cytotoxicity. Therefore, micronuclei were not considered for that concentration. To clarify the mechanism of cogenotoxicity, we assayed cytochrome P450 1A1 (CYP1A1), which plays a pivotal role in activation of BaP. Cells exposed to vinclozolin led to significant increase of CYP1A1 expression in Western blot. The result suggested that induction of CYP1A1 by vinclozolin account for its enhancing effect on genotoxicity caused by BaP.

  20. HepG2 human hepatocarcinomas cells sensitization by endogenous porphyrins

    Science.gov (United States)

    Vonarx-Coinsmann, Veronique; Foultier, Marie-Therese; de Brito, Leonor X.; Morlet, Laurent; Patrice, Thierry

    1995-03-01

    We assessed the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA and analyzed ALA-induced toxicity and phototoxicity on this cell line. ALA induced a slight dose-dependent dark toxicity, with 79 and 66% cell survival respectively for ALA 50 and 100 mg/ml after 3-h incubation. Whereas the same treatment followed by laser irradiation (l equals 632 nm, 25 J/sq cm) induced dose-dependent phototoxicity, with 54 and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3-h delay before light exposure was found optimal to reach a maximal phototoxicity. Photoproducts induced by porphyrin light irradiation absorbed light in the red spectral region at longer wavelengths than did the original porphyrins. The possible enhancement of PDT effects after ALA HepG2 cell incubation was investigated by irradiating cells successively with red light (l equals 632 nm) and light (l equals 650 nm). Total fluence was kept constant at 25 J/sq cm. Phototoxicity was lower when cells were irradiated for increased periods of l equals 650 nm light than with l equals 632 nm light alone. Any photoproducts involved had either a short life or were poorly photoreactive. HepG2 cells, synthesizing enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX-PDT.

  1. Pokemon Silencing Leads to Bim-Mediated Anoikis of Human Hepatoma Cell QGY7703

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-05-01

    Full Text Available Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA. Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.

  2. Pokemon silencing leads to Bim-mediated anoikis of human hepatoma cell QGY7703.

    Science.gov (United States)

    Liu, Kun; Liu, Feng; Zhang, Nannan; Liu, Shiying; Jiang, Yuyang

    2012-01-01

    Pokemon is an important proto-oncogene that plays a critical role in cellular oncogenic transformation and tumorigenesis. Anoikis, which is regulated by Bim-mediated apoptosis, is critical to cancer cell invasion and metastasis. We investigated the role of Pokemon in anoikis, and our results show that Pokemon renders liver cells resistant to anoikis via suppression of Bim transcription. We knocked-down Pokemon in human hepatoma cells QGY7703 with small interfering RNAs (siRNA). Knockdown of Pokemon alone did not significantly affect the growth and survival of QGY7703 cells but notably enhanced their sensitivity to apoptotic stress due to the presence of chemical agents or cell detachment, thereby inducing anoikis, as evidenced by flow cytometry and caspase-3 activity assays. In contrast, ectopic expression of Pokemon in HL7702 cells led to resistance to anoikis. Dual-luciferase reporter and ChIP assays illustrated that Pokemon suppressed Bim transcription via direct binding to its promoter. Our results suggest that Pokemon prevents anoikis through the suppression of Bim expression, which facilitates tumor cell invasion and metastasis. This Pokemon-Bim pathway may be an effective target for therapeutic intervention for cancer.

  3. Proanthocyanidins modulate microRNA expression in human HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Anna Arola-Arnal

    Full Text Available Mi(croRNAs are small non-coding RNAs of 18-25 nucleotides in length that modulate gene expression at the post-transcriptional level. These RNAs have been shown to be involved in a several biological processes, human diseases and metabolic disorders. Proanthocyanidins, which are the most abundant polyphenol class in the human diet, have positive health effects on a variety of metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. The present study aimed to evaluate whether proanthocyanidin-rich natural extracts modulate miRNA expression. Using microarray analysis and Q-PCR, we investigated miRNA expression in HepG2 cells treated with proanthocyanidins. Our results showed that when HepG2 cells were treated with grape seed proanthocyanidin extract (GSPE, cocoa proanthocyanidin extract (CPE or pure epigallocatechin gallate isolated from green tea (EGCG, fifteen, six and five differentially expressed miRNAs, respectively, were identified out of 904 mRNAs. Specifically, miR-30b* was downregulated by the three treatments, and treatment with GSPE or CPE upregulated miR-1224-3p, miR-197 and miR-532-3p. Therefore, these results provide evidence of the capacity of dietary proanthocyanidins to influence microRNA expression, suggesting a new mechanism of action of proanthocyanidins.

  4. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    Science.gov (United States)

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  5. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes.

    Science.gov (United States)

    Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A

    2016-05-23

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.

  6. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    International Nuclear Information System (INIS)

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users

  7. Body weight management effect of burdock (Arctium lappa L.) root is associated with the activation of AMP-activated protein kinase in human HepG2 cells.

    Science.gov (United States)

    Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der

    2012-10-01

    Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells.

    Science.gov (United States)

    Su, Chun-Li; Huang, Lynn L H; Huang, Li-Min; Lee, Jenq-Chang; Lin, Chun-Nan; Won, Shen-Jeu

    2006-05-29

    Justicia procumbens is a traditional Taiwanese herbal remedy used to treat fever, pain, and cancer. Justicidin A, isolated from Justicia procumbens, has been reported to suppress in vitro growth of several tumor cell lines as well as hepatoma cells. In this study, justicidin A activated caspase-8 to increase tBid, disrupted mitochondrial membrane potential (Delta psi(m)), and caused the release of cytochrome c and Smac/DIABLO in Hep 3B and Hep G2 cells. Justicidin A also reduced Bcl-x(L) and increased Bax and Bak in mitochondria. Caspase-8 inhibitor (Z-IETD) attenuated the justicidin A-induced disruption of Delta psi(m). Growth of Hep 3B implanted in NOD-SCID mice was suppressed significantly by oral justicidin A (20 mg/kg/day). These results indicate that justicidin A-induced apoptosis in these cells proceeds via caspase-8 and is followed by mitochondrial disruption.

  9. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    Science.gov (United States)

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC 50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017. © 2016 Wiley Periodicals, Inc.

  10. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest.

    Science.gov (United States)

    Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang

    2010-02-18

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  11. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    International Nuclear Information System (INIS)

    Yen, Ching-Yu; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz

    2010-01-01

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC 50 ) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G 1 accumulation and slight arrest at the G 2 /M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G 2 /M arrest for H1299 cells treated with 5 μg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer

  12. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Science.gov (United States)

    2010-01-01

    Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063

  13. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Directory of Open Access Journals (Sweden)

    Guo Zong-Lun

    2010-02-01

    Full Text Available Abstract Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry, demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299 using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p p 50 of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  14. Evaluation of anti-hepatocarcinoma capacity of puerarin nanosuspensions against human HepG2 cells

    Science.gov (United States)

    Meng, Xiang-Ping; Zhang, Zhen; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2017-02-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Puerarin (Pue), a major active ingredient in the traditional Chinese medicine Gegen, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Pue nanosuspension (Pue-NS) composed of Pue and poloxamer 188 was prepared by high pressure homogenization technique. The in vitro anti-hepatocarcinoma effects of Pue-NS relative to efficacy of bulk Pue were evaluated. The particle size and zeta potential of Pue-NS were 218.5 nm and -18.8 mV, respectively. MTT assay showed that Pue-NS effectively inhibited the proliferation of HepG2 cells, and the corresponding IC50 values of Pue-NS and bulk Pue were 3.39 and 5.73 μg/ml. These results suggest that the delivery of Pue-NS is a promising approach for treating tumors.

  15. Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ledley, F.D.; Grenett, H.E.; McGinnis-Shelnutt, M.; Woo, S.L.C.

    1986-01-01

    Phenylketonuria (PKU) is caused by deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). A full-length human PAH cDNA sequence has been inserted into pzip-neoSV(X), which is a retroviral vector containing the bacterial neo gene. The recombinant has been transfected into Psi2 cells, which provide synthesis of the retroviral capsid. Recombinant virus was detected in the culture medium of the transfected Psi2 cells, which is capable of transmitting the human PAH gene into mouse NIH 3T3 cells by infection leading to stable incorporation of the recombinant provirus. Infected cells express PAH mRNA, immunoreactive PAH protein, and exhibit pterin-dependent phenylaline hydroxylase activity. The recombinant virus is also capable of infecting a mouse hepatoma cell line that does not normal synthesize PAH. PAH activity is present in the cellular extracts and the entire hydroxylation system is reconstituted in the hepatoma cells infected with the recombinant viruses. Thus, recombinant viruses containing human PAH cDNA provide a means for introducing functional PAH into mammalian cells of hepatic origin and can potentially be introduced into whole animals as a model for somatic gene therapy for PKU.

  16. Mannose 6-phosphate-independent targeting of cathepsin D to lysosomes in HepG2 cells

    NARCIS (Netherlands)

    Rijnboutt, S.; Kal, A. J.; Geuze, H. J.; Aerts, H.; Strous, G. J.

    1991-01-01

    We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically

  17. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.

    Science.gov (United States)

    Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H

    1997-08-01

    A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.

  18. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    Science.gov (United States)

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.

  19. Radiation Induced G2 Chromatic Break and Repairs Kinetics in Human Lymphoblastoid Cells

    International Nuclear Information System (INIS)

    Seong, Jin Sil

    1993-01-01

    In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently beer explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia(AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to lonizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity in an approach to investigate kinetics of induction and repair of G2 chromatic breaks using normal, AT heterozygous(ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, 9-β-D-arabinosyl-2-fluoroadenine, an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT G2 cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of G2 chromosomal sensitivity is thought to result from the difference of initial damage

  20. Biodistribution and SPECT imaging of 99Tcm labeling NGR peptide in nude mice bearing human HePG2 hepatoma

    International Nuclear Information System (INIS)

    Ma Wenhui; Wang Jing; Yang Weidong; Li Guiyu; Ma Xiaowei; Wang Zhe

    2012-01-01

    A peptide containing the Asn-Gly-Arg (NGR) sequence was radiolabeled by 99 Tc m and its radiochemical characteristics, biodistribution and SPECT imaging in nude mice bearing human HePG2 hepatoma were evaluated. 99 Tc m -NGR was prepared directly with a labeling yield higher than 90%, and the radiochemical purity (RCP) higher than 95%. Nude mice bearing human HePG2 hepatoma were randomly divided into 6 groups with 3 mice in each group. The control group mice were blocked by injecting 100 μg unlabeled NGR 0.5 h before 99 Tc m -NGR injection. The mice were sacrificed at 1, 2, 4, 8, 12 h after caudal intravenous injection of 7.4 MBq 99 Tc m -NGR. The uptakes of kidney and liver were very high. Tumor uptake was (2.52±0.62)% ID/g at 1 h, with the highest uptake of (7.26±2.71) %ID/g. At 12 h, the uptake was still (3.93±1.93) %ID/g. In comparison, the uptake of the blocked control group was (1.29±0.85) %ID/g. The SPECT static images of 3 mice and the tumor/muscle (T/NT) value were obtained. The highest T/NT value was 3.25 at 4 h. The xenografted tumor became visible at 1 h and the clearest image of the tumor was observed at 12 h. Results from this work shows that 99 Tc m -NGR can be efficiently prepared, can favorably target tumor angiogenesis, and should be a potential probe in tumor therapy. (authors)

  1. Involvement of enniatins-induced cytotoxicity in human HepG2 cells.

    Science.gov (United States)

    Juan-García, Ana; Manyes, Lara; Ruiz, María-José; Font, Guillermina

    2013-04-12

    Enniatins (ENNs) are mycotoxins found in Fusarium fungi and they appear in nature as mixtures of cyclic depsipeptides. The ability to form ionophores in the cell membrane is related to their cytotoxicity. Changes in ion distribution between inner and outer phases of the mitochondria affect to their metabolism, proton gradient, and chemiosmotic coupling, so a mitochondrial toxicity analysis of enniatins is highly recommended because they host the homeostasis required for cellular survival. Two ENNs, ENN A and ENN B on hepatocarcinoma cells (HepG2) at 1.5 and 3 μM and three exposure times (24, 48 and 72 h) were studied. Flow cytometry was used to examine their effects on cell proliferation, to characterize at which phase of the cell cycle progression the cells were blocked and to study the role of the mitochondrial in ENNs-induced apoptosis. In conclusion, apoptosis induction on HepG2 cells allowed to compare cytotoxic effects caused by both ENNs, A and B. It is reported the possible mechanism observed in MMP changes, cell cycle analysis and apoptosis/necrosis, identifying ENN B more toxic than ENN A. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721

    Science.gov (United States)

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment. PMID:25933104

  3. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721.

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    Full Text Available Arctigenin (ARG has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.

  4. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guifang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Lu, Gang [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Yin, Pinghe, E-mail: tyinph@jnu.edu.cn [Research Center of Analysis and Test, Jinan University, Guangzhou 510632 (China); Zhao, Ling, E-mail: zhaoling@jnu.edu.cn [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Jimmy Yu, Qiming [Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111 (Australia)

    2016-04-15

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  5. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    International Nuclear Information System (INIS)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Jimmy Yu, Qiming

    2016-01-01

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  6. The role of the vascular endothelial growth factor/vascular endothelial growth factor receptors axis mediated angiogenesis in curcumin-loaded nanostructured lipid carriers induced human HepG2 cells apoptosis

    Directory of Open Access Journals (Sweden)

    Fengling Wang

    2015-01-01

    Full Text Available Background: Curcumin (diferuloylmethane, the active constituent of turmeric extract has potent anti-cancer properties have been demonstrated in hepatocellular carcinoma (HCC. However, its underlying molecular mechanism of therapeutic effects remains unclear. Vascular endothelial growth factor (VEGF and its receptors (VEGFRs have crucial roles in tumor angiogenesis. Purpose: The goal of this study was to investigate the role of the VEGF/VEGFRs mediated angiogenesis during the proliferation and apoptosis of human HepG2 hepatoma cell line and the effect of curcumin-loaded nanostructured lipid carriers (Cur-NLC. Materials and Methods: The proliferation of HepG2 cells was determined by methyl thiazolyl tetrazolium after exposure to Cur-NLC and native curcumin. Apoptosis was quantified by flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodide staining. Cellular internalization of Cur-NLC was observed by fluorescent microscope. The level of VEGF was detected by enzyme-linked immunosorbent assay kits. The expression of VEGFRs was quantified by Western blotting. Results: Cur-NLC was more effective in inhibiting the proliferation and enhancing the apoptosis of HepG2 cells than native curcumin. Fluorescent microscope analysis showed that HepG2 cells internalized Cur-NLC more effectively than native curcumin. Furthermore, Cur-NLC down-regulated the level of VEGF and the expression of VEGFR-2, but had a slight effect on VEGFR-1. Conclusion: These results clearly demonstrated that Cur-NLC was more effective in anti-cancer activity than the free form of curcumin. These studies demonstrate for the 1 st time that Cur-NLC exerts an antitumor effect on HepG2 cells by modulating VEGF/VEGFRs signaling pathway.

  7. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Ali, Daoud; Alhadlaq, Hisham A; Akhtar, Mohd Javed

    2013-11-01

    Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    Science.gov (United States)

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  9. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    Science.gov (United States)

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  10. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2).

    Science.gov (United States)

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2014-01-01

    The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

  11. Iso-suillin isolated from Suillus luteus, induces G1 phase arrest and apoptosis in human hepatoma SMMC-7721 cells.

    Science.gov (United States)

    Jia, Zhi-Qiang; Chen, Ying; Yan, Yong-Xin; Zhao, Jun-Xia

    2014-01-01

    Iso-suillin, a natural product isolated from Suillus luteus, has been shown to inhibit the growth of some cancer cell lines. However, the molecular mechanisms of action of this compound are poorly understood. The purpose of this study was to investigate how iso-suillin inhibits proliferation and induces apoptosis in a human hepatoma cell line (SMMC-7721). We demonstrated the effects of iso-suillin on cell proliferation and apoptosis in SMMC-7721 cells, with no apparent toxicity in normal human lymphocytes, using colony formation assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Western blotting was used to examine the expression of G1 phase-regulated and apoptosis-associated protein levels in iso-suillin treated SMMC-7721 cells. The results indicated that iso-suillin significantly decreased viability, induced G1 phase arrest and triggered apoptosis in SMMC-7721cells. Taken together, these results suggest the potential of iso-suillin as a candidate for liver cancer treatment.

  12. The interaction of HAb18G/CD147 with integrin α6β1 and its implications for the invasion potential of human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Tang Juan

    2009-09-01

    Full Text Available Abstract Background HAb18G/CD147 plays pivotal roles in invasion by hepatoma cells, but the underlying mechanism remains unclear. Our previous study demonstrated that overexpression of HAb18G/CD147 promotes invasion by interacting with integrin α3β1. However, it has never been investigated whether α3β1 is solely responsible for this process or if other integrin family members also interact with HAb18G/CD147 in human hepatoma cells. Methods Human SMMC-7721 and FHCC98 cells were cultured and transfected with siRNA fragments against HAb18G/CD147. The expression levels of HAb18G/CD147 and integrin α6β1 were determined by immunofluorescent double-staining and confocal imaging analysis. Co-immunoprecipitation and Western blot analyses were performed to examine the native conformations of HAb18G/CD147 and integrin α6β1. Invasion potential was evaluated with an invasion assay and gelatin zymography. Results We found that integrin α6β1 co-localizes and interacts with HAb18G/CD147 in human hepatoma cells. The enhancing effects of HAb18G/CD147 on invasion capacity and secretion of matrix metalloproteinases (MMPs were partially blocked by integrin α6β1 antibodies (P 2+ mobilization, significantly reduced cell invasion potential and secretion of MMPs in human hepatoma cells (P Conclusion These results suggest that α6β1 interacts with HAb18G/CD147 to mediate tumor invasion and metastatic processes through the PI3K pathway.

  13. Ethanol Extract of Dianthus chinensis L. Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells In Vitro

    Science.gov (United States)

    Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung

    2012-01-01

    Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629

  14. Composition of Lycium barbarum polysaccharides and their apoptosis-inducing effect on human hepatoma SMMC-7721 cells

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2015-11-01

    Full Text Available Background: Lycium barbarum polysaccharide (LBP is a natural functional component that has a variety of biological activities. The molecular structures and apoptosis-inducing activities on human hepatoma SMMC-7721 cells of two LBP fractions, LBP-d and LBP-e, were investigated. Results: The results showed that LBP-d and LBP-e both consist of protein, uronic acid, and neutral sugars in different proportions. The structure of LBP was characterized by gas chromatography, periodate oxidation, and Smith degradation. LBP-d was composed of eight kinds of monosaccharides (fucose, ribose, rhamnose, arabinose, xylose, mannose, galactose, and glucose, while LBP-e was composed of six kinds of monosaccharides (fucose, rhamnose, arabinose, mannose, galactose, and glucose. LBP-d and LBP-e blocked SMMC-7721 cells at the G0/G1 and S phases with an inhibition ratio of 26.70 and 45.13%, respectively, and enhanced the concentration of Ca2 + in the cytoplasm of SMMC-7721. Conclusion: The contents of protein, uronic acid, and galactose in LBP-e were much higher than those in LBP-d, which might responsible for their different bioactivities. The results showed that LBP can be provided as a potential chemotherapeutic agent drug to treat cancer.

  15. Fabrication of β-chitosan nanoparticles and its anticancer potential against human hepatoma cells.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Annaian

    2017-01-01

    β-Chitosan from the gladius was enzymatically depolymerized and utilized for the synthesis of β-chitosan nanoparticles using sodium tripolyphosphate by ionotropic gelation. The size and zeta potential of β-Chitosan nanoparticles (β-CNP) were determined. The structural features were evaluated by FT-IR and NMR spectral analysis. The morphological characterization, composition and surface topography of β-CNP were explored by SEM, EDAX and AFM techniques. The thermal and crystallographic nature of β-CNP was also studied. The cell viability of HepG2 cells inhibited by β-CNP was detected in a dose-dependent manner. The inhibitory concentration of β-CNP was 30μg/ml. Various biochemical parameters such as TBARS and lipid hydroperoxides, enzymatic and non-enzymatic antioxidant (SOD, CAT, GPx and GSH) studies proved the anticancer property of β-CNP in HepG2 cells. This study suggests that β-CNP should be a promising drug for treating hepatocellular carcinoma in future. Copyright © 2016. Published by Elsevier B.V.

  16. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells.

    Science.gov (United States)

    Liu, Kuo-Ching; Shih, Ting-Ying; Kuo, Chao-Lin; Ma, Yi-Shih; Yang, Jiun-Long; Wu, Ping-Ping; Huang, Yi-Ping; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-01-01

    Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.

  17. Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    He, Long; Nan, Mei-Hua; Oh, Hyun Cheol; Kim, Young Ho; Jang, Jae Hyuk; Erikson, Raymond Leo; Ahn, Jong Seog; Kim, Bo Yeon

    2011-01-01

    Highlights: → A new anti-cancer effect of an antibiotics, asperlin, is exploited. → Asperlin induced human cervical cancer cell apoptosis through ROS generation. → Asperlin activated DNA-damage related ATM protein and cell cycle associated proteins. → Asperlin could be developed as a new anti-cancer therapeutics. -- Abstract: We exploited the biological activity of an antibiotic agent asperlin isolated from Aspergillus nidulans against human cervical carcinoma cells. We found that asperlin dramatically increased reactive oxygen species (ROS) generation accompanied by a significant reduction in cell proliferation. Cleavage of caspase-3 and PARP and reduction of Bcl-2 could also be detected after asperlin treatment to the cells. An anti-oxidant N-acetyl-L-cysteine (NAC), however, blocked all the apoptotic effects of asperlin. The involvement of oxidative stress in asperlin induced apoptosis could be supported by the findings that ROS- and DNA damage-associated G2/M phase arrest and ATM phosphorylation were increased by asperlin. In addition, expression and phosphorylation of cell cycle proteins as well as G2/M phase arrest in response to asperlin were significantly blocked by NAC or an ATM inhibitor KU-55933 pretreatment. Collectively, our study proved for the first time that asperlin could be developed as a potential anti-cancer therapeutics through ROS generation in HeLa cells.

  18. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    DEFF Research Database (Denmark)

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz

    2015-01-01

    carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied...... carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells...

  19. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Science.gov (United States)

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  20. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Directory of Open Access Journals (Sweden)

    Nathalie Vadrot

    Full Text Available During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α targets hepatocytes and induces abnormal reactive oxygen species (ROS production responsible for mitochondrial DNA (mtDNA alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC was used to measure the rapid (10 min and transient TNF-α induced increase in ROS production (168±15%. A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM. In addition, mitochondrial D-loop immunoprecipitation (mtDIP revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  1. Exposure of Human Lung Cancer Cells to 8-Chloro-Adenosine Induces G2/M Arrest and Mitotic Catastrophe

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2004-11-01

    Full Text Available 8-Chloro-adenosine (8-CI-Ado is a potent chemotherapeutic agent whose cytotoxicity in a variety of tumor cell lines has been widely investigated. However, the molecular mechanisms are uncertain. In this study, we found that exposure of human lung cancer cell lines A549 (p53-wt and H1299 (p53-depleted to 8-CI-Ado induced cell arrest in the G2/M phase, which was accompanied by accumulation of binucleated and polymorphonucleated cells resulting from aberrant mitosis and failed cytokinesis. Western blotting showed the loss of phosphorylated forms of Cdc2 and Cdc25C that allowed progression into mitosis. Furthermore, the increase in Ser10-phosphorylated histone H3-positive cells revealed by fluorescence-activated cell sorting suggested that the agent-targeted cells were able to exit the G2 phase and enter the M phase. Immunocytochemistry showed that microtubule and microfilament arrays were changed in exposed cells, indicating that the dynamic instability of microtubules and microfilaments was lost, which may correlate with mitotic dividing failure. Aberrant mitosis resulted in mitotic catastrophe followed by varying degrees of apoptosis, depending on the cell lines. Thus, 8-CI-Ado appears to exert its cytotoxicity toward cells in culture by inducing mitotic catastrophe.

  2. Kinetics of the formation of a G2 block from tritiated thymidine in phytohemagglutinin-stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Pollack, A.; Bagwell, C.B.; Irvin, G.L.; Jensen, J.A.

    1980-01-01

    Flow cytometry (FCM) was used to monitor the radiation effects promoted by incorporated tritiated thymidine ( 3 H-TdR) on phytohemagglutinin (PHA)-stimulated human peripheral blood lymphocytes stained with propidium iodide (PI). Lymphocyte microcultures were continuously labeled or pulse-labeled for various periods of time with different 3 H-TdR concentrations. Two types of DNA histogram analyses were performed on unperturbed and 3 H]TdR perturbed lymphocytes. The data analyses consisted of statistical analyses between averaged groups of histograms (nonparametric analysis) and cell cycle analyses (parametric analysis) to determine the percentages of cells in G0 + G1, S and G2 + M. The results showed that (a) 3 H-TdR when added to proliferating lymphocytes under certain conditions (both short-term continuous and pulse-labeling) caused a highly significant increase in the proportion of tetraploid (4C) cells by FCM, (b) the increase in the proportion of 4C cells represented a block in G2 and (c) the relative increase in the percentage of 4C cells was proportional to 3 H-TdR incorporation which was proportional to labeling time and concentration. Therefore, it was concluded that short labeling times be used to minimize adverse radiation effects when 3 H-TdR is used to assay substances affecting lymphocyte proliferation or in the estimation of cell cycle time

  3. [Purification of human goose-type lysozyme 2 (HLysG2) from human seminal plasma and analysis of its enzymatic properties].

    Science.gov (United States)

    Huang, Peng; Yang, Zhifang; Bao, Jianying; Zhang, Ning; Li, Wenshu

    2017-03-01

    Objective To purify human goose-type lysozyme 2 (HLysG2) from human seminal plasma by chromatography and analyze its enzymatic properties. Methods The distribution of HLysG2 in semen was analyzed by Western blot analysis. Seminal plasma was subjected to the separation of target protein using cation-exchange chromatography, chitin affinity chromatography and size-exclusion chromatography. The purified product was identified by Western blot analysis and mass spectrometry (MS).The purity was analyzed by high performance liquid chromatography (HPLC). Then, the optimum pH, ion concentration and temperature of HLysG2 and its standard activity were determined by the turbidimetric assay. The bactericidal activity of HLysG2 was assessed by the colony-forming assay. Results The existence of HLysG2 in seminal plasma was confirmed by Western blot analysis. A protein of about 21.5 kDa was purified from seminal plasma by the three kinds of chromatography and identified as HLysG2 by Western blot analysis and MS. The final purity of the purified product was above 99.0% and the peak enzymatic activity reached 13 800 U/mg under the condition of pH 6.4, 0.09 mol/L Na + , 30DegreesCelsius. In vitro assay indicated that HLysG2 had a significant killing effect on Micrococcus lysodeikticus, Bacillus subtilis and Staphylococcus aureus, but not on Pseudomonas aeruginosa and Escherichia coli. Conclusion Native HLysG2 can be obtained from seminal plasma by chromatography. It has in vitro bactericidal activity against Gram-positive bacteria, suggesting that it might play a role in innate immunity of the male reproductive system.

  4. Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment.

    Science.gov (United States)

    Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang

    2015-11-01

    Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2

  5. Effect of UV irradiation on aflatoxin reduction: a cytotoxicity evaluation study using human hepatoma cell line.

    Science.gov (United States)

    Patras, Ankit; Julakanti, Sharath; Yannam, Sudheer; Bansode, Rishipal R; Burns, Mallory; Vergne, Matthew J

    2017-11-01

    In this proof-of-concept study, the efficacy of a medium-pressure UV (MPUV) lamp source to reduce the concentrations of aflatoxin B 1 , aflatoxin B 2 , and aflatoxin G 1 (AFB 1, AFB 2 , and AFG 1 ) in pure water is investigated. Irradiation experiments were conducted using a collimated beam system operating between 200 to 360 nm. The optical absorbance of the solution and the irradiance of the lamp are considered in calculating the average fluence rate. Based on these factors, the UV dose was quantified as a product of average fluence rate and treatment time. Known concentrations of aflatoxins were spiked in water and irradiated at UV doses ranging from 0, 1.22, 2.44, 3.66, and 4.88 J cm -2 . The concentration of aflatoxins was determined by HPLC with fluorescence detection. LC-MS/MS product ion scans were used to identify and semi-quantify degraded products of AFB 1 , AFB 2 , and AFG 1 . It was observed that UV irradiation significantly reduced aflatoxins in pure water (p UV light may have caused photolysis of AFB 1 , AFB 2 , and AFG 1 molecules. In cell culture studies, our results demonstrated that the increase of UV dosage decreased the aflatoxin-induced cytotoxicity in HepG 2 cells. Therefore, our research finding suggests that UV irradiation can be used as an effective technique for the reduction of aflatoxins.

  6. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Meng; He, Hong-wei; Sun, Huan-xing; Ren, Kai-huan [Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050 (China); Shao, Rong-guang, E-mail: shaor@bbn.cn [Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050 (China)

    2009-09-18

    Hepatocellular carcinoma (HCC) is a major challenge because of its resistance to conventional cytotoxic chemotherapy and radiotherapy. Multi-targeted therapy might be a new option for HCC treatment. Our previous study showed that N-ras gene was activated in HCC and was inhibited by RNA interference. In the present study, we investigated the alternation of gene expression by microarray in N-Ras-siRNA-treated HepG2 cells. The results revealed that the EREG gene, encoding epiregulin, was dramatically up-regulated in response to silence of N-ras. We speculated that the up-regulation of epiregulin was involved in the compensatory mechanism of N-ras knockdown for cell growth. Therefore, we evaluated whether dual silence of N-ras and epiregulin display a greater suppression of cell growth. The results confirmed that dual knockdown of N-ras and epiregulin synergistically inhibited cell growth. Our results also showed that dual knockdown of N-ras and epiregulin significantly induced cell arrest at G0/G1 phase. Furthermore, Western blot assay showed that dual knockdown of N-ras and epiregulin markedly reduced the phosphorylations of ERK1/2, Akt and Rb, and inhibited the expression of cyclin D1. Our findings imply that multi-targeted silence of oncogenes might be an effective treatment for HCC.

  7. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  8. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Statins Activate Human PPAR Promoter and Increase PPAR mRNA Expression and Activation in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Makoto Seo

    2008-01-01

    Full Text Available Statins increase peroxisome proliferator-activated receptor (PPAR mRNA expression, but the mechanism of this increased PPAR production remains elusive. To examine the regulation of PPAR production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin on human PPAR promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1 Majority of statins enhanced PPAR promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPAR promoter. This enhancement may be mediated by statin-induced HNF-4. (2 PPAR mRNA expression was increased by statin treatment. (3 The PPAR levels in nuclear fractions were increased by statin treatment. (4 Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPAR/RXR expression vectors. In summary, these data demonstrate that PPAR production and activation are upregulated through the PPAR promoter activity by statin treatment.

  10. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2 expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.

  11. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Mercury-Induced Externalization of Phosphatidylserine and Caspase 3 Activation in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-03-01

    Full Text Available Apoptosis arises from the active initiation and propagation of a series of highly orchestrated specific biochemical events leading to the demise of the cell. It is a normal physiological process, which occurs during embryonic development as well as in the maintenance of tissue homeostasis. Diverse groups of molecules are involved in the apoptosis pathway and it functions as a mechanism to eliminate unwanted or irreparably damaged cells. However, inappropriate induction of apoptosis by environmental agents has broad ranging pathologic implications and has been associated with several diseases including cancer. The toxicity of several heavy metals such as mercury has been attributed to their high affinity to sulfhydryl groups of proteins and enzymes, and their ability to disrupt cell cycle progression and/or apoptosis in various tissues. The aim of this study was to assess the potential for mercury to induce early and late-stage apoptosis in human liver carcinoma (HepG2 cells. The Annexin-V and Caspase 3 assays were performed by flow cytometric analysis to determine the extent of phosphatidylserine externalization and Caspase 3 activation in mercury-treated HepG2 cells. Cells were exposed to mercury for 10 and 48 hours respectively at doses of 0, 1, 2, and 3 μg/mL based on previous cytotoxicity results in our laboratory indicating an LD50 of 3.5 ± 0.6 μg/mL for mercury in HepG2 cells. The study data indicated a dose response relationship between mercury exposure and the degree of early and late-stage apoptosis in HepG2 cells. The percentages of cells undergoing early apoptosis were 0.03 ± 0.03%, 5.19 ± 0.04%, 6.36 ± 0.04%, and 8.84 ± 0.02% for 0, 1, 2, and 3 μg/mL of mercury respectively, indicating a gradual increase in apoptotic cells with increasing doses of mercury. The percentages of Caspase 3 positive cells undergoing late apoptosis were 3.58 ± 0.03%, 17.06 ± 0

  13. Human hepatoma cells exposed to estuarine sediment contaminant extracts permitted the differentiation between cytotoxic and pro-mutagenic fractions

    International Nuclear Information System (INIS)

    Pinto, M.; Costa, P.M.; Louro, H.; Costa, M.H.; Lavinha, J.

    2014-01-01

    Complex toxicant mixtures present in estuarine sediments often render contaminant screening unfeasible and compromise determining causation. HepG2 cells were subjected to bioassays with sediment extracts obtained with a series of progressively polar solvents plus a crude extract. The sediments were collected from an impacted area of an estuary otherwise regarded as pristine, whose stressors result mostly from aquaculture effluents and hydrodynamic shifts that enhance particle deposition. Compared to a reference scenario, the most polar extracts yielded highest cytotoxicity while higher genotoxicity (including oxidative damage) was elicited by non-polar solvents. While the former caused effects similar to those expected from biocides, the latter triggered effects compatible with known pro-mutagens like PAHs, even though the overall levels of toxicants were considered of low risk. The results indicate that the approach may constitute an effective line-of-evidence to infer on the predominant set of hazardous contaminants present in complex environmental mixtures. -- Highlights: • Estuarine sediment contaminants were extracted with different organic solvents. • More polar solvents contained the most cytotoxic contaminant fraction. • Non-polar solvents extracted the main genotoxic component of the mixture. • DNA base oxidation was detected through FPG/Comet assay. • The contamination pattern could be inferred from cytoassays with HepG2 cells. -- Polar/non-polar sediment fractions elicited differential cytotoxic and genotoxic effects in human HepG2 cells

  14. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    Science.gov (United States)

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

  15. GENE EXPRESSION PROFILING OF HUMAN LIVER CARCINOMA (HepG2) CELLS EXPOSED TO THE MARINE TOXIN OKADAIC ACID

    Science.gov (United States)

    Fieber, Lynne A.; Greer, Justin B.; Guo, Fujiang; Crawford, Douglas C.; Rein, Kathleen S.

    2012-01-01

    The marine toxin, okadaic acid (OA) is produced by dinoflagellates of the genera Prorocentrum and Dinophysis and is the causative agent of the syndrome known as diarrheic shellfish poisoning (DSP). In addition, OA acts as both a tumor promoter, attributed to OA-induced inhibition of protein phosphatases as well as an inducer of apoptosis. To better understand the potentially divergent toxicological profile of OA, the concentration dependent cytotoxicity and alterations in gene expression on the human liver tumor cell line HepG2 upon OA exposure were determined using RNA microarrays, DNA fragmentation, and cell proliferation assays as well as determinations of cell detachment and cell death in different concentrations of OA. mRNA expression was quantified for approximately 15,000 genes. Cell attachment and proliferation were both negatively correlated with OA concentration. Detached cells displayed necrotic DNA signatures but apoptosis also was broadly observed. Data suggest that OA has a concentration dependent effect on cell cycle, which might explain the divergent effects that at low concentration OA stimulates genes involved in the cell cycle and at high concentrations it stimulates apoptosis. PMID:23172983

  16. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  17. Arecoline inhibits the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytochrome P450 1A1 activation in human hepatoma cells

    International Nuclear Information System (INIS)

    Chang, Eddy Essen; Miao Zhifeng; Lee, W.-J.; Chao, H.-R.; Li, Lih-Ann; Wang, Y.-F.; Ko, Y.-C.; Tsai, F.-Y.; Yeh, S.C.; Tsou, T.-C.

    2007-01-01

    In the present study, we investigated the effect of arecoline, a major areca nut alkaloid, on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of cytochrome P4501A1 (CYP1A1) in a human hepatoma cell line Huh-7. We treated Huh-7 cells with 10 nM TCDD in the presence of different concentrations of arecoline (50-300 μM). Our results indicated that arecoline attenuated the TCDD-induced CYP1A1 enzyme activation with an inhibitory effect on cell proliferation. By using real-time RT-PCR, we demonstrated that arecoline inhibited the TCDD-induced activations of CYP1A1 and AhR repressor (AhRR) mRNA expression in a similar pattern. Our results revealed that arecoline inhibited AhR mRNA expression with no direct effect on CYP1A1 enzyme activity. Therefore, in our present study, the observed inhibitory effect of arecoline on CYP1A1 activation was not due to the up-regulation of AhRR or direct inhibitory effect on CYP1A1. Taken together, here we have demonstrated that arecoline attenuates the TCDD-induced CYP1A1 activation mainly via down-regulation of AhR expression in human hepatoma cells, suggesting the possible involvement of arecoline in the AhR-mediated metabolism of environmental toxicants in liver

  18. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-01-01

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  19. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  20. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells.

    Science.gov (United States)

    Wang, Xiangdong; Zhang, Jianghong; Fu, Jiamei; Wang, Juan; Ye, Shuang; Liu, Weili; Shao, Chunlin

    2015-05-01

    Autophagy plays a crucial role in cellular response to ionizing radiation, but it is unclear whether autophagy can modulate radiation-induced bystander effect (RIBE). Here, we investigated the relationship between bystander damage and autophagy in human hepatoma cells of HepG2. HepG2 cells were treated with conditioned medium (CM) collected from 3 Gy γ-rays irradiated hepatoma HepG2 cells for 4, 12, or 24 h, followed by the measurement of micronuclei (MN), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 in the bystander HepG2 cells. In some experiments, the bystander HepG2 cells were respectively transfected with LC3 small interfering RNA (siRNA), Beclin-1 siRNA or treated with 1% dimethyl sulfoxide (DMSO). Additional MN and mitochondrial dysfunction coupled with ROS were induced in the bystander cells. The expressions of protein markers of autophagy, LC3-II/LC3-I and Beclin-1, increased in the bystander cells. The inductions of bystander MN and overexpressions of LC3 and Beclin-1 were significantly diminished by DMSO. However, when the bystander cells were transfected with LC3 siRNA or Beclin-1 siRNA, the yield of bystander MN was significantly enhanced. The elevated ROS have bi-functions in balancing the bystander effects. One is to cause MN and the other is to induce protective autophagy.

  1. Imaging diagnosis of hepatoma

    International Nuclear Information System (INIS)

    Ashizawa, Tatsuto

    1984-01-01

    Nuclear medicine (NM), ultrasonography (US), and computed tomography (CT) were evaluated as screening methods for hepatoma, and the characteristics of each modality were compared. Qualitative diagnosis of hepatoma by measuring the quantitative time-lapse changes in 67 Ga-citrate accumulation was also investigated. A prospective analysis using the above modalities was conducted for 70 patients with hepatoma, with the following results: sensitivities of NM, US and CT were 91.1% ; 91.8% ; and 96.9% respectively. In comparing the characteristics of the three modalities, however, it was concluded that the combined use of NM and US was recommended for screening, and that CT should be used for more detailed examination of a tumor indicated by NM and/or US. In the diagnosis of hepatoma by 67 Ga-citrate, a sensitivity rate of 73.7% and a specificity rate of 92.5% were obtained, indicating 67 Ga-citrate's considerable significance for qualitative diagnosis of hepatoma. A decision tree was also made for those patients with chronic liver disease in whom positive hepatitis B virus (HBV) infection was detected or in whom serum alpha-fetoprotein (AFP) showed an increasing tendency. (author)

  2. The 3-D Culture and In Vivo Growth of the Human Hepatocellular Carcinoma Cell Line HepG2 in a Self-Assembling Peptide Nanofiber Scaffold

    International Nuclear Information System (INIS)

    Wu, M.; Yang, Z.; Liu, Y.; Liu, B.; Zhao, X.

    2010-01-01

    We report the use of the RADA16-I scaffold to mimic the ECM microenvironment and support tumor cell adherence and survival. Cellular morphology, proliferation, adhesion ability, and in vivo tumor formation were studied in the human hepatocellular carcinoma cell line HepG2 in the 3-D RADA16-I scaffold. No significant differences in HepG2 cell proliferation, adhesion, and albumin secretion were observed in the peptide scaffold compared to collagen I. Furthermore, the HepG2 cells pre cultured in the peptide scaffold showed a higher proliferation rate and formed significantly bigger tumors when compared to cells grown on a traditional 2D monolayer, suggesting that the 3-D RADA16-I scaffold can mimic the tumor microenvironment and promote a malignant phenotype in HepG2 cells. Our results indicate that the RADA16-I scaffold can serve as an ideal model for tumorigenesis, growth, local invasion, and metastasis.

  3. Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability

    International Nuclear Information System (INIS)

    Smart, V.; Curwen, G.B.; Whitehouse, C.A.; Edwards, A.; Tawn, E.J.

    2003-01-01

    The G 2 chromosomal radiosensitivity assay is a technically demanding assay. To ensure that it is reproducible in our laboratory, we have examined the effects of storage and culture conditions by applying the assay to a group of healthy controls and determined the extent of intra- and inter-individual variations. Nineteen different individuals provided one or more blood samples resulting in a total of 57 successful tests. Multiple cultures from a single blood sample showed no statistically significant difference in the number of chromatid type aberrations between cultures. A 24 h delay prior to culturing the lymphocytes did not significantly affect the induced G 2 score. Intra-individual variation was not statistically significant in seven out of nine individuals. Inter-individual variation was highly statistically significant (P<0.001), indicating that there is a real difference between individuals in the response to radiation using this assay

  4. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Xie Y

    2016-07-01

    Full Text Available Yuexia Xie,1,2,* Dejun Liu,3,* Chenlei Cai,1,* Xiaojing Chen,1 Yan Zhou,1 Liangliang Wu,1 Yongwei Sun,3 Huili Dai,1,2 Xianming Kong,1,2 Peifeng Liu1,2 1Central Laboratory, 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 3Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The application of Fe3O4 nanoparticles (NPs has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mecha­nisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm. Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application. Keywords: hepatoma cells, nanoparticles, cytotoxicity, mechanism, oxidative stress

  5. Activation of human stearoyl-coenzyme A desaturase 1 contributes to the lipogenic effect of PXR in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available The pregnane X receptor (PXR was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1, long chain free fatty acid elongase (FAE, and lecithin-cholesterol acyltransferase (LCAT, while the expression of acyl:cholesterol acetyltransferase(ACAT1 was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR, the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene.

  6. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.

    Science.gov (United States)

    Mavri-Damelin, Demetra; Damelin, Leonard H; Eaton, Simon; Rees, Myrddin; Selden, Clare; Hodgson, Humphrey J F

    2008-02-15

    Extrahepatic bioartificial liver devices should provide an intact urea cycle to detoxify ammonia. The C3A cell line, a subclone of the hepatoma-derived HepG2 cell line, is currently used in this context as it produces urea, and this has been assumed to be reflective of ammonia detoxification via a functional urea cycle. However, based on our previous findings of perturbed urea-cycle function in the non-urea producing HepG2 cell line, we hypothesized that the urea produced by C3A cells was via a urea cycle-independent mechanism, namely, due to arginase II activity, and therefore would not detoxify ammonia. Urea was quantified using (15)N-ammonium chloride metabolic labelling with gas chromatography-mass spectrometry. Gene expression was determined by real-time reverse transcriptase-PCR, protein expression by western blotting, and functional activities with radiolabelling enzyme assays. Arginase inhibition studies used N(omega)-hydroxy-nor-L-arginine. Urea was detected in C3A conditioned medium; however, (15)N-ammonium chloride-labelling indicated that (15)N-ammonia was not incorporated into (15)N-labelled urea. Further, gene expression of two urea cycle genes, ornithine transcarbamylase and arginase I, were completely absent. In contrast, arginase II mRNA and protein was expressed at high levels in C3A cells and was inhibited by N(omega)-hydroxy-nor-L-arginine, which prevented urea production, thereby indicating a urea cycle-independent pathway. The urea cycle is non-functional in C3A cells, and their urea production is solely due to the presence of arginase II, which therefore cannot provide ammonia detoxification in a bioartificial liver system. This emphasizes the continued requirement for developing a component capable of a full repertoire of liver function. (c) 2007 Wiley Periodicals, Inc.

  7. Preparation of a radioactive boron compound (B-I-131-lipiodol) for neutron capture therapy of hepatoma

    International Nuclear Information System (INIS)

    Chou, F.I.; Chung, H.P.; Chung, R.J.; Wen, H.W.; Wei, Y.Y.; Kai, J.J.; Lui, W.Y.; Chi, C.W.

    2000-01-01

    In our research, a radioactive boron compound, B-I-131-lipiodol, that can be selectively retained in hepatoma cells was prepared. Combining the effect of α particles produced by boron neutron capture reaction with the β particles released by radionuclides in the radioactive boron compounds will produce a synergistic killing effect on cancer cells. Human hepatoma HepG2 cell cultures were used to examine the stability and the intracellular distribution of the radioactive boron drug. Microscopes were used to examine the interaction and retention of B-I-131-lipiodol globules in the individual hepatoma cell. Moreover, ICP-AES and NaI scintillation counter were performed to determine boron concentrations and I-131 radioactivity, respectively. Results showed that B-I-131-lipiodol with a boron concentration and a specific radioactivity ranged from 500-2000 ppm and 0.05-10 mCi/mL respectively was stably retained in serum. The radiochemical purity of B-I-131-lipiodol was 98%. After supplement with a medium containing B-I-131-lipiodol, the HepG2 cells had intracellular B-I-131-lipiodol globules in the cytoplasm as seen by inverted light microscope, the I-131 and boron can be stably retained in HepG2 cells. (author)

  8. Synthesis of PBAD-lipiodol nanoparticles for combination treatment with boric acid in boron neutron capture therapy for hepatoma in-vitro

    International Nuclear Information System (INIS)

    Chou, F.I.; Chung, H.P.; Liu, H.M.; Wen, H.W.; Chi, C.W.; Lin, Shanyang; Lui, W.Y.; Kai, J.J.

    2006-01-01

    This study attempted to increase BNCT efficiency for hepatoma by a combined treatment of phenylboric acid derivative entrapped lipiodol nanoparticles (PBAD-L nanoparticles) with boric acid. The size of PBAD-L nanoparticles were 400-750 nm at the boron concentrations of 0.3-2.7 mg/ml. After 24 hours the boron concentration in PBAD-L nanoparticles treated human hepatoma HepG2 cells was 112 ppm, while that in rat liver Clone 9 cells was 52 ppm. With the use of 25 μg B/ml boric acid, after 6 hours the boron concentration in HepG2 and Clone 9 cells were 75 ppm and 40 ppm, respectively. In a combined treatment, boron concentration in HepG2 cells which were treated with PBAD-L nanoparticles for 18 hours and then combined with boric acid for 6 hours was 158 ppm. After neutron irradiation, the surviving fraction of HepG2 cells treated with PBAD-L nanoparticles was 12.6%, while that in the ones with a combined treatment was 1.3%. In conclusion, the combined treatment provided a higher boron concentration in HepG2 cells than treatments with either PBAD-L nanoparticles or boric acid, resulting in a higher therapeutic efficacy of BNCT in hepatoma cells. (author)

  9. Structure of Sphingolipids From Sea Cucumber Cucumaria frondosa and Structure-Specific Cytotoxicity Against Human HepG2 Cells.

    Science.gov (United States)

    Jia, Zicai; Song, Yu; Tao, Suyuan; Cong, Peixu; Wang, Xiaoxu; Xue, Changhu; Xu, Jie

    2016-03-01

    To investigate the relationship between structure and activity, three glucocerebroside series (CFC-1, CFC-2 and CFC-3), ceramides (CF-Cer) and long-chain bases (CF-LCB) of sea cucumber Cucumaria frondosa (C. frondosa) were isolated and evaluated in HepG2 cells. The molecular species of CFC-1, CFC-2 and CFC-3 and CF-Cer were identified using reversed-phase liquid chromatography with heated electrospray ionization coupled to high-resolution mass spectrometry (RPLC-HESI-HRMS), and determined on the basis of chemical and spectroscopic evidence: For the three glucocerebroside series, fatty acids (FA) were mainly saturated (18:0 and 22:0), monounsaturated (22:1, 23:1 and 24:1) and 2-hydroxyl FA (2-HFA) (23:1 h and 24:1 h), the structure of long-chain bases (LCB) were dihydroxy (d17:1, d18:1 and d18:2) and trihydroxy (t16:0 and t17:0), and the glycosylation was glucose; For CF-Cer, FA were primarily saturated (17:0) and monounsaturated (16:1 and 19:1), the structure of LCB were dihydroxy (d17:1 and d18:1), and trihydroxy (t16:0). The results of cell experiment indicated that all of three glucocerebroside series, CF-Cer and CF-LCB exhibited an inhibitory effects on cell proliferation. Moreover, CFC-3 was most effective in three glucocerebrosides to HepG-2 cell viability. The inhibition effect of CF-LCB was the strongest, and the inhibition effect of CF-Cer was much stronger than glucocerebrosides.

  10. The experimental study on the radioimmunotherapy of the hepatoma in nude mice model with intratumoral injection of 131I-human anti-HBsAg Fab

    International Nuclear Information System (INIS)

    Luo Rongcheng; Wu Guichen; Han Huanxing; You Changxuan; Ding Xuemei; Li Aimin; Wang Chuanbin; Zhang Mingjiang

    2001-01-01

    Objective: To study the therapeutic efficacy of radioimmunotherapy of 131 I-human anti-HBsAg Fab via different routes of administration. Methods: The human hepatoma bearing nude mice we reinjected with 131 I-human anti-HBsAg Fab intra-tumor (IT) and intra-peritoneum (IP). Biodistribution was measured on the 5th day. The tumor growth inhibition rate was determined by measurement of tumor volume. Results: In the IT-treated mice, tumor uptake of 131 I-human anti-HBsAg Fab was four-fold greater than in the IP-treated mice, and normal organ uptake was half of that in the IP-treated mice. At the 3rd week after the infusion, the tumor growth inhibition rate in IT-treated mice was higher than that in the IP-treated mice. Conclusions: Intratumoral administration of 131 I-human anti-HBsAg Fab makes high level of radioactivity retained in tumor with significantly lower radioactivity retained in normal tissues, and provides a more effective regional therapy

  11. Sterigmatocystin-induced DNA damage triggers G2 arrest via an ATM/p53-related pathway in human gastric epithelium GES-1 cells in vitro.

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    Full Text Available Sterigmatocystin (ST, which is commonly detected in food and feed commodities, is a mutagenic and carcinogenic mycotoxin that has been recognized as a possible human carcinogen. Our previous study showed that ST can induce G2 phase arrest in GES-1 cells in vitro and that the MAPK and PI3K signaling pathways are involved in the ST-induced G2 arrest. It is now widely accepted that DNA damage plays a critical role in the regulation of cell cycle arrest and apoptosis. In response to DNA damage, a complex signaling network is activated in eukaryotic cells to trigger cell cycle arrest and facilitate DNA repair. To further explore the molecular mechanism through which ST induces G2 arrest, the current study was designed to precisely dissect the role of DNA damage and the DNA damage sensor ataxia telangiectasia-mutated (ATM/p53-dependent pathway in the ST-induced G2 arrest in GES-1 cells. Using the comet assay, we determined that ST induces DNA damage, as evidenced by the formation of DNA comet tails, in GES-1 cells. We also found that ST induces the activation of ATM and its downstream molecules, Chk2 and p53, in GES-1 cells. The ATM pharmacological inhibitor caffeine was found to effectively inhibit the activation of the ATM-dependent pathways and to rescue the ST-induced G2 arrest in GES-1 cells, which indicating its ATM-dependent characteristic. Moreover, the silencing of the p53 expression with siRNA effectively attenuated the ST-induced G2 arrest in GES-1 cells. We also found that ST induces apoptosis in GES-1 cells. Thus, our results show that the ST-induced DNA damage activates the ATM/53-dependent signaling pathway, which contributes to the induction of G2 arrest in GES-1 cells.

  12. The g-2 ring

    CERN Multimedia

    1974-01-01

    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  13. Serum microRNA miR-206 is decreased in hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in HepG2 human hepatoblastoma cells.

    Science.gov (United States)

    Zheng, Yingjuan; Zhao, Chao; Zhang, Naijian; Kang, Wenqin; Lu, Rongrong; Wu, Huadong; Geng, Yingxue; Zhao, Yaping; Xu, Xiaoyan

    2018-04-01

    The actions of thyroid hormone (TH) on lipid metabolism in the liver are associated with a number of genes involved in lipogenesis and lipid metabolism; however, the underlying mechanisms through which TH impacts on lipid metabolism remain to be elucidated. The present study aimed to investigate the effects of hyperthyroidism on the serum levels of the microRNA (miR) miR‑206 and the role of miR‑206 on TH‑regulated lipid metabolism in liver cells. Serum was obtained from 12 patients diagnosed with hyperthyroidism and 10 healthy control subjects. Human hepatoblastoma (HepG2) cells were used to study the effects of triiodothyronine (T3) and miR‑206 on lipid metabolism. Expression of miR‑206 in serum and cells was determined by reverse transcription‑quantitative polymerase chain reaction analysis. Lipid accumulation in HepG2 cells was assessed with Oil Red O staining. Suppression or overexpression of miR‑206 was performed via transfection with a miR‑206 mimic or miR‑206 inhibitor. Serum miR‑206 was significantly decreased in patients with hyperthyroidism compared with euthyroid controls. Treatment of HepG2 cells with T3 led to reduced total cholesterol (TC) and triglyceride (TG) content, accompanied by reduced miR‑206 expression. Inhibition of endogenous miR‑206 expression decreased intracellular TG and TC content in HepG2 cells. By contrast, overexpression of miR‑206 in HepG2 partially prevented the reduction in TG content induced by treatment with T3. In conclusion, serum miR‑206 expression is reduced in patients with hyperthyroidism. In addition, miR‑206 is involved in T3‑mediated regulation of lipid metabolism in HepG2 cells, indicating a role for miR‑206 in thyroid hormone‑induced disorders of lipid metabolism in the liver.

  14. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells

    Directory of Open Access Journals (Sweden)

    Giang Thanh Thi Ho

    2017-01-01

    Full Text Available Type 2 diabetes (T2D is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  15. Stable Human Hepatoma Cell Lines for Efficient Regulated Expression of Nucleoside/Nucleotide Analog Resistant and Vaccine Escape Hepatitis B Virus Variants and Woolly Monkey Hepatitis B Virus.

    Directory of Open Access Journals (Sweden)

    Xin Cheng

    Full Text Available Hepatitis B virus (HBV causes acute and chronic hepatitis B (CHB. Due to its error-prone replication via reverse transcription, HBV can rapidly evolve variants that escape vaccination and/or become resistant to CHB treatment with nucleoside/nucleotide analogs (NAs. This is particularly problematic for the first generation NAs lamivudine and adefovir. Though now superseded by more potent NAs, both are still widely used. Furthermore, resistance against the older NAs can contribute to cross-resistance against more advanced NAs. For lack of feasible HBV infection systems, the biology of such variants is not well understood. From the recent discovery of Na+-taurocholate cotransporting polypeptide (NTCP as an HBV receptor new in vitro infection systems are emerging, yet access to the required large amounts of virions, in particular variants, remains a limiting factor. Stably HBV producing cell lines address both issues by allowing to study intracellular viral replication and as a permanent source of defined virions. Accordingly, we generated a panel of new tetracycline regulated TetOFF HepG2 hepatoma cell lines which produce six lamivudine and adefovir resistance-associated and two vaccine escape variants of HBV as well as the model virus woolly monkey HBV (WMHBV. The cell line-borne viruses reproduced the expected NA resistance profiles and all were equally sensitive against a non-NA drug. The new cell lines should be valuable to investigate under standardized conditions HBV resistance and cross-resistance. With titers of secreted virions reaching >3 x 10(7 viral genome equivalents per ml they should also facilitate exploitation of the new in vitro infection systems.

  16. Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee

    2013-03-01

    Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  18. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  19. Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors

    International Nuclear Information System (INIS)

    Zhao Lanjuan; Wang Lu; Ren Hao; Cao Jie; Li Li; Ke Jinshan; Qi Zhongtian

    2005-01-01

    Dysregulation of mitogen-activated protein kinase (MAPK) signaling pathways by various viruses has been shown to be responsible for viral pathogenicity. The molecular mechanism by which hepatitis C virus (HCV) infection caused human liver diseases has been investigated on the basis of abnormal intracellular signal events. Current data are very limited involved in transmembrane signal transduction triggered by HCV E2 protein. Here we explored regulation of the MAPK/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway by E2 expressed in Chinese hamster oval cells. In human hepatoma Huh-7 cells, E2 specifically activated the MAPK/ERK pathway including downstream transcription factor ATF-2 and greatly promoted cell proliferation. CD81 and low density lipoprotein receptor (LDLR) on the cell surface mediated binding of E2 to Huh-7 cells. The MAPK/ERK activation and cell proliferation driven by E2 were suppressed by blockage of CD81 as well as LDLR. Furthermore, pretreatment with an upstream kinase MEK1/2 inhibitor U0126 also impaired the MAPK/ERK activation and cell proliferation induced by E2. Our results suggest that the MAPK/ERK signaling pathway triggered by HCV E2 via its receptors maintains survival and growth of target cells

  20. Human cytochrome c enters murine J774 cells and causes G1 and G2/M cell cycle arrest and induction of apoptosis

    International Nuclear Information System (INIS)

    Hiraoka, Yoshinori; Granja, Ana Teresa; Fialho, Arsenio M.; Schlarb-Ridley, Beatrix G.; Das Gupta, Tapas K.; Chakrabarty, Ananda M.; Yamada, Tohru

    2005-01-01

    Cytochrome c is well known as a carrier of electrons during respiration. Current evidence indicates that cytochrome c also functions as a major component of apoptosomes to induce apoptosis in eukaryotic cells as well as an antioxidant. More recently, a prokaryotic cytochrome c, cytochrome c 551 from Pseudomonas aeruginosa, has been shown to enter in mammalian cells such as the murine macrophage-like J774 cells and causes inhibition of cell cycle progression. Much less is known about such functions by mammalian cytochromes c, particularly the human cytochrome c. We now report that similar to P. aeruginosa cytochrome c 551 , the purified human cytochrome c protein can enter J774 cells and induce cell cycle arrest at the G 1 to S phase, as well as at the G 2 /M phase at higher concentrations. Unlike P. aeruginosa cytochrome c 551 which had no effect on the induction of apoptosis, human cytochrome c induces significant apoptosis and cell death in J774 cells, presumably through inhibition of the cell cycle at the G 2 /M phase. When incubated with human breast cancer MCF-7 and normal mammary epithelial cell line MCF-10A1 cells, human cytochrome c entered in both types of cells but induced cell death only in the normal MCF-10A1 cells. The ability of human cytochrome c to enter J774 cells was greatly reduced at 4 deg. C, suggesting energy requirement in the entry process

  1. Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases.

    Science.gov (United States)

    Yang, Diane; Scavuzzo, Marissa A; Chmielowiec, Jolanta; Sharp, Robert; Bajic, Aleksandar; Borowiak, Malgorzata

    2016-02-18

    Efficient gene editing is essential to fully utilize human pluripotent stem cells (hPSCs) in regenerative medicine. Custom endonuclease-based gene targeting involves two mechanisms of DNA repair: homology directed repair (HDR) and non-homologous end joining (NHEJ). HDR is the preferred mechanism for common applications such knock-in, knock-out or precise mutagenesis, but remains inefficient in hPSCs. Here, we demonstrate that synchronizing synchronizing hPSCs in G2/M with ABT phase increases on-target gene editing, defined as correct targeting cassette integration, 3 to 6 fold. We observed improved efficiency using ZFNs, TALENs, two CRISPR/Cas9, and CRISPR/Cas9 nickase to target five genes in three hPSC lines: three human embryonic stem cell lines, neural progenitors and diabetic iPSCs. neural progenitors and diabetic iPSCs. Reversible synchronization has no effect on pluripotency or differentiation. The increase in on-target gene editing is locus-independent and specific to the cell cycle phase as G2/M phase enriched cells show a 6-fold increase in targeting efficiency compared to cells in G1 phase. Concurrently inhibiting NHEJ with SCR7 does not increase HDR or improve gene targeting efficiency further, indicating that HR is the major DNA repair mechanism after G2/M phase arrest. The approach outlined here makes gene editing in hPSCs a more viable tool for disease modeling, regenerative medicine and cell-based therapies.

  2. The hyper-radiosensitivity effect of human hepatoma SMMC-7721 cells exposed to low dose γ-rays and 12C ions

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Li Wenjian; Wang Jufang; Guo Chuanling; Hao Jifang

    2006-01-01

    Hypersensitive response of mammalian cells in cell killing to X- and γ-rays has been reported at doses below 1 Gy. The purpose of this study was to examine the low dose sensitivity of human hepatoma SMMC-7721 cells irradiated with 6 Co γ-rays and 50 MeV/u 12 C ions. Experiments using γ-rays and charged particle irradiation were performed, particularly in the low dose range from 0 to 2 Gy. The survival effect of SMMC-7721 cells was measured by means of standard clonogenic assay in conjunction with a cell sorter. The result indicates SMMC-7721 cells showed hyper-radiosensitive response at low doses and increased radio-resistance at larger single doses for the carbon ions (LET = 45.2 keV/μm) and the γ-rays. However, the HRS/IRR effect caused by high-LET irradiation is different from that by low-LET radiation. This might possibly be due to the difference in the mode of energy deposition by particle beam and low-LET irradiation

  3. Ginsenoside Rh2 Induces Human Hepatoma Cell Apoptosisvia Bax/Bak Triggered Cytochrome C Release and Caspase-9/Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Xiao-Xi Guo

    2012-11-01

    Full Text Available Ginsenoside Rh2 (G-Rh2 has been shown to induce apoptotic cell death in a variety of cancer cells. However, the details of the signal transduction cascade involved in G-Rh2-induced cell death is unclear. In this manuscript we elucidate the molecular mechanism of G-Rh2-induced apoptosis in human hepatoma SK-HEP-1 cells by demonstrating that G-Rh2 causes rapid and dramatic translocation of both Bak and Bax, which subsequently triggers mitochondrial cytochrome c release and consequent caspase activation. Interestingly, siRNA-based gene inactivation of caspase-8 effectively delays caspase-9 activation and apoptosis induced by G-Rh2, indicating that caspase-8 also plays an important role in the G-Rh2-induced apoptosis program. Taken together, our results indicate that G-Rh2 employs a multi pro-apoptotic pathway to execute cancer cell death, suggesting a potential role for G-Rh2 as a powerful chemotherapeutic agent.

  4. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    Science.gov (United States)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of Genistein and 17-β Estradiol on the Viability and Apoptosis of Human Hepatocellular Carcinoma HepG2 cell line

    Directory of Open Access Journals (Sweden)

    Masumeh Sanaei

    2017-01-01

    Full Text Available Background: One of the most lethal cancers is hepatocellular carcinoma (HCC. Genistein (GE is a choice compound for treatment of certain types of cancer. Phytoestrogens are plant derivatives that bear a structural similarity to 17-β estradiol (E2 and act in a similar manner. They are a group of lipophillic plant compounds with tumorigenic and antitumorigenic effects. E2 has stimulatory and inhibitory effects on cancer cell lines. This study was designed to investigate the antiproliferative and apoptotic effects of GE and E2 on the HCC HepG2 cell line. Materials and Methods: HepG2 cells were cultured and treated with various concentrations of GE and E2 and then 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromideand flow cytometry assay were performed to determine cell viability and apoptosis. Results: GE and E2 induced apoptosis and inhibited cell growth significantly. Reduction of cell viability by 50% required 20 μM E2 for E2-treatment groups and 20 μMGE for GE-treatment groups. The percentage of the GE-treated apoptotic cells was reduced by about 35%, 42%, and 47% (P < 0.001 and that of E2-treated groups 34%, 39%, and 42% (P < 0.001 after 24, 48, and 72 h, respectively. Conclusions: Our experimental work clearly demonstrated that GE and E2 exhibited significant antiproliferative and apoptotic effects on human HCC HepG2 cells.

  6. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    Science.gov (United States)

    Liu, Ling; Wang, Dongmei; Wang, Jiangang; Wang, Shuying

    2016-04-01

    Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway. © 2015 Wiley Periodicals, Inc.

  7. Tributyltin induces a G2/M cell cycle arrest in human amniotic cells via PP2A inhibition-mediated inactivation of the ERK1/2 cascades.

    Science.gov (United States)

    Zhang, Yali; Guo, Zonglou; Xu, Lihong

    2014-03-01

    The molecular mechanisms underlying the cell cycle alterations induced by tributyltin (TBT), a highly toxic environmental contaminant, remain elusive. In this study, cell cycle progression and some key regulators in G2/M phase were investigated in human amniotic cells treated with TBT. Furthermore, protein phosphatase (PP) 2A and the ERK cascades were examined. The results showed that TBT caused a G2/M cell cycle arrest that was accompanied by a decrease in the total cdc25C protein level and an increase in the p-cdc2 level in the nucleus. TBT caused a decrease in PP2A activity and inhibited the ERK cascade by inactivating Raf-1, resulting in the dephosphorylation of MEK1/2, ERK1/2, and c-Myc. Taken together, TBT leads to a G2/M cell cycle arrest in FL cells, an increase in p-cdc2 and a decrease in the levels of total cdc25C protein, which may be caused by the PP2A inhibition-mediated inactivation of the ERK1/2 cascades. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  9. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  10. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    Science.gov (United States)

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  11. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    International Nuclear Information System (INIS)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-01-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction

  12. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    Science.gov (United States)

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  13. N-Acetyl-L-Cysteine Affords Protection against Lead-Induced Cytotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2007-06-01

    Full Text Available Although lead exposure has declined in recent years as a result of change to lead-free gasoline, several epidemiological have pointed out that it represents a medical and public health emergency, especially in young children consuming high amounts of lead-contaminated flake paints. A previous study in our laboratory indicated that lead exposure induces cytotoxicity in human liver carcinoma cells. In the present study, we evaluated the role of oxidative stress in lead-induced toxicity, and the protective effect of the anti-oxidant n-acetyl-l-cysteine (NAC. We hypothesized that oxidative stress plays a role in lead-induced cytotoxicity, and that NAC affords protection against this adverse effect. To test this hypothesis, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide] assay and the trypan blue exclusion test for cell viability. We also performed the thiobarbituric acid test for lipid peroxidation. Data obtained from the MTT assay indicated that NAC significantly increased the viability of HepG2 cells in a dosedependent manner upon 48 hours of exposure. Similar trend was obtained with the trypan blue exclusion test. Data generated from the thiobarbituric acid test showed a significant (p ≤ 0.05 increase of MDA levels in lead nitrate-treated HepG2 cells compared to control cells. Interestingly, the addition of NAC to lead nitrate-treated HepG2 cells significantly decreased cellular content of reactive oxygen species (ROS, as evidenced by the decrease in lipid peroxidation byproducts. Overall, findings from this study suggest that NAC inhibits lead nitrate-induced cytotoxicity and oxidative stress in HepG2 cells. Hence, NAC may be used as a salvage therapy for lead-induced toxicity in exposed persons.

  14. 5-(2-Carboxyethenyl) isatin derivative induces G2/M cell cycle arrest and apoptosis in human leukemia K562 cells

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan; Fan, Zhen-Chuan; Zhang, Yong-Min; Teng, Yu-Ou; Yu, Peng

    2014-01-01

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G 2 /M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC 50 ) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G 2 /M phase and accumulated subsequently in the sub-G 1 phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G 2 /M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation

  15. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells.

    Science.gov (United States)

    Galloway, D C; Blake, D G; Shepherd, A G; McLellan, L I

    1997-11-15

    We have shown that in HepG2 cells treatment with 75 microM t-butylhydroquinone (tBHQ) results in a 2.5-fold increase in glutathione concentration, as part of an adaptive response to chemical stress. In these cells the elevation in intracellular glutathione level was found to be accompanied by an increase of between 2-fold and 3-fold in the level of the 73 kDa catalytic subunit of gamma-glutamylcysteine synthetase (heavy subunit, GCSh) and the 31 kDa regulatory subunit (light subunit, GCSl). Levels of GCSh and GCSl mRNA were increased by up to 5-fold in HepG2 cells in response to tBHQ. To study the transcriptional regulation of GCSl, we subcloned 6.7 kb of the upstream region of the human GCSl gene (GLCLR) from a genomic clone isolated from a P1 lymphoblastoid cell line genomic library. HepG2 cells were transfected with GLCLR promoter reporter constructs and treated with tBHQ. This resulted in an induction of between 1.5-fold and 3.5-fold in reporter activity, indicating that transcriptional regulation of GLCLR is likely to contribute to the induction of GCSl by tBHQ in HepG2 cells. Sequence analysis of the promoter region demonstrated the presence of putative enhancer elements including AP-1 sites and an antioxidant-responsive element, which might be involved in the observed induction of the GLCLR promoter.

  16. Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway.

    Science.gov (United States)

    Wu, Shu-Jing; Ng, Lean-Teik; Lin, Doung-Liang; Huang, Shan-Ney; Wang, Shyh-Shyan; Lin, Chun-Ching

    2004-11-25

    Physalis species is a popular folk medicine used for treating cancer, leukemia, hepatitis and other diseases. Studies have shown that the ethanol extract of Physalis peruviana (EEPP) inhibits growth and induces apoptotic death of human Hep G2 cells in culture, whereas proliferation of the mouse BALB/C normal liver cells was not affected. In this study, we performed detailed studies to define the molecular mechanism of EEPP-induced apoptosis in Hep G2 cells. The results further confirmed that EEPP inhibited cell proliferation in a dose- and time-dependent manner. At 50 microg/ml, EEPP significantly increased the accumulation of the sub-G1 peak (hypoploid) and the portion of apoptotic annexin V positive cells. EEPP was found to trigger apoptosis through the release of cytochrome c, Smac/DIABLO and Omi/HtrA2 from mitochondria to cytosol and consequently resulted in caspase-3 activation. Pre-treatment with a general caspase inhibitor (z-VAD-fmk) prevented cytochrome c release. After 48 h of EEPP treatment, the apoptosis of Hep G2 cells was found to associate with an elevated p53, and CD95 and CD95L proteins expression. Furthermore, a marked down-regulation of the expression of the Bcl-2, Bcl-XL and XIAP, and up-regulation of the Bax and Bad proteins were noted. Taken together, the present results suggest that EEPP-induced Hep G2 cell apoptosis was possibly mediated through the CD95/CD95L system and the mitochondrial signaling transduction pathway.

  17. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines.

    Science.gov (United States)

    Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni

    2016-11-01

    The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    Science.gov (United States)

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  19. A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiang; Asai, Akio; Kawamoto, Keiji; Zhao Shiguang; Zhen Yunbo; Teng Lei

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Elevated expression of miR-21 has been reported in many types of human cancers. Radiotherapy is a standard adjuvant treatment for patients with glioblastoma. However, the resistance of glioblastoma cells to radiation limits the success of this treatment. In this study, we found that miR-21 expression was upregulated in response to ionizing radiation (IR) in U251 cells, which suggested that miR-21 could be involved in the response of U251 cells to radiation. We showed that a miR-21 inhibitor enhanced IR-induced glioblastoma cell growth arrest and increased the level of apoptosis, which was probably caused by abrogation of the G 2 -M arrest induced by IR. Further research demonstrated that the miR-21 inhibitor induced the upregulation of Cdc25A. Taken together, these findings suggest that miR-21 inhibitor can increase IR-induced growth arrest and apoptosis in U251 glioblastoma cells, at least in part by abrogating G 2 -M arrest, and that Cdc25A is a potential target of miR-21. (author)

  20. PPARγ activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    International Nuclear Information System (INIS)

    Mogilenko, Denis A.; Shavva, Vladimir S.; Dizhe, Ella B.; Orlov, Sergey V.; Perevozchikov, Andrej P.

    2010-01-01

    Research highlights: → PPARγ activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. → Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1-LXRβ complex. → Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex. → Activation of PPARγ leads to increasing of the level of LXRβ associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPARγ is known as activator of ABCA1 expression, but details of PPARγ-mediated regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPARγ activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXRβ binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPARγ agonist GW1929 leads to dissociation of LXRβ from ABCA1/LXRβ complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPARγ-mediated dissociation of LXRβ from ABCA1/LXRβ complex, but does not block PPARγ-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPARγ may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPARγ, LXRβ and MEK1/2 in regulation of ABCA1 mRNA and protein expression.

  1. Inhibition of Tumor Growth of Human Hepatocellular Carcinoma HepG2 Cells in a Nude Mouse Xenograft Model by the Total Flavonoids from Arachniodes exilis

    Directory of Open Access Journals (Sweden)

    Huimin Li

    2017-01-01

    Full Text Available A tumor growth model of human hepatocellular carcinoma HepG2 cells in nude mice was employed to investigate the antitumor activity of the total flavonoids extracted from Arachniodes exilis (TFAE in vivo. Several biochemical assays including hematoxylin-eosin (HE staining, immunohistochemistry, and Western blot were performed to elucidate the mechanism of action of total flavonoids extracted from Arachniodes exilis (TFAE. The results showed that TFAE effectively inhibited the tumor growth of hepatocellular carcinoma in nude mice and had no significant effect on body weight, blood system, and functions of liver and kidney. Expression levels of proapoptotic proteins Bax and cleaved caspase-3 remarkably increased while the expressions of Bcl-2, HIF-1α, and VEGF were suppressed by TFAE. These results suggested that the antitumor potential of TFEA was implied by the apoptosis of tumor cells and the inhibition of angiogenesis in tumor tissue.

  2. Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells

    International Nuclear Information System (INIS)

    Lambert, Carine B.; Spire, Catherine; Claude, Nancy; Guillouzo, Andre

    2009-01-01

    Phenobarbital (PB) induces or represses a wide spectrum of genes in rodent liver. Much less is known about its effects in human liver. We used pangenomic cDNA microarrays to analyze concentration- and time-dependent gene expression profile changes induced by PB in the well-differentiated human HepaRG cell line. Changes in gene expression profiles clustered at specific concentration ranges and treatment times. The number of correctly annotated genes significantly modulated by at least three different PB concentration ranges (spanning 0.5 to 3.2 mM) at 20 h exposure amounted to 77 and 128 genes (p ≤ 0.01) at 2- and 1.8-fold filter changes, respectively. At low concentrations (0.5 and 1 mM), PB-responsive genes included the well-recognized CAR- and PXR-dependent responsive cytochromes P450 (CYP2B6, CYP3A4), sulfotransferase 2A1 and plasma transporters (ABCB1, ABCC2), as well as a number of genes critically involved in various metabolic pathways, including lipid (CYP4A11, CYP4F3), vitamin D (CYP24A1) and bile (CYP7A1 and CYP8B1) metabolism. At concentrations of 3.2 mM or higher after 20 h, and especially 48 h, increased cytotoxic effects were associated with disregulation of numerous genes related to oxidative stress, DNA repair and apoptosis. Primary human hepatocyte cultures were also exposed to 1 and 3.2 mM PB for 20 h and the changes were comparable to those found in HepaRG cells treated under the same conditions. Taken altogether, our data provide further evidence that HepaRG cells closely resemble primary human hepatocytes and provide new information on the effects of PB in human liver. These data also emphasize the importance of investigating dose- and time-dependent effects of chemicals when using toxicogenomic approaches

  3. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line

    Directory of Open Access Journals (Sweden)

    Qi XL

    2012-04-01

    Full Text Available Xiaoli Qi1, Dianrui Zhang2, Xia Xu1, Feifei Feng2, Guijie Ren1, Qianqian Chu1, Qiang Zhang3, Keli Tian11Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, 2Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, 3State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of ChinaAbstract: Oridonin, a diterpenoid isolated from Rabdosia rubescencs, has been reported to have antitumor effects. However, low solubility has limited its clinical applications. Preparation of drugs in the form of nanosuspensions is an extensively utilized protocol. In this study, we investigated the anticancer activity of oridonin and oridonin nanosuspension on human pancreatic carcinoma PANC-1 cells. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed to investigate the effect of oridonin on cell growth. Propidium iodide and Hoechst 33342 staining were used to detect morphologic changes. The percentage of apoptosis and cell cycle progression was determined by flow cytometric method staining with propidium iodide. Annexin V-fluorescein isothiocyanate (FITC/PI staining was used to evaluate cell apoptosis by flow cytometry. Caspase-3 activity was measured by spectrophotometry. The apoptotic and cell cycle protein expression were determined by Western blot analysis. Both oridonin and oridonin nanosuspension induced apoptosis and G2/M phase cell cycle arrest, and the latter had a more significant cytotoxic effect. The ratio of Bcl-2/Bax protein expression was decreased and caspase-3 activity was stimulated. The expression of cyclin B1 and p-cdc2 (T161 was suppressed. Our results showed that oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line.Keywords: cyclin B1, cdc2, caspase-3, Bcl-2, Bax

  4. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival

    Directory of Open Access Journals (Sweden)

    Silverman Lee

    2007-07-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C, had enhanced checkpoint kinase 1 (Chk1 serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1, diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T

  5. The induction of apoptosis and autophagy in human hepatoma SMMC-7721 cells by combined treatment with vitamin C and polysaccharides extracted from Grifola frondosa.

    Science.gov (United States)

    Zhao, Fei; Zhao, Jin; Song, Lei; Zhang, Ya-Qing; Guo, Zhong; Yang, Ke-Hu

    2017-11-01

    Polysaccharides extracted from the mushroom Grifola frondosa (GFP) are a potential anticancer agent. The objective of this study was to investigate the effect of GFP and vitamin C (VC) alone and in combination on the viability of human hepatocarcinoma SMMC-7721 and HepG2 cells. Studies designed to detect cell apoptosis and autophagy were also conducted to investigate the mechanism. Results from the cell viability assay indicated that a combination of GFP (0.2 or 0.25 mg/mL) and VC (0.3 mmol/L) (GFP/VC) led to 52.73 and 53.93% reduction in cell viability of SMMC-7721 and HepG2 cells separately after 24 h. Flow cytometric analysis indicated that GFP/VC treatment induced cell cycle arrest at the G2/M phase, and apoptosis occurred in approximately 43.62 and 42.46% of the SMMC-7721 and HepG2 cells separately. Moreover, results of Hoechst33258 and monodansylcadaverine staining, and transmission electron microscopy, showed that GFP/VC induced apoptosis and autophagy in SMMC-7721 and HepG2 cells. Western blot analysis showed changes in the expression of apoptosis-related proteins [upregulation of BAX and caspase-3, downregulation of Bcl-2, and activation of poly-(ADP-ribose)-polymerase] and autophagy protein markers (upregulation of beclin-1 and microtubule-associated protein 1A/1B light chain-3). We also demonstrated that the expression of both Akt and p-Akt was enhanced, suggesting the PI3K/Akt/mTOR pathway might not be involved in this process. Our study shows that the combined application of GFP and VC induced cell apoptosis and autophagy in vitro, and might have antitumor activity in vivo.

  6. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiang GH

    2013-12-01

    Full Text Available Guang-Hua Xiang,1,2,* Guo-Bin Hong,2,3,* Yong Wang,2 Du Cheng,2 Jing-Xing Zhou,1 Xin-Tao Shuai21Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China; 3Department of Radiology, Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, People's Republic of China*These two authors contributed equally to this workObjective: To evaluate the cytotoxicity of poly(ethylene glycol-block-poly(D,L-lactic acid (PEG-PDLLA nanovesicles loaded with doxorubicin (DOX and the photosensitizer hematoporphyrin monomethyl ether (HMME on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms.Methods: PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME, and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX, HMME (PEG-PDLLA-HMME, or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined.Results: Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with

  7. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue; Zhang, Shunfen [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Zhou, Tianyan [Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083 (China); Huang, Chaoqun; McLaughlin, Alicia [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Chen, Guangping, E-mail: guangping.chen@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  9. Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest.

    Science.gov (United States)

    Chen, Wenxia; Yan, Yongbin; Song, Chundong; Ding, Ying; Du, Tao

    2017-12-14

    Studies have demonstrated that microvesicles (MVs) derived from human Wharton's Jelly mesenchymal stromal cells (hWJMSCs) could ameliorate renal ischemia/reperfusion injury (IRI); however, the underlying mechanisms were not clear yet. Here, MVs were isolated and injected intravenously into rats immediately after ischemia of the left kidney, and Erk1/2 activator hepatocyte growth factor (HGF) or inhibitor U0126 was administrated. Tubular cell proliferation and apoptosis were identified by Ki67 or terminal-deoxynucleotidyl transferase-mediated nick end labeling immunostaining. Masson's tri-chrome straining and alpha-smooth muscle actin staining were used for assessing renal fibrosis. The mRNA or protein expression in the kidney was measured by quantitative reverse transcription-PCR or Western blot, respectively. The total collagen concentration was also determined. In vitro , NRK-52E cells that treated with MVs under hypoxia injury and with HGF or U0126 administration were used, and cell cycle analysis was performed. The effects of hWJMSC-MVs on enhancing the proliferation and mitigating the apoptosis of renal cells, abrogating IRI-induced fibrosis, improving renal function, decreasing collagen deposition, and altering the expression levels of epithelial-mesenchymal transition and cell cycle-related proteins in IRI rats were found. In vitro experiment showed that hWJMSC-MVs could induce G2/M cell cycle arrest and decrease the expression of collagen deposition-related proteins in NRK-52E cells after 24 or 48 h. However, U0126 treatment reversed these effects. In conclusion, MVs derived from hWJMSCs ameliorate IR-induced renal fibrosis by inducing G2/M cell cycle arrest via Erk1/2 signaling. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Science.gov (United States)

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Choi Hyun

    2009-05-01

    Full Text Available Abstract Background 3,3'-Diindolylmethane (DIM, an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 – 30 μmol/L inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. Methods HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK and cell division cycle (CDC2 were conducted. Results The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Conclusion Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  12. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells.

    Science.gov (United States)

    Choi, Hyun Ju; Lim, Do Young; Park, Jung Han Yoon

    2009-05-29

    3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 - 30 micromol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. HT-29 cells were cultured with various concentrations of DIM (0 - 30 micromol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted. The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  13. A Novel Polysaccharide Conjugate from Bullacta exarata Induces G1-Phase Arrest and Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells.

    Science.gov (United States)

    Liao, Ningbo; Sun, Liang; Chen, Jiang; Zhong, Jianjun; Zhang, Yanjun; Zhang, Ronghua

    2017-03-01

    Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their biological activities have been carried out. However, little is known regarding the antitumor properties of polysaccharides from B. exarata , hence the polysaccharides from B. exarata have been investigated here. One polysaccharide conjugate BEPS-IA was isolated and purified from B. exarata . It mainly consisted of mannose and glucose in a molar ratio of 1:2, with an average molecular weight of 127 kDa. Thirteen general amino acids were identified to be components of the protein-bound polysaccharide. Methylation and NMR studies revealed that BEPS-IA is a heteropolysaccharide consisting of 1,4-linked-α-d-Glc, 1,6-linked-α-d-Man, 1,3,6-linked-α-d-Man, and 1-linked-α-d-Man residue, in a molar ratio of 6:1:1:1. In order to test the antitumor activity of BEPS-IA, we investigated its effect against the growth of human hepatocellular carcinoma cells HepG2 in vitro. The result showed that BEPS-IA dose-dependently exhibited an effective HepG2 cells growth inhibition with an IC 50 of 112.4 μg/mL. Flow cytometry analysis showed that BEPS-IA increased the populations of both apoptotic sub-G1 and G1 phase. The result obtained from TUNEL assay corroborated apoptosis which was shown in flow cytometry. Western blot analysis suggested that BEPS-IA induced apoptosis and growth inhibition were associated with up-regulation of p53, p21 and Bax, down-regulation of Bcl-2. These findings suggest that BEPS-IA may serve as a potential novel dietary agent for hepatocellular carcinoma.

  14. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure

    Directory of Open Access Journals (Sweden)

    Claudia Trigo Pedroso Moraes

    2015-02-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.

  15. Genetic variability in G2 and F2 region between biological clones of human respiratory syncytial virus with or without host immune selection pressure.

    Science.gov (United States)

    Moraes, Claudia Trigo Pedroso; Oliveira, Danielle Bruna Leal; Campos, Angelica Cristine Almeida; Bosso, Patricia Alves; Lima, Hildener Nogueira; Stewien, Klaus Eberhard; Gilio, Alfredo Elias; Vieira, Sandra Elisabete; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    2015-02-01

    Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.

  16. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L. from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Nathalia F. F. de Sales

    2018-03-01

    Full Text Available Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  17. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L.) from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells.

    Science.gov (United States)

    de Sales, Nathalia F F; Silva da Costa, Leandro; Carneiro, Talita I A; Minuzzo, Daniela A; Oliveira, Felipe L; Cabral, Lourdes M C; Torres, Alexandre G; El-Bacha, Tatiana

    2018-03-08

    Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  18. In vitro antitumor efficacy of berberine: solid lipid nanoparticles against human HepG2, Huh7 and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Wang, Xiao; Wang, Huai-ling; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded solid lipid nanoparticles (Ber-SLN) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-SLN relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-SLN were 154.3 ± 4.1 nm and -11.7 ± 1.8 mV, respectively. MTT assay showed that Ber-SLN effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 10.6 μg/ml, 5.1 μg/ml, and 7.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-SLN is a promising approach for treating tumors.

  19. Anti-hepatocarcinoma effects of berberine nanosuspension against human HepG2 and Huh7 cells as well as H22 tumor bearing mice

    Science.gov (United States)

    Wang, Zhi-ping; Wu, Jun-biao; Zhou, Qun; Wang, Yi-fei; Chen, Tongsheng

    2014-09-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber nanosuspension (Ber-NS) composed of Ber and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was prepared by high pressure homogenization technique. Both in vitro and in vivo anti-hepatocarcinoma effects of Ber-NS relative to effcacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NS were 73.1 +/- 3.7 nm and 6.99 +/- 0.17 mV, respectively. Ber-NS exhibited significant inhibitory effects against human HepG2 and Huh7 cells, and the corresponding IC50 values were 8.1 and 4.7 μg/ml (18.3 and 6.5 μg/ml of Ber solution). In vivo studies also showed higher antitumor efficacy, and inhibition rates was 63.7% (41.4 % of Ber solution) at 100 mg/kg intragastric administration in the H22 solid tumor bearing mice. These results suggest that the delivery of Ber as a nanosuspension is a promising approach for treating hepatocarcinoma.

  20. Anti-hepatocarcinoma effects of berberine-nanostructured lipid carriers against human HepG2, Huh7, and EC9706 cancer cell lines

    Science.gov (United States)

    Meng, Xiang-Ping; Fan, Hua; Wang, Yi-fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 +/- 3.7 nm and -19.3 +/- 1.4 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 9.1 μg/ml, 4.4 μg/ml, and 6.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  1. Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

    Directory of Open Access Journals (Sweden)

    Rahman HS

    2014-01-01

    Full Text Available Heshu Sulaiman Rahman,1–3 Abdullah Rasedee,1,2 Ahmad Bustamam Abdul,2,4 Nazariah Allaudin Zeenathul,1,2 Hemn Hassan Othman,1,3 Swee Keong Yeap,2 Chee Wun How,2 Wan Abd Ghani Wan Nor Hafiza4,51Faculty of Veterinary Medicine, 2Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Faculty of Veterinary Medicine, University of Sulaimanyah, Sulaimanyah City, Kurdistan Region, Northern Iraq; 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Medical Laboratory Technology, Institute for Medical Research, Kuala Lumpur, MalaysiaAbstract: This investigation evaluated the antileukemia properties of a zerumbone (ZER-loaded nanostructured lipid carrier (NLC prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose polymerase (PARP. These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans.Keywords: zerumbone-loaded nanostructured lipid carrier, cell cycle arrest, apoptosis, mitochondrial pathway

  2. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells

    International Nuclear Information System (INIS)

    Zhang, Xiuhua; Chen, Minxiao; Zou, Peng; Kanchana, Karvannan; Weng, Qiaoyou; Chen, Wenbo; Zhong, Peng; Ji, Jiansong; Zhou, Huiping; He, Langchong; Liang, Guang

    2015-01-01

    Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC 50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users

  3. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    International Nuclear Information System (INIS)

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A.

    2014-01-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy

  4. In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes.

    Science.gov (United States)

    Ahmed, Farrukh Rafiq; Shoaib, Muhammad Harris; Azhar, Mudassar; Um, Soong Ho; Yousuf, Rabia Ismail; Hashmi, Shahkamal; Dar, Ahsana

    2015-11-01

    Halloysite is a clay mineral with chemical similarity to kaolin, a pharmaceutical ingredient. It consists of mainly aluminosilicate nanotubular particles in the size range of ∼ 200-1000 nm. Many studies have tried to empirically explore this novel clay for its potential in drug delivery systems but no work has yet studied its cytotoxicity from the perspective of oral drug delivery system. In this study, the halloysite nanotubes (HNTs) were subjected to size distribution analyses, which reveal more than 50% of nanotubes in the size range of 500 nm and rest mainly in the sub micrometer range. HNTs were then evaluated for in-vitro cytotoxicity against HCT116 (colorectal carcinoma) and HepG2 (hepatocellular carcinoma) cells which represent the earliest entry point and the first accumulating organ, respectively, for nanoparticles en-route to systemic circulation after oral delivery. Moreover, HNTs were tested for their cytogenetic toxicity against human peripheral blood lymphocytes. Both these results collectively indicated that HNTs are generally safe at practical concentrations of excipients for oral dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Functional Toxicogenomic Assessment of Triclosan in Human HepG2 Cells Using Genome-Wide CRISPR-Cas9 Screening.

    Science.gov (United States)

    Xia, Pu; Zhang, Xiaowei; Xie, Yuwei; Guan, Miao; Villeneuve, Daniel L; Yu, Hongxia

    2016-10-04

    There are thousands of chemicals used by humans and detected in the environment for which limited or no toxicological data are available. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic screening to identify the potential molecular mechanism of a widely used antimicrobial triclosan (TCS) in HepG2 cells. Resistant genes at IC50 (the concentration causing a 50% reduction in cell viability) were significantly enriched in the adherens junction pathway, MAPK signaling pathway, and PPAR signaling pathway, suggesting a potential role in the molecular mechanism of TCS-induced cytotoxicity. Evaluation of the top-ranked resistant genes, FTO (encoding an mRNA demethylase) and MAP2K3 (a MAP kinase kinase family gene), revealed that their loss conferred resistance to TCS. In contrast, sensitive genes at IC10 and IC20 were specifically enriched in pathways involved with immune responses, which was concordant with transcriptomic profiling of TCS at concentrations of CRISPR-Cas9 fingerprint may reveal the patterns of TCS toxicity at low concentration levels. Moreover, we retrieved the potential connection between CRISPR-Cas9 fingerprint and disease terms, obesity, and breast cancer from an existing chemical-gene-disease database. Overall, CRISPR-Cas9 functional genomic screening offers an alternative approach for chemical toxicity testing.

  6. Synthesis, characterization and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2 cell line

    Directory of Open Access Journals (Sweden)

    N. Supraja

    2016-10-01

    Full Text Available In the present study silver nanoparticles (AgNPs were successfully synthesized using aqueous extract of sea weed, Gracilaria corticata. The aqueous callus extract (5% treated with 1 mM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR of the formed AgNPs was recorded at 405 nm using UV-Visible spectrophotometer. The molecules involved in the formation of AgNPs were identified by Fourier transform infrared spectroscopy (FT-IR, surface morphology was studied by using scanning electron microscopy (SEM, and X-ray diffraction spectroscopy (XRD was used to determine the crystalline structure. SEM micrograph clearly revealed the size of the AgNPs was in the range of 20–55 nm with spherical, hexagonal in shape and poly-dispersed nature. High positive Zeta potential (22.9 mV of formed AgNPs indicates the stability and XRD pattern revealed the crystal structure of the AgNPs by showing the Bragg’s peaks corresponding to (111, (200, (220 planes of face-centered cubic crystal phase of silver. The synthesized AgNPs exhibited effective anticancerous activity (at doses 6.25 and 12.5 µg/ml of AgNPs against human hepatic carcinoma cell line (HepG2.

  7. Calotropis procera extract induces apoptosis and cell cycle arrest at G2/M phase in human skin melanoma (SK-MEL-2) cells.

    Science.gov (United States)

    Joshi, Aparna L; Roham, Pratiksha H; Mhaske, Rooth; Jadhav, Mahadev; Krishnadas, Kavitha; Kharat, Amol; Hardikar, Bhagyashree; Kharat, Kiran R

    2015-01-01

    Calotropis procera (family: Asclepiadaceae) contains cardiac glycosides which are cytotoxic to cancer cells. The extracts of C. procera have been reported to be cytotoxic to many cancer cell lines and this is the first report against the human skin melanoma cells (SK-MEL-2). The SK-MEL-2 cells treated with C. procera methanolic extract (CPME) were analysed for growth inhibition and apoptosis. The exposure of phosphatidylserine in apoptotic SK-MEL-2 was analysed by using the Annexin-V FITC flow cytometry method. In CPME-treated SK-MEL-2 cells, 19.6% of apoptotic and 58.3% dead cells were observed. The 15.97% and 15.85% of early apoptotic cells were found at 20 μg/mL of the ouabain and paclitaxel, respectively. Active caspases, nuclear degradation confirmed apoptotic SK-MEL-2 cells in time- and dose-dependent manner. The cell cycle analysis shows that CPME treated cells halt at G2/M phase. Significant cytotoxic activity of CPME against SK-MEL-2 may be attributed to its high cardenolide content.

  8. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jodie [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Berntsen, Hanne Friis; Zimmer, Karin Elisabeth [Norwegian University of Life Sciences, Oslo (Norway); Frizzell, Caroline [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom); Verhaegen, Steven; Ropstad, Erik [Norwegian University of Life Sciences, Oslo (Norway); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute for Global Food Security, School of Biological Sciences, Queen' s University Belfast, Northern Ireland (United Kingdom)

    2016-03-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of

  9. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening

    International Nuclear Information System (INIS)

    Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth; Frizzell, Caroline; Verhaegen, Steven; Ropstad, Erik; Connolly, Lisa

    2016-01-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p’-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2 h and 48 h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC + Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br + Cl, PFC + Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. - Highlights: • High content analysis (HCA) is a novel approach for determining toxicity of

  10. A Novel Polysaccharide Conjugate from Bullacta exarata Induces G1-Phase Arrest and Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Ningbo Liao

    2017-03-01

    Full Text Available Bullacta exarata has been consumed in Asia, not only as a part of the normal diet, but also as a traditional Chinese medicine with liver- and kidney-benefitting functions. Several scientific investigations involving extraction of biomolecules from this mollusk and pharmacological studies on their biological activities have been carried out. However, little is known regarding the antitumor properties of polysaccharides from B. exarata, hence the polysaccharides from B. exarata have been investigated here. One polysaccharide conjugate BEPS-IA was isolated and purified from B. exarata. It mainly consisted of mannose and glucose in a molar ratio of 1:2, with an average molecular weight of 127 kDa. Thirteen general amino acids were identified to be components of the protein-bound polysaccharide. Methylation and NMR studies revealed that BEPS-IA is a heteropolysaccharide consisting of 1,4-linked-α-d-Glc, 1,6-linked-α-d-Man, 1,3,6-linked-α-d-Man, and 1-linked-α-d-Man residue, in a molar ratio of 6:1:1:1. In order to test the antitumor activity of BEPS-IA, we investigated its effect against the growth of human hepatocellular carcinoma cells HepG2 in vitro. The result showed that BEPS-IA dose-dependently exhibited an effective HepG2 cells growth inhibition with an IC50 of 112.4 μg/mL. Flow cytometry analysis showed that BEPS-IA increased the populations of both apoptotic sub-G1 and G1 phase. The result obtained from TUNEL assay corroborated apoptosis which was shown in flow cytometry. Western blot analysis suggested that BEPS-IA induced apoptosis and growth inhibition were associated with up-regulation of p53, p21 and Bax, down-regulation of Bcl-2. These findings suggest that BEPS-IA may serve as a potential novel dietary agent for hepatocellular carcinoma.

  11. Fisetin inhibits growth, induces G2/M arrest and apoptosis of human epidermoid carcinoma A431 cells: Role of mitochondrial membrane potential disruption and consequent caspases activation

    Science.gov (United States)

    Pal, Harish C.; Sharma, Samriti; Elmets, Craig A.; Athar, Mohammad; Afaq, Farrukh

    2013-01-01

    Non-melanoma skin cancers (NMSCs) one of the most common neoplasms causes serious morbidity and mortality. Therefore, identification of non-toxic phytochemicals for prevention/treatment of NMSCs is highly desirable. Fisetin (3,3′,4′,7-tetrahydroxyflavone), a dietary flavonoid, present in fruits and vegetables possesses anti-oxidant and anti-proliferative properties. The aim of this study was to investigate the chemotherapeutic potential of fisetin in cultured human epidermoid carcinoma A431 cells. Treatment of A431 cells with fistein (5-80 μM) resulted in a significant decrease in cell viability in a dose- and time-dependent manner. Employing clonogenic assay, we found that fisetin treatment significantly reduced colony formation in A431 cells. Fisetin treatment of A431 cells resulted in G2/M arrest and induction of apoptosis. Furthermore, treatment of A431 cells with fisetin resulted in (i) decreased expression of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1), (ii) increased expression of pro-apoptotic proteins (Bax, Bak and Bad), (iii) disruption of mitochondrial potential, (iv) release of cytchrome c and Smac/DIABLO from mitochondria, (v) activation of caspases, and (vi) cleavage of PARP protein. Pretreatment of A431 cells with the pan-caspase inhibitor (Z-VAD-FMK) blocked fisetin-induced cleavage of caspases and PARP. Taken together, these data provide evidence that fisetin possesses chemotherapeutic potential against human epidermoid carcinoma A431 cells. Overall, these results suggest that fisetin could be developed as a novel therapeutic agent for the management of NMSCs. PMID:23800058

  12. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    Science.gov (United States)

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered.

  13. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    Science.gov (United States)

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  14. Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern, Western and Southern Africa.

    Science.gov (United States)

    Nyaga, Martin M; Stucker, Karla M; Esona, Mathew D; Jere, Khuzwayo C; Mwinyi, Bakari; Shonhai, Annie; Tsolenyanu, Enyonam; Mulindwa, Augustine; Chibumbya, Julia N; Adolfine, Hokororo; Halpin, Rebecca A; Roy, Sunando; Stockwell, Timothy B; Berejena, Chipo; Seheri, Mapaseka L; Mwenda, Jason M; Steele, A Duncan; Wentworth, David E; Mphahlele, M Jeffrey

    2014-10-01

    Group A rotaviruses (RVAs) with distinct G and P genotype combinations have been reported globally. We report the genome composition and possible origin of seven G8P[4] and five G2P[4] human RVA strains based on the genetic evolution of all 11 genome segments at the nucleotide level. Twelve RVA ELISA positive stool samples collected in the representative countries of Eastern, Southern and West Africa during the 2007-2012 surveillance seasons were subjected to sequencing using the Ion Torrent PGM and Illumina MiSeq platforms. A reference-based assembly was performed using CLC Bio's clc_ref_assemble_long program, and full-genome consensus sequences were obtained. With the exception of the neutralising antigen, VP7, all study strains exhibited the DS-1-like genome constellation (P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2) and clustered phylogenetically with reference strains having a DS-1-like genetic backbone. Comparison of the nucleotide and amino acid sequences with selected global cognate genome segments revealed nucleotide and amino acid sequence identities of 81.7-100 % and 90.6-100 %, respectively, with NSP4 gene segment showing the most diversity among the strains. Bayesian analyses of all gene sequences to estimate the time of divergence of the lineage indicated that divergence times ranged from 16 to 44 years, except for the NSP4 gene where the lineage seemed to arise in the more distant past at an estimated 203 years ago. However, the long-term effects of changes found within the NSP4 genome segment should be further explored, and thus we recommend continued whole-genome analyses from larger sample sets to determine the evolutionary mechanisms of the DS-1-like strains collected in Africa.

  15. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2).

    Science.gov (United States)

    Saratale, Rijuta G; Shin, Han Seung; Kumar, Gopalakrishnan; Benelli, Giovanni; Kim, Dong-Su; Saratale, Ganesh D

    2018-02-01

    This study first time reports the novel synthesis of silver nanoparticles (AgNPs) using a Punica granatum leaf extract (PGE). The synthesized AgNPs were characterized by various analytical techniques including UV-Vis, Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy and energy-dispersive spectra (FESEM-EDS) and high-resolution transmission electron microscopy (HRTEM). FTIR analysis revealed that the involvement of biological macromolecules of P. granatum leaf extract were distributed and involved in the synthesis and stabilization of AgNPs. A surface-sensitive technique of XPS was used to analyse the composition and oxidation state of synthesized AgNPs. The analytical results confirmed that the AgNPs were crystalline in nature with spherical shape. The zeta potential study revealed that the surface charge of synthesized AgNPs was highly negative (-26.6 mV) and particle size distribution was ranging from ∼35 to 60 nm and the average particle size was about 48 nm determined by dynamic light scattering (DLS). The PGE-AgNPs antidiabetic potential exhibited effective inhibition against α-amylase and α-glucosidase (IC 50 ; 65.2 and 53.8 μg/mL, respectively). The PGE-AgNPs showed a dose-dependent response against human liver cancer cells (HepG2) (IC 50 ; 70 μg/mL) indicating its greater efficacy in killing cancer cells. They also possessed in vitro free radical-scavenging activity in terms of ABTS (IC 50 ; 52.2 μg/mL) and DPPH (IC 50 ; 67.1 μg/mL) antioxidant activity. PGE-AgNPs displayed strong antibacterial activity and potent synergy with standard antibiotics against pathogenic bacteria. Thus, synthesized PGE-AgNPs show potential biomedical and industrial applications.

  16. Isolation and establishment of radiotolerant hepatoma cell subline

    International Nuclear Information System (INIS)

    Jin Wensen; Kong Zhaolu; Zhang Jianghong; Shen Zhifen; Tong Shungao; Ji Huajun; Jin Yizun

    2009-01-01

    Objective: To induce and isolate the monoclonal cell subline, in order to establish the experimental model for further investigating biologic characteristics in radiotolerant hepatoma cells. Methods: HepG2 cells were irradiated by γ-rays at the dose of 2 Gy each time with the total absorbed dose of 60 Gy. After monoclonal cell being selected and extensively cultured, the cell subline was named as HepG2/R60. Furthermore, HepG2/R60 cells were identified by observing the changes of morphology, ultrastructure, growth characteristics and radiosensitivity. The levels of radioresistant correlative gene mRNA in HepG2/R60 cells after exposure to 2 Gy irradiation, were also detected by RT-PCR, and then compared with parental HepG2 cells. Results: HepG2/R60 cell subline was successfully established by fractionated irradiation at 2 Gy. HepG2/R60 cells displayed higher irregularity, the clearer appearance and dissociation of cell junctions compared with parental HepG2 cells. Ultrastnictural investigations through transmission electron microscopy (TEM) showed that there was an increase of microvillus on the surfaces of HepG2/R60 cells with plenty of rough endo-plasmic reticulum, abundance of mitochondria and viable Golgi complex. Further observation found that the growth of HepG2/R60 cells was slower and its population doubling time (PDT) prolonged arrived at 34.9 h. Moreover, the radiosensitivity of HepG2/R60 cells was lower than that of parental HepG2 cells. Additionally, the levels of radioresistance correlative genes were increased in HepG2/R60 cells by 2 Gy irradiaiton Conclusions: Radiotolerant cell subline - HepG2/R60 was successfully isolated and established by fractionated irradiation. (authors)

  17. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, a...

  18. Effects of the radiolysis products of sennoside A on HepG2 and PC-3 cell

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Jo, Min Ho

    2016-01-01

    Radiolysis of sennoside A was carried out by gamma irradiation and the anti-cancer activities of the radiolysis product were evaluated. An aqueous solution of sennoside A was exposed to 0.5-3 kGy of gamma irradiation and the radiolysis products were analyzed by HPLC. A fraction of radiolysis product (RLF) of sennoside A was isolated and the RLF was presumed as a rhein-8-β-D-glucoside. The anticancer effect of the RLF was compared with the sennoside and rhein using a in vitro assay system of human prostate cancer cells (PC-3) and human hepatoma HepG2 cells. The cell viability of PC-3 and HepG2 cell was significantly decreased to 12.4±1.2% and 32.4±2.1%, respectively, by the treatment of 0.6 μM of RLF. The sennoside A (range from 0 to 25 μM) had no cytotoxic effect on PC-3 and HepG2 cells, while the rhein had the effect on HepG2 cells with a LD_5_0 at 80 μM

  19. Effects of the radiolysis products of sennoside A on HepG2 and PC-3 cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Jo, Min Ho [Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    Radiolysis of sennoside A was carried out by gamma irradiation and the anti-cancer activities of the radiolysis product were evaluated. An aqueous solution of sennoside A was exposed to 0.5-3 kGy of gamma irradiation and the radiolysis products were analyzed by HPLC. A fraction of radiolysis product (RLF) of sennoside A was isolated and the RLF was presumed as a rhein-8-β-D-glucoside. The anticancer effect of the RLF was compared with the sennoside and rhein using a in vitro assay system of human prostate cancer cells (PC-3) and human hepatoma HepG2 cells. The cell viability of PC-3 and HepG2 cell was significantly decreased to 12.4±1.2% and 32.4±2.1%, respectively, by the treatment of 0.6 μM of RLF. The sennoside A (range from 0 to 25 μM) had no cytotoxic effect on PC-3 and HepG2 cells, while the rhein had the effect on HepG2 cells with a LD{sub 50} at 80 μM.

  20. Cytotoxicity and Expression of c-fos, HSP70, and GADD45/153 Proteins in Human Liver Carcinoma (HepG2 Cells Exposed to Dinitrotoluenes

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-08-01

    Full Text Available Dinitrotoluenes (DNTs are byproducts of the explosive trinitrotoluene (TNT, and exist as a mixture of 2 to 6 isomers, with 2,4-DNT and 2,6-DNT being the most significant. The main route of human exposure at ammunition facilities is inhalation. The primary targets of DNTs toxicity are the hematopoietic system, cardiovascular system, nervous system and reproductive system. In factory workers, exposure to DNTs has been linked to many adverse health effects, including: cyanosis, vertigo, headache, metallic taste, dyspnea, weakness and lassitude, loss of appetite, nausea, and vomiting. Other symptoms including pain or parasthesia in extremities, abdominal discomfort, tremors, paralysis, chest pain, and unconsciousness have been documented. An association between DNTs exposure and increased risk of hepatocellular carcinomas and subcutaneous tumors in rats, as well as renal tumors in mice, has been established. This research was therefore designed targeting the liver to assess the cellular and molecular responses of human liver carcinoma cells following exposure to 2,4-DNT and 2,6-DNT. Cytotoxicity was evaluated using the MTT assay. Upon 48 hrs of exposure, LC50 values of 245 + 14.72μg/mL, and 300 + 5.92μg/mL were recorded for 2,6-DNT and 2,4-DNT respectively, indicating that both DNTs are moderately toxic, and 2,6-DNT is slightly more toxic to HepG2 cells than 2,4-DNT. A dose response relationship was recorded with respect to the cytotoxicity of both DNTs. Western blot analysis resulted in a significant expression (p<0.05 of the 70-kDa heat shock protein in 2,6-DNT-treated cells compared to the control cells and at the 200 μg/mL dose for 2,4-DNT. A statistically significant expression in c-fos was also observed at the 200 and 250 μg/mL treatment level for 2,4- and 2,6-DNT, respectively. However, no statistically significant expression of this protooncogene-related protein was observed at the doses of 0, 100, or 300

  1. Studies on Anti-Hepatoma Effect of Gan-Ai-Xiao Decoction | Yuan ...

    African Journals Online (AJOL)

    Purpose: To explore the anti-hepatoma effect of Gan-Ai-Xiao Decoction (GAXD), a folk remedy. Methods: High performance liquid chromatography (HPLC) was used to identify the major chemical components of GAXD ethanol extract (EE). The cytotoxic effect of GAXD EE against HepG2 cells was measured by methyl ...

  2. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin polymerization, induces G2/M arrest, and triggers apoptosis in human leukemia HL-60 cells

    International Nuclear Information System (INIS)

    Magalhães, Hemerson I.F.; Wilke, Diego V.; Bezerra, Daniel P.; Cavalcanti, Bruno C.; Rotta, Rodrigo; Lima, Dênis P. de; Beatriz, Adilson; Moraes, Manoel O.; Diniz-Filho, Jairo; Pessoa, Claudia

    2013-01-01

    (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (PHT) is a known cytotoxic compound belonging to the phenstatin family. However, the exact mechanism of action of PHT-induced cell death remains to be determined. The aim of this study was to investigate the mechanisms underlying PHT-induced cytotoxicity. We found that PHT displayed potent cytotoxicity in different tumor cell lines, showing IC 50 values in the nanomolar range. Cell cycle arrest in G 2 /M phase along with the augmented metaphase cells was found. Cells treated with PHT also showed typical hallmarks of apoptosis such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of the caspase 3/7 and 8 activation, loss of mitochondrial membrane potential, and internucleosomal DNA fragmentation without affecting membrane integrity. Studies conducted with isolated tubulin and docking models confirmed that PHT binds to the colchicine site and interferes in the polymerization of microtubules. These results demonstrated that PHT inhibits tubulin polymerization, arrests cancer cells in G 2 /M phase of the cell cycle, and induces their apoptosis, exhibiting promising anticancer therapeutic potential. - Highlights: • PHT inhibits tubulin polymerization. • PHT arrests cancer cells in G 2 /M phase of the cell cycle. • PHT induces caspase-dependent apoptosis

  3. Elimination of Cancer Stem-Like “Side Population” Cells in Hepatoma Cell Lines by Chinese Herbal Mixture “Tien-Hsien Liquid”

    Directory of Open Access Journals (Sweden)

    Chih-Jung Yao

    2012-01-01

    Full Text Available There are increasing pieces of evidence suggesting that the recurrence of cancer may result from a small subpopulation of cancer stem cells, which are resistant to the conventional chemotherapy and radiotherapy. We investigated the effects of Chinese herbal mixture Tien-Hsien Liquid (THL on the cancer stem-like side population (SP cells isolated from human hepatoma cells. After sorting and subsequent culture, the SP cells from Huh7 hepatoma cells appear to have higher clonogenicity and mRNA expressions of stemness genes such as SMO, ABCG2, CD133, β-catenin, and Oct-4 than those of non-SP cells. At dose of 2 mg/mL, THL reduced the proportion of SP cells in HepG2, Hep3B, and Huh7 cells from 1.33% to 0.49%, 1.55% to 0.43%, and 1.69% to 0.27%, respectively. The viability and colony formation of Huh7 SP cells were effectively suppressed by THL dose-dependently, accompanied with the inhibition of stemness genes, e.g., ABCG2, CD133, and SMO. The tumorigenicity of THL-treated Huh7 SP cells in NOD/SCID mice was also diminished. Moreover, combination with THL could synergize the effect of doxorubicin against Huh7 SP cells. Our data indicate that THL may act as a cancer stem cell targeting therapeutics and be regarded as complementary and integrative medicine in the treatment of hepatoma.

  4. Euler angles for G2

    International Nuclear Information System (INIS)

    Cacciatori, Sergio L.; Cerchiai, Bianca L.; Della Vedova, Alberto; Ortenzi, Giovanni; Scotti, Antonio

    2005-01-01

    We provide a simple coordinatization for the group G 2 , which is analogous to the Euler coordinatization for SU(2). We show how to obtain the general element of the group in a form emphasizing the structure of the fibration of G 2 with fiber SO(4) and base H, the variety of quaternionic subalgebras of octonions. In particular this allows us to obtain a simple expression for the Haar measure on G 2 . Moreover, as a by-product it yields a concrete realization and an Einstein metric for H

  5. The inhibition effect of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride

    International Nuclear Information System (INIS)

    Chao, How-Ran; Tsou, Tsui-Chun; Chen, Hung-Ta; Chang, Eddy Essen; Tsai, Feng-Yuan; Lin, Ding-Yan; Chen, Fu-An; Wang, Ya-Fen

    2009-01-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd 2+ levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC 50 ) of CdCl 2 were 0.414 μM (95% confidence interval (C.I.): 0.230-0.602 μM) in Huh7-DRE-Luc cells and 23.2 μM (95% C.I.: 21.7-25.4 μM) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.

  6. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.

    Science.gov (United States)

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu

    2013-04-01

    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    Science.gov (United States)

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Effects of low priming dose irradiation on cell cycle arrest of HepG2 cells caused by high dose irradiation

    International Nuclear Information System (INIS)

    Xia Jingguang; Jin Xiaodong; Chinese Academy of Sciences, Beijing; Li Wenjian; Wang Jufang; Guo Chuanling; Gao Qingxiang

    2005-01-01

    Human hepatoma cells hepG2 were irradiated twice by 60 Co γ-rays with a priming dose of 5 cGy and a higher dose of 3 Gy performed 4h or 8h after the low dose irradiation. Effects of the priming dose irradiation on cell cycle arrest caused by high dose were examined with flow cytometry. Cells in G 2 /M phase accumulated temporarily after the 5 cGy irradiation, and proliferation of tumor cells was promoted significantly by the low dose irradiation. After the 3 Gy irradiation, G 2 phase arrest occurred, and S phase delayed temporally. In comparison with 3 kGy irradiation only, the priming dose delivered 4h prior to the high dose irradiation facilitated accumulation of hepG2 cells in G 2 /M phase, whereas the priming dose delivered 8h prior to the high dose irradiation helped the cells to overcome G 2 arrest. It was concluded that effects of the priming dose treatment on cell cycle arrest caused by high dose irradiation were dependent on time interval between the two irradiations. (authors)

  9. Time- and concentration-dependent effects of resveratrol in HL-60 and HepG2 cells

    DEFF Research Database (Denmark)

    Stervbo, Ulrik; Vang, Ole; Bonnesen, Christine

    2006-01-01

    Resveratrol, a phytochemical present in grapes, has been demonstrated to inhibit tumourigenesis in animal models. However, the specific mechanism by which resveratrol exerts its anticarcinogenic effect has yet to be elucidated. In the present study, the inhibitory effects of resveratrol on cell...... proliferation and apoptosis were evaluated in the human leukaemia cell line HL-60 and the human hepatoma derived cell line HepG2. We found that after a 2 h incubation period, resveratrol inhibited DNA synthesis in a concentration-dependent manner. The IC50 value was 15 μM in both HL-60 and HepG2 cells. When...... the time of treatment was extended, an increase in IC50 value was observed; for example, at 24 h the IC50 value was 30 μM for HL-60 cells and 60 μM for HepG2 cells. Flow cytometry revealed that cells accumulated in different phases of the cell cycle depending on the resveratrol concentration. Furthermore...

  10. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  11. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  12. Human rotavirus strains circulating in Venezuela after vaccine introduction: predominance of G2P[4] and reemergence of G1P[8].

    Science.gov (United States)

    Vizzi, Esmeralda; Piñeros, Oscar A; Oropeza, M Daniela; Naranjo, Laura; Suárez, José A; Fernández, Rixio; Zambrano, José L; Celis, Argelia; Liprandi, Ferdinando

    2017-03-21

    Rotavirus (RV) is the most common cause of severe childhood diarrhea worldwide. Despite Venezuela was among the first developing countries to introduce RV vaccines into their national immunization schedules, RV is still contributing to the burden of diarrhea. Concerns exist about the selective pressure that RV vaccines could exert on the predominant types and/or emergence of new strains. To assess the impact of RV vaccines on the genotype distribution 1 year after the vaccination was implemented, a total of 912 fecal specimens, collected from children with acute gastroenteritis in Caracas from February 2007 to April 2008, were screened, of which 169 (18.5%) were confirmed to be RV positive by PAGE. Rotavirus-associated diarrhea occurred all year-round, although prevailed during the coolest and driest months among unvaccinated children under 24 months old. Of 165 RV strains genotyped for G (VP7) and P (VP4) by seminested multiplex RT-PCR, 77 (46.7%) were G2P[4] and 63 (38.2%) G1P[8]. G9P[8], G3P[8] and G2P[6] were found in a lower proportion (7.3%). Remarkable was also the detection of rotaviruses, but they were rather distant from Rotarix ® vaccine and pre-vaccine strains. Unique amino acid substitutions observed on neutralization domains of the VP7 sequence from Venezuelan post-vaccine G1P[8] could have conditioned their re-emergence and a more efficient dissemination into susceptible population. The results suggest that natural fluctuations of genotypes in combination with forces driving the genetic evolution could determine the spread of novel strains, whose long-term effect on the efficacy of available vaccines should be determined.

  13. The role of hypoxia response element in TGFβ-induced carbonic anhydrase IX expression in Hep3B human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yildirim Hatice

    2017-01-01

    Full Text Available Carbonic anhydrase IX (CAIX is a hypoxia-regulated gene. It is over expressed in a variety of cancers, including hepatocellular cancer. Transforming growth factor β (TGFβ is considered to have an impact on cancer biology due to its important roles in cell proliferation and differentiation. The effect of the TGFβ on CAIX expression under hypoxia and the mechanism underlying the role of the hypoxia response element (HRE on this expression are unknown. In this study, we demonstrate that TGFβ upregulates CAIX expression under hypoxic conditions in the Hep3B hepatoma cell line, indicating that the mitogen-activated protein kinase (MAPK- and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K-signaling pathways might be responsible for this response. Site-directed mutagenesis of the HRE region in CAIX promoter reduced the TGFβ-induced CAIX promoter activity, pointing to the significance of HRE for this response. Up regulation of TGFβ-stimulated CAIX expression was consistent with the up regulation of promoter activity of five different truncated constructs of the CAIX promoter under hypoxia. Our findings show that the HRE region is critical for TGFβ-induced CAIX expression, which is mainly controlled by MAPK and PI3K pathways.

  14. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  15. NF-kappa B signaling pathway is involved in growth inhibition, G2/M arrest and apoptosis induced by Trichostatin A in human tongue carcinoma cells

    NARCIS (Netherlands)

    Yao, Jun; Duan, Li; Fan, Mingwen; Wu, Xinxing

    2006-01-01

    The HDAC inhibitor Trichostatin A (TSA) exhibits antiturnour activity in various tumour cells. However, little is known about the effect of TSA on growth of human tongue carcinoma cells. In this study, we observed that TSA concentration-dependently inhibited growth of human tongue carcinoma Tca8113

  16. Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells.

    Science.gov (United States)

    Sayılan Özgün, Gülben; Özgün, Eray; Tabakçıoğlu, Kıymet; Süer Gökmen, Selma; Eskiocak, Sevgi; Çakır, Erol

    2017-12-01

    Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 are antioxidant and anti-atherosclerotic structural high-density lipoprotein proteins that are mainly synthesized by the liver. No study has ever been performed to specifically examine the effects of caffeine on paraoxonase enzymes and on liver apolipoprotein A-1 protein levels. To investigate the dose-dependent effects of caffeine on liver apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels. In vitro experimental study. HepG2 cells were incubated with 0 (control), 10, 50 and 200 μM of caffeine for 24 hours. Cell viability was evaluated by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 protein levels were measured by western blotting. We observed a significant increase on apolipoprotein A-1 and paraoxonase-1 protein levels in the cells incubated with 50 µM of caffeine and a significant increase on paraoxonase-1 protein level in the cells incubated with 200 µM of caffeine. Our study showed that caffeine does not change paraoxonase-3 protein level, but the higher doses used in our study do cause an increase in both apolipoprotein A-1 and paraoxonase-1 protein levels in liver cells.

  17. Schisandra chinensis peptidoglycan-assisted transmembrane transport of lignans uniquely altered the pharmacokinetic and pharmacodynamic mechanisms in human HepG2 cell model.

    Directory of Open Access Journals (Sweden)

    Charng-Cherng Chyau

    Full Text Available Schisandra chinensis (Turz Baill (S. chinensis (SC fruit is a hepatoprotective herb containing many lignans and a large amount of polysaccharides. A novel polysaccharide (called SC-2 was isolated from SC of MW 841 kDa, which exhibited a protein-to-polysaccharide ratio of 0.4089, and showed a characteristic FTIR spectrum of a peptidoglycan. Powder X-ray diffraction revealed microcrystalline structures within SC-2. SC-2 contained 10 monosaccharides and 15 amino acids (essential amino acids of 78.12%w/w. In a HepG2 cell model, SC-2 was shown by MTT and TUNEL assay to be completely non-cytotoxic. A kinetic analysis and fluorescence-labeling technique revealed no intracellular disposition of SC-2. Combined treatment of lignans with SC-2 enhanced the intracellular transport of schisandrin B and deoxyschisandrin but decreased that of gomisin C, resulting in alteration of cell-killing bioactivity. The Second Law of Thermodynamics allows this type of unidirectional transport. Conclusively, SC-2 alters the transport and cell killing capability by a "Catcher-Pitcher Unidirectional Transport Mechanism".

  18. Recombinant Newcastle disease virus (NDV/Anh-IL-2 expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy

    Directory of Open Access Journals (Sweden)

    Yunzhou Wu

    2016-09-01

    Full Text Available Newcastle disease virus (NDV have shown oncolytic therapeutic efficacy in preclinical study and are currently approved for clinical trials. NDV Anhinga strain which is a mesogenic strain should be classified as lytic strain and has a therapeutic efficacy in hepatocellular cancer. In this study, we evaluated the capacity of NDV Anhinga strain to elicit immune reaction in vivo and the possibility for using as a vaccine vector for expressing tumor therapeutic factors. Interleukin-2 (IL-2 could boost the immune response against the tumor cells. Therefore, we use NDV Anhinga strain as backbone to construct a recombinant virus (NDV/Anh-IL-2 expressing IL-2. The virus growth curve showed that the production of recombinant NDV/Anh-IL-2 was slightly delayed compared to the wild type. The NDV/Anh-IL-2 strain could express soluble IL-2 and effectively inhibit the growth of hepatocellular carcinoma in vivo. 60 days post-treatment, mice which were completely cured by previous treatment were well protected when rechallenged with the same tumor cell. From the H&E-stained sections, intense infiltration of lymphocyte was observed in the NDV Anhinga strain treated group, especially in NDV/Anh-IL-2 group. The NDV Anhinga strain could not only kill the tumor directly, but could also elicit immune reaction and a potent immunological memory when killing tumor in vivo. In conclusion, the Anhinga strain could be an effective vector for tumor therapy; the recombinant NDV/Anh-IL-2 strain expressing soluble IL-2 is a promising candidate for hepatoma therapy.

  19. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  20. Functional toxicogenomic assessment of triclosan in human HepG2 cells using genome-wide CRISPR-Cas9 screen

    Science.gov (United States)

    Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic scree...

  1. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær; Lutterodt, Melissa Catherine R; Mamsen, Linn S

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...

  2. Effects on g2/m phase cell cycle distribution and aneuploidy formation of exposure to a 60 Hz electromagnetic field in combination with ionizing radiation or hydrogen peroxide in l132 nontumorigenic human lung epithelial cells.

    Science.gov (United States)

    Jin, Hee; Yoon, Hye Eun; Lee, Jae-Seon; Kim, Jae-Kyung; Myung, Sung Ho; Lee, Yun-Sil

    2015-03-01

    The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

  3. The Human NADPH Oxidase, Nox4, Regulates Cytoskeletal Organization in Two Cancer Cell Lines, HepG2 and SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Simon Auer

    2017-05-01

    Full Text Available NADPH oxidases of human cells are not only functional in defense against invading microorganisms and for oxidative reactions needed for specialized biosynthetic pathways but also during the past few years have been established as signaling modules. It has been shown that human Nox4 is expressed in most somatic cell types and produces hydrogen peroxide, which signals to remodel the actin cytoskeleton. This correlates well with the function of Yno1, the only NADPH oxidase of yeast cells. Using two established tumor cell lines, which are derived from hepatic and neuroblastoma tumors, respectively, we are showing here that in both tumor models Nox4 is expressed in the ER (like the yeast NADPH oxidase, where according to published literature, it produces hydrogen peroxide. Reducing this biochemical activity by downregulating Nox4 transcription leads to loss of F-actin stress fibers. This phenotype is reversible by adding hydrogen peroxide to the cells. The effect of the Nox4 silencer RNA is specific for this gene as it does not influence the expression of Nox2. In the case of the SH-SY5Y neuronal cell line, Nox4 inhibition leads to loss of cell mobility as measured in scratch assays. We propose that inhibition of Nox4 (which is known to be strongly expressed in many tumors could be studied as a new target for cancer treatment, in particular for inhibition of metastasis.

  4. Studies on the Identification of Constituents in Ethanol Extract of Radix Glycyrrhizae and Their Anti-Primary Hepatoma Cell Susceptibility

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The objective of this paper is to study the chemical constituents of Radix Glycyrrhizae and to apply the resulting natural products in the study of drug susceptibility of hepatoma cells so as to provide a scientific basis for quality standards and clinical application of medicinal Radix Glycyrrhizae. Chromatographic materials were used for isolation and purification; structural identification was performed based on physicochemical properties and spectral data. MTT colorimetry was used to detect the proliferation inhibition rate against primary hepatoma cells by natural products, and flow cytometry was used to detect the changes in cell cycle progression. Five compounds were isolated and identified, namely, liquiritigenin (1, liquiritin (2, isoliquiritigenin (3, betulinic acid (4, and oleanolic acid (5. In the study, 5-FU (5-fluorouracil is used as a positive control to the hepatoma cells. Primary hepatoma cells were highly susceptible to 5-FU and liquiritigenin, both of which markedly inhibited the proliferation of hepatoma cells; flow cytometry results showed an increase in G0/G1 phase cells, a decrease in S phase cells, and a relative increase in G2/M phase cells. Primary hepatoma cells are highly susceptible to liquiritigenin, a natural product; the testing of tumor cell susceptibility is of important significance to the improvement of therapeutic effect of cancer.

  5. Effect of post-treatments with caffeine during G2 on the frequencies of chromosome-type aberrations produced by X-rays in human lymphocytes during G0 and G1

    International Nuclear Information System (INIS)

    Tanzarella, C.; De Salvia, R.; Degrassi, F.; Palitti, F.; Andersson, H.C.; Hansson, K.; Kihlman, B.A.

    1986-01-01

    Human lymphocytes were irradiated with X-rays in G 0 and G 1 , grown in the presence of 5-bromodeoxyuridine, and harvested at different times from 48 to 80 h after stimulation. Some cultures were exposed to 2.5-5 mM caffeine during the last 3 h before harvesting. The frequencies of chromosome-type aberrations were scored in first division (M 1 ) metaphases. The post-treatment with caffeine increased the frequencies of mitoses and chromosome-type aberrations in irradiated cultures. The results suggest that cells carrying chromosome-type aberrations are delayed in G 2 and that caffeine increases the frequencies of aberrations in dividing cells by removing this G 2 -block. (author)

  6. Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gorringe, Tim [Kentucky U.

    2017-12-22

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment $a_{\\mu}$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $a_{\\mu}$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$\\sigma$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $a_{\\mu}$, and the current status and the future work for the project.

  7. Fermilab muon g-2 experiment

    Science.gov (United States)

    Gorringe, Tim

    2018-05-01

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb - a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.

  8. Influence of different chemical agents (H2O2, t-BHP and MMS) on the activity of antioxidant enzymes in human HepG2 and hamster V79 cells; relationship to cytotoxicity and genotoxicity.

    Science.gov (United States)

    Slamenova, D; Kozics, K; Melusova, M; Horvathova, E

    2015-01-01

    We investigated activities of antioxidant enzymes (AEs), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in human HepG2 and hamster V79 cells treated with a scale of concentrations of hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP) and methyl methanesulfonate (MMS). Cytotoxicity and genotoxicity of these substances were evaluated simultaneously. We have found out that H2O2, t-BHP and MMS predictably induce significant concentration-dependent increase of DNA lesions in both cell lines. Cytotoxicity detected in V79 cells with help of PE test was in a good conformity with the level of DNA damage. MTT test has proved unsuitable, except for MMS-treated V79 cells. Compared with human cells HepG2, hamster cells V79 manifested approximately similar levels of SOD and CAT but ten times higher activity of GPx. Across all concentrations tested the most significant increase of activity of the enzyme CAT was found in H2O2- and t-BHP-treated HepG2 cells, of the enzyme SOD in t-BHP- and MMS-treated V79 cells, and of the enzyme GPx in H2O2-treated V79 cells. We suggest that stimulation of enzyme activity by the relevant chemical compounds may result from transcriptional or post-transcriptional regulation of the expression of the genes CAT, SOD and GPx. Several authors suggest that moderate levels of toxic reactants can induce increase of AEs activities, while very high levels of reactants can induce their decrease, as a consequence of damage of the molecular machinery required to induce AEs. Based on a great amount of experiments, which were done and described within this paper, we can say that the above mentioned principle does not apply in general. Only the reactions of t-BHP affected HepG2 cells were consistent with this idea.

  9. pH-Responsive Hyaluronic Acid-Based Mixed Micelles for the Hepatoma-Targeting Delivery of Doxorubicin

    Directory of Open Access Journals (Sweden)

    Jing-Liang Wu

    2016-03-01

    Full Text Available The tumor targetability and stimulus responsivity of drug delivery systems are crucial in cancer diagnosis and treatment. In this study, hepatoma-targeting mixed micelles composed of a hyaluronic acid–glycyrrhetinic acid conjugate and a hyaluronic acid-l-histidine conjugate (HA–GA/HA–His were prepared through ultrasonic dispersion. The formation and characterization of the mixed micelles were confirmed via 1H-NMR, particle size, and ζ potential measurements. The in vitro cellular uptake of the micelles was evaluated using human liver carcinoma (HepG2 cells. The antitumor effect of doxorubicin (DOX-loaded micelles was investigated in vitro and in vivo. Results indicated that the DOX-loaded HA–GA/HA–His micelles showed a pH-dependent controlled release and were remarkably absorbed by HepG2 cells. Compared with free DOX, the DOX-loaded HA–GA/HA–His micelles showed a higher cytotoxicity to HepG2 cells. Moreover, the micelles effectively inhibited tumor growth in H22 cell-bearing mice. These results suggest that the HA–GA/HA–His mixed micelles are a good candidate for drug delivery in the prevention and treatment of hepatocarcinoma.

  10. Anti-hepatoma activity of a novel compound glaucocalyxin H in vivo and in vitro.

    Science.gov (United States)

    Hai, Guangfan; Zhang, Chong; Jia, Yanlong; Bai, Suping; Han, Jinfen; Guo, Lanqing; Cui, Taizhen; Niu, Bingxuan; Huang, Feng; Song, Yu

    2015-06-01

    Glaucocalyxin H (GLH) is a new compound isolated from a traditional Chinese medical herb Isodon japonica var. glaucocalyx which has been used for folk medicine. This study was carried out for the first time to investigate the potential role of GLH in anti-hepatoma activity and underlying mechanisms in it. GLH could inhibit the growth of tumor in mice and induce HepG2 cells to death as assessed by the tumor reduction assay, toxic assay, morphological change, and survival rate assay. Many antitumor drugs originated from plants could inhibit the growth of tumor by inducing cells to apoptosis. The morphological changes of HepG2 cells treated with different concentrations of GLH under fluorescence and electron microscope and apoptotic rates were detected to verify its effect on apoptosis. As shown in the study, GLH could induce HepG2 cells to apoptosis in a dose-dependent manner. Bcl2 and Bax proteins played important roles in apoptosis and the disequilibrium between Bcl2 and Bax might result in apoptosis. The expression of Bax protein was upregulated and Bcl2 protein was downregulated in HepG2 cells treated with GLH assessed by Western blotting, and they were in a dose-dependent manner. Taken together, GLH can inhibit the growth of hepatoma cells in vivo and in vitro by inducing cell apoptosis due to the decreased Bcl2 and increased Bax proteins suggesting that GLH could be a potential candidate as an anti-hepatoma agent for the therapeutic treatment of hepatoma.

  11. Protection of betulin against cadmium-induced apoptosis in hepatoma cells

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Choi, Jeong-Eun; Lim, Sung-Chul

    2006-01-01

    The protective effects of betulin (BT) against cadmium (Cd)-induced cytotoxicity have been previously reported. However, the mechanisms responsible for these protective effects are unclear. Therefore, this study investigated the mechanisms responsible for the protection of BT against Cd-induced cytotoxicity in human hepatoma cell lines. The protection of BT against Cd cytotoxicity was more effective in the HepG2 than in the Hep3B cells. The protection of BT on Cd-induced cytotoxicity in the HepG2 cells appeared to be related to the inhibition of apoptosis, as determined by PI staining and DNA fragmentation analysis. The anti-apoptosis exerted by BT involved the blocking of Cd-induced reactive oxygen species (ROS) generation, the abrogation of the Cd-induced Fas upregulation, the blocking of caspase-8-dependent Bid activation, and subsequent inhibition of mitochondrial pathway. The BT pretreatment did not affect the p21 and p53 expression levels, when compared with those of the treated cells with Cd alone. BT induced the transient S phase arrest at an early stage and the G /G 1 arrest at a relatively late stage, but it did not observe the sub-G1 apoptotic peak. In the Hep3B cells, Cd did not induce ROS generation. The BT pretreatment partially inhibited the Cd-induced apoptosis, which was related with the incomplete blockage in caspase-9 or -3 activation, as well as in Bax activation. Taken together, it was found that Cd can induce apoptosis via the Fas-dependent and -independent apoptosis pathways. However, the observed protective effects of BT were clearly more sensitive to Fas-expressing HepG2 cells than to Fas-deficient Hep3B cells

  12. Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells.

    Science.gov (United States)

    Hao, Lei; Ito, Kyoko; Huang, Kuan-Hsun; Sae-tan, Sudathip; Lambert, Joshua D; Ross, A Catharine

    2014-10-01

    Patatin-like phospholipase domain containing 3 (PNPLA3, adiponutrin) has been identified as a modifier of lipid metabolism. To better understand the physiological role of PNPLA3/adiponutrin, we have investigated its regulation in intact mice and human hepatocytes under various nutritional/metabolic conditions. PNPLA3 gene expression was determined by real-time PCR in liver of C57BL/6 mice after dietary treatments and in HepG2 cells exposed to various nutritional/metabolic stimuli. Intracellular lipid content was determined in HepG2 cells after siRNA-mediated knockdown of PNPLA3. In vivo, mice fed a high-carbohydrate (HC) liquid diet had elevated hepatic lipid content, and PNPLA3 mRNA and protein expression, compared to chow-fed mice. Elevated expression was completely abrogated by addition of unsaturated lipid emulsion to the HC diet. By contrast, in mice with high-fat diet-induced steatosis, Pnpla3 expression did not differ compared to low-fat fed mice. In HepG2 cells, Pnpla3 expression was reversibly suppressed by glucose depletion and increased by glucose refeeding, but unchanged by addition of insulin and glucagon. Several unsaturated fatty acids each significantly decreased Pnpla3 mRNA, similar to lipid emulsion in vivo. However, Pnpla3 knockdown in HepG2 cells did not alter total lipid content in high glucose- or oleic acid-treated cells. Our results provide evidence that PNPLA3 expression is an early signal/signature of carbohydrate-induced lipogenesis, but its expression is not associated with steatosis per se. Under lipogenic conditions due to high-carbohydrate feeding, certain unsaturated fatty acids can effectively suppress both lipogenesis and PNPLA3 expression, both in vivo and in a hepatocyte cell line. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Fluoro-sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence and recovery

    Science.gov (United States)

    Carr, Brian I.; Cavallini, Aldo; Lippolis, Catia; D’Alessandro, Rosalba; Messa, Caterina; Refolo, Maria Grazia; Tafaro, Angela

    2015-01-01

    To evaluate the growth-inhibitory properties of the potent multi-kinase antagonist Regorafenib (Fluoro-Sorafenib), which was synthesized as a more potent Sorafenib, a Raf inhibitor and to determine whether similar mechanisms were involved, human hepatoma cell lines were grown in the presence or absence of Regorafanib and examined for growth inhibition. Western blots were performed for Raf targets, for apoptosis and autophagy. Regorafenib inhibited growth of human Hep3B, PLC/PRF/5 and HepG2 cells in a concentration- and time-dependent manner. Multiple signaling pathways were altered, including MAP kinases phospho-ERK and phospho-JNK and its target phospho-c-Jun. There was evidence for apoptosis by FACS, cleavage of caspases and increased Bax levels; as well as induction of autophagy, as judged by increased Beclin-1 and LC3 (II) levels. Prolonged drug exposure resulted in cell quiescence. Full growth recovery occurred after drug removal, unlike with doxorubicin chemotherapy. Regorafenib is a potent inhibitor of cell growth. Cells surviving Regorafenib treatment remain viable, but quiescent and capable of regrowth following drug removal. The reversibility of tumor cell growth suppression after drug removal may have clinical implications. PMID:22777740

  14. Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Teisner, Børge; Højrup, Peter

    1993-01-01

    Fetal antigen 1 was purified from second trimester human amniotic fluid by immunospecific affinity chromatography followed by reversed-phase chromatography. Fetal antigen 1 is a single chain glycoprotein with a M(r) of 32-38 kDa. The amino acid composition revealed a high content of cysteines......, prolines and amino acids (aa) with acidic side-chains indicating that fetal antigen 1 is a compactly folded, strongly hydrophilic molecule. The N-terminal amino acid sequence (37 aa) revealed no homology to other known protein sequences, implying that fetal antigen 1 is a 'novel' human protein. When the aa...... sequence was back-translated into the appropriate degenerate sequence of nucleic acids, fetal antigen 1 could be partially aligned to a 'human adrenal-specific mRNA, pG2'. The indirect immunoperoxidase technique demonstrated fetal antigen 1 in fetal hepatocytes, glandular cells of fetal pancreas...

  15. Expression of Raf kinase inhibitor protein in human hepatoma tissues by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight methods.

    Science.gov (United States)

    Tsao, D A; Shiau, Y F; Tseng, C S; Chang, H R

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common malignant liver tumor. To reduce the mortality and improve the effectiveness of therapy, it is important to search for changes in tumor-specific biomarkers whose function may involve in disease progression and which may be useful as potential therapeutic targets. Materials and Mehtods: In this study, we use two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to observe proteome alterations of 12 tissue pairs isolated from HCC patients: Normal and tumorous tissue. Comparing the tissue types with each other, 40 protein spots corresponding to fifteen differentially expressed between normal and cancer part of HCC patients. Raf kinase inhibitor protein (RKIP), an inhibitor of Raf-mediated activation of mitogen-activated protein kinase/extracellular signal-regulated kinase, may play an important role in cancer metastasis and cell proliferation and migration of human hepatoma cells. RKIP may be considered as a marker for HCC, because its expression level changes considerably in HCC compared with normal tissue. In addition, we used the methods of Western blotting and real time-polymerase chain reaction to analysis the protein expression and gene expression of RKIP. The result showed RKIP protein and gene expression in tumor part liver tissues of HCC patient is lower than peritumorous non-neoplastic liver tissue of the corresponding HCC samples. These results strongly suggest that RKIP may be considered to be a marker for HCC and RKIP are down-regulated in liver cancer cell.

  16. Sustained induction of cytochrome P4501A1 in human hepatoma cells by co-exposure to benzo[a]pyrene and 7H-dibenzo[c,g]carbazole underlies the synergistic effects on DNA adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Gábelová, Alena, E-mail: alena.gabelova@savba.sk [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Poláková, Veronika [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Prochazka, Gabriela [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kretová, Miroslava; Poloncová, Katarína; Regendová, Eva; Luciaková, Katarína [Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava (Slovakia); Segerbäck, Dan [Department of Biosciences and Nutrition, Karolinska Institute, Novum, SE-141 83 Huddinge (Sweden)

    2013-08-15

    To gain a deeper insight into the potential interactions between individual aromatic hydrocarbons in a mixture, several benzo[a]pyrene (B[a]P) and 7H-dibenzo[c,g]carbazole (DBC) binary mixtures were studied. The biological activity of the binary mixtures was investigated in the HepG2 and WB-F344 liver cell lines and the Chinese hamster V79 cell line that stably expresses the human cytochrome P4501A1 (hCYP1A1). In the V79 cells, binary mixtures, in contrast to individual carcinogens, caused a significant decrease in the levels of micronuclei, DNA adducts and gene mutations, but not in cell survival. Similarly, a lower frequency of micronuclei and levels of DNA adducts were found in rat liver WB-F344 cells treated with a binary mixture, regardless of the exposure time. The observed antagonism between B[a]P and DBC may be due to an inhibition of Cyp1a1 expression because cells exposed to B[a]P:DBC showed a decrease in Cyp1a1 mRNA levels. In human liver HepG2 cells exposed to binary mixtures for 2 h, a reduction in micronuclei frequency was also found. However, after a 24 h treatment, synergism between B[a]P and DBC was determined based on DNA adduct formation. Accordingly, the up-regulation of CYP1A1 expression was detected in HepG2 cells exposed to B[a]P:DBC. Our results show significant differences in the response of human and rat cells to B[a]P:DBC mixtures and stress the need to use multiple experimental systems when evaluating the potential risk of environmental pollutants. Our data also indicate that an increased expression of CYP1A1 results in a synergistic effect of B[a]P and DBC in human cells. As humans are exposed to a plethora of noxious chemicals, our results have important implications for human carcinogenesis. - Highlights: • B[a]P:DBC mixtures were less genotoxic in V79MZh1A1 cells than B[a]P and DBC alone. • An antagonism between B[a]P and DBC was determined in rat liver WB-F344 cells. • The inhibition of CYP1a1 expression by B[a]P:DBC mixture

  17. Protein structure of fetal antigen 1 (FA1). A novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Krogh, Thomas N; Højrup, Peter

    1994-01-01

    The present paper describes the primary structure, glycosylation and tissue localization of fetal antigen 1 (FA1) isolated from second-trimester human amniotic fluid. FA1 is a single-chained, heterogeneous glycoprotein of 225-262 amino acid residues. FA1 has six well conserved epidermal...... extends with minor corrections to the human adrenal-specific mRNA, pG2 as well. Immunohistochemical analysis demonstrated the presence of FA1 in 10 out of 14 lung tumors containing neuroendocrine elements, and in the placental villi where FA1 was exclusively seen in stromal cells in close contact...... to the vascular structure. In the pancreas, FA1 co-localized with insulin in the insulin secretory granules of the beta cells within the islets of Langerhans. Our findings suggest that FA1 is synthesized as a membrane anchored protein and released into the circulation after enzymic cleavage, and that circulating...

  18. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xiao-Xian Cui

    2017-12-01

    Full Text Available Hepatitis B virus (HBV infection is endemic in Asia and chronic hepatitis B (CHB is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b or lamivudine (3TC, the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.

  19. Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM–Chk1/2–Cdc25C pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yong-Cheng [Clinical Pharmacology Laboratory, Henan Province People' s Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan (China); Su, Nan [Department of Quality Detection and Management, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan (China); Shi, Xiao-Jing; Zhao, Wen; Ke, Yu [School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, Henan (China); Zi, Xiaolin [Department of Urology, University of California, Irvine, Orange, CA (United States); Department of Pharmacology, University of California, Irvine, Orange, CA (United States); Department of Pharmaceutical Sciences, University of California, Irvine, Orange, CA (United States); Zhao, Ning-Min; Qin, Yu-Hua; Zhao, Hong-Wei [Clinical Pharmacology Laboratory, Henan Province People' s Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan (China); Liu, Hong-Min, E-mail: liuhm@zzu.edu.cn [School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Science Avenue, Zhengzhou, Henan (China)

    2015-01-15

    Jaridonin, a novel diterpenoid from Isodon rubescens, has been shown previously to inhibit proliferation of esophageal squamous cancer cells (ESCC) through G2/M phase cell cycle arrest. However, the involved mechanism is not fully understood. In this study, we found that the cell cycle arrest by Jaridonin was associated with the increased expression of phosphorylation of ATM at Ser1981 and Cdc2 at Tyr15. Jaridonin also resulted in enhanced phosphorylation of Cdc25C via the activation of checkpoint kinases Chk1 and Chk2, as well as in increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM in response to DNA damage. Furthermore, Jaridonin-mediated alterations in cell cycle arrest were significantly attenuated in the presence of NAC, implicating the involvement of ROS in Jaridonin's effects. On the other hand, addition of ATM inhibitors reversed Jaridonin-related activation of ATM and Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X and G2/M phase arrest. In conclusion, these findings identified that Jaridonin-induced cell cycle arrest in human esophageal cancer cells is associated with ROS-mediated activation of ATM–Chk1/2–Cdc25C pathway. - Highlights: • Jaridonin induced G2/M phase arrest through induction of redox imbalance. • Jaridonin increased the level of ROS through depleting glutathione in cell. • ATM–Chk1/2–Cdc25C were involved in Jaridonin-induced cell cycle arrest. • Jaridonin selectively inhibited cancer cell viability and cell cycle progression.

  20. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway.

    Science.gov (United States)

    Hseu, You-Cheng; Lee, Meng-Shiou; Wu, Chi-Rei; Cho, Hsin-Ju; Lin, Kai-Yuan; Lai, Guan-Hua; Wang, Sheng-Yang; Kuo, Yueh-Hsiung; Kumar, K J Senthil; Yang, Hsin-Ling

    2012-03-07

    Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.

  1. An anti-tumor protein produced by Trichinella spiralis and identified by screening a T7 phage display library, induces apoptosis in human hepatoma H7402 cells

    Science.gov (United States)

    Trichinella spiralis infection confers effective resistance to tumor cell expansion. In this study, a T7 phage cDNA display library was constructed to express genes encoded by T. spiralis. Organic phase multi-cell screening was used to sort through candidate proteins in a transfected human chronic m...

  2. Fisetin induces G2/M phase cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation in human endometrial cancer cells

    Directory of Open Access Journals (Sweden)

    Zhan-Ying Wang

    2015-06-01

    Full Text Available Endometrial cancer is one of the most prevalent gynaecological malignancies where, currently available therapeutic options remain limited. Recently phytochemicals are exploited for their efficiency in cancer therapy. The present study investigates the anti-proliferative effect of fisetin, a flavonoid on human endometrial cancer cells (KLE and Hec1 A. Fisetin (20-100 µM effectively reduced the viability of Hec1 A and KLE cells and potentially altered the cell population at G2/M stage. Expression levels of the cell cycle proteins (cyclin B1, p-Cdc2, p-Cdc25C, p-Chk1, Chk2, p-ATM, cyclin B1, H2AX, p21 and p27 were analyzed. Fisetin suppressed cyclin B1 expression and caused inactiva-tion of Cdc25C and Cdc2 by increasing their phosphorylation levels and further activated ATM, Chk1 and Chk2. Increased levels of p21 and p27 were observed as well. These results suggest that fisetin induced G2/M cell cycle arrest via inactivating Cdc25c and Cdc2 through activation of ATM, Chk1 and Chk2.

  3. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    Science.gov (United States)

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  4. Relationship between P53 and bystander effect induced by radiated hepatoma cells

    International Nuclear Information System (INIS)

    Zhao Meijia; Shen Bo; Yuan Dexiao; Cheng Honghong; Shao Chunlin

    2009-01-01

    The role of p53 in bystander responses on normal liver cells were investigated by co-culturing irradiated hepatoma cells with non-irradiated bystander Chang liver cells. It was found that radiosensitivity of the hepatoma cells was relative to p53. HepG2 cells with wtp53 had the highest radiosensitivity followed by PLC/PRF/5 cells with mtp53 and Hep3B cells with null-p53. The induction of bystander micronucleus(MN) was observed only in the Chang liver cells that had been co-cultured with HepG2 cells but not co-cultured with PLC/PRF/5 or Hep3B. Also, this bystander MN was relative to the irradiation dose and the cell co-culture rime. When the hepatoma cells were treated with pifithrin-α, a p53 inhibitor, their radiosensitivities were reduced, and the bystander effect was diminished. The results indicate that p53 could regulate not only the radiosensitivity but also the bystander response. (authors)

  5. Study of apoptotic mechanisms induced by all-trans retinoic acid and its 13-cis isomer on cellular lines of human hepato carcinoma Hep3B and HepG2; Estudio de los mecanismos apoptoticos inducidos por el acido retinoico todo-trans y su isomero 13-cis en las lineas celulares de hepatocarcinoma humano Hep3B y HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Arce Vargas, Frederick [Costa Rica

    2006-07-01

    Two cellular lines of liver cancer (Hep3B and HepG2) were incubated during different periods of time with some concentrations of two retinoic acid isomers (ATRA and 13-cis AR) and with 5-fu chemotherapeutic agents, cisplatin and paclitaxel. It was determined if these substances leaded cytotoxicity, apoptosis and if they modified the expression of different genes related to cellular death by apoptosis, in order to explain the hepatocellular carcinoma resistance to these drugs. HepG2 cells showed more resistance than Hep3B cells to 72 hours of treatment, as much ATRA as the 13-cis AR were toxic and produced apoptosis in two cellular lines. This type of cellular death seems to be mediated by a decrease in Bcl-xL concentration in Hep3B cells treated with both retinoids an increase in bax concentration in HepG2 cells treated with 13-cis AR. It were observed 3 and 8 proteolysis of procaspase in Hep3B cells, suggesting extrinsic via activation of the apoptosis, while cellular death in HepG2 cells seems to be independent of caspases. Cisplatin and paclitaxel leaded cytotoxicity to 48 hours of treatment, with significant differences between two cellular lines only in case of paclitaxel. Hep3B cells treated with cisplatin and HepG2 cells treated with paclytaxel suffered apoptosis. 5-FU produced toxicity only when it was used to high concentrations and the mechanism of cellular death induced by this agent seems to be primarily necrosis in Hep3B cells and apoptosis in HepG2. There was decrease in the Bcl-xL concentration in two cellular lines when it was treated with cisplatin and in HepG2 cells treated with 5-FU. Bax concentration there no was modified with no treatment. Activation of the 3 caspases seems to happen only in HepG2 cells with 5-FU and paclytaxel. These two agents, also, decreased the survivin concentration of HepG2 cells. Treatments of the three drugs produced an increase in the expression of this gen in Hep3B cells, which might explain partially the resistance

  6. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  7. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells

    NARCIS (Netherlands)

    Zegers, MMP; Zaal, KJM; van Ijzendoorn, SCD; Klappe, K; Hoekstra, D

    In polarized HepG2 hepatoma cells, sphingolipids are transported to the apical, bile canalicular membrane by two different transport routes, as revealed with fluorescently tagged sphingolipid analogs. One route involves direct, transcytosis-independent transport of Golgi-derived glucosylceramide and

  8. [Effect of Hepatitis C virus proteins on the production of proinflammatory and profibrotic cytokines in Huh7.5 human hepatoma cells].

    Science.gov (United States)

    Masalova, O V; Lesnova, E I; Permyakova, K Yu; Samokhvalov, E I; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2016-01-01

    Hepatitis C virus (HCV) is a widespread dangerous human pathogen. Up to 80% of HCV-infected individuals develop chronic infection, which is often accompanied by liver inflammation and fibrosis and, at terminal stages, liver cirrhosis and cancer. Treatment of patients with end-stage liver disease is often ineffective, and even patients with suppressed HCV replication have higher risk of death as compared with noninfected subjects. Therefore, investigating the mechanisms that underlie HCV pathogenesis and developing treatments for virus-associated liver dysfunction remain an important goal. The effect of individual HCV proteins on the production of proinflammatory and profibrotic cytokines in hepatocellular carcinoma Huh7.5 cells was analyzed in a systematic manner. Cells were transfected with plasmids encoding HCV proteins. Cytokine production and secretion was accessed by immunocytochemistry and ELISA of the culture medium, and transcription of the cytokine genes was assessed using reverse transcription and PCR. HCV proteins proved to differ in effect on cytokine production. Downregulation of interleukin 6 (IL-6) production was observed in cells expressing the HCV core, NS3, and NS5A proteins. Production of transforming growth factor β1 (TGF-β1) was lower in cells expressing the core proteins, NS3, or E1/E2 glycoproteins. A pronounced increase in production and secretion of tumor necrosis factor α (TNF-α) was observed in response to expression of the HCV E1/E2 glycoproteins. A higher biosynthesis, but a lower level in the cell culture medium, was detected for interleukin 1β (IL-1β) in cells harboring NS4 and IL-6 in cells expressing NS5В. The finding was possibly explained by protein-specific retention and consequent accumulation of the respective cytokines in the cell.

  9. HBV X Protein induces overexpression of HERV-W env through NF-κB in HepG2 cells.

    Science.gov (United States)

    Liu, Cong; Liu, Lijuan; Wang, Xiuling; Liu, Youyi; Wang, Miao; Zhu, Fan

    2017-12-01

    Human endogenous retrovirus W family (HERV-W) envelope (env) at chromosome 7 is highly expressed in the placenta and possesses fusogenic activity in trophoblast development. HERV-W env has been found to be overexpressed in some cancers and immune diseases. Viral transactivators can induce the overexpression of HERV-W env in human cell lines. Hepatitis B virus X protein (HBx) is believed to be a multifunctional oncogenic protein. Here, we reported that HBx could increase the promoter activity of HERV-W env and upregulate the mRNA levels of non-spliced and spliced HERV-W env and also its protein in human hepatoma HepG2 cells. Interestingly, we found that the inhibition of nuclear factor κB (NF-κB) using shRNA targeting NF-κB/p65 or PDTC (an inhibitor of NF-κB) could attenuate the upregulation of HERV-W env induced by HBx. These suggested that HBx might upregulate the expression of HERV-W env through NF-κB in HepG2 cells. This study might provide a new insight in HBV-associated liver diseases including HCC.

  10. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Exceptional confinement in G(2) gauge theory

    International Nuclear Information System (INIS)

    Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.

    2003-01-01

    We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature

  12. Link invariant and $G_2$ web space

    OpenAIRE

    Sakamoto, Takuro; Yonezawa, Yasuyoshi

    2017-01-01

    In this paper, we reconstruct Kuperberg’s $G_2$ web space [5, 6]. We introduce a new web diagram (a trivalent graph with only double edges) and new relations between Kuperberg’s web diagrams and the new web diagram. Using the web diagrams, we give crossing formulas for the $R$-matrices associated to some irreducible representations of $U_q(G_2)$ and calculate $G_2$ quantum link invariants for generalized twist links.

  13. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    Science.gov (United States)

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    Directory of Open Access Journals (Sweden)

    Saori Tsuji

    Full Text Available Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  15. Stimulation of LDL receptor activity in Hep-G2 cells by a serum factor(s)

    International Nuclear Information System (INIS)

    Ellsworth, J.L.; Brown, C.; Cooper, A.D.

    1988-01-01

    The regulation of low-density lipoprotein (LDL) receptor activity in the human hepatoma cell line Hep-G2 by serum components was examined. Incubation of dense monolayers of Hep-G2 cells with fresh medium containing 10% fetal calf serum (FM) produced a time-dependent increase in LDL receptor activity. Uptake and degradation of 125I-LDL was stimulated two- to four-fold, as compared with that of Hep-G2 cells cultured in the same media in which they had been grown to confluence (CM); the maximal 125I-LDL uptake plus degradation increased from 0.2 microgram/mg cell protein/4 h to 0.8 microgram/mg cell protein/4 h. In addition, a two-fold increase in cell surface binding of 125I-LDL to Hep-G2 cells was observed when binding was measured at 4 degrees C. There was no change in the apparent Kd. The stimulation of LDL receptor activity was suppressed in a concentration-dependent manner by the addition of cholesterol, as LDL, to the cell medium. In contrast to the stimulation of LDL receptor activity, FM did not affect the uptake or degradation of 125I-asialoorosomucoid. Addition of FM increased the protein content per dish, and DNA synthesis was stimulated approximately five-fold, as measured by [3H]thymidine incorporation into DNA; however, the cell number did not change. Cellular cholesterol biosynthesis was also stimulated by FM; [14C]acetate incorporation into unesterified and esterified cholesterol was increased approximately five-fold. Incubation of Hep-G2 cells with high-density lipoproteins (200 micrograms protein/ml) or albumin (8.0 mg/ml) in the absence of the serum factor did not significantly increase the total processed 125I-LDL. Stimulation of LDL receptor activity was dependent on a heat-stable, nondialyzable serum component that eluted in the inclusion volume of a Sephadex G-75 column

  16. Preparation of three-dimensional macroporous chitosan-gelatin B microspheres and HepG2-cell culture.

    Science.gov (United States)

    Huang, Fang; Cui, Long; Peng, Cheng-Hong; Wu, Xu-Bo; Han, Bao-San; Dong, Ya-Dong

    2016-12-01

    Chitosan-gelatin B microspheres with an open, interconnected, highly macroporous (100-200 µm) structure were prepared via a three-step protocol combining freeze-drying with an electrostatic and ionic cross-linking method. Saturated tripolyphosphate ethanol solution (85% ethanol) was chosen as the crosslinking agent to prevent destruction of the porous structure and to improve the biostability of the chitosan-gelatin B microspheres, with N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide/N-hydroxysuccinimide as a second crosslinking agent to react with gelatin A and fixed chitosan-gelatin B microspheres to attain improved biocompatibility. Water absorption of the three-dimensional macroporous chitosan-gelatin B microspheres (3D-P-CGMs) was 12.84, with a porosity of 85.45%. In vitro lysozyme degradation after 1, 3, 5, 7, 10, 14, and 21 days showed improved biodegradation in the 3D-P-CGMs. The morphology of human hepatoma cell lines (HepG2 cells) cultured on the 3D-P-CGMs was spherical, unlike that of cells cultured under traditional two-dimensional conditions. Scanning electron microscopy and paraffin sections were used to confirm the porous structure of the 3D-P-CGMs. HepG2 cells were able to migrate inside through the pore. Cell proliferation and levels of albumin and lactate dehydrogenase suggested that the 3D-P-CGMs could provide a larger specific surface area and an appropriate microenvironment for cell growth and survival. Hence, the 3D-P-CGMs are eminently suitable as macroporous scaffolds for cell cultures in tissue engineering and cell carrier studies. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  17. The preparation of a radionuclide labeled peptide {sup 125}I-WH16 and its characters of binding to a human liver cancer cell line HepG2 in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Luo; Xiaohua, Zhu; Hua, Wu [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong Univ. of Science and Technolgoy, Wuhan (China); Bing, Jia; Jing, Du; Fan, Wang

    2004-12-15

    Objective: To investigate the binding characters of a radionuclide labeled peptide {sup 125}I-WH16 which is affinitive to hepatocarcinoma cells in order to explore the potential feasibility of this artificially synthesized peptide to be a targeting reagent in diagnosis and therapy of liver cancer. Methods: 1) WH16 was labeled with Na{sup 125}I using Iodogen method, then isolated and identified with HPLC; 2)a. The tests of cell number (or time of incubation)- to-binding counts between {sup 125}I-WH16 and HepG2 cells were carried out in order to obtain better conditions for next in vitro tests; b. The average binding counts of {sup 125}I-WH16 treated HepG2 cells and L02 cells were compared in order to inspect the binding specificity between {sup 125}I-WH16 and HepG2 cells; c. A test of saturation of binding between {sup 125}I-WH16 and HepG2 cells was carried out in order to investigate the binding affinity between {sup 125}I-WH16 and HepG2 cells. Results: 1) The labeling rate of {sup 125}I was 50%. The specific activity of {sup 125}I-WH16 was 8.21x10{sup 15} Bq/mol. The radiochemical purity was 95% and the remnant radiochemical purity after a storage for 24 h at -20 degree C was 95%. The radioactive concentration was 6.64 x 10{sup 9} Bq/ L; 2) a. The binding of {sup 125}I-WH16 to HepG2 cells was cell number dependent and the optimal time of incubation was 3 h; b. There were obvious differences between HepG2 cells and L02 cells in binding with {sup 125}I-WH16; c. The binding of {sup 125}I-WH16 to HepG2 cells showed saturability. Scatchard plotting suggested that HepG2 cells contained only one type of WH16 receptors. The concentrations of Kd and Bmax were (1.42 {+-} 0.28) nmol/L and (12.15 {+-} 0.63) pmol/L, respectively. Hill modulus from Hill plotting was 1.03, which was close to 1 and suggesting that one receptor may bind only one ligand molecule. Conclusions: The present study indicates that the preparation of {sup 125}I-WH16 is stable and has good specificity and

  18. Fucoidan from Fucus vesiculosus Protects against Alcohol-Induced Liver Damage by Modulating Inflammatory Mediators in Mice and HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Jung Dae Lim

    2015-02-01

    Full Text Available Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1, a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions.

  19. Niclosamide suppresses hepatoma cell proliferation via the Wnt pathway

    Directory of Open Access Journals (Sweden)

    Tomizawa M

    2013-11-01

    Full Text Available Minoru Tomizawa,1 Fuminobu Shinozaki,2 Yasufumi Motoyoshi,3 Takao Sugiyama,4 Shigenori Yamamoto,5 Makoto Sueishi,4 Takanobu Yoshida6 1Department of Gastroenterology, 2Department of Radiology, 3Department of Neurology, 4Department of Rheumatology, 5Department of Pediatrics, 6Department of Internal Medicine, National Hospital Organization Shimoshizu Hospital, Yotsukaido City, Chiba, Japan Background: The Wnt pathway plays an important role in hepatocarcinogenesis. We analyzed the association of the Wnt pathway with the proliferation of hepatoma cells using Wnt3a and niclosamide, a drug used to treat tapeworm infection. Methods: We performed an MTS assay to determine whether Wnt3a stimulated proliferation of Huh-6 and Hep3B human hepatoma cell lines after 72 hours of incubation with Wnt3a in serum-free medium. The cells were subjected to hematoxylin and eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL after 48 hours of incubation. RNA was isolated 48 hours after addition of Wnt3a or niclosamide, and cyclin D1 expression levels were analyzed by real-time quantitative polymerase chain reaction. The promoter activity of T-cell factor was analyzed by luciferase assay 48 hours after transfection of TOPflash. Western blot analysis was performed with antibodies against β-catenin, dishevelled 2, and cyclin D1. Results: Cell proliferation increased with Wnt3a. Niclosamide suppressed proliferation with or without Wnt3a. Hematoxylin and eosin and TUNEL staining suggested that apoptosis occurred in cells with niclosamide. Cyclin D1 was upregulated in the presence of Wnt3a and downregulated with addition of niclosamide. The promoter activity of T-cell factor increased with Wnt3a, whereas T-cell factor promoter activity decreased with niclosamide. Western blot analysis showed that Wnt3a upregulated β-catenin, dishevelled 2, and cyclin D1, while niclosamide downregulated them. Conclusion: Niclosamide is a potential

  20. Impaired mitochondrial function in HepG2 cells treated with hydroxy-cobalamin[c-lactam]: A cell model for idiosyncratic toxicity

    International Nuclear Information System (INIS)

    Haegler, Patrizia; Grünig, David; Berger, Benjamin; Krähenbühl, Stephan; Bouitbir, Jamal

    2015-01-01

    The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL) impairs mitochondrial protein synthesis and the function of the electron transport chain. Our goal was to establish an in vitro model for mitochondrial dysfunction in human hepatoma cells (HepG2), which can be used to investigate hepatotoxicity of idiosyncratic mitochondrial toxicants. For that, HepG2 cells were treated with HCCL, which inhibits the function of methylmalonyl-CoA mutase and impairs mitochondrial protein synthesis. Secondary, cells were incubated with propionate that served as source of propionyl-CoA, a percursor of methylmalonyl-CoA. Dose-finding experiments were conducted to evaluate the optimal dose and treatment time of HCCL and propionate for experiments on mitochondrial function. 50 μM HCCL was cytotoxic after exposure of HepG2 cells for 2 d and 10 and 50 μM HCCL enhanced the cytotoxicity of 100 or 1000 μM propionate. Co-treatment with HCCL (10 μM) and propionate (1000 μM) dissipated the mitochondrial membrane potential and impaired the activity of enzyme complex IV of the electron transport chain. Treatment with HCCL decreased the mRNA content of mitochondrially encoded proteins, whereas the mtDNA content remained unchanged. We observed mitochondrial ROS accumulation and decreased mitochondrial SOD2 expression. Moreover, electron microscopy showed mitochondrial swelling. Finally, HepG2 cells pretreated with a non-cytotoxic combination of HCCL (10 μM) and propionate (100 μM) were more sensitive to the mitochondrial toxicants dronedarone, benzbromarone, and ketoconazole than untreated cells. In conclusion, we established and characterized a cell model, which could be used for testing drugs with idiosyncratic mitochondrial toxicity

  1. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  2. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  3. Defective G2 repair in Down syndrome

    International Nuclear Information System (INIS)

    Pincheira, J.; Rodriguez, M.; Bravo, M.; Navarrete, M.H.; Lopez-Saez, J.F.

    1994-01-01

    Lymphocytes from both Down syndrome (DS) patients and age-matched control donors have been investigated to identify a possible disturbance in chromosomal G2 repair. Analyses of caffeine treatments during G2 have shown that the frequency of chromosomal aberrations is higher in DS lymphocytes than in normal lymphocytes. Likewise, G2 duration is longer in DS cells than in normal cells. In both control and DS lymphocytes, caffeine treatments increase the frequencies of chromatid breakages and decrease the average of G2 duration. The reversal of the caffeine potentiation effect by adenosine and niacinamide is higher in DS cells than in normal cells. Furthermore, ATP content per cell in DS lymphocytes is one third of that estimated in normal lymphocytes. The increase of ATP level produced by adenosine or niacinamide generally correlates with the reversal of the caffeine effect on chromosome aberrations. Under the experimental conditions tested, a good negative exponential correlation between ATP level and chromosome aberrations has been detected in both normal and DS lymphocytes which were or were not X-irradiated. Finally, we postulate a decrease in G2 repair capability of DS lymphocytes caused by a low availability of ATP and/or some other factor correlating with it. (au)

  4. Prostaglandin (PG) synthesis by hepatoma cells

    International Nuclear Information System (INIS)

    Cyran, J.; Lysz, T.W.; Lea, M.A.

    1987-01-01

    Proliferation of cultured HTC hepatoma cells was reported to be inhibited by indomethacin but synthesis of PG in these cells was no detected. The authors have found that omission of fetal calf serum from the medium permits detection of synthesis of 6-keto-PGF1 alpha, PFG2 alpha, PGE2 and TxB2 from labeled arachidonic acid. Two additional peaks were identified as metabolites of PGF2 alpha and PGE2 by retention times on HPLC. Indomethacin inhibited the formation of the PGs and the metabolites. When 3 H-PGE2 and 3 H-PGF2 alpha were added to the cultures, approximately 50% of the label was recovered as the PG metabolites after a 4 day incubation. Metabolism of 3 H-TxB2 was not detected. When HTC cells were grown in the presence of 100 μM flurbiprofen, a cyclooxygenase inhibitor, there was significant inhibition of both cell proliferation and 3 H-thymidine uptake. The authors data suggest that proliferation of hepatoma cells is facilitated by synthesis of PGs

  5. Study of apoptotic mechanisms induced by all-trans retinoic acid and its 13-cis isomer on cellular lines of human hepato carcinoma Hep3B and HepG2

    International Nuclear Information System (INIS)

    Arce Vargas, Frederick

    2006-01-01

    Two cellular lines of liver cancer (Hep3B and HepG2) were incubated during different periods of time with some concentrations of two retinoic acid isomers (ATRA and 13-cis AR) and with 5-fu chemotherapeutic agents, cisplatin and paclitaxel. It was determined if these substances leaded cytotoxicity, apoptosis and if they modified the expression of different genes related to cellular death by apoptosis, in order to explain the hepatocellular carcinoma resistance to these drugs. HepG2 cells showed more resistance than Hep3B cells to 72 hours of treatment, as much ATRA as the 13-cis AR were toxic and produced apoptosis in two cellular lines. This type of cellular death seems to be mediated by a decrease in Bcl-xL concentration in Hep3B cells treated with both retinoids an increase in bax concentration in HepG2 cells treated with 13-cis AR. It were observed 3 and 8 proteolysis of procaspase in Hep3B cells, suggesting extrinsic via activation of the apoptosis, while cellular death in HepG2 cells seems to be independent of caspases. Cisplatin and paclitaxel leaded cytotoxicity to 48 hours of treatment, with significant differences between two cellular lines only in case of paclitaxel. Hep3B cells treated with cisplatin and HepG2 cells treated with paclytaxel suffered apoptosis. 5-FU produced toxicity only when it was used to high concentrations and the mechanism of cellular death induced by this agent seems to be primarily necrosis in Hep3B cells and apoptosis in HepG2. There was decrease in the Bcl-xL concentration in two cellular lines when it was treated with cisplatin and in HepG2 cells treated with 5-FU. Bax concentration there no was modified with no treatment. Activation of the 3 caspases seems to happen only in HepG2 cells with 5-FU and paclytaxel. These two agents, also, decreased the survivin concentration of HepG2 cells. Treatments of the three drugs produced an increase in the expression of this gen in Hep3B cells, which might explain partially the resistance

  6. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.-J. [Institute of Radiological Sciences, National Yang-Ming University, Taiwan (China); Chen, Fu-Du [Institute of Radiological Sciences, National Yang-Ming University, Taiwan (China); Institute of Radiological Sciences, Central Taiwan University of Science and Technology, Taiwan (China); Wang, F.H. [National Yang-Ming University Medical School, Taiwan (China); Ke, C.C. [National PET/Cyclotron Center, Taipei Veterans General Hospital, Taiwan (China); Wang, H.-E. [Institute of Radiological Sciences, National Yang-Ming University, Taiwan (China); Liu, R.-S. [Institute of Radiological Sciences, National Yang-Ming University, Taiwan (China) and National Yang-Ming University Medical School, Taiwan (China) and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taiwan (China)]. E-mail: maimai5010@yahoo.com.tw

    2007-02-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.

  7. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    International Nuclear Information System (INIS)

    Hsieh, Y.-J.; Chen, Fu-Du; Wang, F.H.; Ke, C.C.; Wang, H.-E.; Liu, R.-S.

    2007-01-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC

  8. M-theory and G2 manifolds

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel

    2015-01-01

    In this talk we report on recent progress in describing compactifications of string theory and M-theory on G 2 and Spin(7) manifolds. We include the infinite set of α’-corrections and describe the entire tower of massless and massive Kaluza–Klein modes resulting from such compactifications. (invited comment)

  9. Toric geometry of G2-manifolds

    DEFF Research Database (Denmark)

    Madsen, Thomas Bruun; Swann, Andrew Francis

    We consider G2-manifolds with an effective torus action that is multi-Hamiltonian for one or more of the defining forms. The case of T3-actions is found to be distinguished. For such actions multi-Hamiltonian with respect to both the three- and four-form, we derive a Gibbons-Hawking type ansatz...

  10. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells

    International Nuclear Information System (INIS)

    Muzio, Giuliana; Maggiora, Marina; Trombetta, Antonella; Martinasso, Germana; Reffo, Patrizia; Colombatto, Sebastiano; Canuto, Rosa Angela

    2003-01-01

    Low concentrations of some peroxisome proliferators have been found to decrease apoptosis in rat liver cells, whereas higher but pharmacological concentrations have been found to inhibit cell proliferation or to induce apoptosis in human and rat hepatoma cells. The highly deviated JM2 rat hepatoma cell line was used to examine the mechanisms underlying the inhibitory effect on cell proliferation. Clofibrate chiefly inhibited cell proliferation in these cells. Parallel to the decrease in cell proliferation there was an increase of peroxisome proliferator activated receptor (PPAR) gamma and of protein phosphatase 2A, whose importance was confirmed, respectively, by using antisense oliginucleotides (AS-ODN) or okadaic acid. The increase of protein phosphatase 2A induced by PPARgamma caused a decrease of MAPK, an intracellular signaling transduction pathway, as shown by evaluation of Erk1,2 and c-myc. In light of these results, clofibrate, like conventional synthetic ligands of PPARgamma, may be regarded as a possible prototype anti-tumour drug

  11. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  12. Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    International Nuclear Information System (INIS)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin

    2014-01-01

    Highlights: • Inhibition of H 2 S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H 2 S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H 2 S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H 2 S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H 2 S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H 2 S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction

  13. G2 chromosomal radiosensitivity in Fanconi's anemia

    International Nuclear Information System (INIS)

    Bigelow, S.B.; Rary, J.M.; Bender, M.A.

    1979-01-01

    Both the peripheral lymphocytes from 4 patients affected with the inherited disease Fanconi's anemia (FA), and tissue-culture fibroblasts from skin biopsies from 33 patients similarly affected were found to be about twice as sensitive to the induction of chromatid-type chromosomal aberrations by X-rays administered in the G 2 phase of the cell cycle as cells from normal controls. Using tritiated thymidine labelling of peripheral lymphocytes and of cultured fibroblasts, it was determined that 3 affected patients and 3 normal controls all had similar percent labeled mitoses (PLM) curves, so the increased induced aberration yields seen in the FA cells do not appear to be simply a consequence of a longer than normal G 2 phase of the cell cycle. (Auth.)

  14. The "g-2" Muon Storage Ring

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The "g-2" muon storage ring, shortly before completion in June 1974. Bursts of pions (from a target, hit by a proton beam from the 26 GeV PS) are injected and polarized muons from their decay are captured on a stable orbit. When the muons decay too, their precession in the magnetic field of the storage ring causes a modulation of the decay-electron counting rate, from which the muon's anomalous magnetic moment can be determined. In 1977, the "g-2" magnets were modified to build ICE (Initial Cooling Experiment), a proton and antiproton storage ring for testing stochastic and electron cooling. Later on, the magnets had a 3rd life, when the ion storage ring CELSIUS was built from them in Uppsala. For later use as ICE, see 7711282, 7802099, 7809081,7908242.

  15. The Muon $g$-$2$ Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gohn, Wesley [Kentucky U.

    2017-12-29

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory (BNL) and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model value of $a_\\mu$. The new measurement will accumulate 21 times the BNL statistics using upgraded magnet, detector, and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent improvements in our understanding of the QCD contributions to the muon $g$-$2$, could provide a discrepancy from the standard model greater than 7$\\sigma$ if the central value is the same as that measured by the BNL experiment, which would be a clear indication of new physics.

  16. Lepton g-2 and PNC in atoms

    International Nuclear Information System (INIS)

    Sandars, P.G.H.

    1977-01-01

    A review is given of the present status of two fields: lepton g-2, and PNC in atoms. Most emphasis is put on the search for PNC in atoms. Current and proposed experiments are listed and their likely sensitivity assessed. A more detailed description of the optical rotation experiments is given and the implication of the failure to see any PNC effect at the expected level is discussed. (orig.) [de

  17. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2

    Directory of Open Access Journals (Sweden)

    Emmanuel eStrahm

    2014-05-01

    Full Text Available Most androgenic drugs are available as esters for a prolonged depot action. However the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2 exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 hours exposure to 1 µM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.

  18. A quasi-parafermionic realization of G2 and Uq(G2)

    International Nuclear Information System (INIS)

    Frappat, L.

    1991-09-01

    A construction of the exceptional Lie algebra G 2 and of the corresponding quantum algebra U q (G 2 ) is presented, using quasi-parafermionic creation and annihilation operators and their quantum analogue. As a by-product, a new realization of U q (A 2 ) is found. (author) 7 refs

  19. Investigating free radical generation in HepG2 cells using immuno-spin trapping.

    Science.gov (United States)

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Kawazoe, Kazuyoshi; Tsuchiya, Koichiro; Tamaki, Toshiaki; Mason, Ronald P

    2014-10-01

    Oxidative stress can induce the generation of free radicals, which are believed to play an important role in both physiological and pathological processes and a number of diseases such as cancer. Therefore, it is important to identify chemicals which are capable of inducing oxidative stress. In this study, we evaluated the ability of four environmental chemicals, aniline, nitrosobenzene (NB), N,N-dimethylaniline (DMA) and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase (LDH) assays and morphological changes were observed using phase contrast microscopy. Free radicals were detected by immuno-spin trapping (IST) in in-cell western experiments or in confocal microscopy experiments to determine the subcellular localization of free radical generation. DMNA induced free radical generation, LDH release and morphological changes in HepG2 cells whereas aniline, NB and DMA did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation upon subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide did not. These results suggest that DMNA induces oxidative stress and that reactive oxygen species, metals and free radical generation play a critical role in DMNA-induced cytotoxicity. Copyright © 2014. Published by Elsevier Inc.

  20. Antioxidative and cytoprotective effects of andrographolide against CCl4-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Krithika, R; Verma, R J; Shrivastav, P S

    2013-05-01

    This article describes antioxidative and cytoprotective property of andrographolide, a major active component of the plant Andrographis paniculata (A. paniculata). High yields (2.7%) of andrographolide was isolated from the aerial parts of this plant via silica column chromatography. The purity of the compound was determined by high-performance thin-layer chromatography (HPTLC) and reversed phase high-performance liquid chromatography (HPLC) analysis. The structure was elucidated using techniques such as UV-visible spectrophotometry, elemental analysis, Fourier transform infrared (FT-IR), (1)H nuclear magnetic resonance ((1)H NMR), (13)C nuclear magnetic resonance ((13)C NMR) and mass spectral analysis and the data obtained were comparable with reported results. It was observed that andrographolide exhibited significant antioxidative property (IC50 = 3.2 µg/ml) by its ability to scavenge a stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) as compared to known antioxidants like ascorbic acid, butylated hydroxy toluene (BHT) and the plant extract. The cytoprotective role of andrographolide against carbon tetrachloride (CCl4) toxicity in human hepatoma HepG2 cell line was assessed using trypan blue exclusion test, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, by estimation of various leakage enzymes and by measuring the glutathione levels. The recovery obtained for andrographolide treatment in the presence of CCl4 was two-fold compared to A. paniculata extract for all other related biochemical parameters investigated. The results of the study indicate that andrographolide is a potent inhibitor of CCl4-mediated lipid peroxidation.

  1. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    International Nuclear Information System (INIS)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H.; Santelli, Glaucia M.M.

    2017-01-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  2. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H., E-mail: abarbezan@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santelli, Glaucia M.M. [Universidade de São Paulo (USP), SP (Brazil). Departamento de Biologia Celular e do Desenvolvimento

    2017-07-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  3. QED contributions to electron g-2

    Science.gov (United States)

    Laporta, Stefano

    2018-05-01

    In this paper I briefly describe the results of the numerical evaluation of the mass-independent 4-loop contribution to the electron g-2 in QED with 1100 digits of precision. In particular I also show the semi-analytical fit to the numerical value, which contains harmonic polylogarithms of eiπ/3, e2iπ/3 and eiπ/2 one-dimensional integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated up to 4800 digits. I give also some information about the methods and the program used.

  4. The 45 Years of Muon g-2

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Farley, Francis J M

    2002-01-01

    In their first announcement of muon polarization Garwin, Lederman and Weinrich (1957) used the g-2 principle to put limits on the g-factor. The progress since then will be reviewed, the three experiments at CERN leading up to the new Brookhaven measurement to 0.7 ppm disagreeing with current predictions by 3.0 sigma. Recent advances in the theory (hadronic light-by-light, e+e- and tau decay data) will be covered and a CERN film from 1967 will be shown.

  5. System Administration Support/SWORDS G2

    Science.gov (United States)

    Dito, Scott Joseph

    2014-01-01

    The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) rocket is a dedicated small satellite launcher that will minimize danger and complexity in order to allow soldiers in the field to put payloads of up to 25kg into orbit from the field. The SWORDSG2 project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to the SWORDS rocket for testing purposes. To accomplish this, the project is using the programming language environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. In addition, observation of the current cryogenic fluid delivery system in the Kennedy Space Center Cry Lab has allowed me to gain valuable experience of fluid systems and propelant delivery that is valuable to our team when developing amd modeling our own system.The ultimate goal of having a test-ready application to show to the heads of the project, and demonstrating G2's capabilities, by late 2014 will require hard work and intense study and understanding of not only the programming aspect but also the physical phenomena we want to model, observe, and control.

  6. Synergistic effect of intervention of glypican-3 gene transcription combined with antitumor drugs in inhibiting hepatoma cell proliferation

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2016-12-01

    Full Text Available ObjectiveTo investigate the inhibitory effect of intervention of glypican-3 (GPC3 gene transcription combined with antitumor drugs on hepatoma cell proliferation. MethodsFour types of GPC3-shRNA plasmids were established and transfected into HepG2 hepatoma cells. Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression of GPC3 to analyze its association with hepatoma cell proliferation and apoptosis. The independent samples t-test was used for comparison of continuous data between any two groups, and a one-way analysis of variance was used for comparison between multiple groups. ResultsAmong these four plasmids, shRNA1 had a transfection efficiency of >85% in the transfection of HepG2 cells and a silence efficiency of 89.3% at the mRNA level, and the protein expression of GPC3 was significantly inhibited(P<0.01). At 72 hours, the GPC3-shRNA1 co-intervention group had an HepG2 cell inhibition rate of 71.1%, significantly different from that in the negative group (t=18.092, P<0.001, an inhibition rate of migration of 89.1%, significantly lower than that in the negative group (t=8.326, P<0.001, and inhibition rates of HepG2 cell movement and invasion of 53.6% and 60.1%, which were significantly different from those in the negative group (t=52.400 and 48.245, both P<0.001. The GPC3-shRNA1 co-intervention group had a β-catenin mRNA inhibition rate of 46.9% and a Gli1 mRNA upregulation rate of 7.4%, significantly different from those in the negative group (t=30.108 and -3.551, P<0.001 and P=0.009. At 24 hours, 10 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 52.6% and 100 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 79.5%, which were significantly different from that in the control group (t=23.314 and 50.352, both P<0.001. The half-maximal inhibitory concentrations of sorafenib, rapamycin, and erlotinib for HepG2 were 4.67±1

  7. Activation of farnesoid X receptor increases the expression of cytokine inducible SH2-containing protein in HepG2 cells.

    Science.gov (United States)

    Xu, Zhizhen; Huang, Gang; Gong, Wei; Zhao, Yuanyin; Zhou, Peng; Zeng, Yijun; He, Fengtian

    2012-11-01

    Cytokine inducible SH2-containing protein (CISH), which negatively regulates cytokine signaling by inhibiting JAK2/STAT5 activity, is regarded as a therapeutic target for inflammatory diseases. Farnesoid X receptor (FXR), a ligand-activated transcription factor, has been proposed to play a protective function in the inflammatory responses. However, the role of FXR in modulation of CISH expression is unknown. In the present study, we for the first time identified that in human hepatoma cell line HepG2 the activation of FXR by the natural agonist chenodeoxycholic acid (CDCA) and the synthetic specific agonist GW4064 upregulated CISH at both transcriptional and translational levels, and inhibited interleukin (IL)6-induced STAT5 activation. Moreover, the in vivo experiment demonstrated that gavaging mice with CDCA increased CISH expression and reduced basal STAT5 phosphorylation in liver tissues. Reporter assay showed that FXR agonists enhanced the transcriptional activity of CISH promoter. These data suggest that FXR may serve as a novel molecular target for manipulating CISH expression in hepatocytes. FXR-mediated upregulation of CISH may play an important role in the homeostasis of cytokine signal networks and be beneficial to control cytokine-associated inflammatory diseases.

  8. Inhibition of triacylglycerol and apoprotein B secretion and of low density lipoprotein binding in Hep G2 cells by eicosapentaenoic acid

    International Nuclear Information System (INIS)

    Wong, S.H.; Nestel, P.J.

    1987-01-01

    The consumption of long chain polyunsaturated fatty acids of fish oils leads to profound lowering of plasma triacylglyercol (TAG) but not of plasma cholesterol. Reasons for this were investigated with the human hepatoma cell line, the Hep G2 cell. Incubations with oleic acid (OA), linoleic acid (LA) and the characteristic marine fatty acid eicosapentaenoic acid (EPA) enriched cellular TAG mass, though least with EPA. However, secretion of very low density lipoprotein (VLDL)-TAG and apoprotein B (apo B), measured from [ 3 H]-glycerol and [ 3 H]-leucine was markedly inhibited by EPA. Preincubation with LA reduced VLDL-TAG but not apo B secretion in comparison with OA which stimulated both. A possible effect on low density lipoprotein (LDL) removal was studied by measuring [ 125 I]-LDL binding. Preincubation with either EPA or LA inhibited the saturable binding of LDL, observed with OA and control incubations. The binding of lipoproteins containing chylomicron remnants was not affected by any of the fatty acids

  9. Muon (g-2) Technical Design Report

    CERN Document Server

    Grange, J; Winter, P; Wood, K; Zhao, H; Carey, R M; Gastler, D; Hazen, E; Kinnaird, N; Miller, J P; Mott, J; Roberts, B L; Benante, J; Crnkovic, J; Morse, W M; Sayed, H; Tishchenko, V; Druzhinin, V P; Khazin, B I; Koop, I A; Logashenko, I; Shatunov, Y M; Solodov, E; Korostelev, M; Newton, D; Wolski, A; Bjorkquist, R; Eggert, N; Frankenthal, A; Gibbons, L; Kim, S; Mikhailichenko, A; Orlov, Y; Rubin, D; Sweigart, D; Allspach, D; Annala, G; Barzi, E; Bourland, K; Brown, G; Casey, B C K; Chappa, S; Convery, M E; Drendel, B; Friedsam, H; Gadfort, T; Hardin, K; Hawke, S; Hayes, S; Jaskierny, W; Johnstone, C; Johnstone, J; Kashikhin, V; Kendziora, C; Kiburg, B; Klebaner, A; Kourbanis, I; Kyle, J; Larson, N; Leveling, A; Lyon, A L; Markley, D; McArthur, D; Merritt, K W; Mokhov, N; Morgan, J P; Nguyen, H; Ostiguy, J-F; Para, A; Popovic, C C Polly M; Ramberg, E; Rominsky, M; Schoo, D; Schultz, R; Still, D; Soha, A K; Strigonov, S; Tassotto, G; Turrioni, D; Villegas, E; Voirin, E; Velev, G; Wolff, D; Worel, C; Wu, J-Y; Zifko, R

    2015-01-01

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  10. The muon g-2 experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Gohn, W. [Kentucky U.

    2016-11-15

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model prediction of $a_\\mu$. The new measurement will accumulate 21 times those statistics using upgraded detection and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent and ongoing improvements in the evaluation of the QCD contributions to the $a_\\mu$, could provide a 7.5$\\sigma$ discrepancy from the standard model if the current difference between experiment and theory is confirmed, a possible indication of new physics.

  11. Muon (g-2) Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grange, J. [Argonne National Lab. (ANL), Argonne, IL (United States); et al.

    2015-01-27

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.

  12. Phosphorus NMR of isolated perfused morris hepatomas

    International Nuclear Information System (INIS)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-01-01

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. 31 P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin

  13. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  14. Comparison of two commercial embryo culture media (SAGE-1 step single medium vs. G1-PLUSTM/G2-PLUSTM sequential media): Influence on in vitro fertilization outcomes and human embryo quality.

    Science.gov (United States)

    López-Pelayo, Iratxe; Gutiérrez-Romero, Javier María; Armada, Ana Isabel Mangano; Calero-Ruiz, María Mercedes; Acevedo-Yagüe, Pablo Javier Moreno de

    2018-04-26

    To compare embryo quality, fertilization, implantation, miscarriage and clinical pregnancy rates for embryos cultured in two different commercial culture media until D-2 or D-3. In this retrospective study, we analyzed 189 cycles performed in 2016. Metaphase II oocytes were microinjected and allocated into single medium (SAGE 1-STEP, Origio) until transferred, frozen or discarded; or, if sequential media were used, the oocytes were cultured in G1-PLUSTM (Vitrolife) up to D-2 or D-3 and in G2-PLUSTM (Vitrolife) to transfer. On the following day, the oocytes were checked for normal fertilization and on D-2 and D-3 for morphological classification. Statistical analysis was performed using the chi-square and Mann-Whitney tests in PASW Statistics 18.0. The fertilization rates were 70.07% for single and 69.11% for sequential media (p=0.736). The mean number of embryos with high morphological quality (class A/B) was higher in the single medium than in the sequential media: D-2 [class A (190 vs. 107, pcultured in single medium were frozen: 197 (21.00%) vs. sequential: 102 (11.00%), pculture in single medium yields greater efficiency per cycle than in sequential media. Higher embryo quality and quantity were achieved, resulting in more frozen embryos. There were no differences in clinical pregnancy rates.

  15. 99Tcm pertechnetate uptake by hepatoma cells induced by tissue specific hNIS gene expression

    International Nuclear Information System (INIS)

    Chen Libo; Luo Quanyong; Yu Yongli; Yuan Zhibin; Lu Hankui; Zhu Ruisen; Guo Lihe

    2007-01-01

    Objective: Human sodium/iodide symporter (hNIS) gene could be used both as an ideal reporter gene and promising therapeutic gene. Rather than radioiodine, 99 Tc m pertechnetate has been proven to be a better radiopharmaceutical for tracing and imaging purposes. Herein, the authors investigated the feasibility of monitoring hNIS gene expression in hepatoma cells using 99 Tc m pertechnetate as a tracer. Methods: Hepatoma cells MH3924A were stably transfected with recombinant retroviral vector in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene. The uptake and efflux of 99 Tc m pertechnetate by transfected hepatoma cells were tested with 99 Tc m pertechnetate (74 kBq) solution adulterated into the culture media and counted after media suspension discharge at different intervals. In further tests, 50 μmol/L NaClO 4 and 500 μmol/L Ouabain were added into the media for 99 Tc m inhibition tests. For in vive studies, five ACI rats bearing NIS transfected hepatoma xenografts were injected with 99 Tc m pertechnetate (15.8 MBq) and followed by dynamic acquisition (0.57 1, 2 and 4 h) with small gamma camera to semi-quantitatively analyze the radioactivity distribution. Results: In vitro tests, the peak uptake of 99 Tc m pertechnetate by cultured transfected MH3924A cells was up to 254 folds higher than that by the wild type cells. 99 Tc m uptake by transfected cells were significantly inhibited by NaClO 4 down to 2.44% (P 99 Tc m pertechnetate out of cultured transfected cells became rapid immediately after renewal of culture media (half life 99 Tc m accumulations by hNIS transfected tumor xenografts were obvious in early phases of the acquisition with peak uptake at 12 min and gradually declining later on. Conclusions: hNIS transfected hepatoma cells can avidly uptake 99 Tc m pertechnetate both in vitro and in vive. It is feasible to utilize 99 Tc m pertechnetate for monitoring and even quantitatively analyzing

  16. Hepatitis B virus X protein mutant HBxΔ127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fabao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); You, Xiaona [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chi, Xiumei [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Wang, Tao [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Niu, Junqi, E-mail: junqiniu@yahoo.com.cn [Department of Hepatology, The First Hospital, Jilin University, Changchun 130021 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-02-07

    Highlights: • Relative to wild type HBx, HBX mutant HBxΔ127 strongly enhances cell proliferation. • Relative to wild type HBx, HBxΔ127 remarkably up-regulates miR-215 in hepatoma cells. • HBxΔ127-elevated miR-215 promotes cell proliferation via targeting PTPRT mRNA. - Abstract: The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.

  17. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation.

    Science.gov (United States)

    Chen, Wei-Qiang; Xu, Bin; Mao, Jian-Wen; Wei, Feng-Xiang; Li, Ming; Liu, Tao; Jin, Xiao-Bao; Zhang, Li-Rong

    2014-01-01

    Pine needle oil from crude extract of pine needles has anti-tumor effects, but the effective component is not known. In the present study, compounds from a steam distillation extract of pine needles were isolated and characterized. Alpha-pinene was identified as an active anti-proliferative compound on hepatoma carcinoma BEL-7402 cells using the MTT assay. Further experiments showed that α-pinene inhibited BEL-7402 cells by arresting cell growth in the G2/M phase of the cell cycle, downregulating Cdc25C mRNA and protein expression, and reducing cycle dependence on kinase 1(CDK1) activity. Taken together, these findings indicate that α-pinene may be useful as a potential anti-tumor drug.

  18. G2 Checkpoint Responses in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Anne [Univ. of California, Davis, CA (United States)

    2013-03-18

    This project focused on the mechanism and biological significance of the G2 arrest response to replication stress in plants. We employed both forward and reverse genetic approaches to identify genes required for this response. A total of 3 different postdocs, 5 undergraduates, and 2 graduate students participated in the project. We identified several genes required for damage response in plants, including homologs of genes previously identified in animals (ATM and ATR), novel, a plant-specific genes (SOG1) and a gene known in animals but previously thought to be missing from the Arabidopsis genome (ATRIP). We characterized the transcriptome of gamma-irradiated plants, and found that plants, unlike animals, express a robust transcriptional response to damage, involving genes that regulate the cell cycle and DNA metabolism. This response requires both ATM and the transcription factor SOG1. We found that both ATM and ATR play a role in meiosis in plants. We also found that plants have a cell-type-specific programmed cell death response to ionizing radiation and UV light, and that this response requires ATR, ATM, and SOG1. These results were published in a series of 5 papers.

  19. Essentials of the muon g-2

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2007-03-01

    The muon anomalous magnetic moment is one of the most precisely measured quantities in particle physics. Recent high precision measurements (0.54 ppm) at Brookhaven reveal a ''discrepancy'' by 3 standard deviations from the electroweak Standard Model which could be a hint for an unknown contribution from physics beyond the Standard Model. This triggered numerous speculations about the possible origin of the ''missing piece''. The remarkable 14-fold improvement of the previous CERN experiment, actually animated a multitude of new theoretical efforts which lead to a substantial improvement of the prediction of a μ . The dominating uncertainty of the prediction, caused by strong interaction effects, could be reduced substantially, due to new hadronic cross section measurements in electron-positron annihilation at low energies. After an introduction and a brief description of the principle of the experiment, I present a major update and review the status of the theoretical prediction and discuss the role of the hadronic vacuum polarization effects and the hadronic light-by-light scattering contribution. Prospects for the future are briefly discussed. As, in electroweak precision physics, the muon g-2 shows the largest established deviation between theory and experiment at present, it will remain one of the hot topics for further investigations. (orig.)

  20. Muon g-2 theory. The hadronic part

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2017-04-01

    I present a status report of the hadronic vacuum polarization effects for the muon g-2, to be considered as an update of an earlier paper (F. Jegerlehner, 2016). The update concerns recent new inclusive R measurements from KEDR in the energy range 1.84 to 3.72 GeV. For the leading order contributions I find a had(1) μ =(688.07±4.14)[688.77±3.38] x 10 -10 based on e + e - data [incl. τ data], a had(2) μ =(-9.93±0.07) x 10 -10 (NLO) and a had(3) μ =(1.22±0.01) x 10 -10 (NNLO). Collecting recent progress in the hadronic light-by-light scattering I adopt π 0 ,η,η ' [95±12]+axial-vector[8± 3]+scalar [-6 ±1]+π,K loops[-20±5]+quark loops[22±4]+tensor [1±0]+NLO[3±2] which yields a (6) μ (lbl,had)=(103±29) x 10 -11 . With these updates I find a exp μ -a the μ =(31.3±7.7) x 10 -10 a 4.1σ deviation. Recent lattice QCD results and future prospects to improve hadronic contributions are discussed.

  1. Essentials of the muon g-2

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-03-15

    The muon anomalous magnetic moment is one of the most precisely measured quantities in particle physics. Recent high precision measurements (0.54 ppm) at Brookhaven reveal a ''discrepancy'' by 3 standard deviations from the electroweak Standard Model which could be a hint for an unknown contribution from physics beyond the Standard Model. This triggered numerous speculations about the possible origin of the ''missing piece''. The remarkable 14-fold improvement of the previous CERN experiment, actually animated a multitude of new theoretical efforts which lead to a substantial improvement of the prediction of a{sub {mu}}. The dominating uncertainty of the prediction, caused by strong interaction effects, could be reduced substantially, due to new hadronic cross section measurements in electron-positron annihilation at low energies. After an introduction and a brief description of the principle of the experiment, I present a major update and review the status of the theoretical prediction and discuss the role of the hadronic vacuum polarization effects and the hadronic light-by-light scattering contribution. Prospects for the future are briefly discussed. As, in electroweak precision physics, the muon g-2 shows the largest established deviation between theory and experiment at present, it will remain one of the hot topics for further investigations. (orig.)

  2. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  3. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  4. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    Science.gov (United States)

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due

  5. Differential antibody isotype reactivity to specific antigens in human lymphatic filariasis: gp15/400 preferentially induces immunoglobulin E (IgE), IgG4, and IgG2

    NARCIS (Netherlands)

    Yazdanbakhsh, M.; Paxton, W. A.; Brandenburg, A.; van Ree, R.; Lens, M.; Partono, F.; Maizels, R. M.; Selkirk, M. E.

    1995-01-01

    Lymphatic filarial infection in humans is associated with a strong skewing of the immune response towards the TH2 arm, with prominent interleukin 4-producing cells and elevated levels of immunoglobulin G4 (IgG4) and IgE antibodies in peripheral blood. To determine how such a generalized TH2

  6. NIMS: hotspots on Io during G2

    Science.gov (United States)

    1996-01-01

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 7 September 1996. This image shows (on the right) Io as seen in the infrared by NIMS. The image on the left shows the same view from Voyager in 1979. This NIMS image can be compared to the NIMS images from the G1 orbit (June 1996) to monitor changes on Io. The NIMS image is at 4.9 microns, showing thermal emissions from the hotspots. The brightness of the pixels is a function of size and temperature.At least 10 hotspots have been identified and can be matched with surface features. An accurate determination of the position of the hotspot in the vicinity of Shamash Patera is pending. Hotspots are seen in the vicinity of Prometheus, Volund and Marduk, all sites of volcanic plume activity during the Galileo encounters, and also of active plumes in 1979. Temperatures and areas have been calculated for the hotspots shown. Temperatures range from 828 K (1031 F) to 210 K (- 81.4 F). The lowest temperature is significantly higher than the Io background (non-hotspot) surface temperature of about 100 K (-279 F). Hotspot areas range from 6.5 square km (2.5 sq miles) to 40,000 sq km (15,400 sq miles). The hottest hotspots have smallest areas, and the cooler hotspots have the largest areas. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission.The Galileo mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, D.C.This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov.

  7. Muon g-2 theory. The hadronic part

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-04-15

    I present a status report of the hadronic vacuum polarization effects for the muon g-2, to be considered as an update of an earlier paper (F. Jegerlehner, 2016). The update concerns recent new inclusive R measurements from KEDR in the energy range 1.84 to 3.72 GeV. For the leading order contributions I find a{sup had(1)}{sub μ}=(688.07±4.14)[688.77±3.38] x 10{sup -10} based on e{sup +}e{sup -} data [incl. τ data], a{sup had(2)}{sub μ}=(-9.93±0.07) x 10{sup -10} (NLO) and a{sup had(3)}{sub μ}=(1.22±0.01) x 10{sup -10} (NNLO). Collecting recent progress in the hadronic light-by-light scattering I adopt π{sup 0},η,η{sup '}[95±12]+axial-vector[8± 3]+scalar [-6 ±1]+π,K loops[-20±5]+quark loops[22±4]+tensor [1±0]+NLO[3±2] which yields a{sup (6)}{sub μ}(lbl,had)=(103±29) x 10{sup -11}. With these updates I find a{sup exp}{sub μ}-a{sup the}{sub μ}=(31.3±7.7) x 10{sup -10} a 4.1σ deviation. Recent lattice QCD results and future prospects to improve hadronic contributions are discussed.

  8. Studies on Anti-Hepatoma Effect of Gan-Ai-Xiao Decoction

    African Journals Online (AJOL)

    Nowadays, the people's lifestyles such as obesity [1], smoking [2] and alcohol drinking [3] enhance the incidence of hepatoma. Hepatoma is the second leading cause of cancer mortality worldwide [4] and a number of therapies have been used to decrease the mortality of patients with hepatoma, such as surgical treatment ...

  9. Liver regeneration in mice bearing a transplanted hepatoma.

    Science.gov (United States)

    Badran, A F; Moreno, F R; Echave Llanos, J M

    1984-01-01

    The hepatocyte mitotic index curve in hepatectomized hepatoma-bearing mice, rises earlier, has a greater amplitude and is less synchronized than that of normal hepatectomized mice. This indicates a stimulation (more mitosis in a shorter time period) produced by the presence of the tumors. The sinusoid litoral cells mitotic index curve in hepatectomized hepatoma-bearing mice appears earlier and is much less synchronized than that of normal hepatectomized mice. Nevertheless both curves have the same amplitude for the whole sampling period and the early stimulation is quickly compensated by lower values (apparent inhibition) appearing in the resting (light) period.

  10. Non-orthogonally transitive G2 spike solution

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2015-01-01

    We generalize the orthogonally transitive (OT) G 2 spike solution to the non-OT G 2 case. This is achieved by applying Geroch’s transformation on a Kasner seed. The new solution contains two more parameters than the OT G 2 spike solution. Unlike the OT G 2 spike solution, the new solution always resolves its spike. (fast track communication)

  11. G 2 reactor project; Projet de pile a double fin: G 2

    Energy Technology Data Exchange (ETDEWEB)

    Ailleret, [Electricite de France (EDF), Dir. General des Etudes de Recherches, 75 - Paris (France); Taranger, P; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The CEA actually constructs the G-2 reactor core working with natural uranium, which will use graphite as moderator, and gas under pressure as cooling fluid. This report presents the specificity of the new reactor: - the different elements of the reactor core, - the control and the security of the reactor, - the renewal of the fuel, - the biologic surrounding wall, - and the cooling circuit. (M.B.) [French] le Commissariat a l'Energie Atomique construit actuellement la pile G-2 a Uranium naturel, qui utilisera le graphite comme moderateur, et le gaz sous pression comme fluide de refroidissement. Ce rapport presente les specificite du nouveau reacteur: - les differents elements de la pile, - le controle et la securite du reacteur, - le renouvellement du combustible, - l'enceinte biologique, - et le circuit de refroidissement. (M.B.)

  12. Skeletal metastases from hepatoma: frequency, distribution, and radiographic features

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Leichner, P.K.; Magid, D.; Order, S.E.; Siegelman, S.S.

    1986-01-01

    Over the past 6 years, the authors evaluated 300 patients with hepatoma as part of phase 1 and 2 treatment protocol trials. Analysis of the available clinical data and radiographic studies revealed 22 patients (7.3%) with skeletal metastases demonstrated by radiography, computed tomography (CT), and/or nuclear scintigraphy. The plain film appearance of skeletal metastases from hepatoma was osteolytic in all cases. CT scanning best demonstrated the expansile, destructive nature of these metastases, which were often associated with large, bulky soft-tissue masses. Skeletal metastases from hepatomas demonstrated increased radiotracer uptake on standard bone scans and were gallium avid, similar to the hepatoma itself. In addition, they could be targeted therapeutically with I-131 antiferritin immunoglobulin. The most frequent sites of skeletal metastases were the ribs, spine, femur, pelvis, and humerus. An initial symptom in ten patients was skeletal pain corresponding to the osseous metastases. In five patients, pathologic fractures of the proximal femur or humerus developed and required total hip replacement or open-reduction internal fixation. Patients with long-standing cirrhosis or known hepatocellular carcinoma who also have skeletal symptoms should be evaluated for possible osseous metastases

  13. Incidence and significance of pleural effusion after hepatoma surgery

    International Nuclear Information System (INIS)

    Song, Jae Uoo; Im, Jung Gi; Ahn, Joong Mo; Kim, Seung Cheol; Kim, Sam Soo; Kim, Seung Hoon; Yeon, Kyung Mo

    1994-01-01

    We performed this study to evaluate the clinical significance and temporal changes of pleural effusion developed after the resection of hepatoma. We reviewed retrospectively follow-up chest radiographs of 97 patients who had undergone operation for hepatoma and had no radiologically demonstrable postoperative complications. The duration of pleural effusion was classified into five groups and the amount of pleural effusion at one week after operation was graded into four groups. Statistical significance of the relationship between the duration, amount of pleural effusion and five factors, which are location and size of tumor, age of the patients, methods of operation, and preoperative liver function, was studied respectively. Pleural effusion was developed in 63.9% (62/97) and the mean duration was 2.5 weeks. In 92% (52/56), pleural effusion disappeared spontaneously within four weeks. Patients who had hepatoma in upper portion of the right lobe developed more frequent pleural effusion which persisted longer, and was larger in amount at one week after operation(p<0.05). There were no statistically significant differences between pleural effusion and the other four factors. Pleural effusion following hepatoma surgery should not be regarded as a sign of post-operative complication, as it invariably disappears spontaneously within four weeks. Development of pleural effusion is considered to be caused by local irritation and disturbance of lymphatic flow at the diaphragm

  14. I-123-insulin: A new marker for hepatoma

    International Nuclear Information System (INIS)

    Sodoyez, J.C.; Goffaux, F.S.; Fallais, C.; Bourgeois, P.

    1984-01-01

    Previous studies have demonstrated that carrier-free I-123-Tyr Al4 insulin was taken up by the liver (by a saturable mechanism) and by the kidneys (by a non saturable mechanism). Autoradiographs of rat liver after injection of I-125-insulin showed that binding specifically occurred at the plasma membrane of the hepatocytes. I-123-Insulin binding to the hepatocyte plasma membrane appeared mediated by specific receptors. Indeed it was blocked by antibodies to the insulin receptors and by an excess of native insulin. Futhermore insulin derivatives with low biological potency (proinsulin and desoctapeptide insulin) did not inhibit I-123-insulin binding to the hepatocytes. I-123-Insulin (1.3 mCi) was I.V. injected into a patient in whom the right liver lobe was normal (normal uptake of Tc-99m-colloid sulfur) but the left liver lobe was occupied by a voluminous hepatoma (no uptake of Tc-99m-colloid sulfur). Liver blood supply was also studied by Tc-99m-pyrophosphate-labeled red cells. Computer analysis of the data revealed that compared to the normal liver lobe, binding of I-123-insulin to the hepatoma was more precocious (vascularization through the hepatic artery and not the portal vein), more intense and more prolonged (half-lives were 6 min in the normal liver and 14 min in the hepatoma). These results are consistent with characteristics of hepatoma cells in culture in which high insulin binding capacity contrasts with a markedly decreased insulin degrading activity. It is concluded that I-123-insulin may be used as a specific marker of hepatoma in man

  15. Computed tomographic evaluation of the portal vein in the hepatomas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kee Hyung; Lee, Seung Chul; Bae, Man Gil; Seo, Heung Suk; Kim, Soon Yong; Lee, Min Ho; Kee, Choon Suhk; Park, Kyung Nam [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    1986-10-15

    Computed tomography and pornographic findings of 63 patients with hepatoma, undergone hepatic angiography and superior mesenteric pornography for evaluation of tumor and thrombosis of portal vein and determination of indication of transcatheter arterial embolization for palliative treatment of hepatoma from April, 85 to June, 86 in Hanyang university hospital, were reviewed. The results were as follows: 1. In 36 cases, portal vein thrombosis was detected during photography. Nineteen of 37 cases which revealed localized hepatoma in the right lobe of the liver showed portal vein thrombosis; 9 of 11 cases of the left lobe; 8 of 14 cases which were involved in entire liver revealed thrombosis. One case localized in the caudate lobe showed no evidence of invasion to portal vein. 2. Twenty-four of 34 cases with diffuse infiltrative hepatoma revealed portal vein thrombosis and the incidence of portal vein thrombosis in this type were higher than in the cases of the nodular type. 3. The portal vein thrombosis appeared as filling defects of low density in the lumen of the portal veins in CT and they did not reveal contrast enhancement. 4. CT revealed well the evidence of obstructions in the cases of portal vein thrombosis and the findings were well-corresponded to the findings of the superior mesenteric photography. 5. Five of the cases of the portal vein thrombosis were missed in the CT and the causes were considered as due to partial volume effect of enhanced portal vein with partial occlusion or arterioportal shunts. 6. Six of 13 cases with occlusion of main portal vein showed cavernous transformation and they were noted as multiple small enhanced vascularities around the porta hepatis in the CT. According to the results, we conclude that CT is a useful modality to detect the changes of the portal veins in the patients of the hepatoma.

  16. Computed tomographic evaluation of the portal vein in the hepatomas

    International Nuclear Information System (INIS)

    Lee, Kee Hyung; Lee, Seung Chul; Bae, Man Gil; Seo, Heung Suk; Kim, Soon Yong; Lee, Min Ho; Kee, Choon Suhk; Park, Kyung Nam

    1986-01-01

    Computed tomography and pornographic findings of 63 patients with hepatoma, undergone hepatic angiography and superior mesenteric pornography for evaluation of tumor and thrombosis of portal vein and determination of indication of transcatheter arterial embolization for palliative treatment of hepatoma from April, 85 to June, 86 in Hanyang university hospital, were reviewed. The results were as follows: 1. In 36 cases, portal vein thrombosis was detected during photography. Nineteen of 37 cases which revealed localized hepatoma in the right lobe of the liver showed portal vein thrombosis; 9 of 11 cases of the left lobe; 8 of 14 cases which were involved in entire liver revealed thrombosis. One case localized in the caudate lobe showed no evidence of invasion to portal vein. 2. Twenty-four of 34 cases with diffuse infiltrative hepatoma revealed portal vein thrombosis and the incidence of portal vein thrombosis in this type were higher than in the cases of the nodular type. 3. The portal vein thrombosis appeared as filling defects of low density in the lumen of the portal veins in CT and they did not reveal contrast enhancement. 4. CT revealed well the evidence of obstructions in the cases of portal vein thrombosis and the findings were well-corresponded to the findings of the superior mesenteric photography. 5. Five of the cases of the portal vein thrombosis were missed in the CT and the causes were considered as due to partial volume effect of enhanced portal vein with partial occlusion or arterioportal shunts. 6. Six of 13 cases with occlusion of main portal vein showed cavernous transformation and they were noted as multiple small enhanced vascularities around the porta hepatis in the CT. According to the results, we conclude that CT is a useful modality to detect the changes of the portal veins in the patients of the hepatoma.

  17. Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-15

    Highlights: • Inhibition of H{sub 2}S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H{sub 2}S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H{sub 2}S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H{sub 2}S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H{sub 2}S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H{sub 2}S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction.

  18. The anti-tumor effect and biological activities of the extract JMM6 from the stem-barks of the Chinese Juglans mandshurica Maxim on human hepatoma cell line BEL-7402.

    Science.gov (United States)

    Zhang, Yongli; Cui, Yuqiang; Zhu, Jiayong; Li, Hongzhi; Mao, Jianwen; Jin, Xiaobao; Wang, Xiangsheng; Du, Yifan; Lu, Jiazheng

    2013-01-01

    Juglans mandshurica Maxim is a traditional herbal medicines in China, and its anti-tumor bioactivities are of research interest. Bioassay-guided fractionation method was employed to isolate anti-tumor compounds from the stem barks of the Juglans mandshurica Maxim. The anti-tumor effect and biological activities of the extracted compound JMM6 were studied in BEL-7402 cells by MTT, Cell cycle analysis, Hoechst 33342 staining, Annexin V-FITC/PI assay and Detection of mitochondrial membrane potential (ΔΨm). After treatment with the JMM6, the growth of BEL-7402 cells was inhibited and cells displayed typical morphological apoptotic characteristics. Further investigations revealed that treatment with JMM6 mainly caused G2/M cell cycle arrest and induced apoptosis in BEL-7402 cells. To evaluate the alteration of mitochondria in JMM6 induced apoptosis. The data showed that JMM6 decreased significantly the ΔΨm, causing the depolarization of the mitochondrial membrane. Our results show that the JMM6 will have a potential advantage of anti-tumor, less harmful to normal cells. This paper not only summarized the JMM6 pick-up technology from Juglans mandshurica Maxim and biological characteristic, but also may provide further evidence to exploit the potential medicine compounds from the stem-barks of the Chinese Juglans mandshurica Maxim.

  19. 12 CFR 563g.2 - Offering circular requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Offering circular requirement. 563g.2 Section 563g.2 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.2 Offering circular requirement. (a) General. No savings association shall offer or sell, directly...

  20. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: tomurah@meiji.ac.jp [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)

    2016-01-01

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  1. Release of overexpressed CypB activates ERK signaling through CD147 binding for hepatoma cell resistance to oxidative stress.

    Science.gov (United States)

    Kim, Kiyoon; Kim, Hunsung; Jeong, Kwon; Jung, Min Hyung; Hahn, Bum-Soo; Yoon, Kyung-Sik; Jin, Byung Kwan; Jahng, Geon-Ho; Kang, Insug; Ha, Joohun; Choe, Wonchae

    2012-08-01

    Cyclophilin, a cytosolic receptor for the immunosuppressive drug cyclosporin A, plays a role in diverse pathophysiologies along with its receptor, CD147. Although the interaction between cyclophilin A and CD147 is well established in inflammatory disease, that of cyclophilin B (CypB) with CD147 has not been fully explored, especially in cancer cell biology, and the exact molecular mechanism underlying such an association is poorly understood. In this study, we first identified high expression levels of CypB in 54 % of hepatocellular carcinoma patient tissues but in only 12.5 % of normal liver tissues. Then, we demonstrated that CypB overexpression protects human hepatoma cells against oxidative stress through its binding to CD147; this protective effect depends on the peptidyl prolyl isomerase activity of CypB. siRNA-mediated knockdown of CypB expression rendered hepatoma cells more vulnerable to ROS-mediated apoptosis. Furthermore, we also determined that a direct interaction between secreted CypB and CD147 regulates the extracellular signal-regulated kinase intracellular signaling pathway and is indispensible for the protective functions of CypB. For the first time, we demonstrated that CypB has an essential function in protecting hepatoma cells against oxidative stress through binding to CD147 and regulating the ERK pathway.

  2. 188Re-SSS lipiodol: radiolabelling and biodistribution following injection into the hepatic artery of rats bearing hepatoma.

    Science.gov (United States)

    Garin, Etienne; Denizot, Benoit; Noiret, Nicolas; Lepareur, Nicolas; Roux, Jerome; Moreau, Myriam; Herry, Jean-Yves; Bourguet, Patrick; Benoit, Jean-Pierre; Lejeune, Jean-Jacques

    2004-10-01

    Although intra-arterial radiation therapy with 131I-lipiodol is a useful therapeutic approach to the treatment of hepatocellular carcinoma, various disadvantages limit its use. To describe the development of a method for the labelling of lipiodol with 188Re-SSS (188Re (S2CPh)(S3CPh)2 complex) and to investigate its biodistribution after injection into the hepatic artery of rats with hepatoma. 188Re-SSS lipiodol was obtained after dissolving a chelating agent, previously labelled with 188Re, in cold lipiodol. The radiochemical purity (RCP) of labelling was checked immediately. The 188Re-SSS lipiodol was injected into the hepatic artery of nine rats with a Novikoff hepatoma. They were sacrificed 1, 24 and 48 h after injection, and used for ex vivo counting. Labelling of 188Re-SSS lipiodol was achieved with a yield of 97.3+/-2.1%. The immediate RCP was 94.1+/-1.7%. Ex vivo counting confirmed a predominantly hepatic uptake, with a good tumoral retention of 188Re-SSS lipiodol, a weak pulmonary uptake and a very faint digestive uptake. The 'tumour/non-tumoral liver' ratio was high at 1, 24 and 48 h after injection (2.9+/-1.5, 4.1+/-/4.1 and 4.1+/-0.7, respectively). Using the method described here, 188Re-SSS lipiodol can be obtained with a very high yield and a satisfactory RCP. The biodistribution in rats with hepatoma indicates a good tumoral retention of 188Re-SSS lipiodol associated with a predominant hepatic uptake, a weak pulmonary uptake and a very faint digestive uptake. This product should be considered for intra-arterial radiation therapy in human hepatoma.

  3. A case report of hepatoma with cystic calcification

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byung Hee; Choi, Sung Wook; Kim, Byung So [Busan National University College of Medicine, Busan (Korea, Republic of)

    1974-10-15

    A case of hepatoma with cystic calcification radiographically which confirmed by pathological examination, was reported. The patients was 19 years old boy who had abdominal mass and pain in left upper quadrant for 1 month. His family history was not contributary. The upper G-I series revealed slight posterior displacement of the fundus with a cyst like calcification, about 4.5 X 5 cm, in diameter at the left upper quadrant. Liver scanning showed normal concentration of 198{sup A}u on the right lobe but nonvisualization of the left lobe area. Biopsy specimen showed hepatoma cells invading the portal vein and intrahepatic blood vessels, and the cystic structure which was a blood vessel invaded by the tumor consisting of the organized thrombi.

  4. The concentration of cadmium in hepatoma among Filipinos

    International Nuclear Information System (INIS)

    Alejandrino, A.L.; Goze, C.B.; Paradero, R.R.

    1977-08-01

    The concentration of cadmium in liver hepatoma and in normal liver in Filipinos was determined by atomic absorption spectrophotometry. Using NBS Bovine Liver (SRM1577) as reference material, a value of 0.28+-0.025 ug/g dry weight was obtained for cadmium which is close to the certified NBS value of 0.27+-0.04 ug/g. The mean percentage recovery for cadmium determination by AAS was 98.38%. A mean value of 2.14+-1.58 ug Cd/g liver hepatoma was observed for the 12 cases investigated, showing decreased cadmium levels in the cancerous liver compared to the mean value of 12.62 ug Cd/g observed for normal liver obtained from 10 cases of accidental deaths. The values are expressed on a dry weight basis

  5. Effect of interleukin-17A on stemness of hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    LI Kexin

    2017-06-01

    Full Text Available ObjectiveTo investigate the effect of interleukin-17A (IL-17A on stemness of human hepatoma cell lines Hep 3B, MHCC97H, and MHCC97L and the association between IL-17A and the progression of liver cancer. MethodsHuman hepatoma cell lines Hep 3B, MHCC97H, and MHCC97L were selected, and in vitro 3D sphere formation assay was used to analyze the effect of IL-17A on sphere formation ability. The control group with common culture solution and the experimental group with 50 ng/ml IL-17A were established. Real-time cellular analysis was used to determine the effect of IL-17A on the proliferation and migration of hepatoma cells with enhanced sphere formation ability; quantitative real-time PCR was used to measure the changes in the mRNA expression of IL-17A receptors IL-17RA and IL-17RC and stemness-related genes SOX2, NANOG, OCT4, and BMI1 in hepatoma cells with enhanced sphere formation ability; Western blot was used to measure the expression of epithelial-mesenchymal transition-related proteins E-cadherin, N-cadherin, and vimentin. The t-test was used for comparison of continuous doota betwwen groups. ResultsWith the presence of 50 ng/ml IL-17A and 500 inoculated cells, Hep 3B cells had a significant increase in the number of spheres formed (113.0±10.3 vs 180.0±7.2, t=5.533, P<0.001, while MHCC97H and MHCC97L cells showed no significant changes (t=1.087 and 0.279, P=0.325 and 0785. The analysis showed that IL-17A promoted the proliferation and migration of Hep 3B cells with an increased number of spheres formed. After the addition of 50 ng/ml IL-17A, there was an increase in the mRNA expression of IL-17A receptors IL-17RA and IL-17RC over the time of treatment; Hep 3B cells showed significant increases in the mRNA expression of stemness-related genes SOX2 (t=4.749, P=0.042, NANOG (t=19.600, P=0.003, OCT4 (t=37.310, P<0.001, and BMI1 (t=16.810, P=0.004. Western blot showed no significant change in the expression of the epithelium

  6. HYPOLIPIDEMIC EFFECT OF ARGLABIN IN HEPATOMA TISSUE CULTURE

    Directory of Open Access Journals (Sweden)

    A. V. Ratkin

    2015-01-01

    Full Text Available Objective. Investigation of hypolipidemic effect of sesquiterpene γ-lactone Arglabin in hepatoma tissue culture (HTC.Materials and methods. In this study we’ve evaluated the effect of sesquiterpene γ-lactone Arglabin and gemfibrozil (reference drug on the lipid content in the hepatoma tissue culture (HTC which were incubated with a fat emulsion “Lipofundin” by fluorescent method with vital dye Nile Red. The cell viability was investigated using the MTT-test and staining by Trypan blue.Results. Cultivation of cell cultures of rat’s hepatoma cell line HTC with Arglabin and gemfibrozil in concentrations from 10 to 50 μmol and from 0.25 to 0.5 mmol, respectively, had no cytotoxic effect. HTC cell viability did not change compared with the corresponding rate in the control culture. Experimental hyperlipidemia in hepatoma culture was induced by the addition in the incubation medium of fat emulsion “Lipofundin” in a final concentration of 0.05 %. The fluorescence intensity of Nile Red in the cells was increased 4-fold (p < 0.05, which indicates a significant accumulation of lipids in the cytosol of cells. In these steady-state Arglabin and gemfibrozil at concentrations 75–100 μM and 0.25–1.0 mM, respectively, reduced the content of lipid in cells. Conclusion. In the model of hyperlipidemia induced by lipofundin, sesquiterpene γ-lactone Arglabin prevents the accumulation of lipids in the HTC cell line, as evidenced by a decrease in Nile Red fluorescence. However hypolipidemic effect of Arglabin is associated with cytotoxic effects, which is typical for anticancer drugs.

  7. Various imaging methods in the detection of small hepatomas

    International Nuclear Information System (INIS)

    Nakatsuka, Haruki; Kaminou, Toshio; Takemoto, Kazumasa; Takashima, Sumio; Kobayashi, Nobuyuki; Nakamura, Kenji; Onoyama, Yasuto; Kurioka, Naruto

    1985-01-01

    Fifty-one patients with small hepatomas under 5 cm in diameter were studied to compare the detectability of various imaging methods. Positive finding was obtained in 50 % of the patients by scintigraphy, in 74 % by ultrasonography and in 79 % by CT during screening tests. Rate of detection in retrospective analysis, after the site of the tumor had been known, were 73 %, 93 % and 87 % respectively. Rate of detection was 92 % by celiac arteriography and 98 % by selective hepatic arteriography. In 21 patients, who had the tumor under 3 cm, the rate was 32 % for scintigraphy, 74 % for ultrasonography and 65 % for CT during screening, whereas it was 58 %, 84 % and 75 % retrospectively. By celiac arteriography, it was 85 %, and by hepatic arteriography, 95 %. Rate of detection of small hepatomas in screening tests differed remarkably from that in retrospective analysis. No single method of imaging can disclose reliably the presense of small hepatoma, therefore more than one method should be used in screening. (author)

  8. Repression of the albumin gene in Novikoff hepatoma cells

    International Nuclear Information System (INIS)

    Capetanaki, Y.G.; Flytzanis, C.N.; Alonso, A.

    1982-01-01

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin [/sup 32/P]cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements

  9. SirT1 confers hypoxia-induced radioresistance via the modulation of c-Myc stabilization on hepatoma cells

    International Nuclear Information System (INIS)

    Xie Yuexia; Zhang Jianghong; Shao Chunlin; Xu Yanwu

    2012-01-01

    Intratumoral hypoxia is an important contributory factor to tumor cell resistance to radiotherapy. SirT1, a nicotinamide adenine dinucleotide (NAD + )-dependent histone/protein deacetylase, has been linked to the decrease of radiation-induced DNA damage and seems to be critical for cancer therapy. The purpose of this study was to investigate the role of SirT1 in hypoxia-induced radiation response on hepatoma cells. It was found that the administration with resveratrol, a putative SirT1 activator, enhanced the resistance of HepG2 cells against radiation-induced DNA damage of MN formation under hypoxia condition; while nicotinamide, a well-known SirT1 inhibitor, sensitized this radiation damage. Nevertheless, pretreatment of cells with 10058-F4, a specific inhibitor of c-Myc, almost eliminated the nicotinamide-induced radiosensitive effect. Further studies revealed that resveratrol inhibited c-Myc protein accumulation via up-regulation of SirT1 expression and deacetylase activity, and this loss of c-Myc protein was abolished by inhibiting its degradation in the presence of MG132, a potent inhibitor of proteasome. In contrast, nicotinamide attenuated c-Myc protein degradation induced by radiation under hypoxia through inhibition of SirT1 deacetylase activity. Our findings suggest that SirT1 could serve as a novel potent target of radiation-induced DNA damage and thus as a potential strategy to advance the efficiency of radiation therapy in hepatoma entities. (author)

  10. Study on radiation regulation of hypoxia inducible factor-1α expression and its correlation with hepatoma radiosensitivity

    International Nuclear Information System (INIS)

    Jin Wensen; Kong Zhaolu; Shen Zhifen; Tong Shungao; Ji Huajun; Jin Yizun

    2008-01-01

    Objective: To study the regulation of hypoxia inducible factor-1α (HIF-1α) expression in hepatoma cells after irradiation and the expression of HIF-1α effect on the radiosensitivity of heptoma cells. Methods: HepG2 cells were pretreated by Cobalt chloride (COCl 2 ), a chemical hypoxia agent, to induce and stabilize the expression of HIF-1α, and then exposed to different γ-irradiation doses. Clonogenic assay was used to evaluate HepG2 cell survival fraction (SF) after irradiation under normoxia and chemical hypoxia. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunoblot assay (Western blot) were utilized to detect the changes of intracellular HIF-1α on the level of transcripation and translation. Results: Cell survival level was elevated by chemical hypoxia and there was a statistical difference between chemical hypoxic group and normoxic group. The ratios of SF(SF co /SF o 2 )on two different conditions were increased with irradiation doses. Meanwhile, the irradiation induced up-regulation of HIF-1α in dose-dependent manner. The expression of HIF-1α was correlated with HepG2 cell survival level to some extent. Conclusions: Irradiation could up-regulate the level of HIF-1α expression in HepG2 cells under chemical hypoxic condition. The cells survival level might be influenced by the changes in HIF-1α expression. (authors)

  11. silver nanoparticles on liver cancer cells (HepG2

    Directory of Open Access Journals (Sweden)

    Ahmed I. El-Batal

    2018-01-01

    Full Text Available This study demonstrates a novel approach for the synthesis of silver nanoparticles (AgNPs against human liver cancer cell line (HepG2 using prodigiosin pigment isolated from Serratia marcescens. It further investigates the influence of various parameters such as initial pH, temperature, silver nitrate (AgNO 3 concentration, and prodigiosin concentration on stability and optical properties of synthesized prodigiosin AgNPs. Highly stable, spherical prodigiosin-conjugated AgNPs were synthesized with a mean diameter of 9.98 nm using a rapid one-step method. The cytotoxic activity investigated in the present study indicated that prodigiosin and prodigiosin-conjugated AgNPs possessed a strong cytotoxic potency against human liver cancer. The In silico molecular docking results of prodigiosin and prodigiosin-conjugated AgNPs are congruent with the In vitro studies and these AgNPs can be considered as good inhibitors of mitogen-activated protein kinase 1 (MEK kinases. The study opened the possibility of using prodigiosin-conjugated AgNPs to increase the efficiency of liver cancer treatment.

  12. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    International Nuclear Information System (INIS)

    Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2012-01-01

    Highlights: ► AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. ► We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. ► RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. ► It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RARα. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1–100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  13. G2 and G3 reactors design; Description des reacteurs G2 et G3

    Energy Technology Data Exchange (ETDEWEB)

    Herreng,; Ertaud,; Pasquet, [Societe Alsacienne de Constructions Mecaniques (France)

    1958-07-01

    'FRANCE ATOME' Manufacturers Party has been entrusted with the G2 and G3 reactors engineering by the french A.E.C., for the first-five-year french project. Although these reactors are essentially plutonium generators, everyone has been linked with a power station which is supposed to supply with 40 MW, 'Electricite de France' has taken the liability upon itself. The reactor core includes most of G1 reactor parts (central gap excluded): horizontal channels, graphite parallelepipedic bricks stacking, steel thermal shield. The cooling is provided with CO{sub 2} under a 15 atmospheres pressure. This pressure is kept steady in a press-stressed concrete packing-case which is a cylinder horizontally shaped. Steel strips tightened encircle the concrete cylinder; itself protected by sole-plates. The cylinder bottom has brought about unusual problems which have been solved by the choice of an hemispheric shape. Packing-case tightness is provided by a 30 mm iron-plate connected with the inner wall of concrete. One of the reactor's special characteristics is the possibility of loading and unloading while operating. On loading side, barrel locks, each weighting 50 tons, allow new cans, at a pressure of 15 atmospheres, to pass. The cans process almost in a steady way through the channel, and finally drop down through bent spouts, then through spiral toboggans into a new lock. The cooling CO{sub 2} flow is provided with 3 turbo-bellows, these are actuated by average pressure-steam, obtained from exchangers. Every reactor supplies 4 exchangers which have been very difficult to build and to set up. The secondary cycle is standard and contains 3 stages (pressure 10,3: 2 and 0,5 kg/cm{sup 2}). Steam can be condensed in the event of a group turbo-generator stopping, with no modifion for the normal operating conditions of the reactor. Auxiliary circuits have to assure the continuous purifying of cooling CO{sub 2}, its storage and drain. 49 boron carbide rods are used to control the

  14. 3-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a novel combretastatin A-4 analog, induces G2/M arrest and apoptosis by disrupting tubulin polymerization in human cervical HeLa cells and fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Zuo, Daiying; Guo, Dandan; Jiang, Xuewei; Guan, Qi; Qi, Huan; Xu, Jingwen; Li, Zengqiang; Yang, Fushan; Zhang, Weige; Wu, Yingliang

    2015-02-05

    Microtubule is a popular target for anticancer drugs. In this study, we describe the effect 3-(3-hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a newly synthesized analog of combretastatin A-4 (CA-4), showing a strong time- and dose-dependent anti-proliferative effect on human cervical cancer HeLa cells and human fibrosarcoma HT-1080 cells. We demonstrated that the growth inhibitory effects of G-1103 in HeLa and HT-1080 cells were associated with microtubule depolymerization and proved that G-1103 acted as microtubule destabilizing agent. Furthermore, cell cycle analysis revealed that G-1103 treatment resulted in cell cycle arrest at the G2/M phase in a time-dependent manner with subsequent apoptosis induction. Western blot analysis revealed that down-regulation of cdc25c and up-regulation of cyclin B1 was related with G2/M arrest in HeLa and HT-1080 cells treatment with G-1103. In addition, G-1103 induced HeLa cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8 expression, which indicated that G-1103 induced HeLa cell apoptosis was mainly associated with death receptor pathway. However, G-1103 induced HT-1080 cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8, Bax and cleaved caspase-9 expression and down-regulating anti-apoptotic protein Bcl-2 expression, which indicated that G-1103 induced HT-1080 cell apoptosis was associated with both mitochondrial and death receptor pathway. Taken together, all the data demonstrated that G-1103 exhibited its antitumor activity through disrupting the microtubule assembly, causing cell cycle arrest and consequently inducing apoptosis in HeLa and HT-1080 cells. Therefore, the novel compound G-1103 is a promising microtubule inhibitor that has great potentials for therapeutic treatment of various malignancies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Influence of earth's gravity on (g - 2) measurements

    International Nuclear Information System (INIS)

    Widom, A.; Chen, C.C.

    1988-01-01

    Experimental probes of the anomalous magnetic moment of the muon, which are sufficiently sensitive to probe electro-weak unification contributions to (g - 2), are also sufficiently sensitive to test an interesting feature of general relativity. The gravitational field of the earth produces a background space-time metric which will influence (g - 2) measurements

  16. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  17. Remarks on Hamiltonian structures in G2-geometry

    International Nuclear Information System (INIS)

    Cho, Hyunjoo; Salur, Sema; Todd, A. J.

    2013-01-01

    In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

  18. Effects of exogenous cyclic AMP on growth characteristics and radiation response of Reuber H35 hepatoma cells

    International Nuclear Information System (INIS)

    van Rijn, J.; van Den Berg, J.; van Meeteren, A.; van Wijk, R.

    1983-01-01

    Reuber H35 rat hepatoma cells, clone KRC, were used to study the effect of cyclic AMP on radiation-induced cell death. Treatment of logarithmically growing cultures with 0.5 mM cAMP for 17 hr prior to irradiation resulted in a decreased cell survival. Similar results were obtained with cultures irradiated after treatment with Bt 2 cAMP. Treatment of H35 cells with cAMP or Bt 2 cAMP caused inhibition of their proliferation and resulted in an accumulation of cells in early S phase and depletion of G2-phase cells. In synchronized cultures cells were relatively radioresistant during their S phase. In addition to single-dose treatment with X rays, the effect of Bt 2 cAMP on radiation-induced cell death was studied during fractionated irradiation wtih 2.5 Gy per day. This fractionated irradiation resulted in a dose-reduction factor of 1.6 at the 10% survival level and a 10-fold decrease in the surviving cell population due to the cooperative effects of Bt 2 cAMP on growth rate and radiation survival. The effect of cAMP on radiation-induced mitotic delay was also studied. It appeared that where cAMP had on effect on the progression of G2 cells into mitosis, it prevented cells from recovery from the X-ray mitotic delay in G2

  19. Genotoxic effect induced by hydrogen peroxide in human hepatoma ...

    African Journals Online (AJOL)

    2010-01-13

    Jan 13, 2010 ... Sustainability and Medical Toxicology Centre, Newcastle University, Newcastle Upon Tyne, UK ... model system to study the effects of oxidative stress. ... crucial tissues, a fine balance between the activity of these ... in any medium, provided the original work is properly cited. 1 ..... Life 2000; 50: 279Á89. 6.

  20. Redifferentiation of human hepatoma cells (SMMC-7721) induced ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Conventional cancer therapies such as surgery, chemotherapy and radiotherapy ... Based on the above investigations, we next decided to extend the ... vivo and in clinical trials. ... (Zingiber officinale); Journal of Natural Products 57 658–662.

  1. Genotoxic effect induced by hydrogen peroxide in human hepatoma ...

    African Journals Online (AJOL)

    Libyan Journal of Medicine. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 5, No 1 (2010) >. Log in or Register to get access to full text downloads.

  2. Inhibition effects of 125I-triplex forming oligonucleotide to hepatoma cells

    International Nuclear Information System (INIS)

    Lv Zhongwei; Hou Min; Cai Haidong; Yuan Xueyu; Yang Yuehua; Yuan Shidong; He Junmin

    2007-01-01

    Objective: Triplex forming oligonucleotide (TFO) has been reported as a new antigene strategy. The purpose of this study was to observe the inhibition effects of 125 I-TFO on hepatoma cells and to investigate the possibility of using 125 I-TFO as an antigene radiotherapy technique for hepatocellular carcinoma (HCC) related to HBV. Methods: TFO complementary to the initiator of S gene of HBV was synthesized and labeled with 125 I. HepG2.2.15 cells, in which HBV genome was integrated, were incubated with 125 I-TFO, TFO and 125 I respectively. After incubation, hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) of each group were assayed with ELISA and the survival rate of cells in each group was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) reduction assay. Results: 125 I-TFO showed a high stability with a radiolabeling rate of >93%. The radiochemical purity of labeled compound was 90.8%, 81.1% and 73.2% respectively after 12, 48 and 72 h at 37 degree C. The peak inhibition effect of 125 I-TFO on synthesizing HBsAg and HBeAg by HepG2.2.15 cells were found at 48 h after transfection, with significantly the highest inhibition rate of 45.2% for HBsAg and 74.5% for HBeAg expression among the three groups(P 125 I-TFO may inhibit the antigen expression of HBV and the growth of hepatocarcinoma cells, thus it may provide a new approach to develop gene-based radiotherapeutic pharmaceuticals for anti-HBV and HCC. (authors)

  3. Inhibition effects of {sup 125}I-triplex forming oligonucleotide to hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhongwei, Lv; Min, Hou; Haidong, Cai; Xueyu, Yuan; Yuehua, Yang; Shidong, Yuan [Department of Nuclear Medicine, 10th People' s Hospital, Tongji Univ., Shanghai (China); Junmin, He

    2007-08-15

    Objective: Triplex forming oligonucleotide (TFO) has been reported as a new antigene strategy. The purpose of this study was to observe the inhibition effects of {sup 125}I-TFO on hepatoma cells and to investigate the possibility of using {sup 125}I-TFO as an antigene radiotherapy technique for hepatocellular carcinoma (HCC) related to HBV. Methods: TFO complementary to the initiator of S gene of HBV was synthesized and labeled with {sup 125}I. HepG2.2.15 cells, in which HBV genome was integrated, were incubated with {sup 125}I-TFO, TFO and {sup 125}I respectively. After incubation, hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) of each group were assayed with ELISA and the survival rate of cells in each group was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide (MTT) reduction assay. Results: {sup 125}I-TFO showed a high stability with a radiolabeling rate of >93%. The radiochemical purity of labeled compound was 90.8%, 81.1% and 73.2% respectively after 12, 48 and 72 h at 37 degree C. The peak inhibition effect of {sup 125}I-TFO on synthesizing HBsAg and HBeAg by HepG2.2.15 cells were found at 48 h after transfection, with significantly the highest inhibition rate of 45.2% for HBsAg and 74.5% for HBeAg expression among the three groups(P<0.01 ). As the transfection time prolonged its inhibition effects were stronger. Conclusion: {sup 125}I-TFO may inhibit the antigen expression of HBV and the growth of hepatocarcinoma cells, thus it may provide a new approach to develop gene-based radiotherapeutic pharmaceuticals for anti-HBV and HCC. (authors)

  4. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hai-Shan Peng

    Full Text Available OBJECTIVES: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS: Hepatoma cell lines (BEL-7402 and SK-Hep1 were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS: Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS: We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression

  5. Corps G-2 Staff Competencies: A Desert Storm Case Study

    Science.gov (United States)

    2017-06-09

    Department of the Army, Army Doctrine Reference Publication (ADRP) 2-0, Intelligence (Washington, DC: Government Printing Office, August 2012), 3-2...Washington, DC: Government Printing Office, August 2012), 5-9. Intelligence Operations The second key corps G-2 intelligence meta-competency...Publication (ADRP) 2-0, Intelligence (Washington, DC: Government Printing Office, 2016), 4-2 to 4-9. Intelligence Analysis The final corps G-2

  6. The G2 spinorial geometry of supersymmetric IIB backgrounds

    International Nuclear Information System (INIS)

    Gran, U; Gutowski, J; Papadopoulos, G

    2006-01-01

    We solve the Killing spinor equations of supersymmetric IIB backgrounds which admit one supersymmetry and the Killing spinor has stability subgroup G 2 in Spin(9, 1) x U(1). We find that such backgrounds admit a timelike Killing vector field and the geometric structure of the spacetime reduces from Spin(9, 1) x U(1) to G 2 . We determine the type of G 2 structure that the spacetime admits by computing the covariant derivatives of the spacetime forms associated with the Killing spinor bilinears. We also solve the Killing spinor equations of backgrounds with two supersymmetries and Spin(7) x R 8 -invariant spinors, and four supersymmetries with SU(4) x R 8 - and with G 2 -invariant spinors. We show that the Killing spinor equations factorize in two sets, one involving the geometry and the 5-form flux, and the other the 3-form flux and the scalars. In the Spin(7) x R 8 and SU(4) x R 8 cases, the spacetime admits a parallel null vector field and so the spacetime metric can be locally described in terms of Penrose coordinates adapted to the associated rotation free, null, geodesic congruence. The transverse space of the congruence is a Spin(7) and a SU(4) holonomy manifold, respectively. In the G 2 case, all the fluxes vanish and the spacetime is the product of a three-dimensional Minkowski space with a holonomy G 2 manifold

  7. Dosimetric considerations in radioimmunotherapy of patients with hepatoma

    International Nuclear Information System (INIS)

    Leichner, P.K.; Klein, J.L.; Order, S.E.

    1986-01-01

    Dosimetric studies of I-131 labeled antiferritin have provided the foundation for preparative and administrative aspects of radiolabeled antibody treatment of patients with hepatoma. Tumor response to I-131 labeled antiferritin IgG was encouraging and radioimmunotherapy with Y-90 labeled antiferritin IgG was recently initiated. For these patients, In-111 labeled antiferritin IgG was used as the imaging agent, with administered activities ranging from 0.8 - 7 mCi. Serial gamma camera imaging from 30 minutes to 6 days post injection demonstrated that 5-30% of the administered activity localized in hepatomas (8/12 patients). The mean value of the effective half-life in the tumor and liver was 2.8 d. Disappearance curves for the blood circulation, spleen, and other normal tissues were biphasic such that 50% of the activity disappeared within 24 hours post injection. The eight patients who demonstrated sufficient tumor localization where subsequently treated with Y-90 labeled antiferritin IgG. Administered activities were dependent on tumor volume and uptake of radiolabeled IgG and ranged from 8 - 20 mCi. The remaining patients were treated under other existing protocols. 10 references

  8. Free radical generation from an aniline derivative in HepG2 cells: a possible captodative effect.

    Science.gov (United States)

    Horinouchi, Yuya; Summers, Fiona A; Ehrenshaft, Marilyn; Mason, Ronald P

    2015-01-01

    Xenobiotic metabolism can induce the generation of protein radicals, which are believed to play an important role in the toxicity of chemicals and drugs. It is therefore important to identify chemical structures capable of inducing macromolecular free radical formation in living cells. In this study, we evaluated the ability of four structurally related environmental chemicals, aniline, nitrosobenzene, N,N-dimethylaniline, and N,N-dimethyl-4-nitrosoaniline (DMNA), to induce free radicals and cellular damage in the hepatoma cell line HepG2. Cytotoxicity was assessed using lactate dehydrogenase assays, and morphological changes were observed using phase contrast microscopy. Protein free radicals were detected by immuno-spin trapping using in-cell western experiments and confocal microscopy to determine the subcellular locale of free radical generation. DMNA induced free radical generation, lactate dehydrogenase release, and morphological changes in HepG2 cells, whereas aniline, nitrosobenzene, N,N-dimethylaniline did not. Confocal microscopy showed that DMNA induced free radical generation mainly in the cytosol. Preincubation of HepG2 cells with N-acetylcysteine and 2,2'-dipyridyl significantly prevented free radical generation on subsequent incubation with DMNA, whereas preincubation with apocynin and dimethyl sulfoxide had no effect. These results suggest that DMNA is metabolized to reactive free radicals capable of generating protein radicals which may play a critical role in DMNA toxicity. We propose that the captodative effect, the combined action of the electron-releasing dimethylamine substituent, and the electron-withdrawing nitroso substituent, leads to a thermodynamically stabilized radical, facilitating enhanced protein radical formation by DMNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Radiosensitizing effects of 9401 on mice bearing H22 hepatoma

    International Nuclear Information System (INIS)

    Liu Xiaoqiu; Wang Qin; Zhou Zewei; Han Ying; Wang Dezhi; Shen Xiu

    2013-01-01

    Objective: To investigate the radiosensitizing effects of 9401 on mice bearing H22 hepatoma. Methods: Mouse model bearing H22 hepatoma cells were established. Mice were randomly divided into six groups, the control group,the radiation group and four treatment groups including 9401 at high, medium and low dosages and nicotinamide combined with radiation. After irradiated, the growth of tumor was observed, the time of tumor growth was recorded, the delay time of tumor growth and enhancement factor (EF) were calculated. After 28 days, the mice were killed, the tumors were stripped and inhibition rate was calculated. Results: Groups of 9401 combined with radiation could postpone tumor growth. The difference was statistically significant between 9401 groups at high, medium dosages combined with radiation and nicotinamide combined with radiation group (t=24.7 and 7.5, both P<0.01). Compared with radiation alone group, groups of 9401 combined with radiation had significant radiosensitizing effect. The enhancement factor of 9401 combined with radiation groups at high and medium dosages were 2.13 and 1.73 respectively, they were significant higher than nicotinamide combined with radiation group (t=2.26 and 9.04, both P<0.05). The inhibition rate of 9401 groups at high, medium and low dosages combined with radiation were 64.5%, 50.9% and 42.6% respectively. The inhibition rate of nicotinamide group combined radiation was 53.2%. The inhibition rate of 9401 at high dosage combined with radiation had significant difference with nicotinamide combined radiation (t =2.8, P<0.05). Nicotinamide combined with radiation group, 9401 combined with radiation groups could significant inhibit the growth of tumors compared with radiation alone group (t=5.7, 4.0 and 2.2, all P<0.05). Conclusion: 9401 can inhibit the tumor growth and the inhibition effect increases gradually with the drug dose increasing. It also has radiosensitizing effects on mice bearing H22 hepatoma and present broadly

  10. Preparation of [[sup 131]I]lipiodol as a hepatoma therapeutic agent

    Energy Technology Data Exchange (ETDEWEB)

    Jiunnguang Lo; Aiyih Wang; Yuanyaw Wei (National Tsinghua Univ., Hsinchu (Taiwan). Inst. of Nuclear Science); Wingyiu Lui; Chinwen Chi (Taipei Veterans General Hospital, Taipei (Taiwan)); Wingkai Chan (Academia Sinica, Taipei (Taiwan). Inst. of Biomedical Sciences)

    1992-12-01

    An isotopic exchange method was used to label lipiodol with [sup 131]I. The labelling efficiency was > 92.5%, and the radiochemical purity of [[sup 131]I]lipiodol was above 98% as determined by ITLC. The influencing factors e.g. the heating temperature, reaction, pH and storage conditions were studied and the optimum conditions were determined. In a pilot study injecting [[sup 131]I]lipiodol for the treatment of hepatoma, about 70% of hepatoma patients had a response to the treatment with a reduction of [alpha]-fetoprotein and decrease of hepatoma sizes. The overall median survival was 9 months (range 2-17 months). (author).

  11. Serum concentration of alpha-1-fetoprotein suggestive of, or pathognomonic for hepatoma

    International Nuclear Information System (INIS)

    Polterauer, P.; Horak, W.; Legenstein, E.; Mueller, M.

    1979-01-01

    A short review of alpha-1-fetoprotein (AFP), is followed by a presentation of the serum AFP concentrations obtained in healthy subjects and in patients with hepatoma, cirrhosis of the liver or metastatic liver cancer, measured by radioimmunoassay (RIA). A calculation is made from these results of the upper limit of normal (9 ng/ml), a limit which is suggestive of hepatome (215 ng/ml) and a limit which is pathognomonic for hepatoma (7500 ng/ml). It is concluded that the quantitative determination of AFP by RIA represents a sensitive method which provides valuable clinical information for the early diagnosis of hepatoma. (author)

  12. G(2) Holonomy Spaces from Invariant Three-Forms

    OpenAIRE

    Brandhuber, Andreas

    2001-01-01

    We construct several new G(2) holonomy metrics that play an important role in recent studies of geometrical transitions in compactifications of M-theory to four dimensions. In type IIA string theory these metrics correspond to D6 branes wrapped on the three-cycle of the deformed conifold and the resolved conifold with two-form RR flux on the blown-up two-sphere, which are related by a conifold transition. We also study a G(2) metric that is related in type IIA to the line bundle over S^2 x S^...

  13. Overview of the Fermilab Muon g-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, SeungCheon [Cornell U., Phys. Dept.

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  14. M Theory, G2-manifolds and four dimensional physics

    International Nuclear Information System (INIS)

    Acharya, B.S.

    2003-01-01

    M theory on a manifold of G 2 -holonomy is a natural framework for obtaining vacua with four large spacetime dimensions and N = 1 supersymmetry. In order to obtain, within this framework, the standard features of particle physics, namely non-Abelian gauge groups and chiral fermions, we consider G 2 -manifolds with certain kinds of singularities at which these features reside. The aim of these lectures is to describe in detail how the above picture emerges. Along the way we will see how interesting aspects of strongly coupled gauge theories, such as confinement, receive relatively simple explanations within the context of M theory. (author)

  15. Generalised discrete torsion and mirror symmetry for G2 manifolds

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Kaste, Peter

    2004-01-01

    A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)

  16. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  17. Selection of scFvs specific for the HepG2 cell line using ribosome ...

    Indian Academy of Sciences (India)

    Madhsudhan

    the important advantage of requiring no prior knowledge of ... were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed ..... Engert A, Hudson P R and Power B E 2007 Selection of human.

  18. Cultivation of HepG2.2.15 on Cytodex-3

    DEFF Research Database (Denmark)

    Lupberger, Joachim; Mund, Andreas; Kock, Josef

    2006-01-01

    BACKGROUND/AIMS: Several novel systems are available to study human hepatitis B virus (HBV) replication in cell culture demanding for efficient cell culture based systems for HBV production. The aim was to enhance HBV production of the HBV stably producing cell line HepG2.2.15 by cultivation on s...

  19. Recent advances in live cell imaging of hepatoma cells

    Science.gov (United States)

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  20. Supersymmetric M3-branes and G2 manifolds

    International Nuclear Information System (INIS)

    Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G 2 holonomy on (R 4 xS 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G 2 metric, and λ={-1,1} are related to this by an S 3 automorphism of the SU(2) 3 isometry group that acts on the S 3 xS 3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G 2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G 2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric

  1. Supersymmetric M3-branes and G2 manifolds

    Science.gov (United States)

    Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G2 holonomy on R4×S 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G2 metric, and λ={-1,1} are related to this by an S3 automorphism of the SU(2) 3 isometry group that acts on the S3× S3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  2. Test results of the g-2 superconducting solenoid magnet system

    NARCIS (Netherlands)

    Bunce, G; Morse, WM; Benante, J; Cullen, MH; Danby, GT; Endo, K; Fedotovich, GV; Geller, J; Green, MA; Grossmann, A; GrossePerdckamp, M; Haeberlen, U; Hseuh, H; Hirabayashi, H; Hughes, VW; Jackson, JW; Jia, LX; Jungmann, K; Krienen, F; Larsen, R; Khazin, B; Kawall, D; Meng, W; Pai, C; Polk, T.; Prigl, R; Putlitz, GZ; Redin, S; Roberts, BL; Ryskulov, N; Semertzidas, Y; Shutt, R; Snydstrup, L; Tallerico, T; vonWalter, P; Woodle, K; Yamamoto, A

    The g-2 experiment dipole consists of a single 48 turn, 15.1 meter diameter outer solenoid and a pair of 24 turn inner solenoids, 13.4 meters in diameter. The inner solenoids are hooked in series and are run at a polarity that is opposite that of the outer solenoid, thus creating a dipole field in

  3. Measuring the performance of G2G services in Iran

    Science.gov (United States)

    Zarei, Behrouz; Safdari, Maryam

    To highlight the growth of e-government and the importance of its services it is essential to evaluate the performance of the service delivery to customers. Research indicates that traditional performance indexes are not suitable for this evaluation; moreover, it is noticeable that the e-government services are intangible and invisible. Among different e-government services, measurement of quality government to government (G2G) services has been less attractive for researchers while crucial for government policy-makers. This calls for a better understanding of the specific needs of users of these services in order to provide appropriate type and level of services that meets those needs. In this paper, the performance of the G2G services is measured in the Iranian context. For this purpose, SERVQUAL, which is a well-known method for assessing service quality, is employed. This study proposes and tests a five-factor of SERVQUAL instrument to explain user satisfaction and gap analysis, between expectations and perceptions of its customers, consisting thirty ministries and main governmental organizations. Based on a Chi-square test, factor analysis, gap analysis and correlations, it is concluded the gap between expectations and perceptions of G2G customers is significant and customer satisfaction of G2G services is at low level.

  4. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  5. Effect of bleomycin and irradiation on G2 progression

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1979-01-01

    The interaction of bleomycin and x-irradiation on the induction of G 2 delay in Chinese hamster ovary cells was investigated utilizing the mitotic selection procedure for cell cycle analysis. Following the addition of BLM, the number of cells selected in mitosis remained at control level for a refractory period and then decreased. The location of the transition point, i.e., the age in G 2 at which cells become refractory to a progression blockade, was concentration-dependent, ranging from the S/G 2 boundary at low concentrations to the G 2 /M boundary at high concentrations. Depending upon the concentration of the drug used and the duration of exposure, the mitotic rate either decreased to zero or else leveled off at some intermediate value and then recovered to the control level. The duration of BLM-induced division delay was thus dependent upon the concentration used and the duration of exposure. When cells were treated with pulses of bleomycin (10-500 μg/ml) in addition to x-irradiation, the mitotic rate declined as with exposure to x-ray alone. However, the recovery from radiation-induced division delay and the subsequent reappearance of mitotic cells in the selection window was delayed until the cells had recovered from their BLM-induced division delay. This implies that, in contrast to the synergistic effects observed for cell lethality, BLM and radiation do not interact in the production of a progression blockade and the resultant division delay

  6. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  7. A study on the thermochemotherapy effect of nanosized As2O3/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo

    Science.gov (United States)

    Wang, Li; Zhang, Jia; An, Yanli; Wang, Ziyu; Liu, Jing; Li, Yutao; Zhang, Dongsheng

    2011-08-01

    In this paper, we describe the synthesis and characterization of a nanosized, thermosensitive magnetoliposome encapsulating magnetic nanoparticles (MZFs) and antitumor drugs (As2O3). The nanoliposomes were spherical and mostly single volume, with an average diameter of 128.2 nm. Differential scanning calorimetry (DSC) showed a liposome phase transition temperature of 42.71 °C. After that, we studied the liposomes' anti-hepatoma effect in vitro and in vivo. The antitumor effect of the nanoliposomes on human hepatoma cells, SMMC-7721, and changes in expression of apoptosis-related proteins were examined in vitro. The results show that As2O3/MZF thermosensitive magnetoliposomes combined with hyperthermia had a great impact on the Bax/Bcl-2 ratio, which increased to 1.914 and exhibited a rapid response to induce apoptosis of tumor cells. An in situ rabbit liver tumor model was established and used to evaluate the antitumor effect of combined hyperthermia and chemotherapy following transcatheter arterial embolization with As2O3/MZF thermosensitive magnetoliposomes. The results demonstrated a strong anti-hepatoma effect, with a tumor volume inhibition rate of up to 85.22%. Thus, As2O3/MZF thermosensitive magnetoliposomes may play a great role in the treatment of hepatocarcinoma.

  8. A study on the thermochemotherapy effect of nanosized As{sub 2}O{sub 3}/MZF thermosensitive magnetoliposomes on experimental hepatoma in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Zhang Jia; Wang Ziyu; Liu Jing; Li Yutao; Zhang Dongsheng [School of Medicine, Southeast University, NO. 87 Ding jia qiao, Nanjing 210009 (China); An Yanli, E-mail: wangli040418@163.com, E-mail: zdszds1222@163.com [Affiliated Zhong-Da Hospital of Southeast University, Nanjing 210009 (China)

    2011-08-05

    In this paper, we describe the synthesis and characterization of a nanosized, thermosensitive magnetoliposome encapsulating magnetic nanoparticles (MZFs) and antitumor drugs (As{sub 2}O{sub 3}). The nanoliposomes were spherical and mostly single volume, with an average diameter of 128.2 nm. Differential scanning calorimetry (DSC) showed a liposome phase transition temperature of 42.71 deg. C. After that, we studied the liposomes' anti-hepatoma effect in vitro and in vivo. The antitumor effect of the nanoliposomes on human hepatoma cells, SMMC-7721, and changes in expression of apoptosis-related proteins were examined in vitro. The results show that As{sub 2}O{sub 3}/MZF thermosensitive magnetoliposomes combined with hyperthermia had a great impact on the Bax/Bcl-2 ratio, which increased to 1.914 and exhibited a rapid response to induce apoptosis of tumor cells. An in situ rabbit liver tumor model was established and used to evaluate the antitumor effect of combined hyperthermia and chemotherapy following transcatheter arterial embolization with As{sub 2}O{sub 3}/MZF thermosensitive magnetoliposomes. The results demonstrated a strong anti-hepatoma effect, with a tumor volume inhibition rate of up to 85.22%. Thus, As{sub 2}O{sub 3}/MZF thermosensitive magnetoliposomes may play a great role in the treatment of hepatocarcinoma.

  9. The SM prediction of g - 2 of the muon

    International Nuclear Information System (INIS)

    Hagiwara, K.; Martin, A.D.; Nomura, Daisuke; Teubner, T.

    2003-01-01

    We calculate (((g - 2))/(2)) of the muon, paying particular attention to the hadronic vacuum polarisation contribution and its uncertainties. The different data sets for each e + e - exclusive channel (as well as for the inclusive e + e - → hadrons channel) have been combined in order to produce the optimum estimate of the cross sections and their uncertainties. QCD sum rules are evaluated in order to resolve an apparent discrepancy between the inclusive data and the sum of the exclusive channels. We conclude a μ had,LO = (683.1 ± 5.9 exp ± 2.0 rad ) x 10 -10 which, when combined with the other contributions to (((g - 2))/(2)), is about 3σ below the present world average measurement as reported at this conference

  10. FEI Titan G2 60-300 HOLO

    Directory of Open Access Journals (Sweden)

    Chris Boothroyd

    2016-02-01

    Full Text Available The FEI Titan G2 60-300 HOLO is a unique fourth generation transmission electron microscope, which has been specifically designed for the investigation of electromagnetic fields of materials using off-axis electron holography. It has a Lorentz lens to allow magnetic field free imaging plus two electron biprisms, which in combination enable more uniform holographic fringes to be used. The instrument also has an ultra-wide objective lens pole piece gap which is ideal for in situ experiments. For these purposes, the FEI Titan G2 60-300 HOLO is equipped with a Schottky type high-brightness electron gun (FEI X-FEG, an image Cs corrector (CEOS, a post-column energy filter system (Gatan Tridiem 865 ER as well as a 4 megapixel CCD system (Gatan UltraScan 1000 XP. Typical examples of use and technical specifications for the instrument are given below.

  11. Asymptotic freedom and the symplectic and G2 groups

    International Nuclear Information System (INIS)

    Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.

    1978-01-01

    It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)

  12. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  13. Hypoxia‐induced alterations of G2 checkpoint regulators

    OpenAIRE

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G.

    2016-01-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage‐induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting o...

  14. Classification of compact homogeneous spaces with invariant G(2)-structures

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Munir, M.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 303-328 ISSN 1615-715X R&D Projects: GA AV ČR IAA100190701 Institutional support: RVO:67985840 Keywords : compact homogeneous space * G(2)-structure Subject RIV: BA - General Mathematics Impact factor: 0.371, year: 2012 http://www.degruyter.com/view/j/advg.2012.12.issue-2/advgeom.2011.054/advgeom.2011.054. xml

  15. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage.

    LENUS (Irish Health Repository)

    2010-11-15

    DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1\\/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2\\/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2\\/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.

  16. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Marumi; Ikenaka, Yoshinori [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.jp [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. Black-Right-Pointing-Pointer We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. Black-Right-Pointing-Pointer RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. Black-Right-Pointing-Pointer It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RAR{alpha}. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1-100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  17. Marginal deformations of heterotic G 2 sigma models

    Science.gov (United States)

    Fiset, Marc-Antoine; Quigley, Callum; Svanes, Eirik Eik

    2018-02-01

    Recently, the infinitesimal moduli space of heterotic G 2 compactifications was described in supergravity and related to the cohomology of a target space differential. In this paper we identify the marginal deformations of the corresponding heterotic nonlinear sigma model with cohomology classes of a worldsheet BRST operator. This BRST operator is nilpotent if and only if the target space geometry satisfies the heterotic supersymmetry conditions. We relate this to the supergravity approach by showing that the corresponding cohomologies are indeed isomorphic. We work at tree-level in α' perturbation theory and study general geometries, in particular with non-vanishing torsion.

  18. The New Muon g-2 Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph [Argonne

    2015-01-13

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  19. Tops as building blocks for G 2 manifolds

    Science.gov (United States)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  20. Towards Commissioning the Fermilab Muon G-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, D. [Fermilab; Convery, M. E. [Fermilab; Morgan, J. P. [Fermilab; Syphers, M. J. [Northern Illinois U.; Korostelev, M. [Cockcroft Inst. Accel. Sci. Tech.; Fiedler, A. [Northern Illinois U.; Kim, S. [Cornell U.; Crnkovic, J. D. [Brookhaven; Morse, W. M. [Brookhaven

    2017-01-01

    Starting this summer, Fermilab will host a key experiment dedicated to the search for signals of new physics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contamination, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being sent to the experiment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.

  1. Hepatitis B virus X protein accelerates the development of hepatoma

    International Nuclear Information System (INIS)

    Zhang, Xiao-Dong; Wang, Yuan; Ye, Li-Hong

    2014-01-01

    The chronic infection of hepatitis B virus (HBV) is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV X protein (HBx protein) is a multifunctional regulator with a crucial role in hepatocarcinogenesis. However, information on the mechanism by which HBV induces HCC is lacking. This review focuses on the pathological functions of HBx in HBV-induced hepatocarcinogenesis. As a transactivator, HBx can modulate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transcription factor AP-2. Moreover, HBx can affect regulatory non-coding RNAs (ncRNAs) including microRNAs and long ncRNAs (lncRNAs), such as miRNA-205 and highly upregulated in liver cancer (HULC), respectively. HBx is also involved in epigenetic modification, including methylation and acetylation. HBx interacts with various signal-transduction pathways, such as protein kinase B/Akt, Wnt/β-catenin, signal transducer and activator of transcription, and NF-κB pathways. Moreover, HBx affects cellular fate by shifting the balance toward cell survival. HBx may lead to the loss of apoptotic functions or directly contributes to oncogenesis by achieving transforming functions, which induce hepatocarcinogenesis. Additionally, HBx can modulate apoptosis and immune response by direct or indirect interaction with host factors. We conclude that HBx hastens the development of hepatoma

  2. The Infinitesimal Moduli Space of Heterotic G 2 Systems

    Science.gov (United States)

    de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.

    2018-06-01

    Heterotic string compactifications on integrable G 2 structure manifolds Y with instanton bundles {(V,A), (TY,\\tilde{θ})} yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative D and show that it is equivalent to a heterotic G 2 system encoding the geometry of the heterotic string compactifications. This operator D acts on a bundle Q}=T^*Y \\oplus End(V) \\oplus End(TY)} and satisfies a nilpotency condition \\check{{D^2=0} , for an appropriate projection of D. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group H^1_{D}(Q). We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the {α'} expansion.

  3. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Michelle E LeBlanc

    Full Text Available Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3 was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs. HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2 pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  4. Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.

    Science.gov (United States)

    Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan

    2018-02-21

    Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The TSO Logic and G2 Software Product

    Science.gov (United States)

    Davis, Derrick D.

    2014-01-01

    This internship assignment for spring 2014 was at John F. Kennedy Space Center (KSC), in NASAs Engineering and Technology (NE) group in support of the Control and Data Systems Division (NE-C) within the Systems Hardware Engineering Branch. (NEC-4) The primary focus was in system integration and benchmarking utilizing two separate computer software products. The first half of this 2014 internship is spent in assisting NE-C4s Electronics and Embedded Systems Engineer, Kelvin Ruiz and fellow intern Scott Ditto with the evaluation of a newly piece of software, called G2. Its developed by the Gensym Corporation and introduced to the group as a tool used in monitoring launch environments. All fellow interns and employees of the G2 group have been working together in order to better understand the significance of the G2 application and how KSC can benefit from its capabilities. The second stage of this Spring project is to assist with an ongoing integration of a benchmarking tool, developed by a group of engineers from a Canadian based organization known as TSO Logic. Guided by NE-C4s Computer Engineer, Allen Villorin, NASA 2014 interns put forth great effort in helping to integrate TSOs software into the Spaceport Processing Systems Development Laboratory (SPSDL) for further testing and evaluating. The TSO Logic group claims that their software is designed for, monitoring and reducing energy consumption at in-house server farms and large data centers, allows data centers to control the power state of servers, without impacting availability or performance and without changes to infrastructure and the focus of the assignment is to test this theory. TSOs Aaron Rallo Founder and CEO, and Chris Tivel CTO, both came to KSC to assist with the installation of their software in the SPSDL laboratory. TSOs software is installed onto 24 individual workstations running three different operating systems. The workstations were divided into three groups of 8 with each group having its

  6. PRECISION MEASUREMENT OF MUON G-2 AND ACCELERATOR RELATED ISSUES

    International Nuclear Information System (INIS)

    BROWN, H.N.; BUNCE, G.; CAREY, R.M.; CUSHMAN, P.; DANBY, G.T.; DEBEVEC, P.T.; DEILE, M.; DENG, H.; DENINGER, W.; DHAWAN, S.K.; MENG, W.

    2001-01-01

    A precision measurement of the anomalous g value, a μ =(g-2)/2, for the positive muon has been made using high intensity protons available at the Brookhaven AGS. The result based on the 1999 data a μ =11659202(14)(6) x 10 10 (1.3ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a μ (SM)=11659159.6(6.7) x 10 10 (0.57 ppm) and differ by over 2.5 standard deviation with experiment. Issues with reducing systematic errors and enhancing the injection and storage efficiencies are discussed

  7. The g-2 storage ring superconducting magnet system

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-09-01

    The g-2 μ lepton (muon) storage ring is a single dipole magnet that is 44 meters in circumference. The storage ring dipole field is created by three large superconducting solenoid coils. A single outer solenoid, 15.1 meters in diameter, carries 254 kA. Two inner solenoids, 13.4 meters in diameter, carry 127 kA each in opposition to the current carried by the outer solenoid. A room temperature C shaped iron yoke returns the magnetic flux and shapes the magnetic field in a 180 mm gap where the stored muon beam circulates. The gap induction will be 1.47 T. This report describes the three large superconducting solenoids, the cryogenic system needed to keep them cold, the solenoid power supply and the magnet quench protection system

  8. The Muon g-2 Experiment Overview and Status

    Energy Technology Data Exchange (ETDEWEB)

    Holzbauer, J. L. [Mississippi U.

    2017-12-16

    The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 straw tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.

  9. G2 cubic transition between two circles with shape control

    Science.gov (United States)

    Habib, Zulfiqar; Sakai, Manabu

    2009-01-01

    This paper describes a method for joining two circles with an S-shaped or with a broken back C-shaped transition curve, composed of at most two spiral segments. In highway and railway route design or car-like robot path planning, it is often desirable to have such a transition. It is shown that a single cubic curve can be used for blending or for a transition curve preserving G2 continuity with local shape control parameter and more flexible constraints. Provision of the shape parameter and flexibility provide freedom to modify the shape in a stable manner which is an advantage over previous work by Meek, Walton, Sakai and Habib.

  10. Magnetization effects from the g-2 inflector magnet superconductor

    International Nuclear Information System (INIS)

    Green, M.A.; Meng, W.

    1994-01-01

    The g-2 muon storage ring at Brookhaven National Laboratory will have a 1.7 meter long superconducting inflector magnet for injection of the muon beam into the storage ring. The field within the inflector is designed to be nearly zero. The inflector bucks out the main dipole field, but generates little or no stray field of its own. A portion of the field that remains is the field that is generated by circulating currents in the inflector magnet superconductor. Because the magnetization field has a different structure from field generated by the transport current, the magnetization field can adversely affect the field quality within the muon storage ring good field region. Correction of the effects of inflector superconductor magnetization and its effect on the good field region in the storage ring is discussed

  11. Elemental trace analysis of hepatomas and normal tissues by proton induced x-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Shishido, Fumio; Sera, Koichiro; Sato, Tachio; Morita, Tasuku.

    1977-01-01

    Specimens taken from liver, brain, serum and ascites hepatoma 130 in rats, were bombarded with 3.5 MeV protons accelerated by a Van de graaff generator, and the induced x-ray fluorescence was analysed with a Si(Li) detector. Absolute concentrations were determined with reference to a known concentration of uranium in the specimen. Small amounts of Ga, Yb and Tl which are known as metals having tumor affinity were injected into rats implanted with ascites hepatoma and several of its derivatives. Twenty-four hours after injection, liver, brain, serum and hepatoma were removed from the rats and these specimens were analysed by the same method. Relative concentrations of Fe, Cu, Zn and Br in liver, brain, serum and hepatoma specimens showed characteristic patterns. Patterns of liver and ascites hepatoma were quite similar, but the total amount of metals in liver was greater. The serum contained a large quantity of Br. Each AH 130 tumor cell line and its derivatives showed a different accumulation rate for Ga, Yb and Tl. Tl accumulated peculiarly in the brain. There was excellent co-relation between the concentrations of the elements and the biological characteristics of the tumor. (Evans, J.)

  12. Diagnosis of hepatoma using grayscale and Doppler ultrasound in patients with chronic liver disease

    Directory of Open Access Journals (Sweden)

    Idris S

    2011-10-01

    Full Text Available Wasim A Memon, Zishan Haider, Mirza Amanullah Beg, Muhammad Idris, Tanveer-ul-Haq, Waseem Akhtar, Sidra IdrisRadiology Department, Aga Khan University Hospital, Karachi, Pakistan Every author contributed equally to the workObjective: To determine the diagnostic accuracy of liver ultrasound for the detection of hepatoma in chronic liver disease (CLD patients by either taking histopathology or serum α-fetoprotein levels or a biphasic computed tomography (CT scan (whichever is available as the gold standard.Study design: Cross-sectional.Place and duration of study: Radiology Department, The Aga Khan University Hospital, Karachi, Pakistan, from January 2007 to January 2010.Methods: A total of 239 patients (156 males and 83 females with clinical suspicion or surveillance of hepatoma in CLD referred to the radiology department for ultrasound evaluation followed by either liver biopsy and histopathology or serum α-fetoprotein level or biphasic CT scan.Results: The sensitivity of ultrasound for hepatoma detection in CLD was 65%, specificity was 85%, and accuracy was 70%, and positive predictive value and negative predictive value were 92% and 45%, respectively.Conclusion: Ultrasound is a relatively quick, safe, reasonably accurate, and noninvasive imaging modality for the detection of hepatoma in CLD and can be complemented with clinical assessment of screening high-risk patients.Keywords: hepatoma, ultrasound, radiology, chronic liver disease

  13. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Directory of Open Access Journals (Sweden)

    Jong Ryeol Eun

    Full Text Available SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity.We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs.Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a novel mechanism of tumor initiation, development and

  14. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  15. Enantioselective apoptosis induced by individual isomers of bifenthrin in Hep G2 cells.

    Science.gov (United States)

    Liu, Huigang; Li, Juan

    2015-03-01

    Bifenthrin (BF) has been used in racemate for agricultural purposes against soil insects, leading to increased inputs into soil environments. However, most of the studies about the toxicology research on BF were performed in its racemic form. The aim of the present study was to evaluate the enantiomer-specific cis-BF-induced apoptosis and intracellular reactive oxygen species (ROS) generation on human hepatocarcinoma cells (Hep G2). The results of cell viability assay and cytoflow assay indicated an obvious enantioselective hepatocyte toxicity of 1S-cis-BF in Hep G2 cells. 1S-cis-BF also induced ROS production, up-regulated Bax protein expression and down-regulated Bcl-2 expression levels. The present study suggested that enantioselective toxicity should be evaluated on currently used chiral pesticides, such as synthetic pyrethroids. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko

    2013-01-01

    on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic...... studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP...... process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside...

  17. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    International Nuclear Information System (INIS)

    Yuan, Chenyan; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng; An, Yanli

    2014-01-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression. (paper)

  18. Expression of 65-kDa oncofetal protein in experimental hepatoma after antivancer therapy

    International Nuclear Information System (INIS)

    Mirowski, M.; Rozalski, M.; Krajewska, U.; Wierbicki, R.; Hanausek, M.

    1997-01-01

    We have tested the expression of 65-kDa oncofetal protein (p65) after combined treatment with menadione and methotrexate in hamsters transplanted with Kirkman-Robbins hepatoma. The treatment of tumor-bearing animals with these compounds significantly inhibited both the tumor development and the expression of p65. This inhibition in tumor tissue was calculated from densitograms of Western blots. The inhibition of p65 was also confirmed in the serum of hepatoma bearing animals by using solid-phase radioimmunoassay (RIA) to quantify the specificity of polyclonal antibodies to fetal p65 molecules. Additionally, p65 was shown to localize both in cytoplasm an in the nuclear extracts prepared from hepatoma tissue. (author)

  19. Efficacy of HIV antiviral polyanionic carbosilane dendrimer G2-S16 in the presence of semen

    Directory of Open Access Journals (Sweden)

    Ceña-Diez R

    2016-05-01

    Full Text Available Rafael Ceña-Diez,1–4,* Pilar García-Broncano,1–5,* Francisco Javier de la Mata,4,6 Rafael Gómez,4,6 Mª Ángeles Muñoz-Fernández1–4 1Hospital General Universitario Gregorio Marañon, 2Instituto de Investigación Sanitaria Gregorio Marañon, 3Spanish HIV HGM Biobank, 4Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, 5Laboratory of Viral Infection and Immunity, National Center of Microbiology, Health Institute of Carlos III, Majadahonda, 6Department of Organic Chemistry and Inorganic Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain *These authors contributed equally to this work Abstract: The development of a safe and effective microbicide to prevent the sexual transmission of human immunodeficiency virus (HIV-1 is urgently needed. Unfortunately, the majority of microbicides, such as poly(L-lysine-dendrimers, anionic polymers, or antiretrovirals, have proved inactive or even increased the risk of HIV infection in clinical trials, most probably due to the fact that these compounds failed to prevent semen-exposed HIV infection. We showed that G2-S16 dendrimer exerts anti-HIV-1 activity at an early stage of viral replication, blocking the gp120/CD4/CCR5 interaction and providing a barrier to infection for long periods, confirming its multifactorial and nonspecific ability. Previously, we demonstrated that topical administration of G2-S16 prevents HIV transmission in humanized BLT mice without irritation or vaginal lesions. Here, we demonstrated that G2-S16 is active against mock- and semen-exposed HIV-1 and could be a promising microbicide against HIV infection. Keywords: G2-S16, dendrimer, HIV-1, SEVI, microbicide, antiretrovirals

  20. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shatrunajay [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Sharma, Ankita [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Pandey, Vivek Kumar [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India); Raisuddin, Sheikh [Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi ‐110062 (India); Kakkar, Poonam, E-mail: kakkarp59@gmail.com [Herbal Research Section, CSIR — Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow‐226001 (India); Academy of Scientific and Innovative Research (India)

    2016-01-15

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD{sup +} dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P < 0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P < 0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD{sup +}/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1–10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P < 0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria

  1. Hepatoma targeting peptide conjugated bio-reducible polymer complexed with oncolytic adenovirus for cancer gene therapy.

    Science.gov (United States)

    Choi, Joung-Woo; Kim, Hyun Ah; Nam, Kihoon; Na, Youjin; Yun, Chae-Ok; Kim, SungWan

    2015-12-28

    Despite adenovirus (Ad) vector's numerous advantages for cancer gene therapy, such as high ability of endosomal escape, efficient nuclear entry mechanism, and high transduction, and therapeutic efficacy, tumor specific targeting and antiviral immune response still remain as a critical challenge in clinical setting. To overcome these obstacles and achieve cancer-specific targeting, we constructed tumor targeting bioreducible polymer, an arginine grafted bio-reducible polymer (ABP)-PEG-HCBP1, by conjugating PEGylated ABP with HCBP1 peptides which has high affinity and selectivity towards hepatoma. The ABP-PEG-HCBP1-conjugated replication incompetent GFP-expressing ad, (Ad/GFP)-ABP-PEG-HCBP1, showed a hepatoma cancer specific uptake and transduction compared to either naked Ad/GFP or Ad/GFP-ABP. Competition assays demonstrated that Ad/GFP-ABP-PEG-HCBP1-mediated transduction was specifically inhibited by HCBP1 peptide rather than coxsackie and adenovirus receptor specific antibody. In addition, ABP-PEG-HCBP1 can protect biological activity of Ad against serum, and considerably reduced both innate and adaptive immune response against Ad. shMet-expressing oncolytic Ad (oAd; RdB/shMet) complexed with ABP-PEG-HCBP1 delivered oAd efficiently into hepatoma cancer cells. The oAd/ABP-PEG-HCBP1 demonstrated enhanced cancer cell killing efficacy in comparison to oAd/ABP complex. Furthermore, Huh7 and HT1080 cancer cells treated with oAd/shMet-ABP-PEG-HCBP1 complex had significantly decreased Met and VEGF expression in hepatoma cancer, but not in non-hepatoma cancer. In sum, these results suggest that HCBP1-conjugated bioreducible polymer could be used to deliver oncolytic Ad safely and efficiently to treat hepatoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Improved estimate for the muon g-2 using VMD constraints

    Energy Technology Data Exchange (ETDEWEB)

    Benayoun, M. [LPNHE Paris VI/VII, IN2P3/CNRS, F-75252 Paris (France)

    2012-04-15

    The muon anomalous magnetic moment a{sub {mu}} and the hadronic vacuum polarization (HVP) are examined using data analyzed within the framework of a suitably broken HLS model. The analysis relies on all available scan data samples and leaves aside the existing ISR data. The framework provided by our broken HLS model allows for improved estimates of the contributions to a{sub {mu}} from the e{sup +}e{sup -} annihilation cross sections into {pi}{sup +}{pi}{sup -},{pi}{sup 0}{gamma},{eta}{gamma},{pi}{sup +}{pi}{sup -}{pi}{sup 0},K{sup +}K{sup -},K{sup 0}K{sup Macron 0} up to slightly above the {phi} meson mass. Within this framework, the information provided by the {tau}{sup {+-}}{yields}{pi}{sup {+-}}{pi}{sup 0}{nu} decay and by the radiative decays (VP{gamma} and P{gamma}{gamma}) of light flavor mesons play as strong constraints on the model parameters. The discrepancy between the theoretical estimate of the muon anomalous magnetic moment g-2 and its direct BNL measurement is shown to reach conservatively 4.1{sigma} while standard methods used under the same conditions yield 3.5{sigma}.

  3. Improved estimate for the muon g-2 using VMD constraints

    International Nuclear Information System (INIS)

    Benayoun, M.

    2012-01-01

    The muon anomalous magnetic moment a μ and the hadronic vacuum polarization (HVP) are examined using data analyzed within the framework of a suitably broken HLS model. The analysis relies on all available scan data samples and leaves aside the existing ISR data. The framework provided by our broken HLS model allows for improved estimates of the contributions to a μ from the e + e - annihilation cross sections into π + π - ,π 0 γ,ηγ,π + π - π 0 ,K + K - ,K 0 K ¯0 up to slightly above the φ meson mass. Within this framework, the information provided by the τ ± →π ± π 0 ν decay and by the radiative decays (VPγ and Pγγ) of light flavor mesons play as strong constraints on the model parameters. The discrepancy between the theoretical estimate of the muon anomalous magnetic moment g-2 and its direct BNL measurement is shown to reach conservatively 4.1σ while standard methods used under the same conditions yield 3.5σ.

  4. Improved estimate for the muon g-2 using VMD constraints

    Science.gov (United States)

    Benayoun, M.

    2012-04-01

    The muon anomalous magnetic moment aμ and the hadronic vacuum polarization (HVP) are examined using data analyzed within the framework of a suitably broken HLS model. The analysis relies on all available scan data samples and leaves aside the existing ISR data. The framework provided by our broken HLS model allows for improved estimates of the contributions to aμ from the e+e- annihilation cross sections into π+π-,π0γ,ηγ,π+π-π0,K+K-,K0K up to slightly above the ϕ meson mass. Within this framework, the information provided by the τ±→π±π0ν decay and by the radiative decays (VPγ and Pγγ) of light flavor mesons play as strong constraints on the model parameters. The discrepancy between the theoretical estimate of the muon anomalous magnetic moment g-2 and its direct BNL measurement is shown to reach conservatively 4.1σ while standard methods used under the same conditions yield 3.5σ.

  5. NIMS: hotspots on Io during G2 (continued)

    Science.gov (United States)

    1997-01-01

    This is another Near Infrared Mapping Spectrometer (NIMS) image of Io, taken during the G2 encounter in September 1996. This is a dayside image of Io (on the right) against the clouds of Jupiter (the blue background). On the left is a Voyager mosaic of Io with the same viewing geometry for comparison purposes. This NIMS data set has been processed to highlight the positions of hot spots on the surface of Io. At least 11 can be seen. Two of the hotspots are newly discovered by the NIMS instrument. Others correspond to sites of plume eruptions and volcanic calderas and volcanic flows. This image can be compared with the SSI image P-47971 released on October 23, 1996, which was taken almost exactly the same position.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  6. Biphasically Modulating the Activity of Carboxypeptidase G2 with Ultrasound

    Directory of Open Access Journals (Sweden)

    Wanying Ma

    2017-07-01

    Full Text Available Background/Aims: Carboxypeptidase G2 (CPG2 has been used for cancer prodrug therapy to realize the targeted release of active drugs, but there yet lacks a means to modulate the CPG2 activity. Here ultrasound was used to modulate the CPG2 activity. Methods: The activity of insonated CPG2 was determined, and then underlying biochemical (i.e., monomer, dimer and conformation and ultrasonic (i.e., heat and cavitation mechanisms were explored. Results: Ultrasound (1.0 MHz increased or decreased the enzymatic activity; the activity decreased as zero- or first-order kinetics, depending on the intensity. L1 (10 W/cm2 for 200 s improved the activity via increasing the specific activity. L2 or L3 (20 W/cm2 for 1200 or 3000 s decreased the activity via disassembling the dimer, degrading the monomer, inducing glycosylation, transforming conformation and decreasing the specific activity. An increase or a slight decrease of activity attributable to 10 W/cm2 was reversible, but the activity decrease due to 20 W/cm2 was irreversible. The enzymatic modulation was realized via cavitation. Conclusion: Ultrasound can biphasically modulate the CPG2 activity, and can be employed in the CPG2-prodrug therapy to adjust the release and moles of active drugs.

  7. The amount of DNA damage needed to activate the radiation-induced G2 checkpoint varies between single cells

    International Nuclear Information System (INIS)

    Tkacz-Stachowska, Kinga; Lund-Andersen, Christin; Velissarou, Angeliki; Myklebust, June H.; Stokke, Trond; Syljuåsen, Randi G.

    2011-01-01

    Background and purpose: The radiation-induced G2 checkpoint helps facilitate DNA repair before cell division. However, recent work has revealed that human cells often escape the G2 checkpoint with unrepaired DNA breaks. The purpose was to explore whether G2 checkpoint activation occurs according to a threshold level of DNA damage. Materials and methods: G2 checkpoint activation was assayed at 75–90 min and 24–48 h after X-ray irradiation of BJ diploid fibroblasts and U2OS osteosarcoma cells. Multiparameter flow cytometry with pacific blue barcoding, and flow cytometry-based sorting of phospho-H3 positive cells to microscope slides, were used to examine the DNA damage marker γ-H2AX in individual mitotic cells that had escaped the G2 checkpoint. Results: For all radiation doses and times tested, the number of γ-H2AX foci varied between individual mitotic cells. At 75 min the median levels of γ-H2AX in mitotic cells increased with higher radiation doses. At 24–48 h, following a prolonged G2 checkpoint, cells were more resistant to checkpoint re-activation by a second dose of radiation. Conclusion: Our results suggest that different amounts of DNA damage are needed to activate the G2 checkpoint in individual cells. Such single cell variation in checkpoint activation may potentially contribute to radiation-induced genomic instability.

  8. Intracellular localization of pregnane X receptor in HepG2 cells cultured by the hanging drop method.

    Science.gov (United States)

    Yokobori, Kosuke; Kobayashi, Kaoru; Azuma, Ikuko; Akita, Hidetaka; Chiba, Kan

    2017-10-01

    Pregnane X receptor (PXR) is localized in the cytoplasm of liver cells, whereas it is localized in the nucleus of monolayer-cultured HepG2 cells. Since cultured cells are affected by the microenvironment in which they are grown, we studied the effect of three-dimensional (3D) culture on the localization of PXR in HepG2 cells using the hanging drop method. The results showed that PXR was retained in the cytoplasm of HepG2 cells and other human hepatocarcinoma cell lines (FLC5, FLC7 and Huh7) when they were cultured by the hanging drop method. Treatment with rifampicin, a ligand of PXR, translocated PXR from the cytoplasm to nucleus and increased expression levels of CYP3A4 mRNA in HepG2 cells cultured by the hanging drop method. These findings suggest that 3D culture is a key factor determining the intracellular localization of PXR in human hepatocarcinoma cells and that PXR that becomes retained in the cytoplasm of HepG2 cells with 3D culture has functions of nuclear translocation and regulation of target genes in response to human PXR ligands. Three-dimensionally cultured hepatocarcinoma cells would be a useful tool to evaluate induction potency of drug candidates and also to study mechanisms of nuclear translocation of PXR by human PXR ligands. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  9. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer

    International Nuclear Information System (INIS)

    Parshad, R.; Sanford, K.K.; Jones, G.M.

    1985-01-01

    The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer

  10. The inhibition of polo kinase by matrimony maintains G2 arrest in the meiotic cell cycle.

    Directory of Open Access Journals (Sweden)

    Youbin Xiang

    2007-12-01

    Full Text Available Many meiotic systems in female animals include a lengthy arrest in G2 that separates the end of pachytene from nuclear envelope breakdown (NEB. However, the mechanisms by which a meiotic cell can arrest for long periods of time (decades in human females have remained a mystery. The Drosophila Matrimony (Mtrm protein is expressed from the end of pachytene until the completion of meiosis I. Loss-of-function mtrm mutants result in precocious NEB. Coimmunoprecipitation experiments reveal that Mtrm physically interacts with Polo kinase (Polo in vivo, and multidimensional protein identification technology mass spectrometry analysis reveals that Mtrm binds to Polo with an approximate stoichiometry of 1:1. Mutation of a Polo-Box Domain (PBD binding site in Mtrm ablates the function of Mtrm and the physical interaction of Mtrm with Polo. The meiotic defects observed in mtrm/+ heterozygotes are fully suppressed by reducing the dose of polo+, demonstrating that Mtrm acts as an inhibitor of Polo. Mtrm acts as a negative regulator of Polo during the later stages of G2 arrest. Indeed, both the repression of Polo expression until stage 11 and the inactivation of newly synthesized Polo by Mtrm until stage 13 play critical roles in maintaining and properly terminating G2 arrest. Our data suggest a model in which the eventual activation of Cdc25 by an excess of Polo at stage 13 triggers NEB and entry into prometaphase.

  11. Genetic recombination and Cryptosporidium hominis virulent subtype IbA10G2.

    Science.gov (United States)

    Li, Na; Xiao, Lihua; Cama, Vitaliano A; Ortega, Ynes; Gilman, Robert H; Guo, Meijin; Feng, Yaoyu

    2013-10-01

    Little is known about the emergence and spread of virulent subtypes of Cryptosporidium hominis, the predominant species responsible for human cryptosporidiosis. We conducted sequence analyses of 32 genetic loci of 53 C. hominis specimens isolated from a longitudinally followed cohort of children living in a small community. We identified by linkage disequilibrium and recombination analyses only limited genetic recombination, which occurred exclusively within the 60-kDa glycoprotein gene subtype IbA10G2, a predominant subtype for outbreaks in industrialized nations and a virulent subtype in the study community. Intensive transmission of virulent subtype IbA10G2 in the study area might have resulted in genetic recombination with other subtypes. Moreover, we identified selection for IbA10G2 at a 129-kb region around the 60-kDa glycoprotein gene in chromosome 6. These findings improve our understanding of the origin and evolution of C. hominis subtypes and the spread of virulent subtypes.

  12. Cdk2 is required for p53-independent G2/M checkpoint control.

    Directory of Open Access Journals (Sweden)

    Jon H Chung

    2010-02-01

    Full Text Available The activation of phase-specific cyclin-dependent kinases (Cdks is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G(2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G(2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G(2/M checkpoint activation.

  13. MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.

    Science.gov (United States)

    Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang

    2015-11-01

    There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.

  14. Persian shallot, Allium hirtifolium Boiss, induced apoptosis in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Hosseini, Farzaneh Sadat; Falahati-Pour, Soudeh Khanamani; Hajizadeh, Mohammad Reza; Khoshdel, Alireza; Mirzaei, Mohammad Reza; Ahmadirad, Hadis; Behroozi, Reza; Jafari, Nesa; Mahmoodi, Mehdi

    2017-08-01

    This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC 50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.

  15. A Role for CD81 and Hepatitis C Virus in Hepatoma Mobility

    Directory of Open Access Journals (Sweden)

    Claire L. Brimacombe

    2014-03-01

    Full Text Available Tetraspanins are a family of small proteins that interact with themselves, host transmembrane and cytosolic proteins to form tetraspanin enriched microdomains (TEMs that regulate important cellular functions. Several tetraspanin family members are linked to tumorigenesis. Hepatocellular carcinoma (HCC is an increasing global health burden, in part due to the increasing prevalence of hepatitis C virus (HCV associated HCC. The tetraspanin CD81 is an essential receptor for HCV, however, its role in hepatoma biology is uncertain. We demonstrate that antibody engagement of CD81 promotes hepatoma spread, which is limited by HCV infection, in an actin-dependent manner and identify an essential role for the C-terminal interaction with Ezrin-Radixin-Moesin (ERM proteins in this process. We show enhanced hepatoma migration and invasion following expression of CD81 and a reduction in invasive potential upon CD81 silencing. In addition, we reveal poorly differentiated HCC express significantly higher levels of CD81 compared to adjacent non-tumor tissue. In summary, these data support a role for CD81 in regulating hepatoma mobility and propose CD81 as a tumour promoter.

  16. The involvement of splenic artery in the blood supply of hepatomas: its DSA findings and interventional treatment

    International Nuclear Information System (INIS)

    Duan Xuhua; Liang Huiming; Feng Gansheng; Zheng Chuangsheng; Ren Jianzhuang

    2009-01-01

    Objective: To investigate the DSA manifestations of the involvement of splenic artery in supplying blood to hepatomas and to assess the therapeutic value of super-selective interventional embolization. Methods: During the period of March 2005-June 2008, 897 patients with hepatoma underwent angiography and the involvement of splenic artery in the blood supply of hepatoma was confirmed in 7 cases. Splenic arteriography was performed by means of super-selective catheterization with 5 F Yashiro catheter together with 3 F SP catheter. The splenic arteries which supplied blood to hepatomas were embolized with hyper-liquid iodized-oil emulsion mixed with chemotherapy drug, which was followed by the injection of sufficient gelatin sponge or ethanol. The clinical results were analyzed. Results: Splenic arteriography revealed that the splenic artery was the main supplying vessel of the hepatoma in two cases, and was not the main supplying vessel of the hepatoma in five cases. The splenic supplying vessels were completely embolized in all 7 cases. After the procedure, AFP level was decreased over 50%, and in two patients it dropped to normal. CT checkup 4-6 weeks after the surgery revealed that the diameter of tumor decreased to 2.5 - 4.6 cm. Conclusion: The involvement of splenic artery in supplying blood to hepatomas is not common. Super-selective catheterization and sufficient embolization of the splenic supplying vessels are very important for improving the interventional effectiveness. (authors)

  17. Galactomannan from Schizolobium amazonicum seed and its sulfated derivatives impair metabolism in HepG2 cells.

    Science.gov (United States)

    Cunha de Padua, Monique Meyenberg; Suter Correia Cadena, Silvia Maria; de Oliveira Petkowicz, Carmen Lucia; Martinez, Glaucia Regina; Rodrigues Noleto, Guilhermina

    2017-08-01

    This study evaluated the effects of native galactomannan from Schizolobium amazonicum seeds and its sulfated forms on certain metabolic parameters of HepG2 cells. Aqueous extraction from S. amazonicum seeds furnished galactomannan with 3.2:1 Man:Gal ratio (SAGM) and molar mass of 4.34×10 5 g/mol. The SAGM fraction was subjected to sulfation using chlorosulfonic acid to obtain SAGMS1 and SAGMS2 with DS of 0.4 and 0.6, respectively. Cytotoxicity of SAGM, SAGMS1, and SAGMS2 was evaluated in human hepatocellular carcinoma cells (HepG2). After 72h, SAGM decreased the viability of HepG2 cells by 50% at 250μg/mL, while SAGMS1 reduced it by 30% at the same concentration. SAGM, SAGMS1, and SAGMS2 promoted a reduction in oxygen consumption and an increase in lactate production in non-permeabilized HepG2 cells after 72h of treatment. These results suggest that SAGM, SAGMS1, and SAGMS2 could be recognized by HepG2 cells and might trigger alterations that impair its survival. These effects could be implicated in the modification of the oxidative phosphorylation process in HepG2 cells and activation of the glycolytic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparative study of G2 delay and survival after /sup 241/Americium-. cap alpha. and /sup 60/Cobalt-. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luecke-Huhle, C.; Comper, W.; Hieber, L.; Pech, M.

    1982-06-01

    Survival and G2 delay following exposure to either /sup 60/Cobalt-..gamma..-rays or /sup 241/Americium-..cap alpha..-particles were studied in eight mammalian cell lines of human and animal origin including human fibroblasts from normal individuals and from patients with Ataxia telangiectasia or Fanconi's anemia. For both endpoints the effectiveness of alpha particle was greater as compared to ..gamma..-rays. RBE values for G2 delay (4.6-9.2) were in general comparable to RBE values derived from initial slopes of survival curves but higher compared to the ratio of mean inactivation doses. Ataxia cells were particularly sensitive to cell killing by ..gamma..-irradiation, however, showed average sensitivity to ..cap alpha..-particles of high LET. With the exception of Ataxia cells, cell killing and G2 delay seem to be related processes if individual cell cycle parameters are taken into account.

  19. Cytotoxic effects of the synthetic oestrogens and androgens on Balb/c 3T3 and HepG2 cells

    Directory of Open Access Journals (Sweden)

    Minta Maria

    2014-12-01

    Full Text Available The aim of the study was to test and compare the cytotoxic potential of two synthetic oestrogens: diethylstilboestrol (DES and ethinyloestradiol (EE2 and two androgens: testosterone propionate (TP and trenbolone (TREN on two cell lines. The fibroblast cell line Balb/c 3T3 and the hepatoma cell line HepG2 were selected. To get more insight into the mode of toxic action, four methods were used, which evaluated different biochemical endpoints: mitochondrial activity (3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide reduction assay, lysosomal activity (neutral red uptake assay, total protein content, and lactate dehydrogenase release. Cytotoxicity was assessed after 24, 48, and 72 h exposure to eight concentrations ranging from 0.78 to 100 μg/mL. Concentration- and time- dependent effects were observed. Depending on the line and assay used, half maximal effective concentration after 72 h (EC50-72h values ranged as follows: DES 1-13.7 μg/mL (Balb/c 3T3 and 3.7-5.2 μg/mL (HepG2; EE2 2.1-14.3 μg/mL (Balb/c 3T3 and 1.8-7.8 μg/mL (HepG2; TP-14.9-17.5 μg/mL (Balb/c 3T3, and 63.9- 100 μg/mL (HepG2; and TREN 11.3-31.4 μg/mL (Balb/c 3T3 and 12.5-59.4 μg/mL (HepG2. The results revealed that oestrogens were more toxic than androgens and the most affected endpoint was mitochondrial activity. In contrast to oestrogens, for which EC50-72h values were similar in both lines and by all assays used, Balb/c 3T3 cells were more sensitive than HepG2 cells to TP.

  20. Preliminary result in patients with primary hepatoma treated by stereotactic radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ki Mun; Choi, Ihl Bohng; Kim, In Ah; Choi, Byung Ock; Kang, Young Nam; Han, Sung Tae; Chung, Gyu Won [College of Medicine, Catholic Univ., Seoul (Korea, Republic of); Chai, Gyu Young [College of Medicine, Gyeongsang National Univ., Chinju (Korea, Republic of)

    2001-03-01

    It is not common to evaluate the response of the fractionated stereotactic radiotherapy (SRT) to primary hepatoma as compared with conventional radiotherapy. The purpose of the study was to take the preliminary result on the clinical trial of primary hepatoma by SRT. From July 1999 to March 2000, thirty three patients were hospitalized in the St. Mary's Hospital, and treated with SRT for extracranial tumors. Among them, 13 patients were diagnosed to primary hepatoma and then applied by frameless SRT using 6 MV linac accelerator. There were 12 male and 1 female patients. They had the age of 44-66 year old (median: 59) and the tumor size of 10-825 cc (median: 185 cc). SRT was given to them 3-5 fractions a week (5 Gy/fraction, 90% isodose line) for 2-3 weeks. Median dose of SRT was 50 Gy and the range was 30-50 Gy. Follow-up period ranged from 3 months to 13 months with median of 8 months. After treating SRT to thirteen patients with primary hepatoma, the response of the tumor was examined by abdominal CT: they are classified by 1 complete regression (7.7%), 7 partial regression (53.8%), 4 minimal regression (30.8%), 1 stable disease (7.7%). The positive responses more than partial remission were 8 patients (61.5%) after the treatment. The level of serum alpha-fetoprotein (AFP) after the treatment as compared with pretreatment had been 92.3% decreased. There was no severe complication except dyspepsia 84.6%, mild nausea 69.2%, transient decreased of hepatic function 15.4% and fever 7.7%. SRT to the patients with primary hepatoma was potentially suggested to become the safe and more effective tool than the conventional radiotherapy even though there were relatively short duration of follow-up and small numbers to be tested.

  1. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    Science.gov (United States)

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  2. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen.

    Directory of Open Access Journals (Sweden)

    Jianling Wang

    Full Text Available Aniline, a toxic aromatic amine, is known to cause hemopoietic toxicity both in humans and animals. Aniline exposure also leads to toxic response in spleen which is characterized by splenomegaly, hyperplasia, fibrosis and the eventual formation of tumors on chronic in vivo exposure. Previously, we have shown that aniline exposure leads to iron overload, oxidative DNA damage, and increased cell proliferation, which could eventually contribute to a tumorigenic response in the spleen. Despite our demonstration that cell proliferation was associated with deregulation of G1 phase cyclins and increased expression of G1 phase cyclin-dependent kinases (CDKs, molecular mechanisms, especially the regulation of G2 phase and contribution of epigenetic mechanisms in aniline-induced splenic cellular proliferation remain largely unclear. This study therefore, mainly focused on the regulation of G2 phase in an animal model preceding a tumorigenic response. Male Sprague-Dawley rats were given aniline (0.5 mmol/kg/day in drinking water or drinking water only (controls for 30 days, and expression of G2 phase cyclins, CDK1, CDK inhibitors and miRNAs were measured in the spleen. Aniline treatment resulted in significant increases in cell cycle regulatory proteins, including cyclins A, B and CDK1, particularly phosphor-CDK1, and decreases in CDK inhibitors p21 and p27, which could promote the splenocytes to go through G2/M transition. Our data also showed upregulation of tumor markers Trx-1 and Ref-1 in rats treated with aniline. More importantly, we observed lower expression of miRNAs including Let-7a, miR-15b, miR24, miR-100 and miR-125, and greater expression of CDK inhibitor regulatory miRNAs such as miR-181a, miR-221 and miR-222 in the spleens of aniline-treated animals. Our findings suggest that significant increases in the expression of cyclins, CDK1 and aberrant regulation of miRNAs could lead to an accelerated G2/M transition of the splenocytes, and

  3. Induction of apoptosis in HepG2 by Vitex agnus-castus L. leaves extracts and identifiation of their active chemical constituents by LC-ESI-MS

    Directory of Open Access Journals (Sweden)

    Ezzat El-Sayed Abdel-Lateef

    2016-07-01

    Full Text Available Objective: To evaluate the cytotoxic activity and cytopathological changes of Vitex agnuscastus L. (V. agnus-castus leaves extracts and characterize their bioactive chemical constituents. Methods: The dried leaves powder of V. agnus-castus was extracted using 85% methanol (MeOH. The methanolic extract was defatted using petroleum ether and fractionated using ethyl acetate (EtOAc and butanol (BuOH. The anticancer potential of different extracts was evaluated by neutral red assay, cytopathological changes of apoptosis and caspase-3 expression in hepatoma cell line (HepG2. The chemical constituents of most active extracts were identified using liquid chromatography-electrospray ionisation mass spectrometry analysis. Results: The butanolic fraction was the most active in inhibiting the proliferation of HepG2 cells [IC50 = (13.42 ± 0.17 mg/mL] compared with MeOH extract [IC50 = (17.61 ± 0.15 mg/ mL and EtOAc fraction [IC50= (22.51 ± 0.26 mg/mL]. The cytopathological examinations demonstrated the morphology of apoptosis and caspase-3 expression was more evident in HepG2 cells treated with BuOH than cells treated with MeOH and EtOAc. The liquid chromatography-electrospray ionisation mass spectrometry analysis exhibited that the defatted MeOH extract and BuOH fraction had different bioactive secondary metabolites, such as phenolic acids, flavonoids, and iridoids. Conclusions: The butanolic fraction has higher contents of secondary metabolites than the defatted methanolic extract. The cytotoxic activities, apoptotic changes, and caspase-3 activation may be due to the presence of these bioactive secondary metabolites (iridoids, flavonoid, and phenolic acids in these extracts. These results would suggest V. agnus-castus to be used as an adjuvant in cancer therapy.

  4. Biochemical Effects of six Ti02 and four Ce02 Nanomaterials in HepG2 cells

    Science.gov (United States)

    Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Var...