WorldWideScience

Sample records for human hep-2 epithelial

  1. Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A.DC in a human laryngeal epithelial carcinoma cell line (Hep-2

    Directory of Open Access Journals (Sweden)

    Walace Fraga Rizo

    2013-01-01

    Full Text Available Cancer has become a major public health problem worldwide and the number of deaths due to this disease is increasing almost exponentially. In the constant search for new treatments, natural products of plant origin have provided a variety of new compounds to be explored as antitumor agents. Tabernaemontana catharinensis is a medicinal plant that produces alkaloids with expressive antitumor activity, such as heyneanine, coronaridine and voacangine. The aim of present study was firstly to screen the cytotoxic activity of the indole alkaloids heyneanine, coronaridine and voacangine against HeLa (human cervix tumor, 3T3 (normal mouse embryo fibroblasts, Hep-2 (human laryngeal epithelial carcinoma and B-16 (murine skin cell lines by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide; and secondly to analyze the apoptotic activity, cell membrane damage and genotoxicity of the compound that showed the best cytotoxic activity against the tumor cell lines tested. Coronaridine was the one that exhibited greater cytotoxic activity in the laryngeal carcinoma cell line Hep-2 (IC50 = 54.47 µg/mL than the other alkaloids tested (voacangine IC50 = 159.33 µg/mL, and heyneanine IC50 = 689.45 µg/mL. Coronaridine induced apoptosis in cell lines 3T3 and Hep-2, even at high concentrations. The evaluation of genotoxicity by comet assay showed further that coronaridine caused minimal DNA damage in the Hep-2 tumor cell line, and the LDH test showed that it did not affect the plasma membrane. These results suggest that further investigation of coronaridine as an antitumor agent has merit.

  2. Effect of heavy metals and benzene on porphyrin synthesis of human epithelial larynx carcinoma cells (HEp-2); Wirkung von Schwermetallen und Benzol auf die Porphyrinsynthese von Humanen epithelialen Larynxkarzinomzellen (HEp-2)

    Energy Technology Data Exchange (ETDEWEB)

    Tumat, C.; Kath, H.G.; Perlewitz, J.; Manuwald, O. [Institut fuer Umweltmedizin, Erfurt (Germany); Herbarth, O. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Sektion Expositionsforschung und Epidemiologie

    2001-07-01

    Aim of the investigation was to prepare an environmental epidemiological test to detect the effects of pollutants by a pattern of porphyrin excretion in the urine. The task was to test whether lead, mercury, copper, zinc and benzene in environmentally relevant concentrations influence porphyrin synthesis of cells. The model used was the permanent epithelial larynx carcinoma cell line HEp-2, which was stimulated to synthesize porphyrins by adding {delta}-amino-levulinic acid ({delta}-ALA) in excess. 8- to 4-carboxyporphyrins and protoporphyrin IX were measured both in the cells and in the culture medium by means of high performance liqid cromatography (HPLC). The following pollutant effects were found: lead: extracellular increase of hexacarboxyporphyrin and intracellular decrease of heptacarboxy- and copro-porphyrin; mercury: extracellular decrease of heptacarboxyporphyrin and intracellular increase of coproporphyrin; copper: extracellular decrease of uro-, coproporphyrin and protoporphyrin IX, extracellular increase of heptacarboxyporphyrin and intracellular decrease of uro-, heptacarboxy- and coproporphyrin; zinc: extracellular increase of coproporphyrin; benzene: a tendency to extracellular increase of hexacarboxyporphyrin. The main result is the decrease in the concentrations of porphyrins caused by copper. This result is possibly linked to gastro-intestinal diseases among children due to drinking water from copper water pipes. (orig.) [German] Ziel der Untersuchungen war es, Vorarbeit zu leisten fuer die Entwicklung eines umwelt-epidemiologischen Tests, der es ermoeglicht, geringe Schadstoffwirkungen durch ein Porphyrin-Ausscheidungsmuster im Urin nachzuweisen. In diesem Zusammenhang bestand die Aufgabe zu pruefen, ob Blei, Quecksilber, Kupfer, Zink und Benzol in umweltmedizinisch relevanten Konzentrationen die Porphyrinsythese von Zellen beeinflussen. Als Untersuchungsmodell wurde die permanente humane epitheliale Larynxkarzinomzelllinie HEp-2 genutzt, die

  3. Knockdown of Snail inhibits epithelial-mesenchymal transition of human laryngeal squamous cell carcinoma Hep-2 cells through VDR signaling pathway.

    Science.gov (United States)

    Zhao, Xue; Yu, Dan; Yang, Jingpu; Xue, Kai; Liu, Yan; Jin, Chunshun

    2017-08-14

    It has been well-documented that Snail plays a decisive role in various tumors. However, the direct effect of Snail on laryngeal squamous cell carcinoma (LSCC) has not been elaborated. In this study, we firstly detected the expression of Snail in 14 samples of patients with LSCC and found that its content was high in cancer tissues compared with adjacent tissues. Then we established LSCC Hep-2 cells with Snail silencing and validated the knockdown efficiency by western blotting and real-time PCR. Results showed that silencing of Snail significantly inhibited the ability of adhesion, migration, and invasion of Hep-2 cells. Further study revealed that knockdown of Snail suppressed the epithelial-mesenchymal transition process of Hep-2 cells, as evidenced by downregulation of matrix metallopeptidase (MMP)-2, MMP-9, integrin subunit beta 1 (ITGβ1), β-catenin, vimentin, N-cadherin, and fibronectin (FN), while upregulation of vitamin D receptor (VDR) and E-cadherin. Additionally, transfection with the small interfering RNA of VDR reversed the effect induced by Snail silencing in Hep-2 cells. Taken together, these results demonstrate that knockdown of Snail can inhibit the EMT process of LSCC cells through VDR signaling pathway in vitro.

  4. Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution.

    Directory of Open Access Journals (Sweden)

    Chikayo Yamane

    Full Text Available Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7-1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37 °C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30 °C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30 °C compared to at 37 °C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.

  5. Amoebal Endosymbiont Parachlamydia acanthamoebae Bn9 Can Grow in Immortal Human Epithelial HEp-2 Cells at Low Temperature; An In Vitro Model System to Study Chlamydial Evolution

    Science.gov (United States)

    Nakamura, Shinji; Matsuo, Junji; Ishida, Kasumi; Yamazaki, Sumire; Oguri, Satoshi; Shouji, Natsumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Yimin; Yamaguchi, Hiroyuki

    2015-01-01

    Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells. PMID:25643359

  6. Cancer-associated fibroblasts in a human HEp-2 established laryngeal xenografted tumor are not derived from cancer cells through epithelial-mesenchymal transition, phenotypically activated but karyotypically normal.

    Science.gov (United States)

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  7. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells

    Science.gov (United States)

    Shen, Yang; Zhang, Yingying; Yin, Hongmei; Zeng, Ye; Liu, Jingxia; Yan, Zhiping; Liu, Xiaoheng

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) is one of the most commonly diagnosed malignancies with high occurrence of tumor metastasis, which usually exposes to fluid shear stress (FSS) in lymphatic channel and blood vessel. Epithelial-mesenchymal transition (EMT) is an important mechanism that induces metastasis and invasion of tumors. We hypothesized that FSS induced a progression of EMT in laryngeal squamous carcinoma. Accordingly, the Hep-2 cells were exposed to 1.4 dyn/cm2 FSS for different durations. Our results showed that most of cells changed their morphology from polygon to elongated spindle with well-organized F-actin and abundant lamellipodia/filopodia in protrusions. After removing the FSS, cells gradually recovered their flat polygon morphology. FSS induced Hep-2 cells to enhance their migration capacity in a time-dependent manner. In addition, FSS down-regulated E-cadherin, and simultaneously up-regulated N-cadherin, translocated β-catenin into the nucleus. These results confirmed that FSS induced the EMT in Hep-2 cells, and revealed a reversible mesenchymal-epithelial transition (MET) process when FSS was removed. We further examined the time-expressions of signaling cascades, and demonstrated that FSS induces the EMT and enhances cell migration depending on integrin-ILK/PI3K-AKT-Snail signaling events. The current study suggests that FSS, an important biophysical factor in tumor microenvironment, is a potential determinant of cell behavior and function regulation. PMID:27096955

  8. [Promoting effect of Chlamydia pneumoniae infection on human laryngeal carcinoma HEp-2 cell adhesion and migration].

    Science.gov (United States)

    Zhang, Li-Jun; Hong, Li; Chen, Ning; Shen, Bing-Ling; Deng, Yan-Qiu; Quan, Wei; Wang, Bei-Bei; Zhang, Li-Jun

    2011-01-01

    To explore the effect of Chlamydia pneumoniae (C.pn) infection on human laryngeal carcinoma cell line HEp-2 cell adhesion and migration, to further clarify the role and mechanism of C.pn infection in tumor metastasis. HEp-2 cells were infected with C.pn after the culture and propagation of C.pn. The cytopathic effect was observed by microscopy. Morphological characteristics of C.pn inclusions in HEp-2 cells were examined by fluorescence microscopy and acridine orange staining. The ultrastructural changes of C.pn inclusions in the HEp-2 cells were examined by transmission electron microscopy (TEM). Cell adhesion assay was performed to investigate the effect of C.pn infection on the adhesion of HEp-2 cells to collagen I. Wound-healing assay and transwell assay were performed to explore the effect of C.pn infection on HEp-2 cell migration. At 72 h post-infection, C.pn infected-HEp-2 cells were swollen and partially desquamated. Numerous vacuoles (inclusions) were observed and C.pn inclusions occupied almost the whole cytoplasm of the HEp-2 cells. Grape-like C.pn inclusions were observed in the HEp-2 cells stained with acridine orange under a fluorescence microscope at 72 h after infection. Under TEM, there were more mature pear-shaped elementary bodies, but less larger and round reticulate bodies in the HEp-2 cells infected with C.pn for 72 h. In the cell adhesion assay, the A value in C.pn infection group was 0.669 ± 0.011, significantly higher than that in the control group (0.558 ± 0.005) at 2 h after infection (P HEp-2 cells in the wound-healing assay was significantly longer than that of control cells at 24 h after infection (P HEp-2 cells infected with C.pn for 12 h migrated more than the control cells in the transwell assay (23.40 ± 2.41 vs 10.40 ± 1.67) (P HEp-2 cell adhesion to collagen I and migration of HEp-2 cells, indicating that C.pn infection may play an important role in promoting the metastasis of laryngeal cancer.

  9. Hypoxia promotes radioresistance of CD133-positive Hep-2 human laryngeal squamous carcinoma cells in vitro.

    Science.gov (United States)

    Wang, Maoxin; Li, Xiaoming; Qu, Yongtao; Xu, Ou; Sun, Qingjia

    2013-07-01

    Hypoxia promotes the radioresistance of laryngeal carcinomas and CD133 is one of the markers expressed by tumor-initiating, human laryngeal carcinoma cells. In order to investigate whether CD133-positive Hep-2 cells exhibit a radioresistant phenotype and to determine whether hypoxia promotes this phenotype, we performed a series of experiments. Hep-2 cells, and Hep-2 cells stably expressing hypoxia-inducible factor (HIF)-targeted small interfering RNA (siRNA) were cultured under hypoxic and normoxic conditions and were treated with varying doses of γ-rays (0, 5, 10, 15 and 20 Gy). MTT and cell cycle assays were subsequently performed. Using fluorescence-activated cell sorting (FACS), CD133-positive Hep-2 cells and CD133-positive HIF-siRNA Hep-2 cells were isolated. These cells were grown as spheres under hypoxic and normoxic conditions for MTT and soft agar colony formation assays. The expression levels of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), survivin, p53 and ataxia-telangiectasia mutated (ATM) were also assayed using flow cytometry. The data showed that the growth of Hep-2 cells exposed to hypoxic conditions and treated with 10 Gy radiation (group A) was less compared to that of groups B-D (PHep-2 cells grown under hypoxic conditions and exposed to irradiation (group E) (P0.05). In conclusion, CD133-positive Hep-2 cells exhibited a radioresistant phenotype that was enhanced with hypoxia. Furthermore, an increase in DNA-PK activity was associated with this enhancement.

  10. CXCR4 silencing inhibits invasion and migration of human laryngeal cancer Hep-2 cells.

    Science.gov (United States)

    Niu, Juntao; Huang, Yongwang; Zhang, Lun

    2015-01-01

    CXCR4 has been reported in various types of human cancer, which is associated with cancer progression and metastasis. However, the investigation of CXCR4 in laryngeal cancer is extremely rare. In the present study, we used lentivirus-mediated shRNA targeting CXCR4 to silenced CXCR4 expression in Hep-2 cells and evaluated the effect of long-term suppression of CXCR4 on Hep-2 growth and metastasis. The Cell proliferation was analyzed by MTS assay, and the invasion and metastasis potentials were analyzed using wound healing and transwell assays, respectively. Our results showed that lentivirus-mediated shRNA effectively infected Hep-2 cells and suppressed CXCR4 expression, and inhibited cell growth of Hep-2 cells. Cell invasion and apoptosis were decreased concomitantly with the reduction in CXCR4 protein expression. Further analysis revealed that CXCR4 silencing caused the reducion of CXCR4, CXCL12, TIMP2, VEGF and MMP9, and the phosphorylation levels of IκB, AKT and MAPK, and also decreased the activity of NF-κB. These results suggested that knockdown of CXCR4 inhibits the invasion and metastasis of Hep-2 through PI3K/AKT and MAPK signaling pathways, by decreasing NF-κB activities to down-regulate VEGF, TIMP-2 and MMP-9 expression. These data demonstrate that the inhibition of CXCR4 may be an effective interventional therapeutic strategy in laryngeal cancer.

  11. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells.

    Science.gov (United States)

    Ahamed, Maqusood; Alhadlaq, Hisham A; Ahmad, Javed; Siddiqui, Maqsood A; Khan, Shams T; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2015-06-01

    Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration-dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration-dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real-time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up-regulated whereas the anti-apoptotic gene bcl-2 was down-regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase-3 and caspase-9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N-acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level.

  12. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells.

    Science.gov (United States)

    Branco, Cátia dos Santos; de Lima, Émilin Dreher; Rodrigues, Tiago Selau; Scheffel, Thamiris Becker; Scola, Gustavo; Laurino, Claudia Cilene Fernandes Correia; Moura, Sidnei; Salvador, Mirian

    2015-04-25

    Natural products are among one of the most promising fields in finding new molecular targets in cancer therapy. Laryngeal carcinoma is one of the most common cancers affecting the head and neck regions, and is associated with high morbidity rate if left untreated. The aim of this study was to examine the antiproliferative effect of Araucaria angustifolia on laryngeal carcinoma HEp-2 cells. The results showed that A. angustifolia extract (AAE) induced a significant cytotoxicity in HEp-2 cells compared to the non-tumor human epithelial (HEK-293) cells, indicating a selective activity of AAE for the cancer cells. A. angustifolia extract was able to increase oxidative damage to lipids and proteins, and the production of nitric oxide, along with the depletion of enzymatic antioxidant defenses (superoxide dismutase and catalase) in the tumor cell line. Moreover, AAE was able to induce DNA damage, nuclear fragmentation and chromatin condensation. A significant increase in the Apoptosis Inducing Factor (AIF), Bax, poly-(ADP-ribose) polymerase (PARP) and caspase-3 cleavage expression were also found. These effects could be related to the ability of AAE to increase the production of reactive oxygen species through inhibition of the mitochondrial electron transport chain complex I activity and ATP production by the tumor cells. The phytochemical analysis of A. angustifolia, performed using High Resolution Mass Spectrometry (HRMS) in MS and MS/MS mode, showed the presence of dodecanoic and hexadecanoic acids, and phenolic compounds, which may be associated with the chemotherapeutic effect observed in this study.

  13. [Apoptosis mechanism of taxol combined with resveratrol on human laryngeal carcinoma Hep-2 cells].

    Science.gov (United States)

    Lu, Chen-Xin; Sun, Jing-Hui; Wu, Chun-Lian

    2016-02-01

    Laryngeal cancer is one of the most common malignant tumors in the respiratory tumors, and its incidence ranks second highest in the respiratory tumors. Resveratrol (Res) is a kind of polyphenols, which can inhibit nucleotides can inhibit the growth of liver cancer cells, gastric cancer cells, pancreatic cells and other tumor cells by inhibiting ribonucleotide reductase in the cells. Taxol (Tax) is a kind of secondary metabolites of Taxus chinensis, which has anti-tumor activity for breast cancer, cervical cancer, ovarian cancer and other tumors by inhibiting cellular microtubule depolymerization. But at present the effects of resveratrol combined with taxol on human laryngeal carcinoma cell strain Hep-2 and their underlying molecular mechanisms are rarely reported. After human laryngeal cancer cell Hep-2 cells were processed with resveratrol (Res) and taxol (Tax), CCK-8 assay was used to evaluate the effect of these two herbs on the proliferation of cancer cells; AO/PI staining and JC-1 were used to detect Hep-1 cells apoptosis; the expression of Bax, Bcl-2, PARP, TRIB3, and XIAP genes was detected by real time quantitative PCR; the activity of caspase-3 and caspase-8 was determined with quantitative fluorescence method. The experimental results showed that compared with Tax, Res medication alone, joint group significantly enhanced inhibition of Hep-2 cells activity, decreased the dosage of Tax, increased the expression of Bax and PARP, TRIB3, reduced the expression of the Bcl-2 and XIAP, and promoted the activity of caspase-3 and caspase-8. The test results showed that compared with the single medication, combined group could significantly increase the inhibitory effect on Hep-2 cells, significantly reduce Tax dosage, increase expressions of Bax, PARP, TRIB3, reduce expressions of Bcl-2, XIAP, and promote activity of caspase-3, caspase-8. This indicated apoptosis of human laryngeal carcinoma cell strain Hep-2 may be induced with Res, Tax, and the combination of

  14. Recombinant hirudin suppresses the viability, adhesion, migration and invasion of Hep-2 human laryngeal cancer cells.

    Science.gov (United States)

    Lu, Qian; Lv, Mei; Xu, Erdong; Shao, Fangyu; Feng, Ya; Yang, Jingru; Shi, Lin

    2015-03-01

    Recombinant hirudin (rH) is a highly potent and specific inhibitor of thrombin, and has been shown to inhibit the growth and metastasis of several types of cancers in experimental tumor models. The objective of this study was to evaluate the antitumor effects and explore the underlying mechanisms of rH in Hep-2 human laryngeal carcinoma (LC) cells. Hep-2 cells were treated with various concentrations of rH for 24 h. The cell viability was evaluated by a water-soluble tetrazolium salt (WST) assay. The adhesion ability of the cells was evaluated by cell adhesion to fibronectin. Cell migration and invasion were measured with the Boyden chamber assay. Cell apoptosis was detected by Hoechst 33324 fluorescence staining. A chicken chorioallantoic membrane (CAM) assay was used to assess the effects of rH on angiogenesis in vivo. Western blotting was used to detect the expression levels of vascular endothelial growth factor receptor (VEGF-R), focal adhesion kinase (FAK), Bcl-2-associated agonist of cell death (Bad) and B-cell CLL/lymphoma 2 (Bcl-2) proteins. rH significantly inhibited the cell viability and induced apoptosis in LC Hep-2 cells in a dose-dependent manner, as compared with phosphate-buffered saline (PBS) as control. These results were accompanied by a decrease in the anti-apoptotic protein Bcl-2 and an increase in the pro-apoptotic protein Bad. Moreover, rH dose-dependently inhibited the adhesion, migration and invasion of the Hep-2 cells, compared to the vehicle PBS. In addition, rH robustly suppressed angiogenesis in the CAM assay. Importantly, the expression of adhesion and angiogenesis-associated proteins FAK and VEGF-R was significantly downregulated by rH in a dose-dependent manner. The present findings demonstrate that rH exerts antitumor effects in Hep-2 human laryngeal cancer cells via multiple mechanisms and suggests that targeting thrombin by rH is a potential strategy for the treatment of LC.

  15. [The research of apoptosis and proliferation inhibition of human laryngeal carcinoma cell line Hep-2 induced by Genistein].

    Science.gov (United States)

    Xi, Panpan; Zhang, Shuxiang

    2015-04-01

    To investigate the effect of genistein on cell proliferation and apoptosis in human laryngeal carcinoma cell line Hep-2. Cell Counting Kit-8 (CCK-8) assay was used to measure the 50% inhibiting concentration (IC50) value of genistein; cell apoptosis rate and the distribution changes of cell cycle were determined with flow cytometry assay after treatment by gensitein. The morphological changes of tumor cells were evaluated by inverted phase contrast mircroscopy. The IC50 of geniste responses to Hep-2 cells for 24 h was 23.64 µg/ml. The apoptotic rates of Hep-2 cells treated by genistein for 24 h were 22.40% ± 1. 65% (at 12 µg/ml genistein) and 30.64% ± 2.94% (at 24 µg/ml genistein) respectively, significantly statistical differences were foundbetween above threated groups and the control group (P Hep-2 cells treated by genistein for 48 h were 30.55% ± 0.72%(at 12 µg/ml genistein) and 48.69% ± 1.06% (at 24 µg/ml genistein) respectively, significantly statistical differences were found between above threated groups and the control group (P Hep-2 cells exposed to the same concentration of genistein for 24 h, 48 h respectively, the difference in apoptotic rate was statistically significant. Genistein inhibited Hep-2 cells growth obviously, meanwhile it could induced apoptosis of Hep-2 cells, the apoptotic rate was increasing with the increase of the time and dose of genistein.

  16. [Establishment of a human laryngeal carcinoma Hep-2/5-Fu cell line and the screening of differentially expressed genes].

    Science.gov (United States)

    Chen, Jie; Wang, Jiadong

    2012-12-01

    To establish a Hep-2/5-Fu of human drug-resistant laryngeal carcinoma cell line, and to screen the possible drug resistance-associated genes. Hep-2/5-Fu of a human drug resistant laryngeal carcinoma cell line was induced by continuously exposing human laryngeal carcinoma cells to gradually increasing concentrations of 5-Fu. The growth law was observed and the growth curve was protracted. The drug resistance of Hep-2/5-Fu was measured by MTT assay and the drug resistant index RI was calculated. Genes expressed differentially between Hep-2/5-Fu and its parent cell line Hep-2 were screened using a gene chip, and several selected drug resistance associated genes were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Compared with its parental cells, the drug resistance cell line had slower growth rate and larger size. The Hep-2/5-Fu cell line showed cross drug resistance to 5-Fu, cisplatin and vincristine. There were 1210 differentially expressed genes possibly associated with drug resistance by the gene chip screening method. The possible drug resistance-related genes included Cyclin D, IGF-BP3, CASP9, and CDK4/6. The expression of Cyclin D in the Hep-2/5-Fu cell line was 6.5997 times of that in the parent cell line. RT-PCR results were consistent with the gene chip results. The altered biological properties of Hep-2/5-Fu may be related to its drug resistance phenotype. Several genes, such as Cyclin D, are possibly involved in the mechanism of drug resistance in this cell line.

  17. Endocytosis and exocytosis of gold nanochain attaching Hep-2 cells of human laryngeal carcinoma%金纳米链与人喉癌Hep-2细胞共培养自由进出细胞的形式

    Institute of Scientific and Technical Information of China (English)

    丛林海; 何晓光; 杨一兵; 张世文; 彭淑昆

    2012-01-01

    BACKGROUND: The gold nanoparticles have a killing effect on tumor cells.OBJECTIVE: To investigate the influence of gold nanochain on Hep-2 cells proliferation of human laryngeal carcinoma.METHODS: The gold nanochain was prepared by a glucose synthesis method and added into the culture cells with different concentrations (10%, 25%, 50%, 75%, 95%) to test the influence on proliferation of in vitro cultured Hep-2 cells. The endocytosis and exocytosis of transmembrane when gold nanochain attached to Hep-2 cells were observed by electron microscopy.RESULTS AND CONCLUSION: The gold chain at high concentrations (75%, 95%) exhibited inhibitory effects on the proliferation of Hep-2 cells, but the influence was not increased with increasing concentration, belonging to a range of non-toxic. Gold nanchain can enter into Hep-2 cells after 8 hours of co-culture and leave cells after 48 hours, indicating gold nanoparticles chain can enter and leave Hep-2 freely.%背景 金纳米颗粒对肿瘤细胞具有杀伤效应.目的 观察金纳米链对人喉癌Hep-2 细胞增殖的影响.方法 首先运用葡萄糖体系合成法制备金纳米链溶胶,然后MTT 法检测不同终浓度(10%,25%,50%,75%,95%)金纳米链溶胶对人喉癌Hep-2 细胞增殖的影响,并通过电镜观察金纳米链进出Hep-2 细胞的过程.结果 与结论 金纳米链在75%和95%高浓度时对Hep-2 细胞增殖有一定的抑制,但并没有随着浓度的增加而加重,均属于一级范围,表明金纳米链对人喉癌Hep-2 细胞无毒性.金纳米链在与Hep-2 细胞共培养8 h 后即能以胞吞的方式进入细胞,48 h 后大部分出胞,能够自由进出细胞.

  18. [Enhanced chemosensitivity of Hep-2 through down-regulating expression of SOX2 by RNAi].

    Science.gov (United States)

    Yang, Ning; Hui, Lian; Yang, Huijun; Jiang, Xuejun

    2014-08-01

    To investigate the effect of SOX2 on chemotherapy sensitivity of human laryngeal epithelial cells Hep-2. We designed and synthesized RNAis for silencing the expression of SOX2 in Hep-2 cells and selected the most effective RNAi by Western blot analysis. Then the recombinant plasmids of pGCsi-H1-SOX2 and pGCsi-H1-NC were constructed and transfected into Hep-2 cells to build cell lines of psiSOX2-Hep-2 and psiNC-Hep-2. CCK-8 assay had been used to test the sensitivity of Hep-2 cells to 5-FU and PTX after silencing SOX2 expression. Hoechst staining had been used to exam the changes of Hep-2 cells apoptosis treatment by 5-FU and PTX after silencing SOX2 expression. Furthermore, the changes of apoptosis-related genes expressions were detected by Western blotting. The cell lines of psiSOX2-Hep-2 and psiNC-Hep-2 were successfully established, and the expression of SOX2 protein was decreased 78% in psiSOX2-Hep-2 cells compared with psiNC-Hep-2 cells. After reducing SOX2 expression, the sensitivity of Hep-2 cells to 5-FU and PTX were increased and the IC50 values for 48 h were decreased to 8.12 μg/ml and 5.16 μg/ml. Meanwhile, the apoptosis rate and the expression of apoptotic gene Bax and cleaved caspase-3 expression were dramatically increased and anti-apoptotic genes survivin and Bcl-2 were significantly decreased in psiSOX2-Hep-2 cells compared with psiNC-Hep-2 cells. Down-regulating the protein expression of SOX2 by RNAi will significantly enhance the sensitivity of human laryngeal epithelial cells Hep-2 to 5-FU and PTX.

  19. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells.

    Science.gov (United States)

    Yin, Wanzhong; Wang, Ping; Wang, Xin; Song, Wenzhi; Cui, Xiangyan; Yu, Hong; Zhu, Wei

    2013-06-01

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (≈ 45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33 ± 1.76 vs 28.75 ± 1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98 ± 0.52 vs 69.14 ± 0.89, P<0.05), increased efflux of rhodamine 123 (95.97 ± 0.56 vs 12.40 ± 0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  20. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wanzhong; Wang, Ping; Wang, Xin [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China); Song, Wenzhi [Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun (China); Cui, Xiangyan; Yu, Hong; Zhu, Wei [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China)

    2013-06-12

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  1. Zerumbone, a Sesquiterpene, Controls Proliferation and Induces Cell Cycle Arrest in Human Laryngeal Carcinoma Cell Line Hep-2.

    Science.gov (United States)

    Jegannathan, Srimathi Devi; Arul, Santhosh; Dayalan, Haripriya

    2016-07-01

    Zerumbone (ZER), a sesquiterpene found in Zingiber zerumbet Smith, has been shown to possess antiproliferative, anticancer, antioxidant, and anti-inflammatory activity against various types of human carcinoma. The molecular mechanism by which ZER mediates its activity against many cancer types is revealed by many studies. Upregulation of proapoptotic molecules and suppression of antiapoptotic gene expression are few of the mechanisms by which ZER mediates its effect. The present study is focused on investigating the effect of ZER on proliferation of laryngeal carcinoma cells (Hep-2). MTT assay results showed that ZER (0.01-100 μM) induced death of Hep-2 cells in a concentration-dependent manner; significant suppression of proliferation of Hep-2 cells was seen with a IC50 value of 15 µM. ZER at a concentration of 15 and 30 μM for 48 h showed early signs of apoptosis as evidenced by confocal microscopy imaging. Flow cytometry studies showed that ZER induced cell cycle arrest. ZER arrested Hep-2 proliferation at S and G2/M phases of cell cycle. In conclusion, these results indicate that ZER has antiproliferative effect and arrests cell cycle in Hep-2 cells in vitro. This could be a potential anticancer drug against laryngeal carcinoma.

  2. Transfection, overexpression and clinical application of human 60 kDa Ro/SSA autoantigens in HEp-2 cells

    Institute of Scientific and Technical Information of China (English)

    吕良敬; 陈顺乐; 顾越英; 沈南; 鲍春德; 王元; 薛峰; 叶萍; 俞翀曌

    2003-01-01

    Objective To develop an improved substrate for indirect immunofluorescence test (IIF) for detecting anti-Ro60/Sjogren's syndrome A (Ro/SSA) autoantibodies.Methods 60-kDa Ro/SSA autoantigens (Ro60) cDNAs were obtained from human placental cDNA library using polymerase chain reaction (PCR) and were cloned into the mammalian expression vector-pEGFP-C1. Then, the recombinant plasmids were transfected into HEp-2 cells. We confirmed the overexpression, localization and antigenicity of fusion proteins in transfected cells by means of immunoblotting, confocal fluorescence microscopy and IIF. HEp-2 and HEp-Ro60 were analyzed by IIF using a panel of 10 precipitin-positive anti-Ro human sera simultaneously.Results Stable expression of Ro60-green fluorescent protein (Ro60-GFP) fusion proteins were maintained ten more generations. Ro60-GFP kept the antigenicity of Ro while demonstrating its own characteristic immunofluorescent pattern in HEp-Ro60 cells. The transfectants dramatically increased the sensitivity of IIF testing (a mean increase of 6.7-fold in endpoint titer). Eight overten (8/10) positive anti-Ro sera showed characteristic immunofluorescent patterns for HEp-Ro60, including two sera that were anti-nuclear antibodies (ANA) negative for untransfected HEp-2. IIF-ANA in all healthy sera was negative for HEp-Ro60. Conclusions As a new substrate for IIF, the Ro60 transfectants can be used to detect anti-Ro antibodies. In addition, transfected HEp-2 cells keep the immunofluorescent properties of HEp-2 cells in IIF-ANA tests and can be employed as a substrate for routine IIF-ANA detection.

  3. The role of miR-145 in stem cell characteristics of human laryngeal squamous cell carcinoma Hep-2 cells.

    Science.gov (United States)

    Karatas, Omer Faruk; Suer, Ilknur; Yuceturk, Betul; Yilmaz, Mehmet; Hajiyev, Yusif; Creighton, Chad J; Ittmann, Michael; Ozen, Mustafa

    2016-03-01

    The cancer stem-like cells (CSLCs) are tumorigenic cells promoting initiation, progression, and spread of the tumor. Accumulating evidences suggested the presence of CSLCs in distinct tumors including laryngeal squamous cell carcinoma (LSCC). MicroRNAs have been proposed as significant regulators of carcinogenesis, and several of them have been demonstrated to have direct roles in survival of CSLCs. In this study, we aimed to explore the role of miR-145, which is downregulated in LSCC, on cancer stem cell potency of laryngeal cancer cells. We initially showed the downregulation of miR-145 expression in tumor tissue samples and in CD133-enriched CSLCs. Quantitative reverse-transcription PCR (qRT-PCR) analysis of miR-145-transfected Hep-2 cells demonstrated the inhibitory role of miR-145 on stem cell markers like SOX2, OCT4, KLF4, and ABCG2. We, then, investigated the stem cell features of miR-145-overexpressing Hep-2 cells by sphere formation assay, single-cell cloning assay, and aldehyde dehydrogenase (ALDH) assay, which all demonstrated the inhibition of stem cell potency upon miR-145 overexpression. Further qRT-PCR analysis demonstrated altered expression of epithelial to mesenchymal transition markers in miR-145-overexpressing Hep-2 cells. In conclusion, we demonstrated the regulatory role of miR-145 in stem cell characteristics of Hep-2 cells. Based on these results, we propose that miR-145 might carry crucial roles in LSCC tumorigenesis, prognosis, metastasis, chemoresistance, and recurrence through regulating stem cell properties of tumor cells.

  4. Prisconnatanones A, a cytotoxic naphthoquinone from Prismatomeris connata, suppresses the proliferation of human laryngocarcinoma HEp-2 cells in vitro.

    Science.gov (United States)

    Feng, Shixiu; Zhang, Min; Xu, Jing; Hu, Yinming

    2016-03-16

    Prisconnatanones A (Priscon-A) is a rare tetrahydroanthraquinone isolated from herbal Prismatomeris connate. In this study, we examine its anti-tumour activity on human laryngocarcinoma HEp-2 cells in vitro. The CCK-8 assay was performed to evaluate its cytotoxicity. Cell cycle and apoptosis were analysed using flow cytometric analysis. Here, we showed Priscon-A inhibited the proliferation of HEp-2 cells in a dose-dependent manner, and at 5 μM it almost completely inhibited cell growth. Its cytotoxicity was associated with the cell cycle arrest at G2/M phase. The Annexin V-FITC/PI binding assay showed that the cell death induced by Priscon-A was associated with apoptosis. And, western blot analysis revealed that the levels of the apoptosis protein, cleaved caspase-3, PARP, p21 and Bax protein increased, while the level of anti-apoptosis protein Bcl-2 decreased.. These data demonstrated that Priscon-A significantly inhibited HEp-2 cell growth, induced the cell cycle arrest at the G2/M phase and efficiently induced cell apoptosis.

  5. Protochlamydia induces apoptosis of human HEp-2 cells through mitochondrial dysfunction mediated by chlamydial protease-like activity factor.

    Directory of Open Access Journals (Sweden)

    Junji Matsuo

    Full Text Available Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7-1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose polymerase (PARP was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF, blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054 did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic

  6. Oxidative stress in HEp-2 human laryngeal carcinoma cells induced by combination of vitamins B12b and C.

    Science.gov (United States)

    Akatov, V S; Solov'eva, M E; Leshchenko, V V; Teplova, V V

    2003-09-01

    Incubation of human laryngeal epidermoid carcinoma HEp-2 cells with hydroxocobalamin (vitamin B12b) and ascorbic acid (vitamin C) for 1 h initiated oxidative stress accompanied by damage to mitochondria and increase in intracellular oxidative activity. Studies of the kinetics of these processes showed that the increase in intracellular H2O2 activity and mitochondrial damage are more likely a result, but not the cause of cell apoptosis during the first hour of their incubation with vitamins B12b and C.

  7. [Effects of lentivirus-mediated epidermal growth factor-like domain 7 silencing on proliferation and invasion of human laryngeal carcinoma Hep-2 cells].

    Science.gov (United States)

    Li, Jingjia; Ye, Jin; Zhuang, Shimin; Wang, Tao; Wang, Zhiyuan; Chang, Lihong; Zhang, Gehua

    2014-08-01

    To explore the effects of epidermal growth factor-like domain 7 (EGFL7) gene silencing on the proliferation and invasion ablity of laryngeal carcinoma cells. A lentiviral vector expressing EGFL7 shRNA was constructed and transfected into human laryngeal carcinoma Hep-2 cells. The expressions of EGFL7 mRNA and protein were detected by Real-time PCR and Western blot, respectively. Cell proliferation was evaluated by CCK-8 assay, cell cycle and apoptosis were tested by flow cytometry, and cell invasion was detected by transwell invasion assay. The relative expression level s of EGFL7 mRNA and protein in EGFL7-SuRNA group were svgnificantly lower than control group (P Hep-2 cells. The proliferation of Hep-2 cells was significantly inhibited after transfection (P Hep-2 cells can be inhibited by siRNA mediated EGFL7 gene silencing.

  8. Study of the efficacy of 5 ALA-mediated photodynamic therapy on human larynx squamous cell carcinoma (Hep2c) cell line

    Science.gov (United States)

    Khursid, A.; Atif, M.; Firdous, S.; Zaidi, S. S. Z.; Salman, R.; Ikram, M.

    2010-07-01

    5-aminolevulanic acid (ALA), a precursor of Protoporphyrin IX, was evaluated as an inducer of photodamage on Hep2c, human larynx squamous cell carcinoma, cell line. Porphyrins are used as active cytotoxic antitumor agents in photodynamic therapy (PDT). The present study evaluates the effects of photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) using human larynx cells as experimental model. Hep2c cell line was irradiated with red light (a diode laser, λ = 635 nm). The influence of different incubation times and concentrations of 5-ALA, different irradiation doses and various combinations of photosensitizer and light doses on the cellular viability of Hep2c cells were studied. The optimal uptake of photosensitizer ALA in Hep-2c cells was investigated by means of spectrometric measurement. Cells viability was determined by means of neutral red assay (NR). It was observed that sensitizer or light doses have no significant effect on cells viability when studied independently. The spectrometric measurements showed that the maximal cellular uptake of 5-ALA occurred after 7 h in vitro incubation. The photocytotoxic assay showed that light dose of 85 J/cm2 gives effective PDT outcome for Hep2c cell line incubated with 55 μg/ml of 5-ALA with a conclusion that Hep2c cell line is sensitive to ALA-mediated PDT.

  9. 喉癌Hep-2细胞CD44+CD133+生物学特性研究%Research on the biological characteristics of CD44+CD133+of human laryngeal carcinoma Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    孔令帅; 温树信; 高伟; 王珏; 付荣; 杨丽娟; 李飞; 杨雨燕

    2016-01-01

    Objective To isolate, culture and identify laryngeal cancer stem cells from laryngeal carcinoma Hep-2 cell line and observe its biological characteristics in vitro. Methods Isolated, cultured and indentified human laryngeal carcinoma Hep-2 cells by MACS to obtain CD44+CD133+,CD44+CD133-,CD44-CD133+,CD44-CD133-four subsets of stem cells and plot-ted, the growth curves of four kinds of cells. The positive rate was detected by flow cytometry. The transwell chamber invasion assay, cell adhesion experiment and cloneformation assay were performed to evaluate the invasive capability, adhesion ability and the cloneforming ability respectively. The drug resistance was detected by CCK8 method. Results The biological charac-teristics of the five kinds of cells in Hep-2, CD44+CD133+, CD44+CD133-, CD44-CD133+and CD44-CD133-were analyzed. The ability of proliferation, invasion, adhesion, clone formation and drug resistance of CD44+CD133+cell subsets were higher than those of other four. CD44+CD133+>CD44-CD133+>Hep2>CD44+CD133->CD44-CD133-. Conclusion MACS is an effective method for sorting CD44+CD133+ cells. CD44+CD133+ cell subsets have obvious characteristics of cancer stem cells , and may make some new exploration for the high expression markers of laryngeal cancer cells.%目的:分选培养和鉴定人喉癌Hep-2细胞珠,并研究其体外生物学特性。方法通过磁珠细胞分选(mag-netic bead cell sorting,MACS)方法,分选培养和鉴定CD44+CD133+喉癌干细胞,应用免疫磁珠分选技术分选CD44+CD133+、CD44+CD133-、CD44-CD133+、CD44-CD133-4种亚群,对4种细胞绘制生长曲线,应用流式细胞仪检测其阳性率,应用侵袭实验、黏附实验和克隆形成实验评价其侵袭能力、黏附能力和克隆形成能力,用CCK8法检测其耐药性。结果对Hep-2、CD44+CD133+亚群、CD44+CD133-亚群、CD44-CD133+亚群、CD44-CD133-亚群5种细胞进行生物学特性研究,CD44+CD133+细胞亚群的增殖、侵

  10. Stable expression of human muscle-specific kinase in HEp-2 M4 cells for automatic immunofluorescence diagnostics of myasthenia gravis.

    Science.gov (United States)

    George, Sandra; Paulick, Silvia; Knütter, Ilka; Röber, Nadja; Hiemann, Rico; Roggenbuck, Dirk; Conrad, Karsten; Küpper, Jan-Heiner

    2014-01-01

    Muscle-specific kinase (MuSK) belongs to the nicotinic acetylcholine receptor complex which is targeted by pathogenic autoantibodies causing Myasthenia gravis. While up to 95% of patients with generalized Myasthenia gravis were shown to be positive for acetylcholine receptor-specific autoantibodies, up to 70% of the remaining patients develop autoantibodies against MuSK. Discrimination of the autoantibody specificity is important for therapy of Myasthenia gravis. Recently, the new automatic fluorescence assessment platform AKLIDES has been developed for immunofluorescence-based diagnostics of autoimmune diseases. In order to establish an AKLIDES procedure for the detection of MuSK-specific autoantibodies (anti-MuSK), we developed a recombinant HEp-2 cell clone expressing the human MuSK cDNA. Here we show at the mRNA and protein level that the cell clone HEp-2 M4 stably expresses human MuSK. We provide evidence for a localization of MuSK at the cell membrane. Using cell clone HEp-2 M4 on the AKLIDES system, we investigated 34 patient sera that were previously tested anti-MuSK positive by radioimmunoassay as positive controls. As negative controls, we tested 29 acetylcholine receptor-positive but MuSK-negative patient sera, 30 amytrophic lateral sclerosis (ALS) patient sera and 45 blood donors. HEp-2 M4 cells revealed a high specificity for the detection of MuSK autoantibodies from 25 patient sera assessed by a specific pattern on HEp-2 M4 cells. By using appropriate cell culture additives, the fraction of cells stained positive with anti-MuSK containing sera can be increased from 2-16% to 10-48%, depending on the serum. In conclusion, we provide data showing that the novel recombinant cell line HEp-2 M4 can be used to screen for anti-MuSK with the automatic AKLIDES system.

  11. Effect of Size, Shape, and Surface Modification on Cytotoxicity of Gold Nanoparticles to Human HEp-2 and Canine MDCK Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2012-01-01

    Full Text Available There have been increasing interests in applying gold nanoparticles in biological research, drug delivery, and therapy. As the interaction of gold nanoparticles with cells relies on properties of nanoparticles, the cytotoxicity is complex and still under debating. In this work, we investigate the cytotoxicity of gold nanoparticles of different encapsulations, surface charge states, sizes and shapes to both human HEp-2 and canine MDCK cells. We found that cetyltrimethylammonium-bromide- (CTAB- encapsulated gold nanorods (GNRs were relatively higher cytotoxic than GNRs undergone further polymer coating and citrate stabilized gold nanospheres (GNSs. The toxicity of CTAB-encapsulated GNRs was mainly caused by CTAB on GNRs' surface but not free CTAB in the solution. No obvious difference was found among GNRs of different aspect ratios. Time-lapse study revealed that cell death caused by GNRs occurred predominately within one hour through apoptosis, whereas cell death by free CTAB was in a time- and dose-dependent manner. Both positively and negatively surface-charged polymer-coated GNRs (PSS-GNRs and PAH-PSS-GNRs showed similar levels of cytotoxic, suggesting the significance of surface functionality rather than surface charge in this case.

  12. HEp-2 Cell Classification: The Role of Gaussian Scale Space Theory as A Pre-processing Approach

    OpenAIRE

    Qi, Xianbiao; Zhao, Guoying; Chen, Jie; Pietikäinen, Matti

    2015-01-01

    \\textit{Indirect Immunofluorescence Imaging of Human Epithelial Type 2} (HEp-2) cells is an effective way to identify the presence of Anti-Nuclear Antibody (ANA). Most existing works on HEp-2 cell classification mainly focus on feature extraction, feature encoding and classifier design. Very few efforts have been devoted to study the importance of the pre-processing techniques. In this paper, we analyze the importance of the pre-processing, and investigate the role of Gaussian Scale Space (GS...

  13. Effects of Baicalein on Inhibits of Hep-2 Cell Proliferation in Human Laryngeal Carcinoma%黄芩素对喉癌Hep-2细胞增殖的抑制作用

    Institute of Scientific and Technical Information of China (English)

    孙吉凤; 刘剑凯; 张淑芳

    2015-01-01

    Objective:To study the influence of baicalein on proliferation in laryngeal cancer cell Hep-2 in vitro. Method:Hep-2 cells were exposed to baicalein at concentrations from 10 to 80μmol/L, cultured for 24 h or 48 h.MTT was used to determine cell proliferation,trypan blue exclusion experiments was used to evaluate cell viability,acridine orange(AO) fluorescence staining was used to determine the effect on the cell morphology.Result:Baicalein could inhibit the proliferation of Hep-2 cells in a time-and dose-dependent manner.The viability was down regulated by baicalein.AO fluorescence staining showed that the cell morphology was changed by baicalein significantly. Conclusion:Baicalein can inhibit the cell proliferation, viability and induce apoptosis in typical morphology of laryngeal cancer Hep-2 cells significantly.%目的:探讨黄芩素对人喉癌Hep-2细胞的增殖抑制作用。方法:Hep-2细胞在含黄芩素(10~80μmol/L)的培养基中,分别培养24 h及48 h,用MTT法检测对细胞增殖的影响;用台盼兰染色法检测对细胞活力的影响;用吖啶橙染色法(AO染色法)检测对细胞形态的影响。结果:黄芩素呈时间-剂量依赖性的抑制Hep-2细胞的增殖,并可使细胞活力明显降低;AO染色法显示,黄芩素可诱导Hep-2细胞形态发生明显变化,呈凋亡形态。结论:黄芩素可抑制喉癌Hep-2细胞增殖,降低细胞活力,诱导喉癌Hep-2细胞呈典型的凋亡形态。

  14. Effect of EphA7 Silencing on Proliferation, Invasion and Apoptosis in Human Laryngeal Cancer Cell Lines Hep-2 and AMC-HN-8.

    Science.gov (United States)

    Xiang, Cheng; Lv, Yuanjing; Wei, Yanjie; Wei, Jing; Miao, Susheng; Mao, Xionghui; Gu, Xin; Song, Kaibin; Jia, Shenshan

    2015-01-01

    This study aimed to investigate the expression of EphA7 in human laryngeal squamous cell carcinoma (LSCC) tissues and disclose the potential roles and molecular mechanisms of EphA7 in LSCC. In the present study, we examined EphA7 expression and its function and mechanism in LSCC. EphA7 expression levels were investigated by quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry in a panel of 35 LSCC patient cases. To investigate the potential mechanism of EphA7 in human laryngeal cancer, we employed EphA7 siRNA to knockdown EphA7 expression in LSCC cell line Hep-2 and AMC-HN-8. Subsequently, MTT, TUNEL, qRT-PCR, and western blotting were performed to disclose the roles of EphA7 on proliferation, invasion and migration, and apoptosis in LSCC cell line Hep-2 and AMC-HN-8. Depletion of EphA7 remarkably inhibited the proliferation and invasion of Hep-2 and AMC-HN-8 cells in comparison to control and EphA7 siRNA negative control (NC)-transfected cells. TUNEL staining assay demonstrated that, compared with the control group, the rate of apoptosis in the EphA7 siRNA group was significantly increased. In addition, knockdown of EphA7 in Hep-2 or AMC-HN-8 cells markedly decreased the expression of EphA7 and PTEN, which could contribute to apoptosis. However, the bpV(phen), a PTEN inhibitor, could attenuate anti-proliferation and pro-apoptotic effects of EphA7 siRNA in Hep-2 and AMC-HN-8 cells. Up-regulation of EphA7 was observed in human LSCC samples and down-regulation of EphA7 effectively suppressed laryngeal carcinoma cell growth and promoted its apoptosis. Thus, EphA7 has a critical role in modulating cell growth and apoptosis, which serves as a potential therapeutic target in human LSCC. © 2015 S. Karger AG, Basel.

  15. Expression, purification and anticancer analysis of GST-tagged human perforin and granzyme B proteins in human laryngeal cancer Hep-2 cells.

    Science.gov (United States)

    Li, Xiuying; Zhang, Guang; An, Guijie; Liu, Sha; Lai, Yandong

    2014-03-01

    Granzyme B and perforin, two major effector molecules in the granule-mediated cytolytic pathway, are thought to be involved in suppression of tumor progression. In this study, the pGEX-4T-1 expression vector was used to express full-length human perforin or granzyme B as a GST-tagged fusion protein in Escherichia coli (E. coli). GST-tagged proteins were induced with IPTG and purified by GSTrap 4B columns. Purified fusion proteins migrated at the predicted molecular mass on SDS-PAGE and were recognized by specific antibodies. Moreover, the fusion proteins can induce apoptosis and directly inhibit the growth of human laryngeal cancer Hep-2 cells in vitro. These results suggest that active perforin and granzyme B fusion proteins can be produced in E. coli and exhibit anticancer potential in laryngeal cancer cells.

  16. Study on inhibiting effect of p27 gene on growth of human laryngeal carcinoma Hep 2 cells%P27基因对人喉癌细胞抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    孙永柱; 崔鹏程; 李贵泽; 段文彬; 陈文弦

    2002-01-01

    Objective To explore the effect of p27 gene on the growth inhibition of laryngeal carcinoma cell line Hep 2. Methods The p27 cDNA was transfected into human laryngeal carcinoma cell line Hep 2 cells with lipofectamine. The cell cycles were observed by means of FCM assay. p27 expression was detected by dot blot hybridization and Western blot. Results Expression of p27 in Hep 2 was identified by Dot blot and Western blot analyses.the growth rate of Hep 2 transfected with p27 gene was markedly suppressed. Cell cycle analysis by flow cytometry show that the number of cells in G0~ G1 phase of Hep 2 cells was significantly increased while cells in S and G2+ M phase was decreased compared with that of the control Hep 2 cells. Conclusion Transduction of p27 gene into lower expression cancer cells can restore its suppressive effect on cell growth by arrest of cell cycle at G1 phase.

  17. Combined vitamins Bl2b and C induce the glutathione depletion and the death of epidermoid human larynx carcinoma cells HEp-2.

    Science.gov (United States)

    Akatov, V S; Evtodienko, Y V; Leshchenko, V V; Teplova, V V; Potselueva, M M; Kruglov, A G; Lezhnev, E I; Yakubovskaya, R I

    2000-10-01

    The combination of hydroxocobalamin (vitamin B12b) and ascorbic acid (vitamin C) can cause the death of tumor cells at the concentrations of the components at which they are nontoxic when administered separately. This cytotoxic action on epidermoid human larynx carcinoma cells HEp-2 in vitro is shown to be due to the hydrogen peroxide generated by the combination of vitamins B12b and C. The drop in the glutathione level preceding cell death was found to be the result of combined action of the vitamins. It is supposed that the induction of cell death by combined action of vitamins B12b and C is connected to the damage of the cell redox system.

  18. The anti-tumour activity of rLj-RGD4, an RGD toxin protein from Lampetra japonica, on human laryngeal squamous carcinoma Hep-2 cells in nude mice.

    Science.gov (United States)

    Shao, Fangyu; Lv, Mei; Zheng, Yuanyuan; Jiang, Junshu; Wang, Yue; Lv, Li; Wang, Jihong

    2015-12-01

    The objective of this study is to investigate the antiproliferative activity and mechanism of integrin-binding rLj-RGD4 in a Hep-2 human laryngeal carcinoma-bearing nude mouse model. Human laryngeal squamous carcinoma cells (Hep-2) were inoculated subcutaneously into the axilla of nude mice to generate a Hep-2 human laryngeal carcinoma-bearing nude mouse model. When the Hep-2 xenograft model was successfully established, the animals were randomly separated into five groups. Three groups were treated with different dosages of rLj-RGD4. Cisplatin was administered to the positive control group, and normal saline (NaCl) was administered to the negative control group for 3 weeks. The body weights and the survival of the nude mice were evaluated, and the volumes and weights of the solid tumours were measured. The mechanism underlying rLj-RGD4 inhibition of tumour growth in transplanted Hep-2 human laryngeal carcinoma-bearing nude mice was evaluated by haematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL), measurement of intratumoural microvessel density (MVD), Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The tumour volumes and weights of the treatment groups were reduced compared with the model group, and survival times were improved by rLj-RGD4 treatment in Hep-2 human laryngeal carcinoma-bearing nude mice. The number of apoptotic Hep-2 human cells and intratumoural MVD significantly decreased after the administration of rLj-RGD4. In the xenograft tissue of animals treated with rLj-RGD4, FAK, PI3K, and Akt expression was unaltered, whereas P-FAK, P-PI3K, Bcl-2, P-Akt, and VEGF levels were down-regulated. In addition, activated caspase-3, activated caspase-9, and Bax levels were up-regulated. rLj-RGD4 exhibits potent in vivo activity and inhibits the growth of transplanted Hep-2 human laryngeal carcinoma cells in a nude mouse model. Thus, these results

  19. In vitro and in vivo effect of 5-FC combined gene therapy with TNF-α and CD suicide gene on human laryngeal carcinoma cell line Hep-2.

    Science.gov (United States)

    Chai, Li-Ping; Wang, Zhang-Feng; Liang, Wei-Ying; Chen, Lei; Chen, Dan; Wang, An-Xun; Zhang, Zhao-Qiang

    2013-01-01

    This study was aimed to investigate the effect of combined cancer gene therapy with exogenous tumor necrosis factor-alpha (TNF-α) and cytosine deaminase (CD) suicide gene on laryngeal carcinoma cell line Hep-2 in vitro and in vivo. Transfection of the recombinant eukaryotic vectors of pcDNA3.1 (+) containing TNF-α and/or CD into Hep-2 cells resulted in expression of TNF-α and/or CD gene in vitro. The significant increase in apoptotic Hep-2 cells and decrease of Hep-2 cell proliferation were observed using 5-FC treatment combined with TNF-a expression by CD/5-FC suicide system. Moreover, bystander effect was also observed in the TNF-α and CD gene co-expression group. Laryngeal squamous cell carcinoma (LSCC) mice model was established by using BALB/c mice which different transfected Hep-2 cells with pcDNA3.1 (+) containing TNF-α and/or CD were applied subcutaneously. So these mice are divided into four groups, namely, (1)Hep-2/TIC group; (2)Hep-2/CD group; (3)Hep-2/TNF-α group; (4)Hep-2/0 group. At day 29 after cell inoculation, volume of grafted tumor had significant difference between each two of them (P<0.05). These results showed that the products of combined CD and TNF-α genes inhibited the growth of transplanted LSCC in mice model. So by our observed parameters and many others results, we hypothesized that 5-FC combined gene therapy with TNF-αand CD suicide gene should be an effective treatment on Laryngeal carcinoma.

  20. HEp-2 Cell Classification via Combining Multiresolution Co-Occurrence Texture and Large Region Shape Information.

    Science.gov (United States)

    Qi, Xianbiao; Zhao, Guoying; Li, Chun-Guang; Guo, Jun; Pietikainen, Matti

    2017-03-01

    Indirect immunofluorescence imaging of human epithelial type 2 (HEp-2) cell image is an effective evidence to diagnose autoimmune diseases. Recently, computer-aided diagnosis of autoimmune diseases by the HEp-2 cell classification has attracted great attention. However, the HEp-2 cell classification task is quite challenging due to large intraclass and small interclass variations. In this paper, we propose an effective approach for the automatic HEp-2 cell classification by combining multiresolution co-occurrence texture and large regional shape information. To be more specific, we propose to: 1) capture multiresolution co-occurrence texture information by a novel pairwise rotation-invariant co-occurrence of local Gabor binary pattern descriptor; 2) depict large regional shape information by using an improved Fisher vector model with RootSIFT features, which are sampled from large image patches in multiple scales; and 3) combine both features. We evaluate systematically the proposed approach on the IEEE International Conference on Pattern Recognition (ICPR) 2012, the IEEE International Conference on Image Processing (ICIP) 2013, and the ICPR 2014 contest datasets. The proposed method based on the combination of the introduced two features outperforms the winners of the ICPR 2012 contest using the same experimental protocol. Our method also greatly improves the winner of the ICIP 2013 contest under four different experimental setups. Using the leave-one-specimen-out evaluation strategy, our method achieves comparable performance with the winner of the ICPR 2014 contest that combined four features.

  1. 阻断氯通道对人喉癌Hep-2细胞增殖及其RNA编辑酶1表达的影响%Effects of Blocking Chloride Channel on Proliferation and Expression of RNA-dependent Adenosine Deaminase 1 for Human Larynx Cancer Hep-2 Cell

    Institute of Scientific and Technical Information of China (English)

    余文发; 赵玉林; 董明敏

    2008-01-01

    目的 研究氯离子通道阻断荆5-硝基-2-(3-苯丙氨基)苯甲酸(NPPB)对人喉癌细胞系Hep-2细胞增殖及其RNA编辑酶1(RNA-dependent adenosine deaminase 1,ADARI)表达的影响.方法 以HeD-2细胞为研究对象,采用四甲基偶氮唑蓝(MTT)比色法检测NPPB对Hep-2细胞增殖的影响;用逆转录一聚合酶链反应(RT-PCR)检测氯通道阻断前后Hep-2细胞ADARI mRNA表达的变化.结果 NPPB浓度依赖性地抑制Hep-2细胞增殖,NPPB阻断Hep-2氯通道前后ADARl mRNA表达量存在显著性差异.结论 阻断Hep-2细胞氯通道,可抑制Hep-2细胞增殖;Hep-2细胞RNA编辑酶1的表达可能和氯通道密切相关.

  2. A bag of cells approach for antinuclear antibodies HEp-2 image classification.

    Science.gov (United States)

    Wiliem, Arnold; Hobson, Peter; Minchin, Rodney F; Lovell, Brian C

    2015-06-01

    The antinuclear antibody (ANA) test via indirect immunofluorescence applied on Human Epithelial type 2 (HEp-2) cells is a pathology test commonly used to identify connective tissue diseases (CTDs). Despite its effectiveness, the test is still considered labor intensive and time consuming. Applying image-based computer aided diagnosis (CAD) systems is one of the possible ways to address these issues. Ideally, a CAD system should be able to classify ANA HEp-2 images taken by a camera fitted to a fluorescence microscope. Unfortunately, most prior works have primarily focused on the HEp-2 cell image classification problem which is one of the early essential steps in the system pipeline. In this work we directly tackle the specimen image classification problem. We aim to develop a system that can be easily scaled and has competitive accuracy. ANA HEp-2 images or ANA images are generally comprised of a number of cells. Patterns exhibiting in the cells are then used to make inference on the ANA image pattern. To that end, we adapted a popular approach for general image classification problems, namely a bag of visual words approach. Each specimen is considered as a visual document containing visual vocabularies represented by its cells. A specimen image is then represented by a histogram of visual vocabulary occurrences. We name this approach as the Bag of Cells approach. We studied the performance of the proposed approach on a set of images taken from 262 ANA positive patient sera. The results show the proposed approach has competitive performance compared to the recent state-of-the-art approaches. Our proposal can also be expanded to other tests involving examining patterns of human cells to make inferences. © 2014 International Society for Advancement of Cytometry.

  3. miR-133a enhances the sensitivity of Hep-2 cells and vincristine-resistant Hep-2v cells to cisplatin by downregulating ATP7B expression.

    Science.gov (United States)

    Wang, Xurui; Zhu, Wei; Zhao, Xiaodong; Wang, Ping

    2016-06-01

    The expression levels of the copper transporter P-type adenosine triphosphatase (ATP7B) are known correlate with tumor cell sensitivity to cisplatin. However, the mechanisms underlying cisplatin resistance remained poorly understood. Therefore, in the present study, we treated Hep-2 cells and in-house-developed vincristine-resistant Hep-2v cells with 50, 100, or 200 µM cisplatin and assessed cell viability after 24 or 48 h. Hep-2v cells were shown to be resistant to 50-200 µM cisplatin. Furthermore, using immunofluorescence staining and western blot analysis, we noted that ATP7B, but not copper-transporting ATPase 1 (ATP7A), expression was significantly increased in Hep-2v cells, and this increase was maintained at a higher level compared with Hep-2 cells. As ATP7B is a target of microRNA 133a (miR‑133a), the ability of miR‑133a to influence cisplatin sensitivity in Hep-2v cells was then assessed by CCK-8 assay. We noted that miR‑133a expression was lower in both Hep-2 and Hep-2v cells compared with epithelial NP69 cells. Following treatment with 50 µM cisplatin, in Hep-2v cells expressing exogenous miR‑133a we noted reduced ATP7B expression, and these cells had a significantly lower survival rate compared with the control. The present study demonstrates that miR‑133a enhances the sensitivity of multidrug-resistant Hep-2v cells to cisplatin by downregulating ATP7B expression.

  4. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    -free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes...... and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture...

  5. Identification of inositol polyphosphate 4-phosphatase type II as a novel tumor resistance biomarker in human laryngeal cancer HEp-2 cells

    Science.gov (United States)

    Kim, Jae-Sung; Yun, Hong Shik; Um, Hong-Duck; Park, Jong Kuk; Lee, Kee-Ho; Kang, Chang-Mo; Lee, Su-Jae; Hwang, Sang-Gu

    2012-01-01

    Although tumor resistance remains a significant impediment to successful radiotherapy, associated regulatory markers and detailed molecular mechanisms underlying this phenomenon are not well defined. In this study, we identified inositol polyphosphate 4-phosphatase type II (INPP4B) as a novel marker of radioresistance by systematically analyzing Unigene libraries of laryngeal cancer. INPP4B was highly expressed in radioresistant laryngeal cancer cells and was induced by treatment with either radiation or anticancer drugs in various types of cancer cells. Ectopic INPP4B overexpression increased radioresistance and anticancer drug resistance by suppressing apoptosis in HEp-2 cells. Conversely, INPP4B depletion with small interfering RNA resensitized HEp-2 as well as A549 and H1299 cells to radiation- and anticancer drug-induced apoptosis. Furthermore, radiation-induced INPP4B expression was blocked by inhibition of extracellular signal-regulated kinase (ERK). INPP4B depletion significantly attenuated radiation-induced increases in Akt phosphorylation, indicating an association of INPP4B-mediated radioresistance with Akt survival signaling. Taken together, our data suggest that ERK-dependent induction of INPP4B triggers the development of a tumor-resistance phenotype via Akt signaling and identify INPP4B as a potentially important target molecule for resolving the radioresistance of cancer cells. PMID:22895072

  6. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount of viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.

  7. Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells

    DEFF Research Database (Denmark)

    Drasbek, Mette; Christiansen, Gunna; Drasbek, Kim Ryun;

    2007-01-01

    The human pathogen Mycoplasma pneumoniae can cause atypical pneumonia through adherence to epithelial cells in the respiratory tract. The major immunogenic protein, P1, participates in the attachment of the bacteria to the host cells. To investigate the adhesion properties of P1, a recombinant...... protein (rP1-II) covering amino acids 1107-1518 of the P1 protein was produced. This protein inhibited the adhesion of M. pneumoniae to human HEp-2 cells, as visualized in a competitive-binding assay using immunofluorescence microscopy. Previous studies have shown that mAbs that recognize two epitopes...... intensity. The number of M. pneumoniae microcolonies adhering to the host cells was significantly reduced by these five peptides. Further investigations showed that inhibiting peptide 7 (amino acids 1347-1396) of the major adhesin protein P1 bound directly to host receptors, suggesting that the observed M...

  8. [Suppression of Aurora-A by RNA interference inhibits laryngeal cancer Hep-2 cell growth].

    Science.gov (United States)

    Zhang, Hao; Chen, Xue-hua; Cai, Chang-ping; Wang, Shi-li; Liu, Bing-ya; Zhou, Liang

    2012-01-01

    To investigate the effects of knockdown of Aurora-A by RNA interference on laryngeal cancer Hep-2 cell growth in vitro and in vivo. A plasmid containing siRNA against Aurora-A was constructed and transfected into human laryngeal cancer cell line Hep-2. Measurements included the CCK-8 assay for viability and proliferation, Transwell assay for invasion, colony formation assay for cell anchorage-independent growth. Western blot and immunohistochemistry assay for protein expression. Tumorigenicity was observed in vivo. In Hep-2 cells transfected by Aurora-A siRNA (designated as siRNA-3), protein expression of Aurora-A was suppressed by 52%. In CCK-8 assay, absorbance value of siRNA-3 cells (3.268 ± 0.106, (x(-) ± s)) was lower than that of Hep-2 cells (3.722 ± 0.152, F = 17.634, P Hep-2 cells (236.0 ± 26.0, F = 26.462, P Hep-2 cells (104.0 ± 14.0). The average tumor size in siRNA-3 group was (127.77 ± 174.83) mm(3), which was less than Hep-2 cell group (837.26 ± 101.80) mm(3), (F = 28.187, P Hep-2 cells in vitro and in vivo, which may be a promising therapeutic strategy for LSCC.

  9. Altered subcellular distribution of nucleolar protein fibrillarin by actinomycin D in Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    Min CHEN; Ping JIANG

    2004-01-01

    AIM: To study the effects of actinomycin D on subcellular distribution of nucleolar protein fibrillarin in HEp-2(human esophageal epithelial type 2) cells, and molecular mechanisms for maintenance of fibrillarin in nucleolus.METHODS: Indirect immunofiuorescence assay was employed to investigate subcellular distribution of nucleolar protein fibrillarin and immunoblotting analysis was used to detect the total cellular amount of fibrillarin. RESULTS:Control cells with no drug treatment showed bright clumpy nucleolar staining, which indicated that fibrillarin decorated the nucleolus only. Treatment with actinomycin D caused dislocation of fibrillarin from nucleoli to nucleoplasm with numerous stained small nucleoplasmic entities. Immunoblotting showed that neither total cellular amount of fibrillarin nor the integrity of fibrillarin was changed upon the treatment. The dislocation of fibrillarin in cells treated at a lower concentration (0.05 mg/L) of actinomycin D, was totally reversible after removal of the drug from the medium. However, this reversion was not observed at a high drug concentration (1 mg/L). CONCLUSION:Actinomycin D induced dislocation of fibrillarin from nucleoli to nucleoplasm in HEp-2 cells. The retention of fibrillarin within the nucleolus was related to active RNA synthesis.

  10. Accurate HEp-2 cell classification based on sparse bag of words coding.

    Science.gov (United States)

    Ensafi, Shahab; Lu, Shijian; Kassim, Ashraf A; Tan, Chew Lim

    2017-04-01

    Autoimmune diseases (AD) are the abnormal response of the immune system of the body to healthy tissues. ADs have generally been on the increase. Efficient computer aided diagnosis of ADs through classification of the human epithelial type 2 (HEp-2) cells become beneficial. These methods make lower diagnosis costs, faster response and better diagnosis repeatability. In this paper, we present an automated HEp-2 cell image classification technique that exploits the sparse coding of the visual features together with the Bag of Words model (SBoW). In particular, SURF (Speeded Up Robust Features) and SIFT (Scale-invariant feature transform) features are specially integrated to work in a complementary fashion. This method helps greatly improve the cell classification accuracy. Additionally, a hierarchical max-pooling method is proposed to aggregate the local sparse codes in different layers to provide final feature vector. Furthermore, various parameters of the dictionary learning including the dictionary size, the learning iteration number, and the pooling strategy is also investigated. Experiments conducted on publicly available datasets show that the proposed technique clearly outperforms state-of-the-art techniques in cell and specimen levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Analysis of DFS70 pattern and impact on ANA screening using a novel HEp-2 ELITE/DFS70 knockout substrate.

    Science.gov (United States)

    Malyavantham, Kishore; Suresh, Lakshmanan

    2017-12-01

    Indirect immunofluorescence (IIF) using human epithelial cell (HEp-2) substrate is a widely used and the recommended method for screening of antinuclear antibodies (ANA). Dense fine speckled (DFS70) pattern on HEp-2 has been widely reported in various healthy and disease groups. Interpretation of DFS70 pattern can be challenging on a conventional HEp-2 substrate due to its similarity to some of the disease associated patterns. The high prevalence of DFS70 autoantibodies in normal population, lack of association with a particular disease group and a general negative association with systemic and ANA associated autoimmune rheumatic diseases (SARD/AARD) necessitates the confirmation of DFS70 pattern. Results using available commercial assays for confirmation of DFS70 autoantibodies do not always agree with IIF screening results further complicating the lab work flow and ANA algorithms. In this review, we discuss the prevalence of DFS70 antibodies and factors affecting the performance of IIF and DFS70 specific confirmatory assays. Factors that contribute to disagreement between DFS70 suspicion by IIF and confirmatory assays will also be discussed. In addition, we also describe a novel IIF HEp-2 substrate, and its positive impact on DFS70 reporting and ANA screening-confirmation algorithm.

  12. Effect of hyperthermia combined with Taxol on the proliferation and apoptosis of human larynx carcinoma Hep-2 cell lines%加热联合紫杉醇对人喉癌细胞Hep-2体外增殖抑制及凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    王承龙; 张帅; 黄东海; 田勇泉; 赵素萍

    2011-01-01

    目的 探讨加热(hyperthermia,HT)联合紫杉醇(Taxol)对人喉癌细胞系(Hep-2细胞)体外增殖抑制及凋亡的影响.方法 将Hep-2细胞分为实验组与对照组,实验组用不同浓度(0.1、1.0及10.0μmol/L)的Taxol预处理后联合热疗(39、41及43℃1h)处理不同时间(24、48及72h)后,采用Wright-Gimsa染色法观察Hep-2细胞凋亡的形态学变化;以四甲基偶氮唑盐(MTT)还原试验检测细胞活力,以细胞增殖率作为细胞损伤指标,流式细胞术检测细胞凋亡发生率.结果 加热41℃组细胞增殖率与其他不同温度同剂量组比较均显著降低(P<0.01);39℃组与对照组37℃组比较差异无统计学意义(P>0.05);热疗联合Taxol组处理细胞48h后,细胞出现凋亡形态学改变.与热疗和Taxol单药组相比,热疗联合Taxol组对细胞的抑制率显著增强(P<0.01),其作用呈时间和剂量依赖性;热疗联合Taxol组诱导细胞凋亡率与单药组及单热疗组相比较均增高(P<0.05);而单药紫杉醇组与单独热疗组之间比较差异无统计学意义(P>0.05).结论 热疗和Taxol单药体外均可抑制Hep-2细胞增殖并诱导其调亡.热疗和Taxol联合应用对Hep-2细胞体外增殖抑制其诱导凋亡作用显著增强;诱导凋亡可能是细胞增殖抑制的作用机制之一.

  13. SOX2在5-氟尿嘧啶处理的人喉癌Hep-2细胞中的表达及作用机制%SOX2 Expression in Human Laryngeal Carcinoma Hep-2 Cells and the Related Mechanism under the Treatment of 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    杨宁; 惠莲; 杨会军; 姜学钧

    2014-01-01

    目的 探讨5-氟尿嘧啶(5-FU)对人喉癌Hep-2细胞中干细胞转录因子SOX2表达的影响及机制,并分析SOX2拮抗5-FU诱导的细胞凋亡作用.方法 CCK-8法检测48 h内不同浓度5-FU对Hep-2细胞生长的抑制作用,统计抑制率和IC50值.Western blot法检测5-FU作用不同时间后SOX2的表达量,并检测PI3K/AKT信号活化情况.Hoechst染色法检测细胞凋亡.结果 5-FU对Hep-2细胞生长抑制作用明显,IC50值为20.92 μg/mL.随着时间的延长SOX2表达增高,48 h达到最大值,磷酸化AKT活化也随着时间的延长逐渐增加.使用PI3K/AKT信号特异性抑制剂LY294002处理后,SOX2表达被下调;Hoechst染色法显示细胞凋亡数增多.同时检测凋亡相关蛋白表达变化,结果显示Survivin、Bcl-2、BAX在5-FU处理的Hep-2细胞中表达均上升,但PI3K/AKT信号抑制后抗凋亡蛋白Survivin、Bcl-2被显著下调,凋亡蛋白BAX表达继续上调.结论 PI3K/AKT信号活化诱导SOX2表达在Hep-2细胞拮抗5-FU诱导的细胞凋亡中发挥了重要作用.

  14. [The expression of c-myc in the tissues of human laryngeal squamous cell carcinoma and the effect of siRNA-mediated inhibition of c-myc on proliferation in laryngeal carcinoma Hep-2 cells].

    Science.gov (United States)

    Sang, Jianzhong; Liu, Li; Tian, Fang; Jin, Hongjun; Yuan, Linlin; Lou, Weihua

    2011-08-01

    To detect the expression of c-myc in the tissue of laryngeal squamous cell carcinoma. RNA interference(RNAi) was employed to inhibit the expression of c-myc in Hep-2 cells and to evaluate the effects of c-myc as a target for gene therapy in laryngeal carcinoma. Immunohistochemistry was used to determine the protein levels of c-myc and Rb in 80 cases of laryngeal squamous cell carcinoma and 30 cases of polyp of vocal cord. Hep-2 cells were transfected with c-myc siRNA, c-myc protein and mRNA levels were detected using Western Blotting and RT-PCR. Cell viability was detected by MTT after the Hep-2 cells were transfected with c-myc siRNA for different times or transfected with different concentrations c-myc siRNA. The sensitivity of Hep-2 cells to 5-Fu transfected with or without c-myc siRNA was evaluated also by MTT. Hep-2 cells were transfected with c-myc siRNA in combination with 5-Fu for 48 h and then analyzed cell apoptosis by flow cytometry. Immunohistochemical analysis showed that c-myc was highly expressed in the tissues of laryngeal squamous cell carcinoma while the expression of Rb was lower. The protein and mRNA levels of c-myc decreased after transfected with c-myc siRNA. The results of MTT showed that the c-myc siRNA inhibited Hep-2 cells growth in a concentration-dependent manner. When transfected with c-myc siRNA(50 nmol/L), the cells were inhibited in a time-dependent manner. Compared with the untransfected cells, the viability of transfected Hep-2 cells was significantly suppressed at the same concentration of 5-Fu (P Hep-2 cells to 5-Fu. Therefore,c-myc might be a good target for cancer treatment.

  15. Kinetics of antibody-induced modulation of respiratory syncytial virus antigens in a human epithelial cell line

    Directory of Open Access Journals (Sweden)

    Gómez-Garcia Beatriz

    2007-07-01

    Full Text Available Abstract Background The binding of viral-specific antibodies to cell-surface antigens usually results in down modulation of the antigen through redistribution of antigens into patches that subsequently may be internalized by endocytosis or may form caps that can be expelled to the extracellular space. Here, by use of confocal-laser-scanning microscopy we investigated the kinetics of the modulation of respiratory syncytial virus (RSV antigen by RSV-specific IgG. RSV-infected human epithelial cells (HEp-2 were incubated with anti-RSV polyclonal IgG and, at various incubation times, the RSV-cell-surface-antigen-antibody complexes (RSV Ag-Abs and intracellular viral proteins were detected by indirect immunoflourescence. Results Interaction of anti-RSV polyclonal IgG with RSV HEp-2 infected cells induced relocalization and aggregation of viral glycoproteins in the plasma membrane formed patches that subsequently produced caps or were internalized through clathrin-mediated endocytosis participation. Moreover, the concentration of cell surface RSV Ag-Abs and intracellular viral proteins showed a time dependent cyclic variation and that anti-RSV IgG protected HEp-2 cells from viral-induced death. Conclusion The results from this study indicate that interaction between RSV cell surface proteins and specific viral antibodies alter the expression of viral antigens expressed on the cells surface and intracellular viral proteins; furthermore, interfere with viral induced destruction of the cell.

  16. HEp-2 Cell Classification via Fusing Texture and Shape Information

    OpenAIRE

    Qi, Xianbiao; Zhao, Guoying; Li, Chun-Guang; Guo, Jun; Pietikäinen, Matti

    2015-01-01

    Indirect Immunofluorescence (IIF) HEp-2 cell image is an effective evidence for diagnosis of autoimmune diseases. Recently computer-aided diagnosis of autoimmune diseases by IIF HEp-2 cell classification has attracted great attention. However the HEp-2 cell classification task is quite challenging due to large intra-class variation and small between-class variation. In this paper we propose an effective and efficient approach for the automatic classification of IIF HEp-2 cell image by fusing ...

  17. Correlation of survivin, p53 and Ki-67 in laryngeal cancer Hep-2 cell proliferation and invasion

    Institute of Scientific and Technical Information of China (English)

    Shi-Geng Pei; Ju-Xiang Wang; Xue-Ling Wang; Qing-Jun Zhang; Hong Zhang

    2015-01-01

    Objective:To investigate the mechanism of survivin, p53 and Ki-67 on Hep-2 human laryngeal cancer endothelial cell proliferation and invasion.Methods:Laryngeal squamous cell carcinoma and paracancerous normal tissues were collected, total RNA was extracted from tissues,survivin,p53and Ki-67gene mRNA expression levels in laryngeal cancer and the adjacent tissues were detected by Real-time PCR. Human laryngeal cancer Hep-2 epithelial cells were selected,survivin gene was overexpressed, and cell proliferation was detected by MTT.p53 andKi-67gene expression changes in overexpressedsurvivin gene were detected by Western blot. Changes in Hep-2 cell invasive ability were studied whensurvivin was overexpressed as detected by Transwell invasion assay.Results: In the adjacent tissues, survivin,p53andKi-67 gene relative expression levels were 1.72 ± 0.9, 13.7 ± 5.7 and 5.7 ± 1.3, respectively; while in cancer tissues, gene relative expression levels were 53.7 ± 8.3, 66.7 ± 5.2 and 61.0 ± 3.1, respectively, which was significantly increased. As detected by MTT, relative cell survival rate within 12 h ofsurvivinoverexpression were: load control group, (88.5±1.6)%; overexpressed group, (90.3±1.9)%. Transwell invasion assay results indicated that overexpressedsurvivincould significantly increase the relative survival rate of cells. Conclusions:Expressions ofp53,Ki67 and survivin are increased in cancer; and there is a positive correlation betweensurvivin, p53andKi67 expressions in laryngeal carcinoma.

  18. Correlation of survivin, p53 and Ki-67 in laryngeal cancer Hep-2 cell proliferation and invasion.

    Science.gov (United States)

    Pei, Shi-Geng; Wang, Ju-Xiang; Wang, Xue-Ling; Zhang, Qing-Jun; Zhang, Hong

    2015-08-01

    To investigate the mechanism of survivin, p53 and Ki-67 on Hep-2 human laryngeal cancer endothelial cell proliferation and invasion. Laryngeal squamous cell carcinoma and paracancerous normal tissues were collected, total RNA was extracted from tissues, survivin, p53 and Ki-67 gene mRNA expression levels in laryngeal cancer and the adjacent tissues were detected by Real-time PCR. Human laryngeal cancer Hep-2 epithelial cells were selected, survivin gene was overexpressed, and cell proliferation was detected by MTT. p53 and Ki-67 gene expression changes in overexpressed survivin gene were detected by Western blot. Changes in Hep-2 cell invasive ability were studied when survivin was overexpressed as detected by Transwell invasion assay. In the adjacent tissues, survivin, p53 and Ki-67 gene relative expression levels were 1.72 ± 0.9, 13.7 ± 5.7 and 5.7 ± 1.3, respectively; while in cancer tissues, gene relative expression levels were 53.7 ± 8.3, 66.7 ± 5.2 and 61.0 ± 3.1, respectively, which was significantly increased. As detected by MTT, relative cell survival rate within 12 h of survivin overexpression were: load control group (88.5 ± 1.6)%; overexpressed group (90.3 ± 1.9)%. Transwell invasion assay results indicated that overexpressed survivin could significantly increase the relative survival rate of cells. Expressions of p53, Ki67 and survivin are increased in cancer; and there is a positive correlation between survivin, p53 and Ki67 expressions in laryngeal carcinoma. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  19. Induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA. Methods: Antisense survivin RNA expression vector was constructed and then was transfected to human laryngeal carcinoma cell line Hep-2 by lipofectamine. HpEGFP/survivin cells (transfected with the combinant of antisense survivin RNA) were obstained by using G418. The levels of survivin protein before and after transfection were determined by Western-blot. Proliferation activity was measured by MTT assay. The experiment of colony formation in soft agar was carried out for assessing ability of proliferation of Hep-2 cell. Apoptosis was assessed by flow cytometry and acrdine orange(AO).Results:After antisense survivin RNA plasmids were transfected, the level of survivin protein was inhibited in Hep-2. ComPared with control, proliferation of HpEGFP/survivin cells were suppressed significantly. The experiment of colony formation in soft agar showed the ability of colony formation decreased in HpEGFP/survivin cells compared to control (P<0.05). Apoptosis rate increased about 1.81 folds compared with control. Conclusion: The antisense survivin RNA can partly inhibit the level of survivin protein expression in Hep-2 and can induce apoptosis and inhibit the proliferation of Hep-2 by down-regulating the expression of endogenous survivin in vitro.

  20. [Influencing of hep-2 cell function by RNAi silencing E-cadherin expression].

    Science.gov (United States)

    Tian, Jun; Li, Cheng-wen; Wu, Gui-qing; Sun, Jing; Chen, Qi

    2013-02-26

    To explore the function of human laryngeal carcinoma Hep-2 cell after down-regulating the expression of E-cadherin gene to provide theoretical rationales for gene therapy of laryngeal cancer. According to the GenBank database, 3 pairs of shRNA sequences of E-cadherin gene were designed and synthesized. shRNAs were transfected into the cell line Hep-2 by liposome. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the silencing effect of E-cadherin expression. The changed capacity of cell proliferation were detected in vitro by methyl thiazolyl tetrazolium (MTT) assay in the transfected Hep-2 cells and the cell proliferation rate (survival rate) was calculated. And Transwell was used to detect the migratory capacity of Hep-2 cells after siRNA transfection. The E-cadherin gene expression of RNAi transfected Hep-2 cells significantly decreased in interference group. And the proliferation of interference group became markedly enhanced. In Transwell test, the migrated cell numbers in interference group were significant higher than those in negative control group (262 ± 15, 288 ± 12, 292 ± 6 vs 74 ± 8, all P Hep-2 cells. And E-cadherin may be considered as one of gene therapy targets for laryngeal cancer.

  1. Adhesion, invasion, intracellular survival and cytotoxic activity of strains of Aeromonas spp. in HEp-2, Caco-2 and T-84 cell lines.

    Science.gov (United States)

    dos Santos, Paula Azevedo; Pereira, Ana Claudia Machado; Ferreira, Andréa Fonseca; de Mattos Alves, Maria Angélica; Rosa, Ana Cláudia Paula; Freitas-Almeida, Angela Corrêa

    2015-05-01

    The genus Aeromonas contains important pathogen for both humans and other animals, being responsible for the etiology of intestinal and extraintestinal diseases. The pathology caused by these bacteria involves several virulence factors, such as the ability to produce toxins, adhesion and invasion. The properties conferred by these factors have been extensively studied in experiments of interaction between bacterial strains and cell culture. We evaluate the interaction of eight Aeromonas spp. strains, previously isolated from human faeces, food and water with HEp-2, Caco-2 and T-84 cell lines. Cytotoxic effects, the pattern of adhesion, invasive capacity and intracellular survival were analyzed. The results showed that Aeromonas strains were adherent to three cells lines in 6 h of incubation, displaying the aggregative adherence pattern. Among eight strains studied, 50% produced cytotoxic effects on HEp-2 cells, while none of the strains produced cytotoxic effects on Caco-2 and T-84 cells at 48 h. This study demonstrated that subsets of Aeromonas isolated from different sources were able to invade intestinal (T-84, Caco-2) and epithelial (HEp-2) cell lines cultivated in vitro surviving in intracellular environments up to 72 h. Finally, our results support the pathogenic potential of Aeromonas, especially those of food and clinical sources.

  2. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Hogan Robert J

    2010-09-01

    Full Text Available Abstract Background Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Results Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649 that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells and A549 (type II pneumocytes, as well as to cultures of normal human bronchial epithelium (NHBE. Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures. A second YadA-like gene product highly similar to BoaA (65% identity was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705. The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to

  3. Isolectins of phytohemagglutinin are able to induce apoptosis in HEp-2 carcinoma cells in vitro.

    Science.gov (United States)

    Kochubei, T O; Maksymchuk, O V; Piven, O O; Lukash, L L

    2015-06-01

    To study the effects of total phytohemagglutinin (PHA) and its isolectins on cell death and apoptosis in human HEp-2 carcinoma cells and to analyze the possible molecular mechanisms of lectin induced apoptosis. The commercial preparation of the kidney beans (Phaseolus vulgaris) lectins and HEp-2 cells were used. Apoptosis index was determined using acridine orange and ethidium bromide staining. The expression levels of apoptosis mediator cleaved caspase-3 and proapoptotic Bax protein were studied by Western blot analysis. The gene expression levels were analyzed by qPCR. PHA and its isolectins induced apoptosis in HEp-2 cells accompanied by the increased expression of caspase-3 cleaved form, with PHA-E being the most effective. The treatment of HEp-2 cells with PHA or its isolectins resulted in a marked increase of Bax on both mRNA and protein levels. PHA and its isolectins were shown to induce the apoptosis in human HEp-2 carcinoma cells via increasing proapoptotic protein Bax and activating caspases-3.

  4. Adenovirus with p16 gene exerts antitumor effect on laryngeal carcinoma Hep2 cells.

    Science.gov (United States)

    Yang, Zhengang; Hu, Jingxia; Li, Dajun; Pan, Xinliang

    2016-08-01

    Laryngeal cancer is an uncommon form of cancer. The tumor suppressor P16, known to be mutated or deleted in various types of human tumor, including laryngeal carcinoma, is involved in the formation and development of laryngeal carcinoma. It has been previously reported that the inactivation or loss of P16 is associated with the acquisition of malignant characteristics. The current study hypothesized that restoring wild‑type P16 activity into P16‑null malignant Hep2 cells may exert an antitumor effect. A recombinant adenovirus carrying the P16 gene (Ad‑P16) was used to infect and express high levels of P16 protein in P16‑null Hep2 cells. Cell proliferation and invasion assays and polymerase chain reaction were performed to evaluate the effects of the P16 gene on cell proliferation and the antitumor effect on Hep2 cells. The results demonstrated that the Hep2 cells infected with Ad‑P16 exhibited significantly reduced cell proliferation, invasion and tumor volume compared with untreated or control adenovirus cells. Furthermore, the expression of laryngeal carcinoma‑associated genes, EGFR, survivin and cyclin D1, were measured in Ad‑P16‑infected cells and were significantly reduced compared with control groups. The results of the current study demonstrate that restoring wild‑type P16 activity into P16-null Hep2 cells exerts an antitumor effect.

  5. Haemophilus influenzae triggers autophagy in HEp-2 cells.

    Science.gov (United States)

    Espinoza-Mellado, María del Rosario; Reyes-Picaso, Carolina; Garcés-Pérez, Miriam S; Jardón-Serrano, Cynthia V; López-Villegas, Edgar O; Giono-Cerezo, Silvia

    2016-03-01

    The MAP-LC3 system regulates the intracellular formation of autophagy-associated vacuoles. These vacuoles contain the LC3 protein; thus it has been utilized as a marker to identify autophagosomes. The aim of our study was to investigate whether Haemophilus influenzae strains and their supernatants could activate autophagy in human larynx carcinoma cell line (HEp-2). We demonstrate that higher expression of the LC3B-II protein was induced, particularly by nontypeable Haemophilus influenzae (NTHi) 49766 and by supernatants, containing <50 kDa proteins, of both strains. Ultrastructural studies demonstrate vacuoles with a double membrane and/or membrane material inside, showing similar features to those of autophagic vacuoles. Together, our findings demonstrate that H. influenzae strains and their supernatants trigger an autophagic process.

  6. High-Throughput Sequencing of MicroRNAs in Adenovirus Type 3 Infected Human Laryngeal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yuhua Qi

    2010-01-01

    Full Text Available Adenovirus infection can cause various illnesses depending on the infecting serotype, such as gastroenteritis, conjunctivitis, cystitis, and rash illness, but the infection mechanism is still unknown. MicroRNAs (miRNA have been reported to play essential roles in cell proliferation, cell differentiation, and pathogenesis of human diseases including viral infections. We analyzed the miRNA expression profiles from adenovirus type 3 (AD3 infected Human laryngeal epithelial (Hep2 cells using a SOLiD deep sequencing. 492 precursor miRNAs were identified in the AD3 infected Hep2 cells, and 540 precursor miRNAs were identified in the control. A total of 44 miRNAs demonstrated high expression and 36 miRNAs showed lower expression in the AD3 infected cells than control. The biogenesis of miRNAs has been analyzed, and some of the SOLiD results were confirmed by Quantitative PCR analysis. The present studies may provide a useful clue for the biological function research into AD3 infection.

  7. MAPK Activation Is Essential for Waddlia chondrophila Induced CXCL8 Expression in Human Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Skye Storrie

    Full Text Available Waddlia chondrophila (W. chondrophila is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus. The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila.Human epithelial cells (HEp2 were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed.W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.

  8. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  9. The Classification of HEp-2 Cell Patterns Using Fractal Descriptor.

    Science.gov (United States)

    Xu, Rudan; Sun, Yuanyuan; Yang, Zhihao; Song, Bo; Hu, Xiaopeng

    2015-07-01

    Indirect immunofluorescence (IIF) with HEp-2 cells is considered as a powerful, sensitive and comprehensive technique for analyzing antinuclear autoantibodies (ANAs). The automatic classification of the HEp-2 cell images from IIF has played an important role in diagnosis. Fractal dimension can be used on the analysis of image representing and also on the property quantification like texture complexity and spatial occupation. In this study, we apply the fractal theory in the application of HEp-2 cell staining pattern classification, utilizing fractal descriptor firstly in the HEp-2 cell pattern classification with the help of morphological descriptor and pixel difference descriptor. The method is applied to the data set of MIVIA and uses the support vector machine (SVM) classifier. Experimental results show that the fractal descriptor combining with morphological descriptor and pixel difference descriptor makes the precisions of six patterns more stable, all above 50%, achieving 67.17% overall accuracy at best with relatively simple feature vectors.

  10. Mining knowledge for HEp-2 cell image classification.

    Science.gov (United States)

    Perner, Petra; Perner, Horst; Müller, Bernd

    2002-01-01

    HEp-2 cells are used for the identification of antinuclear autoantibodies (ANAs). They allow for recognition of over 30 different nuclear and cytoplasmic patterns, which are given by upwards of 100 different autoantibodies. The identification of the patterns has recently been done manually by a human inspecting the slides with a microscope. In this paper, we present results on the analysis and classification of cells using image analysis and data mining techniques. Starting from a knowledge acquisition process with a human operator, we developed an image analysis and feature extraction algorithm. The collection of the dataset was done based on an expert's image reading and based on the automatic extracted features. A dataset containing 132 features for each entry was set up and given to a data mining algorithm to find out the relevant features among this large feature set and to construct the classification knowledge. The classifier was evaluated by cross validation. The results gave the expert new insights into the necessary features and the classification knowledge and show the feasibility of an automated inspection system.

  11. [Autoantibody detection by indirect immunofluorescence on HEp-2 cells].

    Science.gov (United States)

    Sack, U; Conrad, K; Csernok, E; Frank, I; Hiepe, F; Krieger, T; Kromminga, A; Landenberg, P von; Messer, G; Witte, T; Mierau, R

    2009-06-01

    Systemic autoimmune diseases are characterized by the presence of antinuclear autoantibodies (ANA). Diluted patient sera are typically used to screen for the presence of ANA by immunfluorescence microscopy with fixed HEp-2 cells. Despite high-quality test kits, reports of different laboratories frequently present controversial results. This article recommends unified processing and interpretation of HEp-2 based screening for autoantibodies. Suggestions are made for the selection of high-quality test kits, optimized processing and diagnostic procedures. In addition to a relevant clinical diagnosis and an experienced laboratory specialist, the following procedure is highly recommended to achieve good laboratory practice: Initial HEp-2 based screening by indirect immunofluorescence, starting with a 1:80 serum dilution, and evaluation in a bright fluorescence microscope, pathological values from a titer of 1:160 upwards, internal quality checks and unified interpretation. We aim to improve diagnosis and care of patients with autoimmune diseases as a central focus of the European Autoimmunity Standardization Initiative (EASI).

  12. Focal epithelial hyperplasia caused by human papillomavirus 13.

    Science.gov (United States)

    Saunders, Natasha R; Scolnik, Dennis; Rebbapragada, Anuradha; Koelink, Eric; Craw, Lindsey; Roth, Sherryn; Aronson, Leya; Perusini, Stephen; Silverman, Michael S

    2010-06-01

    Focal epithelial hyperplasia is a benign, papulo-nodular disease of the oral cavity. It is rare, affecting primarily Native American populations during childhood. It is closely associated with human papillomavirus 13 and 32. This report describes the diagnosis of 2 cases of focal epithelial hyperplasia in children from southern Guyana. The diagnosis was made using clinical criteria, polymerase chain reaction, and DNA sequencing.

  13. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    Science.gov (United States)

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  14. Enhancement of the genotoxicity of benzo[a]pyrene by arecoline through suppression of DNA repair in HEp-2 cells.

    Science.gov (United States)

    Huang, J L; Lu, H H; Lu, Y N; Hung, P S; Lin, Y J; Lin, C C; Yang, C C; Wong, T Y; Lu, S Y; Lin, C S

    2016-06-01

    The International Agency for Research on Cancer lists the principal component of betel quid (BQ), the areca nut, and that of cigarette smoke, benzo[a]pyrene (BaP), as Group 1 carcinogens. Epidemiological studies have shown that coexposure of BQ and cigarette smoke markedly increases the risk of cancer. We previously demonstrated that arecoline, the most abundant alkaloid in the areca nut, inhibits nucleotide excision repair through the repression of p53 activity. To investigate the combined potency of arecoline and BaP in carcinogenesis, we treated human epithelial HEp-2 cells with subcytotoxic doses of arecoline and BaP, alone or in combination, and examined the effects on DNA damage and repair. When exposed for 24h, BaP enhanced DNA repair and p53 transactivation activity. However, these enhancements were suppressed through concurrent treatment of the cells with arecoline. Using a Comet assay, we found that extended exposure to arecoline and BaP caused moderate-to-severe DNA damage in 60% of the cells. Expression of the XPD helicase was transcriptionally suppressed by 1 week of treatment with BaP. Our studies have revealed potential targets in the DNA repair pathway that are affected by BQ and tobacco components, as well as the effect of these components on carcinogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. K-ras基因在人喉鳞状细胞癌细胞株(Hep-2)中的表达及其意义%Relation between the Expression of K-ras in Hep-2 Cells and Development of Laryngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    陈雄; 孔维佳; 张苏琳; 张丹

    2006-01-01

    Objective: To investigate the expression of K-ras in human laryngeal squamous cell carcinoma cell lines (Hep-2) and its significance for establishing a solid foundation for further study of the relationship between human laryngeal squamous cell carcinoma and K-ras gene point mutations. Methods:The expression of K-ras in human laryngeal squamous cell carcinoma cell lines (Hep-2) and human pancreatic carcinoma cell lines (MIAPaCa-2) was detected by using RT-PCR. Results: The expression of K-ras mRNA in Hep-2 and MIAPaCa-2 was strong and positive. Conclusion: The expression of K-rasmRNA in human laryngeal squamous cell carcinoma cell lines (Hep-2) is positive. Development of laryngeal carcinoma might be related to the activation of K-ras gene point mutation.

  16. Expression, localization and clinical application of exogenous Smith proteins D1 in gene transfected HEp-2 cells.

    Science.gov (United States)

    Wang, Su-li; Wang, Fang-fang; Chen, Shun-le; Shen, Nan; Xue, Feng; Ye, Ping; Bao, Chun-de; Gu, Yue-ying; Yu, Chong-zhao; Wilson, Alisa; Wallace, Daniel J; Weisman, Michael H; Lu, Liang-jing

    2013-06-01

    To establish an improved substrate for an indirect immunofluorescence test (IIF) to detect anti-Sm antibody. Full-length Smith protein D1(Sm-D1) complementary DNA was obtained from human larynx carcinoma cell line HEp-2 by reverse transcription - polymerase chain reaction (RT-PCR) and cloned into the mammalian expression vector pEGFP-C1. The recombinant plasmid pEGFP-Sm-D1 was transfected into HEp-2 cells. The expression, localization and antigenicity of fusion proteins of green fluorescent protein (GFP) in transfected cells were confirmed by means of immunoblotting (IBT), confocal fluorescence microscopy and IIF analysis. Transfected HEp-2 cells were analyzed with reference serum and compared with untransfected HEp-2 cells by IIF. Stable expression of the Sm-D1-GFP was maintained for more than ten generations. This Sm-D1-GFP showed the antigenicity of Sm-D1 with a characteristic phenotype in IIF.Six of 12 serum specimens from systemic lupus erythematosus contained both 29/28 and 13.5 kDa proteins and showed characteristic immunofluorescent patterns. The same phenomenon appeared in 3/6 serum samples which contained 29/28 kDa proteins only. Sera from 10 healthy donors did not react with HEp-Sm-D1 or HEp-2 at 1:80 attenuant degrees. No alteration in expression, localization and morphology was observed when HEp-Sm-D1 or HEp-2 interacted with the reference sera which could react with Ro/SSA, La/SSB, β2GP1, centromere, histone, and Scl-70 antibodies in routine IIF tests. As a new kind of substrate of IIF, HEp-Sm-D1 can be used to detect anti-Sm antibodies. Transfected HEp-2 cells keep the immunofluorescent property of HEp-2 cells in immunofluorescence anti-nuclear antibody (IFANA) test and could potentially be used as substrate for routine IFANA detection. © 2012 The Authors International Journal of Rheumatic Diseases © 2012 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  17. Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells.

    Science.gov (United States)

    Chen, Xuemei; Liu, DI; Wang, Junfu; Su, Qinghong; Zhou, Peng; Liu, Jinsheng; Luan, Meng; Xu, Xiaoqun

    2014-03-01

    The melanoma differentiation-associated gene-7 [MDA-7; renamed interleukin (IL)-24] was isolated from human melanoma cells induced to terminally differentiate by treatment with interferon and mezerein. MDA-7/IL-24 functions as a multimodality anticancer agent, possessing proapoptotic, antiangiogenic and immunostimulatory properties. All these attributes make MDA-7/IL-24 an ideal candidate for cancer gene therapy. In the present study, the human MDA-7/IL-24 gene was transfected into the human laryngeal cancer Hep-2 cell line and human umbilical vein endothelial cells (HUVECs) with a replication-incompetent adenovirus vector. Reverse transcription polymerase chain reaction and western blot analysis confirmed that the Ad-hIL-24 was expressed in the two cells. The expression of the antiapoptotic gene, Bcl-2, was significantly decreased and the IL-24 receptor was markedly expressed in Hep-2 cells following infection with Ad-hIL-24, but not in HUVECs. In addition, the expression of the proapoptotic gene, Bax, was induced and the expression of caspase-3 was increased in the Hep-2 cells and HUVECs. Methyl thiazolyl tetrazolium assay indicated that Ad-hIL-24 may induce growth suppression in Hep-2 cells but not in HUVECs. In conclusion, Ad-hIL-24 selectively inhibits proliferation and induces apoptosis in Hep-2 cells. No visible damage was found in HUVECs. Therefore, the results of the current study indicated that Ad-hIL-24 may have a potent suppressive effect on human laryngeal carcinoma cell lines, but is safe for healthy cells.

  18. Lactobacillus plantarum reduces Streptococcus pyogenes virulence by modulating the IL-17, IL-23 and Toll-like receptor 2/4 expressions in human epithelial cells.

    Science.gov (United States)

    Rizzo, Antonietta; Losacco, Antonio; Carratelli, Caterina Romano; Domenico, Marina Di; Bevilacqua, Nazario

    2013-10-01

    Streptococcus pyogenes is a common colonizer of the mucosal layers in the mouth, nose, and pharynx but it is also a major Gram-positive human pathogen that causes infections ranging from pharyngitis to severe systemic diseases. The lactobacilli colonize the oral tracts and are known to protect against colonization by many pathogens. Epithelial cells participate in the innate host defense by expressing a variety of proinflammatory cytokines and TLRs in the interaction with microorganisms. The potentially probiotic strain Lactobacillus plantarum was investigated for its capacity to influence the innate immune response of HEp-2 and A549 epithelial cells to S. pyogenes infection. In both epithelial cell types, pre-treatment with L. plantarum showed inhibition of S. pyogenes growth and a greater decrease in IL-17 and IL-23 levels compared to the control. Pre-treatment with the anti-TLR2/4 antibody abolished the inhibitory effects of L. plantarum on IL-17 and IL-23 production following S. pyogenes infection, indicating that L. plantarum downregulates TLR2/4-dependent IL-17 and IL-23 production. Overall, our findings suggest that in epithelial cell cultures with S. pyogenes, cytokine responses are modulated by the presence of L. plantarum through the induction of TLR2/TLR4.

  19. Epithelial cells as alternative human biomatrices for comet assay

    Directory of Open Access Journals (Sweden)

    Emilio eRojas

    2014-11-01

    Full Text Available The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes.Over a thirty year period, the comet assay in epithelial cells has been litlle employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  20. Human papillomavirus: cause of epithelial lacrimal sac neoplasia?

    DEFF Research Database (Denmark)

    Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia

    2007-01-01

    PURPOSE: Epithelial tumours of the lacrimal sac are rare but important entities that may carry grave prognoses. In this study the prevalence and possible role of human papillomavirus (HPV) infection in epithelial tumours of the lacrimal sac were evaluated. METHODS: Five papillomas and six...... 11 RNA was demonstrated in two papillomas. CONCLUSIONS: By analysing 11 epithelial lacrimal sac papillomas and carcinomas using PCR, DNA ISH and RNA ISH, we found HPV DNA in all investigated transitional epithelium tumours of the lacrimal sac. HPV RNA was present in two of eight epithelial lacrimal...... sac tumours positive for HPV DNA. As RNA degrades fast in paraffin-embedded tissue, only a small fraction of DNA-positive tumours can be expected to be RNA-positive. We therefore suggest that HPV infection is associated with the development of lacrimal sac papillomas and carcinomas....

  1. Bacillus anthracis lethal toxin reduces human alveolar epithelial barrier function.

    Science.gov (United States)

    Langer, Marybeth; Duggan, Elizabeth Stewart; Booth, John Leland; Patel, Vineet Indrajit; Zander, Ryan A; Silasi-Mansat, Robert; Ramani, Vijay; Veres, Tibor Zoltan; Prenzler, Frauke; Sewald, Katherina; Williams, Daniel M; Coggeshall, Kenneth Mark; Awasthi, Shanjana; Lupu, Florea; Burian, Dennis; Ballard, Jimmy Dale; Braun, Armin; Metcalf, Jordan Patrick

    2012-12-01

    The lung is the site of entry for Bacillus anthracis in inhalation anthrax, the deadliest form of the disease. Bacillus anthracis produces virulence toxins required for disease. Alveolar macrophages were considered the primary target of the Bacillus anthracis virulence factor lethal toxin because lethal toxin inhibits mouse macrophages through cleavage of MEK signaling pathway components, but we have reported that human alveolar macrophages are not a target of lethal toxin. Our current results suggest that, unlike human alveolar macrophages, the cells lining the respiratory units of the lung, alveolar epithelial cells, are a target of lethal toxin in humans. Alveolar epithelial cells expressed lethal toxin receptor protein, bound the protective antigen component of lethal toxin, and were subject to lethal-toxin-induced cleavage of multiple MEKs. These findings suggest that human alveolar epithelial cells are a target of Bacillus anthracis lethal toxin. Further, no reduction in alveolar epithelial cell viability was observed, but lethal toxin caused actin rearrangement and impaired desmosome formation, consistent with impaired barrier function as well as reduced surfactant production. Therefore, by compromising epithelial barrier function, lethal toxin may play a role in the pathogenesis of inhalation anthrax by facilitating the dissemination of Bacillus anthracis from the lung in early disease and promoting edema in late stages of the illness.

  2. A study on the best irradiation dose of X-ray for Hep-2 cells by Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Renming Liu; Weiyue Tang; Guangshui Zhang; Fengqiu Zhang; Xinhui Yan

    2008-01-01

    Fourier transform infrared spectroscopy (FTIR) was employed to study the human epidermis larynx carcinoma cell lines (Hep-2) which were irradiated by different doses of X-ray.The results show that (1) the irradiation of X-ray damages the structure of the CH3 groups of the thymine in DNA,which restrains the reproduction of Hep-2 cells effectively,(2) the 8 Gy dose of X-ray irradiation changes the framework and the relative contents of some proteins,lipids and the nucleic acid molecules intercellular in the greatest degree,and (3) the 8 Gy dose of X-ray irradiation is the best irradiation dose for lowering the degree of the cancerization of Hep-2 cells according to the criteria for the degree of the cancerization reported recently.Meanwhile,the apoptosis of these cells were detected by using flow cytometry (FCM) primarily.It shows that the apoptotic ratio of the Hep-2 cells depends on the irradiation dose to some extent,but is not linearly.And the apoptotic ratio of the 12 Gy dose group is the maximum (20.36%),but the apoptotic ratios of the 2 to 8 Gy dose groups change little.

  3. Polypeptide composition and gag gene-coded products of type-D oncovirus from HEp-2 cells.

    Science.gov (United States)

    Morozov, V A

    1982-01-01

    The protein composition of type-D oncovirus HEp-2, isolated from cell-free medium of continuous human HEp-2 cell line, has been investigated using electrophoresis on gradient polyacrylamide gels with sodium dodecyl sulfate (SDS). Labeling with 14C-amino acids revealed five viral polypeptides with molecular weights of 70 000 (gp70), 27 000 (p27), 19 000 (p19), 15 000 (p15), 12 000-10 000 (p12-10). The 70 000 dalton protein was shown to be the only glycoprotein by incorporation of radioactive glucosamine. A polypeptide with molecular weight of 78 000 has been specifically precipitated from pulse-labeled type-D oncovirus producing HEp-2 cells with goat anti Mason-Pfizer p27 serum. This protein was shown to be gag gene-coded polyprotein precursor (Pr78gag) of the major virus polypeptide p27. Pulse-labeled HEp-2 and Mason-Pfizer infected Tu 197 cells were rinsed, lysed, clarified and precipitated with goat anti Mason-Pfizer p27 serum. In both cases Pr78gag was detected.

  4. Tetrandrine Inhibits the Intracellular Calcium Ion Level and Upregulates the Expression of Brg1 and AHNAK in Hep-2 Cells.

    Science.gov (United States)

    Cui, Xiangyan; Zhu, Wei; Wang, Ping; Wang, Xin

    2015-01-01

    Tetrandrine has been found to inhibit the growth of various types of tumor cells, but the underlying molecular mechanism remains to be determined. We aimed to investigate the effects of tetrandrine on human laryngeal carcinoma Hep-2 cells. Cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle was analyzed using flow cytometric analysis. The intracellular Ca2+ concentration was monitored using the membrane-permeable Ca(2+)-sensitive fluorescent probe fluo-3 acetoxymethyl ester-AM (Fluo3-AM). The mRNA and protein expression of Brgl and AHNAK were evaluated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunocytochemistry, respectively. Tetrandrine significantly inhibited the proliferation of Hep-2 cells as indicated by an IC50 value of 13.28 μg/mL. Tetrandrine induced cell cycle arrest at the G1 phase and decreased the intracellular concentration of Ca2+ in a concentration dependent manner. Intriguingly, tetrandrine upregulated Brg1 expression in a dose-and time-dependent pattern and elevated the expression of AHNAK in Hep-2 cells. Our results suggest that tetrandrine may inhibit the growth of Hep-2 cells by decreasing the intracellular concentration of Ca2+ and upregulating the expressions of Brg1 and AHNAK.

  5. Characterization of Human Mammary Epithelial Stem Cells

    Science.gov (United States)

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  6. Establishment of Hertwig’s Epithelial Root Sheath/Epithelial Rests of Malassez Cell Line from Human Periodontium

    OpenAIRE

    Nam, Hyun; Kim, Ji-Hye; Kim, Jae-Won; Seo, Byoung-Moo; Park, Joo-Cheol; Kim, Jung-Wook; Lee, Gene

    2014-01-01

    Human Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare populati...

  7. Comparative ultrastructure analysis of radiation-induced radioresistant laryngeal cancer hep-2 cell line.

    Science.gov (United States)

    Yang, Bo; Tang, Fuqiu; Zhang, Bicheng; Zhao, Yong; Ding, Shifang; Rao, Zhiguo

    2014-08-01

    Radioresistance is one of the main reasons for the failure of radiotherapy in laryngeal cancer. However, the mechanisms of radioresistance of tumor cells have remained elusive. This study was conducted to identify the ultrastructural changes of radiation-induced radioresistant laryngeal cancer hep-2 cell line. First, a radioresistant hep-2R cell line was generated after prolonged exposure to γ-rays for 60 Gy (6 Gy/day, 2 days/week) and was confirmed by clonogenic assay. Next, the ultrastructural differences between hep-2R cells and hep-2 cells were compared by transmission electron microscopy. Finally, the results showed that hep-2R cells showed significant resistance to radiation compared with parental hep-2 cells. Increased cell nucleus atypia, more rough endoplasmic reticulum and less mitochondria were observed in hep-2R cells. The amount of microvilli of hep-2R was similar to hep-2 cell. In summary, these ultrastructural differences revealed the morphological mechanism that hep-2R cells had stronger radioresistance than hep-2 cells.

  8. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  9. Paramyxovirus Infection Mimics In Vivo Cellular Dynamics in Three-Demensional Human Bronchio-Epithelial Tissue-Like Assemblies

    Science.gov (United States)

    Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.

    2012-01-01

    Respiratory syncytial virus and parainfluenza virus cause severe respiratory disease, especially in infants, children and the elderly. An in vitro model that accurately mimics infection of the human respiratory epithelium (HRE) would facilitate vaccine development greatly. Monolayer cultures traditionally used to study these viruses do not accurately and precisely differentiate the replication efficiencies of wild type and attenuated viruses. Therefore, we engineered novel three-dimensional (3D) tissue-like assemblies (TLAs) of human broncho-epithelial (HBE) cells to produce a more physiologically relevant in vitro model of the HRE. TLAs resemble HRE structurally and by expression of differentiated epithelial cell markers. Most significantly, wild type viruses exhibited a clear growth advantage over attenuated strains in TLAs unlike monolayer cultures. In addition, the TLAs responded to virus infection by secreting pro-inflammatory mediators similar to the respiratory epithelia of infected children. These characteristics make the TLA model a valuable platform technology to develop and evaluate live, attenuated respiratory virus vaccine candidates for human use. Respiratory virus diseases, the most frequent and least preventable of all infectious diseases, range in severity from the common cold to severe bronchiolitis and pneumonia . Two paramyxoviruses, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3), are responsible for a majority of the most severe respiratory diseases of infants and young children. RSV causes 70% of all bronchiolitis cases and is a major cause of morbidity and mortality worldwide, especially in infants. PIV3 causes 10-15% of bronchiolitis and pneumonia during infancy, second only to RSV, and 40% of croup in infants To date, licensed vaccines are not available to prevent these respiratory diseases. At present, traditional monkey kidney (Vero and LLC-MK2) and human (HEp-2) tissue culture cells and small animal models (mouse

  10. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  11. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  12. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  13. Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2013-06-01

    Full Text Available Background: Transforming growth factor-β1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to idiopathic pulmonary fibrosis (IPF. TGF-β1-induced EMT in A549 cells (a human AEC cell line resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim, a 3-hydroxy-3-methylglutaryl CoA (HMG-CoA reductase inhibitor, has been previously reported to inhibit EMT in human proximal tubular epithelial cells and porcine lens epithelial cells and to suppress Smad2/3 phosphorylation in animal models. However, whether Sim can attenuate TGF-β1-induced EMT in A549 cells and its underlying mechanisms remains unknown. Methods: Cells were incubated with TGF-β1 in the presence or absence of Sim. The epithelial marker E-cadherin (E-Cad and the mesenchymal markers, α-smooth muscle actin (α-SMA, vimentin (Vi and fibronectin (FN, were detected using western blotting analyses and immunofluorescence. Phosphorylated Smad2 and Smad3 levels and connective tissue growth factor (CTGF were analyzed using western blotting. In addition, a cell migration assay was performed. Moreover, the levels of matrix metalloproteinase (MMP-2 and -9 in the culture medium were examined using ELISA. Results: Sim significantly attenuated the TGF-β1-induced decrease in E-Cad levels and elevated the levels of α-SMA, Vi and FN via the suppression of Smad2 and Smad3 phosphorylation. Furthermore, Sim inhibited the mesenchymal-like responses in A549 cells, including cell migration, CTGF expression and secretion of MMP-2 and -9. However, Sim failed to reverse the cell morphologial changes induced by TGF-β1 in A549 cells. Conclusion: Sim attenuated TGF-β1-induced EMT in A549 cells and might be a promising therapeutic agent for treating IPF.

  14. Downregulated Chibby in laryngeal squamous cell carcinoma with increased expression in laryngeal carcinoma Hep-2 cells.

    Science.gov (United States)

    Xu, Jue; Ren, Gang; Zhao, De-An; Li, Bo-An; Cai, Cheng-Fu; Zhou, Yi; Luo, Xian-Yang

    2014-11-01

    Chibby (Cby) inhibits Wnt/β-catenin-mediated transcriptional activation by competing with Lef-1 (the transcription factor and target of β-catenin) to bind to β-catenin. This suggests that Cby could be a tumor suppressor protein. In the present study, we examined Cby expression in laryngeal squamous cell carcinoma (LSCC) and its function and mechanism in laryngeal carcinoma cell lines. Cby expression levels were investigated by immunohistochemistry in a panel of 36 LSCC patient cases. The expression of β-catenin, c-myc and cyclin D1 in Hep-2 were determined through RT-PCR and western blot analysis. Activity of Wnt/β-catenin signaling pathway after overexpression of Cby was measured by TCF/LEF luciferase reporter gene assay. Proliferation, clone forming ability, cell cycle distribution and cell apoptosis of Hep-2 cells were detected by MTT assay, plate colony forming assay, flow cytometry and TUNEL assay, respectively. This study showed that expression of Cby protein was strongly downregulated in LSCC tumor tissues in comparison to normal laryngeal mucosa samples. No significant correlation was found between the expression of Cby in tumor tissue and gender, age, clinical stage and tumor differentiation of laryngeal cancer patients. When Cby was overexpressed in Hep-2 cells, the expression of cyclin D1 was reduced and β-catenin activity was inhibited. Proliferation and plate colony forming assays revealed a significant inhibitory effect of Cby on growth and colony formation ability of Hep-2 cells after Cby overexpression in comparison to control and mock-infected cells. In addition, we also found that upregulated expression of Cby resulted in accumulation of numbers of cells in G0/G1 phase with concomitant decrease in S phase by cell cycle assay. TUNEL staining demonstrated that, compared with the control group, the rate of apoptosis in the plv-cs2.0-Cby group was significantly increased. Taken together, downregulation of Cby was observed in LSCC, but with no

  15. Expression, localization, and clinical application of the RNA binding domain of U1-70kD in HEp-2 cells.

    Science.gov (United States)

    Song, Yang; Chen, Shun-le; Shen, Nan; Xue, Feng; Ye, Ping; Bao, Chun-de; Gu, Yue-ying; Yu, Chong-zhao; Lu, Liang-jing

    2015-01-01

    To develop an improved substrate for indirect immunofluorescent test (IIF) to detect anti-U1-70kD autoantibodies. The RNA binding domain of U1-70kD (U1BD) complementary DNA was obtained from human larynx carcinoma cell line HEp-2 by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into the mammalian expression vector pEGFP-C1. The recombinant plasmid pEGFP-U1BD was transfected into HEp-2 cells. Immunoblotting (IBT), confocal fluorescence microscopy, and IIF were used to confirm the expression, localization, and antigenicity of fusion proteins of green fluorescent protein (GFP) in transfected HEp-2 cells, which were then analyzed by IIF using human reference sera and compared with untransfected HEp-2 cells simultaneously. (1) The HEp-U1BD cells thus obtained retained their ability to express U1BD-GFP, which showed the antigenicity of U1BD with a characteristic phenotype in IIF. (2) Fifteen IBT-positive anti-U1-70kD sera presented with characteristic cytoplasmic staining on HEp-U1BD by IIF, but five sera without the 70kD reactive band in IBT were not found in the presence of HEp-U1BD pattern. Ten sera of healthy donors couldn't react with HEp-2 and HEp-U1BD at 1:80 attenuant degrees. (3) No differences in expression, localization, or morphology were observed when HEp-U1BD or HEp-2 interacted with the reference sera that could react with Ro/SSA, La/SSB, centromere, histone, and Scl-70 antigens in routine IIF test. HEp-U1BD cells kept the immunofluorescent properties of HEp-2 cells in an immunofluorescence anti-nuclear antibody (IFANA) test and could be potentially used as a substrate for routine IFANA detection. © 2015 by the Association of Clinical Scientists, Inc.

  16. [The vitro research of effects of Beclin1 on paclitaxel-sensitivity in laryngeal carcinoma cell Hep-2].

    Science.gov (United States)

    Deng, Xiaocong; Yang, Xinming; Li, Shisheng

    2015-01-01

    Background: We detect the effects of Beclinl on paclitaxel-sensitivity in laryngeal carcinoma cell. This study used Hep-2, Hep-2-pcDNA3. 1, Hep-2-Beclinl as invitro model. The effect of paclitaxel on the proliferation and cell apoptosis of laryngeal cancer cell lines was evaluated by MTT assay and flow cytometry. The protein expression level of Akt and p-Akt was detected by Western blot. Result: After treated by paclitaxel, the inhibition rate was significantly higher in Hep-2-Beclin cells than in Hep-2-pcDNA3. 1 cells and Hep-2 cells (PHep-2, Hep-2-pcDNA3. 1, Hep-2-Beclinl were (23. 75 ± 2 3. 77) %, (21. 25 ± 4. 92) %, (32. 50 ± 5. 97) %, respectively. After dealing with 20µg/L paclitaxel, the apoptosis rate in Hep-2, Hep-2-pcDNA3. 1, Hep-2-Beclinl were (38. 75 ± 4. 79) %, (38. 75±6. 55) %, (50. 00±7. 26) %, respectively. Paclitaxel-induced apoptosis was higher in Hep-2-Beclin cells than in Hep-2-pcDNA3. 1 cells and Hep-2 cells (PHep-2-Beclin cells was lower than in Hep-2-pcDNA3. 1 cells and Hep-2 cells (P0. 05). Beclinl enhances paclitaxel-sensitivity by inhibition of PI3K/Akt pathway.

  17. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells.

    Science.gov (United States)

    Sabbadini, Priscila Soares; Assis, Maria Cristina; Trost, Eva; Gomes, Débora Leandro Rama; Moreira, Lilian Oliveira; Dos Santos, Cíntia Silva; Pereira, Gabriela Andrade; Nagao, Prescilla Emy; Azevedo, Vasco Ariston de Carvalho; Hirata Júnior, Raphael; Dos Santos, André Luis Souza; Tauch, Andreas; Mattos-Guaraldi, Ana Luíza

    2012-03-01

    Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection.

  18. Identification of human fibroblast cell lines as a feeder layer for human corneal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Rong Lu

    Full Text Available There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4 in a 35-mm dish (9.6 cm(2 grew to confluence (about 1.87-2.41 × 10(6 cells in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.

  19. Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study.

    Science.gov (United States)

    Xu, Ying-Ying; Wu, Ting-Ting; Zhou, Shui-Hong; Bao, Yang-Yang; Wang, Qin-Ying; Fan, Jun; Huang, Ya-Ping

    2014-01-01

    Glucose transporter-1 (GLUT-1) and PI3K/Akt are known to be closely involved in resistance to chemotherapy. Co-targeted therapy reducing GLUT-1 expression and PI3K/Akt pathway activity may overcome the chemoresistance of human cancers. Apigenin may inhibit the expression of GLUT-1 and the PI3K/Akt pathway. We hypothesized that over-expression of GLUT-1 and p-Akt was associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. We explored whether apigenin inhibited GLUT-1 and p-Akt, resulting in sensitization of laryngeal carcinoma Hep-2 cells to cisplatin. Real-time RT-PCR and Western blotting confirmed the presence of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins in Hep-2 cells. We found that resistance or insensitivity of Hep-2 cells to cisplatin might be associated with such expression. Apigenin markedly enhanced the cisplatin-induced suppression of Hep-2 cell growth. This effect was concentration- and time-dependent. Thus apigenin may significantly reduce the levels of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins, in cisplatin-treated Hep-2 cells, in a concentration- and time-dependent manner. To conclude, overexpression of GLUT-1 mRNA may be associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. Apigenin may enhance the sensitivity to cisplatin of laryngeal carcinoma cells via inhibition of GLUT-1 and p-Akt expression.

  20. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    Science.gov (United States)

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  1. [Characterization of epithelial primary culture from human conjunctiva].

    Science.gov (United States)

    Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A

    2014-01-01

    To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  2. Engineered human broncho-epithelial tissue-like assemblies

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  3. Microarray analysis of human epithelial cell responses to bacterial interaction.

    Science.gov (United States)

    Mans, Jeffrey J; Lamont, Richard J; Handfield, Martin

    2006-09-01

    Host-pathogen interactions are inherently complex and dynamic. The recent use of human microarrays has been invaluable to monitor the effects of various bacterial and viral pathogens upon host cell gene expression programs. This methodology has allowed the host response transcriptome of several cell lines to be studied on a global scale. To this point, the great majority of reports have focused on the response of immune cells, including macrophages and dendritic cells. These studies revealed that the immune response to microbial pathogens is tailored to different microbial challenges. Conversely, the paradigm for epithelial cells has--until recently--held that the epithelium mostly served as a relatively passive physical barrier to infection. It is now generally accepted that the epithelial barrier contributes more actively to signaling events in the immune response. In light of this shift, this review will compare transcriptional profiling data from studies that involved host-pathogen interactions occurring with epithelial cells. Experiments that defined both a common core response, as well as pathogen-specific host responses will be discussed. This review will also summarize the contributions that transcriptional profiling analysis has made to our understanding of bacterial physio-pathogensis of infection. This will include a discussion of how host transcriptional responses can be used to infer the function of virulence determinants from bacterial pathogens interacting with epithelial mucosa. In particular, we will expand upon the lessons that have been learned from gastro-intestinal and oral pathogens, as well as from members of the commensal flora.

  4. [Effect of microRNA-205 on proliferation of laryngeal carcinoma cell line Hep-2].

    Science.gov (United States)

    Li, Xiaotian; Li, Wei; Jiang, Xuejun

    2015-05-01

    To study the effect of microRNA-205 (miRNA-205) on proliferation of laryngeal carcinoma cell line Hep-2. The expressions of miRNA-205 in 27 cases laryngeal carcinoma tissues and adjacent normal tissues were detected by Real-time quantitative PCR, the expression of PTEN protein was detected by Western blot. The expressions of PTEN were detected by Western blot after miRNA-205 inhibitor or miRNA-205 mimics was transfected into Hep-2 cells and Hep-2 cells proliferation was measured by CCK-8 kit. The expression level of miRNA-205 was significantly higher in laryngeal carcinoma tissues than in adjacent normal tissues (P Hep-2 cells was decreased significantly and the expression of PTEN protein in Hep-2 cells was increased significantly after miRNA-205 inhibitor was transfected into (P Hep-2 cells was increased significantly and the expression of PTEN protein in Hep-2 cells was decreased significantly after miRNA-205 mimics was transfected into (P Hep-2 cells by regulating the expression of PTEN.

  5. MicroRNA-145 regulates human corneal epithelial differentiation.

    Directory of Open Access Journals (Sweden)

    Sharon Ka-Wai Lee

    Full Text Available BACKGROUND: Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC epithelia containing corneal epithelial progenitor cells (CEPCs and early transit amplifying cells, and their role in corneal epithelium. METHODOLOGY/PRINCIPAL FINDINGS: Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test. This was validated by quantitative polymerase chain reaction (qPCR. Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance. As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8 expression in both human corneal epithelial cells

  6. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  7. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  8. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    Science.gov (United States)

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  9. Expression of inducible nitric oxide in human lung epithelial cells.

    Science.gov (United States)

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  10. Syntheses and Photodynamic Activity of Pegylated Cationic Zn(II-Phthalocyanines in HEp2 Cells

    Directory of Open Access Journals (Sweden)

    Benson G. Ongarora, Xiaoke Hu, Susan D. Verberne-Sutton, Jayne C. Garno, M. Graça H. Vicente

    2012-01-01

    Full Text Available Di-cationic Zn(II-phthalocyanines (ZnPcs are promising photosensitizers for the photodynamic therapy (PDT of cancers and for photoinactivation of viruses and bacteria. Pegylation of photosensitizers in general enhances their water-solubility and tumor cell accumulation. A series of pegylated di-cationic ZnPcs were synthesized from conjugation of a low molecular weight PEG group to a pre-formed Pc macrocycle, or by mixed condensation involving a pegylated phthalonitrile. All pegylated ZnPcs were highly soluble in polar organic solvents but were insoluble in water; they have intense Q absorptions centered at 680 nm and fluorescence quantum yields of ca. 0.2 in DMF. The non-pegylated di-cationic ZnPc 6a formed large aggregates, which were visualized by atomic force microscopy. The cytotoxicity, cellular uptake and subcellular distribution of all cationic ZnPcs were investigated in human carcinoma HEp2 cells. The most phototoxic compounds were found to be the α-substituted Pcs. Among these, Pcs 4a and 16a were the most effective (IC50 ca. 10 μM at 1.5 J/cm2, in part due to the presence of a PEG group and the two positive charges in close proximity (separated by an ethylene group in these macrocycles. The β-substituted ZcPcs 6b and 4b accumulated the most within HEp2 cells but had low photocytoxicity (IC50 > 100 μM at 1.5 J/cm2, possibly as a result of their lower electron density of the ring and more extended conformations compared with the α-substituted Pcs. The results show that the charge distribution about the Pc macrocycle and the intracellular localization of the cationic ZnPcs mainly determine their photodynamic activity.

  11. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    Science.gov (United States)

    2012-04-01

    algorithm for CpG-island detection. BMC Bioinformatics 7: 446. 17. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol...it does not have a CpG island according to the original criteria (Gardiner-Garden and Frommer 1987). H3K4me3 and H3Ac are present in miR-205...culture of normal human mammary epithelial cells. Cancer Res 69: 7557–7568. Gardiner-GardenM, Frommer M. 1987. CpG islands in vertebrate genomes. J Mol

  12. Focal epithelial hyperplasia: a multifocal oral human papillomavirus infection.

    Science.gov (United States)

    Flaitz, C M

    2000-01-01

    Widespread, slightly elevated and confluent nodules are observed throughout the oral mucosa in a young Hispanic girl. Repeated irritation of the soft tissues from a compromised occlusion is an aggravating factor for the spread of these lesions. A diagnosis of focal epithelial hyperplasia, a human papillomavirus infection, is made following histopathologic diagnosis and viral typing. Recognition of this specific type of warts is important in order to avoid the mistaken identification of condyloma acuminata, which may have significant repercussions in the life of a young child.

  13. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  14. Human epithelial tissue culture study on restorative materials.

    Science.gov (United States)

    Forster, András; Ungvári, Krisztina; Györgyey, Ágnes; Kukovecz, Ákos; Turzó, Kinga; Nagy, Katalin

    2014-01-01

    Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. The examined materials are indicated for use

  15. Effect of epithelial debridement on human cornea proteoglycans

    Directory of Open Access Journals (Sweden)

    E.S. Soriano

    2001-03-01

    Full Text Available Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each. Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.

  16. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Twite, Nicolas [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Andrei, Graciela [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Kummert, Caroline [ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium); Donner, Catherine [Department of Obstetrics and Gynecology, Erasme Hospital, Route de Lennik 808, 1070 Brussels (Belgium); Perez-Morga, David [Laboratory of Molecular Parasitology, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, Gosselies (Belgium); De Vos, Rita [Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven (Belgium); Snoeck, Robert, E-mail: Robert.Snoeck@Rega.kuleuven.be [Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven (Belgium); Marchant, Arnaud, E-mail: arnaud.marchant@ulb.ac.be [Institute for Medical Immunology, Université Libre de Bruxelles, Rue A. Bolland 8, B-6041 Charleroi (Belgium); ImmuneHealth, Rue A. Bolland 8, B-6041 Charleroi (Belgium)

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  17. Detection of Enteroaggregative Escherichia coli with Formalin-Preserved HEp-2 Cells

    OpenAIRE

    Miqdady, Mohamad S; Jiang, Zhi-Dong; Nataro, James P.; DuPont, Herbert L.

    2002-01-01

    Formalin-stored HEp-2 cells were used to assay Escherichia coli for adherence. Cells refrigerated in formalin for up to 28 days and used in a wet assay format demonstrated an assay sensitivity ranging from 94 to 98% to detect enteroaggregative E. coli (EAEC). HEp-2 cells first fixed and stored with formalin and then stored dry in ambient conditions for 6 weeks demonstrated an assay sensitivity of 92% to detect EAEC. Using formalin-fixed HEp-2 cells will improve the efficiency of EAEC identifi...

  18. HEp-2 Cell Classification Using Shape Index Histograms With Donut-Shaped Spatial Pooling

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Vestergaard, Jacob Schack; Larsen, Rasmus

    2014-01-01

    We present a new method for automatic classification of indirect immunoflourescence images of HEp-2 cells into different staining pattern classes. Our method is based on a new texture measure called shape index histograms that captures second-order image structure at multiple scales. Moreover, we...... datasets. Our results show that shape index histograms are superior to other popular texture descriptors for HEp-2 cell classification. Moreover, when comparing to other automated systems for HEp-2 cell classification we show that shape index histograms are very competitive; especially considering...

  19. Cytotoxic effects of composite dust on human bronchial epithelial cells.

    Science.gov (United States)

    Cokic, Stevan M; Hoet, Peter; Godderis, Lode; Wiemann, Martin; Asbach, Christof; Reichl, Franz X; De Munck, Jan; Van Meerbeek, Bart; Van Landuyt, Kirsten L

    2016-12-01

    Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (composite dust particles on bronchial epithelium cells. Composite dust of five commercial composites (one nano-composite, two nano-hybrid and two hybrid composites) was generated following a clinically relevant protocol. Polymerized composite samples were cut with a rough diamond bur (grain size 100μm, speed 200,000rpm) and all composite dust was collected in a sterile chamber. Human bronchial epithelial cells (16HBE14o-) were exposed to serially diluted suspensions of composite dust in cell culture medium at concentrations between 1.1 and 3.3mg/ml. After 24h-exposure, cell viability and membrane integrity were assessed by the WST-1 and the LDH leakage assay, respectively. The release of IL-1β and IL-6 was evaluated. The composite dust particles were characterized by transmission electron microscopy and by dynamic and electrophoretic light scattering. Neither membrane damage nor release of IL-1β was detected over the complete concentration range. However, metabolic activity gradually declined for concentrations higher than 660μg/ml and the release of IL-6 was reduced when cells were exposed to the highest concentrations of dust. Composite dust prepared by conventional dental abrasion methods only affected human bronchial epithelial cells in very high concentrations. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Stanniocalcin-1 regulates re-epithelialization in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Bonnie H Y Yeung

    Full Text Available Stanniocalcin-1 (STC1, a glycoprotein hormone, is believed to be involved in various biological processes such as inflammation, oxidative responses and cell migration. Riding on these emerging evidences, we hypothesized that STC1 may participate in the re-epithelialization during wound healing. Re-epithelialization is a critical step that involves keratinocyte lamellipodia (e-lam formation, followed by cell migration. In this study, staurosporine (STS treatment induced human keratinocyte (HaCaT e-lam formation on fibronectin matrix and migration via the activation of focal adhesion kinase (FAK, the surge of intracellular calcium level [Ca²⁺]i and the inactivation of Akt. In accompanied with these migratory features, a time- and dose-dependent increase in STC1 expression was detected. STC1 gene expression was found not the downstream target of FAK-signaling as illustrated by FAK inhibition using PF573228. The reduction of [Ca²⁺]i by BAPTA/AM blocked the STS-mediated keratinocyte migration and STC1 gene expression. Alternatively the increase of [Ca²⁺]i by ionomycin exerted promotional effect on STS-induced STC1 gene expression. The inhibition of Akt by SH6 and GSK3β by lithium chloride (LiCl could respectively induce and inhibit the STS-mediated e-lam formation, cell migration and STC1 gene expression. The STS-mediated e-lam formation and cell migration were notably hindered or induced respectively by STC1 knockdown or overexpression. This notion was further supported by the scratched wound assay. Collectively the findings provide the first evidence that STC1 promotes re-epithelialization in wound healing.

  1. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  2. EOTAXIN AND EOTAXIN-2 EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; DENG Wei-wu; Albert CHAN; Stanley CHIK; Adrain WU

    2005-01-01

    Objective To study the role of eotaxin and eotaxin-2 expression by Th2 cytokine and analyze their relationship in normal human bronchial epithelial cell line-BEAS-2B cell. Methods Levels of eotaxin mRNA and protein expression in the bronchial epithelial cell line BEAS-2B cell were determined with RT-PCR and ELISA. We also used RT-PCR to evaluate eotaxin-2 expression under the regulation of Th2 cytokine IL-4 and IL-13 as well as proinflammatory agent-TNFα. Results Eotaxin mRNA expression was the highest at the time point of 12h under the stimulation of TNF-α. While Th2 cytokine IL-4 and IL-13 had the amplification effect on the expression. Eotaxin protein was also elevated with the combination stimulation of proinflammatory agent TNF-α and IL-4 in dose and time dependent manner(P<0.01). These results were also seen when the cells were stimulated by TNF-α and IL-13. Eotaxin-2 mRNA expression was the highest at the time point of 8h. The expression evaluated by semi-quantitative RT-PCR also elevated under the co-stimulation of TNF-α and IL-4 or TNF-α and IL-13 and it should significantly correlate with Eotaxin(P<0.05). Conclusion This study demonstrated that Th2 cytokine like IL-4 and IL-13 enhances eotaxin and eotaxin-2 expression when co-stimulated with proinflammatory agent TNF-α. These results showed that Th2 cytokines existence is the strong evidence for bronchial epithelial cells taking part in the allergic inflammation especially in eosinophils recruitment.

  3. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells

    NARCIS (Netherlands)

    Heijink, Irene; van Oosterhout, Antoon; Kliphuis, Nathalie; Jonker, Marnix; Hoffmann, Roland; Telenga, Eef; Klooster, Karin; Slebos, Dirk-Jan; ten Hacken, Nick; Postma, Dirkje; van den Berge, Maarten

    2014-01-01

    Background We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production

  4. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells

    NARCIS (Netherlands)

    Heijink, Irene; van Oosterhout, Antoon; Kliphuis, Nathalie; Jonker, Marnix; Hoffmann, Roland; Telenga, Eef; Klooster, Karin; Slebos, Dirk-Jan; ten Hacken, Nick; Postma, Dirkje; van den Berge, Maarten

    2014-01-01

    Background We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production

  5. In-vitro cytotoxicity study of methanolic fraction from Ajuga Bracteosa wall ex. benth on MCF-7 breast adenocarcinoma and hep-2 larynx carcinoma cell lines.

    Science.gov (United States)

    Pal, Akiriti; Toppo, Fedelic Aahish; Chaurasiya, Pradeep K; Singour, Pradeep K; Pawar, Rajesh S

    2014-01-01

    Ajuga bracteosa Wall ex Benth (Labiatae) is popularly known in India as Neelkanthi. A decoction of the leaves, flowers, and barks is used in India for the treatment of cancer including diabetes, malaria, and inflammation etc. The main objective of this study is to investigate the cytotoxic potential of Ajuga bracteosa. Successive solvent extraction of Ajuga bracteosa in petroleum ether, methanol, and water extracts was done. These extracts were tested against human breast adenocarcinoma (MCF-7) and larynx carcinoma (Hep-2) tumor cell lines, using the thiazolyl blue test (MTT) assay. The methanolic fraction of Ajuga bracteosa had shown the significant results against MCF-7 and Hep-2 tumor cell lines. The methanolic, petroleum ether and aqueous extract from Ajuga bracteosa, presented an IC50 value at 24 h of 10, 65, 70 μg/ml and 5, 30, 15 μg/ml on MCF-7 and Hep-2 cells, respectively. Steroids compounds namely β-sitosterol and unknown constituents were identified in the most active methanol extract of Ajuga bracteosa wall ex Benth. These known and unknown compounds exhibited cytotoxic potential against MCF-7 and Hep-2 cancer cells. Among all the tested extracts, methanolic extract can be considered as potential sources of anti-cancer compounds. Further studies are necessary for more extensive biological evaluations.

  6. Mechanisms involved in the cytotoxic action of Brazilian propolis and caffeic acid against HEp-2 cells and modulation of P-glycoprotein activity.

    Science.gov (United States)

    da Silva, Lívia M; Frión-Herrera, Yahima; Bartolomeu, Ariane R; Gorgulho, Carolina Mendonça; Sforcin, José M

    2017-08-04

    The effects of propolis and phenolic compounds (caffeic acid - Caf; dihydrocinnamic acid - Cin; p-coumaric acid - Cou) in the same quantity found in our propolis sample were investigated on human laryngeal epidermoid carcinoma (HEp-2) cells. Cell viability, apoptosis/necrosis and cell cycle arrest, P53 and CASPASE-3 gene expression, generation of reactive oxygen species (ROS) and the ability of propolis to induce doxorubicin (DOX) efflux using a P-glycoprotein (P-gp) inhibitor (verapamil) were assayed. Propolis exerted a cytotoxic effect on HEp-2 cells, whereas isolated compounds had no effect on cell viability. Higher concentrations were tested and Caf induced late apoptosis or necrosis in HEp-2 cells, while propolis induced apoptosis, both probably due to ROS generation. P53 expression was downregulated by propolis but not by Caf. CASPASE-3 expression was correlated with induction of both early and late apoptosis, with both propolis and Caf alone upregulating its expression. Propolis induced cell cycle arrest at G2/M phase and Caf at S phase. Propolis but not Caf may act as a P-gp inhibitor by modulating P-gp activity and inhibiting DOX efflux. Propolis exerted cytotoxic effects on HEp-2 cells, and the mechanisms are discussed, showing its potential as an antitumour drug. © 2017 Royal Pharmaceutical Society.

  7. Serum-Free Cryopreservation of Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    H. Niknejad

    2013-04-01

    Full Text Available Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amni-otic fluid (AF, which is full of growth factors, as substitute for fetal bovine serum (FBS in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells were isolated from placentas which were seronegative for microbial infections. The cells were preserved in 24 different patterns for 12 months in -196 ?C (liquid nitrogen and viability of cells were determined before and after cryopreservation by trypan blue and MTT assay. Moreover, Oct-4 expression was studied to determine pluripotency before and after cryopreservation with immunocytochemistry. Results were compared between groups with ANOVA (Tukey Post-Test. P.value under 0.01 and 0.05 was considered statistically significant. Results: The presence of DMEM, FBS or AF is necessary for amniotic cell cryopreservation. Trypan-blue, MTT and immunocytochemistry showed that there isn’t significant difference between using AF and FBS in viability and pluripotency of cells. Moreover, results showed that DMSO is a better cryoprotectant compared to glycerol. Conclusion : Results showed that amniotic fluid can be a proper substitute for FBS in amniotic epithelial cells cryopreservation. (Sci J Hamadan Univ Med Sci 2013; 20 (1:15-24

  8. Mechanical compression attenuates normal human bronchial epithelial wound healing

    Directory of Open Access Journals (Sweden)

    Malavia Nikita

    2009-02-01

    Full Text Available Abstract Background Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1 unperturbed control cells, 2 single scrape wound only, 3 static compression (6 hours of 30 cmH2O, and 4 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results We found that mechanical compression and scrape injury increase TGF-β2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE2 media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE2, but not EGF. Conclusion Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE2 and a compromised cytoskeleton.

  9. Construction of a Hep-2 cell line stably transfected with Livin shRNA.

    Science.gov (United States)

    Wang, S L; Deng, W T; Wen, G F; Li, C W; Zeng, Y J

    2016-01-01

    The aim of this study was to construct a eukaryotic expression plasmid with a short hairpin RNA (shRNA) targeting Livin in order to obtain a stably transfected Hep-2 cell line with a reduced expression of Livin. The shRNA targeting Livin mRNA was designed, and a shRNA plasmid and a negative control plasmid were constructed. After amplification in E. coli, restriction endonuclease digestion and sequence confirmation, the plasmids were transfected into Hep-2 cells using Lipofectamine 2000. The stably transfected cell line was screened using G418, and inhibition of Livin mRNA and protein levels were detected using real-time PCR and western blotting, respectively. pGenesil-Livin-shRNA eukaryotic expression plasmid was successfully constructed and identified by sequencing. Green fluorescent protein (GFP) expression was observed in Hep-2 cells transfected with shRNA plasmids by fluorescence microscopy. The expression levels of Livin mRNA and protein decreased significantly in Hep-2 cells transfected with the shRNA recombinant plasmid. The mRNA level was reduced by 47.17 %, and the protein level was reduced by 34.25 %. The shRNA eukaryotic expression plasmid targeting Livin was successfully constructed, which could significantly inhibit the expression of Livin in laryngeal cancer Hep-2 cells. This provides a basis for future research on the function of Livin in Hep-2 cells, and gene therapy for laryngeal cancer.

  10. Culture models of human mammary epithelial cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  11. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Science.gov (United States)

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  12. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  13. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  14. Anti-Adhesive Activities of Flavan-3-ols and Proanthocyanidins in the Interaction of Group A-Streptococci and Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Aneta Janecki

    2010-10-01

    Full Text Available Bacterial adhesion to epithelial cells is a key step in infections, allowing subsequent colonization, invasion and internalization of pathogens into tissues. Anti-adhesive agents are therefore potential prophylactic tools against bacterial infections. The range of anti-adhesive compounds is largely confined to carbohydrate analogues. Tannins are generously recognized as potent antimicrobials, but little data exist on their anti-adherence potency. Using a model for mucosal pathogenesis with labeled group A-streptococci (GAS and human laryngeal HEp-2 cells, a series of flavan-3-ols (epicatechin, epigallocatechin, epigallocatechin-3-O-gallate and highly purified and chemically characterized proanthocyanidin samples including procyanidins based on epicatechin, catechin or ‘mixed’ constituent flavanyl units, prodelphinidins made up of (epigallocatechin monomeric unts as well as oligomers possessing A-type units in their molecules was evaluated for anti-adhesive effects. Reduced microbial adherence was observed exclusively for prodelphinidins, suggesting that pyrogallol-type elements, i.e., (epigallocatechin units are important structural features. This is the first report on structure-activity relationships regarding the anti-adhesive potency of proanthocyanidins. In addition, the structures of the first chemically defined proanthocyanidins from Pelargonium sidoides are disclosed.

  15. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry

    Science.gov (United States)

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-01

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm -1. These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07 ± 0.025 and 1.184 ± 0.013, respectively, were more notable (mean ± S.D., n = 5, P phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793 ± 1.133)% ( P < 0.01, n = 5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887 ± 0.211)% ( P < 0.05, n = 5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  16. Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV-vis absorption spectroscopy and flow cytometry.

    Science.gov (United States)

    Liu, Renming; Tang, Weiyue; Kang, Yipu; Si, Minzhen

    2009-08-15

    We report here the use of Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-vis) absorption spectroscopy, and flow cytometry (FCM) to analysis the best dose of X-ray for human laryngeal squamous cell carcinoma cell lines (Hep-2). Our analysis indicates specific FTIR and UV-vis spectral differences between X-irradiated and normal Hep-2 cells. In addition, striking spectral differences are seen in FTIR spectra in the ratios at 2925/2958 and 1654/1542 cm(-1). These two ratios of the X-irradiated cells for 8 Gy dose group with value of 1.07+/-0.025 and 1.184+/-0.013, respectively, were more notable (mean+/-S.D., n=5, PUV-vis absorption spectra analysis shows X-ray irradiation disturbed the metabolism of phenylalanine and tyrosine intracellular, maybe, which was caused by cell cycle arrest. Spectroscopy analysis suggests 8 Gy is a better dose of X-ray for lowering the canceration degree of Hep-2 cells. Moreover, FCM analysis shows the apoptosis of X-irradiated cells depended on the radiation dose to some extent, but it was not linear. The total apoptosis ratio with value of (20.793+/-1.133)% (P<0.01, n=5) for the 12 Gy dose group was the maximum, however, the maximum apoptosis ratio per Gray (total apoptosis ratio/radiation dose) was the cells of the 2 Gy dose group with value of (4.887+/-0.211)% (P<0.05, n=5). Our data suggest that Hep-2 cells are given 2 Gy radiation of X-ray once a time, 8 Gy per week (accumulatively), the effect for lowering the canceration degree and restraining the proliferation of Hep-2 cells will be better.

  17. Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell

    Directory of Open Access Journals (Sweden)

    Chang Cherng-Shyang

    2010-12-01

    Full Text Available Abstract Background Collagen-like surface proteins Scl1 and Scl2 on Streptococcus pyogenes contain contiguous Gly-X-X triplet amino acid motifs, the characteristic structure of human collagen. Although the potential role of Scl1 in adhesion has been studied, the conclusions may be affected by the use of different S. pyogenes strains and their carriages of various adhesins. To explore the bona fide nature of Scl1 in adherence to human epithelial cells without the potential interference of other streptococcal surface factors, we constructed a scl1 isogenic mutant from the Scl2-defective S. pyogenes strain and a Scl1-expressed Escherichia coli. Results Loss of Scl1 in a Scl2-defective S. pyogenes strain dramatically decreased the adhesion of bacteria to HEp-2 human epithelial cells. Expression of Scl1 on the surface of the heterologous bacteria E. coli significantly increased adhesion to HEp-2. The increase in adhesion was nullified when Scl1-expressed E. coli was pre-incubated with proteases or antibodies against recombinant Scl1 (rScl1 protein. Treatment of HEp-2 cells with rScl protein or pronase drastically reduced the binding capability of Scl1-expressed E. coli. These findings suggest that the adhesion is mediated through Scl1 on bacterial surface and protein receptor(s on epithelial cells. Further blocking of potential integrins revealed significant contributions of α2 and β1 integrins in Scl1-mediated binding to epithelial cells. Conclusions Together, these results underscore the importance of Scl1 in the virulence of S. pyogenes and implicate Scl1 as an adhesin during pathogenesis of streptococcal infection.

  18. Human keratin diseases: hereditary fragility of specific epithelial tissues.

    Science.gov (United States)

    Corden, L D; McLean, W H

    1996-12-01

    Keratins are heteropolymeric proteins which form the intermediate filament cytoskeleton in epithelial cells. Since 1991, mutations in several keratin genes have been found to cause a variety of human diseases affecting the epidermis and other epithelial structures. Epidermolysis bullosa simplex (EBS) was the first mechanobullous disease for which the underlying genetic lesion was found, with mutations in both the K5 and K14 genes rendering basal epidermal keratinocytes less resilient to trauma, resulting in skin fragility. The site of mutation in the keratin protein correlates with phenotypic severity in this disorder. Since mutations were identified in the basal cell keratins, the total number of keratin genes associated with diseases has risen to eleven. The rod domains of suprabasal keratins K1 and K10 are mutated in bullous congenital ichthyosiform erythroderma (BCIE; also called epidermolytic hyperkeratosis, EH) and mosaicism for K1/K10 mutations results in a nevoid distribution of EH. An unusual mutation in the VI domain of K1 has also been found to cause diffuse non-epidermolytic palmoplantar keratoderma (DNEPPK). Mutations in palmoplantar specific keratin K9 cause epidermolytic palmoplantar keratoderma (EPPK) and mutations in the late differentiation suprabasal keratin K2e cause ichthyosis bullosa of Siemens (IBS). In the last year or so, mutations were discovered in differentiation specific keratins K6a and K16 causing pachyonychia congenita type 1 and K17 mutations occur in pachyonychia congenita type 2. K16 and K17 mutations have also been reported to produce phenotypes with little or no nail changes: K16 mutations can present as focal non-epidermolytic palmoplantar keratoderma (NEPPK) and K17 mutations can result in a phenotype resembling steatocystoma multiplex. Recently, mutation of mucosal keratin pair K4 and K13 has been shown to underlie white sponge nevus (WSN). This year, the first mutations in a keratin-associated protein, plectin, were shown to

  19. The Rho Target PRK2 Regulates Apical Junction Formation in Human Bronchial Epithelial Cells ▿

    OpenAIRE

    Wallace, Sean W.; Magalhaes, Ana; Hall, Alan

    2010-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of...

  20. The burden of the variability introduced by the HEp-2 assay kit and the CAD system in ANA indirect immunofluorescence test.

    Science.gov (United States)

    Infantino, M; Meacci, F; Grossi, V; Manfredi, M; Benucci, M; Merone, M; Soda, P

    2017-02-01

    According to the recent recommendations of the American College of Rheumatology, ANA Task Force, IIF technique should be considered the gold standard in antinuclear antibodies (ANAs) testing. To overcome the lack of standardization, biomedical industries have developed several computer-aided diagnosis (CAD) systems. Two hundred and sixty-one consecutive samples with suspected autoimmune diseases were tested for ANA by means of IIF on routinely HEp-2 assay kit (Euroimmun AG). Assignment of result was made if consensus for positive/negative was reached by at least 2 out of 3 expert physicians. ANA-IIF was also carried out using 3 CAD systems: Zenit G-Sight (n = 84), Helios (n = 85) and NOVA View (n = 92); human evaluation was repeated on the same substrate of each CAD system (Immco, Aesku and Inova HEp-2 cells, respectively). To anonymize the results, we randomly named these three systems as A, B and C. We ran a statistical analysis computing several measures of agreement between the ratings, and we also improved the evaluation by using the Wilcoxon's test for nonparametric data. Agreement between the human readings on routinely HEp-2 assay kit and human readings on CAD HEp-2 assay was substantial for A (k = 0.82) and B (k = 0.72), and almost perfect for C (k = 0.89). Such readings were statistically different only in case A. Comparing experts' readings with the readings of CAD systems, when the samples were prepared using CAD HEp-2 assay kits, we found almost perfect agreement for B and C (k = 0.86; k = 0.82) and substantial agreement for A (k = 0.73). Again, human and CAD readings were statistically different only in A. When we compared the readings of medical experts on routinely HEp-2 assay kit with the output of the CAD systems that worked using their own slides, we found substantial agreement for all the systems (A: k = 0.62; B: k = 0.65; C: k = 0.71). Such readings were not statistically different. The change of the assay kit and/or the

  1. Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Santos, Denis Amilton; Rufatto, Luciane Corbellini; Minetto, Luciane; Scariot, Fernando Joel; Echeverrigaray, Sergio; Pich, Claus Tröger; Moura, Sidnei; Padilha, Francine Ferreira; Borsuk, Sibele; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana Kömmling; Dellagostin, Odir; Roesch-Ely, Mariana; Henriques, João Antonio Pêgas

    2017-07-01

    Continuous increases in the rates of tumor diseases have highlighted the need for identification of novel and inexpensive antitumor agents from natural sources. In this study, we investigated the effects of enriched fraction from hydroalcoholic Brazilian red propolis extract against Hep-2 cancer cell line. Initially 201 fractions were arranged in 12 groups according to their chromatographic characteristics (A-L). After an in vitro cell viability screening, J and L were further selected as promising enriched fractions for this study. The chemical characterization was performed and Biochanin A, Formononetin, and Liquiritigenin compounds were quantified. Through MTT viability assay and morphological changes observed by Giemsa and DAPI staining, the results showed that red propolis inhibited cancer cells growth. Flow cytometry results indicated effects that were partly mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA cleaved assay, increase at SUB G1-G0 phase in cell cycle analysis and loss of mitochondrial membrane potential. In conclusion, our results demonstrated that red propolis enriched fractions promoted apoptotic effects in human cancer cells through the mechanisms involving mitochondrial perturbation. Therefore, red propolis fractions contain candidate agents for adjuvant cancer treatment, which further studies should elucidate the comprehensive mechanistic pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  3. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    Science.gov (United States)

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  4. A taxonomy of epithelial human cancer and their metastases

    Directory of Open Access Journals (Sweden)

    De Moor Bart

    2009-12-01

    Full Text Available Abstract Background Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination. Methods We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures. Results Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics

  5. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  6. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    Science.gov (United States)

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  7. Primary Adult Human Retinal Pigment Epithelial Cell Cultures on Human Amniotic Membranes

    Directory of Open Access Journals (Sweden)

    Singhal Shweta

    2005-01-01

    Full Text Available Purpose: Retinal pigment epithelial (RPE cells grow well on surfaces that provide an extracellular matrix. Our aim was to establish primary adult human RPE cell cultures that retain their epithelial morphology in vitro using human amniotic membrane (hAM as substrate. Materials and Methods: Human cadaver eyeballs (16 were obtained from the eye bank after corneal trephination. RPE cells were harvested by a mechanical dissection of the inner choroid surface (10, group 1 or by b enzymatic digestion using 0.25% Trypsin/0.02% EDTA (6, group 2. The cells were explanted onto de-epithelialized hAM, nourished using DMEM/HAMS F-12 media and monitored for growth under the phase contrast microscope. Cell cultures were characterised by whole mount studies and paraffin sections. Growth data in the two groups were compared using the students′ ′t′ test. Results: Eleven samples (68.75% showed positive cultures with small, hexagonal cells arising from around the explant which formed a confluent and progressively pigmented monolayer. Whole mounts showed closely placed polygonal cells with heavily pigmented cytoplasm and indistinct nuclei. The histologic sections showed monolayers of cuboidal epithelium with variable pigmentation within the cytoplasm. Growth was seen by day 6-23 (average 11.5 days in the mechanical group, significantly earlier ( P Conclusions: Primary adult human RPE cell cultures retain epithelial morphology in vitro when cultured on human amniotic membranes . Mechanical dissection of the inner choroid surface appears to be an effective method of isolating RPE cells and yields earlier growth in cultures as compared to isolation by enzymatic digestion

  8. [Effects of membrane protein ANO1 stable overexpression on laryngocarcinoma Hep-2 cells].

    Science.gov (United States)

    Li, Ya-dong

    2014-02-01

    To explore the effects of ANO1 overexpression on the proliferation, detachment, spreading, and migration of laryngocarcinoma Hep-2 cell line. ANO1-overexpressing Hep-2 cell line was selected as the assay group, and Hep-2 cell line with empty plasmid was selected as the control group. MTT assay was used to detect the proliferation abilities of Hep-2 cells in both two groups. Cell detachment assay and spreading assay were used to detect the detachment and spreading abilities of Hep-2 cells. Boyden chamber invasion assay, wound healing assay in vitro, and niflumic acid block chloride channel were used to detect the migration abilities of Hep-2 cells. All data were analyzed by SPSS 10.0 software package. Cell proliferation assay by MTT showed that, compared with the control group, the optical density value of assay group was not significantly different (P=0.62). The results of cell detachment assay and cell spreading assay showed the cell detachment rates and cell spreading rates in assay group were significantly higher than those in control group (P<0.0001). The results of Boyden chamber invasion assay showed the percentages of cells migrating through the membrane in assay group were significantly higher than those in control group (P<0.0001). The results of in vitro wound healing experiments showed the wound area rate in assay group was significantly lower than that in control group (P<0.0001). The results of niflumic acid blocking chloride channel experiments showed the wound area rates in assay group were significantly higher than those in control group (P<0.0001). ANO1 overexpression does not remarkably alter the proliferation rate of cancer cells, but increases the migration, spreading, and detachment capacities of head and neck squamous cell carcinoma.

  9. [Bovine lactoferrin decreases the invasion of Salmonella enterica to HEp-2 cells].

    Science.gov (United States)

    Barreto Arce, Liz J; Contreras García, Carmen A; Durand Vara, David; Ochoa Woodell, Theresa

    2016-01-01

    To assess the effect of bovine lactoferrin (bLf) on the invasion of Salmonella enterica ser. Typhimurium to HEp-2 cells. HEp-2 monolayers were infected with 106 colony forming unit (CFU) of bacteria in the absence and presence of 1 and 10 mg/mL of bLf (iron-saturated) and incubated 1.5 hours at 37°C. Two treatments were evaluated: pre- infection (HEp-2 cells were incubated with bLf one hour prior to infection with Salmonella) and post-infection (bLf was added 15 minutes after the infection). Invasiveness of Salmonella was determined throgh quantification of CFU recovered from inside the HEp-2 cells (after treatment with 100 μg/mL and 10 μg/mL of gentamicin and Triton X -100). In the pre-infection treatment, we observed a decrease of 23% of Salmonella invasion when HEp-2 cells were pre incubated with 1 mg/mL of bLf (2.8x105 vs 2.1x105, p=0.04) and 50% when them were pre-incubated with 10 mg/mL of bLf (2.8x105 vs 1.4x105, p=0.04). In post-infection treatment, no changes were observed in the invasiveness of Salmonella. The results indicated that bLf reduces the invasiveness of Salmonella enterica ser. Typhimurium to HEp-2 cells in the pre-infection treatment.

  10. Helicobacter pylori damages human gallbladder epithelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Dong-Feng Chen; Lu Hu; Ping Yi; Wei-Wen Liu; Dian-Chun Fang; Hong Cao

    2008-01-01

    AIM: To study the mechanism by which Helicobacter pylori (Hpy/orO damages human gallbladder epithelial cells (HGBEC).METHODS: H pylori isolated from gallbladder were cultured in a liquid medium. Different concentration supernatants and sonicated extracts of H pylori cells were then added to HGBEC in a primary culture. The morphological changes in HGBEC as well as changes in the levels of alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and glutamyltransferase (GGT)were measured.RESULTS: According to the culture curve of HGBEC,it was convenient to study the changes in HGBEC by adding H pylori sonicated extracts and H pylori culture supernatants. Both H pylori sonicated extracts and H pylori culture supernatants had a significant influence on HGBEC morphology, i.e. HGBEC grew more slowly, their viability decreased and their detachment increased. Furthermore, HGBEC ruptured and died. The levels of ALP (33.84 ± 6.00 vs 27.01± 4.67, P < 0.05), LDH (168.37 ± 20.84 vs 55.51 ±17.17, P < 0.01) and GGT (42.01 ± 6.18 vs 25.34 ±4.33, P < 0.01) significantly increased in the HGBEC culture supernatant in a time- and concentrationdependent. The damage to HGBEC in Hpylori culture liquid was more significant than that in H pylori sonicated extracts.CONCLUSION: H pylori induces no obvious damage to HGBEC.

  11. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  12. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  13. Hot spices influence permeability of human intestinal epithelial monolayers.

    Science.gov (United States)

    Jensen-Jarolim, E; Gajdzik, L; Haberl, I; Kraft, D; Scheiner, O; Graf, J

    1998-03-01

    Indirect evidence suggests that hot spices may interact with epithelial cells of the gastrointestinal tract to modulate their transport properties. Using HCT-8 cells, a cell line from a human ileocoecal carcinoma, we studied the effects of spices on transepithelial electrical resistance (TER), permeability for fluorescein isothiocyanate (FITC)-labeled dextrans with graded molecular weight, and morphological alterations of tight junctions by immunofluorescence using an anti-ZO-1 antibody, a marker for tight junction integrity. Two different reactivity patterns were observed: paprika and cayenne pepper significantly decreased the TER and increased permeability for 10-, 20- and 40-kDa dextrans but not for -70 kDa dextrans. Simultaneously, tight junctions exhibited a discontinuous pattern. Applying extracts from black or green pepper, bay leaf or nutmeg increased the TER and macromolecular permeability remained low. Immunofluorescence ZO-1 staining was preserved. In accordance with the above findings, capsaicin transiently reduced resistance and piperine increased resistance, making them candidates for causing the effects seen with crude spice extracts. The observation that Solanaceae spices (paprika, cayenne pepper) increase permeability for ions and macromolecules might be of pathophysiological importance, particularly with respect to food allergy and intolerance.

  14. Thymic Epithelial Cell Development and Its Dysfunction in Human Diseases

    Directory of Open Access Journals (Sweden)

    Lina Sun

    2014-01-01

    Full Text Available Thymic epithelial cells (TECs are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR family members including the receptor activator for NFκB (RANK, CD40, and lymphotoxin β receptor (LTβR cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs, Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.

  15. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  16. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  17. Silibinin induced the apoptosis of Hep-2 cells via oxidative stress and down-regulating survivin expression.

    Science.gov (United States)

    Yang, Xinxin; Li, Xiaoyu; An, Liangxiang; Bai, Bo; Chen, Jing

    2013-08-01

    Silibinin is an anticancer and chemopreventive natural compound, which is extracted from milk thistle (Silybum marianum). It is reported that silibinin has anticancer efficacy in many malignant tumors. Laryngeal carcinoma is the second most common head and neck squamous carcinoma. In the present work, we investigated the effects of silibinin on laryngeal squamous cell carcinoma (LSCC) cell line Hep-2 cells. We found that silibinin induced the decrease of cell viability in Hep-2 cells with a concentration- and time-dependent manner. Moreover, silibinin resulted in the apoptosis of Hep-2 cells and had synergy effects with arsenic trioxide. Intracellular reactive oxygen species (ROS) accumulation increased because of silibinin exposure. ROS scavenger NAC alleviated the cytotoxicity of silibinin to Hep-2 cells. The mitochondrial membrane potential (MMP) was lost in Hep-2 cells treated with silibinin. Subsequently, silibinin induced the activation of caspase-3 in Hep-2 cells and caspase inhibitor Z-VAD-FMK inhibited the cytotoxicity of silibinin in Hep-2 cells. The survivin expression decreased after Hep-2 cells were treated with silibinin. In conclusion, silibinin induced the apoptosis of Hep-2 cells via oxidative stress and down-regulating survivin expression. Therefore, silibinin is a potential therapeutical agent against LSCC in future.

  18. Regulation of human corneal epithelial mucins by rebamipide.

    Science.gov (United States)

    Itoh, Shinsaku; Itoh, Kuni; Shinohara, Hisashi

    2014-02-01

    Membrane-associated mucins (MAMs) play important roles in barrier function and tear stability, and their expression on the ocular surface is altered in dry eye disease. Rebamipide is a mucin secretagogue that promotes the production of mucin-like glycoproteins in human corneal epithelial (HCE) cells. However, the expression of MAMs on the corneal epithelia (MUC1, MUC4, MUC16), which is induced by rebamipide, is poorly understood. In this study, we investigated the effect of rebamipide on the regulation of MAM expression in HCE cells. MUC16, Ki67 and PCNA expression levels in HCE cells isolated at confluence and at 24 hours after confluence were examined by Western blotting to assess cell proliferation. HCE cells isolated at 24 hours after confluence were cultured in medium supplemented with 1-10 µM rebamipide or 0.3-30 nM of epidermal growth factor (EGF). Real-time PCR (RT-PCR) and Western blot analysis of MAMs were performed to evaluate the effect of rebamipide. Western blot analysis of cells treated with an EGF receptor inhibitor (AG1478) or MEK1/2 inhibitor (U0126) was performed to reveal the relationship between EGF receptor activation and rebamipide-induced MAM expression. HCE cells isolated at 24 hours after confluence had lower cell proliferation activity and increased MUC16 expression compared with cells isolated at confluence. RT-PCR and Western blot analysis revealed that rebamipide increased MAM gene expression for 2 hours and protein expression for 24 hours in HCE cells. EGF inhibitor treatment led to reduced levels of all three MAMs that are normally induced by rebamipide, whereas EGF induced the expression of all three MAMs. We suggested that rebamipide increased MUC1, MUC4 and MUC16 expression levels through signals involved in EGF receptor activation in the human corneal epithelia. These data suggest that rebamipide may improve subjective symptoms of dry eye disease by upregulating MAM expression.

  19. Binding of transcobalamin II by human mammary epithelial cells.

    Science.gov (United States)

    Adkins, Y; Lönnerdal, B

    2001-01-01

    The presence of nutrient binders in milk may have an important role during milk production and may influence the nutrient's bioavailability to the infant. Human milk and plasma contain at least two types of vitamin B12 binders: transcobalamin II (TCII) and haptocorrin (Hc). Vitamin B12 in milk is exclusively bound to Hc (Hc-B12). In plasma, the major vitamin B12 binding protein that is responsible for delivering absorbed vitamin B12 to most tissues and cells is TCII (TCII-B12). Currently, little is known about the route of secretion of vitamin B12 into human milk. It is possible that a receptor-mediated pathway is involved, since maternal vitamin B12 supplementation increases the amount of the vitamin secreted into human milk if the mother's vitamin B12 consumption is low, but remains unchanged if her intake is adequate. In this study, we investigated the process by which the mammary gland acquires vitamin B12 from maternal circulation, whether as a free vitamin or as a Hc-B12 or TCII-B12 complex. TCII was purified from plasma incubated with [57Co]vit B12 (B12*), while Hc was purified from whey incubated with B12*. Both proteins were separated by fast protein liquid chromatography using gel filtration and anion-exchange columns. Purity of the separated proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Binding studies were carried out on a monolayer of normal human mammary epithelial cells (HMEC) at 4 degrees C using free B12* and TCII-B12* and Hc-B12* complexes. Minimal binding of free B12* and Hc-B12* to HMEC was observed; however, HMEC exhibited a high affinity for the TCII-B12* complex. This study suggests that a specific cell surface receptor for the TCII-B12 complex exists in the mammary gland. It is possible that once vitamin B12 is in the mammary gland it is transferred to Hc (which may be synthesized by the mammary gland) and then secreted into milk as a Hc-B12 complex.

  20. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    Science.gov (United States)

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  1. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  2. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    DEFF Research Database (Denmark)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn;

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neopl......The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated...... that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently....... It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells...

  3. Prevalence of human papillomavirus in epithelial ovarian cancer tissue. A meta-analysis of observational studies

    DEFF Research Database (Denmark)

    Svahn, Malene F; Faber, Mette Tuxen; Christensen, Jane

    2014-01-01

    The role of human papillomavirus (HPV) in the pathogenesis of ovarian cancer is controversial, and conflicting results have been published. We conducted a systematic review and meta-analysis to estimate the prevalence of HPV in epithelial ovarian cancer tissue.......The role of human papillomavirus (HPV) in the pathogenesis of ovarian cancer is controversial, and conflicting results have been published. We conducted a systematic review and meta-analysis to estimate the prevalence of HPV in epithelial ovarian cancer tissue....

  4. Preliminary study on Herpes simplex virus type 1 infection of human oral epithelial cell in vitro

    Institute of Scientific and Technical Information of China (English)

    Jie Zhao; Weibin Sun; Juan Wang

    2008-01-01

    Objective: To explore the functions and mechanisms of herpes simplex virus type 1(HSV-1) while infecting human oral epithelial cells in vitro(being similar to the infection in vivo). Methods:An abundance of HSV-1 strains amplified in Vero cells were used to infect human oral epithelial cells. The culture supernatant was collected to infect Veto cells again. Morphology of HSV-1 was identified by inverted microscope and transmission electron microscope. Nucleic acid of the virus was detected by PCR. Results:The infected human oral epithelial cells didn't display an obvious cytopathic effect(CPE) under inverted microscope(while Veto cells which were infected by the culture supematant showed typical(CPE). The virus particles were not observed in the cytoplasm nor in nucleus of human oral epithelial cells, however under transmission electron microscope in the cytoplasm of Vero cells, the nucleic acid of HSV-1 could be detected in infected human oral epithelial cells, by PCR. Conclusion:HSV-1 can successfully infect human oral epithelial cells. This model may provide a useful approach for studying the pathogenesis of herpes virus-associated periodontal disease.

  5. Cytotoxic effects of curcumin in human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Margrit Hollborn

    Full Text Available BACKGROUND: Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE cells in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM and delayed apoptosis (above 1 µM. The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. CONCLUSION: It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as

  6. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  7. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  8. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity.

    Directory of Open Access Journals (Sweden)

    Maria Valeri

    Full Text Available Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.

  9. Intracellular localization of Saffold virus Leader (L) protein differs in Vero and HEp-2 cells.

    Science.gov (United States)

    Xu, Yishi; Victorio, Carla Bianca Luena; Ng, Qimei; Prabakaran, Mookkan; Tan, Yee-Joo; Chua, Kaw Bing

    2016-10-12

    The Saffold virus (SAFV) genome is translated as a single long polyprotein precursor and co-translationally cleaved to yield 12 separate viral proteins. Little is known about the activities of SAFV proteins although their homologs in other picornaviruses have already been described. To further support research on functions and activities of respective viral proteins, we investigated the spatio-temporal distribution of SAFV proteins in Vero and HEp-2 cells that had been either transfected with plasmids that express individual viral proteins or infected with live SAFV. Our results revealed that, with the exception of the Leader (L) protein, all viral proteins were localized in the cytoplasm at all the time points assayed. The L protein was found in the cytoplasm at an early time point but was subsequently translocated to the nucleus of HEp-2, but not Vero, cells. This was observed in both transfected and infected cells. Further mutational analysis of L protein revealed that Threonine 58 of the Ser/Thr-rich domain of L protein is crucial for protein trafficking between the cytoplasm and nucleus in HEp-2 cells. These findings contribute to a deeper understanding and stimulate investigation of the differetial cellular responses of HEp-2 cells in comparison to other mammalian cell lines during SAFV infection.

  10. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells.

    Science.gov (United States)

    Hsieh, Tsung-Hua; Tsai, Cheng-Fang; Hsu, Chia-Yi; Kuo, Po-Lin; Lee, Jau-Nan; Chai, Chee-Yin; Hou, Ming-Feng; Chang, Chia-Cheng; Long, Cheng-Yu; Ko, Ying-Chin; Tsai, Eing-Mei

    2012-08-01

    Phthalates are environmental hormone-like molecules that are associated with breast cancer risk and are involved in metastasis, a process that requires the epithelial-mesenchymal transition (EMT). However, few studies have addressed the potential effects of phthalates on stem cells. Here we tested the hypothesis that phthalates such as butyl benzyl phthalate and di-n-butyl phthalate induce EMT in R2d cells, a stem cell-derived human breast epithelial cell line that is responsive to estradiol for tumor development. We observed that phthalates induced EMT as evidenced by morphological changes concomitant with increased expression of mesenchymal markers and decreased expression of epithelial markers. Molecular mechanism studies revealed that histone deacetylase 6 (HDAC6) is required for phthalate-induced cell migration and invasion during EMT in vitro and metastasis into the lungs of nude mice. We also constructed a series of mutant HDAC6 promoter fragments and found that the transcription factor AP-2a plays a novel role in regulating the HDAC6 promoter. Furthermore, phthalates stimulated estrogen receptors and triggered the downstream EGFR-PKA signaling cascade, leading to increased expression of AP-2a in the nucleus. We also observed that phthalates increased expression of the PP1/HDAC6 complex and caused Akt activation and GSK3β inactivation, leading to transcriptional activation of vimentin through the β-catenin-TCF-4/LEF1 pathway. Understanding the signaling cascades of phthalates that activate EMT through HDAC6 in breast epithelial stem cells provides the identification of novel therapeutic target for human breast cancer.

  11. Rhodococcus equi human clinical isolates enter and survive within human alveolar epithelial cells.

    Science.gov (United States)

    Ramos-Vivas, J; Pilares-Ortega, L; Remuzgo-Martínez, S; Padilla, D; Gutiérrez-Díaz, J L; Navas-Méndez, J

    2011-05-01

    Rhodococcus equi is an emerging opportunistic human pathogen associated with immunosuppressed people, especially those infected with the human immunodeficiency virus (HIV). This pathogen resides primarily within lung macrophages of infected patients, which may explain in part its ability to escape normal pulmonary defense mechanisms. Despite numerous studies as a pulmonary pathogen in foals, where a plasmid seems to play an important role in virulence, information on the pathogenesis of this pathogen in humans is still scarce. In this study, fluorescence microscopy and vancomycin protection assays were used to investigate the ability of R. equi human isolates to adhere to and to invade the human alveolar epithelial cell line A549. Our findings indicate that some R. equi clinical strains are capable of adhering, entering and surviving within the alveolar cell line, which may contribute to the pathogen persistence in lung tissues. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  12. Variability in the recognition of distinctive immunofluorescence patterns in different brands of HEp-2 cell slides

    Directory of Open Access Journals (Sweden)

    Alessandra Dellavance

    2013-06-01

    Full Text Available INTRODUCTION: Indirect immunofluorescence on HEp-2 cells is considered the gold standard for the detection of autoantibodies against cellular antigens. However, the culture conditions, cell fixation and permeabilization processes interfere directly in the preservation and spatial distribution of antigens. Therefore, one can assume that certain peculiarities in the processing of cellular substrate may affect the recognition of indirect immunofluorescence patterns associated with several autoantibodies. OBJECTIVE: To evaluate a panel of serum samples representing nuclear, nucleolar, cytoplasmic, mitotic apparatus, and chromosome plate patterns on HEp-2 cell substrates from different suppliers. MATERIALS AND METHODS: Seven blinded observers, independent from the three selected reference centers, evaluated 17 samples yielding different nuclear, nucleolar, cytoplasmic and mitotic apparatus patterns on HEp-2 cell slides from eight different brands. The slides were coded to maintain confidentiality of both brands and participating centers. RESULTS: The 17 HEp-2 cell patterns were identified on most substrates. Nonetheless, some slides showed deficit in the expression of several patterns: nuclear coarse speckled/U1-ribonucleoprotein associated with antibodies against RNP (U1RNP, centromeric protein F (CENP-F, proliferating cell nuclear antigen (PCNA, cytoplasmic fine speckled associated with anti-Jo-1 antibodies (histidyl synthetase, nuclear mitotic apparatus protein 1 (NuMA-1 and nuclear mitotic apparatus protein 2 (NuMA-2. CONCLUSION: Despite the overall good quality of the assessed HEp-2 substrates, there was considerable inconsistency in results among different commercial substrates. The variations may be due to the evaluated batches, hence generalizations cannot be made as to the respective brands. It is recommended that each new batch or new brand be tested with a panel of reference sera representing the various patterns.

  13. High-order statistics of microtexton for HEp-2 staining pattern classification.

    Science.gov (United States)

    Han, Xian-Hua; Wang, Jian; Xu, Gang; Chen, Yen-Wei

    2014-08-01

    This study addresses the classification problem of the HEp-2 cell using indirect immunofluorescent (IIF) image analysis, which can indicate the presence of autoimmune diseases by finding antibodies in the patient serum. Generally, the method used for IIF analysis remains subjective, and depends too heavily on the experience and expertise of the physician. Recently, studies have shown that it is possible to identify the cell patterns using IIF image analysis and machine learning techniques. However, it still has large gap in recognition rates to the physical experts' one. This paper explores an approach in which the discriminative features of HEp-2 cell images in IIF are extracted and then, the patterns of the HEp-2 cell are identified using machine learning techniques. Motivated by the progress in the research field of computer vision, as a result of which small local pixel pattern distributions can now be highly discriminative, the proposed strategy employs a parametric probability process to model local image patches (textons: microstructures in the cell image) and extract the higher-order statistics of the model parameters for the image description. The proposed strategy can adaptively characterize the microtexton space of HEp-2 cell images as a generative probability model, and discover the parameters that yield a better fitting of the training space, which would lead to a more discriminant representation for the cell image. The simple linear support vector machine is used for cell pattern identification because of its low computational cost, in particular for large-scale datasets. Experiments using the open HEp-2 cell dataset used in the ICIP2013 contest validate that the proposed strategy can achieve a much better performance than the widely used local binary pattern (LBP) histogram and its extensions, rotation invariant co-occurrence LBP, and pairwise rotation invariant co-occurrence LBP, and that the achieved recognition error rate is even very

  14. Strategies to enhance epithelial-mesenchymal interactions for human hair follicle bioengineering.

    Science.gov (United States)

    Ohyama, Manabu; Veraitch, Ophelia

    2013-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Accordingly, the enhancement of this crosstalk represents a promising approach to achieve successful bioengineering of human hair follicles. The present article summarizes the techniques, both currently available and potentially feasible, to promote epithelial-mesenchymal interactions (EMIs) necessary for human hair follicle regeneration. The strategies include the preparation of epithelial components with high receptivity to trichogenic dermal signals and/or mesenchymal cell populations with potent hair inductive capacity. In this regard, bulge epithelial stem cells, keratinocytes predisposed to hair follicle fate or keratinocyte precursor cells with plasticity may provide favorable epithelial cell populations. Dermal papilla cells sustaining intrinsic hair inductive capacity, putative dermal papilla precursor cells in the dermal sheath/neonatal dermis or trichogenic dermal cells derived from undifferentiated stem/progenitor cells are promising candidates as hair inductive dermal cells. The most established protocol for in vivo hair follicle reconstitution is co-grafting of epithelial and mesenchymal components into immunodeficient mice. In theory, combination of individually optimized cellular components of respective lineages should elicit most intensive EMIs to form hair follicles. Still, EMIs can be further ameliorated by the modulation of non-cell autonomous conditions, including cell compartmentalization to replicate the positional relationship in vivo and humanization of host environment by preparing human stromal bed. These approaches may not always synergistically intensify EMIs, however, step-by-step investigation probing optimal combinations should maximally enhance EMIs to achieve successful human hair follicle bioengineering.

  15. I Consenso Nacional para Padronização dos Laudos de FAN HEp-2 The first Brazilian Consensus for Standardization of ANA in HEp-2 Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Dellavance

    2002-07-01

    Full Text Available A análise da presença de auto-anticorpos feita por imunofluorescência indireta em células HEp-2 constitui-se em um método de triagem escolhido na maioria dos laboratórios clínicos. A ausência de uma nomenclatura definida para a descrição dos laudos tem trazido problemas na utilização clínica do teste, pelas dificuldades no controle de qualidade e na padronização dos resultados, que, por sua vez, embora similares, recebiam denominações diferentes. O I Consenso Brasileiro para Padronização dos Laudos de FAN HEp-2 reuniu em agosto de 2000, em Goiânia, diversos especialistas de todo o Brasil. Esses emitiram pareceres em consenso para os distintos padrões: nucleares, nucleolares, citoplasmáticos e aparelho mitótico. Foram feitas recomendações sobre os critérios para a leitura de uma lâmina, bem como para relação entre a diluição de triagem e o sistema óptico utilizado.The technique of immunofluorescence using HEp-2 cells as substrate is the screening method of choice for the presence of autoantibodies in many clinical laboratories. The lack of a specific terminology for reporting results brings problems in quality control, clinical utility of the test, and standardization attempts. The first Brazilian Consensus for Standardization of ANA in HEp-2 Cells took place in Goiânia in August 2000. Several laboratory specialists with experience in the methodology showed up. They established guidelines for the description of ANA patterns in the Portuguese language, encompassing distinct descriptions for nuclear, nucleolar, cytoplasmic and mitotic apparatus patterns of fluorescence. Recommendations were also established regarding screening titers, final dilution titer, and on morphological criteria for reading the slides.

  16. LC-MS analysis of Hep-2 and Hek-293 cell lines treated with Brazilian red propolis reveals differences in protein expression.

    Science.gov (United States)

    da Silva Frozza, Caroline O; da Silva Brum, Emyle; Alving, Anjali; Moura, Sidnei; Henriques, João A P; Roesch-Ely, Mariana

    2016-08-01

    Red propolis, an exclusive variety of propolis found in the northeast of Brazil has shown to present antitumour activity, among several other biological properties. This article aimed to help to evaluate the underlying molecular mechanisms of the potential anticancer effects of red propolis on tumour, Hep-2, and non-tumour cells, Hek-293. Differentially expressed proteins in human cell lines were identified through label-free quantitative MS-based proteomic platform, and cells were stained with Giemsa to show morphological changes. A total of 1336 and 773 proteins were identified for Hep-2 and Hek-293, respectively. Among the proteins here identified, 16 were regulated in the Hep-2 cell line and 04 proteins in the Hek-293 line. Over a total of 2000 proteins were identified under MS analysis, and approximately 1% presented differential expression patterns. The GO annotation using Protein Analysis THrough Evolutionary Relationships classification system revealed predominant molecular function of catalytic activity, and among the biological processes, the most prominent was associated to cell metabolism. The proteomic profile here presented should help to elucidate further molecular mechanisms involved in inhibition of cancer cell proliferation by red propolis, which remain unclear to date. © 2016 Royal Pharmaceutical Society.

  17. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells.

    Science.gov (United States)

    Tsai, Yi-Shan; Lee, Ka-Wo; Huang, Jau-Ling; Liu, Yu-Sen; Juo, Suh-Hang Hank; Kuo, Wen-Rei; Chang, Jan-Gowth; Lin, Chang-Shen; Jong, Yuh-Jyh

    2008-07-30

    The International Agency for Research on Cancer declared that areca nut was carcinogenic to human. Areca nut is the main component of betel quid (BQ), which is commonly consumed in Asia. Epidemiological studies have shown that BQ chewing is a predominant risk factor for oral and pharyngeal cancers. It has been known that areca nut is genotoxic to human epithelial cells. However, the molecular and cellular mechanisms underlying areca nut-associated genotoxicity are not fully understood. Here we showed that arecoline, a major alkaloid of areca nut, might contribute to oral carcinogenesis through inhibiting p53 and DNA repair. We found, on the biological aspect, that arecoline could induce gamma-H2AX phosphorylation, a sensitive DNA damage marker, in KB, HEp-2, and 293 cells, suggesting that DNA damages were elicited by arecoline. This phenomenon was supported by the observations of arecoline-induced hyperphosphorylation of ATM, Nbs1, Chk1/2, p53, and Cdc25C, as well as G2/M cell cycle arrest, indicating that a cellular DNA damage response was activated. To explore the possible mechanism accounting for arecoline-elicited DNA damages, we found that arecoline could inhibit p53 by its expression and transactivation function. As a result, the expression of p53-regulated p21(WAF1) and the p53-activated DNA repair were repressed by arecoline. Finally, we showed that p53 mRNA transcripts were frequently down-regulated in BQ-associated oral cancer, suggesting that arecoline-mediated p53 inhibition might play a role in BQ-associated tumorigenesis.

  18. TRPP2 Enhances Metastasis by Regulating Epithelial-Mesenchymal Transition in Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Kaile Wu

    2016-11-01

    Full Text Available Background/Aim: Surgery and chemotherapy treatments of human laryngeal squamous cell carcinoma (HLSCC may fail due to metastasis, in which epithelial-mesenchymal transition (EMT plays an important role. TRPP2, a nonselective cation channel, is expressed in various cell types and participates in many biological processes. Here, we show that TRPP2 enhanced metastasis by regulating EMT. Methods: We used immunohistochemistry, western blotting, Ca2+ imaging, transwell and wound healing assays to investigate TRPP2 expression levels in HLSCC tissue, and the role of TRPP2 in invasion and metastasis of a human laryngocarcinoma cell line (Hep2 cell. Results: We found that TRPP2 protein expression levels were significantly increased in HLSCC tissue; higher TRPP2 levels were associated with decreased patient survival time and degree of differentiation and advanced clinical stage. Knockdown of TRPP2 by transfection with TRPP2 siRNA markedly suppressed ATP-induced Ca2+ release, wound healing, and cell invasion in Hep2 cells. Moreover, TRPP2 siRNA significantly decreased vimentin expression but increased E-cadherin expression in Hep2 cells. In the EMT signalling pathway, TRPP2 siRNA significantly decreased Smad4, STAT3, SNAIL, SLUG and TWIST expression in Hep2 cells. Conclusion: We revealed a previously unknown function of TRPP2 in cancer development and a TRPP2-dependent mechanism underlying laryngocarcinoma cell invasion and metastasis. Our results suggest that TRPP2 may be used as a biomarker for evaluating patient prognosis and as a novel therapeutic target in HLSCC.

  19. Stimulation of mucin secretion from human bronchial epithelial cells by mast cell chymase

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG

    2004-01-01

    AIM: To investigate the effect ofchymase on the mucin secretion from human bronchial epithelial cells. METHODS:Primarily-cultured human bronchial epithelial (PCHBE) cells and normal human bronchial epithelial (NHBE) cells were cultured with chymase or other stimulus in a mixture of bronchial epithelial growth medium (BEGM) and Dulbecco's modified Eagle's medium (DMEM), and the quantities of stimulatory mucin release were recorded.MUC5AC mucin was measured with an ELISA and dolichos biflorus agglutinin (DBA) mucin was determined with an enzyme linked DBA assay. RESULTS: A dose-dependent secretion of DBA mucin from PCHBE cells was observed with chymase with a maximum secretion of 98 % above baseline being achieved following 3 h incubation.The action of chymase started from 1 h, peaked at 3 h and dramatically decreased at 20 h following incubation.Chymase was able to also stimulate approximately 38 % increase in MUC5AC mucin release from PCHBE cells, and about 121% increase in DBA mucin release from NHBE cells. A chymase inhibitor soybean trypsin inhibitor (SBTI)was able to inhibit up to 85 % chymase induced mucin release, indicating that the enzymatic activity was essential for the actions of chymase on bronchial epithelial cells. CONCLUSION: Chymase is a potent stimulus of mucin secretion from human bronchial epithelial cells. It can contribute to mucus hypersecretion process in the patients with chronic obstructive pulmonary disease or asthma.

  20. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  1. Comparative proteome analysis of human epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Gagné Jean-Philippe

    2007-09-01

    Full Text Available Abstract Background Epithelial ovarian cancer is a devastating disease associated with low survival prognosis mainly because of the lack of early detection markers and the asymptomatic nature of the cancer until late stage. Using two complementary proteomics approaches, a differential protein expression profile was carried out between low and highly transformed epithelial ovarian cancer cell lines which realistically mimic the phenotypic changes observed during evolution of a tumour metastasis. This investigation was aimed at a better understanding of the molecular mechanisms underlying differentiation, proliferation and neoplastic progression of ovarian cancer. Results The quantitative profiling of epithelial ovarian cancer model cell lines TOV-81D and TOV-112D generated using iTRAQ analysis and two-dimensional electrophoresis coupled to liquid chromatography tandem mass spectrometry revealed some proteins with altered expression levels. Several of these proteins have been the object of interest in cancer research but others were unrecognized as differentially expressed in a context of ovarian cancer. Among these, series of proteins involved in transcriptional activity, cellular metabolism, cell adhesion or motility and cytoskeleton organization were identified, suggesting their possible role in the emergence of oncogenic pathways leading to aggressive cellular behavior. Conclusion The differential protein expression profile generated by the two proteomics approaches combined to complementary characterizations studies will open the way to more exhaustive and systematic representation of the disease and will provide valuable information that may be helpful to uncover the molecular mechanisms related to epithelial ovarian cancer.

  2. Effect of Meloxicam on laryngeal carcinoma cell line Hep-2%美洛昔康对人喉癌Hep-2细胞株作用的研究

    Institute of Scientific and Technical Information of China (English)

    沈宝茗; 周芝芳; 刘珺

    2011-01-01

    Objective To study the apoptosis induction and cell cycle effect of Meloxicam on laryngeal carcinoma cell line Hep-2 and the possible mechanism. Methods Hep-2 cell was cultured and randomly divided into experimental group and control group. At different time points after culturation , the apoptosis induced by Meloxicam and the influence on cell cycle in Hep-2 were observed by flow cytometry. At the same time , the changes of mitochondrial membrane potential in Hep - 2 were detected. Results Flow cytometry analysis showed that Meloxicam induced apoptosis of Hep - 2 in a concentration - dependent manner. Hie cell number of G1 phase in the experimental group was significantly higher than that of the control group ( P < 0. 0 5 ) . The mitochondrial membrane potential of the experimental group decreased significantly ( P < 0. 05 ) . Conclusion Meloxicam can significantly induce apoptosis and inhibit differentiation of Hep-2 cell via a possible mechanism to initiate mitochondrial apoptosis.%目的 探讨美洛昔康对喉癌细胞株Hep -2凋亡作用和对体外培养喉癌Hep -2细胞周期的影响及作用机制.方法 应用肿瘤细胞培养技术,随机分实验组和空白对照组,培养不同时间后,用流式细胞仪检测美洛昔康对Hep -2细胞凋亡发生率及对细胞周期的影响,同时检测美洛昔康作用Hep -2细胞后细胞线粒体跨膜电位的变化.结果 流式细胞仪分析显示美洛昔康呈浓度依赖性诱导Hep -2细胞凋亡,且实验组G1期细胞数明显增加,与对照组比较差异有统计学意义(P<0.05);实验组Hep -2细胞线粒体跨膜电位明显下降,与对照组比较差异有统计学意义(P<0.05).结论美洛昔康具有诱导Hep -2细胞凋亡及抑制细胞分化的作用,其机制可能与触发了线粒体凋亡途径有关.

  3. [Impacts of hypoxia on the features and chemoresistance of cancer stem cells in Hep-2 cells and underlying mechanism].

    Science.gov (United States)

    Qu, Yong-tao; Li, Xiao-ming; Xu, Ou; Wang, Mao-xin; Lu, Xiu-ying

    2012-03-01

    To investigate the effects of hypoxia on the features and chemoresistance of cancer stem cells in Hep-2 cells and underlying mechanism. The shRNA interference recombinant plasmid targeting HIF-1α was synthesized and transfected into Hep-2 cells. The HIF-1α knockdown Hep-2 cells were established after clonal selection and the expression of HIF-1α was measured. The cellular features including proliferation, clonal formation, cell cycle, apoptosis and CD133 phenotype were measured in Hep-2 cells cultured under hypoxic condition in vitro. CD133+ cells were sorted from Hep-2 cells with flow cytometry. Clonal formation test and cisplatin treatment were carried out, and the expressions of related genes (Oct-4, suvivin and p53) in CD133+ cells were measured. HIF-1α knockdown Hep-2 cells was successfully established, as evidenced by the reduced mRNA and protein expressions of HIF-1α. The Hep-2 cells cultured under hypoxic microenvironment showed higher proliferation and clonal formation activity, cell cycle arrest in G0/G1, lower apoptosis, up-regulated CD133, however the effects of hypoxia reduced in HIF-1α knockdown Hep-2 cells. CD133+ cells were successfully sorted from Hep-2 cells, and the CD133+ cells showed increased clonal formation activity and cisplatin treatment resistance in hypoxia. Also the effects of hypoxia on CD133+ cells decreased with HIF-1α knockdown, showing down-regulated Oct-4 and survivin and up-regulated p53. Hypoixa can induce the features of cancer stem cells in Hep-2 cells and increase proliferation, differentiation and chemoresistant ability of CD133+ cells, which might be correlated with the changes in expressions of HIF-1α and related genes regulated by HIF-1α.

  4. The function and significance of SELENBP1 downregulation in human bronchial epithelial carcinogenic process.

    Directory of Open Access Journals (Sweden)

    Gu-Qing Zeng

    Full Text Available BACKGROUND: Our quantitative proteomic study showed that selenium-binding protein 1 (SELENBP1 was progressively decreased in human bronchial epithelial carcinogenic process. However, there is little information on expression and function of SELENBP1 during human lung squamous cell cancer (LSCC carcinogenesis. METHODS: iTRAQ-tagging combined with 2D LC-MS/MS analysis was used to identify differentially expressed proteins in the human bronchial epithelial carcinogenic process. SELENBP1, member of selenoproteins family and progressively downregulated in this process, was selected to further study. Both Western blotting and immunohistochemistry were performed to detect SELENBP1 expression in independent sets of tissues of bronchial epithelial carcinogenesis, and ability of SELENBP1 for discriminating NBE (normal bronchial epithelium from preneoplastic lesions from invasive LSCC was evaluated. The effects of SELENBP1 downregulation on the susceptibility of benzo(apyrene (B[a]P-induced human bronchial epithelial cell transformation were determined. RESULTS: 102 differentially expressed proteins were identified by quantitative proteomics, and SELENBP1 was found and confirmed being progressively decreased in the human bronchial epithelial carcinogenic process. The sensitivity and specificity of SELENBP1 were 80% and 79% in discriminating NBE from preneoplastic lesions, 79% and 82% in discriminating NBE from invasive LSCC, and 77% and 71% in discriminating preneoplastic lesions from invasive LSCC, respectively. Furthermore, knockdown of SELENBP1 in immortalized human bronchial epithelial cell line 16HBE cells significantly increased the efficiency of B[a]P-induced cell transformation. CONCLUSIONS: The present data shows for the first time that decreased SELENBP1 is an early event in LSCC, increases B[a]P-induced human bronchial epithelial cell transformation, and might serve as a novel potential biomarker for early detection of LSCC.

  5. [Focal epithelial hyperplasia of the oral mucosa. A unique manifestation of human papillomavirus].

    Science.gov (United States)

    van der Voort, E A M; Arani, S Fallah; Hegt, V Noordhoek; van Praag, M C G

    2009-03-01

    A 34-year old Creole woman appeared at the dermatology department with white-pink spots on the oral mucosa, which had been there for some time. Histology showed lesions characteristic of focal epithelial hyperplasia. The patient was treated with a CO2 laser. Focal epithelial hyperplasia is a rare benign lesion and is caused by human papillomavirus subtypes 13 or 32; it only appears on the oral mucosa.

  6. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  7. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  8. Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface

    Science.gov (United States)

    Müller, Loretta; Brighton, Luisa E.; Carson, Johnny L.; Fischer, William A.; Jaspers, Ilona

    2013-01-01

    In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial

  9. Culturing of human nasal epithelial cells at the air liquid interface.

    Science.gov (United States)

    Müller, Loretta; Brighton, Luisa E; Carson, Johnny L; Fischer, William A; Jaspers, Ilona

    2013-10-08

    In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial

  10. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    Science.gov (United States)

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells.

  11. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    OpenAIRE

    Wu, Weidong; Samet, James M.; Peden, David B.; Bromberg, Philip A.

    2010-01-01

    Background Exposure to zinc oxide (ZnO) in environmental and occupational settings causes acute pulmonary responses through the induction of proinflammatory mediators such as interleukin-8 (IL-8). Objective We investigated the effect of ZnO nanoparticles on IL-8 expression and the underlying mechanisms in human bronchial epithelial cells. Methods We determined IL-8 mRNA and protein expression in primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line usin...

  12. Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

    Directory of Open Access Journals (Sweden)

    Jianwu Bai

    Full Text Available Human airway epithelial cells are the principal target of human rhinovirus (HRV, a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1 to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2 to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.Air-liquid interface (ALI human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3, and novel ones that were identified for the first time in this study (e.g. CCRL1.ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

  13. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    Science.gov (United States)

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  14. THE TRANSMEMBRANE SIGNAL TRANSDUCTION IN HEp-2 CELLS INDUCED BY BACTERIAL ADHERENCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In order to understand the role of transmembrane signal transduction of host cells in the early steps of infection,the adherence of E. coli to HEp-2 cells and the change of activity of phospholipase C-γ (PLC-γ) induced by the adherence were investigated.The adherence of enteropathogenic E.coli (EPEC), strain E.7, induced a significant increase of inositol-triphosphat (IP-3) level in HEp-2 cells. The adherence of the bacteria and the increase of IP-3 was kinetically correlated. Whereas the increase of IP3 level induced by the adherence of the control strain EPEC (H511), a non-piliated strain, was much meager than that by E7, a piliated strain. The results highlighted an important role of transmembrane signals like IP-3 in the pathogenesis of EPEC.

  15. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  16. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  17. Culture of the causative organism of donovanosis (Calymmatobacterium granulomatis) in HEp-2 cells.

    OpenAIRE

    J. Carter; Hutton, S.; Sriprakash, K. S.; Kemp, D J; Lum, G; Savage, J.; Bowden, F. J.

    1997-01-01

    We report successful culture of Calymmatobacterium granulomatis by standard cell culture methods. Swabs were obtained from lesions in three patients with a clinical diagnosis of donovanosis. For two patients, there was histological confirmation of the disease (i.e., the presence of Donovan bodies in Giemsa-stained smears). Specimens were inoculated onto cycloheximide-treated HEp-2 cell monolayers in RPMI 1640 medium (supplemented with fetal calf serum, NaHCO3, vancomycin hydrochloride, and be...

  18. Tumor necrosis factor α accelerates Hep-2 cells proliferation by suppressing TRPP2 expression.

    Science.gov (United States)

    Wu, Jing; Guo, Jizheng; Yang, Yunyun; Jiang, Feifei; Chen, Shuo; Wu, Kaile; Shen, Bing; Liu, Yehai; Du, Juan

    2017-06-29

    TRPP2, a Ca(2+)-permeable non-selective cation channel, has been shown to negatively regulate cell cycle, but the mechanism underlying this regulation is unknown. Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine extensively involved in immune system regulation, cell proliferation and cell survival. However, the effects and mechanisms for the role of TNF-α in laryngeal cancer remain unclear. Here, we demonstrated using western blot analyses and intracellular Ca(2+) concentration measurements that TNF-α treatment suppressed both TRPP2 expression and ATP-induced Ca(2+) release in a laryngeal cancer cell line (Hep-2). Knockdown of TRPP2 by a specific siRNA significantly decreased ATP-induced Ca(2+) release and abolished the effect of TNF-α on the ATP-induced Ca(2+) release. TNF-α treatment also enhanced Hep-2 cell proliferation and growth, as determined using cell counting and flow cytometry cell cycle assays. Moreover, TNF-α treatment down-regulated phosphorylated protein kinase R-like endoplasmic reticulum kinase (p-PERK) and phosphorylated eukaryotic translation initiation factor (p-eIF2α) expression levels, without affecting PERK and eIF2α expression levels in Hep-2 cells. We concluded that suppressing TRPP2 expression and TRPP2-mediated Ca(2+) signaling may be one mechanism underlying TNF-α-enhanced Hep-2 cell proliferation. These results offer new insights into the mechanisms of TNF-α-mediated laryngeal cancer cell proliferation, and provide evidences showing a potential role of TNF-α in the development of laryngeal cancer.

  19. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    Science.gov (United States)

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  20. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, Ren& #233; ; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  1. Oral focal epithelial hyperplasia: report of 3 cases with human papillomavirus DNA sequencing analysis.

    Science.gov (United States)

    Gültekin, S E; Tokman Yildirim, Benay; Sarisoy, S

    2011-01-01

    Focal epithelial hyperplasia (FEH), or Heck's disease, is a benign proliferative viral infection of the oral mucosa that is related to Human Papil-lomavirus (HPV), mainly subtypes 13 and 32. Although this condition is known to exist in numerous populations and ethnic groups, the reported cases among Caucasians are relatively rare. It presents as asymptomatic papules or nodules on the oral mucosa, gingiva, tongue, and lips. Histopathologically, it is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, fusion, and horizontal outgrowth of epithelial ridges and the cells named mitozoids. The purpose of this case report was to present 3 cases of focal epithelial hyperplasia in a pediatric age group. Histopathological and clinical features of cases are discussed and DNA sequencing analysis is reported in which HPV 13, HPV 32, and HPV 11 genomes are detected.

  2. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    Science.gov (United States)

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  3. Differential Mucin Expression by Respiratory Syncytial Virus and Human Metapneumovirus Infection in Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ma. Del Rocío Baños-Lara

    2015-01-01

    Full Text Available Mucins (MUC constitute an important component of the inflammatory and innate immune response. However, the expression of these molecules by respiratory viral infections is still largely unknown. Respiratory syncytial virus (RSV and human metapneumovirus (hMPV are two close-related paramyxoviruses that can cause severe low respiratory tract disease in infants and young children worldwide. Currently, there is not vaccine available for neither virus. In this work, we explored the differential expression of MUC by RSV and hMPV in human epithelial cells. Our data indicate that the MUC expression by RSV and hMPV differs significantly, as we observed a stronger induction of MUC8, MUC15, MUC20, MUC21, and MUC22 by RSV infection while the expression of MUC1, MUC2, and MUC5B was dominated by the infection with hMPV. These results may contribute to the different immune response induced by these two respiratory viruses.

  4. Feasibility of a 3D human airway epithelial model to study respiratory absorption.

    Science.gov (United States)

    Reus, Astrid A; Maas, Wilfred J M; Jansen, Harm T; Constant, Samuel; Staal, Yvonne C M; van Triel, Jos J; Kuper, C Frieke

    2014-03-01

    The respiratory route is an important portal for human exposure to a large variety of substances. Consequently, there is an urgent need for realistic in vitro strategies for evaluation of the absorption of airborne substances with regard to safety and efficacy assessment. The present study investigated feasibility of a 3D human airway epithelial model to study respiratory absorption, in particular to differentiate between low and high absorption of substances. Bronchial epithelial models (MucilAir™), cultured at the air-liquid interface, were exposed to eight radiolabeled model substances via the apical epithelial surface. Absorption was evaluated by measuring radioactivity in the apical compartment, the epithelial cells and the basolateral culture medium. Antipyrine, caffeine, naproxen and propranolol were highly transported across the epithelial cell layer (>5%), whereas atenolol, mannitol, PEG-400 and insulin were limitedly transported (absorption. The intra-experimental reproducibility of the results was considered adequate based on an average coefficient of variation (CV) of 15%. The inter-experimental reproducibility of highly absorbed compounds was in a similar range (CV of 15%), but this value was considerably higher for those compounds that were limitedly absorbed. No statistical significant differences between different donors and experiments were observed. The present study provides a simple method transposable in any lab, which can be used to rank the absorption of chemicals and pharmaceuticals, and is ready for further validation with respect to reproducibility and capacity of the method to predict respiratory transport in humans.

  5. Adherence of uropathogenic Escherichia coli to human primary epithelial cells of renal pelvis

    Institute of Scientific and Technical Information of China (English)

    CHAO GU; JIN YING CHEN; MIN HOU; JING DONG HE; JI WU CHANG

    2006-01-01

    Human primary epithelial cells of renal pelvis was established to investigate the adherence of uropathogenic Escherichia coli (UPEC) to this cell line, in which the primary cell culture was performed by using cultivation of the normal epithelium of renal pelvis in keratinocyte serum free medium (K-SFM)with epidermal growth factor (EGF) and bovine pituitary extract (BPE). Both UPEC132 obtained from urine specimen of patients with pyelonephritis and the pilus-free representative strain E. coli K-12p678-54 were used to study the adherence of these strains on human primary epithelial cells of renal pelvis.The UPEC adherence was performed with observation on the morphological changes of the adhered cells,while the adhesion rates and indices were calculated in different times of experiment. In addition, the virulence genes hly and cnf1 of UPEC132 were detected by multiplex PCR assay. In this study, the human primary epithelial cells of renal pelvis was found to exhibit the character of the transitional epithelial cells. Compared with the control group, the adhesion rates and indices began to increase from 15 min of the experiment time and reached its peak in 120 min. The adhesion rate and index of UPEC132 to human primary epithelial cells of renal pelvis were 74.4% and 34.0 respectively. Many microscopic changes in the primary cells adhered with UPEC132 could be detected, such as rounding or irregularity in shape,unevenness in staining and the cytoplasmic and nuclear changes. It suggests that human primary epithelial cells of renal pelvis can be used for the experiment on UPEC adhesion, thus providing a basis for the further study on the pathogenesis of UPEC.

  6. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hou

    Full Text Available PURPOSE: Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. METHODS: Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. RESULTS: Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. CONCLUSION: Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.

  7. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    OpenAIRE

    Lidiia Astakhova; Mtakai Ngara; Olga Babich; Aleksandr Prosekov; Lyudmila Asyakina; Lyubov Dyshlyuk; Tore Midtvedt; Xiaoying Zhou; Ingemar Ernberg; Liudmila Matskova

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell l...

  8. Benzyl Isothiocyanate Inhibits Epithelial-Mesenchymal Transition in Cultured and Xenografted Human Breast Cancer Cells

    OpenAIRE

    Sehrawat, Anuradha; Singh, Shivendra V.

    2011-01-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells, and suppresses mammary cancer development in a transgenic mouse model. We now demonstrate, for the first time, that BITC inhibits epithelial-to-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell ...

  9. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements

    Science.gov (United States)

    Berdyyeva, Tamara K.; Woodworth, Craig D.; Sokolov, Igor

    2005-01-01

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously attributed to increased crosslinking of extracellular matrix proteins. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that the Young's modulus of viable cells was consistently increased two- to four-fold in older versus younger cells. Direct visualization of the cytoskeleton using a novel method involving the AFM suggested that increased rigidity of ageing cells was due to a higher density of cytoskeletal fibres. Our results identify a unique mechanism that might contribute to the age-related loss of elasticity in epithelial tissues.

  10. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements

    Energy Technology Data Exchange (ETDEWEB)

    Berdyyeva, Tamara K [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States); Woodworth, Craig D [Department of Biology, Clarkson University, NY 13699 (United States); Sokolov, Igor [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States)

    2005-01-07

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously attributed to increased crosslinking of extracellular matrix proteins. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that the Young's modulus of viable cells was consistently increased two- to four-fold in older versus younger cells. Direct visualization of the cytoskeleton using a novel method involving the AFM suggested that increased rigidity of ageing cells was due to a higher density of cytoskeletal fibres. Our results identify a unique mechanism that might contribute to the age-related loss of elasticity in epithelial tissues.

  11. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  12. 下调微小RNA-21对人肿瘤Hep-2细胞生长和侵袭的影响%Effects of microRNA-21 on growth and invasion of laryngopharynx cancer Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    范钰; 蒋孟林; 沈荣; 彭辉勇; 徐永中; 钱炜

    2016-01-01

    Objective To study the effects of microRNA (miRNA,miR)-21 on growth and invasion of human laryngopharynx cancer Hep-2 cells.Methods The Hep-2 cells were classified into three groups:blank control group (Con-A),the empty plasmid group (Con-B) and antisense miR-21 group (As-miR-21).The transfection reagent oligofectamine was mixed with antisense miRNA-21 (AS-miR-21) and nonsense oligodeoxyribonucleotides (ODN),respectively,and then,they were added into the medium of Hep-2 cells as AS-miR-21 treatment group and nonsense ODN treatment group,respectively.The miR-21 knocking down effects were examined by luciferase activity assay.The growth of cancer cells was determined by methyl thiazol tetrazolium (MTT) assay and clone formation assay,and the invasion ability was studied by Transwell assay.Results Luciferase intensity in As-miR-21 treated cancer cells was significantly suppressed as compared with that in the control group and nonsense ODN treatment group (P < 0.05).After cancer cells were transfected by As-miR-21,the results of MTT assay showed that the absorbance (A) values in Con-A,Con-B and As-miR-21 groups at 72 h were 0.800 ± 0.035,0.791 ± 0.024 and 0.447 ± 0.014 respectively (P < 0.05);the results of colony formation assay showed that clones in Con-A,Con-B and As-miR-21 groups were 104 ±8,96 ±4 and 44 ±3 (P <0.05).The results of Transwell showed that the number of cells penetrating membrane in Con-A,Con-B and FoxM1 groups was 154 ± 8,141 ± 4 and 70 ± 9,respectively (P < 0.05).Conclusion miR-21 plays an important role in the proliferation and invasion of human laryngeal carcinoma cells.%目的 观察微小RNA(miRNA,miR)-21对人肿瘤细胞生长和侵袭能力的影响.方法 人喉癌Hep-2细胞分为3组:空白对照组(Con-A)、空载对照组(Con-B)和反义寡核苷酸(AS-miR-21),其中,AS-miR-21组以miR-21反义寡核苷酸组转染处理.测定荧光素酶活性验证3组细胞中miR-21的表达,分别采用噻唑蓝(MTT)法和克隆形

  13. Coevolution between the Human Microbiota and the Epithelial Immune System.

    Science.gov (United States)

    Sigal, Michael; Meyer, Thomas F

    2016-01-01

    The composition and spatial distribution of our gut microbiota is tightly controlled by the host to prevent bacterial invasion and systemic infection. The gastrointestinal epithelium is predominantly made up of a cellular monolayer equipped with a number of sophisticated autonomous defense mechanisms, which are strikingly efficient in maintaining homeostasis between the luminal microbes and the host. This short review highlights aspects of this finetuned interplay. We also address how deficiencies in mucosal defense can promote disease. First, genetic defects of sensors or effectors of epithelial defense can result in the disruption of the mucosal barrier and lead to chronic inflammatory conditions. Second, chronic colonizers of the gastrointestinal tract can actively manipulate mucosal defense to escape immune surveillance. As shown for Helicobacter pylori in the stomach, sustained manipulation of the epithelium through specialized virulence determinants can increase the risk for genetic lesions and malignant transformation.

  14. Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia

    Directory of Open Access Journals (Sweden)

    Nagayasu Egawa

    2015-07-01

    Full Text Available Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted.

  15. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    Science.gov (United States)

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  17. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  18. Human amniotic epithelial cells express specific markers of nerve cells and migrate along the nerve fibers in the corpus callosum

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Wu; Guozhen Hui; Yi Lu; Tianjin Liu; Qin Huang; Lihe Guo

    2012-01-01

    Human amniotic epithelial cells were isolated from a piece of fresh amnion. Using immunocytochemical methods, we investigated the expression of neuronal phenotypes (microtubule-associated protein-2, glial fibrillary acidic protein and nestin) in human amniotic epithelial cells. The conditioned medium of human amniotic epithelial cells promoted the growth and proliferation of rat glial cells cultured in vitro, and this effect was dose-dependent. Human amniotic epithelial cells were further transplanted into the corpus striatum of healthy adult rats and the grafted cells could integrate with the host and migrate 1-2 mm along the nerve fibers in corpus callosum. Our experimental findings indicate that human amniotic epithelial cells may be a new kind of seed cells for use in neurograft.

  19. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Wen-bin

    2009-09-01

    Full Text Available Abstract Background Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17 in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance. Methods Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910. Results We found that HSp17 was aberrantly expressed in 43% (30/70 of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin. Conclusion HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy.

  20. The protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Xue - Fang Chen

    2013-06-01

    Full Text Available AIM: To investigate the protective effect of resveratrol on human lens epithelial cells against ultraviolet-induced apoptosis. METHODS:Subcultured human lens epithelial cell line, ultraviolet induced cell apoptosis, 20μmol/L resveratrol pretreated cell, the indicators change was observed: rate of apoptosis was detected by flow cytometry and apoptosis-related factors of caspses-3 and caspase-9 were detected by colorimetric detection, ultrastructure changes were observed under transmission electron microscope. RESULTS: Flow cytometry instrument testing found that resveratrol can suppress the apoptosis induced by ultraviolet irradiation, caspses-3 and caspase-9 content in positive control group were significantly higher than that of the negative control group at the same time period, the difference was statistically significant(P<0.05; caspses-3 and caspase-9 content in experimental group were lower than that in the positive control group at the same time, the difference was statistically significant(P<0.05. In addition, the damage of human lens epithelial cells was alleviated with the incubation time of resveratrol elongated. CONCLUSION:Resveratrol may inhibit ultraviolet-induced apoptosis of human lens epithelial cells, it has preventive function against radioactive cataract, and it can provide reliable evidence for pursuing effective medicine to prevent and treat cataract.

  1. (Endo)cannabinoids mediate different Ca(2+) entry mechanisms in human bronchial epithelial cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia; Dekkers, Bart G. J.; Droge, Melloney J.; Elzinga, Carolina R. S.; Hasenbosch, Rutger E.; Meurs, Herman; Nelemans, S. Adriaan; Schmidt, Martina; Zaagsma, Johan

    2009-01-01

    In human bronchial epithelial (16HBE14o) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes

  2. RNA interference inhibits expression of vascular endothelial growth factor (VEGF) in human retinal pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    CAI Chun-mei; SUN Bao-chen; LIU Xu-yang; WANG Jin-jin; LI Jun-fa; HAN Song; WANG Ning-li; LU Qing-jun

    2005-01-01

    @@ Choroidal neovascularization (CNV), a major cause of vision loss, is the result of the increased vascular endothelial growth factor (VEGF) expression in human retinal pigment epithelial (RPE) cells. It is important to inhibit the expression of VEGF protein in RPE cells.

  3. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells

    OpenAIRE

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-01-01

    Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells.

  4. Research on the Photooxidative Action in Hep-2 Cells Induced by A Novel Targeting Photosensitizer%新型靶向光敏剂诱导Hep-2细胞光氧化行为的研究

    Institute of Scientific and Technical Information of China (English)

    李东红; 李鹏熙; 蒋宗林; 郭林峰

    2013-01-01

    [Purpose] To investigate the photooxidative action of Hep-2 cells induced by a novel photosensitizer Ⅰ.[Methods] The cytotoxicity of photosensitizer Ⅰ against Hep-2 cells was measured by MTT assay.The formation of active oxygen in the Hep-2 cells induced by photodynamic therapy(PDT) were observed by using an active oxygen specificity probe H2DCFDA through confocal laser scanning microscopy.The intracellular oxidative stress was investigated by determination of the levels of superoxide dismutase(SOD),glutathione (GSH) and malondialdehyde (MDA) in Hep-2 cells and the effusion of lactic dehydrogenase(LDH).[Results] No toxicity of photosensitizer Ⅰ on Hep-2 cells was observed when irradiation was not applied.Hep-2 cells were inhibited after PDT,and the photocytotoxicity of photosensitizer Ⅰ increased with the augmentation of irradiation(r=0.962,P=0.001).After PDT,the fluorescence intensity of DCFDA in cells increased gradually,and reached the peak at 4h,then decreased gradually; the levels of SOD and GSH decreased gradually,with decreased 42.5% (P<0.01)and 35.0% (P<0.01)respectively 3h after PDT; but the level of MDA increased with the prolongation of time,and increased 54% 3h after PDT (P<0.01).The effusion of LDH was positively correlated with irradiation dose (r=0.966,P=0.007).[Conclusion] PDT mediated by photosensitizer Ⅰ can effectively induce the death of Hep-2 cells,and the oxidative stress in cells maybe the main mechanism.%[目的]研究新型光敏剂Ⅰ诱导Hep-2细胞的光氧化行为.[方法]利用MTT法检测光敏剂Ⅰ对Hep-2细胞的细胞毒性;采用活性氧特异性探针H2DCFDA通过激光共聚焦成像观察Hep-2细胞中活性氧的生成;通过测定超氧化物歧化酶(SOD)、谷胱甘肽(GSH)和丙二醛(MDA)水平及乳酸脱氢酶(LDH)渗漏检测观察Hep-2细胞的氧化应激反应.[结果]无光照时,光敏剂Ⅰ对Hep-2细胞的毒性为零,但光照后可明显抑制该细胞的生长,且其光毒性

  5. An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test.

    Science.gov (United States)

    Tonti, Simone; Di Cataldo, Santa; Bottino, Andrea; Ficarra, Elisa

    2015-03-01

    The automatization of the analysis of Indirect Immunofluorescence (IIF) images is of paramount importance for the diagnosis of autoimmune diseases. This paper proposes a solution to one of the most challenging steps of this process, the segmentation of HEp-2 cells, through an adaptive marker-controlled watershed approach. Our algorithm automatically conforms the marker selection pipeline to the peculiar characteristics of the input image, hence it is able to cope with different fluorescent intensities and staining patterns without any a priori knowledge. Furthermore, it shows a reduced sensitivity to over-segmentation errors and uneven illumination, that are typical issues of IIF imaging.

  6. RGD-Dependent Epithelial Cell-Matrix Interactions in the Human Intestinal Crypt

    Directory of Open Access Journals (Sweden)

    Yannick D. Benoit

    2012-01-01

    Full Text Available Interactions between the extracellular matrix (ECM and integrin receptors trigger structural and functional bonds between the cell microenvironment and the cytoskeleton. Such connections are essential for adhesion structure integrity and are key players in regulating transduction of specific intracellular signals, which in turn regulate the organization of the cell microenvironment and, consequently, cell function. The RGD peptide-dependent integrins represent a key subgroup of ECM receptors involved in the maintenance of epithelial homeostasis. Here we review recent findings on RGD-dependent ECM-integrin interactions and their roles in human intestinal epithelial crypt cells.

  7. Human respiratory epithelial cells from nasal turbinate expressed stem cell genes even after serial passaging.

    Science.gov (United States)

    Ruszymah, B H I; Izham, B A Azrul; Heikal, M Y Mohd; Khor, S F; Fauzi, M B; Aminuddin, B S

    2011-12-01

    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.

  8. Butyrate stimulates IL-32α expression in human intestinal epithelial cell lines

    Institute of Scientific and Technical Information of China (English)

    Ayako; Kobori; Shigeki; Bamba; Hirotsugu; Imaeda; Hiromitsu; Ban; Tomoyuki; Tsujikawa; Yasuharu; Saito; Yoshihide; Fujiyama; Akira; Andoh

    2010-01-01

    AIM: To investigate the effects of butyrate on interleukin (IL)-32α expression in epithelial cell lines. METHODS: The human intestinal epithelial cell lines HT-29, SW480, and T84 were used. Intracellular IL- 32α was determined by Western blotting analyses. IL- 32α mRNA expression was analyzed by real-time poly-merase chain reaction. RESULTS: Acetate and propionate had no effects on IL-32α mRNA expression. Butyrate significantly enhanced IL-32α expression in all cell lines. Butyrate also up-regulated IL-1β-i...

  9. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    Directory of Open Access Journals (Sweden)

    Kurt W Kohn

    Full Text Available Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1; interactions at adherens junctions (CDH1, ADAP1, CAMSAP3; interactions at desmosomes (PPL, PKP3, JUP; transcription regulation of cell-cell junction complexes (GRHL1 and 2; epithelial RNA splicing regulators (ESRP1 and 2; epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B; epithelial Ca(+2 signaling (ATP2C2, S100A14, BSPRY; terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2; maintenance of apico-basal polarity (RAB25, LLGL2, EPN3. The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

  10. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  11. Ciliary beating recovery in deficient human airway epithelial cells after lentivirus ex vivo gene therapy.

    Directory of Open Access Journals (Sweden)

    Brigitte Chhin

    2009-03-01

    Full Text Available Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1 gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1-deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT-PCR and western blot, respectively. Human airway epithelial cells that were DNAI1-deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease.

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  13. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  14. A Case Report of Focal Epithelial Hyperplasia (Heck's disease) with PCR Detection of Human Papillomavirus.

    Science.gov (United States)

    Ozden, Bora; Gunduz, Kaan; Gunhan, Omer; Ozden, Feyza Otan

    2011-12-01

    Focal epithelial hyperplasia or Heck's disease, is a rare viral infection of the oral mucosa caused by human papillomavirus. The frequency of this disease varies widely from one geographic region to another. In Caucasians there have been only few cases reported. This paper reports a case of focal epithelial hyperplasia and demonstrates the association with HPV subtype 32 through polymerase chain reaction (PCR) and sequencing of PCR products. A 7-year-old Caucasian girl was admitted to our clinic for investigation of multiple oral mucosal lesions in the mouth. Lesion was excised under local anesthesia without any complication. The lesion was diagnosed as focal epithelial hyperplasia according to both clinical and histopathological features. Dental staff should be aware of these kind of lesions and histopathological examination together with a careful clinical observation should be carried out for a definitive diagnosis.

  15. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    Science.gov (United States)

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  16. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  17. Dexamethasone inhibits repair of human airway epithelial cells mediated by glucocorticoid-induced leucine zipper (GILZ.

    Directory of Open Access Journals (Sweden)

    Jingyue Liu

    Full Text Available BACKGROUND: Glucocorticoids (GCs are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK-extracellular-signal-regulated kinase (ERK signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX is mediated by GILZ. METHODS: We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays. RESULTS: DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway, proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced. CONCLUSIONS: The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.

  18. Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells.

    Science.gov (United States)

    de Godoi, Ananda Marques; Faccin-Galhardi, Lígia Carla; Lopes, Nayara; Rechenchoski, Daniele Zendrini; de Almeida, Raimundo Rafael; Ricardo, Nágila Maria Pontes Silva; Nozawa, Carlos; Linhares, Rosa Elisa Carvalho

    2014-01-01

    Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon's eye, and dragon's eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp) seeds against poliovirus type 1 (PV-1) in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50) of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT). The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50) of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI) of 423. The maximum inhibition (100%) of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h), at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection.

  19. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Derivation and characterization of human embryonic stem cells on human amnion epithelial cells.

    Science.gov (United States)

    Lai, Dongmei; Wang, Yongwei; Sun, Jian; Chen, Yifei; Li, Ting; Wu, Yi; Guo, Lihe; Wei, Chunsheng

    2015-05-07

    Culture conditions that support the growth of undifferentiated human embryonic stem cells (hESCs) have already been established using primary human amnion epithelial cells (hAECs) as an alternative to traditional mitotically inactivated mouse embryonic fibroblasts (MEFs). In the present work, inner cell masses (ICM) were isolated from frozen embryos obtained as donations from couples undergoing in vitro fertilization (IVF) treatment and four new hESC lines were derived using hAECs as feeder cells. This feeder system was able to support continuous growth of what were, according to their domed shape and markers, undifferentiated naïve-like hESCs. Their pluripotent potential were also demonstrated by embryoid bodies developing to the expected three germ layers in vitro and the productions of teratoma in vivo. The cell lines retained their karyotypic integrity for over 35 passages. Transmission electron microscopy (TEM) indicated that these newly derived hESCs consisted mostly of undifferentiated cells with large nuclei and scanty cytoplasm. The new hESCs cultured on hAECs showed distinct undifferentiated characteristics in comparison to hESCs of the same passage maintained on MEFs. This type of optimized culture system may provide a useful platform for establishing clinical-grade hESCs and assessing the undifferentiated potential of hESCs.

  1. Neoplastic transformation of a human prostate epithelial cell line by the v-Ki-ras oncogene.

    Science.gov (United States)

    Parda, D S; Thraves, P J; Kuettel, M R; Lee, M S; Arnstein, P; Kaighn, M E; Rhim, J S; Dritschilo, A

    1993-01-01

    Investigations of mechanisms of human prostate carcinogenesis are limited by the unavailability of a suitable in vitro model system. We have demonstrated that an immortal, but nontumorigenic, human epithelial cell line (267B1) established from fetal prostate tissue can be malignantly transformed by a biological carcinogen, and can serve as a useful model for investigations of the progression steps of carcinogenesis. Activated Ki-ras was introduced into 267B1 cells by infection with the Kirsten murine sarcoma virus. Morphological alterations and anchorage-independent growth were observed; when cells were injected into nude mice, poorly differentiated adenocarcinomas developed. These findings represent the first evidence of malignant transformation of human prostate epithelial cells in culture, and support a role for Ki-ras activation in a multistep process for prostate neoplastic transformation.

  2. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  3. Inhibition of Adhesion of Enteropathogenic Escherichia coli to HEp-2 Cells by Binding of a Novel Peptide to EspB Protein.

    Science.gov (United States)

    Li, Duoyun; Chen, Zhong; Cheng, Hang; Zheng, Jin-Xin; Pan, Wei-Guang; Yang, Wei-Zhi; Yu, Zhi-Jian; Deng, Qi-Wen

    2016-09-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. The translocator EspB is a key virulence factor in the process of the attaching and effacing effect of EPEC and plays a critical role in the pathogenesis of the bacteria. In this study, we aimed to select the peptides binding to EspB protein by phage display library and further investigate whether these peptides can decrease the extent of invasion and virulence of EPEC on host cells by targeting to EspB protein. The expression and purification of EspB protein from E. coli was demonstrated by Western blotting. The Ph.D. 12-mer peptide phage display library was used to screen the candidate peptides binding specifically to EspB protein. Furthermore, the affinity of these candidate peptides bound to EspB was identified by enzyme-linked immunosorbent assay (ELISA). Moreover, we investigated whether these screened peptides could decrease the adherence ratio of EPEC to HEp-2 cells with increasing concentration. Successful purification of EspB protein from pET21b-EspB-transformed E. coli was identified by Western blotting. Then, the candidate peptides including phages 6, 7, 8, and 12 were screened by the Ph.D. 12-mer peptide phage display library and ELISA test demonstrated that their affinity binding to EspB protein was high compared with the control. Functional analysis indicated that synthetic peptide-6 (YFPYSHTSPRQP) significantly decreased the adherence ratio of EPEC to HEp-2 cells with increasing concentration (P < 0.01). Peptide-6 (100 µg/mL) could lead to a 40 % decrease in the adherence ratio of EPEC to HEp-2 cells compared with control (P < 0.01). However, the other three peptides at different concentrations showed only a slight ability to block the adherence of EPEC to host cells. Our data provided a potential strategy to inhibit the adhesion of EPEC to epithelial cells by a candidate peptide targeted toward EspB protein.

  4. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Marica Vaapil

    Full Text Available INTRODUCTION: Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. METHODS: Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. RESULTS: In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar

  5. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    Science.gov (United States)

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  6. Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity.

    Science.gov (United States)

    Lin, Ann E; Autran, Chloe A; Espanola, Sophia D; Bode, Lars; Nizet, Victor

    2014-02-01

    The invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection. Studies have detected the presence of human milk oligosaccharides (HMOs) in urine of breast-fed, but not formula-fed, neonates. We investigated the mechanisms HMOs deploy to elicit protection in human bladder epithelial cells infected with UPEC CFT073, a prototypic urosepsis-associated strain. We found a significant reduction in UPEC internalization into HMO-pretreated epithelial cells without observing any significant effect in UPEC binding to these cells. This event coincides with a rapid decrease in host cell cytotoxicity, recognized by LIVE/DEAD staining and cell detachment, but independent of caspase-mediated or mitochondrial-mediated programmed cell death pathways. Further investigation revealed HMOs, and particularly the sialic acid-containing fraction, reduced UPEC-mediated MAPK and NF-κB activation. Collectively, our results indicate that HMOs can protect bladder epithelial cells from deleterious cytotoxic and proinflammatory effects of UPEC infection, and may be one contributing mechanism underlying the epidemiological evidence of reduced UTI incidence in breast-fed infants.

  7. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  8. Hormone Production by Epithelial Cells of Human Thymus in vitro.

    Science.gov (United States)

    Yarilin, A. A.; Sharova, N. I.; Bulanova, E. C.; Kotchergina, N. I.; Mitin, A. N.; Kharchenko, T. Yu.; Arshinov, V. Yu.

    1996-12-01

    The conditions of hormone production by human thymic stromal cell line were studied. Human thymic stromal cells did not produce any hormones in 5-day monoculture. Co-cultivation of these cells with human thymocytes induced alpha1-thymosin and thymulin production increased to 4-5 days of co-cultivation. An increase in number of human thymic stromal cells and thymocyte elimination were observed in co-culture. The maximal stimulation of proliferation and hormone secretion by human thymic stromal cell was reached in their co-culturing with thymocytes at relative concentrations of 10(4) and 10(7) cells per ml. Thymocyte viability was important for inducing the stimulatory effect. The effect of viable cells could not be replaced by their supernatant. Stimulatory activity of CD4(-)CD8(-) and CD4(+)CD8(+) thymocytes was comparable, alpha1-thymosin and some of its synthetic fragments did not influence alpha1-thymosin synthesis or slightly inhibited it (in high concentrations). Synthetic peptide corresponding to C-terminal half of alpha1-thymosin molecule strongly enhanced production of this hormone.

  9. Biodegradable Gelatin Microcarriers Facilitate Re-Epithelialization of Human Cutaneous Wounds - An In Vitro Study in Human Skin.

    Science.gov (United States)

    Lönnqvist, Susanna; Rakar, Jonathan; Briheim, Kristina; Kratz, Gunnar

    2015-01-01

    The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds.

  10. Human Bronchial Epithelial Cell-Derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation.

    Science.gov (United States)

    Salter, Brittany M A; Smith, Steven G; Mukherjee, Manali; Plante, Sophie; Krisna, Sakktee; Nusca, Graeme; Oliveria, John Paul; Irshad, Anam; Gauvreau, Gail M; Chakir, Jamila; Nair, Parameswaran; Sehmi, Roma

    2017-08-30

    Activated bronchial epithelial cells release alarmins, including thymic stromal lymphopoietin (TSLP) that drive type 2 inflammatory responses. We hypothesize that bronchial epithelial-derived factors enhance in situ eosinophil differentiation and maturation from myeloid precursors, a process that is driven by an IL-5 rich micro-environment within asthma airways. To assess the eosinophilopoietic potential of epithelial-derived factors, eosinophil/basophil colony forming units (Eo/B-CFU) were enumerated in 14-day methylcellulose cultures of blood-derived mononuclear cells (NAMNCs) incubated with bronchial epithelial cell supernatants (BECSN) from healthy non-atopic controls (NC; n = 8), mild atopic asthmatics (MA; n = 9) and severe asthmatics (SA; n = 5). Receptor blocking antibodies were used to evaluate the contribution of alarmins. Modulation of mRNA expression of transcription factors crucial for eosinophil differentiation was evaluated. BECSN stimulated the clonogenic expansion of eosinophil progenitors, in vitro. In the presence of IL-5, Eo/B-CFU growth was significantly greater in co-cultures of BESCN from SA, compared to MA and NC. This effect was attenuated by a TSLP receptor blocking antibody but not by an ST2 antibody. Recombinant human TSLP (optimal at 100 pg/ml) stimulated significant Eo/B-CFU growth, which was significantly enhanced in presence of IL-5 (1 ng/ml). Overnight culture of CD34+ cells with IL-5 and TSLP synergistically increased GATA-2 and CEBP-alpha mRNA expression. The eosinophilopoietic potential of factors derived from bronchial epithelial cells is increased in severe asthma. Our data suggest that TSLP is a key alarmin produced by bronchial epithelial cells, which promotes in situ eosinophilopoiesis in a type 2 rich microenvironment.

  11. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Damien Maggiorani

    Full Text Available Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2 were subjected to FSS (0.5 Pa for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1, Par polarity complex (Pard6, adherens junctions (E-Cadherin, β-Catenin and the primary cilium (α-acetylated Tubulin were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  12. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    Science.gov (United States)

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.

  13. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo.

    Science.gov (United States)

    Zhang, Shiwen; Li, Yunlong; He, Xiaoguang; Dong, Shouan; Huang, Yunchao; Li, Xiaojiang; Li, Yuxiao; Jin, Congguo; Zhang, Yingying; Wang, Yuanling

    2014-01-01

    Gold nanorods (AuNRs) have been used in plasmonic photothermal therapy (PPTT), which is thought to be more efficient and selective than conventional photothermal therapy. The efficiency and safety of PPTT can be improved by functionally modifying the gold nanorods with proteins or biomolecules. In this study, AuNRs were modified with anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), and the apoptotic potential of EGFRmAb-AuNR was assessed in Hep-2 cells in vitro and in vivo. The EGFRmAb modification had no obvious influence on the original optical property of the AuNRs, but it significantly increased the entry of AuNRs into Hep-2 cells. EGFRmAb-AuNRs, with appropriate laser irradiation, resulted in higher Hep-2 cells apoptosis than AuNRs did alone, in vitro, and was accompanied by alteration of reactive oxygen species (ROS) production, Ca(2+) release, change in mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt-c) release, active caspase-3 expression, and level of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma 2 protein-associated X protein (Bax). EGFRmAb-AuNR-mediated apoptosis in Hep-2 cells was also observed in vivo and had an inhibitive effect on growth of Hep-2 tumor xenografts. Our data suggest that the EGFRmAb modification improves AuNR-mediated apoptosis and may have the potential to be used clinically.

  14. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis.

    Science.gov (United States)

    Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M; Tam, Andrew; La Cunza, Nilsa; Dedhia, Priya H; Spence, Jason R; Simeone, Diane M; Saotome, Ichiko; Louvi, Angeliki; Siebel, Christian W; Samuelson, Linda C

    2017-06-01

    We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    2016-11-01

    Full Text Available The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS and (HPLC-MS. To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model.

  16. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shimpei Gotoh

    2014-09-01

    Full Text Available No methods for isolating induced alveolar epithelial progenitor cells (AEPCs from human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs, we identified carboxypeptidase M (CPM as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine.

  17. Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available Human rhinovirus (HRV is the most common cause of acute exacerbations of chronic lung diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV replication in human asthmatic airway epithelial cells may be one of the underlying mechanisms leading to asthma exacerbations. Increased autophagy has been shown in asthmatic airway epithelium, but the role of autophagy in anti-HRV response remains uncertain. Trehalose, a natural glucose disaccharide, has been recognized as an effective autophagy inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in normal human primary airway epithelial cells in order to determine if autophagy directly regulates the anti-viral response against HRV. We found that trehalose-induced autophagy significantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy via knockdown of autophagy-related gene 5 (ATG5 effectively rescued the impaired IFN-λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically, ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I and IFN-β promoter stimulator 1 (IPS-1, two critical molecules involved in the expression of anti-viral interferons. Our results suggest that induction of autophagy in human primary airway epithelial cells inhibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of excessive autophagy in chronic lung diseases may provide a novel approach to attenuate viral infections and associated disease exacerbations.

  18. Characterization of an In Vitro Human Breast Epithelial Organoid System

    Science.gov (United States)

    2000-08-01

    terminally dif- inhibit, to terminally differentiate, or to apoptose (11). ferentiated cells and progenitor cells with functional Cancer has been...Lastly, in view of the potential of using human stem induced to terminally differentiate or apoptose by cer- cells for tissue regeneration (20), the...the same signal as the mother terminally differentiate and readily apoptose and lack stem cell before division. On the other hand, when the

  19. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    Science.gov (United States)

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  20. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos

    Directory of Open Access Journals (Sweden)

    Daniela Ávila-González

    2015-09-01

    Full Text Available Data from the literature suggest that human embryonic stem cell (hESC lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1 from poor-quality (PQ embryos derived and maintained on human amniotic epithelial cells (hAEC. This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers.

  1. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    Science.gov (United States)

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  2. Subcellular Distribution and Genotoxicity of Silica Nanoparticles 
in Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Guangqiang ZHAO

    2013-03-01

    Full Text Available Background and objective Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B. Methods The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM. DNA damage was detected by single-cell gel electrophoresis (comet assay. Results TEM revealed that SiO2 nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05. Conclusion The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  3. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes.

    Science.gov (United States)

    Uchida, Ryo; Aoki, Reiji; Aoki-Yoshida, Ayako; Tajima, Atsushi; Takayama, Yoshiharu

    2017-02-01

    The purpose of this study was to elucidate the effects of bovine lactoferrin on keratinocyte differentiation and barrier function. Addition of bovine lactoferrin to differentiating HaCaT human keratinocytes led to increased transepithelial electrical resistance (TER), a marker of epithelial barrier function. This elevation was followed by upregulation of two differentiation markers, involucrin and filaggrin. The expression level of sterol regulatory element-binding protein-1 was also enhanced by bovine lactoferrin. The lactoferrin-induced upregulation of involucrin and filaggrin expression were confirmed in normal human epidermal keratinocytes (NHEK). Treatment with SB203580, a p38 mitogen-activated protein kinase (MAPK) α inhibitor, impaired the upregulation of involucrin and filaggrin expression in response to lactoferrin. The elevation of p38 MAPK phosphorylation was further enhanced by lactoferrin in the initial stage of differentiation of HaCaT keratinocytes. The findings suggest that bovine lactoferrin promotes epithelial differentiation by a p38-MAPK-dependent mechanism.

  4. Human Epithelial Cells Increase Their Rigidity with Ageing In-vitro: Direct Measurements

    Science.gov (United States)

    Berdyyeva, Tamara; Woodworth, Craig; Sokolov, Igor

    2004-03-01

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously explained by the increase in crosslinking of extracellular matrix proteins that normally provide elasticity. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that each cell has at least three areas of different rigidity: the area over the nucleus, the cytoplasm, and the cell edge. The Young's modulus for each area is consistently 2-4 times higher in old senescent cells than in young cells. Direct visualization of the cytoskeleton of ageing cells using a novel method involving the AFM, demonstrated that increased rigidity is associated with a higher density of the cytoskeleton fibres in both cytoplasmic and edge areas.

  5. Light and electron microscopic study of epithelial cells from the human oviduct and uterus subcultured on extracellular matrix gel.

    Science.gov (United States)

    Eslaminejad, Mohamadreza Baghaban; Valojerdi, Mojtaba Rezazadeh; Ashtiani, Saeed Kazemi; Eftekhari-Yazdi, Poopak

    2007-06-01

    To investigate the structure of epithelial cells from the human oviduct and uterus on extracellular matrix (ECM) gel in the first passage. Human oviducts and endometrial tissues were obtained from patients undergoing total hysterectomy; the epithelial cells, having been isolated by enzyme digestion, were cultured on polystyrene plastic surfaces. The epithelial nature of the cells was confirmed by immunocytochemistry, and their morphology was examined by microscopy. Cells of an epithelial nature were then trypsinized and cultured on an ECM gel-coated filter insert for 5 days. The cells, in parallel with the tissues, were subsequently prepared for transmission electron microscopy. Plastic-cultured cells had no sign of differentiation and appeared as elongated spindle cells in sections. These cells looked columnar and highly polarized after being cultured on ECM gel surfaces. They were similar to epithelial cells from the corresponding tissue fragment. Cultured on ECM gel, the ciliated epithelial cells of human oviducts appeared ultrastructurally similar to glandular cells from the human uterus. Cilia did not form under culture conditions. It seems that human uterine and oviduct epithelial cells can acquire polarized morphology and differentiated states on ECM gel after having lost it on plastic surfaces and that ECM gel by itself is not enough to induce cilia formation in culture.

  6. Human Gastric Epithelial Cells Contribute to Gastric Immune Regulation by Providing Retinoic Acid to Dendritic Cells

    OpenAIRE

    Bimczok, Diane; John Y. Kao; Zhang, Min; Cochrun, Steven; Mannon, Peter; Peter, Shajan; Wilcox, Charles M.; Mönkemüller, Klaus E; Harris, Paul R.; Grams, Jayleen M.; Stahl, Richard D.; Smith, Phillip D.; Smythies, Lesley E.

    2014-01-01

    Despite the high prevalence of chronic gastritis caused by H. pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule, retinol, and that gastric epithelial cells express both RA biosynthesis genes and RA res...

  7. The Biological Study of the Cultured Human Lens Epithelial Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The human lens epithelial cells (HLE) cultured in vitro was established in normal and cataractous lenses. The biological feature, histological characteristics and the ultrastructure of the cultured HLE cells were investigated. The results reveal that the proliferative capacity of the culutured HLE cells is reversely proportional to the donour age; the cultured HLE cells has the limited proliferative capacity in vitro. The relieve of the contact inhibition is the effective trigger of the HLE cell prolife...

  8. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  9. Ultrastructural study of adhesion of enterotoxigenic Escherichia coli to erythrocytes and human intestinal epithelial cells.

    OpenAIRE

    1984-01-01

    The adhesion to erythrocytes and human intestinal epithelial cells of enterotoxigenic Escherichia coli strains H10407, B2C, and H10407P, expressing colonization factor antigen I (CFA/I), CFA/II, and type 1 fimbriae, respectively, was examined by electron microscopy. CFA and type 1 fimbriae were visualized by negative staining in thin sections after en bloc staining with ruthenium red and by immune labeling with antisera raised against purified fimbriae. By negative and ruthenium red staining,...

  10. Focal epithelial hyperplasia (Heck's disease): report of two cases with PCR detection of human papillomavirus DNA.

    Science.gov (United States)

    Jayasooriya, P R; Abeyratne, S; Ranasinghe, A W; Tilakaratne, W M

    2004-07-01

    Focal epithelial hyperplasia (FEH) (Heck's disease) is essentially a benign oral infection produced by the human papillomavirus (HPV). Although this condition is known to exist in numerous populations and ethnic groups, it is relatively rare in South-East Asia. The following report is based on two cases of adult FEH with histopathological features in favour of the disease. In addition, polymerase chain reaction was performed to detect the presence of HPV DNA in the lesions in order to confirm the histopathological diagnosis.

  11. Cellular inhibitor of apoptosis protein 2 controls human colonic epithelial restitution, migration, and Rac1 activation

    DEFF Research Database (Denmark)

    Seidelin, Jakob Benedict; Larsen, Sylvester; Linnemann, Dorte

    2015-01-01

    of the study was to investigate the role of cIAP2 for wound healing in the normal human colon. Wound tissue was generated by taking rectosigmoidal biopsies across an experimental ulcer in healthy subjects after 5, 24, and 48 h. In experimental ulcers, the expression of cIAP2 in regenerating intestinal...... epithelial cells (IECs) was increased at the wound edge after 24 h (P

  12. Proliferation of normal and malignant human epithelial cells post irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Seymour, C.B.; O' Brien, A.; Hennessy, T. (Saint James Hospital, Dublin (Ireland). Radiobiological Research Group Dublin Inst. of Tech. (Ireland). Physics Dept.)

    1991-01-01

    Fragments of human oesophageal mucosa, urothelium, squamous and adenocarcinoma of the oesophagus and carcinoma of the bladder have been plated in culture and irradiated. The cells growing from the explanted tissues have then been studied for four weeks post irradiation to assess the overall rate of growth from the irradiated explants and the fraction of profilerating cells. Th results show that when using cell number as an endpoint it is possible to derive growth curves from this type of data which permit a doubling time to be obtained for the cell population surviving different doses. In an attempt to determine the proliferating fraction of the cell population, cultures were labelled at appropriate intervals with tritiated thymidine and were also stained with Ki-67 antiproliferating antigen. The results show an interesting relationship between the dose response obtained for cell labelling with tritiated thymidine and area of cellular outgrowth. Ki-67 staining when used carefully and analysed as described was a useful indicator of proliferating cells. The results provid a means of determining the post irradiation growth potential of fragments of tissue from human organs and may be important for determined overall response of the tumour bulk to proposed treatment. (orig.).

  13. Effect of heat stress on intestinal barrier function of human intestinal epithelial Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Gui-zhen XIAO

    2013-07-01

    Full Text Available Objective To investigate the heat stress-induced dysfunction of intestinal barrier including intestinal tight junction and apoptosis of epithelial cells. Methods Human intestinal epithelial Caco-2 cell monolayers, serving as the intestinal barrier model, were exposed to different temperature (37-43℃ for designated time. Transepithelial electrical resistance (TEER and horseradish peroxidase (HRP flux permeability were measured to evaluate barrier integrity. Level of tight junction (TJ protein occludin was analyzed by Western blotting. Cell apoptosis rate was determined using Annexin V-FITC/PI kit by flow cytometry. Results Compared with the 37℃ group, TEER lowered and the permeability for HRP increased significantly after heat exposure (P<0.01 in 39℃, 41℃ and 43℃ groups. The expression of occludin increased when the temperature was elevated from 37℃ to 41℃, and it reached the maximal level at 41℃. However, its expression gradually decreased with passage of time at 43℃. Cell apoptosis was enhanced with elevation of the temperature (P<0.05 or P<0.01. Conclusion Heat stress can induce damage to tight junction and enhance apoptosis of epithelial cells, thus causing dysfunction of intestinal epithelial barrier.

  14. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Elham Hashemi

    2017-01-01

    Full Text Available As the key producer of cerebrospinal fluid (CSF, the choroid plexus (CP provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2, as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

  15. Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density.

    Science.gov (United States)

    DeFilippis, Rosa Anna; Fordyce, Colleen; Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D

    2014-09-15

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal nontumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared with epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g., activin A and CD36) to prevent breast cancer.

  16. Gram-Negative Bacterial Lipopolysaccharide Stimulates Activin A Secretion from Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Yumiko Abe

    2013-01-01

    Full Text Available Activin A is involved in inflammation. The present study was performed to clarify if lipopolysaccharide, a component of Gram-negative bacteria, stimulates activin A secretion from human amniotic epithelial cells and to determine if activin A plays a role in amnionitis. Fetal membranes were obtained during elective cesarean sections performed in full-term pregnancies of patients without systemic disease, signs of premature delivery, or fetal complications. Amniotic epithelial cells were isolated by trypsinization. The activin A concentrations in the culture media were measured by enzyme-linked immunosorbent assay, and cell proliferation was assessed by 5-bromo-2′-deoxyuridine incorporation. Amniotic epithelial cells secreted activin A in a cell density-dependent manner, and lipopolysaccharide (10 μg/mL enhanced the secretion at each cell density. Lipopolysaccharide (10–50 μg/mL also stimulated activin A secretion in a dose-dependent manner. Contrary to the effect of activin A secretion, lipopolysaccharide inhibited cell proliferation in amniotic epithelial cells. The present study suggests that lipopolysaccharide stimulation of activin A secretion may be a mechanism in the pathogenesis of amnionitis.

  17. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  18. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  19. Cell vacuolation induced by Haemophilus influenzae supernatants in HEp-2 cells

    Directory of Open Access Journals (Sweden)

    Maria del Rosario Espinoza-Mellado

    2013-12-01

    Full Text Available Haemophilus influenzae belongs to respiratory tract microbiota. We observed vacuoles formation in previous studies with H. influenzae culture supernatants, so in this work we characterised that cytotoxic effect. We observed an abundant production of acidic cytoplasmic vacuoles due to the presence of a “vacuolating factor” in H. influenzae supernatants which was characterised as thermolabile. Greatest vacuolating activity was observed when utilizing the fraction > 50 kDa. The presence of a large number of vacuoles in HEp-2 cells was verified by transmission electron microscopy and some vacuoles were identified with a double membrane and/or being surrounded by ribosomes. These results suggest similar behaviour to that of vacuolating effects described by autotransporter proteins an undescribed cytotoxic effect induced by H. influenzae .

  20. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  1. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  2. Induction of proinflammatory cytokines in human lung epithelial cells during Rhodococcus equi infection.

    Science.gov (United States)

    Remuzgo-Martínez, Sara; Pilares-Ortega, Lilian; Alvarez-Rodríguez, Lorena; Aranzamendi-Zaldunbide, Maitane; Padilla, Daniel; Icardo, Jose Manuel; Ramos-Vivas, Jose

    2013-08-01

    Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.

  3. Effect of Lunar Dust Simulant on Human Epithelial Cell Lines

    Science.gov (United States)

    Myers, Nicholas J.; Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The purpose of this project is to assess the potential toxicity of lunar dust to cause the release of pro-inflammatory cytokines by human lung cells. Some of this dust is on the scale of 1-2 micrometers and could enter the lungs when astronauts track dust into the habitat and inhale it. This could be a serious problem as NASA plans on going back to the moon for an extended period of time. Literature shows that quartz, which has a known cytoxicity, can cause acute cases of silicosis within 6 months, and in most cases cause silicosis after 3 years. The activation of lunar dust through impacts creates surface based radicals which, upon contact with water create hydroxl radicals and peroxyl radicals which are very reactive and potentially might even be as cytotoxic as quartz. These radicals could then react with lung cells to produce pro-inflammatory mediators such as interleukin-6 and interleukin-8, and TNF-alpha.

  4. Vesicular uptake of macromolecules by human placental amniotic epithelial cells.

    Science.gov (United States)

    Sharshiner, Rita; Brace, Robert A; Cheung, Cecilia Y

    2017-09-01

    Studies in animal models have shown that unidirectional vesicular transport of amniotic fluid across the amnion plays a primary role in regulating amniotic fluid volume. Our objective was to explore vesicle type, vesicular uptake and intracellular distribution of vesicles in human amnion cells using high- and super-resolution fluorescence microscopy. Placental amnion was obtained at cesarean section and amnion cells were prepared and cultured. At 20%-50% confluence, the cells were incubated with fluorophore conjugated macromolecules for 1-30 min at 22 °C or 37 °C. Fluorophore labeled macromolecules were selected as markers of receptor-mediated caveolar and clathrin-coated vesicular uptake as well as non-specific endocytosis. After fluorophore treatment, the cells were fixed, imaged and vesicles counted using Imaris(®) software. Vesicular uptake displayed first order saturation kinetics with half saturation times averaging 1.3 min at 37 °C compared to 4.9 min at 22 °C, with non-specific endocytotic uptake being more rapid at both temperatures. There was extensive cell-to-cell variability in uptake rate. Under super-resolution microscopy, the pattern of intracellular spatial distribution was distinct for each macromolecule. Co-localization of fluorescently labeled macromolecules was very low at vesicular dimensions. In human placental amnion cells, 1) vesicular uptake of macromolecules is rapid, consistent with the concept that vesicular transcytosis across the amnion plays a role in the regulation of amniotic fluid volume; 2) uptake is temperature dependent and variable among individual cells; 3) the unique intracellular distributions suggest distinct functions for each vesicle type; 4) non-receptor mediated vesicular uptake may be a primary vesicular uptake mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. BENIGN EPITHELIAL NEOPLASIA ASSOCIATED WITH BETA-HUMAN PAPILLOMA VIRUS

    Directory of Open Access Journals (Sweden)

    V. A. Molochkov

    2014-01-01

    Full Text Available Aim: To study an association between acrochordon and human papilloma virus (HPV using quantitative analysis of viral desoxyribonucleic acid (DNA; to detect different phenotypes of beta-HPV. Materials and methods: We examined 52  patients (22 immuno-suppressed patients and 30 immunocompetent subjects in the Dermatovenereology and Dermato-Oncology Department and Chronic Dialysis and Kidney Transplantation Department of the Moscow Regional Research and Clinical Institute (MONIKI. Control group included 49 healthy donors. Burr biopsy samples (micro-samples of acrochordon and intact skin (apper arm were collected in sterile conditions. After sample procession and DNA isolation using DNK-sorb-C kit (Central Research Institute for Epidemiology – CRIE, polymerase chain reaction for HPV was performed with real-time fluorescent hybridization detection. For DNA amplification and detection we used RotorGene 3000 analyzer (Corbett Research, Australia. In the beta-HPV assay, recombinant plasmids were used as positive controls and control human beta-globin gene fragments (CRIE. 4 oligo-nucleotide systems (group-specific primers and probes were used for the detection of beta-HPV DNA. Results: Preliminary data indicated that acrochordons of open and covered skin regions were common in renal transplant recipients. Beta-HPV DNA was more frequent in acrochordons and intact skin (64% and 54% of renal transplant recipients compared to healthy donors (47%. 57% of renal transplant recipients demonstrated mixed infection in acrochordons. Conclusion: HPV DNA was frequently detected in acrochordons and intact skin of renal transplant recipients. In immunocompetent patients prevalence of HPV DNA in acrochordons was significantly higher compared to intact skin.

  6. IV Consenso Brasileiro para pesquisa de autoanticorpos em células HEp-2

    Directory of Open Access Journals (Sweden)

    Paulo Luiz Carvalho Francescantonio

    2014-01-01

    Full Text Available Objetivo: O IV Consenso Brasileiro para Pesquisa de Autoanticorpos em Células HEp-2 (FAN realizado em Vitória (ES, no dia 18 de setembro de 2012, objetivou discutir estratégias e recomendações relacionadas ao procedimento técnico, à padronização e à interpretação dos resultados da pesquisa de autoanticorpos em células HEp-2. Métodos: Participaram do evento 23 pesquisadores e especialistas de Universidades e laboratórios brasileiros. Foram abordados diferentes tópicos, discutidos amplamente a fim de se estabelecer recomendações específicas. Resultados e conclusão: O IV Consenso integrou à árvore de decisão o padrão citoplasmático em Anéis e Bastões, o padrão nuclear pontilhado Quasi-homogêneo (QH e o padrão misto CENP-F. Discutiu-se ainda a necessidade de atenção para a classificação do padrão misto relacionado à presença de anticorpos anti-DNA topoisomerase I (Scl70, compreendendo os componentes nuclear pontilhado fino, nucleolar homogêneo, NOR na placa metafásica e citoplasmático pontilhado fino. Foram sugeridas diretrizes para o controle de qualidade do teste, diluição de triagem e diluição de esgotamento, e foi emitido alerta quanto à necessidade de atenção em relação à heterogeneidade de substratos disponíveis no mercado e a utilização de metodologias automatizadas para detecção de autoanticorpos.

  7. 染料木黄酮增强喉癌Hep-2细胞放射敏感性的研究%Radiosensitizing effect of genistein on laryngeal carcinoma Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    王惠民; 周渝; 张淑香

    2016-01-01

    目的:探讨染料木黄酮联合放疗对人喉表皮样癌细胞Hep-2放射敏感性的影响。方法细胞分为对照组、放疗组、木黄酮组和放疗+木黄酮组。5-乙炔基-2'-脱氧尿苷(5-ethynyl-2'-deoxyuridine,EdU)检测放疗组、木黄酮组和放疗+木黄酮组对Hep-2细胞增殖的短期效应的影响。克隆形成实验检测0、2、4、6、8 Gy X线照射后放疗组和放疗+木黄酮组细胞存活率,Graphpad Prism拟合单击-多靶模型细胞存活曲线,分析比较放疗组和放疗+木黄酮组对细胞增殖性死亡的影响。结果放疗+木黄酮组能明显抑制细胞的增殖活性;10μmol/L木黄酮作用后,放射增敏比(sensitization enhancement ratio,SER)为1.412。结论木黄酮通过抑制DNA合成抑制Hep-2细胞增殖,并且作为放疗辅助药物可以增强Hep-2细胞放射敏感性。%OBJECTIVETo investigate whether the genistein can increase the radiosensitizing effect on laryngeal squamous carcinoma Hep-2 cells.METHODS Hep-2 cells were treated with genistein, radiation, and genistein plus radiation respectively. DMSO was used as the control group. EdU assay was performed to assess the short-term effect of genistein and (or) radiation on the proliferation of Hep-2 cells. Clonegenic assay was used to detect the survival rate of Hep-2 cells after treatment with radiation doses of 0, 2, 4, 6, 8 Gy and radiation combined with genistein. The data was fitted into the classic single-hit multi-target mathematical model to analyze the long-term effect on cell proliferation death of Hep-2 cells.RESULTSIt was observed that radiation combined with genistein could significantly inhibit the proliferation of Hep-2 cells. And the SER of 10μmol/L genistein was 1.412.CONCLUTIONGenistein can inhibit the proliferation of Hep-2 cells by DNA synthesis inhibition, and can be an adjunct agent of radiotherapy.

  8. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    Science.gov (United States)

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. Copyright © 2016 International Society

  9. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra

    Science.gov (United States)

    Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    2016-01-01

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization (“opening zipper”) opens the solid urethral plate into a groove, and fusion (“closing zipper”) closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal “cords”. Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. PMID:27397682

  10. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    Science.gov (United States)

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  11. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anett K Larsen

    Full Text Available Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis and cetaceans (B. ceti from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17 by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1, two murine macrophage cell lines (RAW264.7 and J774A.1, and a human malignant epithelial cell line (HeLa S3 were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3, suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.

  12. The effect of Lamium album extract on cultivated human corneal epithelial cells (10.014 pRSV-T

    Directory of Open Access Journals (Sweden)

    Roman Paduch

    2015-01-01

    Conclusion: Selected Lamium album extracts influence human corneal epithelial cells. Generally, while not toxic, they modulate pro-inflammatory and anti-inflammatory cytokines levels, and decrease NO release by cells; moreover, ethanol and ethyl acetate extracts reduce ROS levels.

  13. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  14. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype.

    Science.gov (United States)

    Maria, Ola M; Tran, Simon D

    2011-06-01

    Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.

  15. Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells.

    Science.gov (United States)

    Hong, Zhicong; Guo, Zhiqiang; Zhang, Ruxin; Xu, Jian; Dong, Weiyang; Zhuang, Guoshun; Deng, Congrui

    2016-01-01

    Airborne fine particulate matter with an aerodynamic diameter equal to or smaller than 2.5 μm is abbreviated as PM2.5, which is one of the main components in air pollution. Exposure to PM2.5 is associated with increased risk of many human diseases, including chronic and allergic rhinitis, but the underlying molecular mechanism for its toxicity has not been fully elucidated. We have hypothesized that PM2.5 may cause oxidative stress and enhance inflammatory responses in nasal epithelial cells. Accordingly, we used human RPMI 2650 cells, derived from squamous cell carcinoma of the nasal septum, as a model of nasal epithelial cells, and exposed them to PM2.5 that was collected at Fudan University (31.3°N, 121.5°E) in Shanghai, China. PM2.5 exposure decreased the viability of RPMI 2650 cells, suggesting that PM2.5 may impair the barrier function of nasal epithelial cells. Moreover, PM2.5 increased the levels of intracellular reactive oxygen species (ROS) and the nuclear translocation of NF-E2-related factor-2 (Nrf2). Importantly, PM2.5 also decreased the activities of superoxide dismutase, catalase and glutathione peroxidase. Pretreatment with N-Acetyl-L-cysteine (an anti-oxidant) reduced the degree of the PM2.5-induced oxidative stress in RPMI 2650 cells. In addition, PM2.5 increased the production of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin-13 and eotaxin (C-C motif chemokine ligand 11), each of which initiates and/or augments local inflammation. These results suggest that PM2.5 may induce oxidative stress and inflammatory responses in human nasal epithelial cells, thereby leading to nasal inflammatory diseases. The present study provides insights into cellular injury induced by PM2.5.

  16. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, L; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells.......Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  17. Value of human amniotic epithelial cells in tissue engineering for cornea.

    Science.gov (United States)

    Fatimah, Simat Siti; Ng, Sook Luan; Chua, Kien Hui; Hayati, Abdul Rahman; Tan, Ay Eeng; Tan, Geok Chin

    2010-11-01

    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.

  18. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  19. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells.

    Science.gov (United States)

    Elberg, Gerard; Elberg, Dorit; Lewis, Teresa V; Guruswamy, Suresh; Chen, Lijuan; Logan, Charlotte J; Chan, Michael D; Turman, Martin A

    2007-11-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.

  20. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells.

    Science.gov (United States)

    Zubeldia-Plazaola, Arantzazu; Ametller, Elisabet; Mancino, Mario; Prats de Puig, Miquel; López-Plana, Anna; Guzman, Flavia; Vinyals, Laia; Pastor-Arroyo, Eva M; Almendro, Vanessa; Fuster, Gemma; Gascón, Pedro

    2015-01-01

    Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer.

  1. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake.

    Science.gov (United States)

    Kemp, Sarah J; Thorley, Andrew J; Gorelik, Julia; Seckl, Michael J; O'Hare, Michael J; Arcaro, Alexandre; Korchev, Yuri; Goldstraw, Peter; Tetley, Teresa D

    2008-11-01

    Primary human alveolar type 2 (AT2) cells were immortalized by transduction with the catalytic subunit of telomerase and simian virus 40 large-tumor antigen. Characterization by immunochemical and morphologic methods demonstrated an AT1-like cell phenotype. Unlike primary AT2 cells, immortalized cells no longer expressed alkaline phosphatase, pro-surfactant protein C, and thyroid transcription factor-1, but expressed increased caveolin-1 and receptor for advanced glycation end products (RAGE). Live cell imaging using scanning ion conductance microscopy showed that the cuboidal primary AT2 cells were approximately 15 microm and enriched with surface microvilli, while the immortal AT1 cells were attenuated more than 40 microm, resembling these cells in situ. Transmission electron microscopy highlighted the attenuated morphology and showed endosomal vesicles in some immortal AT1 cells (but not primary AT2 cells) as found in situ. Particulate air pollution exacerbates cardiopulmonary disease. Interaction of ultrafine, nano-sized particles with the alveolar epithelium and/or translocation into the cardiovasculature may be a contributory factor. We hypothesized differential uptake of nanoparticles by AT1 and AT2 cells, depending on particle size and surface charge. Uptake of 50-nm and 1-microm fluorescent latex particles was investigated using confocal microscopy and scanning surface confocal microscopy of live cells. Fewer than 10% of primary AT2 cells internalized particles. In contrast, 75% immortal AT1 cells internalized negatively charged particles, while less than 55% of these cells internalized positively charged particles; charge, rather than size, mattered. The process was rapid: one-third of the total cell-associated negatively charged 50-nm particle fluorescence measured at 24 hours was internalized during the first hour. AT1 cells could be important in translocation of particles from the lung into the circulation.

  2. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available The use of electronic cigarettes (e-cigarettes is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV infection.We examined the effects of e-cigarette liquid (e-liquid on pro-inflammatory cytokine (e.g., IL-6 production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1 in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  3. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Science.gov (United States)

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  4. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells

    DEFF Research Database (Denmark)

    Ito, Go; Okamoto, Ryuichi; Murano, Tatsuro

    2013-01-01

    Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3(-) or Cl(-). Bestrophin genes represent a newly identified group of calcium-activated Cl(-) channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2...... (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes...

  5. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Elad Katz

    Full Text Available The epithelial to mesenchymal transition (EMT is a developmental program in which epithelial cells down-regulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In human breast cancer, invasion into surrounding tissue is the first step in metastatic progression. Here, we devised an in vitro model using selected cell lines, which recapitulates many features of EMT as observed in human breast cancer. By comparing the gene expression profiles of claudin-low breast cancers with the experimental model, we identified a 9-gene signature characteristic of EMT. This signature was found to distinguish a series of breast cancer cell lines that have demonstrable, classical EMT hallmarks, including loss of E-cadherin protein and acquisition of N-cadherin and vimentin expression. We subsequently developed a three-dimensional model to recapitulate the process of EMT with these cell lines. The cells maintain epithelial morphology when encapsulated in a reconstituted basement membrane, but undergo spontaneous EMT and invade into surrounding collagen in the absence of exogenous cues. Collectively, this model of EMT in vitro reveals the behaviour of breast cancer cells beyond the basement membrane breach and recapitulates the in vivo context for further investigation into EMT and drugs that may interfere with it.

  6. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  7. Insensitivity of volume-sensitive chloride currents to chromones in human airway epithelial cells

    Science.gov (United States)

    Zegarra-Moran, Olga; Lantero, Sabina; Sacco, Oliviero; Rossi, Giovanni A; Galietta, Luis J V

    1998-01-01

    Chromones (sodium cromoglycate and sodium nedocromil) block cell swelling-activated Cl− channels in NIH-3T3 fibroblasts and endothelial cells. This has led to hypothesize that cell volume regulation might be involved in asthma pathogenesis.Using whole-cell patch-clamp experiments, we studied the effect of chromones on volume-sensitive Cl− currents in transformed human tracheal epithelial cells (9HTEo-) and in primary cultures of human bronchial epithelial cells (BE).Cl− currents activated by hypotonic shock were poorly blocked by extracellular nedocromil or cromoglycate. The block was voltage-dependent since it was observed only at positive membrane potentials. At the concentration of 5 mM, the current inhibition by both chromones at +80 mV was about 40% for 9HTEo- and only 20% for BE.Intracellular application of chromones elicited a voltage-independent inhibition in 9HTEo- cells. Under this condition, volume-sensitive Cl− currents were reduced at all membrane potentials (60 and 45% inhibition by 2 mM nedocromil and cromoglycate respectively). In contrast intracellular chromones were ineffective in BE cells.The relative refractoriness to chromones, in contrast with the high sensitivity shown by other Cl− channels, suggests that the epithelial volume-sensitive Cl− channel is not involved in asthma. PMID:9863671

  8. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins

    Science.gov (United States)

    Mullins, Stefanie R.; Sameni, Mansoureh; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F.; Moin, Kamiar

    2013-01-01

    The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer. To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyperplasia (MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L, reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity-based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression. PMID:23667900

  9. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation.

    Directory of Open Access Journals (Sweden)

    Xiuling Xu

    Full Text Available Although it is well known that epidermal growth factor receptor (EGFR is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals, a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE, the active form of the cigarette smoke (CS carcinogen benzo(apyrene (BaPs. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.

  10. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    Science.gov (United States)

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  11. Alternative spliced CD1d transcripts in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kambez Hajipouran Benam

    Full Text Available CD1d is a MHC I like molecule which presents glycolipid to natural killer T (NKT cells, a group of cells with diverse but critical immune regulatory functions in the immune system. These cells are required for optimal defence against bacterial, viral, protozoan, and fungal infections, and control of immune-pathology and autoimmune diseases. CD1d is expressed on antigen presenting cells but also found on some non-haematopoietic cells. However, it has not been observed on bronchial epithelium, a site of active host defence in the lungs. Here, we identify for the first time, CD1D mRNA variants and CD1d protein expression on human bronchial epithelial cells, describe six alternatively spliced transcripts of this gene in these cells; and show that these variants are specific to epithelial cells. These findings provide the basis for investigations into a role for CD1d in lung mucosal immunity.

  12. SDF-1/CXCR4信号通路对喉癌Hep-2细胞增殖的作用%The proliferation effect of SDF-1/CXCR4 signaling pathway in laryngeal cancer Hep-2 cell line

    Institute of Scientific and Technical Information of China (English)

    李文媛; 王莹; 刘艳翠; 张洋; 冯克俭; 赵微; 孙平

    2016-01-01

    目的:观察基质细胞衍生因子-1(SDF-1)/趋化因子受体4(CXCR4)信号通路对喉癌Hep-2细胞的增殖作用,并探讨其作用机制.方法:体外培养Hep-2细胞,SDF-1慢病毒(4μl,1×1010病毒颗粒)和同剂量siRNA SDF-1转染Hep-2细胞6d后,细胞分为对照组、siRNA SDF-1组和SDF-1组.MTT法检测各组Hep-2细胞增殖情况.实时荧光定量PC检测各组细胞SDF-1、CXCR4及血管内皮因子C(VEGF-C)mRNA相对表达.结果:镜下观察SDF-1组Hep-2细胞数量显著高于对照组和siRNA SDF-1组,MTT法显示SDF-1组Hep-2细胞在8d增殖显著高于对照组和siRNA SDF-1组(P<0.05),实时荧光定量PCR结果表明SDF-1转染组SDF-1、CXCR4和VEGF-C mRNA表达显著高于对照组和siRNA SDF-1组(P<0.05),而对照组和siRNA SDF-1组SDF-1、CXCR4和VEGF-C mRNA表达未见显著差异(P>0.05).SDF1与CXCR4及VEGF-C mRNA表达显著正相关(P<0.05).结论:SDF-1/CXCR4信号通路能够通过上调VEGF-C表达促进喉癌Hep-2细胞增殖,SDF-1/CXCR4信号通路可成为治疗喉癌新的靶点.

  13. Diferenças nas propriedades adesivas de Staphylococcus saprophyticus a células HEp-2 e eritrócitos Differences on the adhesive property of Staphylococcus saprophyticus to HEp-2 cells and erythrocytes

    Directory of Open Access Journals (Sweden)

    Lucimar Gonçalves Milagres

    1992-08-01

    Full Text Available S. saprophyticus é freqüentemente isolado de infecções do trato urinário de mulheres jovens e sexualmente ativas. Ao contrário de S. aureus, esta espécie não possui fatores de virulência bem definidos. O objetivo deste estudo é analisar a aderência de S. saprophyticus a células HEp-2 e eritrócitos de carneiro. As amostras foram isoladas a partir da urina de pacientes com infecção urinária. Foram realizados testes de hemaglutinação, aderência a células HEp-2 e a capacidade de carboidratos específicos inibirem as interações entre estes tipos celulares e S. saprophyticus. A maioria das cepas se mostrou hemaglutinante e sensível a inibição da hemaglutinação pela manose (100mM. Foram verificados altos níveis de aderência às células HEp-2. As diferenças em especificidade e nível de aderência do microrganismo a células de HEp-2 e eritrócitos sugerem a participação de diferentes adesinas nos processos de interações celulares.S. saprophyticus has been frequently isolated from urinary tract infections in young women. In contrast with S. aureus, no defined virulence factors have been recognized for the coagulase negative Staphylococcus species. The objective this study was to analyze the adherence of S. saprophyticus to HEp-2 cells and sheep erythrocytes. The sample were isolated from urine of patients with urinary infection. Hemagglutination, adherence to HEp-2 cells tests and inhibition by specific carbohydrates of the interactions between these cells were analyzed. Most of the strains were hemagglutinanting whose properties was inhibited by mannose (100mM. There was a high adherence level to HEp-2 cells. The differences in specificity and attachment level noted in this study suggest that multiple adhesins are involved in the mechanism of cellular interaction.

  14. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  15. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  16. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    Science.gov (United States)

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Limbal stem cell deficiency is a painful eye condition caused by abnormal maintenance of limbal stem cells. It is treated by transplantation of limbal epithelial cells derived from human tissue. The success of this treatment depends of the quality of the cells transplanted; however, some transplants fail. Understanding more about the immunobiology of these cells within the transplants could

  17. Using organotypic (raft) epithelial tissue cultures for the biosynthesis and isolation of infectious human papillomaviruses.

    Science.gov (United States)

    Ozbun, Michelle A; Patterson, Nicole A

    2014-08-01

    Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection.

  18. Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells.

    Science.gov (United States)

    Su, Min; Hu, Rong; Jin, Jingjun; Yan, Yuan; Song, Yinhong; Sullivan, Ryan; Lai, Laijun

    2015-06-05

    Thymic epithelial cells (TECs) are the major components of the thymic microenvironment for T cell development. TECs are derived from thymic epithelial progenitors (TEPs). It has been reported that human ESCs (hESCs) can be directed to differentiate into TEPs in vitro. However, the efficiency for the differentiation is low. Furthermore, transplantation of hESC-TEPs in mice only resulted in a very low level of human T cell development from co-transplanted human hematopoietic precursors. We show here that we have developed a novel protocol to efficiently induce the differentiation of hESCs into TEPs in vitro. When transplanted into mice, hESC-TEPs develop into TECs and form a thymic architecture. Most importantly, the hESC-TECs support the long-term development of functional mouse T cells or a higher level of human T cell development from co-transplanted human hematopoietic precursors. The hESC-TEPs may provide a new approach to prevent or treat patients with T cell immunodeficiency.

  19. [The effect of MDR1 (P-gp) and ABCG2 on the drug resistance in Hep 2 cells].

    Science.gov (United States)

    Sun, Zhenfeng; Shen, Bin; Zhang, Jia; Su, Tiantian; Dong, Pin

    2015-06-01

    To study the effect of MDR1 (P-gp) and ABCG2 on the drug resistance in Hep 2 cells. Flow cytometry was used to detect the variations of the antitumor drugs accumulation and discharging, and activity variations when MDR1 and ABCG2 inhibitors were used in Hep-2. The accumulation and discharging of mitoxantrone was significantly higher than the control group when ABCG2 inhibitor FTC was used in Hep-2 (PHep-2 between P-gp or ABCG2 antagonist and the control; To the doxorubicin, combining FTC and P-gp, the activity of Hep-2 was higher than the control and difference was significant (PHep-2 was higher than that in the control and difference was significant (PHep-2 was higher than that in the control and difference was significant(P<0. 05). ABCG2 may lead to drug resistance mainly by changing the ability of cell in accumulating and discharging chemotherapy drugs. P-gp has other way. P-gp and ABCG2 play different roles in different drug resistance.

  20. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development

    Science.gov (United States)

    2014-06-01

    1 AD_________________ Award Number: W81XWH-12-1-0189 TITLE: Differentiation of Neonatal Human...CONTRACT NUMBER Differentiation of Neonatal Human Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer...13. SUPPLEMENTARY NOTES 14. ABSTRACT We set out to establish conditions for differentiation of human neonatal foreskin skin fibroblast

  1. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    Science.gov (United States)

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2016-09-17

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  2. Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells.

    Science.gov (United States)

    Sehrawat, Anuradha; Singh, Shivendra V

    2011-07-01

    We showed previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC) inhibits growth of cultured and xenografted human breast cancer cells and suppresses mammary cancer development in a transgenic mouse model. We now show, for the first time, that BITC inhibits epithelial-mesenchymal transition (EMT) in human breast cancer cells. Exposure of estrogen-independent MDA-MB-231 and estrogen-responsive MCF-7 human breast cancer cell lines and a pancreatic cancer cell line (PL-45) to BITC resulted in upregulation of epithelial markers (e.g., E-cadherin and/or occludin) with a concomitant decrease in protein levels of mesenchymal markers, including vimentin, fibronectin, snail, and/or c-Met. The BITC-mediated induction of E-cadherin protein was accompanied by an increase in its transcription, whereas BITC-treated MDA-MB-231 cells exhibited suppression of vimentin, snail, and slug mRNA levels. Experimental EMT induced by exposure to TGFβ and TNFα or Rb knockdown in a spontaneously immortalized nontumorigenic human mammary epithelial cell line (MCF-10A) was also partially reversed by BITC treatment. The TGFβ-/TNFα-induced migration of MCF-10A cells was inhibited in the presence of BITC, which was partially attenuated by RNA interference of E-cadherin. Inhibition of MDA-MB-231 xenograft growth in vivo in female athymic mice by BITC administration was associated with an increase in protein level of E-cadherin and suppression of vimentin and fibronectin protein expression. In conclusion, this study reports a novel anticancer effect of BITC involving inhibition of EMT, a process triggered during progression of cancer to invasive state.

  3. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells.

    Science.gov (United States)

    Khanna, Sugandha; Darbre, Philippa D

    2013-05-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10(-4) M methylparaben, 10(-5) M n-propylparaben or 10(-5) M n-butylparaben resulted in a greater number of colonies per dish (P paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Regenerative potential of human airway stem cells in lung epithelial engineering.

    Science.gov (United States)

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  5. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium.

    Directory of Open Access Journals (Sweden)

    Ryuhei Hayashi

    Full Text Available Induced pluripotent stem (iPS cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF-derived iPS cells (253G1 and human adult corneal limbal epithelial cells (HLEC-derived iPS cells (L1B41. We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA differentiation method, as Pax6(+/K12(+ corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.

  6. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line

    Institute of Scientific and Technical Information of China (English)

    Fathima Stanley Rosarin; Vadivel Arulmozhi; Samuthira Nagarajan; Sankaran Mirunalini

    2013-01-01

    Objective: To synthesize silver nanoparticles by amla extract, screen the cytotoxic, oxidative stress and apoptotic effect of silver nanoparticles (AgNPs) on Hep2 cell line (laryngeal carcinoma cells) in vitro, and to compare the effect of Phyllanthus emblica (P. emblica) (amla) with AgNPs synthesized by amla and 5-FU. Methods: AgNPs was synthesized by P. emblica (aqueous extract) and nanoparticles were characterized UV-Vis spec, the presence of biomoloecules of amla capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and DLS. Cytotoxicity of experimental drugs was tested to find IC50 value. ROS generation in cells have been measured by DCFH-DA staining, AO-EtBr, Rhodamine-123 staining and DNA fragmentation were performed to assess apoptotic cell death, mitochondrial membrane potential and apoptotic DNA damage, respectively. Oxidative stress was analyzed by measuring lipid peroxides and antioxidants level to understand the cancer cell death by pro-oxidant mechanism.Results:PE-AgNPs was synthesized and confirmed through kinetic behavior of NPs. The shape of PE-AgNPs was spherical and cubic since it was agglomerated, and the nanoparticle surface was complicated. Average particle size distribution of PE-AgNPs was found to be 188 nm. Potent biomolecules of P. emblica such as polyphenols were capped with AgNPs and reduced its toxicity. In cytotoxicity assay the concentration in which the maximum number of cell death was 60 μg/mL and 50 μg/mL for P. emblica (alone) and AgNPs, respectively and IC50 values were fixed as 30 μg/mL and 20 μg/mL. ROS generation, apoptotic morphological changes, mitochondrial depolarization, DNA damage and oxidative stress was observed as more in AgNPs treated cells than in P. emblica (30 μg/mL) (alone) treated cells and 5-FU treated cells gave similar result.Conclusions:The results suggest that the AgNPs are capped with biomolecules of amla enhanced cytotoxicity in laryngeal cancer cells through oxidative

  7. RHBDL2 Is a Critical Membrane Protease for Anoikis Resistance in Human Malignant Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tsung-Lin Cheng

    2014-01-01

    Full Text Available Anoikis resistance allows metastatic tumor cells to survive in a homeless environment. Activation of epithelial growth factor receptor (EGFR signaling is one of the key mechanisms for metastatic tumor cells to resist anoikis, yet the regulation mechanisms of homeless-triggered EGFR activation in metastatic tumor cells remain unclear. Rhomboid-like-2 (RHBDL2, an evolutionally conserved intramembrane serine protease, can cleave the EGF ligand and thus trigger EGFR activation. Herein, we demonstrated that RHBDL2 overexpression in human epithelial cells resulted in promotion of cell proliferation, reduction of cell adhesion, and suppression of anoikis. During long-term suspension cultures, increased RHBDL2 was only detected in aggressive tumor cell lines. Treatment with the rhomboid protease inhibitor or RHBDL2 shRNA increased cleaved caspase 3, a marker of apoptosis. Finally, inhibition of EGFR activation increased the cleaved caspase 3 and attenuated the detachment-induced focal adhesion kinase phosphorylation. Taken together, these findings provide evidence for the first time that RHBDL2 is a critical molecule in anoikis resistance of malignant epithelial cells, possibly through the EGFR-mediated signaling. Our study demonstrates RHBDL2 as a new therapeutic target for cancer metastasis.

  8. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells.

    Science.gov (United States)

    Wallace, Sean W; Magalhaes, Ana; Hall, Alan

    2011-01-01

    Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.

  9. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  10. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Khazaei

    2016-09-01

    Full Text Available Objective(s: Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods:In this in vitro study, endometrial biopsies from endometriosis patients (n=9 were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml. Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0, 10, 25, 50 and 100 micromole/liter (µM concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO–Ethidium Bromide (EB double staining and Terminal deoxynucleotidyl transferase (TdT dUTP Nick-End Labeling (TUNEL assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P

  11. Expression of Heat Shock Protein 70 mRNA in Epithelial Cells of Human Lens

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective:To try to find out the pathogenesis of the cataract , effects of beat and oxidative stresson heat shock proteins of tissue cultured human lens epithelial cells (LEC-B3) were investigate& Methods:Cells were exposed to heat shock (45℃) and oxidative stress(5OmMH2O2 for 30 min, and then allowed to recoverat different intervals (Oh, 2h, 4h, 6h, 16h, 24h) in physiological medium Reverse transcription polymerasechain reaction (RT-PCR) were used to determined the level of HSP70. Results: HSPs existed in both physiologicaland stressful situation. The level of HSP7OmRNA increased 2h later after both stresses. The expression of HSP70got to the summit during 2h to 6h in each group. Subsequently it decreased gradually in each group, maintaininga high level at 16h. Conclusion: HSP70 exists in lens epithelial cells and can be induced after stress. Thedata suggested it may play an important protective role in lens epithelial cells in respond to cellular stress.

  12. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  13. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α

    Directory of Open Access Journals (Sweden)

    Câmara Joana

    2010-01-01

    Full Text Available Abstract Background Defective epithelial repair, excess fibroblasts and myofibroblasts, collagen overproduction and fibrosis occur in a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD and pulmonary fibrosis. Pathological conversion of epithelial cells into fibroblasts (epithelial-mesenchymal transition, EMT has been proposed as a mechanism for the increased fibroblast numbers and has been demonstrated to occur in lung alveolar epithelial cells. Whether other airway cell types also have the capability to undergo EMT has been less explored so far. A better understanding of the full extent of EMT in airways, and the underlying mechanisms, can provide important insights into airway disease pathology and enable the development of new therapies. The main aim of this study was to test whether primary human bronchial epithelial cells are able to undergo EMT in vitro and to investigate the effect of various profibrotic factors in the process. Results Our data demonstrate that primary human bronchial epithelial cells (HBECs are able to undergo EMT in response to transforming growth factor-beta 1 (TGF-β1, as revealed by typical morphological alterations and EMT marker progression at the RNA level by real-time quantitative polymerase chain reaction and, at the protein level, by western blot. By using pharmacological inhibitors we show that this is a Smad-dependent mechanism and is independent of extracellular signal-related kinase pathway activation. Additional cytokines and growth factors such as tumour necrosis factor-alpha (TNF-α, interleukin-1 beta (IL1β and connective tissue growth factor (CTGF were also tested, alone or in combination with TGF-β1. TNF-α markedly enhances the effect of TGF-β1 on EMT, whereas IL1β shows only a very weak effect and CTGF has no significant effect. We have also found that cell-matrix contact, in particular to fibronectin, an ECM component upregulated in fibrotic lesions

  14. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available BACKGROUND: The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line. METHODOLOGY/PRINCIPAL FINDINGS: We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade. CONCLUSION/SIGNIFICANCE: Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  15. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells*

    Science.gov (United States)

    Sparks, Avis E.; Chen, Chiachen; Breslin, Mary B.; Lan, Michael S.

    2016-01-01

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. PMID:27048654

  16. Benzo (a) pyrene induced tumorigenesity of human immortalized oral epithelial cells: transcription profiling

    Institute of Scientific and Technical Information of China (English)

    LI Jin-zhong; PAN Hong-ya; ZHENG Jia-wei; ZHOU Xiao-jian; ZHANG Ping; CHEN Wan-tao; ZHANG Zhi-yuan

    2008-01-01

    Background The present study was designed to examine and analyze the global gene expression changes during the tumorigenesis of a human immortalized oral epithelial cell line, and search for the possible genes that may play a role in the carcinogenesis of oral cancer associated with benzo (a) pyrene.Methods The human immortalized oral epithelial cells, which have been established through transfection of E6/E7 genasof human papillomavirus type 16 and proved to be non-tumorigenic in nude mice, were treated with benzo (a) pyrene.Tumorigenesity of the treated cells were examined through nude mice subcutaneous injection. The global gene expression profiles of immortalized cells and the tumorigenic cells were acquired through hybridization of a microarray of Affymetrix U133 plus 2.0. The data were analyzed using Spring 7.0 software and treated statistically using one-way analysis of variance (ANOVA). The differentially expressed genes were classified using a Venn diagram and annotated with gene ontology. Several highlighted genes were validated in cells using a real-time polymerase chain reaction.Results There were 883 differentially expressed genes during the tumorigenesis and most of them changed expression in the early stage of tumorigenesis. These genes mainly involved in macromolecule metabolism and signal transduction,possessed the molecular function of transition metal ion binding, nucleotide binding and kinase activity; their protein products were mainly integral to membranes or localized in the nucleus and cytoskeleton. The expression patterns of IGFBP3, S100A8, MAP2K, KRT6B, GDF15, MET were validated in cells using a real-time polymerase chain reaction; the expression of IGFBP3 was further validated in clinical oral cancer specimens.Concluslona This study provides the global transcription profiling associated with the tumorigenesis of oral epithelial cells exposed to benzo (a) pyrene; IGFBP3 may play a potential role in the initiation of oral cancer related to

  17. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    Science.gov (United States)

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity.

  18. Neutrophil and asbestos fiber-induced cytotoxicity in cultured human mesothelial and bronchial epithelial cells.

    Science.gov (United States)

    Kinnula, V L; Raivio, K O; Linnainmaa, K; Ekman, A; Klockars, M

    1995-03-01

    This study investigates reactive oxygen species generation and oxidant-related cytotoxicity induced by amosite asbestos fibers and polymorphonuclear leucocytes (PMNs) in human mesothelial cells and human bronchial epithelial cells in vitro. Transformed human pleural mesothelial cells (MET 5A) and bronchial epithelial cells (BEAS 2B) were treated with amosite (2 micrograms/cm2) for 48 h. After 24 h of incubation, the cells were exposed for 1 h to nonactivated or amosite (50 micrograms) activated PMNs, washed, and incubated for another 23 h. Reactive oxygen species generation by the PMNs and the target cells was measured by chemiluminescence. Cell injury was assessed by cellular adenine nucleotide depletion, extracellular release of nucleotides, and lactate dehydrogenase (LDH). Amosite-activated (but also to a lesser degree nonactivated) PMNs released substantial amounts of reactive oxygen metabolites, whereas the chemiluminescence of amosite-exposed mesothelial cells and epithelial cells did not differ from the background. Amosite treatment (48 h) of the target cells did not change intracellular adenine nucleotides (ATP, ADP, AMP) or nucleotide catabolite products (xanthine, hypoxanthine, and uric acid). When the target cells were exposed to nonactivated PMNs, significant adenine nucleotide depletion and nucleotide catabolite accumulation was observed in mesothelial cells only. In separate experiments, when the target cells were exposed to amosite-activated PMNs, the target cell injury was further potentiated compared with the amosite treatment alone or exposure to nonactivated PMNs. In conclusion, this study suggests the importance of inflammatory cell-derived free radicals in the development of amosite-induced mesothelial cell injury.

  19. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Deng, Yubin, E-mail: dengyub@mail.sysu.edu.cn [Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Zeng, Mian, E-mail: zengmian2004@163.com [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  20. Construction of predictive promoter models on the example of antibacterial response of human epithelial cells

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2005-01-01

    Full Text Available Abstract Background Binding of a bacteria to a eukaryotic cell triggers a complex network of interactions in and between both cells. P. aeruginosa is a pathogen that causes acute and chronic lung infections by interacting with the pulmonary epithelial cells. We use this example for examining the ways of triggering the response of the eukaryotic cell(s, leading us to a better understanding of the details of the inflammatory process in general. Results Considering a set of genes co-expressed during the antibacterial response of human lung epithelial cells, we constructed a promoter model for the search of additional target genes potentially involved in the same cell response. The model construction is based on the consideration of pair-wise combinations of transcription factor binding sites (TFBS. It has been shown that the antibacterial response of human epithelial cells is triggered by at least two distinct pathways. We therefore supposed that there are two subsets of promoters activated by each of them. Optimally, they should be "complementary" in the sense of appearing in complementary subsets of the (+-training set. We developed the concept of complementary pairs, i.e., two mutually exclusive pairs of TFBS, each of which should be found in one of the two complementary subsets. Conclusions We suggest a simple, but exhaustive method for searching for TFBS pairs which characterize the whole (+-training set, as well as for complementary pairs. Applying this method, we came up with a promoter model of antibacterial response genes that consists of one TFBS pair which should be found in the whole training set and four complementary pairs. We applied this model to screening of 13,000 upstream regions of human genes and identified 430 new target genes which are potentially involved in antibacterial defense mechanisms.

  1. Induction of mucin secretion from human bronchial tissue and epithelial cells by rhinovirus and lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG; Ming-ke DUAN

    2004-01-01

    AIM: To examine the effects of rhinovirus and lipopolysaccharide (LPS) on mucin secretion from bronchial tissue and epithelial cells in vitro. METHODS: Human small bronchial tissue fragments (HSBTF) and human bronchial epithelial cells (HBEC) were cultured with rhinovirus 16 and LPS, respectively and culture supernatants were collected for mucin measurement. To determine mucin levels in the culture supernatants, a MUC5AC enzyme linked immunosorbent assay and an enzyme linked lectin assay procedure with dolichos bifiorus agglutinin (DBA)were developed, and mucin release was expressed as percentage increased (or decreased) secretion over baseline level. RESULTS: A concentration-dependent release of DBA mucin and MUC5AC mucin were observed when HSBTF were infected with various concentrations of rhinovirus 16 at 37 ℃. The maximum-induced DBA mucin and MUC5AC mucin release were approximately 258 % and 83 % over baseline. The response of HSBTF to rhinovirus was completely abolished by metabolic inhibitors. Rhinovirus was also able to induce a concentrationdependent release of DBA mucin and MUC5AC mucin from primarily cultured HBEC. LPS 100 mg/L was able to provoke up to approximately 19 % and 54 % increase in DBA and MUC5AC mucin release over baseline, respectively from HSBTF, and 3.1% and 57 % increase from HBEC at 20 h. Soybean trypsin inhibitor (SBTI) 30 mg/L was able to inhibit LPS-induced mucin release from HSBTF and HBEC. CONCLUSION: Rhinovirus is able to induce mucin secretion from human bronchial tissue and bronchial epithelial cells in vitro. LPS can induce MUC5AC mucin release from HSBTF and HBEC.

  2. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    OpenAIRE

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero; Kaarniranta, Kai

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells...

  3. A Case Report of Focal Epithelial Hyperplasia (Heck’s disease) with PCR Detection of Human Papillomavirus

    OpenAIRE

    Ozden, Bora; Gunduz, Kaan; Gunhan, Omer; Ozden, Feyza Otan

    2011-01-01

    Focal epithelial hyperplasia or Heck’s disease, is a rare viral infection of the oral mucosa caused by human papillomavirus. The frequency of this disease varies widely from one geographic region to another. In Caucasians there have been only few cases reported. This paper reports a case of focal epithelial hyperplasia and demonstrates the association with HPV subtype 32 through polymerase chain reaction (PCR) and sequencing of PCR products. A 7-year-old Caucasian girl was admitted to our cli...

  4. Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-xin; XUE Shou-ru; DONG Wan-li; Kong Yan

    2009-01-01

    Background Human amniotic epithelial cells (HAECs) are able to secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine neurons.Previous study showed that when human amniotic epithelial cells were transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced Parkinson disease rats, the cells could survive and exert functional effects. The purpose of this study was to investigate the survival and the differentiation of human amniotic epithelial cells after being transplanted into the lateral ventricle of Parkinson's disease (PD) rats, and to investigate the effects of grafts on healing PD in models.Methods The Parkinson's model was made with stereotactic microinjection of 6-hydroxydopamine (6-OHDA) into the striatum of a rat. The PD models were divided into two groups: the HAECs group and the normal saline (NS) group.Some untreated rats were taken as the control. The rotational asymmetry induced by apomorphine of the HAECs group and the NS group were measured post cell transplantation. The expression of nestin and vimentin in grafts were determined by immunohistology. Ten weeks after transplantation the density of tyrosine hydroxylase positive cells in the substantia nigra of the HAECs group, NS group and the untreated group was determined. The differentiation of grafts was determined by TH immunohistology. High performance liquid chromatography (HPLC) was used to determine monoamine neurotransmitter levels in the striatum.Results The rotational asymmetry induced by apomorphine of the HAECs group was ameliorated significantly compared to the NS group two weeks after transplantation (P <0.01). The grafts expressed nestin and vimentin five weeks after transplantation. TH immunohistochemistry indicated that the TH positive cells in the substantia nigra of the HAECs group increased significantly compared to the NS group (P<0.01). Tyrosine hydroxylase (TH) positive

  5. Pleiotropic expression of Epstein--Barr virus DNA in human epithelial cells.

    OpenAIRE

    1981-01-01

    We have attempted to establish a system that can be used to study the association of Epstein--Barr virus (EBV) with epithelial cells. Attempts were made to transfect human carcinoma cells with EBV DNA. Successful transfection was confirmed by the expression of EBV-specific early antigen (EA), virus capsid antigen, and the presence of virus DNA. The transfecting preparation contained a mixture of EBV and cellular DNA extracted from two producer cell lines, P3HR-1 and AG-876. Our data suggest t...

  6. Cadmium Malignantly Transforms Normal Human Breast Epithelial Cells into a Basal-like Phenotype

    OpenAIRE

    2009-01-01

    Background Breast cancer has recently been linked to cadmium exposure. Although not uniformly supported, it is hypothesized that cadmium acts as a metalloestrogenic carcinogen via the estrogen receptor (ER). Thus, we studied the effects of chronic exposure to cadmium on the normal human breast epithelial cell line MCF-10A, which is ER-negative but can convert to ER-positive during malignant transformation. Methods Cells were continuously exposed to low-level cadmium (2.5 μM) and checked in vi...

  7. Characterization of human papillomavirus type 13 from focal epithelial hyperplasia Heck lesions.

    OpenAIRE

    Pfister, H.; Hettich, I; Runne, U.; Gissmann, L; Chilf, G N

    1983-01-01

    Focal epithelial hyperplasia Heck lesions of a Turkish patient were shown to contain papillomavirus-specific DNA, which was molecularly cloned into bacteriophage lambda. It proved to be related to human papillomavirus (HPV) type 6 DNA and HPV type 11 DNA. Reassociation kinetics revealed a cross-hybridization of 4 and 3%, respectively. There was no cross-reactivity with HPV type 1, 2, 3, 4, 5, 8, or 10. This papillomavirus type will be referred to as HPV type 13. The DNA was characterized by c...

  8. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels

    2015-01-01

    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  9. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  10. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms.

    Science.gov (United States)

    Wörmann, Mirka E; Horien, Corey L; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M; Exley, Rachel M

    2016-03-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.

  11. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mbeh, Doris A. [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Javanbakht, Taraneh [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada); Mahmoudi, Morteza [Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Yahia, L’Hocine [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada)

    2014-11-30

    Highlights: • Graphene oxide nanoribons (GONRs) were synthesized by unzipping of multi-walled carbon nanotubes. • GONRs were functionalized by the albumin originated from the two different protein sources. • Concentration-dependent cytotoxicity of the functionalized GONRs was investigated on human epithelial cells. - Abstract: Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  12. Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines.

    Science.gov (United States)

    Grigorov, Boyan; Arcanger, Fabienne; Roingeard, Philippe; Darlix, Jean-Luc; Muriaux, Delphine

    2006-06-16

    The canonical view of the ultimate steps of HIV-1 replication is that virus assembly and budding are taking place at the plasma membrane of infected cells. Surprisingly, recent studies revealed that these steps also occur on endosomal membranes in the interior of infected cells, such as macrophages. This prompted us to revisit the site of HIV-1 assembly in human epithelial-like cells and in infected human T-lymphoblastic cells. To address this question, we investigated the intracellular location of the major viral structural components of HIV-1, namely Gag, Env and the genomic RNA. Using a sub-cellular fractionation method, as well as immuno-confocal and electron microscopy, we show that Gag, the Env glycoproteins and the genomic RNA accumulate in late endosomes that contain infectious HIV-1 particles. In epithelial-like 293T cells, HIV-1 assembles and buds both at the plasma membrane and in endosomes, while in chronically infected human T lymphocytes, viral assembly mostly occurs within the cell where large amounts of infectious virions accumulate in endosomal compartments. In addition, HIV-1 release could be enhanced by ionomycin, a drug stimulating calcium-dependent exocytosis. These results favour the view that newly made Gag molecules associate with the genomic RNA in the cytosol, then viral core complexes can be targeted to late endosomes together with Env, where infectious HIV-1 are made and subsequently released by exocytosis.

  13. Phenotypic Heterogeneity in Cell Proliferation and Radiosensitivity in Human Laryngocarcinoma Hep-2 Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRadiotherapy is one of the major clinical treatments for malignant tumors. However, tumor cells are heterogenic in response to radiation (radiosensitivity) which limits the achievement ratio of radiotherapy in many non-sensitive tumors. At the same time, radiosensitivity plays an important role in radiobiology and it is regarded as the fifth “R”- Radiosensitivity in fractionation radiotherapy. Understanding the mechanism of heterogeneity of tumor cell radiosensitivity is critical in radiation ...

  14. Isolation of Human Amnion Epithelial Cells According to Current Good Manufacturing Procedures.

    Science.gov (United States)

    Gramignoli, Roberto; Srinivasan, Raghuraman C; Kannisto, Kristina; Strom, Stephen C

    2016-05-12

    Different cell types can be isolated from human placental tissues, and some have been reported to retain phenotypic plasticity and characteristics that make them a promising source of cells for regenerative medicine. Among these are human amnion epithelial cells (hAECs). Adoption of current good manufacturing practices (cGMP) and enhanced quality control is essential when isolating hAECs in order to deliver a safe and effective cellular product for clinical purposes. This unit describes a detailed protocol for selective isolation of hAECs from human term placenta with little to no contamination by other cell types. A method for characterizing the heterogeneity of the hAEC suspension is also provided. The resulting cell product will be useful for clinical as well as basic research applications. © 2016 by John Wiley & Sons, Inc.

  15. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    Science.gov (United States)

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  16. Precancerous model of human breast epithelial cells induced by NNK for prevention.

    Science.gov (United States)

    Siriwardhana, Nalin; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2008-06-01

    Epidemiological investigations have suggested that exposure to tobacco and environmental carcinogens increase the risk of developing human breast cancer. In light of the chronic exposure of human breast tissues to tobacco and environmental carcinogens, we have taken an approach of analyzing cellular changes of immortalized non-cancerous human breast epithelial MCF10A cells during the acquisition of cancerous properties induced by repeated exposure to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at a low concentration of 100 pM. We found that accumulated exposures of MCF10A cells to NNK result in progressive development of cellular carcinogenesis from a stage of immortalization to precancerous sub-stages of acquiring a reduced dependence on growth factors and acquiring anchorage-independent growth. Using Matrigel for MCF10A cells to form size-restricted acini, we detected that exposures to NNK resulted in altered acinar conformation. Analysis of gene expression profiles by cDNA microarrays revealed up- and down-regulated genes associated with NNK-induced carcinogenesis. Using this cellular carcinogenesis model as a target system to identify anticancer agents, we detected that grape seed proanthocyanadin extract significantly suppressed NNK-induced carcinogenesis of MCF10A cells. Our studies provide a carcinogenesis-cellular model mimicking the accumulative exposure to carcinogens in the progression of human breast epithelial cells to increasingly acquire cancerous properties, as likely occurs in the development of precancerous human breast cells. Our cellular model also serves as a cost-efficient, in vitro system to identify preventive agents that inhibit human breast cell carcinogenesis induced by chronic exposures to carcinogens.

  17. Blocking TGF-β expression inhibits silica particle-induced epithelial-mesenchymal transition in human lung epithelial cells.

    Science.gov (United States)

    Rong, Yi; Shen, Yan; Zhang, Zhihong; Cui, Xiuqing; Xiao, Lili; Liu, Yuewei; Luo, Xin; Chen, Weihong

    2015-11-01

    The main characteristic of silicosis is irreversible fibrosis. Certain studies have shown that epithelial-mesenchymal transition (EMT) regulated by transforming growth factor-β (TGF-β) is involved in fibrosis. Thus, we suggest that TGF-β regulated EMT may play an important role in silicosis. In this study, we determined the expression of TGF-β-Smad2/3, EMT- and ECM-related markers in lung epithelial cells treated with silica particle by RT-PCR, western-blot and ELISA. In order to explore the role of TGF-β, we used TGF-β inhibitor in the cell model. We found that the cells lost the expression of epithelial phenotypic markers and acquired increased expression of mesenchymal cells markers with ECM deposition after treatment with silica particle. Moreover, the changes of EMT-related event was restricted in response to TGF-β inhibitor. These findings suggest that EMT is essentially involved in the pathogenesis of fibrosis induced by silica particles and down-regulating the TGF-β expression can inhibit the process of EMT.

  18. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  19. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    Full Text Available Androgen receptor (AR signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS, TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2 were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1 were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins

  20. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    Science.gov (United States)

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  1. Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To investigate the effect of six bile salts:glycocholate (GC), glycochenodeoxycholate (GCDC),glycodeoxycholate (GDC), taurocholate (TC),taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and their mixture on cultured human normal esophageal mucosal epithelial cells.METHODS: Human normal esophageal mucosal epithelial cells were cultured with serum-free keratinocyte medium. 3-[4,5-Dimethylthiaolyl]-2,5-diphenyl-tetrazolium bromide assay was applied to the detection of cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Sub-G1 DNA fragmentations and early apoptotic cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining.Apoptotic DNA ladders on agarose gel electrophoresis were observed.RESULTS: Except for GC, GCDC, GDC, TC, TCDC, TDC and their mixture could initiate growth inhibition of esophageal mucosal epithelial cells in a dose- and time-dependent manner. TUNEL and FCM assays demonstrated that the bile salts at 500 μmol/L and their mixture at 1 500 μmol/L induced apoptosis except for GC. The percentage of sub-G1 detected by FCM with PI staining was 83.5% in cells treated with 500μmol/L TC for 2 h, and 19.8%, 20.4%, 25.6%, 13.5%, and 75.8% in cells treated with 500 μmol/L GCDC, TCDC, GDC,TDC, and 1 500 μmol/L mixture for 24 h, respectively,which were higher than that of the control (1.5%). The percentage was 1.4% in cells with 500 μmol/L GC for 24 h.DNA ladders on agarose gel electrophoresis were seen in cells treated with 500 μmol/L TC for 2 h and 1 500 μmol/Lmixture for 24 h.CONCLUSION: All GCDC, GDC, TC, TCDC, TDC and their mixture can inhibit growth and induce apoptosis of cultured human normal esophageal mucosal epithelial cells, but GC is well tolerated by the cells.

  2. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Ying Wu; Hwei-Fang Tsai; We-Cheng Lin; Ai-Hsiang Chou; Hui-Ting Chen; Jyh-Chin Yang; Ping-I Hsu; Ping-Ning Hsu

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori(H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL onthe surface of infiltrating T-cells in Hpylori-infected gastric mucosa.METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry.RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylorialone. Interestingly,the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vsTRAIL and H pylori: 0.51±0.06 vs 2.29±0.27,P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori.CONCLUSION: H pylori can sensitize human gastric epithelial ceils and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection.

  3. RNA Interference Targeting Snail Inhibits the Transforming Growth Factor β 2-Induced Epithelial-Mesenchymal Transition in Human Lens Epithelial Cells.

    Science.gov (United States)

    Li, Ping; Jing, Jiaona; Hu, Jianyan; Li, Tiejun; Sun, Yuncheng; Guan, Huaijin

    2013-01-01

    Epithelial-msenchymal transition (EMT) contributes to posterior capsule opacification (PCO) type of cataract. Transcription factors Snail is a key trigger of EMT activated by transforming growth factor β (TGF β ). This study was done to investigate the effect of Snail targeting siRNA on TGF β 2-induced EMT in human lens epithelial cells. TGF β 2 treatment of cultured human epithelial cell line (HLEB3) upregulated the expression of Snail and the EMT relevant molecules such as vimentin and α -SMA but downregulated the expression of keratin and E-cadherin. After the stimulation of TGF β 2, the HLEB3 cells became fibroblast-like in morphology, and the junctions of cell-cell disappeared. TGF β 2 treatment also enhanced migration ability of HLEB3 cells. TGF β 2-induced Snail expression and EMT were significantly inhibited by Snail siRNA. By analyzing the response characteristics of HLEB3 in TGF β 2-induced EMT model with/without Snail-specific siRNA, we concluded that Snail is an element in the EMT of HLEB3 cells induced by TGF β 2. Snail siRNA targeting can block the induced EMT and therefore has the potential to suppress the development of PCO.

  4. RNA Interference Targeting Snail Inhibits the Transforming Growth Factor β2-Induced Epithelial-Mesenchymal Transition in Human Lens Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ping Li

    2013-01-01

    Full Text Available Epithelial-msenchymal transition (EMT contributes to posterior capsule opacification (PCO type of cataract. Transcription factors Snail is a key trigger of EMT activated by transforming growth factor β (TGFβ. This study was done to investigate the effect of Snail targeting siRNA on TGFβ2-induced EMT in human lens epithelial cells. TGFβ2 treatment of cultured human epithelial cell line (HLEB3 upregulated the expression of Snail and the EMT relevant molecules such as vimentin and α-SMA but downregulated the expression of keratin and E-cadherin. After the stimulation of TGFβ2, the HLEB3 cells became fibroblast-like in morphology, and the junctions of cell-cell disappeared. TGFβ2 treatment also enhanced migration ability of HLEB3 cells. TGFβ2-induced Snail expression and EMT were significantly inhibited by Snail siRNA. By analyzing the response characteristics of HLEB3 in TGFβ2-induced EMT model with/without Snail-specific siRNA, we concluded that Snail is an element in the EMT of HLEB3 cells induced by TGFβ2. Snail siRNA targeting can block the induced EMT and therefore has the potential to suppress the development of PCO.

  5. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  6. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Gasque Philippe

    2006-09-01

    Full Text Available Abstract Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes. However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59 in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.

  7. Focal epithelial hyperplasia in a human immuno-deficiency virus patient treated with laser surgery.

    Science.gov (United States)

    Galanakis, Alexandros; Palaia, Gaspare; Tenore, Gianluca; Vecchio, Alessandro Del; Romeo, Umberto

    2014-07-16

    Focal epithelial hyperplasia (FEH), or Heck's disease, is a rare disease of the oral mucosa; it is mostly found in children or young adults who are immunosuppressed and who live in regions with low socioeconomic status. It is characterized by asymptomatic papules on the oral mucosa, gingiva, tongue, and lips. Healing can be spontaneous, and treatment is indicated if there are aesthetic or functional complications. Human papillomavirus, especially genotypes 13 and 32, has been associated with FEH and is detected in the majority of lesions. Histopathologically, FEH is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, and fusion and horizontal outgrowth of epithelial ridges. A 37-year-old male patient was referred to the Department of Oral and Maxillofacial Sciences at the Sapienza University of Rome, complaining of numerous exophytic lesions in his mouth. He stated that the lesions were not painful but he had experienced occasional bleeding after incidental masticatory trauma. He had received no previous treatment for the oral lesions. His medical history revealed that he was human immuno-deficiency virus positive and was a smoker with numerous, asymptomatic oral papules clinically and histologically corresponding to FEH. The labial and buccal mucosa were especially affected by lesions. Surgical treatment was performed using a 532-nm potassium titanyl phosphate laser (SmartLite, Deka, Florence, Italy) in continuous mode with a 300 μm fiber and power of 1.4 W (power density 1980.22 W/cm(2)). After anesthesia without vasoconstrictors, the lesions were tractioned with sutures or an Allis clamp and then completely excised. The lesions were preserved in 10% formalin for histological examination, which confirmed the clinical diagnosis of FEH. In this case, the laser allowed excellent control of bleeding, without postoperative sutures, and optimal wound healing.

  8. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Berman R

    2016-06-01

    Full Text Available Reena Berman, Di Jiang, Qun Wu, Hong Wei Chu Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: Human rhinovirus (HRV infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. Keywords: α1-antitrypsin, rhinovirus, COPD, cigarette smoke, ICAM-1

  9. Virodhamine and CP55,940 modulate cAMP production and IL-8 release in human bronchial epithelial cells

    NARCIS (Netherlands)

    Gkoumassi, E.; Dekkers, B. G. J.; Droege, M. J.; Elzinga, C. R. S.; Schmidt, M.; Meurs, H.; Zaagsma, J.; Nelemans, S. A.

    2007-01-01

    Background and purpose: We investigated expression of cannabinoid receptors and the effects of the endogenous cannabinoid virodhamine and the synthetic agonist CP55,940 on cAMP accumulation and interleukin-8 (IL-8) release in human bronchial epithelial cells. Experimental approach: Human bronchial e

  10. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  11. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  12. Group A Streptococcus exploits human plasminogen for bacterial translocation across epithelial barrier via tricellular tight junctions

    Science.gov (United States)

    Sumitomo, Tomoko; Nakata, Masanobu; Higashino, Miharu; Yamaguchi, Masaya; Kawabata, Shigetada

    2016-01-01

    Group A Streptococcus (GAS) is a human-specific pathogen responsible for local suppurative and life-threatening invasive systemic diseases. Interaction of GAS with human plasminogen (PLG) is a salient characteristic for promoting their systemic dissemination. In the present study, a serotype M28 strain was found predominantly localized in tricellular tight junctions of epithelial cells cultured in the presence of PLG. Several lines of evidence indicated that interaction of PLG with tricellulin, a major component of tricellular tight junctions, is crucial for bacterial localization. A site-directed mutagenesis approach revealed that lysine residues at positions 217 and 252 within the extracellular loop of tricellulin play important roles in PLG-binding activity. Additionally, we demonstrated that PLG functions as a molecular bridge between tricellulin and streptococcal surface enolase (SEN). The wild type strain efficiently translocated across the epithelial monolayer, accompanied by cleavage of transmembrane junctional proteins. In contrast, amino acid substitutions in the PLG-binding motif of SEN markedly compromised those activities. Notably, the interaction of PLG with SEN was dependent on PLG species specificity, which influenced the efficiency of bacterial penetration. Our findings provide insight into the mechanism by which GAS exploits host PLG for acceleration of bacterial invasion into deeper tissues via tricellular tight junctions. PMID:26822058

  13. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  14. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  15. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation.

    Science.gov (United States)

    Matthijsen, Robert A; Derikx, Joep P M; Kuipers, Dian; van Dam, Ronald M; Dejong, Cornelis H C; Buurman, Wim A

    2009-09-15

    Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut. Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11) minutes). Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP) levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (pintestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

  16. Quantitative changes in human epithelial cancers and osteogenesis imperfecta disease detected using nonlinear multicontrast microscopy

    Science.gov (United States)

    Adur, Javier; Pelegati, Vitor B.; de Thomaz, Andre A.; D'Souza-Li, Lilia; Assunção, Maria do Carmo; Bottcher-Luiz, Fátima; Andrade, Liliana A. L. A.; Cesar, Carlos L.

    2012-08-01

    We show that combined multimodal nonlinear optical (NLO) microscopies, including two-photon excitation fluorescence, second-harmonic generation (SHG), third harmonic generation, and fluorescence lifetime imaging microscopy (FLIM) can be used to detect morphological and metabolic changes associated with stroma and epithelial transformation during the progression of cancer and osteogenesis imperfecta (OI) disease. NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for different types of human breast cancer, mucinous ovarian tumors, and skin dermis of patients with OI. Using a set of scoring methods (anisotropy, correlation, uniformity, entropy, and lifetime components), we found significant differences in the content, distribution and organization of collagen fibrils in the stroma of breast and ovary as well as in the dermis of skin. We suggest that our results provide a framework for using NLO techniques as a clinical diagnostic tool for human cancer and OI. We further suggest that the SHG and FLIM metrics described could be applied to other connective or epithelial tissue disorders that are characterized by abnormal cells proliferation and collagen assembly.

  17. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stressinduced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lian; Liu; Wei; Lao; Qing-Shan; Ji; Zhi-Hao; Yang; Guo-Cheng; Yu; Jing-Xiang; Zhong

    2015-01-01

    AIM: To investigate the protective effect and its mechanism of lycium barbarum polysaccharides(LBP)against oxidative stress-induced apoptosis in human retinal pigment epithelial cells.METHODS: ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8(CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction(RT-PCR) technique.RSULTS: LBP significantly reduced the H2O2-induced ARPE-19 cells’ apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax.CONCLUSION: LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP.

  18. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    Science.gov (United States)

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  19. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts.

    Science.gov (United States)

    Asin, Susana N; Fanger, Michael W; Wildt-Perinic, Dunja; Ware, Patricia L; Wira, Charles R; Howell, Alexandra L

    2004-07-15

    Women can become infected with human immunodeficiency virus type 1 (HIV-1) after the heterosexual transmission of virus from an infected male partner. To understand the events that result in transmission of HIV-1 across the female reproductive tract, we characterized the life-cycle events of HIV-1 in primary cultures of human uterine epithelial cells and stromal fibroblasts. Epithelial cells and stromal fibroblasts released virus particles after exposure to either X4- or R5-tropic strains of HIV-1. Virus released by these cells was able to infect CD4(+) T cells. When exposed to an X4-tropic strain of HIV-1, these cells supported HIV-1 reverse transcription, integration, and viral DNA transcription. When exposed to an R5-tropic strain, however, these cells released unmodified virus. These data suggest that uterine cells are targets for productive infection with X4-tropic strains and release unmodified R5-tropic viruses that would then be able to infect submucosal target cells, including T cells and macrophages.

  20. The Effect of Connective Tissue Growth Factor on Human Renal Tubular Epithelial Cell Transdifferentiation

    Institute of Scientific and Technical Information of China (English)

    张春; 朱忠华; 邓安国

    2004-01-01

    To investigate the role of connective tissue growth factor (CTGF) in transdifferentiation of human renal tubular epithelial cell (HKC), in vitro cultured HKC cells were divided into 3 groups: negtive control, low dose CTGF-treated group (rh CTGF, 2.5 ng/ml) and high dose CTGF-treated (rhCTGF, 5.0 ng/ml). Then the expression of α-smooth muscle actin (α-SMA) were assessed by indirect immuno-fluorescence, and the percentage of α-SMA positive cells were assessed by flow cytometry. RT-PCR were also performed to examine the mRNA level of α-SMA. Upon the stimulation of different concentrations of rhCTGF, the expression of α-SMA were markedly stronger than that in negative controls. The percentages of α-SMA positive cells were significantly higher in the stimulated groups than that of negative controls (38.9 %, 65.5 % vs 2.4 %, P<0.01) . α-SMA mRNA levels were also up-regulated by the stimulation of rhCTGF (P<0.01). These results suggest that CTGF can promote the transdifferentiation of human renal tubular epithelial cells towards myofibroblast (Myo-F).

  1. Inhibiting Effects of Eucheuma Polysaccharide Selenide on the Proliferation of Carcinoma Cell Line HEp-2%硒化麒麟菜多糖抑制人喉癌细胞株Hep-2增殖的作用

    Institute of Scientific and Technical Information of China (English)

    白雪; 林晨; 江振友; 袁桂秀; 沈伟哉; 李扬秋; 唐渝

    2007-01-01

    目的 通过比较研究海藻麒麟菜多糖粗提物、无机硒化合物-亚硒酸钠(Na2SeO3)及其共价化合物-硒化麒麟菜多糖对人喉癌细胞株Hep-2的作用,探索新的具有抗肿瘤活性的有机硒化合物.方法 应用不同剂量的样品作用于Hep-2细胞株后,用MTT比色分析法计算肿瘤抑制率.结果 硒化多糖对Hep-2细胞的抑制率高于相同多糖浓度的麒麟菜多糖和相同硒浓度的亚硒酸钠(P<0.05).硒化多糖的抑制率可高达71.53%,其多糖IC50与硒IC50分别为1805μg/ml和7.0μmol/L,分别低于麒麟菜多糖的多糖IC50(3034μg/ml)和亚硒酸钠的硒IC50(9.0μmol/L).结论 硒化麒麟菜多糖具有抗Hep-2细胞增殖的活性,其抑制作用明显优于亚硒酸钠及天然麒麟菜多糖的抗肿瘤活性.

  2. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  3. Hep-2细胞中bFGF及其双受体系统mRNA的表达%Expressions of bFGF, perlecan and FGFR mRNA in Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    陈广理; 龚树生; 陈沛; 罗凌惠

    2010-01-01

    目的:研究碱性成纤维细胞生长因子(bFGF)及其双受体系统串珠素(perlecan)和高亲和力酪氨酸激酶受体(FGFR)在人喉癌细胞Hep-2中的表达.方法:培养Hep-2和正常永生化表皮细胞系HaCaT细胞,应用RT-PCR方法检测bFGF、perlecan及FGFR1~4 mRNA的表达.结果:bFGF、peflecan、FGFR1、FGFR2及FGFR4 mRNA在Hep-2细胞中的相对表达量高于HaCaT细胞(t分别为17.540、19.684、13.371、12.692和12.586,P均<0.05).2种细胞中均未检测到FGFR3 mRNA.结论:bFGF、perlecan及FGFR与喉癌细胞的生长关系密切.

  4. Toward unraveling the complexity of simple epithelial keratins in human disease.

    Science.gov (United States)

    Omary, M Bishr; Ku, Nam-On; Strnad, Pavel; Hanada, Shinichiro

    2009-07-01

    Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.

  5. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamada

    Full Text Available The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ poisoning. Epithelial-mesenchymal transition (EMT has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0-500 μM for 2-12 days. Short-term (2 days high-dose (>100 μM treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker, suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion. In contrast, long-term (6-12 days low-dose (30 μM treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA. The mesenchymal-like cells also secreted the extracellular matrix (ECM protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during

  6. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Ying Qu

    Full Text Available Breast cancer is the most common cancer in women and a leading cause of cancer-related deaths for women worldwide. Various cell models have been developed to study breast cancer tumorigenesis, metastasis, and drug sensitivity. The MCF10A human mammary epithelial cell line is a widely used in vitro model for studying normal breast cell function and transformation. However, there is limited knowledge about whether MCF10A cells reliably represent normal human mammary cells. MCF10A cells were grown in monolayer, suspension (mammosphere culture, three-dimensional (3D "on-top" Matrigel, 3D "cell-embedded" Matrigel, or mixed Matrigel/collagen I gel. Suspension culture was performed with the MammoCult medium and low-attachment culture plates. Cells grown in 3D culture were fixed and subjected to either immunofluorescence staining or embedding and sectioning followed by immunohistochemistry and immunofluorescence staining. Cells or slides were stained for protein markers commonly used to identify mammary progenitor and epithelial cells. MCF10A cells expressed markers representing luminal, basal, and progenitor phenotypes in two-dimensional (2D culture. When grown in suspension culture, MCF10A cells showed low mammosphere-forming ability. Cells in mammospheres and 3D culture expressed both luminal and basal markers. Surprisingly, the acinar structure formed by MCF10A cells in 3D culture was positive for both basal markers and the milk proteins β-casein and α-lactalbumin. MCF10A cells exhibit a unique differentiated phenotype in 3D culture which may not exist or be rare in normal human breast tissue. Our results raise a question as to whether the commonly used MCF10A cell line is a suitable model for human mammary cell studies.

  7. Effect of bile salts and bile acids on human gastric mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yinxue Song; Jun Gong

    2008-01-01

    Objective:To explore the effect of bile salt and bile acid on cultured eternalized human gastric mucosa epithelium GES-1 cells.Methods:Cultured eternalized human gastric mucosa epithelium GES-1 cells were treated with media containing 6 different kinds of bile salts and 3 different kinds of bile acids and their mixture with different concentrations: GCDC(glycochenodeoxycholate), GDC (glycodeoxycholate), GC(glycocholate), TCDC(taurochenodeoxycholate), TDC(taurodeoxycholate), TC (taurocholate), LCA (lithocholicacid), CA(cholic acid), DCA(deoxycholic acid)(50 μ mol/L,250 μ mol/L,500 μ mol/L, 1000 μ mol/L), DY(mixture of bile salts) and DS(mixture of bile acids)(250 μ mol/L,500 μ mol/L,1000 μ mol/L,1500 μ mol/L, 2000 μ mol/L), in comparison with thecontrol group(in normal media without bile salts and bile acids).Cell proliferation was assessed by MTT(3-[4,5-Dimethylthiaolyl]-2,5- diphenyl-tetrazolium bromide) assay for 72 hours with different concentrations and the apoptotic cells were assayed by flow cytometry (FCM) with Annex V-FITC conjugated with propidium iodide(PI) staining for 24 hours with different concentrations(1500,2000 μ mol/L).Results:There was no significant difference in morphology and cell proliferation in GC group after 24-72 h.Low concentration(50 μ mol/L) of GCDC, GDC, TCDC, TDC and TC accelerated gastric epithelial cell growth in a dosage-time dependent manner.At middle concentration (250-500 μ mol/L), it showed positive effect after 24-48 h, while negative effect after 72 h.At high concentration(1000 μ tool/L), it accelerated gastric epithelial cell growth after 24h and show consistent inhibition even leading to necrosis after 48-72 h.LCA and CA showed a positive effect on the concentration of 50 μ mol/L after 24-72 h, while 250-1000 It mol/L showed a trend towards apoptosis after 24-72 h.At 50-500 μ mol/L, DCA showed proliferation after 24 h and apoptosis after 48-72 h, but showed necrosis after 24-72 h at 1000 μ moiFL.DY and DS

  8. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells.

    Science.gov (United States)

    Zsembery, Akos; Boyce, Amanda T; Liang, Lihua; Peti-Peterdi, János; Bell, P Darwin; Schwiebert, Erik M

    2003-04-11

    Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.

  9. Free fucose is a danger signal to human intestinal epithelial cells.

    Science.gov (United States)

    Chow, Wai Ling; Lee, Yuan Kun

    2008-03-01

    Fucose is present in foods, and it is a major component of human mucin glycoproteins and glycolipids. l-Fucose can also be found at the terminal position of many cell-surface oligosaccharide ligands that mediate cell-recognition and adhesion-signalling pathways. Mucin fucose can be released through the hydrolytic activity of pathogens and indigenous bacteria, leading to the release of free fucose into the intestinal lumen. The immunomodulating effects of free fucose on intestinal epithelial cells (enterocyte-like Caco-2) were investigated. It was found that the presence of l-fucose up regulated genes and secretion of their encoded proteins that are involved in both the innate and adaptive immune responses, possibly via the toll-like receptor-2 signalling pathway. These include TNFSF5, TNFSF7, TNF-alpha, IL12, IL17 and IL18. Besides modulating immune reactions in differentiated Caco-2 cells, fucose induced a set of cytokine genes that are involved in the development and proliferation of immune cells. These include the bone morphogenetic proteins (BMP) BMP2, BMP4, IL5, thrombopoietin and erythropoietin. In addition, the up regulated gene expression of fibroblast growth factor-2 may help to promote epithelial cell restitution in conjunction with the enhanced expression of transforming growth factor-beta mRNA. Since the exogenous fucose was not metabolised by the differentiated Caco-2 cells as a carbon source, the reactions elicited were suggested to be a result of the direct interaction of fucose and differentiated Caco-2 cells. The presence of free fucose may signal the invasion of mucin-hydrolysing microbial cells and breakage of the mucosal barrier. The intestinal epithelial cells respond by up regulation and secretion of cytokines, pre-empting the actual invasion of pathogens.

  10. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    Science.gov (United States)

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  11. N-acetylcysteine inhibits Na+ absorption across human nasal epithelial cells.

    Science.gov (United States)

    Rochat, Thierry; Lacroix, Jean-Silvain; Jornot, Lan

    2004-10-01

    N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport.

  12. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.

  13. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering.

    Science.gov (United States)

    Butler, Colin R; Hynds, Robert E; Gowers, Kate H C; Lee, Dani Do Hyang; Brown, James M; Crowley, Claire; Teixeira, Vitor H; Smith, Claire M; Urbani, Luca; Hamilton, Nicholas J; Thakrar, Ricky M; Booth, Helen L; Birchall, Martin A; De Coppi, Paolo; Giangreco, Adam; O'Callaghan, Christopher; Janes, Sam M

    2016-07-15

    Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.

  14. Marked induction of matrix metalloproteinase-10 by respiratory syncytial virus infection in human nasal epithelial cells.

    Science.gov (United States)

    Hirakawa, Satoshi; Kojima, Takashi; Obata, Kazufumi; Okabayashi, Tamaki; Yokota, Shin-Ichi; Nomura, Kazuaki; Obonai, Toshimasa; Fuchimoto, Jun; Himi, Tetsuo; Tsutsumi, Hiroyuki; Sawada, Norimasa

    2013-12-01

    Respiratory syncytial virus (RSV) is an important pathogen of bronchiolitis, asthma, and severe lower respiratory tract disease in infants and young children. Matrix metalloproteinases (MMPs) play key roles in viral infection, inflammation and remodeling of the airway. However, the roles and regulation of MMPs in human nasal epithelial cells (HNECs) after RSV infection remain unclear. To investigate the regulation of MMP induced after RSV infection in HNECs, an RSV-infected model of HNECs in vitro was used. It was found that mRNA of MMP-10 was markedly increased in HNECs after RSV infection, together with induction of mRNAs of MMP-1, -7, -9, and -19. The amount of MMP-10 released from HNECs was also increased in a time-dependent manner after RSV infection as was that of chemokine RANTES. The upregulation of MMP-10 in HNECs after RSV infection was prevented by inhibitors of NF-κB and pan-PKC with inhibition of RSV replication, whereas it was prevented by inhibitors of JAK/STAT, MAPK, and EGF receptors without inhibition of RSV replication. In lung tissue of an infant with severe RSV infection in which a few RSV antibody-positive macrophages were observed, MMP-10 was expressed at the apical side of the bronchial epithelial cells and alveolar epithelial cells. In conclusion, MMP-10 induced by RSV infection in HNECs is regulated via distinct signal transduction pathways with or without relation to RSV replication. MMP-10 may play an important role in the pathogenesis of RSV diseases and it has the potential to be a novel marker and therapeutic target for RSV infection.

  15. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Science.gov (United States)

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  16. [Effect of extracted ZG from gardenia on Hep-2 cell membrane post infected with parainfluenza virus type 1 (PIV-1)].

    Science.gov (United States)

    Guo, Shan-Shan; Huang, Yang; Zhao, Ye; Gao, Ying-Jie; Gong, Wen-Feng; Cui, Xiao-Lan

    2007-09-01

    In order to study the anti-viral mechanism of extracted ZG from Gardenia, the effect of extracted ZG on Hep-2 cell membrane potential, Na -K+-ATPase activity and membrane fluidity post infected with parainfluenza virus type 1 (PIV-1) was observed. Acetylcholine which was fluorescent labeled with DiBAC4 (3) was taken as positive control to observe the changes of membrane potential and was measured by flow cytometer. The phosphorus determination method and spectrophotometer were used to measure the Na+-K+-ATPase activity of Hep-2 cell membrane post PIV-1 infection. Hep-2 cell membrane phospholipids was labeled with fluorescent NBD-C6-HPC and membrane fluidity was measured by confocal laser scanning microscope. The results demonstated that after PIV-1 infection the Hep-2 cell membrane potential decreased significantly and the membrane was in the state of hyperpolarization, Na+-K+-ATPase activity increased and membrane fluidity decreased significantly. There was no apparent interferring effect of extracted ZG on the changes of membrane potential and Na+-K+-ATPase activity post PIV-1 infection, while membrane fluidity was improved significantly. Acetylcholine improved the state of hyperpolarization. The changes of membrane potential, Na -K+-ATPase activity and membrane fluidity might be the biomechanism of PIV-1 infectoin. The extracted ZG improved membrane fluidity to prevent from PIV-1 infection by protecting the cell membrane, which was probably the mechanism of anti-PIV-1 activity of the extracted ZG, but ZG probably had nothing to do with membrane potential and Na+-K+-ATPase activity.

  17. Expression of SNC73, a transcript of the immunoglobulin α-1 gene, in human epithelial carcinomas

    Institute of Scientific and Technical Information of China (English)

    Li-Yi Geng; Shu Zheng; Zheng-Zhen Shi; Qi Dong; Xin-Han Cai; Yan-Ming Zhang; Wei Cao; Jia-Ping Peng; Yong-Ming Fang; Lei Zheng

    2007-01-01

    AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epithelia-derived tumor cells.METHODS: Total RNAs and cell lysates were prepared from five different human epithelial cell lines derived from lung, stomach, liver, skin, and breast, respectively. RT-PCR and immunoblot analysis of these five cell lines were done. Both RT-PCR and immunochemistry were used to detect the expression of SNC73 in these cell lines. We also examined the expression of SNC73 in normal epithelial cells of colon mucosa by in situ hybridization. RT-PCR and immunoblot analysis were used to determine whether the recombination activating gene1/2 (RAG1 and RAG2) is present. The expression of three immunoglobulin transcription factors, EBF, E2A and Pax5, and the heavy chain of IgA1 and two types of light chains of immunoglobulin (κ and λ) in the aforementioned cell lines were analyzed by RT-PCR and immunochemistry, respectively. All the RT-PCR products were analyzed by sequencing.RESULTS: The results of RT-PCR and immunochemistry showed that both mRNA and protein of SNC73 were expressed in five human epithelia-derived cancer cell lines. These data were further confirmed in the normal epithelial cells of colon mucosa by in situ hybridization. Also, the heavy chain of IgA1 and κ light chain were detected in these cells, but no λ light chain was observed. Both RAG1 and RAG2 were expressed in these human epithelia-derived cancer cell lines and the sequence was identical to that expressed in pre-B and pre-T cells. In addition to RAG1 and RAG2, the mRNA in one of the immunoglobulin transcription factors, EBF, was also detected in these cell lines, and Pax5 was only expressed in SW480 cells, but no expression of E2A was observed in all the five cell lines.CONCLUSION: Immunoglobulin A1 is originally expressed and V(D)J recombination machine is also present in non-lymphoid cells, suggesting that V(D)J recombination machine mediates the

  18. Fresh and cultured human lens epithelial cells: an electrophysiological study of cell coupling and membrane properties.

    Science.gov (United States)

    Jacob, T J

    1988-09-01

    Microelectrode studies of fresh human and rabbit lens epithelia revealed stable membrane potentials [VR (human) = -36 mV; VR (rabbit) = -45 mV] and low input resistances [Ri (human) = 10 M omega; Ri (rabbit) = 20 M omega]. Coupling studies, using two voltage microelectrodes, demonstrated that the low input resistance of the fresh epithelial tissue was due to electrotonic coupling, which was found to be extremely labile and sensitive to perfusion of the apical (fibrefacing) surface of the epithelium. The intercellular coupling could be stabilized by raising the calcium concentration of the perfusate. Studies performed on confluent monolayers of cultured human lens epithelial (HLE) cells demonstrated a membrane potential (VR = -33 mV) and input resistance (Ri = 29 M omega) similar to their fresh counterparts. The intercellular coupling of these cells was found to be much more robust. Ultrastructural studies revealed that the apical junction of cultured HLE cells was less complex than that found in fresh tissue, the latter exhibiting multiple interdigitations and folds. The cultured monolayer was dissociated into single cells by a variety of methods and the membrane properties of individual cells were studied. Single cells were found to have a lower membrane potential (-20 to -25 mV) and an input resistance in the range 110-170 M omega, depending on the method of dissociation. Channel blocking and ion replacement studies revealed significant conductance pathways for potassium, sodium and chloride and a cell-attached patch clamp investigation revealed three distinct channel types. Of the two channels with inward currents at the resting potential, one, with a conductance of 25 pS, is identified as a non-selective cation channel, and the other, with a conductance of 14 pS and reversal potential of - 14 mV, is a possible candidate for a chloride channel but has yet to be characterized. A third channel with an outward current at the resting potential is identified as a

  19. Oxymatrine downregulates HPV16E7 expression and inhibits cell proliferation in laryngeal squamous cell carcinoma Hep-2 cells in vitro.

    Science.gov (United States)

    Ying, Xin-Jiang; Jin, Bin; Chen, Xin-Wei; Xie, Jin; Xu, Hong-Ming; Dong, Pin

    2015-01-01

    To investigate the possible mechanisms of oxymatrine's role in anti laryngeal squamous cell carcinoma. We examined the effects of oxymatrine on the proliferation, cell cycle phase distribution, apoptosis, and the protein and mRNA expression levels of HPV16E7 gene in laryngeal carcinoma Hep-2 cells in vitro. The HPV16E7 siRNA inhibition was also done to confirm the effect of downregulating HPV16E7 on the proliferation in Hep-2 cells. Oxymatrine significantly inhibited the growth and proliferation of Hep-2 cells in a dose-dependence and time-dependence manner. Oxymatrine blocked Hep-2 cells in G0/G1 phase, resulting in an obvious accumulation of G0/G1 phase cells while decreasing S phase cells. Oxymatrine induced apoptosis of Hep-2 cells, whose apoptotic rate amounted to about 42% after treatment with 7 mg/mL oxymatrine for 72 h. Oxymatrine also downregulated the expression of HPV16E7 gene, as determined by the western blotting and reverse transcription-polymerase chain reaction analysis. Knockdown of HPV16E7 effectively inhibited the proliferation of Hep-2 cells. Oxymatrine inhibits the proliferation and induces apoptosis of laryngeal carcinoma Hep-2 cells, which might be mediated by a significant cell cycle arrest in G0/G1 phase and downregulation of HPV16E7 gene. Oxymatrine is considered to be a likely preventive and curative candidate for laryngeal cancer.

  20. 喉癌Hep-2细胞来源的exosomes 提取方法的比较%Comparison of methods for isolating exosomes derived from laryngocarcinoma Hep-2 cells

    Institute of Scientific and Technical Information of China (English)

    梁俊毅; 吉晓滨; 刘启才; 谢景华

    2015-01-01

    目的:对分离提取喉癌Hep-2细胞来源的exosomes 2种方法进行对比,展现不同方法的优缺点,为选择分离提取包括喉癌Hep-2细胞在内的肿瘤细胞来源exosomes的方法提供参考.方法:大量培养喉癌Hep-2细胞,42℃热休克处理.收集90 ml培养上清液,先通过3/0.8 μm深层过滤小型滤芯对上清液进行预处理,去除直径较大的颗粒和杂质,再利用蔗糖密度梯度离心联合超滤离心法,将上清液浓缩提纯;收集培养上清液4 ml,依次加入Exosome Isolation Kit内试剂,通过exosomes提取专用过滤柱,收集浓缩液.用高倍透射电子显微镜对2种方法所得的exosomes浓缩液分别鉴定,作出评价.结果:2种方法均能成功地从喉癌Hep-2细胞培养上清液中分离提取出exosomes.单个高倍视野下,蔗糖密度梯度离心联合超滤离心法提取exosomes分散性较好,但密度较低,背景见杂质较多;Exosome Isolation Kit所提取exosomes排列紧密,密度较高,背景杂质较少.结论:2种方法各具特点,均是较理想的exosomes分离提取方法.利用Exosome Isolation Kit分离提取exosomes具有样本量少、提取时间短、步骤简单、产物量大等优点,为喉癌Hep-2来源exosomes的分离提取提供了较好的选择.

  1. Calpain 1 regulates TGF-β1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway

    Science.gov (United States)

    Tan, Wei-Jun; Tan, Qiu-Yue; Wang, Ting; Lian, Min; Zhang, Li; Cheng, Zhen-Shun

    2017-01-01

    Cell proliferation, transformation, and epithelial-mesenchymal transition (EMT) are key processes involved in the development of idiopathic pulmonary fibrosis (IPF). This study investigated the regulatory factors and signaling pathways that mediate EMT in the human type II alveolar epithelial A549 cell line. A549 cells were cultured in RPMI-1640 medium and allocated to the following four groups: blank control group or treated with transforming growth factor-β1 (TGF-β1), TGF-β1 + PD 150606 (a calpain 1 inhibitor), or PD 150606. We examined E-cadherin (E-cad), α-smooth muscle actin (α-SMA), and calpain 1 mRNA transcript and protein expression levels in these four groups by performing RT-PCR and western blot analyses. The results indicated that TGF-β1 treatment significantly downregulated E-cad and upregulated α-SMA expression compared with that of the blank control group (Pcells. However, TGF-β1-induced ETM was not correlated with the ERK and JNK signaling pathways. These combined results indicate that calpain 1 could regulate EMT in TGF-β1-treated A549 epithelial cells via the PI3K/Akt signaling pathway.

  2. Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin.

    Science.gov (United States)

    Lv, Xin; Song, Dong-mei; Niu, Ying-hao; Wang, Bao-shan

    2016-04-01

    It has been previously reported that cisplatin is a well-known anticancer drug being used against a wide range of malignancies including head and neck, ovarian and non-small cell lung carcinoma, and demonstrated its anticancer activity by reacting with DNA or changing cell structure, immune response, reactive oxygen species level (ROS). In this research we proved that cisplatin induced cell injuries and heme oxygenase-1 (HO-1) expression in laryngeal squamous cell cancer Hep-2 cells through ROS generation. The induction of HO-1 clearly protected Hep-2 cells from cisplatin-induced cell death and ROS reaction, and the inhibitor of HO-1 enhanced the cell death and ROS generation induced by cisplatin. Furthermore, the HO-1 expression induced by cisplatin was strongly inhibited by the knockdown of nuclear factor-erythroid-2-related factor-2 (Nrf-2), and the oxidative damages induced by cisplatin were significantly enhanced. Therefore, it may be concluded that the inhibition of HO-1 or the knockdown of Nrf-2 significantly enhanced cisplatin's anticancer effects on Hep-2 cells. In clinic, with the overexpression of HO-1 in laryngeal squamous cancer tissues, the combination of cisplatin with the inhibitor of HO-1 or Nrf-2 siRNA may act as a new method to the treatment of laryngeal squamous cancer.

  3. 喉癌 Hep -2细胞来源的 exosomes 的发现和鉴定%Discovery and isolation of exosomes derived from laryngocarcinoma Hep - 2 cells

    Institute of Scientific and Technical Information of China (English)

    吉晓滨; 梁俊毅; 刘启才; 谢景华

    2015-01-01

    Objective:To observe whether laryngocarcinoma Hep - 2 cells can secrete exosomes,and to identify exosomes morphologically. Methods:A large number of laryngocarcinoma Hep - 2 cells were cultivated,the yield of exosomes increased by hot shock,cell culture supernatant was gathered. Firstly,the culture supernatant was pretreat-ment by clarification through a 3 / 0. 8μm small filter element for deep filter to remove particles and impurities with larger diameter. Secondly,exosome isolation kit was used to isolate and extract exosomes. Cells culture supernatant 4ml was gathered,the solutions of the kit were added into the supernatant in proper sequence,then filtered by the special column,the concentrated fluid was obtained. The exosomes were observed under transmission electron microscopy. Re-sults:Exosomes could be isolated and extracted from culture supernatant of laryngocarcinoma Hep - 2 cells,and it present circular or elliptical vesicle with bilayer membrane,high density,well - distribution,and with range from 20 to 100nm of diameter. Conclusion:Exosomes can be secreted from laryngocarcinoma Hep - 2 cells was first discovered, which provide a new research to laryngocarcinoma immunotherapy.%目的:观察喉癌 Hep -2细胞可否分泌 exosomes,并从形态学角度鉴定。方法:大量培养喉癌 Hep -2细胞,热休克处理,收集培养上清。先通过3/0.8μm 深层过滤小型滤芯对上清进行预处理,去除直径较大的颗粒和杂质。采用 Exosome Isolation Kit(商品化试剂盒)收集培养上清液4ml,依次加入 Exosome Isolation Kit内试剂,通过 exosomes 提取专用过滤柱,收集浓缩液。用高倍透射电子显微镜对 exosomes 做鉴定。结果:成功从喉癌 Hep -2细胞培养上清中分离提取出 exosomes,电镜观察见 exosomes 呈圆形或椭圆形双层膜的囊泡状结构,直径约20~100nm,密度较高,分散均匀。结论:首次发现喉癌细胞自身能分泌 exosomes,为喉

  4. The Diacetyl-Exposed Human Airway Epithelial Secretome: New Insights into Flavoring-Induced Airways Disease.

    Science.gov (United States)

    Brass, David M; Gwinn, William M; Valente, Ashlee M; Kelly, Francine L; Brinkley, Christie D; Nagler, Andrew E; Moseley, M Arthur; Morgan, Daniel L; Palmer, Scott M; Foster, Matthew W

    2017-06-01

    Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.

  5. The role of human epididymis protein 4 in the diagnosis of epithelial ovarian cancer.

    Science.gov (United States)

    Jia, L-T; Zhang, Y-C; Li, J; Tian, Y; Li, J-F

    2016-03-01

    Epithelial ovarian cancer is one of the most lethal female genital tract cancers. Early diagnosis of EOC would benefit the patients a lot. Human epididymis protein 4 (HE4) has been regarded as a new powerful biomarker in diagnosis of EOC; we hope to obtain system knowledge of HE4 and understand the role of HE4 in diagnosis of epithelial ovarian cancer (EOC). We searched Pubmed, Embase, Medline, and Chinese National Knowledge Infrastructure (CNKI) for articles that included HE4's origin, characteristics, detection methods, clinical efficacy alone or combined with CA125, the risk of malignancy index, and the risk of ovarian malignancy algorithm. The diagnostic performance for the EOC and the role in the recurrence and procession in EOC were also discussed. We got 83 most related articles and found that there were significantly difference existing among the studies, such as the clinical characteristics of patients, the methodology for measuring HE4, the different cut-offs for HE4 and so on. HE4 is a promising biomarker for the early diagnosis of EOC. However, each lab should establish its own reference internal of HE4.

  6. Temporal proteomic profiling of Chlamydia trachomatis-infected HeLa-229 human cervical epithelial cells.

    Science.gov (United States)

    Tan, Grace Min Yi; Lim, Hui Jing; Yeow, Tee Cian; Movahed, Elaheh; Looi, Chung Yeng; Gupta, Rishein; Arulanandam, Bernard P; Abu Bakar, Sazaly; Sabet, Negar Shafiei; Chang, Li-Yen; Wong, Won Fen

    2016-05-01

    Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.

  7. Cytotoxicity of Different Excipients on RPMI 2650 Human Nasal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tamás Horváth

    2016-05-01

    Full Text Available The nasal route receives a great deal of attention as a non-invasive method for the systemic administration of drugs. For nasal delivery, specific formulations containing excipients are used. Because of the sensitive respiratory mucosa, not only the active ingredients, but also additives need to be tested in appropriate models for toxicity. The aim of the study was to measure the cytotoxicity of six pharmaceutical excipients, which could help to reach larger residence time, better permeability, and increased solubility dissolution rate. The following excipients were investigated on RPMI 2650 human nasal septum tumor epithelial cells: β-d-mannitol, sodium hyaluronate, α and β-cyclodextrin, polyvinyl alcohol and methylcellulose. 3-(4,5-dimethyltiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT dye conversion assay and real-time impedance analysis were used to investigate cytotoxicity. No excipient showed toxicity at 0.3% (w/v concentration or below while 1% concentration a significantly reduced metabolic activity was measured by MTT assay for methylcellulose and cyclodextrins. Using impedance measurements, only β-cyclodextrin (1% was toxic to cells. Mannitol at 1% concentration had a barrier opening effect on epithelial cells, but caused no cellular damage. Based on the results, all additives at 0.3%, sodium hyaluronate and polyvinyl alcohol at 1% concentrations can be safely used for nasal formulations.

  8. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    Full Text Available BACKGROUND: Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells that exist in multi-cellular organisms (humans follow a bimodal correlated random walk (BCRW. METHODOLOGY/PRINCIPAL FINDINGS: Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation. CONCLUSIONS/SIGNIFICANCE: Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  9. Ca(2+) signalling in human proximal tubular epithelial cells deficient for cystinosin.

    Science.gov (United States)

    Ivanova, Ekaterina A; Elmonem, Mohamed A; Bongaerts, Inge; Luyten, Tomas; Missiaen, Ludwig; van den Heuvel, Lambertus P; Levtchenko, Elena N; Bultynck, Geert

    2016-10-01

    Nephropathic cystinosis is an autosomal recessive lysosomal storage disorder caused by loss-of-function mutations in the CTNS gene coding for the lysosomal cystine transporter, cystinosin. Recent studies have demonstrated that, apart from cystine accumulation in the lysosomes, cystinosin-deficient cells, especially renal proximal tubular epithelial cells are characterized by abnormal vesicle trafficking and endocytosis, possible lysosomal dysfunction and perturbed intracellular signalling cascades. It is therefore possible that Ca(2+) signalling is disturbed in cystinosis, as it has been demonstrated for other disorders associated with lysosomal dysfunction, such as Gaucher, Niemann-Pick type C and Alzheimer's diseases. In this study we investigated ATP-induced, IP3-induced and lysosomal Ca(2+) release in human proximal tubular epithelial cells derived from control and cystinotic patients. No major dysregulation of intracellular Ca(2+) dynamics was found, although ATP-induced Ca(2+) release appeared slightly sensitized in cystinotic cells compared to control cells. Hence, these subtle changes in Ca(2+) signals elicited by agonists may contribute to the pathogenesis of the disease.

  10. Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles.

    Science.gov (United States)

    Hussien, Rajaa; Rihn, Bertrand H; Eidi, Housam; Ronzani, Carole; Joubert, Olivier; Ferrari, Luc; Vazquez, Oscar; Kaufer, Daniela; Brooks, George A

    2013-09-01

    Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1-3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis.

  11. Uptake of 12-HETE by human bronchial epithelial cells (HBEC): effects on HBEC cytokine production.

    Science.gov (United States)

    Gormand, F; Chabannes, B; Moliere, P; Perrin-Fayolle, M; Lagarde, M; Pacheco, Y

    1996-04-01

    12-HETE, the major lipoxygenase end-product of platelets and macrophages, may be released in contact of bronchial epithelium in inflammatory diseases of the lung. We have studied the outcome of 12-HETE in presence of human bronchial epithelial cells (HBEC). When HBEC were incubated with [3H]12-HETE for 30 minutes, 27.5% of total radioactivity was found in HBEC and 72.5% in supernatants. Unesterified 12-HETE accounted for 22.4% of total radioactivity, 4.5% being recovered in phospholipids, preferentially in phosphatidylcholine and phosphatidylethanolamine. No incorporation in neutral lipids was detected. 72.9% of the incubated radioactivity was recovered in un identified metabolites. As 12-HETE has been shown to modulate the expression and production of various proteins, the consequence of the 12-HETE uptake on the release of GM-CSF and IL8 by HBEC was assessed. HBEC from control subjects were cultured for 24 hours with 12-HETE (10(-9) to 10(-7)M) in the presence or absence of TNF alpha. Detectable amounts of both cytokines were released in the supernatant in basal conditions at 24hr, and TNF alpha increased significantly the release of GM-CSF. 12-HETE at 10(-7)M weakly but significantly decreased the TNF-induced release of GM-CSF from HBEC. Thus the uptake of 12-HETE could affect the epithelial cell function in some situations.

  12. E-cadherin mediates adhesion and endocytosis of Aspergillus fumigatus blastospores in human epithelial cells

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-yong; SHI Yi; ZHANG Peng-peng; ZHANG Feng; SHEN Yu-ying; SU Xin; ZHAO Bei-lei

    2012-01-01

    Background Aspergillus fumigatus (A.fumigatus) is a ubiquitous saprophytic fungus responsible for the majority of invasive mold infections in patients undergoing chemotherapy,organ transplantation or with persistent neutropenia.This study aimed to determine the role of E-cadherin for adhesion and endocytosis of A.fumigatus blastospores in the human epithelial cell line A549.Methods A.fumigatus blastospores were incubated with the total protein of A549 to investigate the binding of E-cadherin and blastospores followed by an affinity purification procedure.After establishing the adhesion model,the adhesion and endocytosis of A.fumigatus blastospores by A549 cells were evaluated by down-regulating E-cadherin of A549 cells using blocking antibody or small interfering RNA (siRNA).Results E-cadherin was adhered to the surface of A.fumigatus blastospore.Adhesion and endocytosis of the blastospores were reduced by blocking or down-regulating E-cadherin in A549 cells.Conclusions E-cadherin is a receptor for adhesion and endocytosis of A.fumigatus blastospores in epithelial cells.This may open a new approach to treat this fungal infection.

  13. Arecoline stimulated Cyr61 production in human gingival epithelial cells: inhibition by lovastatin.

    Science.gov (United States)

    Deng, Yi-Ting; Chang, Jenny Zwei-Chieng; Yeh, Cheng-Chang; Cheng, Shih-Jung; Kuo, Mark Yen-Ping

    2011-04-01

    Cyr61 is associated with growth and progression of many types of tumors and is an independent poor prognostic indicator for oral cancer patients. Areca nut (AN) chewing is the most important etiological factor in the pathogenesis of oral cancer in India and many Southeast Asian countries. Yet, the molecular mechanisms involved in the AN-induced oral cancer remain largely unknown. In this study, we show that arecoline, a main alkaloid found in AN, stimulated Cyr61 synthesis in human gingival epithelial S-G cells. Constitutive overexpression of Cyr61 protein in oral epithelial cells during AN chewing may play a role in the pathogenesis of oral cancer. ERK inhibitor PD98059, N-acetyl-L-cysteine, Rho-associated protein kinase (ROCK) selective inhibitor Y-27632 and a geranylgeranyltransferase inhibitor reduced the arecoline-stimulated levels of Cyr61 protein by ∼31%, 47%, 65% and 100%, respectively. Lovastatin also completely inhibited arecoline-induced Cyr61 synthesis and the inhibition is dose-dependent. Decreased of geranylgeranylated proteins could be the mechanism that lovastatin regulates Cyr61 synthesis and lovastatin could serve as a useful agent in controlling AN-induced oral cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

    Directory of Open Access Journals (Sweden)

    Ceri E. Stewart

    2012-01-01

    Full Text Available The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC and non-primary (Calu-3, BEAS-2B, BEAS-2B R1 bronchial epithelial cell culture systems as air-liquid interface- (ALI- differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+ and ciliated (β-Tubulin IV+ cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin and development of transepithelial electrical resistance (TEER were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.

  15. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    Science.gov (United States)

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  16. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    Science.gov (United States)

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  17. EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model?

    Directory of Open Access Journals (Sweden)

    Rossella Terragni

    Full Text Available Epidermal growth factor receptor (EGFR or HER-1 and its analog c-erbB-2 (HER-2 are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7% carcinomas were classified as intestinal-type and 9 (64.3% as diffuse-type. EGFR was overexpressed (≥ 1+ in 8 (42.1% cases and HER-2 (3+ in 11 (57.9% cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80% than in the diffuse-type (11.1%, p = 0.023. KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R. EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.

  18. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation.

    Directory of Open Access Journals (Sweden)

    Robert A Matthijsen

    Full Text Available BACKGROUND: Recently, we observed that small-intestinal ischemia and reperfusion was found to entail a rapid loss of apoptotic and necrotic cells. This study was conducted to investigate whether the observed shedding of ischemically damaged epithelial cells affects IR induced inflammation in the human small gut. METHODS AND FINDINGS: Using a newly developed IR model of the human small intestine, the inflammatory response was studied on cellular, protein and mRNA level. Thirty patients were consecutively included. Part of the jejunum was subjected to 30 minutes of ischemia and variable reperfusion periods (mean reperfusion time 120 (+/-11 minutes. Ethical approval and informed consent were obtained. Increased plasma intestinal fatty acid binding protein (I-FABP levels indicated loss in epithelial cell integrity in response to ischemia and reperfusion (p<0.001 vs healthy. HIF-1alpha gene expression doubled (p = 0.02 and C3 gene expression increased 4-fold (p = 0.01 over the course of IR. Gut barrier failure, assessed as LPS concentration in small bowel venous effluent blood, was not observed (p = 0.18. Additionally, mRNA expression of HO-1, IL-6, IL-8 did not alter. No increased expression of endothelial adhesion molecules, TNFalpha release, increased numbers of inflammatory cells (p = 0.71 or complement activation, assessed as activated C3 (p = 0.14, were detected in the reperfused tissue. CONCLUSIONS: In the human small intestine, thirty minutes of ischemia followed by up to 4 hours of reperfusion, does not seem to lead to an explicit inflammatory response. This may be explained by a unique mechanism of shedding of damaged enterocytes, reported for the first time by our group.

  19. Overexpression of Notch3 and pS6 Is Associated with Poor Prognosis in Human Ovarian Epithelial Cancer

    Directory of Open Access Journals (Sweden)

    Zhaoxia Liu

    2016-01-01

    Full Text Available Notch3 and pS6 play important roles in tumor angiogenesis. To assess the expression of Notch3 and pS6 in Chinese ovarian epithelial cancer patients, a ten-year follow-up study was performed in ovarian epithelial cancer tissues from 120 specimens of human ovarian epithelial cancer, 30 specimens from benign ovarian tumors, and 30 samples from healthy ovaries by immunohistochemistry. The results indicate that the expression of Notch3 and pS6 was higher in ovarian epithelial cancer than in normal ovary tissues and in benign ovarian tumor tissues (p0.05 but positively associated with clinical stage, pathological grading, histologic type, lymph node metastasis, and ascites (p<0.05 or p<0.01. A follow-up survey of 64 patients with ovarian epithelial cancer showed that patients with high Notch3 and pS6 expression had a shorter survival time (p<0.01, in which the clinical stage (p<0.05 and Notch3 expression (p<0.01 played important roles. In conclusion, Notch3 and pS6 are significantly related to ovarian epithelial cancer development and prognosis, and their combination represents a potential biomarker and therapeutic target in ovarian tumor angiogenesis.

  20. Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Moore Margo M

    2010-06-01

    Full Text Available Abstract Background Aspergillus fumigatus (A. fumigatus is a ubiquitous fungus which reproduces asexually by releasing abundant airborne conidia (spores, which are easily respirable. In allergic and immunocompromised individuals A. fumigatus can cause a wide spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma and invasive aspergillosis. Previous studies have demonstrated that A. fumigatus conidia are internalized by macrophages and lung epithelial cells; however the exact transcriptional responses of airway epithelial cells to conidia are currently unknown. Thus, the aim of this study was to determine the transcriptomic response of the human bronchial epithelial cell line (16HBE14o- following interaction with A. fumigatus conidia. We used fluorescence-activated cell sorting (FACS to separate 16HBE14o- cells having bound and/or internalized A. fumigatus conidia expressing green fluorescent protein from cells without spores. Total RNA was then isolated and the transcriptome of 16HBE14o- cells was evaluated using Agilent Whole Human Genome microarrays. Results Immunofluorescent staining and nystatin protection assays demonstrated that 16HBE14o- cells internalized 30-50% of bound conidia within six hrs of co-incubation. After FAC-sorting of the same cell culture to separate cells associated with conidia from those without conidia, genome-wide analysis revealed a set of 889 genes showing differential expression in cells with conidia. Specifically, these 16HBE14o- cells had increased levels of transcripts from genes associated with repair and inflammatory processes (e.g., matrix metalloproteinases, chemokines, and glutathione S-transferase. In addition, the differentially expressed genes were significantly enriched for Gene Ontology terms including: chromatin assembly, G-protein-coupled receptor binding, chemokine activity, and glutathione metabolic process (up-regulated; cell cycle phase, mitosis, and intracellular

  1. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells.

    Science.gov (United States)

    Resta-Lenert, Silvia; Barrett, Kim E

    2006-03-01

    Commensal bacteria are crucial for the development of the mucosal immune system. Probiotics are commensals with special characteristics and may protect mucosal surfaces against pathogens. Pathogens cause significant phenotypic alterations in infected epithelial cells, and probiotics reverse these deleterious responses. We hypothesized that probiotics and/or commensals may also reverse epithelial damage produced by cytokines. Human intestinal epithelial cells were exposed basolaterally to interferon (IFN)-gamma (10(3) U/mL) or tumor necrosis factor (TNF)-alpha (10 ng/mL) for up to 48 hours and assessed for ion transport, transepithelial resistance (TER), and epithelial permeability in the presence or absence of probiotics (Streptococcus thermophilus [ST] and Lactobacillus acidophilus [LA]), or the commensal, Bacteroides thetaiotaomicron (BT). Agonist-stimulated chloride secretion was inhibited by IFN-gamma, an effect prevented by ST/LA or BT. The ability of ST/LA or BT to restore Cl(-) secretion was blocked by inhibitors of p38 MAPK, ERK1, 2, and PI3K. The cystic fibrosis transmembrane conductance regulator (CFTR) and the NKCC1 cotransporter were down-regulated by IFN-gamma, and ST/LA pretreatment reversed this effect. Both TNF-alpha and IFN-gamma significantly reduced TER and increased epithelial permeability, effects prevented by ST/LA or BT. A Janus kinase (JAK) inhibitor synergistically potentiated effects of ST/LA or BT on TER and permeability, but p38, ERK1, 2, or PI3K inhibition did not. Finally, only probiotic-treated epithelial cells exposed to cytokines showed reduced activation of SOCS3 and STAT1,3. Deleterious effects of TNF-alpha and IFN-gamma on epithelial function are prevented by probiotic, and to a lesser extent, commensal pretreatment. These data extend the spectrum of effects of such bacteria on intestinal epithelial function and may justify their use in inflammatory disorders.

  2. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit.

    Science.gov (United States)

    Park, Seong-Hwan; Kim, Juil; Yu, Mira; Park, Jae-Hong; Kim, Yong Sik; Moon, Yuseok

    2016-11-18

    Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals. © 2016 by The American Society for

  3. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhang S

    2014-04-01

    Full Text Available Shiwen Zhang,1,2,* Yunlong Li,3,4,* Xiaoguang He,2 Shouan Dong,5 Yunchao Huang,6 Xiaojiang Li,1 Yuxiao Li,2 Congguo Jin,7 Yingying Zhang,8 Yuanling Wang91Department of Head and Neck, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kunming, 2Department of Head and Neck, The First Affiliated Hospital of Kunming Medical University, Kunming, 3Medical Faculty, Kunming University of Science and Technology, Kunming, 4The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 5Kunming Institute of Precious Metals, Kunming, 6Department of cardiothoracic surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kunming, 7Institute of Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kunming, 8Clinical skills training center of Kunming Medical University, Kunming, 9Department of Anesthesiology, Yan An Hospital, Kunming, Yunnan, The People's Republic of China *These authors contributed equally to this workAbstract: Gold nanorods (AuNRs have been used in plasmonic photothermal therapy (PPTT, which is thought to be more efficient and selective than conventional photothermal therapy. The efficiency and safety of PPTT can be improved by functionally modifying the gold nanorods with proteins or biomolecules. In this study, AuNRs were modified with anti-epidermal growth factor receptor (EGFR monoclonal antibody (mAb, and the apoptotic potential of EGFRmAb-AuNR was assessed in Hep-2 cells in vitro and in vivo. The EGFRmAb modification had no obvious influence on the original optical property of the AuNRs, but it significantly increased the entry of AuNRs into Hep-2 cells. EGFRmAb-AuNRs, with appropriate laser irradiation, resulted in higher Hep-2 cells apoptosis than AuNRs did alone, in vitro, and was accompanied by alteration of reactive oxygen

  4. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    Science.gov (United States)

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  5. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    Science.gov (United States)

    Bath, Chris

    2013-06-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined

  6. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    Science.gov (United States)

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  7. Effects of Helicobacter pylori and Heat Shock Protein 70 on the Proliferation of Human Gastric Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Liping Tao

    2014-01-01

    Full Text Available Infection of Helicobacter pylori (H. pylori changed the proliferation of gastric epithelial cells and decreased the expression of heat shock protein 70 (HSP70. However, the effects of H. pylori on the proliferation of gastric epithelial cells and the roles of HSP70 during the progress need further investigation. Objective. To investigate the effects of Helicobacter pylori (H. pylori and heat shock protein 70 (HSP70 on the proliferation of human gastric epithelial cells. Methods. H. pylori and a human gastric epithelial cell line (AGS were cocultured. The proliferation of AGS cells was quantitated by an MTT assay, and the expression of HSP70 in AGS cells was detected by Western blotting. HSP70 expression in AGS cells was silenced by small interfering RNA (siRNA to investigate the role of HSP70. The siRNA-treated AGS cells were cocultured with H. pylori and cell proliferation was measured by an MTT assay. Results. The proliferation of AGS cells was accelerated by coculturing with H. pylori for 4 and 8 h, but was suppressed at 24 and 48 h. HSP70 expression was decreased in AGS cells infected by H. pylori for 48 h. The proliferation in HSP70-silenced AGS cells was inhibited after coculturing with H. pylori for 24 and 48 h compared with the control group. Conclusions. Coculture of H. pylori altered the proliferation of gastric epithelial cells and decreased HSP70 expression. HSP70 knockdown supplemented the inhibitory effect of H. pylori on proliferation of epithelial cells. These results indicate that the effects of H. pylori on the proliferation of gastric epithelial cells at least partially depend on the decreased expression of HSP70 induced by the bacterium.

  8. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G;

    2004-01-01

    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  9. Expression of pRb and p16INK4 in human thymic epithelial tumors in relation to the presence of human polyomavirus 7

    OpenAIRE

    Keijzers, Marlies; Rensspiess, Dorit; Pujari, Sreedhar; Abdul-Hamid, Myrurgia A.; Hochstenbag, Monique; Dingemans, Anne-Marie; Kurz, Anna Kordelia; Haugg, Anke; Maessen, Jos G; Baets, Marc H. De; zur Hausen, Axel

    2015-01-01

    Background We have recently reported the presence of the Human polyomavirus 7 (HPyV7) in human thymic epithelial tumors as assessed by diverse molecular techniques. Here we report on the co-expression of p16, retinoblastoma protein (pRb) and phosphorylated retinoblastoma protein (phospho-Rb) in human thymic epithelial tumors in relation to HPyV7. Methods PRB, phospho-RB and p16 expression was assessed by immuno-histochemistry in 37 thymomas and 2 thymic carcinomas. 17 thymomas (46 %) and 1 th...

  10. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    Science.gov (United States)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  11. Diesel exhaust particle-induced cell death of cultured normal human bronchial epithelial cells.

    Science.gov (United States)

    Matsuo, Mitsuyoshi; Shimada, Toshio; Uenishi, Rie; Sasaki, Naoko; Sagai, Masaru

    2003-04-01

    We investigated the effect of diesel exhaust particles (DEPs) on normal human bronchial epithelial (NHBE) cells. Inclusion of DEPs in culture media was lethal to NHBE cells. NHBE cells are more susceptible to DEPs than other normal human lung cells, normal human pulmonary artery endothelial cells and normal human embryonic lung fibroblasts. DEP-induced cell death was mainly due to necrosis. Using the fluorescence probes diacetoxymethyl 6-carboxy-3',6'-diacetoxy-2',7'-dichloro-3',6'-dideoxydihydrofluorescinate and 4,5-diaminofluorescein diacetate, it was observed that hydrogen peroxide and nitrogen monoxide, respectively, were generated within DEP-exposed NHBE cells. DEP cytotoxicity increased or decreased with an increase or decrease in the cellular level of reduced glutathione (GSH) by treatment with L-buthionine-(R,S)-sulfoximine or ethyl reduced glutathionate, respectively. In addition, DEPs themselves decreased the cellular level of GSH in a dose-dependent manner. Upon exposure of NHBE cells to high concentrations of DEPs, their cellular GSH was depleted almost throughout. Further, the following agents decreased DEP cytotoxicity: 1) antioxidants 2,2,5,7,8-pentamethylchroman-6-ol, ebselen, and N,N'-bis(salicylidene)ethylenediaminomanganese(II) dihydrate (EUK-8); 2) iron ion-chelating agents disodium bathophenanthrolinedisulfonate and desferrioxamine mesylate; 3) nitrogen monoxide synthase inhibitors N(G)-nitro-L-arginine methyl ester hydrochloride and N(G)-methyl-L-arginine acetate salt; and 4) an endocytosis inhibitor quinacrine. On the basis of these observations, the mechanism of DEP cytotoxicity toward NHBE cells is discussed.

  12. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    Science.gov (United States)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  13. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  14. HER2 induces expression of leptin in human breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Aree Moon

    2012-12-01

    Full Text Available A close association between the obesity hormone leptin andbreast cancer progression has been suggested. The presentstudy investigated the molecular mechanism for enhancedleptin expression in breast cancer cells and its functionalsignificance in breast cancer aggressiveness. We examinedwhether leptin expression level is affected by the oncoproteinhuman epidermal growth factor receptor2 (HER2, which isoverexpressed in ∼30% of breast tumors. Here, we report, forthe first time, that HER2 induces transcriptional activation ofleptin in MCF10A human breast epithelial cells. We alsoshowed that p38 mitogen-activated protein kinase signalingwas involved in leptin expression induced by HER2. Weshowed a crucial role of leptin in the invasiveness ofHER2-MCF10A cells using an siRNA molecule targeting leptin.Taken together, the results indicate a molecular link betweenHER2 and leptin, providing supporting evidence that leptinrepresents a target for breast cancer therapy.

  15. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  16. The migration of human lens epithelial cells induced by UV-irradiation in vitro

    Institute of Scientific and Technical Information of China (English)

    Jin Yao; Guoxing Yuan; Yuan Liu; Yi Shen; Qin Jiang

    2008-01-01

    Objective: Ultraviolet (UV) radiation is one of the important cataract risk factors. However, the pathogenesis is still poorly understood.The migration of human lens epithelial cells(HLECs) plays a crucial role in the remodeling of lens capsule and cataract formation. The purpose of this study is to investigate the mechanism of UV inducing cataractogenesis. Methods:The toxicity of UV-irradiation on HLECs was assessed by Methyl thiazolyl tetrazolium(MTT) assay. The activity of matrix metalloproteinase-2(MMP-2) was observed by Gelatin zymography. The migration of HLECs was examined by Cell Track Motility. Results:UV-irradiation does great harm to HLECs, and may induce apoptosis in the cells when UV higher than 15 mj/cm2. UV significantly increased MMP-2 activity in a timedependent manner. In addition, the irradiation could induce the migration of HLECs. Conclusion:UV-irradiation could induce the migration of HLECs by increasing the activity of MMP-2.

  17. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Science.gov (United States)

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  18. The Impact of Epithelial-Stromal Interactions on Human Breast Tumor Heterogeneity

    Science.gov (United States)

    2015-10-01

    Mitochondria   organelle   transplantation:  introduction  of  normal  epithelial  mitochondria  into human cancer cells inhibits proliferation and...patients  with  similar   gene  expression  profiles  that  cluster  closely  together.    However,  due  to  the  complexity of the gene expression...chemotherapeutic  agents  and  that  uptake  of  functional  mitochondria   by  cancer  cells  increases  drug  sensitivity  [15].    In addition, mitochondrial

  19. Emerging of fractal geometry on surface of human cervical epithelial cells during progression towards cancer

    Science.gov (United States)

    Dokukin, M. E.; Guz, N. V.; Woodworth, C.D.; Sokolov, I.

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers