WorldWideScience

Sample records for human hela cells

  1. Observations on the expression of human papillomavirus major capsid protein in HeLa cells.

    Science.gov (United States)

    Xiao, Chang-Yi; Fu, Bing-Bing; Li, Zhi-Ying; Mushtaq, Gohar; Kamal, Mohammad Amjad; Li, Jia-Hua; Tang, Gui-Cheng; Xiao, Shuo-Shuang

    2015-01-01

    The goal of this study was to identify the nature of the inclusion bodies that have been found in HeLa cells (cervical cancer immortal cell line) by electron microscope and to determine whether the major capsid protein (L1) of human papillomavirus (HPV) can be expressed in HPV-positive uterine cervix cancer cells. HPV L1 protein expression in HeLa cells was detected with anti-HPV L1 multivalent mice monoclonal antibody and rabbit polyclonal anti-HPV L1 antibody by ELISA, light microscope immunohistochemistry, electron microscope immunocytochemistry and Western blotting assays. Reverse transcriptional PCR (RT-PCR) was performed to detect the transcription of L1 mRNA in HeLa cells. The immortalized human keratinocyte HeCat was used as the negative control. HPV L1 proteins reacted positively in the lysate of HeLa cells by ELISA assays. HRP labeled light microscope immunohistochemistry assay showed that there was a strong HPV L1 positive reaction in HeLa cells. Under the electron microscope, irregular shaped inclusion bodies, assembled by many small and uniform granules, had been observed in the cytoplasm of some HeLa cells. These granules could be labeled by the colloidal gold carried by HPV L1 antibody. The Western blotting assay showed that there was a L1 reaction strap at 80-85 kDa in the HeLa cell lysates, hence demonstrating the existence of HPV18 L1 in HeLa cells. RT-PCR assay showed that the L1 mRNA was transcribed in HeLa cells. The inclusion bodies found in the cytoplasm of HeLa cells are composed of HPV18 L1 protein. Since HeLa cell line is a type of cervical cancer cells, this implies that HeLa cells have the ability to express HPV L1 proteins.

  2. Radiation sensitization by dihydroartemisinin on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Chen Xialin; Cao Jianping; Ji Rong; Zhu Wei; Liu Yang; Gong Xiaomei; Tang Yan; Pan Chunyan; Fan Saijun

    2009-01-01

    Objective: To investigate the radiosensitizing effects of dihydroartemisinin (DHA) on human HeLa cells of cervical cancer irradiated by X rays. Methods: Cell growth kinetics was determined using MTF assay. Cell survival was analyzed by elonogenic assay. The change of cell cycle and apeptosis was measured by flow cytometry. Results: Dihydroartemisinin inhibited the growth of HeLa cells of human cervical cancer and showed a dose-dependent and time-dependent manner. Dihydroartemisinin (20 μmol/L) showed the radiosensitizing effects on HeLa cells, and the sensitizing enhancement ratio (SER) was 1.47. Dihydroartemisinin abrogated radiation-induced G 2 arrest of the tested HeLa cells, the G 2 ratio of medicine + radiation group dechned from 73.58% to 48.31%. Dihydroartemisinin enhanced the apoptosis of HeLa cells by X-irradiation, the apoptosis rates of medicine + radiation group significantly increased from 29.46%, 48.04%, 70.21% to 45.79%, 66.36% and 79.58%, respectively for 2, 4 and 6 Gy. Conclusions: Dihydroartemisinin could increase the radiosensitivity of HeLa cells of human cervical cancer. Abrogation of radiation-induced C 2 arrest could be part of the mechanism. (authors)

  3. Effect of quercetin on radiosensitivity of human uterine cervix cancer HeLa cells

    International Nuclear Information System (INIS)

    Liang Xiaofang; Hong Chengjiao; Zhang Baoguo

    2009-01-01

    In order to investigate the effects of Quercetin on radiosensitivity of human Uterine Cervix Cancer HeLa cells, MTT assay and clonogenic assay were performed to evaluate the cytotoxicity of Quercetin on the cells. Clonogenic assay was used to observe its effects on the radiosensitivity of the cells. MTT result shows that the inhibition of Quercetin on the cells is in the dose-dependent and time-dependent. And the clonogenic assay result shows that the effect of Quercetin on HeLa cells can be divided into two parts, one for the inhibition of HeLa cells and another for the induction of HeLa cell death. The other clonogenic assay result also shows Quercetin can decrease clonogenic survival rate of HeLa cells exposed to X rays. The study shows Quercetin might enhance the radiosensitivity of the HeLa cell line. And it may provide a useful evaluation to combination of ionizing radiation and Quercetin for cancer patients. (authors)

  4. Radiation sensitization by CAPE on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Wang Xiaoqiang; Cao Jianping; Fan Saijun; Zun Wei; Huang Xiaofei; Liu Yang; Chen Xialin; Gong Xiaomei; Peng Xiaomei; Zeng Jing

    2009-01-01

    Objective: To study the radiosensitizing effect of caffic acid phenethyl ester (CAPE) on human cervical cancer HeLa cells. Methods: MTT assay was used to measure the relation between the inhibition effect and CAPE concentrations by CAPE with different concentrations on HeLa cells for 24 hours. HeLa cells were divided into the control and experimental groups, both of which were given 0, 2, 4, 6 and 8 Gy of 60Co γ-irradiation, respectively. The cell clones were counted. Meanwhile HeLa cells were divided into the control, CAPE, irradiation and combination groups. Flow cytometric analysis was adopted to detect the changes of cell cycle distribution induced by CAPE. Results: The inhibition rate of CAPE acting on Hela cells increased with concentrations (F=126. 49 ∼ 3654.88, P 0 ) (1.45 and 1.82 Gy) and the quasi-threshold dose (D q ) (1.89 and 3.21 Gy) of HeLa cells in experimental group decreased comparing with control group, SER was 1.26. Compared with the sole irradiation group, cells in G 2 /M phase of the CAPE group and the sole irradiation group increased (P 2 /M arrest and may be related to the inhibition of the sub-lethal damage repair. (authors)

  5. Study of radiation sensitization of artesunate on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Ji Rong; Cao Jianping; Chen Xialin; Zhu Wei; Jiang Qing; Pan Chunyan; Zhou Yuanyuan; Feng Yang; Peng Xiaomei; Liu Yang; Fan Saijun

    2010-01-01

    Objective: To investigate the radiosensitizing effects of artesunate on human HeLa cells of cervical cancer in vitro. Methods: Hela cells irradiated with 60 Co γ-rays. The dose rate was 0.635 Gy/min and the radiation dose was 0, 1, 2, 4, 6 Gy, respectively. The anti-proliferation activities of artesunate on HeLa cells were evaluated with MTT assay, to determine the most appropriate drug concentration. The effect of radiosensitivity was observed by using clonogenic assay. The single-hit multi-target model was used to plot the HeLa cell's dose-survival curve, to calculate mean lethal dose, quasi-threshold dose and sensitization enhancement rate, and to evaluate its radiosensitization effect. The apoptosis was analyzed with flow cytometry (FCM) to further test the radiation sensitization of artesunate on HeLa cells. Results: The inhibition of artesunate on HeLa cells increased with concentration. In radiation group, the cell cloning efficiency were 91.67%, 82.02%, 58.06%, 25.01%, respectively, and in artesunate (2.0 μmol/L) + radiation group, the cell cloning efficiency were 74.93%, 60.53%, 22.38%, 5.05%. In radiation group and artesunate (2.0 μmol/L) + radiation group, the mean lethal dose (D 0 ) was 2.95 and 2.07 Gy, respectively, while the qusai-threshold dose (D q ) were 2.01 and 1.24 Gy, respectively, and SER was 1.43. Compared with 2 and 6 Gy radiation group, the apoptosis rate of drug + radiation group increased from 12.26%, 40.08% to 22.71%, 59.92. Conclusions: The inhibiting effect of artesunate on HeLa cells is concentration-dependent. Artesunate has radiosensitizing effect on HeLa cells in vitro. (authors)

  6. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  7. Je-Chun-Jun induced apoptosis of human cervical carcinoma HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Han-jung CHAE; Kyung-mi PARK; Geun-youn LEE; Gi-seup JEONG; Hyung-rae PARK; Hyung-min KIM; Soo-wan CHAE; Shim-keun YOO; Hyung-ryong KIM

    2004-01-01

    AIM: To study the mechanism of Je-Chun-Jun (JCJ)-inducing the apoptosis of the human cervical carcinoma,HeLa cells. METHODS: The cell viability was assessed using MTT assay. The optical density was measured at 570 nm. The caspase activity was measured using 50 mmol/L of fluorogenic substrate, AC-DEVD-AMC (caspase3), AC-VEID-AMC (caspase-8) or AC-LEHD-AFC (caspase-9). To confirm the expression of proteins, Western blotting was performed. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of JCJ. For the cell cycle analysis, HeLa cells were incubated with Propidium iodide (PI) solution. Fluorescence intensity of cell cycle was measured using flow cytometry system. RESULTS:The loss of viability occurred following the exposure of 10 g/L JCJ. Cells treated with 10 g/L JCJ for 3 d exhibited the apoptotic morphology (brightly blue-fluorescent condensed nuclei by Hoechst 33258-staining) and the reduction of cell volume. Cells incubated with JCJ for 48 h were arrested at the G1 phase of cell cycle and their G1 checkpoint related gene products such as cyclin D1 were transiently decreased. We showed that JCJ induced the p38 MAPK activation in HeLa cells. The p38 MAPK inhibitor, SB203580 protected Hela cells from the JCJ-induced death as well as intervened the JCJ-induced accumulation of cells at the G1 phase. In contrast, MEK1 (-ERK upstream) inhibitor, PD98059 had no effect on HeLa cells. CONCLUSION: JCJ induced cell cycle arrest and apoptosis of HeLa cells through p38 MAPK pathway.

  8. [Cloning of human CD45 gene and its expression in Hela cells].

    Science.gov (United States)

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  9. PHA-induced cytotoxicity of human lymphocytes against adherent hela-cells

    NARCIS (Netherlands)

    Huges-Law, G.; de Gast, G. C.; The, T. Hauw

    The conditions for a phytohaemagglutinin(PHA)-induced cytotoxicity test of human peripheral blood lymphocytes were investigated. [3H]thymidine prelabelled HeLa cells were used as target cells. Stimulation with 10 μl PHA/ml during 24 h gave the best measure of lymphocyte cytotoxic capacity.

  10. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  11. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    Science.gov (United States)

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P Hela cells in a dose-dependent manner after 72 h of treatment (P Hela cells in vitro.

  12. [miR-25 promotes cell proliferation by targeting RECK in human cervical carcinoma HeLa cells].

    Science.gov (United States)

    Qiu, Gang; Fang, Baoshuan; Xin, Guohong; Wei, Qiang; Yuan, Xiaoye; Wu, Dayong

    2015-01-01

    To investigate the effect of miR-25 on the proliferation of human cervical carcinoma HeLa cells and its association with reversion-inducing cysteine-rich protein with Kazal motifs (RECK). The recombinant plasmids of pcDNATM6.2-GW-pre-miR-25, pmirGLO-RECK-WT, pmirGLO-RECK-MT and anti-miR-25 were constructed, and their transfection efficiencies into HeLa cells were identified by real-time quantitative PCR (qRT-PCR). The potential proliferation-stimulating function of miR-25 was analyzed by MTT assay in HeLa cells. Furthermore, the target effect of miR-25 on the RECK was determined by dual-luciferase reporter assay system, qRT-PCR and Western blotting. Sequence analysis demonstrated that the recombinant plasmids of pcDNATM6.2-GW-pre-miR-25 and pmirGLO-RECK-WT, pmirGLO-RECK-MT were successfully constructed, and qRT-PCR revealed that the transfection efficiencies of pre-miR-25 and anti-miR-25 were desirable in HeLa cells. MTT assay showed that miR-25 over-expression promoted the proliferation of HeLa cells. In addition, the luciferase activity was significantly reduced in HeLa cells cotransfected with pre-miR-25 and RECK-WT. The qRT-PCR and Western blotting indicated that the expression level of RECK was up-regulated in HeLa cells transfected with anti-miR-25 at the transcriptional and posttranscriptional levels. miR-25 could promote cell proliferation by targeting RECK in HeLa cells.

  13. Identification of CELF1 RNA targets by CLIP-seq in human HeLa cells

    Directory of Open Access Journals (Sweden)

    Olivier Le Tonquèze

    2016-06-01

    Full Text Available The specific interactions between RNA-binding proteins and their target RNAs are an essential level to control gene expression. By combining ultra-violet cross-linking and immunoprecipitation (CLIP and massive SoliD sequencing we identified the RNAs bound by the RNA-binding protein CELF1, in human HeLa cells. The CELF1 binding sites deduced from the sequence data allow characterizing specific features of CELF1-RNA association. We present therefore the first map of CELF1 binding sites in human cells.

  14. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    International Nuclear Information System (INIS)

    Sun, Bin; Cai, Yingyue; Li, Yongshu; Li, Jingjing; Liu, Kaiyu; Li, Yi; Yang, Yongbo

    2013-01-01

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization

  15. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bin; Cai, Yingyue; Li, Yongshu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Jingjing [College of Life Science, Hubei Normal University, Huangshi 435002, Hubei (China); Liu, Kaiyu [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Li, Yi, E-mail: johnli2668@hotmail.com [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China); Bioengineering Department, Wuhan Bioengineering Institute, Wuhan 430415, Hubei (China); Yang, Yongbo, E-mail: yongboyang@mail.ccnu.edu.cn [College of Life Science, Central China Normal University, Wuhan 430079, Hubei (China)

    2013-05-25

    Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis. - Highlights: ► NP1 protein of HBoV1 induced apoptosis in Hela cells was first reported. ► NP1 induced-apoptosis followed the cell cycle arrest at G2/M phase. ► The NP1 induced-apoptosis was mediated by mitochondrion apoptotic pathway. ► N terminal of NP1 was critical for apoptosis induction and nuclear localization.

  16. Spontaneous and radiation induced cell death in HeLa S3 human carcinoma

    International Nuclear Information System (INIS)

    Zaric, B.; Milosavljevic, B.; Radojcic, M.

    2001-01-01

    Radiation biologists have classified radiation-induced cell death based on cell proliferative capacity to either mitotic or interphase death. Cytologists have revealed two morphologically and biochemically diverse forms of cell death, apoptosis and necrosis. While the knowledge of the former is already well exploited by radiologists, cell susceptibility to apoptosis and necrosis is still under investigation. We studied characteristics of spontaneous cell death, and dose dependence and time course of radiation-induced cell death of human uterine cervix epitheloid carcinoma HeLaS 3 in culture. Cells were irradiated with 2-40 Gy of γ-rays. The effect on growth, viability, morphology and genomic DNA structure were followed 24-72 h after irradiation. Cell viability was evaluated by trypan-blue exclusion assay and cell morphology by in situ DNA staining with propidium iodide. Cell genomic DNA fragmentation pattern was determined by electrophoresis on 2% agarose gels. At all cell densities 25-35% cells were PI positive and their DNA was fragmented to a high molecular size (≥20 kbp), but the internucleosomal ladder was not observed. A significant decrease in viability to 33% was observed 72 h post 40 Gy irradiation. It corresponded to 55% of PI positive cells. A smear of smaller DNA fragments (0.1-1 kbp), 24 h after 10-20 Gy irradiation was considered as proof that the dominant form of radiation-induced cell death was necrosis. It was concluded that the dominant form of radiation-induced cell death in HeLaS 3 population was necrosis and the radiation dose which caused 50% of cell death after 72 h (termed ND 50 ) was between 30-40 Gy. (author)

  17. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC50 of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose polymerase (PARP cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  18. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis Via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells.

    Science.gov (United States)

    Xu, Weili; Mi, Yaqing; He, Pan; He, Shenghua; Niu, Lingling

    2017-08-04

    γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC 50 ) of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA) and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose) polymerase (PARP) cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  19. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells.

    Science.gov (United States)

    Feng, Yi; Wang, Yonghua; Jiang, Chengrui; Fang, Zishui; Zhang, Zhiqiang; Lin, Xiaoying; Sun, Liwei; Jiang, Weiying

    2017-07-15

    Nicotinamide participates in energy metabolism and influences cellular redox status and modulates multiple pathways related with both cellular survival and death. Recent studies have shown that it induced proliferation inhibition and apoptosis in many cancer cells. However, little is known about the effects of nicotinamide on human cervical cancer cells. We aimed to evaluate the effects of the indicated concentrations nicotinamide on cell proliferation, apoptosis and redox-related parameters in HeLa cells and investigated the apoptotic mechanism. After the treatment of the indicated concentrations nicotinamide, HeLa cell proliferation was evaluated by the CCK-8 assay and the production of ROS (reactive oxygen species) was measured using 2',7'-Dichlorofluorescin diacetate. The apoptotic effect was confirmed by observing the cellular and nuclear morphologies with fluorescence microscope and apoptotic rate of HeLa cell apoptosis was measured by flow cytometry using Annexin-V method. Moreover, we examined the mitochondrial membrane potential by JC-1 method and measured the expression of apoptosis related genes using qRT-PCR and immunoblotting. Nicotinamide restrained the HeLa cell proliferation and significantly increased the accumulation of ROS and depletion of GSH at relatively high concentrations. Furthermore, nicotinamide promoted HeLa cell apoptosis via the intrinsic mitochondrial apoptotic pathway. Our study revealed that nicotinamide induced the apoptosis through oxidative stress and intrinsic mitochondrial apoptotic pathways in HeLa cell. The results emerge that nicotinamide may be an inexpensive, safe and promising therapeutic agent or a neoadjuvant chemotherapy for cervical cancer patients, as well useful to find new drugs for cervical cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro.

    Science.gov (United States)

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-05-01

    Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS: Phosphate buffered saline, DMEM: Dulbecco's modified Eagle medium.

  1. A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells.

    Science.gov (United States)

    Ya, Guowei

    2017-10-01

    In this study, a homogeneous polysaccharide (LEP1) with an average molecular weight of 53kDa was successfully purified from the fruiting bodies of Lentinus edodes and its anticancer efficacy on human cervical carcinoma HeLa cells in vitro and associated possible molecular mechanism were also evaluated. MTT assay showed that LEP1 exhibited a dose-dependent inhibitory effect on the proliferation of HeLa cells and caused apoptotic death. Our present findings provided the first evidence that LEP1 induced the apoptosis of HeLa cells via a mitochondria dependent pathway, as indicated by an increase in Bax/Bcl-2 ratio, a loss of mitochondrial membrane potential (Δym), the release of cytochrome c from the mitochondria to the cytosol, activation of caspase-9 and caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) in HeLa cells. These combined results unequivocally indicated that the involvement of mitochondria-mediated signaling pathway in LEP1-induced apoptosis and strongly provided experimental evidence for the use of LEP1 as a potential therapeutic agent in the prevention and treatment of human cervical carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human cytosolic thymidine kinase: purification and physical characterization of the enzyme from HeLa cells

    International Nuclear Information System (INIS)

    Sherley, J.L.; Kelly, T.J.

    1988-01-01

    The mammalian cytosolic thymidine kinase is one of a number of enzymes involved in DNA replication whose activities increase dramatically during S phase of the cell cycle. As a first step in defining the mechanisms that control the S phase induction of thymidine kinase activity, the authors have purified the human enzyme from HeLa cells and raised a specific immune serum against the purified protein. The enzyme was isolated from cells arrested in S phase by treatment with methotrexate and purified to near homogeneity by ion-exchange and affinity chromatography. Stabilization of the purified enzyme was achieved by the addition of digitonin. An electrophoretic R/sub m/ of 0.2 in nondenaturing gels characterizes the purified enzyme activity as cytosolic thymidine kinase. The enzyme has a Stoke's radius of 40 A determined by gel filtration and a sedimentation coefficient of 5.5 S determined by glycerol gradient sedimentation. Based on these hydrodynamic values, a native molecular weight of 96,000 was calculated for the purified enzyme. When electrophoresed in denaturing sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, the most purified enzyme fraction was found to contain one predominant polypeptide of M/sub r/ = 24,000. Several lines of evidence indicate that this polypeptide is responsible for thymidine kinase enzymatic activity

  3. Methanolic Extracts from Brown Seaweeds Dictyota cilliolata and Dictyota menstrualis Induce Apoptosis in Human Cervical Adenocarcinoma HeLa Cells

    Directory of Open Access Journals (Sweden)

    Dayanne Lopes Gomes

    2015-04-01

    Full Text Available Carcinoma of the uterine cervix is the second most common female tumor worldwide, surpassed only by breast cancer. Natural products from seaweeds evidencing apoptotic activity have attracted a great deal of attention as new leads for alternative and complementary preventive or therapeutic anticancer agents. Here, methanol extracts from 13 species of tropical seaweeds (Rhodophytas, Phaeophyta and Chlorophyta collected from the Northeast of Brazil were assessed as apoptosis-inducing agents on human cervical adenocarcinoma (HeLa. All extracts showed different levels of cytotoxicity against HeLa cells; the most potent were obtained from the brown alga Dictyota cilliolata (MEDC and Dictyota menstrualis (MEDM. In addition, MEDC and MEDM also inhibits SiHa (cervix carcinoma cell proliferation. Studies with these two extracts using flow cytometry and fluorescence microscopy showed that HeLa cells exposed to MEDM and MEDC exhibit morphological and biochemical changes that characterize apoptosis as shown by loss of cell viability, chromatin condensation, phosphatidylserine externalization, and sub-G1 cell cycle phase accumulation, also MEDC induces cell cycle arrest in cell cycle phase S. Moreover, the activation of caspases 3 and 9 by these extracts suggests a mitochondria-dependent apoptosis route. However, other routes cannot be ruled out. Together, these results point out the methanol extracts of the brown algae D. mentrualis and D. cilliolata as potential sources of molecules with antitumor activity.

  4. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells.

    Science.gov (United States)

    Jamsheena, Vellekkatt; Shilpa, Ganesan; Saranya, Jayaram; Harry, Nissy Ann; Lankalapalli, Ravi Shankar; Priya, Sulochana

    2016-03-05

    Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of human mesenchymal stem cells on the growth of HepG2 and Hela cells.

    Science.gov (United States)

    Long, Xiaohui; Matsumoto, Rena; Yang, Pengyuan; Uemura, Toshimasa

    2013-01-01

    Human mesenchymal stem cells (hMSCs) accumulate at carcinomas and have a great impact on cancer cell's behavior. Here we demonstrated that hMSCs could display both the promotional and inhibitive effects on growth of HepG2 and Hela cells by using the conditioned media, indirect co-culture, and cell-to-cell co-culture. Cell growth was increased following the addition of lower proportion of hMSCs while decreased by treatment of higher proportion of hMSCs. We also established a novel noninvasive label way by using internalizing quantum dots (i-QDs) for study of cell-cell contact in the co-culture, which was effective and sensitive for both tracking and distinguishing different cells population without the disturbance of cells. Furthermore, we investigated the role of hMSCs in regulation of cell growth and showed that mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways were involved in hMSC-mediated cell inhibition and proliferation. Our findings suggested that hMSCs regulated cancer cell function by providing a suitable environment, and the discovery from the study would provide some clues for development of effective strategy for hMSC-based cancer therapies.

  6. Cytotoxic activity of proteins isolated from extracts of Corydalis cava tubers in human cervical carcinoma HeLa cells

    Directory of Open Access Journals (Sweden)

    Balcerkiewicz Stanislaw

    2010-12-01

    Full Text Available Abstract Background Corydalis cava Schweigg. & Koerte, the plant of numerous pharmacological activities, together with the studied earlier by our group Chelidonium majus L. (Greater Celandine, belong to the family Papaveraceae. The plant grows in Central and South Europe and produces the sizeable subterraneous tubers, empty inside, which are extremely resistant to various pathogen attacks. The Corydalis sp. tubers are a rich source of many biologically active substances, with the extensive use in European and Asian folk medicine. They have analgetic, sedating, narcotic, anti-inflammatory, anti-allergic and anti-tumour activities. On the other hand, there is no information about possible biological activities of proteins contained in Corydalis cava tubers. Methods Nucleolytic proteins were isolated from the tubers of C. cava by separation on a heparin column and tested for DNase activity. Protein fractions showing nucleolytic activity were tested for cytotoxic activity in human cervical carcinoma HeLa cells. Cultures of HeLa cells were conducted in the presence of three protein concentrations: 42, 83 and 167 ng/ml during 48 h. Viability of cell cultures was appraised using XTT colorimetric test. Protein fractions were separated and protein bands were excised and sent for identification by mass spectrometry (LC-ESI-MS/MS. Results The studied protein fractions showed an inhibiting effect on mitochondrial activity of HeLa cells, depending on the administered dose of proteins. The most pronounced effect was obtained with the highest concentration of the protein (167 ng/ml - 43.45 ± 3% mitochondrial activity of HeLa cells were inhibited. Mass spectrometry results for the proteins of applied fractions showed that they contained plant defense- and pathogenesis-related (PR proteins. Conclusions The cytotoxic effect of studied proteins toward HeLa cell line cells has been evident and dependent on increasing dose of the protein. The present study, most

  7. Study on the effect of artesunate combined with irradiation on DNA damage of HeLa and Siha cells of human cervical cancer

    International Nuclear Information System (INIS)

    Zhou Yuanyuan; Feng Yang; Zhu Wei; Ni Qianying; Geng Chong; Chen Guanglie; Luo Judong; Fan Sanjun; Cao Jianping; Zhang Xuguang

    2011-01-01

    In order to investigate the effect of artesunate combined with irradiation on DNA damage of HeLa and Siha cells of human cervical cancer, HeLa and Siha cells were cultured in vitro and exposed to different concentration of artesunate for 24 h and MTT assay was used to observe the inhibitory effect of different concentration of artesunate on the proliferation of HeLa and Siha cells. The cells were divided into 2 groups as the irradiated group and the union treatment group. Here it was set up four absorbed doses of 60 Co γ-irradiation in each group with 0, 2, 4 and 6 Gy, and the DNA damage were detected by single cell gel electrophoresis assay. MTT analysis showed that the inhibition of artesunate on HeLa and Siha cells of cervical cancer was in concentration-dependent manners. Single cell gel electrophoresis showed that the DNA damage of HeLa cells treated with artesunate was more serious than that treated only with irradiation (P<0.05), but had no such effect on Siha cells. Artesunate can increase the radio-sensitivity of HeLa cells cervical cancer with p53 mutant, but has no such effect on wide type p53 cells. (authors)

  8. [miR-497 suppresses proliferation of human cervical carcinoma HeLa cells by targeting cyclin E1].

    Science.gov (United States)

    Han, Jiming; Huo, Manpeng; Mu, Mingtao; Liu, Junjun; Zhang, Jing

    2014-06-01

    To evaluate the effect of miR-497 on proliferation of human cervical carcinoma HeLa cells and target relationship between miR-497 and cyclin E1 (CCNE1). Pre-miR-497 sequences were synthesized and cloned into pcDNATM6.2-GW to construct recombinant plasmid pcDNATM6.2-GW-pre-miR-497 and identified by real-time quantitative PCR (qRT-PCR). In addition, sequences of the wild-type CCNE1 (WT-CCNE1) and mutant CCNE1 (MT-CCNE1) were respectively cloned into pmirGLO vectors. MTT assay was used to explore the impact of miR-497 on the proliferation of HeLa cells. Furthermore, the target effect of miR-497 on the CCNE1 was identified by dual-luciferase reporter assay system, qRT-PCR and Western blotting. The recombinant plasmids pcDNATM6.2-GW-pre-miR-497 and pmirGLO-WT-CCNE1, pmirGLO-MT-CCNE1 were successfully constructed, and the miR-497 expression level in HeLa cells transfected with pre-miR-497 was significantly higher than that in the neg-miR group (PHeLa cells (PHeLa cells with pre-miR-497 transfection (PHeLa cells transfected with pre-miR-497 (PHeLa cells could suppress cell proliferation by targeting CCNE1.

  9. Demethoxycurcumin Suppresses Migration and Invasion of Human Cervical Cancer HeLa Cells via Inhibition of NF-κB Pathways.

    Science.gov (United States)

    Lin, Chin-Chung; Kuo, Chao-Lin; Huang, Yi-Ping; Chen, Cheng-Yen; Hsu, Ming-Jie; Chu, Yung Lin; Chueh, Fu-Shin; Chung, Jing-Gung

    2018-05-01

    Demethoxycurcumin (DMC), one of the curcuminoids present in turmeric, has been shown to induce cell death in many human cancer cell lines, however, there has not been any investigation on whether DMC inhibits metastatic activity in human cervical cancer cells in vitro. In the present study, DMC at 2.5-15 μM decreased cell number, thus, we used IC 20 (7.5 μM) for further investigation of its anti-metastatic activity in human cervical cancer HeLa cells. The wound healing, migration, invasion, zymography, and western blotting assays were used to investigate the effects of DMC on HeLa cells. The wound healing assay was used to show that DMC suppressed cell movement of HeLa cells. Furthermore, the trans-well chamber assay was used to show that DMC suppressed HeLa cell migration and invasion. Gelatin zymography assay did not show any significant effects of DMC on the gelatinolytic activity (MMP-2 and -9) in conditioned media of HeLa cells treated by DMC. Western blotting showed that DMC significantly reduced protein levels of GRB2, MMP-2, ERK1/2, N-cadherin and Ras but increased the levels of E-cadherin and NF-κB in HeLa cells. Confocal laser microscopy indicated that DMC increased NF-κB in HeLa cells confirming the results from Western blotting. DMC may be used as a novel anti-metastatic agent for the treatment of human cervical cancer in the future. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Nucleotide sequences of cDNAs for human papillomavirus type 18 transcripts in HeLa cells

    International Nuclear Information System (INIS)

    Inagaki, Yutaka; Tsunokawa, Youko; Takebe, Naoko; Terada, Masaaki; Sugimura, Takashi; Nawa, Hiroyuki; Nakanishi, Shigetada

    1988-01-01

    HeLa cells expressed 3.4- and 1.6-kilobase (kb) transcripts of the integrated human papillomavirus (HPV) type 18 genome. Two types of cDNA clones representing each size of HPV type 18 transcript were isolated. Sequence analysis of these two types of cDNA clones revealed that the 3.4-kb transcript contained E6, E7, the 5' portion of E1, and human sequence and that the 1.6-kb transcript contained spliced and frameshifted E6 (E6 * ), E7, and human sequence. There was a common human sequence containing a poly(A) addition signal in the 3' end portions of both transcripts, indicating that they were transcribed from the HPV genome at the same integration site with different splicing. Furthermore, the 1.6-kb transcript contained both of the two viral TATA boxes upstream of E6, strongly indicating that a cellular promoter was used for its transcription

  11. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    Science.gov (United States)

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K

  12. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    Directory of Open Access Journals (Sweden)

    Qingxi Yue

    Full Text Available Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the

  13. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    Directory of Open Access Journals (Sweden)

    Mezghani Sana

    2015-01-01

    Full Text Available Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiation. We found that LLLT significantly reduced visible wrinkles and the loss of firmness of facial skin in aging subjects. Additionally, treatment of cultured HeLa cells with LLLT prior to or post UVA or UVB exposure significantly protected cells from UV-mediated cell death. All results showed the beneficial effects of LLLT on relieving signs of skin aging and its prevention and protection of the cell viability against UV-induced damage.

  14. Human SUV3 helicase regulates growth rate of the HeLa cells and can localize in the nucleoli.

    Science.gov (United States)

    Szewczyk, Maciej; Fedoryszak-Kuśka, Natalia; Tkaczuk, Katarzyna; Dobrucki, Jurek; Waligórska, Agnieszka; Stępień, Piotr P

    2017-01-01

    The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.

  15. Agonist/antagonist interactions with cloned human 5-HT(1A) receptors: Variations in intrinsic activity studied in transfected HeLa cells

    NARCIS (Netherlands)

    Boddeke, H.W.G.M.; Fargin, A.; Raymond, J.R.; Schoeffter, P.; Hoyer, D.

    1992-01-01

    The characteristics of 5-HT(1A)-recognition sites and receptor-mediated release of intracellular calcium were established in two transfected HeLa cell lines (HA 6 and HA 7) expressing different levels of human 5-HT(1A) receptors (about 3000 and 500 fmol/mg protein, Fargin et al. 1989; 1991; Raymond

  16. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells.

    Directory of Open Access Journals (Sweden)

    Justyna Stefanowicz-Hajduk

    Full Text Available The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower. Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated.The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP, reactive oxygen species (ROS generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2, caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR.The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine.Securinine induces apoptosis and activates

  17. The enhanced inhibitory effect of different antitumor agents in self-microemulsifying drug delivery systems on human cervical cancer HeLa cells.

    Science.gov (United States)

    Ujhelyi, Zoltán; Kalantari, Azin; Vecsernyés, Miklós; Róka, Eszter; Fenyvesi, Ferenc; Póka, Róbert; Kozma, Bence; Bácskay, Ildikó

    2015-07-21

    The aim of this study was to develop topical self-microemulsifying drug delivery systems (SMEDDS) containing antitumor agents (bleomycin, cisplatin and ifosfamide) and to investigate their inhibitory potential in SMEDDS on human cervical cancer HeLa cells. The physicochemical properties of cytostatic drug loaded SMEDDS were characterized. The cytotoxicity of main components of SMEDDS was also investigated. Their IC50 values were determined. HeLa cells were treated by different concentrations of cisplatin, bleomycin and ifosfamide alone and in various SMEDDS. The inhibitory effect on cell growth was analyzed by MTT cell viability assay. Inflammation is a driving force that accelerates cancer development. The inhibitory effect of these antitumor agents has also been tested on HeLa cells in the presence of inflammatory mediators (IL-1-β, TNF-α) as an in vitro model of inflamed human cervix. Significant differences in the cytotoxicity of cytostatic drugs alone and in SMEDDS have been found in a concentration-dependent manner. The self-micro emulsifying system may potentiate the effectiveness of bleomycin, cisplatin and ifosfamide topically. The effect of SMEDDS containing antitumor agents was decreased significantly in the presence of inflammatory mediators. According to our experiments, the optimal SMEDDS formulation is 1:1:2:6:2 ratios of Isopropyl myristate, Capryol 90, Kolliphor RH 40, Cremophor RH40, Transcutol HP and Labrasol. It can be concluded that SMEDDS may increase the inhibitory effect of bleomycin, ifosfamide and cisplatin on human cervical cancer HeLa cells. Inflammation on HeLa cells hinders the effectiveness of SMEDDS containing antitumor agents. Our results might ensure useful data for development of optimal antitumor formulations.

  18. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  19. Sechium edule (Jacq. Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    Sandra Salazar-Aguilar

    2017-07-01

    Full Text Available The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC and column chromatography (CC, identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions. Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL−1, but the lymphocytes were affected by the extract (IC50 30.04 µg·mL−1. Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL−1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.

  20. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line.

    Science.gov (United States)

    Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero Del Mar; Cadena-Iñiguez, Jorge; Soto-Hernández, Marcos; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco

    2017-07-25

    The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC 50 1.85 µg·mL -1 ), but the lymphocytes were affected by the extract (IC 50 30.04 µg·mL -1 ). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL -1 . Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.

  1. Properties of Surfactin C-15 Nanopeptide and Its Cytotoxic Effect on Human Cervix Cancer (HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    Zahra Nozhat

    2012-01-01

    Full Text Available Surfactin is one of the most powerful biosurfactants that has been known so far. It is an acidic cyclic nonribosomal lipoheptapeptide that is produced by Bacillus subtilis. In this presentation we investigated different properties of surfactin C-15. The nanomicelle forming ability of surfactin C-15 in different aqueous environments with various ionic strengths was studied by scanning electron microscope. Surfactin second structure was investigated by Far-UV CD spectrum. Its hemolytic activity and cytotoxicity were measured by hemolysis and MTT assays, respectively. Surfactin formed spherical nanomicelles in distilled water and amorphous nanomicelles in PBS buffer . The hemolysis assay results indicated that HC50 of surfactin was 47 μM. Surfactin C-15 arrested growth of human cervix cancer HeLa cell line in a time- and dosage-dependent method, so that its IC50 at 16, 24, and 48h were 86.9, 73.1, and 50.2 μM, respectively.

  2. Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells: Neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Dopp, Elke; Rettenmeier, Albert W.; Buesselberg, Dietrich

    2005-01-01

    Physiological modifications of intracellular Ca 2+ ([Ca 2+ ] i ) levels trigger and/or regulate a diversity of cellular activities (e.g. neurotransmitter release, synaptic plasticity, muscular contraction, cell proliferation), while calcium overloads could result in cytotoxicity. Previously, we have shown that trimethyltin chloride (Me 3 SnCl; TMT) modulates calcium homeostasis in cervix adenocarcinoma (HeLa S3) cells [Florea, A.-M., Dopp, E., Buesselberg, D., 2005. TMT induces elevated calcium transients in HeLa cells: types and levels of response. Cell Calcium 37, 252-258]. Here we compare [Ca 2+ ] i -changes induced by trimethyltin chloride in neuroblastoma SY5Y and HeLa S3 cells using calcium-sensitive dyes (fluo-4/AM (fluo-4) and rhod-2/AM (rhod-2)) and laser scanning microscopy (LSM). TMT-induced calcium elevations in neuroblastoma SY5Y as well as in HeLa S3 cells. [Ca 2+ ] i rose to a sustained plateau or to transient spikes. Overall, the detected averaged increase of the maximum calcium elevation were: 0.5 μM ∼125.6%; 5 μM ∼130.1%; 500 μM ∼145% in HeLa S3 cells and 0.5 μM ∼133.3%; 5 μM ∼136.1%; 500 μM ∼147.1% in neuroblastoma SY5Y cells. The calcium rise derived from internal stores did not significantly depend on the presence of calcium in the external solution: ∼109% (no calcium added) versus ∼117% (2 mM calcium; 5 μM TMT) in HeLa cells. This difference was similar in neuroblastoma SY5Y cells, were ∼127% versus ∼136% increase (5 μM TMT) were measured. Staining of calcium stores with rhod-2 showed a TMT-induced [Ca 2+ ] i -decrease in the stores followed by an increase of the calcium concentration in the nuclei of the two cell lines tested. Our results suggest that toxic effects in human tumour cells after exposure to trimethyltin compounds might be due to an elevation of [Ca 2+ ] i

  3. The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells.

    Science.gov (United States)

    Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S

    2010-06-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs.

  4. Loss of a putative tumor suppressor locus after gamma-ray-induced neoplastic transformation of HeLa x Skin fibroblast human cell hybrids

    International Nuclear Information System (INIS)

    Mendonca, M.S.; Redpath, J.L.; Fasching, C.L.

    1995-01-01

    The nontumorigenic HeLa x skin fibroblast hybrid cell line, CGL1, can be induced to re-express HeLa tumor-associated cell surface antigen, p75-IAP (intestinal alkaline phosphatase), with resulting neoplastic transformation, by exposure to γ radiation. This has allowed the human hybrid system to be developed into a quantitative in vitro model for radiation-induced neoplastic transformation of human cells. Recently, several γ-ray-induced IAP-expression mutants (GIMs) of the nontumorigenic HeLa x skin fibroblast hybrid CGL1 were isolated and all were tumorigenic when injected subcutaneously into nude mice. Control cell lines which were negative for p75-IAP (CONs) were also isolated from irradiated populations, and none were found to be tumorigenic. We have now begun to investigate the molecular basis of radiation-induced neoplastic transformation in this system by studying the potential genetic linkage between p75/IAP expression, tumorigenicity and damage to a putative tumor suppressor locus on fibroblast chromosome 11. Previous analysis of rare spontaneous segregants has indicated that this locus is involved in the regulation of tumorigenicity and in the expression of the HeLa tumor-associated cell surface marker intestinal alkaline phosphatase (p75-IAP) in this system. Therefore, analysis by restriction fragment length polymorphism and chromosome painting have been performed for chromosome 11, and for chromosome 13 as a control, for the p75/IAP-positive GIM and p75/IAP-negative CON cell lines. We report that in five of eight of the GIMs large-scale damage to the fibroblast chromosome 11's is evident (four GIMs have lost one complete copy of a fibroblast chromosome 11 heavily damaged). None of the CONs, however (0/5), have lost a complete copy of either fibroblast chromosome 11. No large-scale damage to the control chromosome 13's was detected in the GIMs or CONs. 49 refs., 3 figs., 2 tabs

  5. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid*

    Science.gov (United States)

    Yue, Qingxi; Feng, Lixing; Cao, Biyin; Liu, Miao; Zhang, Dongmei; Wu, Wanying; Jiang, Baohong; Yang, Min; Liu, Xuan; Guo, Dean

    2016-01-01

    Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51–64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic. PMID:26499837

  6. Short-term desensitization of the histamine H1 receptor in human HeLa cells : involvement of protein kinase C dependent and independent pathways

    NARCIS (Netherlands)

    Smit, M J; Bloemers, S M; Leurs, R; Tertoolen, L G; Bast, A; de Laat, S W; Timmerman, H

    1992-01-01

    1. In this study we have investigated the effects of short-term exposure of cells to histamine on the subsequent H1 receptor responsiveness in HeLa cells, using Ca2+ fluorescence microscopy and video digital imaging. 2. In HeLa cells, histamine (100 microM) induces an immediate H1 receptor-mediated

  7. The Cytotoxicity Mechanism of 6-Shogaol-Treated HeLa Human Cervical Cancer Cells Revealed by Label-Free Shotgun Proteomics and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Qun Liu

    2012-01-01

    Full Text Available Cervical cancer is one of the most common cancers among women in the world. 6-Shogaol is a natural compound isolated from the rhizome of ginger (Zingiber officinale. In this paper, we demonstrated that 6-shogaol induced apoptosis and G2/M phase arrest in human cervical cancer HeLa cells. Endoplasmic reticulum stress and mitochondrial pathway were involved in 6-shogaol-mediated apoptosis. Proteomic analysis based on label-free strategy by liquid chromatography chip quadrupole time-of-flight mass spectrometry was subsequently proposed to identify, in a non-target-biased manner, the molecular changes in cellular proteins in response to 6-shogaol treatment. A total of 287 proteins were differentially expressed in response to 24 h treatment with 15 μM 6-shogaol in HeLa cells. Significantly changed proteins were subjected to functional pathway analysis by multiple analyzing software. Ingenuity pathway analysis (IPA suggested that 14-3-3 signaling is a predominant canonical pathway involved in networks which may be significantly associated with the process of apoptosis and G2/M cell cycle arrest induced by 6-shogaol. In conclusion, this work developed an unbiased protein analysis strategy by shotgun proteomics and bioinformatics analysis. Data observed provide a comprehensive analysis of the 6-shogaol-treated HeLa cell proteome and reveal protein alterations that are associated with its anticancer mechanism.

  8. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.

    Science.gov (United States)

    Kashafi, Elham; Moradzadeh, Maliheh; Mohamadkhani, Ashraf; Erfanian, Saiedeh

    2017-05-01

    Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC 50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells

    International Nuclear Information System (INIS)

    Kwon, Hyeok-Ran; Lee, Ki Won; Dong, Zigang; Lee, Kyung Bok; Oh, Sang-Muk

    2010-01-01

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-κB activity. Furthermore, expression of NF-κB-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-κB activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.

  10. Cell-type specific DNA-protein interactions at the tissue-type plasminogen activator promoter in human endothelial and HeLa cells in vivo and in vitro

    NARCIS (Netherlands)

    Arts, J.; Herr, I.; Lansink, M.; Angel, P.; Kooistra, T.

    1997-01-01

    Tissue-type plasminogen activator (t-PA) gene expression in human endothelial cells and HeLa cells is stimulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) at the level of transcription. To study the mechanism of transcriptional regulation, we have characterized a

  11. Pennogenyl Saponins from Paris quadrifolia L. Induce Extrinsic and Intrinsic Pathway of Apoptosis in Human Cervical Cancer HeLa Cells

    Science.gov (United States)

    Stefanowicz-Hajduk, Justyna; Bartoszewski, Rafal; Bartoszewska, Sylwia; Kochan, Kinga; Adamska, Anna; Kosiński, Igor; Ochocka, J. Renata

    2015-01-01

    Pennogenyl saponins are the active compounds of large number of plant species and consequently many polyherbal formulations. Hence, great interest has been shown in their characterization and in the investigation of their pharmacological and biological properties, especially anticancer. This present study reports on the evaluation of cytotoxic effects and explanation of the molecular mechanisms of action of the two pennogenyl saponins (PS 1 and PS 2) isolated from Paris quadrifolia L. rhizomes on human cervical adenocarcinoma cell line HeLa. To determine the viability of the cells treated with the compounds we used real-time cell proliferation analysis and found that the pennogenyl saponins PS 1 and PS 2 strongly inhibited the tumor cells growth with IC50 values of 1.11 ± 0.04 μg/ml and 0.87 ± 0.05 μg/ml, respectively. The flow cytometry analysis indicated that the two compounds induced apoptosis in a dose-dependent manner and decreased mitochondrial membrane potential in HeLa cells in the early stage of apoptosis. Quantitative PCR and Western Blot analysis showed that the two saponins significantly increased mRNA expression of FADD and BID as well as induced caspase-8 via increased of procaspase-8 processing in the treated cells. The results of this study suggest that both the extrinsic death receptor and intrinsic mitochondrial pathways are involved in the programmed cell death. PMID:26295969

  12. Induction of apoptosis in human cervical carcinoma HeLa cells by active compounds from Hypericum ascyron L.

    Science.gov (United States)

    Li, Xiu-Mei; Luo, Xue-Gang; He, Jun-Fang; Wang, Nan; Zhou, Hao; Yang, Pei-Long; Zhang, Tong-Cun

    2018-03-01

    Hypericum ascyron L. (Great St. Johnswort), which belongs to the Hypericaceae family, has been used for the treatment of hematemesis, metrorrhagia, rheumatism, swelling, stomach ache, abscesses, dysentery and irregular menstruation for >2,000 years in China. The aim of the present study was to clarify the anticancer activity compounds from H. ascyron L. and the underlying molecular mechanism. Anticancer activity of H. ascyron L. extract was evaluated using an MTT assay. To confirm the anticancer mechanism of activity compounds, Hoechst 33258, Annexin V-fluorescein isothiocyanate/propidium iodide, 2',7'-dichlorodihydrofluorescein diacetate, rhodamine 123 staining and caspase-3 activity analysis were performed. The results demonstrated that the anti-proliferative action of the mixture of kaempferol 3-O-β-(2″-acetyl) galactopyranoside (K) and quercetin (Q) (molar ratio, 1:1) was significantly increased compared with either of these two compounds separately, and the active fraction of the H. ascyron L. extract |(HALE). HALE, indicating that the anti-proliferative function of H. ascyron L. may be a synergic effect of K and Q. Furthermore, the inhibitory effect of KQ on the growth of HeLa cells was mediated by the induction of apoptosis. To the best of our knowledge, the present study is the first to identify that KQ exhibits significant anti-proliferation activity on HeLa cells via the apoptotic pathway, and is also the first to evaluate the anticancer potential of H. ascyron L. The results of the present study may provide a rational base for the use of H. ascyron L. in the clinic, and shed light on the development of novel anticancer drugs.

  13. Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells.

    Science.gov (United States)

    Wu, Liang; Zhang, Xiaolong; Zhao, Zhikun; Wang, Ling; Li, Bo; Li, Guibo; Dean, Michael; Yu, Qichao; Wang, Yanhui; Lin, Xinxin; Rao, Weijian; Mei, Zhanlong; Li, Yang; Jiang, Runze; Yang, Huan; Li, Fuqiang; Xie, Guoyun; Xu, Liqin; Wu, Kui; Zhang, Jie; Chen, Jianghao; Wang, Ting; Kristiansen, Karsten; Zhang, Xiuqing; Li, Yingrui; Yang, Huanming; Wang, Jian; Hou, Yong; Xu, Xun

    2015-01-01

    Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas. Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied. HeLa is a well characterized HPV+ cervical cancer cell line. We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip. Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing. Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions. Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level. By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins. Our results reveal the heterogeneity of a virus-infected cell line. It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers.

  14. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  15. Cytokine profiles of HeLa and human diploid cells induced by different fractions of Vibrio parahaemolyticus cultures exposed to stress conditions.

    Science.gov (United States)

    Chifiriuc, Mariana Carmen; Bleotu, Coralia; Pîrcălăbioru, Gratiela; Israil, Anca Michaela; Dinu, Sorin; Rută, Simona Maria; Grancea, Camelia; Lazăr, Veronica

    2010-01-01

    Vibrio (V.) parahaemolyticus is an aquatic halophilic bacteria which produces gastroenteritis and in rare cases septicaemia after the consumption of raw or under-cooked contaminated seafood.The severity of diarrheal illness caused by this bacterium is closely related to the presence of two types of hemolysins (the thermostable direct hemolysin-TDH and TDH related hemolysin-TRH) and also of type III secretion system (TTSS) proteins. The TTSS type 1 induces a wide array of effects on infected HeLa cells such as autophagy, oncosis, cell rounding and lysis. Previous studies have shown that heat shock proteins have the ability to stimulate the production of interleukins in different cellular cultures. In our studies we have stimulated two cellular lines (HeLa and human diploid cells) with different V. parahaemolyticus culture fractions in order to observe the effect on cytokines production. Thus, the purpose of this study was to analyze the expression of IL-1, IL-2, IL-4, IL-6, IL-10 and TNF-alpha induced by the cell treatment with total cellular lysate, periplasmic fractions and culture supernatants extracted from V. parahaemolyticus exposed to normal and also to stress conditions. The ELISA assay of the cytokine profile of the HeLa and HDC cell lines stimulated with different bacterial fractions revealed that in the V. parahemolyticus cultures submitted to osmotic and heat shock stress are accumulating factors (probably heat shock proteins) which are exhibiting immunomodulatory activity, responsible for the induction of a pro-inflammatory response associated with increased levels of IL-6 and TNF-alpha expression, however balanced by the stimulation of the anti-inflammatory cytokine IL-4 synthesis.

  16. The Genomic and Transcriptomic Landscape of a HeLa Cell Line

    Science.gov (United States)

    Landry, Jonathan J. M.; Pyl, Paul Theodor; Rausch, Tobias; Zichner, Thomas; Tekkedil, Manu M.; Stütz, Adrian M.; Jauch, Anna; Aiyar, Raeka S.; Pau, Gregoire; Delhomme, Nicolas; Gagneur, Julien; Korbel, Jan O.; Huber, Wolfgang; Steinmetz, Lars M.

    2013-01-01

    HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology. PMID:23550136

  17. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    International Nuclear Information System (INIS)

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A.

    2014-01-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy

  18. Irradiation And Papillomavirus E2 Proteins On Hela Cells

    International Nuclear Information System (INIS)

    Abderrafi, B.

    2005-01-01

    Exposure to relatively high doses ionizing radiation activates cellular responses that impair cell survival. These responses, for which the p53 protein plays a central role, form the basis for cancer radiotherapy. However, the efficacy of radiation treatments on cell killing is often reduced as a consequence of the frequent inactivation of the p53 protein in cancer cells. Loss of p53 protein is associated with later stages of most human tumors and resistance to anticancer agents. Carcinomas are frequent malignant tumors in humans. The majority of cervical carcinomas are etiologically linked to the presence of HPV virus (Human Papillomavirus). In carcinoma tumor cells, as well as in their derived-cell lines such as HeLa cells, the p53 protein is generally not detected due to its degradation by the product of the HPV-associated oncogenic E6 gene. Another characteristic of HPV-positive cervical cancer cells is the loss of the regulatory viral E2 gene expression as a consequence of viral DNA integration into the cellular genome. Reintroduction of E2 expression in HeLa cells reactivates p53, due to a negative effect on the expression of E6 protein, with a concomitant arrest of cell proliferation at the phase G1 of the cell cycle and delay in cell division via the repression of E2F-target genes. To elucidate whether reactivation of p53 would improve the cell killing effect of ionizing radiation in cancer cells, we studied the combined effects of radiation and E2 expression on the cell cycle distribution in HeLa cells

  19. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [College of Life Science, Hebei University, Baoding (China); Yang, R.L. [Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding (China)

    2013-07-30

    MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27{sup KIP1} protein and p21{sup CIP1} mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21{sup CIP1}, p16{sup INK4a} and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.

  20. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    International Nuclear Information System (INIS)

    Chen, C.; Yang, R.L.

    2013-01-01

    MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27 KIP1 protein and p21 CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21 CIP1 , p16 INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer

  1. Effect of 17-AAG on radio-sensitivity of HeLa and V79 cells

    International Nuclear Information System (INIS)

    Pan Yanling; Hong Chengjiao; Zhang Baoguo

    2010-01-01

    In order to investigate the radio-sensitizing effect of 17-AAG, an inhibitor of Heat Shock Protein 90, on human Uterine Cervix Cancer HeLa and V79 cells, Clonogenic assay was used to observe the cell survival rate. The results show that 17-AAG can decrease obviously (p 0.05). This indicates that 17-AAG may enhance the radio-sensitivity of the HeLa cell line and has no effect on the V79 cell line. (authors)

  2. Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

    NARCIS (Netherlands)

    Kampinga, HH; Hiemstra, YS; Konings, AWT; Dikomey, E

    The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 degrees C, 0.5 h) separated by time intervals up to 8h. DNA dsb were measured by PFGE and

  3. Effect of Quercetin on radio-sensitivity of HeLa cells

    International Nuclear Information System (INIS)

    Wu Xiaofen; Hong Chengjiao; Guo Wenxiu; Pan Yanling; Zhang Baoguo

    2011-01-01

    In order to investigate the mechanism of Quercetin on radio-sensitivity of human Uterine Cervix Cancer HeLa cells, HeLa cells were cultured in different concentrations of Quercetin and different doses of irradiation. The clonogenic assay was used to observe the cell survival rate. The repair of DNA double-strand breaks and effect of Quercetin combination of radiation on the cell cycle were detected by flow cytometry. The results show that the radio-sensitivity of Quercetin on HeLa cells was obvious and the unrepaired DSBs after irradiation increased, but did not decrease G2/M cell cycle arrest. From this it can be inferred that the effect on HeLa cell radio-sensitivity may be related to the inhibition of the repair of DNA double-strand breaks induced by Quercetin, but it dose not reveal a significant relation with the cell cycle and G2/M arrest. (authors)

  4. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation.

    Science.gov (United States)

    Pariente, Roberto; Pariente, José A; Rodríguez, Ana B; Espino, Javier

    2016-01-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    Science.gov (United States)

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  6. DNA damage in synchronized hela cells irradiated with ultraviolet

    International Nuclear Information System (INIS)

    Downes, C.S.; Collins, A.R.S.; Johnson, R.T.

    1979-01-01

    The lethal effect of uv radiation on HeLa cells is least in mitosis and greatest in late G 1 -early S. Photochemical damage to HeLa DNA, as measured by thymine-containing dimer formation and by alkaline sucrose sedimentation, also increases from mitosis towards early S phase. Computer simulations of uv absorption by an idealized HeLa cell at different stages of the cell cycle indicate that changes in damage could be due solely to changes in chromatin geometry. But survival is not exclusively a function of damage

  7. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.

    Science.gov (United States)

    Xiang, Tao; Fang, Yong; Wang, Shi-Xuan

    2014-10-01

    To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.

  8. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  9. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation.

    Science.gov (United States)

    Bai, Caihong; Yang, Xiaojiao; Zou, Kun; He, Haibo; Wang, Junzhi; Qin, Huilin; Yu, Xiaoqin; Liu, Chengxiong; Zheng, Juyan; Cheng, Fan; Chen, Jianfeng

    2016-06-01

    Cervical cancer is the second leading cause of cancer deaths in women worldwide. In recent years, the studies find that inflammation is a critical component of tumor progression, and the ideal therapeutic methods should be aimed at the inflammation reaction triggers. (1β,3β,5β,25S)-spirostan-1,3-diol1-[α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranoside] (RCE-4) was the main active composition of Reineckia carnea (Andr.) Kunth. It significantly induced apoptosis in cervical cancer Caski cells through the mitochondrial pathway in our previous studies; however, its underlying mechanism remains poorly understood. This study aimed to further evaluate the effect of RCE-4 on human cervical cancer HeLa cells. Based on this observation, we investigated the anti-cervical cancer effect of RCE-4 by modulating phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, nuclear factor-kappa B (NF-κB) activation, and inflammation-related key factors in HeLa cells. The results indicated that the HeLa cell was the most sensitive with an IC50 of 7.01 μM; RCE-4 significantly promoted the release of cellular lactate dehydrogenase (LDH); increased DNA fragmentation and apoptosis; reduced PI3K, Akt, mTOR, and NF-κBp65 phosphorylation levels; increased the Bax and cleaved poly (ADP-ribose) polymerase (PARP) protein levels; suppressed Bcl-2 protein expression; elevated the Bax/Bcl-2 expression ratio; and decreased the interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) mRNA expressions in HeLa cells in a concentration-dependent manner. These findings suggest that RCE-4 exerted beneficially anti-cervical cancer effect on HeLa cells, mainly inhibiting PI3K/Akt/mTOR signaling pathway phosphorylation and NF-κB activation, promoting HeLa cell apoptosis. Graphical abstract Anti-tumor effect of RCE-4 on HeLa cells.

  10. Targeting of a chimeric human histone fusion mRNA to membrane-bound polysomes in HeLa cells

    International Nuclear Information System (INIS)

    Zambetti, G.; Stein, J.; Stein, G.

    1987-01-01

    The subcellular location of histone mRNA-containing polysomes may play a key role in the posttranscriptional events that mediate histone mRNA turnover following inhibition of DNA synthesis. Previously, it has been shown that histone mRNA is found primarily on free polysomes that are associated with the cytoskeleton. The authors report here the construction of an Escherichia coli pBR322 β-lactamase signal peptide-human H3 histone fusion gene. The fusion transcript is targeted to membrane-bound polysomes and remains stable following interruption of DNA replication. Relocating mRNA within the cell may provide a procedure for studying the posttranscriptional regulation of gene expression

  11. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  12. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus

    DEFF Research Database (Denmark)

    Röttger, S; White, J; Wandall, H H

    1998-01-01

    O-glycosylation of proteins is initiated by a family of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactos-aminyltransferases (GalNAc-T). In this study, we have localized endogenous and epitope-tagged human GalNAc-T1, -T2 and -T3 to the Golgi apparatus in HeLa cells by subcellular fractionation......, immunofluorescence and immunoelectron microscopy. We show that all three GalNAc-transferases are concentrated about tenfold in Golgi stacks over Golgi associated tubular-vesicular membrane structures. Surprisingly, we find that GalNAc-T1, -T2 and -T3 are present throughout the Golgi stack suggesting that initiation...... of O-glycosylation may not be restricted to the cis Golgi, but occur at multiple sites within the Golgi apparatus. GalNAc-T1 distributes evenly across the Golgi stack whereas GalNAc-T2 and -T3 reside preferentially on the trans side and in the medial part of the Golgi stack, respectively. Moreover, we...

  13. Radiosensitization of nitroindazole derivatives on HeLa cells

    International Nuclear Information System (INIS)

    Wang Hao; Shi Peiji; Zhou Xiaoliang; Wang Yan; Tang Weisheng

    2010-01-01

    Objective: To investigate the cytotoxicity and radiosensitization of 5-nitroindazole-3-formyliminodiacetic acid on HeLa cells. Methods: HeLa cells in exponential growth phase were incubated in culture media with different doses and the survival rate was determined by MTT assay. The survival rate of cells receiving radiation combined with different doses of medicine was compared with that of the control.Results: The cytotoxicity of S-nitroindazole-3-formyliminodiacetic acid on HeLa cells was very low. The drug had hypoxia radiosensitizing effect on HeLa cells. At doses of 0, 6, 12, 24, 48 and 96 μg/ml under hypoxia, the survival rate were 0.91 , 0.87, 0.84, 0.81, 0.76 and 0.60, respectively. At the dosage of 48 and 96 μg/ml, the survival rate were 0.85 and 0.73 under oxygenous). Conclusions: 5-Nitroindazole-3-formyliminodiacetic acid has low cytotoxicity and rediosensitizing effect on HeLa cells. (authors)

  14. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Science.gov (United States)

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  15. Nuclear blebbing of biologically active organoselenium compound towards human cervical cancer cell (HeLa): in vitro DNA/HSA binding, cleavage and cell imaging studies.

    Science.gov (United States)

    Rizvi, Masood Ahmad; Zaki, Mehvash; Afzal, Mohd; Mane, Manoj; Kumar, Manjeet; Shah, Bhahwal Ali; Srivastav, Saurabh; Srikrishna, Saripella; Peerzada, Ghulam Mustafa; Tabassum, Sartaj

    2015-01-27

    New pharmacophore organoselenium compound (1) was designed, synthesized and characterized by various spectroscopic methods (IR, ESI-MS, (1)H, (13)C and (77)Se NMR) and further confirmed by X-ray crystallography. Compound 1 consists of two 3,5-bis(trifluoromethyl)phenyl units which are connected to the selenium atom via the organometallic C-Se bond. In vitro DNA binding studies of 1 was investigated by absorption and emission titration methods which revealed that 1 recognizes the minor groove of DNA in accordance with molecular docking studies with the DNA duplex. Gel electrophoretic assay demonstrates the ability of 1 to cleave pBR322 DNA through hydrolytic process which was further validated by T4 religation assay. To understand the drug-protein interaction of which ultimate molecular target was DNA, the affinity of 1 towards HSA was also investigated by the spectroscopic and molecular modeling techniques which showed hydrophobic interaction in the subdomain IIA of HSA. Furthermore, the intracellular localization of 1 was evidenced by cell imaging studies using HeLa cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells.

    Science.gov (United States)

    Panzarini, Elisa; Mariano, Stefania; Vergallo, Cristian; Carata, Elisabetta; Fimia, Gian Maria; Mura, Francesco; Rossi, Marco; Vergaro, Viviana; Ciccarella, Giuseppe; Corazzari, Marco; Dini, Luciana

    2017-06-01

    This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 3 or 2×10 4 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag + release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×10 4 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag + release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    International Nuclear Information System (INIS)

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-01-01

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  18. Dynamic behavior of histone H1 microinjected into HeLa cells

    International Nuclear Information System (INIS)

    Wu, L.H.; Kuehl, L.; Rechsteiner, M.

    1986-01-01

    Histone H1 was purified from bovine thymus and radiolabeled with tritium by reductive methylation or with 125 I using chloramine-T. Red blood cell-mediated microinjection was then used to introduce the labeled H1 molecules into HeLa cells synchronized in S phase. The injected H1 molecules rapidly entered HeLa nuclei, and a number of tests indicate that their association with chromatin was equivalent to that of endogenous histone H1. The injected molecules copurified with HeLa cell nucleosomes, exhibited a half-life of ∼100h, and were hyperphosphorylated at mitosis. When injected HeLa cells were fused with mouse 3T3 fibroblasts < 10% of the labeled H1 molecules migrated to mouse nuclei during the next 48 h. Despite their slow rate of migration between nuclei, the injected H1 molecules were evenly distributed on mouse and human genomes soon after mitosis of HeLa-3T3 heterokaryons. These results suggest that although most histone H1 molecules are stably associated with interphase chromatin, they undergo extensive redistribution after mitosis

  19. Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells.

    Science.gov (United States)

    Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun

    2017-06-01

    Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro . When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC 50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer.

  20. Reduced temperature (22 degrees C) results in enhancement of cell killing and neoplastic transformation in noncycling HeLa x skin fibroblast human hybrid cells irradiated with low-dose-rate gamma radiation

    International Nuclear Information System (INIS)

    Redpath, J.L.; Antoniono, R.J.

    1995-01-01

    The effect of reduced temperature (22 degrees C) or serum deprivation during low-dose-rate (0.66 cGy/min) γ irradiation on cell killing and neoplastic transformation has been examined using the HeLa x skin fibroblast human hybrid cell system. The reduced temperature stops progression of these cells through the cell cycle while serum deprivation slows down cell turnover markedly. The data demonstrate an enhancement in both of the end points when cells are held at 22 degrees C compared to parallel experiments done at 37 degrees C. In operational terms, the decreased survival and increased neoplastic transformation are consistent with our earlier hypothesis of a higher probability of misrepair at reduced temperature. The interpretation that this damage enhancement was associated with the reduced temperature, and not the fact that the cells were noncycling, was supported by the results of experiments performed with cells cultured at 37 degrees C in serum-free medium for 35 h prior to and then during the 12.24 h low-dose-rate radiation exposure. Under these conditions, cell cycle progression, as shown by reduction in growth rate and dual-parameter flow cytometric analysis, was considerable inhibited (cell cycle time increased from 20 h to 40 h), and there was no significant enhancement of cell killing or neoplastic transformation. 23 refs., 2 figs., 1 tab

  1. 3-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a novel combretastatin A-4 analog, induces G2/M arrest and apoptosis by disrupting tubulin polymerization in human cervical HeLa cells and fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Zuo, Daiying; Guo, Dandan; Jiang, Xuewei; Guan, Qi; Qi, Huan; Xu, Jingwen; Li, Zengqiang; Yang, Fushan; Zhang, Weige; Wu, Yingliang

    2015-02-05

    Microtubule is a popular target for anticancer drugs. In this study, we describe the effect 3-(3-hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a newly synthesized analog of combretastatin A-4 (CA-4), showing a strong time- and dose-dependent anti-proliferative effect on human cervical cancer HeLa cells and human fibrosarcoma HT-1080 cells. We demonstrated that the growth inhibitory effects of G-1103 in HeLa and HT-1080 cells were associated with microtubule depolymerization and proved that G-1103 acted as microtubule destabilizing agent. Furthermore, cell cycle analysis revealed that G-1103 treatment resulted in cell cycle arrest at the G2/M phase in a time-dependent manner with subsequent apoptosis induction. Western blot analysis revealed that down-regulation of cdc25c and up-regulation of cyclin B1 was related with G2/M arrest in HeLa and HT-1080 cells treatment with G-1103. In addition, G-1103 induced HeLa cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8 expression, which indicated that G-1103 induced HeLa cell apoptosis was mainly associated with death receptor pathway. However, G-1103 induced HT-1080 cell apoptosis by up-regulating cleaved caspase-3, Fas, cleaved caspase-8, Bax and cleaved caspase-9 expression and down-regulating anti-apoptotic protein Bcl-2 expression, which indicated that G-1103 induced HT-1080 cell apoptosis was associated with both mitochondrial and death receptor pathway. Taken together, all the data demonstrated that G-1103 exhibited its antitumor activity through disrupting the microtubule assembly, causing cell cycle arrest and consequently inducing apoptosis in HeLa and HT-1080 cells. Therefore, the novel compound G-1103 is a promising microtubule inhibitor that has great potentials for therapeutic treatment of various malignancies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yamaji

    Full Text Available Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs. A TALEN pair targeting the human CERT gene (alternative name COL4A3BP encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase, and B4GalT5 (encoding the major lactosylceramide synthase, and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a 'sphingolipid-modified HeLa cell panel,' which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.

  3. Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function.

    Science.gov (United States)

    Pochini, Lorena; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-11-01

    OCTN1 was immuno-detected in the cervical cancer cell HeLa, in which the complete pattern of acetylcholine metabolizing enzymes is expressed. Comparison of immuno-staining intensity of HeLa OCTN1 with the purified recombinant human OCTN1 allowed measuring the specific OCTN1 concentration in the HeLa cell extract and, hence calculating the HeLa OCTN1 specific transport activity that was about 10 nmol×min(-1)×mg protein(-1), measured as uptake of [(3)H]acetylcholine in proteoliposomes reconstituted with HeLa extract. This value was very similar to the specific activity of the recombinant protein. Acetylcholine transport was suppressed by incubation of the protein or proteoliposomes with the anti-OCTN1 antibody and was strongly inhibited by PLP and MTSEA, known inhibitors of OCTN1. The absence of ATP in the internal side of proteoliposomes strongly impaired transport function of both the HeLa and, as expected, the recombinant OCTN1. HeLa OCTN1 was inhibited by spermine, NaCl (Na(+)), TEA, γ-butyrobetaine, choline, acetylcarnitine and ipratropium but not by neostigmine. Besides acetylcholine, choline was taken up by HeLa OCTN1 proteoliposomes. The transporter catalyzed also acetylcholine and choline efflux which, differently from uptake, was not inhibited by MTSEA. Time course of [(3)H]acetylcholine uptake in intact HeLa cells was measured. As in proteoliposomes, acetylcholine transport in intact cells was inhibited by TEA and NaCl. Efflux of [(3)H]acetylcholine occurred in intact cells, as well. The experimental data concur in demonstrating a role of OCTN1 in transporting acetylcholine and choline in HeLa cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death

    DEFF Research Database (Denmark)

    Høj, Berit Rahbek; la Cour, Peter Jonas Marstrand; Mollerup, Jens

    2009-01-01

    downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate...... that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.......ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2...

  5. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest

    International Nuclear Information System (INIS)

    Wang, Yaoxian; Yu, Hui; Zhang, Jin; Gao, Jing; Ge, Xin; Lou, Ge

    2015-01-01

    Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavanone that is found mainly in citrus fruits and has been shown to have some anti-neoplastic effects. The aim of the present study was to investigate the effect of hesperidin on apoptosis in human cervical cancer HeLa cells and to identify the mechanism involved. Cells were treated with hesperidin (0, 20, 40, 60, 80, and 100 μM) for 24, 48, or 72 h and relative cell viability was assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Hesperidin inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Hesperidin-induced apoptosis in HeLa cells was characterized by increased nuclear condensation and DNA fragmentation. Furthermore, increased levels of GADD153/CHOP and GRP78 indicated hesperidin-induced apoptosis in HeLa cells involved a caspase-dependent pathway, presumably downstream of the endoplasmic reticulum stress pathway. Both of these proteins are hallmarks of endoplasmic reticulum stress. Hesperidin also promoted the formation of reactive oxygen species, mobilization of intracellular Ca 2+ , loss of mitochondrial membrane potential (ΔΨm), increased release of cytochrome c and apoptosis-inducing factor from mitochondria, and promoted capase-3 activation. It also arrested HeLa cells in the G0/G1 phase in the cell cycle by downregulating the expression of cyclinD1, cyclinE1, and cyclin-dependent kinase 2 at the protein level. The effect of hesperidin was also verified on the human colon cancer cell HT-29 cells. We concluded that hesperidin inhibited HeLa cell proliferation through apoptosis involving endoplasmic reticulum stress pathways and cell cycle arrest

  6. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    Science.gov (United States)

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD + . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Photodynamic Effects of Pterin on HeLa Cells

    DEFF Research Database (Denmark)

    Denofrio, M. Paula; Lorente, Carolina; Breitenbach, Thomas

    2011-01-01

    cells (HeLa) and that these cells die upon UV-A irradiation of Ptr. Cell death was assessed using two tests: (1) the Rhodamine 123 fluorescence assay for mitochondrial viability and (2) the Trypan Blue assay for membrane integrity. The data suggest that, for Ptr-dependent photoinitiated cell death......Pterins, heterocyclic compounds widespread in biological systems, participate in relevant biological processes and are able to act as photosensitizers. In the present study, we ascertained that 2-aminopteridin-4(3H)-one, abbreviated as Ptr, is readily incorporated into and ⁄ or onto cervical cancer...

  8. Studies on radioresistance with HeLa cells

    International Nuclear Information System (INIS)

    Koiwai, Soichiro; Muta, Nobuyoshi

    1980-01-01

    In our previous experiments (15, 16), HeLa cells were successively irradiated with 1 kR of X-rays. After receiving 3, 5, 8, 11, 14, and 17 kR the iradiated HeLa cells showed progressively increasing radioresistance. In the present paper, the results of studies on the variation of the extrapolation number (n), mean lethal dose (D sub(o)), and quasi-threshold dose (D sub(q)) of survival curves for these radioresistant HeLa strains were reported. The values of n of the original and radioresistant strains were all found between 2 and 3, and a change of the n values with an increase in the total dose received by the cell strains was not noticed. On the other hand, the values of D sub(o) of the radioresistant strains progressively increased from 105 R in the original line to 148 R in the 17 kR strain with increasing doses of pre-irradiation. Similarly, the values of D sub(q) had a tendency to increase in the radioresistant strains. Repair of sublethal damage with the original and radioresistant strains was studied and the properties of the radioresistant strains were discussed. (author)

  9. Ectopic overexpression of LAPTM5 results in lysosomal targeting and induces Mcl-1 down-regulation, Bak activation, and mitochondria-dependent apoptosis in human HeLa cells.

    Directory of Open Access Journals (Sweden)

    Do Youn Jun

    Full Text Available Human lysosomal-associated protein multispanning membrane 5 (LAPTM5 was identified by an ordered differential display-polymerase chain reaction (ODD-PCR as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18-36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues. LAPTM5 mRNA was detected in immature malignant cells of myeloid lineage, such as K562, HL-60, U937, and THP-1 cells, and in unstimulated peripheral T cells, but was absent or barely detectable in lymphoid malignant or non-hematopoietic malignant cells. The LAPTM5 level in HL-60 cells increased more significantly during TPA-induced monocyte/macrophage differentiation than during DMSO-induced granulocyte differentiation. Ectopic expression of GFP-LAPTM5 or LAPTM5 in HeLa cells exhibited the localization of LAPTM5 to the lysosome. In HeLa cells overexpressing LAPTM5, the Mcl-1 and Bid levels declined markedly and apoptosis was induced via Bak activation, Δψm loss, activation of caspase-9, -8 and -3, and PARP degradation without accompanying necrosis. However, these LAPTM5-induced apoptotic events except for the decline of Bid level were completely abrogated by concomitant overexpression of Mcl-1. The pan-caspase inhibitor (z-VAD-fmk could suppress the LAPTM5-induced apoptotic sub-G1 peak by ~40% but failed to block the induced Δψm loss, whereas the broad-range inhibitor of cathepsins (Cathepsin Inhibitor I could suppress the LAPTM5-induced apoptotic sub-G1 peak and Δψm loss, by ~22% and ~23%, respectively, suggesting that the LAPTM5-mediated Δψm loss was exerted at least in part in a cathepsin-dependent manner. Together, these results

  10. Ectopic overexpression of LAPTM5 results in lysosomal targeting and induces Mcl-1 down-regulation, Bak activation, and mitochondria-dependent apoptosis in human HeLa cells

    Science.gov (United States)

    Jun, Do Youn; Kim, Hyejin; Jang, Won Young; Lee, Ji Young; Fukui, Kiyoshi; Kim, Young Ho

    2017-01-01

    Human lysosomal-associated protein multispanning membrane 5 (LAPTM5) was identified by an ordered differential display-polymerase chain reaction (ODD-PCR) as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18–36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues. LAPTM5 mRNA was detected in immature malignant cells of myeloid lineage, such as K562, HL-60, U937, and THP-1 cells, and in unstimulated peripheral T cells, but was absent or barely detectable in lymphoid malignant or non-hematopoietic malignant cells. The LAPTM5 level in HL-60 cells increased more significantly during TPA-induced monocyte/macrophage differentiation than during DMSO-induced granulocyte differentiation. Ectopic expression of GFP-LAPTM5 or LAPTM5 in HeLa cells exhibited the localization of LAPTM5 to the lysosome. In HeLa cells overexpressing LAPTM5, the Mcl-1 and Bid levels declined markedly and apoptosis was induced via Bak activation, Δψm loss, activation of caspase-9, -8 and -3, and PARP degradation without accompanying necrosis. However, these LAPTM5-induced apoptotic events except for the decline of Bid level were completely abrogated by concomitant overexpression of Mcl-1. The pan-caspase inhibitor (z-VAD-fmk) could suppress the LAPTM5-induced apoptotic sub-G1 peak by ~40% but failed to block the induced Δψm loss, whereas the broad-range inhibitor of cathepsins (Cathepsin Inhibitor I) could suppress the LAPTM5-induced apoptotic sub-G1 peak and Δψm loss, by ~22% and ~23%, respectively, suggesting that the LAPTM5-mediated Δψm loss was exerted at least in part in a cathepsin-dependent manner. Together, these results demonstrate that

  11. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    Science.gov (United States)

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  12. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Yao [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Hsieh, Tsai-Yuan [Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Liu, Shu-Ting; Chang, Yung-Lung [Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Lin, Wei-Shiang [Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Wang, Wei-Ming, E-mail: ades0431@ms38.hinet.net [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Huang, Shih-Ming, E-mail: shihming@ndmctsgh.edu.tw [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC (China); Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan, ROC (China)

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  13. Zac1, an Sp1-like protein, regulates human p21WAF1/Cip1 gene expression in HeLa cells

    International Nuclear Information System (INIS)

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting; Chang, Yung-Lung; Lin, Wei-Shiang; Wang, Wei-Ming; Huang, Shih-Ming

    2011-01-01

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21 WAF1/Cip1 gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein–protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21 WAF1/Cip1 gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  14. [Effects of selenium compounds on proliferation, migration and adhesion of HeLa cells].

    Science.gov (United States)

    Sun, Licui; Lu, Jiaxi; Wang, Qin; Liu, Yiqun; Han, Feng; Yang, Yanhua; Zhang, Hongkun; Huang, Zhenwu

    2015-03-01

    To explore the effects of methylseleninic acid (MeSeA), selenomethionine (SeMet) and methylselenocysteine (MeSeCys) on proliferation, migration and adhesion of HeLa cells. HeLa cells were cultured and treated with MeSeA, SeMet and MeSeCys for 12 - 72 h respectively. MTT assay, healing assay and in vitro cell Matrigel adhesion assay were used to detect the proliferation, migration and adhesion of HeLa cells. Compared to the control group, the proliferation of HeLa cells was remarkably inhibited by MeSeA (P HeLa cells in MeSeA group was inhibited by 34% (P HeLa cells with inhibitions of 18% and 13% was in SeMet group in 4 h and 8 h. The inhibitions of HeLa cell migration in MeSeCys group was 28% (P HeLa cells in the MeSeA group, the SeMet group as well as the MeSeCys group were inhibited by 36% (P HeLa cell were effectively inhibited by MeSeA, while the adhesive function of HeLa cell was remarkably inhibited by MeSeCys.

  15. Coxsackievirus B5 induced apoptosis of HeLa cells: Effects on p53 and SUMO

    International Nuclear Information System (INIS)

    Gomes, Rogerio; Guerra-Sa, Renata; Arruda, Eurico

    2010-01-01

    Coxsackievirus B5 (CVB5), a human enterovirus of the family Picornaviridae, is a frequent cause of acute and chronic human diseases. The pathogenesis of enteroviral infections is not completely understood, and the fate of the CVB5-infected cell has a pivotal role in this process. We have investigated the CVB5-induced apoptosis of HeLa cells and found that it happens by the intrinsic pathway by a mechanism dependent on the ubiquitin-proteasome system, associated with nuclear aggregation of p53. Striking redistribution of both SUMO and UBC9 was noted at 4 h post-infection, simultaneously with a reduction in the levels of the ubiquitin-ligase HDM2. Taken together, these results suggest that CVB5 infection of HeLa cells elicit the intrinsic pathway of apoptosis by MDM2 degradation and p53 activation, destabilizing protein sumoylation, by a mechanism that is dependent on a functional ubiquitin-proteasome system.

  16. Effect of estrogens on bacterial adherence to HeLa cells.

    OpenAIRE

    Sugarman, B; Epps, L R

    1982-01-01

    Incubating confluent cell culture HeLa cells for 18 h with increasing concentrations of estrogens progressively enhanced the subsequent attachment of a variety of radiolabeled bacteria to the HeLa cells. This effect was not caused by other hormones and was not produced by 1-h incubations of HeLa cells or bacteria with hormones. Estrogens did not similarly affect two other receptor cell lines studied. The addition of metabolic inhibitors showed that this effect of estrogens on HeLa cells was e...

  17. [Baicalein promotes the apoptosis of HeLa cells by inhibiting ERK1/2 expression].

    Science.gov (United States)

    Wang, Yongzhou; Xia, Jiyi; Tang, Xiaoping; Tang, Li; Mao, Xiguang; Zhang, Yujiao; Yu, Xiaolan

    2016-11-01

    Objective To investigate the effects of baicalein and U0126 treatment on the apoptosis of human cervical carcinoma HeLa cells and the potential mechanism. Methods HeLa cells were subjected to (1, 2, 5, 10, 20, 50, 100, 200, 300) μmol/L baicalein or (1, 2, 5, 10, 20, 30) μmol/L U0126 treatment for 24 hours. The optimal concentrations of baicalein and U0126 for HeLa inhibition was determined by a cell counting Kit-8 assay. HeLa cells were then treated with these inhibitory concentrations for 24 hours separately or in combination. The cell cycle and the degree of apoptosis were analyzed by flow cytometry. The cell apoptosis index was evaluated by the TUNEL assay. The expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), Bax, and Bcl-2 at the mRNA and protein levels were examined by real-time PCR and Western blotting, respectively. Results Optimal inhibitory concentrations of baicalein and U0126 for HeLa cells were 200 μmol/L and 10 μmol/L, respectively. Compared with the control group, baicalein treatment increased the growth rate of cells in the G0/G1 phase but decreased the S phase. Combination treatment of 200 μmol/L baicalein and 10 μmol/L U0126 for 24 hours further reduced the S phase growth rate. Treatment with 10 μmol/L U0126 or 200 μmol/L baicalein for 24 hours induced cell apoptosis, and the combination treatment induced more apoptosis. Treatment by baicalein alone or in combination with U0126 for 24 hours significantly decreased ERK1/2 and Bcl-2 mRNA expressions, and upregulated Bax mRNA expression. It also downregulated ERK1/2 phosphorylation and Bcl-2 protein expression, while increasing Bax protein expression. Conclusion Both baicalein and U012 appear to inhibit proliferation, induce apoptosis, and increase the growth rate in the G0/G1 phase but reduce the S phase of HeLa cells. This effect is enhanced when they are used synergistically.

  18. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    Science.gov (United States)

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. From HeLa cell division to infectious diarrhoea

    International Nuclear Information System (INIS)

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A.

    1990-01-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases [Na] and [Cl] increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular [Na]. Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references

  20. From HeLa cell division to infectious diarrhoea

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A. (Univ. of Birmingham (England))

    1990-09-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.

  1. Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.

    Science.gov (United States)

    Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan

    2014-04-01

    The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.

  2. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    International Nuclear Information System (INIS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-01-01

    Highlights: ► Glucose capped gold nanoparticles (Glu-AuNPs) are synthesized for internalization in HeLa cells (cervical cancer cells). ► Internalization of Glu-AuNPs in HeLa cells is confirmed by cross section TEM of cells. ► Irradiation (by C ion or γ-rays) of HeLa cells with internalized Glu-AuNPs results in enhanced radiosensitization. ► There is about 30% reduction in radiation dose for 90% cell killing of HeLa cells, when internalized by Glu-AuNPs. ► The enhanced radiosensitization due to Glu-AuNPs is of interest for researchers in nanobiotechnology and radiation biology. -- Abstract: Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells

  3. Study on effect of artemisinin combined with 60Co γ-ray on DNA damage in HeLa and SiHa cells

    International Nuclear Information System (INIS)

    Feng Yang; Zhou Yuanyuan; Yang Wei; Chen Qiu; Li Ming; Zhang Shuyu; Zhu Wei; Cao Jianping; Zhang Xuguang

    2011-01-01

    Objective: To investigate the effect of Artemisinin combined with 60 Co γ-ray on DNA damage in HeLa and SiHa cells of human cervical cancer. Methods: Cell growth kinetics was evaluated by MTT assay to determine the most appropriate drug concentration. Effects of Artemisinin combined with 60 Co γ-ray on DNA damage in HeLa and SiHa cells were detected by single cell gel electrophoresis. Results: With the concentration increased during the effect of Artemisinin, the HeLa and SiHa cells had higher inhibition on cell proliferation. The SCGE showed that:the comet cell analysis indexes (the comet cells ratio, Tail Length, Olive Tail Moment and Tail DNA%) there was no statistic difference in between the artemisinin group and the control group (P>0.05). With radiation in the same dose, the comet cell analysis indexes of Hela cells treated with both artermisinin and exposed to radiation were higher than that only exposed to radiation group(P 0.05). Conclusion: Artemisinin can not induce DNA damage in both HeLa and SiHa cells, but it can make irradiated HeLa cells DNA damage to be aggravated and enhance HeLa cells' radiation sensitivity. However, Artemisinin has no radiosensitizing effect on SiHa cells. (authors)

  4. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. © 2015 Wiley Periodicals, Inc.

  5. Effects of DCK knockdown on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells.

    Science.gov (United States)

    Shang, Q-Y; Wu, C-S; Gao, H-R

    2017-09-01

    The present study explored the effect that deoxycytidine kinase (DCK) knockdown had on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Human cervical cancer HeLa cells that had received no prior treatment were selected from the HeLa group. The HeLa-negative control (NC) group consisted of cells that had undergone an empty vector treatment, and finally the HeLa-short hairpin RNA (shRNA) group included cells that were treated by means of shRNA-DCK expression. DCK expressions were evaluated by quantitative real-time polymerase chain reaction in addition to western blotting assays. Cell proliferation was estimated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle progression. Cell apoptosis was determined by flow cytometry. BALB/c nude mice (n=24) were selected to establish transplanted tumor models, with gross tumor volume measured every 3 days. The results in vitro were as follows: compared with the HeLa group, the HeLa-shRNA group exhibited downregulation of DCK expression and inhibition of cell proliferation at 48, 72 and 96 h. Additionally, more cells in the HeLa-shRNA group were arrested in G0/G1 stage and less in S and G2/M stages, as well as in promotion of cell apoptosis. In vivo results are as follows: when comparing the HeLa and HeLa-NC groups, the gross tumor volume of the transplanted tumor in nude mice in the HeLa-shRNA group was found to have decreased in 13, 16, 19 and 22 days. Based on these findings, our study suggests that DCK knockdown facilitates apoptosis while inhibiting proliferation and tumorigenicity in vivo of cervical cancer HeLa cells.

  6. Outcome of Treatment of Human HeLa Cervical Cancer Cells With Roscovitine Strongly Depends on the Dosage and Cell Cycle Status Prior to the Treatment

    Czech Academy of Sciences Publication Activity Database

    Wesierska-Gadek, J.; Borza, A.; Walzi, E.; Kryštof, Vladimír; Maurer, M.; Komina, O.; Wandl, S.

    2009-01-01

    Roč. 106, č. 5 (2009), s. 937-955 ISSN 0730-2312 Institutional research plan: CEZ:AV0Z50380511 Keywords : APOPTOSIS * CELL CYCLE ARREST * CYCLIN-DEPENDENT KINASES Subject RIV: ED - Physiology Impact factor: 2.935, year: 2009

  7. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1989-01-01

    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and He...

  8. Suppression of postmitochondrial signaling and delayed response to UV-induced nuclear apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Sasai, Kaori; Yajima, Hirohiko; Suzuki, Fumio

    2002-01-01

    Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity. (author)

  9. The effect of postirradiation holding at 22 degrees C on the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in gamma-irradiated HeLa x skin fibroblast human hybrid cells

    International Nuclear Information System (INIS)

    Redpath, J.L.; Antoniono, R.J.; Mendonca, M.S.; Sun, C.

    1994-01-01

    The effect of postirradiation holding at 22 degrees C on cell growth, progression of cells through the cell cycle, and the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in γ-irradiated HeLa x skin fibroblast human hybrid cells has been examined. Cell growth and cell cycle progression were essentially stopped at this reduced temperature. Cell survival was dramatically reduced by holding confluent cultures for 6 h at 22 degrees C, as opposed to 37 degrees C, after 7.5 Gy γ radiation delivered at a rate of 2 Gy/min. Return of the cells to 37 degrees C for 6 h after holding at 22 degrees C did not result in increased survival. A similar effect was obtained when the cells were held at 22 degrees C between split-dose irradiation of log-phase cultures where no increase in survival was observed over a split-dose interval of 4 h. In this case a partial increase in survival was observed upon returning the cells to 37 degrees C for 3 h after holding at 22 degrees C for the first 3 h of the split-dose interval. Neoplastic transformation frequency was not enhanced by holding confluent cultures for 6 h at 22 degrees C after 7.5 Gy γ radiation. This is consistent with previous observations that misrepair of potentially neoplastic transforming damage already occurs at 37 degrees C. The overall results are interpreted in terms of the reduced temperature favoring misrepair, rather than inhibition of repair, of sublethal, potentially lethal and potentially transforming radiation damage. 24 refs., 5 figs., 3 tabs

  10. Effects of 3-AB on PARP expression of Hela cells and apoptosis and cell cycle progression of Hela cells after X-rays irradiation

    International Nuclear Information System (INIS)

    Du Xiang; Zhao Hongguang; Guo Wei; Gong Shouliang; Wang Wen

    2007-01-01

    Objective: To study the changes of apoptosis and cell cycle progression of Hela cells after the poly (ADP- ribose) polymerase (PARP) was inhibited by its inhibitor 3-aminobenzamid (3-AB) and the mechanisms of PARP interaction with Hela cells damaged by irradiation. Methods: Hela cell line was used. Flow cytometry (FCM) was used to examine the PARP expression of control and 3 AB groups at 0, 2, 4, 8, 12 h alter administration with 5 mmol·L -1 3-AB. The percentage of apoptotic cells and cell cycle progression ol control, irradiation, 3-AB plus irradiation groups were measured with FCM at 2, 8, 12, 24 h after exposure to 2 Gy irradiation following administration with 5 mmol·L -1 3-AB. Results: The percentage of Hela cells with positive expression of PARP protein decreased after administration with 3-AB and there was significant difference between 3-AB plus irradiation group and control group (P 2 cells in the 3-AB plus irradiation group were lower than those in the irradiation group (P 2 arrest induced by irradiation. (authors)

  11. Protolichesterinic acid enhances doxorubicin-induced apoptosis in HeLa cells in vitro.

    Science.gov (United States)

    Brisdelli, Fabrizia; Perilli, Mariagrazia; Sellitri, Doriana; Bellio, Pierangelo; Bozzi, Argante; Amicosante, Gianfranco; Nicoletti, Marcello; Piovano, Marisa; Celenza, Giuseppe

    2016-08-01

    The aim of this study was to investigate the effect of protolichesterinic acid, a lichen secondary metabolite, on anti-proliferative activity of doxorubicin in three human cancer cell lines, HeLa, SH-SY5Y and K562 cells. The data obtained from MTT assays, performed on cells treated with protolichesterinic acid and doxorubicin alone and in combination, were analysed by the median-effect method as proposed by Chou and Talalay and the Bliss independence model. Apoptosis rate was evaluated by fluorescence microscopy, caspase-3, 8 and 9 activities were detected by spectrofluorimetric analysis and protein expression of Bim, Bid, Bax and Mcl-2 was analysed by Western blotting. The interaction of protolichesterinic acid with thioesterase domain of human fatty acid synthase (hFAS) was investigated by a molecular docking study. The in vitro activity of doxorubicin against HeLa cancer cell line, but not against SH-SY5Y and K562 cells, was synergically increased by protolichesterinic acid. The increased cytotoxicity caused by protolichesterinic acid in HeLa cells was due to a pro-apoptotic effect and was associated to caspase-3, 8 and 9 activation. The simultaneous treatment for 24h with protolichesterinic acid plus doxorubicin caused an increase of Bim protein expression and the appearance of cleaved form of Bid protein. The molecular modelling analysis showed that protolichesterinic acid seemed to behave as a competitive inhibitor of hFAS. These results suggest that protolichesterinic acid could be envisaged as an useful tool against certain types of tumor cells in combination with anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  13. Cytotoxic effect and radiation enhancement of artemisinin in uterine cervical carcinoma cell line HeLa

    International Nuclear Information System (INIS)

    Gong Xiaomei; Zhou Daoan; Cao Jianping; Fan Saijun; Zhu Wei

    2010-01-01

    Objective: To investigate cytotoxic and radiosensitizing effect of Artemisinin on cervical carcinoma cell line HeLa. Methods: In order to measure the optimized effective time, cytotoxic effect of Artemisinin on HeLa cell line was investigated with MTT assay. The radiosensitization effect of different doses and different treatment duration of Artemisinin on HeLa cell line were evaluated by MTT test, the SER is 1.17 and radiosensitizing effect was measured with multi-target single hit model through SER of HeLa cell. Cell cycles in different groups were calculated by flow cytometry. Results: The 50% inhibition concentration of Artemisinin interacted with HeLa cells for 24 h is 600.19 nmol/ml, and for 48 h is 160.71 nmol/ml. The HeLa cells'surival ratio is 93.51%, 91.87%, and 87.28% after adding Atemisinin of 110.69 nmol/ml and 1 Gy radiation exposure. There are three groups: the chemotherapy only group, the radiotherapy only group and the combination group. The result of the cell cycles showed that cells in G 2 /M period decreased in the combination group. Conclusion: Artemisinin has radiosensitization effect on cervical carcinoma HeLa cells, whichshows dose and time dependent. Artemisinin can inhibit the G 2 /M block by ionizing radiation. (authors)

  14. The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells

    Science.gov (United States)

    Li, Li; Wang, Li; Xiao, Ruijing; Zhu, Guoguo; Li, Yan; Liu, Changxuan; Yang, Ru; Tang, Zhiqing; Li, Jie; Huang, Wei; Chen, Lang; Zheng, Xiaoling; He, Yuling; Tan, Jinquan

    2011-01-01

    The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their ‘fresh’ host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its ‘fresh’ host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA. PMID:21729006

  15. Oxygen enhancement ratios in synchronous HeLa cells exposed to low-LET radiation

    International Nuclear Information System (INIS)

    Sapozink, M.D.

    1977-01-01

    HeLa cells were synchronized by the mitotic selection method and rendered hypoxic by coincubation with an excess of heavily irradiated, but metabolically active, feeder cells. An oxygen enhancement ratio (OER) of about 3 was obtained in interphase HeLa cells irradiated with x or gamma rays. A significantly lower OER was obtained with cells in, or close to, mitosis. The significance of this decrease in the oxygen effect in mitotic cells is discussed

  16. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells.

    Science.gov (United States)

    Alugubelly, Navatha; Hercik, Kamil; Kibler, Peter; Nanduri, Bindu; Edelmann, Mariola J

    2016-05-01

    Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells. Copyright © 2016. Published by Elsevier B.V.

  17. Altered ganglioside GD3 in HeLa cells might influence the cytotoxic abilities of NK cells

    OpenAIRE

    Lee, Wen-Chi; Lee, Wen-Ling; Shyong, Wen-Yuann; Yang, Lin-Wei; Ko, Min-Chun; Yeh, Chang-Ching; Edmond Hsieh, Shie-Liang; Wang, Peng-Hui

    2012-01-01

    Objective: Previously, we found that altered sialidases in HeLa cells in a natural killer-HeLa (NK-HeLa) coculture system contributed to the decreased cytotoxic ability of NK cells. However, changes that occur in the glycosylation of the HeLa cells in the NK-HeLa coculture system remain unknown. Materials and Methods: An NK-HeLa coculture system was used to examine the changes that occur in the gangliosides of HeLa cells. Results: GD3 expression in HeLa cells was significantly increased...

  18. Mifepristone sensitizing cisplatin for cervical adenocarcinoma HeLa cell sensitivity to chemotherapy and its mechanism.

    Science.gov (United States)

    Li, Caihong; Ye, Hong

    2013-01-01

    The study was designed to investigate proliferation inhibition for cervical adenocarcinoma HeLa cell treated with cisplatin combined with mifepristone and access its possible mechanism. HeLa cell was processed by different concentrations of mifepristone, cisplatin, and their combination respectively. Cell's proliferation inhibition rate and induction apoptosis ability were detected by MTT assay, FCM; the expression of P53, survivin and HPV E6 protein were measured by Western Blot. The results showed that cisplatin inhibits proliferation of HeLa cells in different concentrations (p 0.05). Mifepristone at low concentrations (cisplatin can significantly enhance the inhibitory effect of cisplatin on HeLa cell line. Flow cytometry showed that mifepristone at low concentrations (cisplatin can induce apparent apoptosis of HeLa cell line in concentration dependent manner. Western blotting demonstrated that the expression of P53 protein increased and the expression of HPV E6 survivin protein decreased in HeLa cells treated with MIF at low concentrations (cisplatin. Mifepristone at low concentrations (cisplatin to HeLa cells. The strengthening effect of growth inhibition and chemosensitivity to cisplatin of mifepristone are associated with down-regulating HPV E6 survivin protein and upregulating p53 protein.

  19. [Astragalus polysaccharide may increase sensitivity of cervical cancer HeLa cells to cisplatin by regulating cell autophagy].

    Science.gov (United States)

    Zhai, Qiu-Li; Hu, Xiang-Dan; Xiao, Jing; Yu, Dong-Qing

    2018-02-01

    This study aimed to investigate the possible sensitivity of Astragalus polysaccharides, in order to improve the chemosensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy, and explore its possible mechanism. In this study, HeLa cells were divided into control group, cisplatin group, Astragalus polysaccharide group, and Astragalus polysaccharide combined with cisplatin group. MTT assay was used to detect the proliferation of cervical cancer HeLa cells. Flow cytometry was used to detect the apoptosis and cycle of HeLa cells in each experimental group. RT-PCR was used to detect the mRNA expression of autophagy-related proteins beclin1, LC3Ⅱ and p62. The expression levels of autophagy-related proteins beclin1, LC3Ⅱ, LC3Ⅰ and p62 were detected by WB method. MTT results showed that compared with the control group, the proliferation of HeLa cells was significantly inhibited in each administration group( P HeLa cells was significantly increased( P HeLa cells to cisplatin by regulating the cell autophagy. Its possible mechanism of action is correlated with the up-regulation of autophagy-related proteins beclin1, the promote the conversion from LC3Ⅰ to LC3Ⅱ, the down-regulation of labeled protein p62, and the enhancement of HeLa cell autophagic activity, thereby increasing the sensitivity of HeLa cells to cisplatin chemotherapy. Copyright© by the Chinese Pharmaceutical Association.

  20. Isolation of parafluorophenylalanine-resistant mutants from HeLa cell cultures

    International Nuclear Information System (INIS)

    Yim, L.K.; Stuart, W.D.

    1983-01-01

    This report describes a method to isolate temperature-conditional phenylalanine transport mutants from the transformed human cell line HeLa. Using ultraviolet light as a mutagenic agent and DL-parafluorophenylalanine (PFPA), a poisonous analogue of L-phenylalanine, as a selective agent, mutagenized cells were selected for survival in the presence of PFPA at a temperature of 39 degrees C. Survivors of the mutagenesis and selection procedures were removed from the culture dishes by trypsin and cloned at a temperature of 35 degrees C. Seven of these lines isolated demonstrated continued resistance to PFPA at 39 degrees C. These lines were tested for uptake of L-phenylalanine at an external concentration of 100 microM and for continued resistance to PFPA at two concentrations. Cells were tested at 35 and at 39 degrees C. The data were compared to those obtained for the parental HeLa cell line under identical conditions. The seven mutant cell lines demonstrated varying resistances to PFPA and varying levels of accumulation of L-phenylalanine when tested at 35 and 39 degrees C. Three mutant lines were additionally tested for L-phenylalanine tRNA charging levels and for transport of L-arginine. The lines had parental cell levels of tRNA charging and L-arginine transport which suggest that the induced genetic defect affects a specific L-phenylalanine transport system

  1. The effects of ascorbic acid on diphtheria toxin and intoxicated hela cells

    International Nuclear Information System (INIS)

    Clark, C.E.; Smith, T.J.

    1976-01-01

    Ascorbic acid (vitamin C) prevented diphtheria toxin from inhibiting the incorporation of [U- 14 C]-alanine into trichloroacetic acid precipitable material in HeLa cells. Ascorbic acid did not exhibit an effect on the adenosine diphosphate-ribosylation of amino acyl transferase 2 nor did it separate fragment A from fragment B in ''nicked'' toxin. A non-specific reducing agent, para-methylaminophenol sulfate, exhibited an effect of HeLa cells very similar to the results of ascorbic acid. Citric acid, a tricarboxylic acid, had no effect on HeLa cells. (auth.)

  2. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    Science.gov (United States)

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of

  3. Potential proteins targeted by let-7f-5p in HeLa cells.

    Science.gov (United States)

    Wang, Yu; Chen, Xiujuan; Zhang, Yi; Song, Jiandong

    2017-07-24

    MicroRNAs are a class of small, endogenous, non-coding RNAs mediating posttranscriptional gene silencing. The current authors hypothesized that let-7f-5p is likely involved in cell invasion and proliferation by regulating the expression of target genes. The current study combined let-7f-5p with iTRAQ to assess its effect on gene expression in HeLa cells. Results indicated that 164 proteins were expressed at different levels in HeLa cells overexpressing let-7f-5p and negative controls and that 172 proteins were expressed at different levels in let-7f-5p-silenced HeLa cells and negative controls. Results indicated that let-7f-5p may suppress insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in HeLa cells.

  4. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    Science.gov (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed

  5. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    Science.gov (United States)

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 μM concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Dissociation of histone and DNA synthesis in x-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1971-01-01

    Although histone synthesis and DNA synthesis are normally very well coordinated in HeLa cells, their histone synthesis proved relatively resistant to inhibition by ionizing radiation. During the first 24 h after 1,000 R the rate of cellular DNA synthesis progressively fell to small fractions of control values while histone synthesis with much less relative reduction. Acrylamide gel electropherograms of the acid soluble nuclear histones synthesized by irradiated HeLa cells were qualitatively normal

  7. Inactivated Tianjin strain, a novel genotype of Sendai virus, induces apoptosis in HeLa, NCI-H446 and Hep3B cells.

    Science.gov (United States)

    Chen, Jun; Han, Han; Wang, Bin; Shi, Liying

    2016-07-01

    The Sendai virus strain Tianjin is a novel genotype of the Sendai virus. In previous studies, ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) demonstrated antitumor effects on human breast cancer cells. The aim of the present study was to investigate the in vitro antitumor effects of UV-Tianjin on the human cervical carcinoma HeLa, human small cell lung cancer NCI-H446 and human hepatocellular carcinoma Hep 3B cell lines, and the possible underlying mechanisms of these antitumor effects. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay revealed that UV-Tianjin treatment inhibited the proliferation of HeLa, NCI-H446 and Hep 3B cells in a dose- and time-dependent manner. Hoechst and Annexin V-fluorescein isothiocyanate/propidium iodide double staining indicated that UV-Tianjin induced dose-dependent apoptosis in all three cell lines with the most significant effect observed in the HeLa cell line. In the HeLa cell line, UV-Tianjin-induced apoptosis was further confirmed by the disruption of the mitochondria membrane potential and the activation of caspases, as demonstrated by fluorescent cationic dye and colorimetric assays, respectively. In addition, western blot analysis revealed that UV-Tianjin treatment resulted in significant upregulation of cytochrome c , apoptosis protease activating factor-1, Fas, Fas ligand and Fas-associated protein with death domain, and activated caspase-9, -8 and -3 in HeLa cells. Based on these results, it is hypothesized that UV-Tianjin exhibits anticancer activity in HeLa, NCI-H446 and Hep 3B cell lines via the induction of apoptosis. In conclusion, the results of the present study indicate that in the HeLa cell line, intrinsic and extrinsic apoptotic pathways may be involved in UV-Tianjin-induced apoptosis.

  8. The critical role of quercetin in autophagy and apoptosis in HeLa cells.

    Science.gov (United States)

    Wang, Yijun; Zhang, Wei; Lv, Qiongying; Zhang, Juan; Zhu, Dingjun

    2016-01-01

    In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.

  9. Effect of hyperthermia and radiation on the cell cycle progression of HeLa cells

    International Nuclear Information System (INIS)

    Kubota, Nobuo

    1982-01-01

    The effect of hyperthermia and irradiation on cytokinetics was studied using exponentially growing HeLa cells. To determine the effect of heat and/or radiation on the cell cycle progression, the changes in the DNA distribution of the cell population after time intervals after treatment were studied. The cellular DNA content of the cell population was measured by flow cytometry. The results obtained were as follows: 1. Compared with the control, the cellular DNA content distribution of HeLa cells treated with 43 0 C for 20 min and 60 min showed cell accumulation in S and G 2 M phases 8 hours after treatment. 2. Hyperthermic treatment at 45 0 C for 20 min caused cells to accumulate in S phase in the first 4 hours and G 2 M phase after 8 to 14.5 hours, whereas heat treatment at 45 0 C for 60 min caused cells to accumulate in G 2 M phase after 24 hours. 3. Irradiation of exponentially growing cells induced a block in the progress from G 2 M to G 1 phase. 4. Dose survival curves of HeLa cells with and without postirradiation thermal treatment (43 0 C, 60 min) showed significant enhancement of radiosensitivity by hyperthermia. 5. The sequential treatment, i.e. 5 Gy irradiation followed immediately by heat treatment at 43 0 C for 60 min, caused more cells to accumulate in G 2 M phase after 24 and 48 hours, as compared with 5 Gy irradiation alone. (author)

  10. [Effect of NOR1 gene knockdown on the biological behavior of HeLa cells].

    Science.gov (United States)

    Tan, Yixin; Li, Wenjuan; Yi, Mei; Wang, Wei; Zheng, Pan; Zhang, Haijing; Xiang, Bo; Li, Guiyuan

    2014-08-01

    To explore the effect of the oxidored nitro domain containing protein 1 (NOR1) gene knockdown on the biological behavior of HeLa cells in cervical carcinoma. The recombinant plasmids pSUPER-shNOR1-1, pSUPER-shNOR1-2 and pSUPERscramble, which targeted to NOR1 gene, were constructed by pSUPER.neo+GFP vector, transfected into HeLa cells respectively using Lipofectamine 2000 reagent, and followed by G418 selection. The expression level of NOR1 mRNA and protein were determined by RT-PCR and Western blotting, respectively. Methyl thiazolyl tetrazolium (MTT) assay was performed to determine the growth curve of cell viability. The stable transfectants were treated with H₂O₂ and cell apoptosis was determined by Hoechst 33258 staining and terminal deoxynucleotidyl transferasemediated dUTP nick end labeling (TUNEL) assay. The expression levels of Bcl-2, cleaved caspase 9 and poly ADP-ribose polymerase (PARP) were measured by Western blot. NOR1- knockdown HeLa cells were successfully constructed by transfection of pSUPER-shNOR1-1 or pSUPER-shNOR1-2 plasmids into HeLa cells. MTT assay showed that the silence of endogenous NOR1 in HeLa cells could lead to the increase in cell viability and proliferation, and the inhibition of H₂O₂-induced apoptosis compared with the negative control. Western blot showed that the expression level of active caspase 9 and cleaved PARP was inhibited in NOR1-knockdown cells when they were treated with H₂O₂ while the expression level of Bcl-2 protein increased. Silence of endogenous NOR1 facilitates the cell viability and growth of HeLa cells, and attenuates HeLa cells apoptosis induced by H₂O₂, which might be mediated by up-regulation of Bcl-2 level and down-regulation of the cleaved caspase 9 cascade.

  11. FV peptide induces apoptosis in HEp 2 and HeLa cells: an insight into the mechanism of induction

    Directory of Open Access Journals (Sweden)

    Karthigayan S

    2006-01-01

    Full Text Available Abstract The present study is an attempt to evaluate the antiproliferative potential of peptide (7.6 kDa from lionfish (Pterios volitans venom on cultured HEp2 and HeLa cells. Different dose of purified peptide (1, 2 and 4 μg/ml at different time points (12, 24 and 36 hrs were tested for antiproliferative index of the peptide. Among them, 2 μg/ml at 24 hrs was found to effectively inhibit cancer cell growth in vitro and did not cause any adverse effect on normal human lymphocytes. Apoptosis was examined by propidium iodide staining, confirmed by the expression of caspase-8 and caspase-3, down regulation of Bcl-2 expression and DNA fragmentation in treated cells, when compared to untreated HEp2 and HeLa cells. Thus fish venom peptide was found to selectively induce apoptosis in cancer cell.

  12. FV peptide induces apoptosis in HEp 2 and HeLa cells: an insight into the mechanism of induction

    Science.gov (United States)

    Sri Balasubashini, M; Karthigayan, S; Somasundaram, ST; Balasubramanian, T; Rukkumani, R; Menon, Venugopal P

    2006-01-01

    The present study is an attempt to evaluate the antiproliferative potential of peptide (7.6 kDa) from lionfish (Pterios volitans) venom on cultured HEp2 and HeLa cells. Different dose of purified peptide (1, 2 and 4 μg/ml) at different time points (12, 24 and 36 hrs) were tested for antiproliferative index of the peptide. Among them, 2 μg/ml at 24 hrs was found to effectively inhibit cancer cell growth in vitro and did not cause any adverse effect on normal human lymphocytes. Apoptosis was examined by propidium iodide staining, confirmed by the expression of caspase-8 and caspase-3, down regulation of Bcl-2 expression and DNA fragmentation in treated cells, when compared to untreated HEp2 and HeLa cells. Thus fish venom peptide was found to selectively induce apoptosis in cancer cell. PMID:17137521

  13. Effect of Smac gene on apoptosis of HeLa cells induced by γ-rays

    International Nuclear Information System (INIS)

    Zhao Baofeng; Tian Mei; Ruan Jianlei; Su Xu

    2007-01-01

    To explore the effect of Smac gene on apoptosis of HeLa cells induced by γ-ray and its possible mechanisms, the full length cDNA of Smac gene was transferred into HeLa cells. 24 h after transferring, the results of Western Blot indicated the expression of Smac was increased but the expression of Survivin decreased. After HeLa cells was irradiated by γ-rays, Smac gene transferred HeLa/Smac cells showed more cell apoptosis rates and the higher activity of Caspase-3 than vector transferred control HeLa/pcDNA3.1 cells. However, the damage and repair of DNA and the cell cycle don't change significantly, comparing HeLa/Smac cells with HeLa/pcDNA3.1 cells. (authors)

  14. Kaempferia parviflora Extract Exhibits Anti-cancer Activity against HeLa Cervical Cancer Cells.

    Science.gov (United States)

    Potikanond, Saranyapin; Sookkhee, Siriwoot; Na Takuathung, Mingkwan; Mungkornasawakul, Pitchaya; Wikan, Nitwara; Smith, Duncan R; Nimlamool, Wutigri

    2017-01-01

    Kaempferia parviflora (KP) has been traditionally used as a folk remedy to treat several diseases including cancer, and several studies have reported cytotoxic activities of extracts of KP against a number of different cancer cell lines. However, many aspects of the molecular mechanism of action of KP remain unclear. In particular, the ability of KP to regulate cancer cell growth and survival signaling is still largely unexplored. The current study aimed to investigate the effects of KP on cell viability, cell migration, cell invasion, cell apoptosis, and on signaling pathways related to growth and survival of cervical cancer cells, HeLa. We discovered that KP reduced HeLa cell viability in a concentration-dependent manner. The potent cytotoxicity of KP against HeLa cells was associated with a dose-dependent induction of apoptotic cell death as determined by flow cytometry and observation of nuclear fragmentation. Moreover, KP-induced cell apoptosis was likely to be mediated through the intrinsic apoptosis pathway since caspase 9 and caspase 7, but not BID, were shown to be activated after KP exposure. Based on the observation that KP induced apoptosis in HeLa cell, we further investigated the effects of KP at non-cytotoxic concentrations on suppressing signal transduction pathways relevant to cell growth and survival. We found that KP suppressed the MAPK and PI3K/AKT signaling pathways in cells activated with EGF, as observed by a significant decrease in phosphorylation of ERK1/2, Elk1, PI3K, and AKT. The data suggest that KP interferes with the growth and survival of HeLa cells. Consistent with the inhibitory effect on EGF-stimulated signaling, KP potently suppressed the migration of HeLa cells. Concomitantly, KP was demonstrated to markedly inhibit HeLa cell invasion. The ability of KP in suppressing the migration and invasion of HeLa cells was associated with the suppression of matrix metalloproteinase-2 production. These data strongly suggest that KP may slow

  15. [Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].

    Science.gov (United States)

    Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao

    2013-12-01

    To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.

  16. Improved selectivity and cytotoxic effects of irinotecan via liposomal delivery: A comparative study on Hs68 and HeLa cells.

    Science.gov (United States)

    Casadó, Ana; Mora, Margarita; Sagristá, Maria Lluïsa; Rello-Varona, Santi; Acedo, Pilar; Stockert, Juan Carlos; Cañete, Magdalena; Villanueva, Angeles

    2017-11-15

    Irinotecan (CPT-11) is an effective chemotherapeutic agent widely used to treat different cancers. Otherwise, the liposomal delivery of anti-tumor agents has been shown to be a promising strategy. The aim of this study has been to analyze the effect of liposomal CPT-11 (CPT-11lip) on two human cell lines (Hs68 and HeLa) to establish the suitability of this CPT-11 nanocarrier. We have demonstrated the highest uptake of CPT-11lip in comparison with that of CPT-11sol, in lactate buffer, and that CPT-11lip was internalized in the cells through an endocytic process whereas CPT-11sol does so by passive diffusion. CPT-11lip was not cytotoxic to normal fibroblast Hs68 cells, but induced a massive apoptosis accompanied by cell senescence in HeLa cells. CPT-11lip treatment modified the morphology of HeLa cells, induced different cell cycle alterations and accumulated into lysosomes in both cell lines. In particular, CPT-11lip treatment showed that surviving HeLa cells remained in a state of senescence whereas only a temporal growth arrest was induced in Hs68 cells. Results of RT-PCR indicated that the different responses in Hs68 (survival) and HeLa cells (apoptotic death), seemed to be induced by a p53- and p53- independent mechanism, respectively. An analysis of DNA damage also determined that released CPT-11 from liposomes was able to reach the nucleus and exert a genotoxic effect in both cell lines, which was repaired in Hs68 but not in HeLa cells. All results indicate that phospholipid-cholesterol liposomes possess optimum properties for CPT-11 delivery, being biocompatible and selectively cytotoxic against HeLa tumorigenic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. [Antiapoptotic Effect of the Leukemia Associated Gene MLAA-34 in HeLa Cells].

    Science.gov (United States)

    Zhang, Peng-Yu; Zhao, Xuan; Zhang, Wen-Juan; Zhang, Wang-Gang; Chen, Yin-Xia

    2016-04-01

    To study the antiapoptotic effect of leukemia-associated gene MLAA-34 in HeLa cells. The MLAA-34 recombinant lentiviral expression vector was constructed, and the stably transfected HeLa cell line with high expression of MLAA-34 was set up; As(2)O(3) was used to induce apoptosis; the MTT assay, colony formation test and flow cytometry were used to detect the ability of cell proliferation, colong formation, apoptosis and cell cycle changes respectively. After treatment with As(2)O(3), the survival rate of HeLa cells with MLAA-34 overexpression was significantly higher than that of the control cells, and the colony formation ability of MLAA-34 significantly increased, and the high expression of MLAA-34 gene significantly decreased the apoptosis rate of HeLa cells, and decreased the proportion of G(2)/M phase cells. The leukemia-associated gene MLAA-34 has been comfirmed to show antiapoptotic effect in HeLa cells which are induced by As(2)O(3).

  18. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    Science.gov (United States)

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (PHela cells, increased the apoptosis rate (PHela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  19. Characterization of the association of radiolabeled bleomycin A2 with HeLa cells

    International Nuclear Information System (INIS)

    Roy, S.N.; Horwitz, S.B.

    1984-01-01

    The association of [ 3 H]bleomycin A2 and Cu(II):[ 3 H]bleomycin A2 with HeLa cells has been characterized. Under the conditions of our experiments, approximately 0.1% of the total drug in the medium associates with HeLa cells. Both forms of the drug bind to HeLa cells in a specific and saturable manner, with a Km of 20 microM and a Vmax of 2.5 pmol/min/10(6) cells. Scatchard analysis of the specific binding data demonstrates a single set of high-affinity binding sites. Cytotoxic activities of both forms of the drug are similar, with a 50% lethal dose of 0.5 microM at 48 hr. The specific binding in HeLa cells of either the labeled metal-free drug or its copper complex is reversible by a 100-fold excess of either unlabeled drug. Interaction of the drug with cells is temperature sensitive but is unaffected by metabolic poisons, suggesting that this process is not energy dependent. Isolation of DNA from HeLa cells incubated with the drug indicates that 1 mol of either [ 3 H]bleomycin A2 or Cu(II):[ 3 H]bleomycin A2 binds per 10(8) nucleotides. Further studies with the radiolabeled drug are required to define precisely the mechanisms involved in bleomycin uptake and compartmentalization within the cell

  20. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    International Nuclear Information System (INIS)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-01-01

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC 50 value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells

  1. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    DEFF Research Database (Denmark)

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...... on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy....

  2. Trichostatin A resistance is facilitated by HIF-1α acetylation in HeLa human cervical cancer cells under normoxic conditions

    Science.gov (United States)

    Lee, Jae-Wook; Yang, Dong Hee; Park, Sojin; Han, Hae-Kyoung; Park, Jong-Wan; Kim, Bo Yeon; Um, Sung Hee; Moon, Eun-Yi

    2018-01-01

    Trichostatin A (TSA) is an anticancer drug that inhibits histone deacetylases (HDACs). Hypoxia-inducible factor 1 (HIF-1) participates in tumor angiogenesis by upregulating target genes, such as vascular endothelial growth factor (VEGF). In the present study, we investigated whether TSA treatment increases HIF-1α stabilization via acetylation under normoxic conditions, which would lead to VEGF upregulation and resistance to anticancer drugs. TSA enhanced total HIF-1α and VEGF-HRE reporter activity under normoxic conditions. When cells were transfected with GFP-HIF-1α, treatment with TSA increased the number of green fluorescence protein (GFP)-positive cells. TSA also enhanced the nuclear translocation of HIF-1α protein, as assessed by immunoblotting and as evidenced by increased nuclear localization of GFP-HIF-1α. An increase in the interaction between HIF-1α and the VEGF promoter, which was assessed by a chromatin immunoprecipitation (ChIP) assay, led to activation of the VEGF promoter. TSA acetylated HIF-1α at lysine (K) 674, which led to an increase in TSA-induced VEGF-HRE reporter activity. In addition, TSA-mediated cell death was reduced by the overexpression of HIF-1α but it was rescued by transfection with a HIF-1α mutant (K674R). These data demonstrate that HIF-1α may be stabilized and translocated into the nucleus for the activation of VEGF promoter by TSA-mediated acetylation at K674 under normoxic conditions. These findings suggest that HIF-1α acetylation may lead to resistance to anticancer therapeutics, such as HDAC inhibitors, including TSA. PMID:29416751

  3. The reducibility of heLa cell viability by Sargassum polycystum extracts

    Science.gov (United States)

    Firdaus, M.; Setijawati, D.; Islam, I.; Nursyam, H.; Kartikaningsih, H.; Yufidasari, H. S.; Prihanto, A. A.; Nurdiani, R.; Jaziri, A. A.

    2018-04-01

    Cervical cancer is the second largest cause of death-related cancer in women. The efficacy of cancer drugs is still low. Bioactive of brown seaweed has been studied by in vitro and in vivo as anticancer. The aim of this study was to evaluate the cytotoxicity of Sargassum polycystum extracts on HeLa cell, to recognize bioactive on extract and estimate the interaction between the bioactive and target protein. S. polycystum was found from Talango Island waters and HeLa cell was obtained from Indonesian Science Institute. Sample was extracted by ethanol, ethyl acetate and hexane, concentrated and finally, extracts were assayed on HeLa cell. The viability of this cell was quantified on ELISA-Reader. The bioactive compounds of the extract were elucidated by GC-MS. The interaction between bioactive and target protein was evaluated by using in silico method. The result showed that the lowest viability of HeLa cell on n-hexane extracts treatment. The n-hexane extract of this seaweed contained benzenepropanoic acid. This compound reduced HeLa cell viability by reducing of thrombin concentration. In conclusion, the benzene propanoic acid of S. polycystum was the cytotoxic agent and it is potential agent for anti-cervical cancer.

  4. Radiation response of Hela cells at the stationary phase of growth

    International Nuclear Information System (INIS)

    Semenyak, O.Yu.; Kalendo, G.S.; Serebryakov, N.G.

    1988-01-01

    The early stages of a repopulation process of HeLa cells under the effect of irradiation 5 Gy dose and an influence of a preliminary 0.1 Gy dose irradiation at that process were investigated. As it was shown the fraction of cell with a great proliferation potential appeared in one day after lethal 5 Gy dose irradiation of the resting HeLa cells. If the other irradiation regime was used: 0.1 Gy dose plus 4.9 dose in 3 min after the first action, the part of cells with a great proliferation potential became considerably less

  5. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.

    Science.gov (United States)

    Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil

    2015-07-24

    Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  6. Involvement of S6K1 in mitochondria function and structure in HeLa cells.

    Science.gov (United States)

    Park, Jisoo; Tran, Quangdon; Mun, Kisun; Masuda, Kouhei; Kwon, So Hee; Kim, Seon-Hwan; Kim, Dong-Hoon; Thomas, George; Park, Jongsun

    2016-12-01

    The major biological function of mitochondria is to generate cellular energy through oxidative phosphorylation. Apart from cellular respiration, mitochondria also play a key role in signaling processes, including aging and cancer metabolism. It has been shown that S6K1-knockout mice are resistant to obesity due to enhanced beta-oxidation, with an increased number of large mitochondria. Therefore, in this report, the possible involvement of S6K1 in regulating mitochondria dynamics and function has been investigated in stable lenti-shS6K1-HeLa cells. Interestingly, S6K1-stably depleted HeLa cells showed phenotypical changes in mitochondria morphology. This observation was further confirmed by detailed image analysis of mitochondria shape. Corresponding molecular changes were also observed in these cells, such as the induction of mitochondrial fission proteins (Drp1 and Fis1). Oxygen consumption is elevated in S6K1-depeleted HeLa cells and FL5.12 cells. In addition, S6K1 depletion leads to enhancement of ATP production in cytoplasm and mitochondria. However, the relative ratio of mitochondrial ATP to cytoplasmic ATP is actually decreased in lenti-shS6K1-HeLa cells compared to control cells. Lastly, induction of mitophagy was found in lenti-shS6K1-HeLa cells with corresponding changes of mitochondria shape on electron microscope analysis. Taken together, our results indicate that S6K1 is involved in the regulation of mitochondria morphology and function in HeLa cells. This study will provide novel insights into S6K1 function in mitochondria-mediated cellular signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Dose-rate effects on the cell cycle and survival of S3 HeLa and V79 cells

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    The effects of continuous irradiation at different dose rates on the cell cycle and on cell survival were studied using synchronized S3 HeLa and V79 cells. The minimum dose rate necessary to stop cell division was found to be approximately 23 rad/hr for HeLa cells and 270 rad/hr for V79 cells. For dose rates that stop cell division, cells progress through G 1 and S, with a small delay in the S phase, and are blocked in G 2 . Appreciable mitotic accumulation was observed for HeLa cells at dose rates which stopped cell division. By comparison, much less mitotic accumulation was observed for V79 cells over a range of dose rates from 37 to 270 rad/hr. Minimum mitotic delays for a variety of dose rates were determined for both cell lines. S3 HeLa cells are much more sensitive in this respect than V79 cells; however, it appeared that for higher dose rates the minimum mitotic delay in HeLa cells asymptotically approached a value of about 35 hr. In addition to the qualitative differences observed for the two cell lines in regard to mitotic accumulation, HeLa cells accumulated for prolonged periods in the presence of colcemid while V79 cells were blocked for only a few hours, HeLa cells show a dramatic effect of redistribution of cells into sensitive phases of the cell cycle during exposure, which was reflected in the survival curves at low dose rate. More cell killing per unit dose was observed at 37 than at 74 rad/hr

  8. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    Science.gov (United States)

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Triphala, a formulation of traditional Ayurvedic medicine, shows protective effect against X-radiation in HeLa cells.

    Science.gov (United States)

    Takauji, Yuki; Miki, Kensuke; Mita, Juma; Hossain, Mohammad Nazir; Yamauchi, Masatake; Kioi, Mitomu; Ayusawa, Dai; Fujii, Michihiko

    2016-12-01

    Ayurveda is a holistic medical system of traditional medicine, and Triphala is one of the most popular formulations in Ayurveda. Triphala is composed of three kinds of herb, Terminalia chebula, Terminalia bellirica, and Emblica officinalis. Since Triphala is shown to exhibit a protective activity against ionizing radiation in mice, we investigated its activity in HeLa cells. We found that Triphala showed the protective effects against X-radiation and bleomycin, both of which generate DNA strand breaks, in HeLa cells. Further, Triphala efficiently eliminated reactive oxygen species (ROS) in HeLa cells. Thus, the antioxidant activity of Triphala would likely play a role in its protective actions against X-radiation and bleomycin because both agents damage DNA through the generation of ROS. These observations suggested that the radioprotective activity of Triphala can be, at least partly, studied with the cells cultured in vitro. The simple bioassay system with human cultured cells would facilitate the understanding of the molecular basis for the beneficial effects of Triphala.

  10. Radiosensitivity of Hela cells in various O2 concentrations and consideration of oxygen effect in radiotherapy

    International Nuclear Information System (INIS)

    Kuroda, Yoshikazu; Nyunoya, Koichiro

    1979-01-01

    The aim of this paper is the study of the radiosensitivity of HeLa cells in vitro in various oxygen concentrations and the consideration of the utilization of oxygen effect in radiation therapy, based on the data of HeLa cells and tumor oxygen tension. Survival curves of HeLa cells are found to be exponential as a function of radiation dose and the radiosensitivity is dependent on oxygen tension of culture medium. Relative radiosensitivity decreases remarkably at low level of oxygen, especially under 9 mmHg pO 2 . The utilization of oxygen effect in radiation may be useful in hyperbaric oxygen inhalation and not useful under local tissue hypoxia induced by tourniquet application. Reoxygenation occurs with shrinkage of tumor after irradiation and this phenomenon will diminish the value of hyperbaric oxygen in radiation therapy. (author)

  11. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin.

    Science.gov (United States)

    Li, Na; Zhang, Wei

    2017-04-28

    Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells. © 2017 The Author(s).

  12. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    Science.gov (United States)

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  13. Paclitaxel-resistant HeLa cells have up-regulated levels of reactive oxygen species and increased expression of taxol resistance gene 1.

    Science.gov (United States)

    Bi, Wenxiang; Wang, Yuxia; Sun, Gaoying; Zhang, Xiaojin; Wei, Yongqing; Li, Lu; Wang, Xiaoyuan

    2014-07-01

    This study is to establish a paclitaxel (PTX)-resistant human cervical carcinoma HeLa cell line (HeLa/PTX) and to investigate its redox characteristics and the expression of taxol resistance gene 1 (Txr1). HeLa cells were treated with PTX and effects of PTX on cell proliferation were detected through cell counting and the MTT assay. Levels of cellular reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG) as well as the ratio of GSH to GSSG were measured by the 2,7-difluorescein diacetate (DCFH-DA) method and the 5,5'dithiobis(2-nitrobenzoic acid) (DTNB) method. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined by the nitrite formation method, the molybdate colorimetric method, and the DTNB colorimetric method, respectively. The level of Txr1 mRNA was determined by real-time PCR. Compared with the regular HeLa cells, HeLa/PTX cells were larger in size and had more cytoplasmic granules. The population doubling time for HeLa/PTX cells was 1.32 times of that of HeLa cells (PHeLa/PTX cells showed stronger resistance to PTX than HeLa cells with a resistance index of 122.69. HeLa/PTX cells had higher levels of ROS (PHeLa cells. HeLa/PTX cells, with higher levels of ROS and Txr1 mRNA expression, are more resistant to PTX than HeLa cells.

  14. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  15. IR-induced autophagy plays a role in survival of HeLa cells

    International Nuclear Information System (INIS)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong Min; Kim, Jin Hong; Kim, Jin Kyu

    2014-01-01

    Cells respond to stress with repair, or are diverted into irreversible cell cycle exit (senescence) or are eliminated through programmed cell death. There are two major morphologically distinctive forms of programmed cell death, apoptosis and autophagic cell death. Apoptosis contribute to cell death, whereas autophagy can play a dual role in mediating either cell survival or death in response to various stress stimuli. Here we analysed cellular responses induced by IR. The understanding of an appropriate cellular stress response is of crucial importance in foreseeing the cell fate. Apoptotic feagures were not detected in HeLa under our experimental irradiation condition. Autophagic cell death in HeLa may play an important role in cell protection and can result in cell survival

  16. The comparison of radiation responses in MCF-7 and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong-Min; Kim, Jin Hong; Kim, Jin Kyu [Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    Activation of this pathway temporarily arrests cells at the G1 or G2 checkpoints of cell cycle, or terminates DNA replication and cell division. The present study was carried out to identify the fate of cells to cope with DNA damage stress. Cellular responses following IR treatment were different depending on the characteristics (origin, organism and genes expressed etc.) of cell line used and extent of genomic injury. p53 expression level was increased in a dose-dependent manner in both cells. IR induced a drastic increase in expression of p21 in MCF-7 compared to that in HeLa cells. Cell cycle analysis using flow cytometry showed a significant accumulation in G2/M phase after treatment of MCF-7 with IR. This study identified that IR-induced cell fates were determined through p53-dependent activation of p21, which resulted in senescence of MCF-7 cells and autophagy of HeLa cells.

  17. Phosphofructokinase-P Modulates P44/42 MAPK Levels in HeLa Cells.

    Science.gov (United States)

    Cardim Pires, Thyago Rubens; Albanese, Jamille Mansur; Schwab, Michael; Marette, André; Carvalho, Renato Sampaio; Sola-Penna, Mauro; Zancan, Patricia

    2017-05-01

    It is known that interfering with glycolysis leads to profound modification of cancer cell proliferation. However, energy production is not the major reason for this correlation. Here, using HeLa cells as a model for cancer, we demonstrate that phosphofructokinase-P (PFK-P), which is overexpressed in diverse types of cancer including HeLa cells, modulates expression of P44/42 mitogen-activated protein kinase (MAPK). Silencing of PFK-P did not alter HeLa cell viability or energy production, including the glycolytic rate. On the other hand, silencing of PFK-P induced the downregulation of p44/42 MAPK, augmenting the sensitivity of HeLa cells to different drugs. Conversely, overexpression of PFK-P promotes the upregulation of p44/42 MAPK, making the cells more resistant to the drugs. These results indicate that overexpression of PFK-P by cancer cells is related to activation of survival pathways via upregulation of MAPK and suggest PFK-P as a promising target for cancer therapy. J. Cell. Biochem. 118: 1216-1226, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Cholesterol esters are detected by Raman microspectroscopy in HeLa cells

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2009-01-01

    The detection of trans-unsaturated lipids in single HeLa cells by Raman microspectroscopy was recently reported in this journal by Onogi et al. Based on our previously published Raman microspectroscopy data of individual macrophage foam cells, a detailed comparison between our spectra and spectrum

  19. Growth regulation of HeLa cells by 1060 nm photons

    International Nuclear Information System (INIS)

    Torghele, K. F.

    1993-12-01

    Living organisms are open systems dominated by electromagnetic interaction. An essential feature of a living system is its cybernetic process which imply their capability of adaptation and sensitivity to internal and external fluctuations. The experimental results show that coherent and incoherent light of 1060 nm wavelength influences the metabolic processes and consequently the proliferation of cancer cell cultures (HeLa). Light induced regulation of HeLa cell growth depends on the cell density, the state of the cell culture and the amount of light irradiation. Best proliferation inhibiting effects can be obtained by application of 200 J/m 2 on HeLa cells in Lag-Phase and a typical cell density of 5.10 4 cells/cm 2 . Proceeding on the singlet oxygen hypothesis (KLIMA, H. et al.; 1990), it is shown mathematically that the dynamical behaviour of the NADH model is influenced by 1060 nm photons. Both, the experimental and the numerical results support our hypothesis: 1060 nm photons regulate the proliferation of HeLa cells. (author)

  20. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    Science.gov (United States)

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P HeLa cells through targeted regulating the expression of K-ras gene. In human cervical cancer tissues of a small sample set, the expression of miR-143 is downregulated, and the expression of K-ras is upregulated.

  1. HeLa cell variants that differ in sensitivity to monofunctional alkylating agents, with independence of cytotoxic and mutagenic responses

    Science.gov (United States)

    Baker, R. M.; Voorhis, W. C. Van; Spencer, L. A.

    1979-01-01

    Different strains of the established human cell line HeLa differ substantially in sensitivity to ethyl methanesulfonate (EtMes). The EtMes doses effective for either cytotoxicity or mutation induction in a line of HeLa S3 cells are about 1/10th those required in the CCL2 HeLa line of the American Type Culture Collection. By plating the sensitive HeLa S3 line in the presence of highly cytotoxic doses of EtMes, we obtained a clone (designated A6) that displays about 7-fold greater resistance to EtMes toxicity. This A6 isolate is also cross resistant to other simple monofunctional alkylating agents—exhibiting about 4-fold increased resistance to methyl methanesulfonate and 10- to 15-fold increased resistance to N-methyl-N′-nitro-N-nitrosoguanidine but is similar to the S3 parent in sensitivity to mitomycin C, UV radiation, and γ-rays. In contrast to the results for cytotoxicity, the A6 variant and the S3 parent showed the same high susceptibility to EtMes induction of ouabain-resistant mutations. This is direct biological evidence that different alkylation lesions are normally responsible for mutagenic and cytotoxic effects. The S3 and A6 cell lines may differ in DNA repair capability specific to certain potentially lethal alkylation products. The comparative sensitivity of the A6 cells to alkylation mutagenesis may also prove useful in cell genetic studies by facilitating the generation of multiple mutants for recessive alleles and permitting exceptionally sensitive detection of specific mutagenic effects. PMID:291942

  2. Combined treatment of ionizing radiation with genistein on cervical cancer HeLa cells

    International Nuclear Information System (INIS)

    Zhang Bei; Liu Jiayin; Han Suping; Pan Jinshun; Yin Xiaoxing; Wang Bing; Hu Gang

    2006-01-01

    The anticancer agent genistein inhibits cell growth of tumor cell lines from various malignancies. In our study, we investigated the effectiveness of combined treatment of ionizing radiation (IR) with genistein on cervical HeLa cells and its possible mechanism. It was found that the inhibitory rate in cells with combined treatment was significantly higher than that of the cells treated with IR or genistein alone. After treatments of IR (4 Gy) combined with genistein (40 μmol/L), the apoptotic index of the cells was significantly increased and the cells were arrested in the G2/M phase. Survivin mRNA expression increased after IR (4 Gy), while it significantly decreased after combined treatment. These findings indicated that genistein enhanced the radiosensitivity of cervical cancer HeLa cells, and the mechanisms for this action might include increase of apoptosis, decrease of survivin expression, and prolongation of cell cycle arrest. (author)

  3. Effect of endoplasmic reticulum stress on the response of HeLa cells to carbon ion radiation

    International Nuclear Information System (INIS)

    Xia Jiefang; Wang Zhuanzi; Wei Wei; Dang Bingrong; Li Wenjian

    2015-01-01

    To investigate the effect of endoplasmic reticulum stress on HeLa cells to "1"2C"6"+ ion irradiation, HeLa cells were pretreated with 2.5 mmol/L dithiothreitol and irradiated by "1"2C"6"+ ions with different doses. The results showed that, compared with IR alone, dithiothreitol combined with carbon ion irradiation caused HeLa cell survival decreased, and the apoptosis increased. Moreover, dithiothreitol and carbon ion radiation combination treatment led to a significant increase of G_2/M phase, and autophagy was activated obviously in combination treatment group. The results imply that continuous endoplasmic reticulum stress can change the response of HeLa cells to "1"2C"6"+ irradiation, and dithiothreitol may affect HeLa cells through the autophagy cell death pathway. (authors)

  4. Effect of inhibition of intermediate-conductance-Ca2+-activated K+ channels on HeLa cell proliferation

    Directory of Open Access Journals (Sweden)

    Ping Zhan

    2018-01-01

    Conclusion: CLT and blocking of IKCal gene expression effectively inhibits HeLa cell proliferation; therefore, the use of a blocking agent and RNAi both effectively downregulated the mRNA expression of IKCal, which in turn mediated the proliferation of HeLa cells, producing an antitumor effect.

  5. Construction of cell model of silenced Ku80 and the radiobiology change of HeLa cell

    International Nuclear Information System (INIS)

    Zhuang Liang; Yu Shiying; Huang Xiaoyuan; Xiong Huihua; Xiong Hua; Li Xiaolan; Leng Yan

    2007-01-01

    Objective: To construct the cell model of Ku80 with expression inhibited by siRNA and to explore the role of Ku80 in radiobiology. Methods: Ku80-siRNA expression plasmids were constructed and HeLa cells were transfected with these plasmids by lipofectamine. Western blotting was used to measure the expression of Ku80. After irradiation with 6 MV X ray, cells were collected and analyzed by flow cytometry for apoptosis and cell cycle at 24, 48 and 72 h; The radiobiology parameters of four cell lines were acquired by clone formation array. Results: Three stable transfected cell clones were obtained, and the inhibition rates of Ku80 protein expression of two positive clones were 89.3% and 96.4%; The apoptosis rates of HeLa cells Ku80 inhibited were higher than control cells at 48 and 72 after X ray irradiation (P 0.05). HeLa cells of silenced Ku80 had lower SF 2 and D 0 than control cells, and their SER (sensitization enhancement ratio) based on D 10 were 1.315 and 1.365, respectively. Conclusions: The HeLa cell models with Ku80 expression suppressed were successfully established; the inhibition of Ku80 by siRNA could enhance the radiosensitivity of HeLa cells. (authors)

  6. Saffold Virus Type 3 (SAFV-3) Persists in HeLa Cells

    Science.gov (United States)

    Himeda, Toshiki; Hosomi, Takushi; Okuwa, Takako; Muraki, Yasushi; Ohara, Yoshiro

    2013-01-01

    Saffold virus (SAFV) was identified as a human cardiovirus in 2007. Although several epidemiological studies have been reported, they have failed to provide a clear picture of the relationship between SAFV and human diseases. SAFV genotype 3 has been isolated from the cerebrospinal fluid specimen of patient with aseptic meningitis. This finding is of interest since Theiler’s murine encephalomyelitis virus (TMEV), which is the closely related virus, is known to cause a multiple sclerosis-like syndrome in mice. TMEV persistently infects in mouse macrophage cells in vivo and in vitro, and the viral persistence is essential in TMEV-induced demyelinating disease. The precise mechanism(s) of SAFV infection still remain unclear. In order to clarify the SAFV pathogenicity, in the present study, we studied the possibilities of the in vitro persistent infection of SAFV. The two distinct phenotypes of HeLa cells, HeLa-N and HeLa-R, were identified. In these cells, the type of SAFV-3 infection was clearly different. HeLa-N cells were lyticly infected with SAFV-3 and the host suitable for the efficient growth. On the other hand, HeLa-R cells were persistently infected with SAFV-3. In addition, the SAFV persistence in HeLa-R cells is independent of type I IFN response of host cells although the TMEV persistence in mouse macrophage cells depends on the response. Furthermore, it was suggested that SAFV persistence may be influenced by the expression of receptor(s) for SAFV infection on the host cells. The present findings on SAFV persistence will provide the important information to encourage the research of SAFV pathogenicity. PMID:23308162

  7. Neutron activation analysis of antimony in chromatin and nucleoids of HeLa cells

    International Nuclear Information System (INIS)

    Ashry, H.A.; Topaloglou, A.; Altmann, H.

    1988-02-01

    Antimony seems to be cancerogenic in men. In the present investigations we tried to find out if Sb +++ are also bound to the cell nucleus. HeLa cells were incubated with SbCl 3 and after a 18 h incubation time cells were lysed and crude chromatin isolated. In this preparation Sb was determined by neutron activation analysis. From the same cell culture nucleoids were prepared by ultracentrifugation and also Sb detected in these structures. 12 refs., 2 tabs. (Author)

  8. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Julie Kirkegaard

    2014-08-01

    Full Text Available This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  9. Visualizing the molecular sociology at the HeLa cell nuclear periphery

    NARCIS (Netherlands)

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich|info:eu-repo/dai/nl/412516438; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-01-01

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed

  10. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells

    DEFF Research Database (Denmark)

    Hao, Xian; Wu, Jiazhen; Shan, Yuping

    2012-01-01

    the internalization mechanism of small-size AuNPs by living Hela cells. Herein, we found that the caveolae-mediated endocytosis was the dominant pathway for the intracellular delivery of small-size AuNPs. The intracellular delivery was suppressed when we depleted the cholesterol with methyl-β-cyclodextrin (M beta CD...

  11. Adenovirus DNA replication in vitro is stimulated by RNA from uninfected HeLa cells

    NARCIS (Netherlands)

    Vliet, P.C. van der; Dam, D. van; Kwant, M.M.

    1984-01-01

    Adenovirus DNA replication was studied in a partially reconstituted system consisting of purified viral proteins (DNA-binding protein, precursor terminal protein and Ad DNA polymerase) and a nuclear extract from uninfected HeLa cells. Optimal DNA replication required the presence of a heat-stable,

  12. Effects of Geven root extract on proliferation of HeLa cells and bcl-2 ...

    African Journals Online (AJOL)

    Yomi

    2012-03-01

    , Turkey. 3Research ... Geven (Astragalus L.) root extract is used for asthma, diarrhea, and cancer therapy in Chinese ... 0.1 mg/ml concentrations of Astragalus root extract were applied to HeLa cell cultures for 24, 48 and 72 h.

  13. Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity

    Science.gov (United States)

    Fernández-Escobar, Mercedes; Nájera, José Luis; Baldanta, Sara; Rodriguez, Dolores; Way, Michael; Esteban, Mariano

    2015-01-01

    Protein kinase R (PKR) and RNase L are host cell components that function to contain viral spread after infections. In this study, we analyzed the role of both proteins in the abortive infection of human HeLa cells with the poxvirus strain NYVAC, for which an inhibition of viral A27L and B5R gene expression is described. Specifically, the translation of these viral genes is independent of PKR activation, but their expression is dependent on the RNase L activity. PMID:26656695

  14. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  15. Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression

    International Nuclear Information System (INIS)

    Liu, Junye; Guo, Guozhen; Yang, Le; Zhang, Jian; Zhang, Jing; Chen, Yongbin; Li, Kangchu; Li, Yurong; Li, Yan; Yao, Libo

    2012-01-01

    NDRG2, a member of N-Myc downstream regulated gene family, plays some roles in cellular stress, cell differentiation and tumor suppression. We have found that NDRG2 expression in cervical cancer Hela cells increases significantly upon stimulation with cisplatin, the most popular chemotherapeutic agent currently used for the treatment of advanced cervical cancer. This interesting phenomenon drove us to evaluate the role of NDRG2 in chemosensitivity of Hela cells. In the present study, RNA interference was employed to down-regulate NDRG2 expression in Hela cells. RT-PCR and Western blot were used to detect expression of NDRG2, Bcl-2 and Bax in cancer cells. Real-time PCR was applied to detect miR-15b and miR-16 expression levels. Drug sensitivity was determined with MTT assay. Cell cloning efficiency was evaluated by Colony-forming assay. Apoptotic cells were detected with annexin V staining and flow cytometry. In vitro drug sensitivity assay revealed that suppression of NDRG2 could sensitize Hela cells to cisplatin. Down-regulation of NDRG2 didn’t influence the colony-forming ability but promoted cisplatin-induced apoptosis of Hela cells. Inhibition of NDRG2 in Hela cells was accompanied by decreased Bcl-2 protein level. However, Bcl-2 mRNA level was not changed in Hela cells with down-regulation of NDRG2. Further study indicated that miR-15b and miR-16, two microRNAs targetting Bcl-2, were significantly up-regulated in NDRG2-suppressed Hela cells. These data suggested that down-regulation of NDRG2 could enhance sensitivity of Hela cells to cisplatin through inhibiting Bcl-2 protein expression, which might be mediated by up-regulating miR-15b and miR-16

  16. Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells

    International Nuclear Information System (INIS)

    Hosoki, Ayaka; Yonekura, Shin-Ichiro; Zhao, Qing-Li

    2012-01-01

    Reactive oxygen species (ROS) act as a mediator of ionizing radiation-induced cellular damage. Previous studies have indicated that MnSOD (SOD2) plays a critical role in protection against ionizing radiation in mammalian cells. In this study, we constructed two types of stable HeLa cell lines overexpressing SOD2, HeLa S3/SOD2 and T-REx HeLa/SOD2, to elucidate the mechanisms underlying the protection against radiation by SOD2. SOD2 overexpression in mitochondria enhanced the survival of HeLa S3 and T-REx HeLa cells following γ-irradiation. The levels of γH2AX significantly decreased in HeLa S3/SOD2 and T-REx HeLa/SOD2 cells compared with those in the control cells. MitoSox TM Red assays showed that both lines of SOD2-expressing cells showed suppression of the superoxide generation in mitochondria. Furthermore, flow cytometry with a fluorescent probe (2',7'-dichlorofluorescein) revealed that the cellular levels of ROS increased in HeLa S3 cells during post-irradiation incubation, but the increase was markedly attenuated in HeLa S3/SOD2 cells. DNA microarray analysis revealed that, of 47,000 probe sets analyzed, 117 and 166 probes showed more than 2-fold changes after 5.5 Gy of γ-irradiation in control and HeLa S3/SOD2 cells, respectively. Pathway analysis revealed different expression profiles in irradiated control cells and irradiated SOD2-overexpressing cells. These results indicate that SOD2 protects HeLa cells against cellular effects of γ-rays through suppressing oxidative stress in irradiated cells caused by ROS generated in the mitochondria and through regulating the expression of genes which play a critical role in protection against ionizing radiation. (author)

  17. Kelussia odoratissima potentiates cytotoxic effects of radiation in HeLa cancer cell line

    Directory of Open Access Journals (Sweden)

    Azar Hosseini

    2017-02-01

    Full Text Available Objective: Cervical cancer is the second most common cause of death from cancer in women throughout the world. The aim of this study was to evaluate the cytotoxic activity of Kelussia odoratissima (K. odoratissima extract associated with radiotherapy in cervical cancer cells (HeLa cell line.Materials and Methods: Different concentration of the extract (25-500µg/ml was tested in HeLa cell lines. Cell cytotoxicity of the extract and the effects of the extract on radiation (2Gy/min-induced damages were assessed by MTT assay. Apoptosis was assessed using flow cytometric analysis.Result: K. odoratissima decreased cell viability in HeLa cell line in a concentration and time-dependent manner. When compared to the control,K. odoratissima induced a sub-G1 peak in the flow cytometry histogram of treated cells, indicating that apoptotic cell death is involved in K. odoratissima-induced toxicity. It was also shown that K. odoratissima sensitizes cells to radiation-induced toxicity.Conclusion: Our result showed the extract increased the radiation effect. This observation may be related to the presence of active compounds such as phthalides and ferulic acid.

  18. The influence of pH on the excision of UV-photoproducts from HeLa cells

    International Nuclear Information System (INIS)

    Masek, F.; Hochmann, J.; Duraj, J.

    1977-01-01

    Excision of pyrimidine dimers with pH decreasing in UV irradiated HeLa cells can be depressed. This depression is independent of the UV dose within the investigated range. The excision capacity of the HeLa repair system from absolute amount of excised dimers is shown. (author)

  19. Calcium mobilization in HeLa cells induced by nitric oxide.

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  20. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    Science.gov (United States)

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P cells. However, HeLa cells showed a significant (P cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  1. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  2. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  3. Three-dimensional printing of Hela cells for cervical tumor model in vitro

    International Nuclear Information System (INIS)

    Zhao, Yu; Yao, Rui; Ouyang, Liliang; Ding, Hongxu; Zhang, Ting; Sun, Wei; Zhang, Kaitai; Cheng, Shujun

    2014-01-01

    Advances in three-dimensional (3D) printing have enabled the direct assembly of cells and extracellular matrix materials to form in vitro cellular models for 3D biology, the study of disease pathogenesis and new drug discovery. In this study, we report a method of 3D printing for Hela cells and gelatin/alginate/fibrinogen hydrogels to construct in vitro cervical tumor models. Cell proliferation, matrix metalloproteinase (MMP) protein expression and chemoresistance were measured in the printed 3D cervical tumor models and compared with conventional 2D planar culture models. Over 90% cell viability was observed using the defined printing process. Comparisons of 3D and 2D results revealed that Hela cells showed a higher proliferation rate in the printed 3D environment and tended to form cellular spheroids, but formed monolayer cell sheets in 2D culture. Hela cells in 3D printed models also showed higher MMP protein expression and higher chemoresistance than those in 2D culture. These new biological characteristics from the printed 3D tumor models in vitro as well as the novel 3D cell printing technology may help the evolution of 3D cancer study. (paper)

  4. Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

    Directory of Open Access Journals (Sweden)

    Nils Bohmer

    2015-01-01

    Full Text Available Nanomedicine is a rapidly growing field in nanotechnology, which has great potential in the development of new therapies for numerous diseases. For example iron oxide nanoparticles are in clinical use already in the thermotherapy of brain cancer. Although it has been shown, that tumor cells take up these particles in vitro, little is known about the internalization routes. Understanding of the underlying uptake mechanisms would be very useful for faster and precise development of nanoparticles for clinical applications. This study aims at the identification of key proteins, which are crucial for the active uptake of iron oxide nanoparticles by HeLa cells (human cervical cancer as a model cell line. Cells were transfected with specific siRNAs against Caveolin-1, Dynamin 2, Flotillin-1, Clathrin, PIP5Kα and CDC42. Knockdown of Caveolin-1 reduces endocytosis of superparamagnetic iron oxide nanoparticles (SPIONs and silica-coated iron oxide nanoparticles (SCIONs between 23 and 41%, depending on the surface characteristics of the nanoparticles and the experimental design. Knockdown of CDC42 showed a 46% decrease of the internalization of PEGylated SPIONs within 24 h incubation time. Knockdown of Dynamin 2, Flotillin-1, Clathrin and PIP5Kα caused no or only minor effects. Hence endocytosis in HeLa cells of iron oxide nanoparticles, used in this study, is mainly mediated by Caveolin-1 and CDC42. It is shown here for the first time, which proteins of the endocytotic pathway mediate the endocytosis of silica-coated iron oxide nanoparticles in HeLa cells in vitro. In future studies more experiments should be carried out with different cell lines and other well-defined nanoparticle species to elucidate possible general principles.

  5. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  6. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    International Nuclear Information System (INIS)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  7. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells

    Directory of Open Access Journals (Sweden)

    Jung Mi Yoon

    2015-01-01

    Full Text Available BACKGROUND: Doxycycline (DC has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL-mediated apoptosis against several tumor types in the concentration range of 10-40 μg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. METHODS: The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. RESULTS AND CONCLUSION: In the present findings we showed that low concentration of DC (<2.0 μg/mL exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 μg/mL significantly (p < 0.001 attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazo-lium bromide (MTT assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 μg/mL. Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 μg/mL did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of cas-pase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 μg/mL. Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  8. Dimethylfumarate induces cell cycle arrest and apoptosis via regulating intracellular redox systems in HeLa cells.

    Science.gov (United States)

    Han, Guocan; Zhou, Qiang

    2016-12-01

    Dimethylfumarate (DMF) is cytotoxic to several kinds of cells and serves as an anti-tumor drug. This study was designed to investigate the effects and underlying mechanism of DMF on cervical cancer cells. HeLa cells were cultured and treated with 0, 50, 100, 150, and 200 μM DMF, respectively. After 24 h, cell growth was evaluated using Cell Counting Kit-8 (CCK-8) assay and the cell cycle was examined using flow cytometry. In addition, cell apoptosis was detected by Annexin V/propidium iodide (PI) staining and the expressions of caspase-3 and poly-ADP-ribose polymerase (PARP) were detected using western blotting. The redox-related factors were then assessed. Furthermore, all of the indicators were detected in HeLa cells after combined treatment of DMF and N-acetyl-L-cysteine (NAC, an oxygen-free radical scavenger). The cell number and cell growth of HeLa were obviously inhibited by DMF in a dose-dependent manner, as the cell cycle was arrested at G0/G1 phase (P HeLa cells were markedly increased, and the expression levels of caspase-3 and PARP were significantly increased in a DMF concentration-dependent way (P cell proliferation and apoptosis of HeLa cells was mainly related to the intracellular redox systems by depletion of intracellular GSH.

  9. Changes in distribution of cell cycle phases and DNA content in HeLa S3 cell after irradiation

    International Nuclear Information System (INIS)

    Wang Shunbao

    1992-01-01

    The effects of irradiation and hyperthermia on the distribution in various phases and DNA content of HeLa S 3 cells were analyzed by flow cytometry and an image analysis instrument. A marked increase in DNA content from 6.718 to 9.614(AU) in HeLa S 3 cells after 6 Gy irradiation was seen to correspond with the changes in the distribution of various phases in G 2 + M, from 22% to 52%. Meanwhile, the surviving fraction of HeLa S 3 cells after 6 Gy irradiation was less than 1%. However, after heating at 44 deg C for 10 min, the amount of cells in G 2 + M increased from 22.5% to 52.5% and the surviving fraction after hyperthermia was less than 2.65%. The changes in distribution of various phases after Ir-192 irradiation were similar to those seen after X-ray irradiation. The delay of G 2 + M phase after treatment with 8 Gy plus heating at 44 deg C for 7 min in HeLa S 3 cells was similar to that seen in the case of treatment with 8 Gy alone. As the surviving fraction accompanying the G 2 + M delay after irradiation plus heat treatment was very low, we suggest that the changes of distribution in various phases of HeLa S 3 cells after treatment might be used as a rapid indicator of serious injury

  10. In vitro assessment of anti-proliferative effect induced by α-mangostin from Cratoxylum arborescens on HeLa cells

    Science.gov (United States)

    El habbash, Aisha I.; Ibrahim, Mohamed Yousif; Yahayu, Maizatulakmal; Omer, Fatima Abd Elmutaal; Abd Rahman, Mashitoh; Nordin, Noraziah; Lian, Gwendoline Ee Cheng

    2017-01-01

    Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing. PMID:28740747

  11. Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells.

    Science.gov (United States)

    Lo, Yu-Li; Tu, Wei-Chen

    2015-12-05

    Chrysophsin-1, an amphipathic alpha-helical antimicrobial peptide, is isolated from the gills of the red sea bream and possesses different structure and mechanism(s) in comparison with traditional multidrug resistance (MDR) modulators. For the purpose of reducing off-target normal cell toxicity, it is rational to incorporate chrysophsin-1 and epirubicin in a PEGylated liposomal formulation. In the present study, we report a multifunctional liposomes with epirubicin as an antineoplastic agent and an apoptosis inducer, as well as chrysophsin-1 as a MDR transporter inhibitor and an apoptosis modulator in human cervical cancer HeLa cells. Co-incubation of HeLa cells with PEGylated liposomal formulation of epirubicin and chrysophsin-1 resulted in a significant increase in the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or chrysophsin-1 were shown to considerably improve the intracellular H2O2 and O2(-) levels of HeLa cells. Furthermore, these treatments were found to extensively reduce mRNA expression levels of MDR1, MRP1, and MRP2. The addition of chrysophsin-1 in liposomes was demonstrated to substantially enhance the intracellular accumulation of epirubicin in HeLa cells. Moreover, the PEGylated liposomes of epirubicin and chrysophsin-1 were also found to significantly increase the mRNA expressions of p53, Bax, and Bcl-2. The ratio of Bax to Bcl-2 was noticeably amplified in the presence of these formulations. Apoptosis induction was also validated by chromatin condensation, a reduction in mitochondrial membrane potential, the increased sub-G1 phase of cell cycle, and more populations of apoptosis using annexin V/PI assay. These formulations were verified to increase the activity and mRNA expression levels of caspase-9 and caspases-3. Collectively, our findings provide the first evidence that cotreatment with free or liposomal chrysophsin-1 and epirubicin leads to cell death in human cervical cancer cells through the ROS

  12. Anticancer effects of the engineered stem cells transduced with therapeutic genes via a selective tumor tropism caused by vascular endothelial growth factor toward HeLa cervical cancer cells.

    Science.gov (United States)

    Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul

    2013-10-01

    The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.

  13. Lysophosphatidylcholine Induces Taurine Release from HeLa Cells

    DEFF Research Database (Denmark)

    Lambert, Ian H.; Falktoft, Birgitte

    2000-01-01

    Cell volume regulation, Membrane permeabilization, Vitamin E, Tyrosine phosphorylation, Lysophospholipids......Cell volume regulation, Membrane permeabilization, Vitamin E, Tyrosine phosphorylation, Lysophospholipids...

  14. Pravastatin and simvastatin inhibit the adhesion, replication and proliferation of Toxoplasma gondii (RH strain) in HeLa cells.

    Science.gov (United States)

    Sanfelice, Raquel Arruda; da Silva, Suelen Santos; Bosqui, Larissa Rodrigues; Miranda-Sapla, Milena Menegazzo; Barbosa, Bellisa Freitas; Silva, Rafaela José; Ferro, Eloísa A Vieira; Panagio, Luciano Aparecido; Navarro, Italmar Teodorico; Bordignon, Juliano; Conchon-Costa, Ivete; Pavanelli, Wander Rogerio; Almeida, Ricardo Sergio; Costa, Idessania Nazareth

    2017-03-01

    The conventional treatment for toxoplasmosis with pyrimethamine and sulfadiazine shows toxic effects to the host, and it is therefore necessary to search for new drugs. Some studies suggest the use of statins, which inhibit cholesterol synthesis in humans and also the initial processes of isoprenoid biosynthesis in the parasite. Thus, the objective of this study was to evaluate the activity of the statins pravastatin and simvastatin in HeLa cells infected in vitro with the RH strain of T. gondii. HeLa cells (1×10 5 ) were infected with T. gondii tachyzoites (5×10 5 ) following two different treatment protocols. In the first protocol, T. gondii tachyzoites were pretreated with pravastatin (50 and 100μg/mL) and simvastatin (1.56 and 3.125μg/mL) for 30min prior to infection. In the second, HeLa cells were first infected (5×10 5 ) with tachyzoites and subsequently treated with pravastatin and simvastatin for 24h at the concentrations noted above. Initially, we evaluated the cytotoxicity of drugs by the MTT assay, number of tachyzoites adhered to cells, number of infected cells, and viability of tachyzoites by trypan blue exclusion. The supernatant of the cell cultures was collected post-treatment for determination of the pattern of Th1/Th2/Th17 cytokines by cytometric bead array. There was no cytotoxicity to HeLa cells with 50 and 100μg/mL pravastatin and 1.56 and 3.125μg/mL simvastatin. There was no change in the viability of tachyzoites that received pretreatment. Regarding the pre- and post-treatment of the cells with pravastatin and simvastatin alone, there was a reduction in adhesion, invasion and proliferation of cells to T. gondii. As for the production of cytokines, we found that IL-6 and IL-17 were significantly reduced in cells infected with T. gondii and treated with pravastatin and simvastatin, when compared to control. Based on these results, we can infer that pravastatin and simvastatin alone possess antiproliferative effects on tachyzoites forms

  15. γ-irradiation induces radioresistant DNA synthesis in HeLa cells

    International Nuclear Information System (INIS)

    Synzynys, B.I.; Aminev, A.G.; Konstantinova, S.A.; Saenko, A.S.

    1987-01-01

    Cells of suspension HeLa culture at the logarithmic phase of growth were exposed to 60 Co-γ-rays (5 Gy), incubated in the nutritious medium, and in 4 h subjected to repeated irradiation: the dose-response function and the dynamics of DNA synthesis inhibition were determined. It was shown that DNA synthesis was inhibited to a lesser extent after preirradiation, in other words, DNA synthesis was radioresistant. A correlation between this synthesis and reproductive cell death is discussed

  16. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    Science.gov (United States)

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  18. Photokinetic and ultrastructural studies on porphyrin photosensitization of HeLa cells

    International Nuclear Information System (INIS)

    Milanesi, Carla; Sorgato, Fiorella; Jori, Giulio

    1989-01-01

    Liposome-bound haematoporphyrin or haematoporphyrin dimethylester, as well as haematoporphyrin dissolved in phosphate-buffered saline, were added to HeLa cell monolayers at a dose of 1 μg of porphyrin per 10 5 cells. After 2 min or 20 min incubation liposome-bound porphyrins were accumulated by cells in an about two-fold larger amount than the water-dissolved haematoporphyrin. This caused a more efficient photosensitization of HeLa cells by liposome-delivered porphyrins upon illumination with 366 nm light. Ultrastructural studies of HeLa cells, which had been incubated in a physiological medium for 24 h after the end of irradiation, showed that liposomal porphyrins induce an early and extensive endocytoplasmic damage, leading to mitochondrial swelling and vesiculation; changes of permeability of the cytoplasmic membrane are also evident, especially in the case of haematoporphyrin dimethylester. On the other hand, water-dissolved haematoporphyrin predominantly photosensitizes damage of the plasma membrane. The different pattern of cell photodamage probably reflects a different subcellular distribution of the photosensitizing drugs. (author)

  19. FRAKSINASI PROTEIN KAPANG LAUT Xylaria psidii KT30 DAN SITOTOKSISITASNYA TERHADAP SEL HeLa [Fractionation of Proteins of Marine Fungus Xylaria psidii KT30 and their Cytotoxicity against HeLa Cells

    Directory of Open Access Journals (Sweden)

    Mita Gebriella Inthe

    2014-06-01

    Full Text Available Cervical cancer is the most common cause of death for Indonesian women after human breast cancer. One of the efforts of cancer treatment is the utilization of natural compounds. One of the microorganisms having the potential as anticancer agent is endophytic fungi. Endophytic fungi from the marine habitat can be isolated from sea weeds, sea grasses, sponges, and mangroves. Xylaria psidii KT30, a marine fungus used in this study was isolated from red seaweed Kappaphycus alvarezii. Xylaria psidii KT30 was cultivated in potato dextrose broth medium for nine days at room temperature 27-29°C in shaking condition. This study aimed to obtain protein fractions from X. psidii KT30 and determine their toxicity againt Chang and HeLa cells. The fractionation process was conducted using DEAE Sephadex A-50 column chromatography and the toxicity was determined by Brine Shrimp Lethality Test (BSLT. The metabolites excreted in the culture broth was extracted using 90% of ammonium sulphate. The extract was then tested for their toxicity against HeLa and Chang cells by Microculture Tetrazolium Technique (MTT assay.The results revealed that LC50 of the protein extract of X. psidii KT30 was 104.95 ppm and IC50 was 69.9 ppm. Based on the National Cancer Institute (NCI, this value showed moderate cytotoxicity against HeLa cells.

  20. The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells.

    Science.gov (United States)

    Yang, Yubo; Dai, Cuihong; Cai, Zhipeng; Hou, Aiju; Cheng, Dayou; Wu, Guanying; Li, Jing; Cui, Jie; Xu, Dechang

    2016-03-01

    Chemotherapy is the main strategy in the treatment of cancer; however, the development of drug-resistance is the obstacle in long-term treatment of cervical cancer. Cisplatin is one of the most common drugs used in cancer therapy. Recently, accumulating evidence suggests that miRNAs are involved in various bioactivities in oncogenesis. It is not unexpected that miRNAs play a key role in acquiring of drug-resistance in the progression of tumor. In this study, we induced and maintained four levels of cisplatin-resistant HeLa cell lines (HeLa/CR1, HeLa/CR2, HeLa/CR3, and HeLa/CR4). According to the previous studies and existing evidence, we selected five miRNAs (miR-183, miR-182, miR-30a, miR-15b, and miR-16) and their potential target mRNAs as our research targets. The real-time RT-PCR was adopted to detect the relative expression of miRNAs and their mRNAs. The results show that miR-182 and miR-15b were up-regulated in resistant cell lines, while miR-30a was significantly down-regulated. At the same time, their targets are related to drug resistance. Compared to their parent HeLa cell line, the expression of selected miRNAs in resistant cell lines altered. The alteration suggests that HeLa cell drug resistance is associated with distinct miRNAs, which indicates that miRNAs may be one of the therapy targets in the treatment of cervical cancer by sensitizing cell to chemotherapy. We suggested a possible network diagram based on the existing theory and the preliminary results of candidate miRNAs and their targets in HeLa cells during development of drug resistance.

  1. Synergistic Effects of SAM and Selenium Compounds on Proliferation, Migration and Adhesion of HeLa Cells.

    Science.gov (United States)

    Sun, Licui; Zhang, Jianxin; Yang, Qiu; Si, Yang; Liu, Yiqun; Wang, Qin; Han, Feng; Huang, Zhenwu

    2017-08-01

    To determine the antitumor activities and molecular mechanism of selenium compounds in HeLa cells. Western blotting was used to detect ERK and AKT activation in HeLa cells induced by selenium compounds selenomethionine (SeMet), methylselenocysteine (MeSeCys) and methylseleninic acids (MeSeA). Using MTT, wound-healing and Matrigel adhesion assays, the antitumor effects of SAM and selenium compounds were evaluated in HeLa cells. MeSeA inhibited ERK and AKT signaling pathways and suppressed the proliferation (peffects compared to the other treatments. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Ascorbyl Stearate Promotes Apoptosis Through Intrinsic Mitochondrial Pathway in HeLa Cancer Cells.

    Science.gov (United States)

    Mane, Shirish D; Thoh, Maikho; Sharma, Deepak; Sandur, Santosh K; Naidu, K Akhilender

    2016-12-01

    Ascorbic acid is proposed to have antitumor potential against certain cancer types but has the limitation of requiring high doses for treating cancer. Ascorbyl stearate (ASC-S) is a fatty acid ester derivative of ascorbic acid with comparable potent apoptotic activity. The present study was aimed at understanding the pathway involved in apoptotic activity of ASC-S in cervical cancer cells. The effect of ASC-S on reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) was studied in HeLa cells. Furthermore, the dose-dependent effect of ASC-S on release of cytochrome c, pro-caspase-9, caspase-3, BH3 interacting-domain death agonist (BID), truncated BH3 interacting-domain death agonist (t-BID), FAS ligand (FASL) and transcription factors nuclear factor-kappa B (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein-1 (AP1) were studied in HeLa cells. Treatment of HeLa cells with ASC-S significantly increased the MMP. The modulation of MMP resulted in cleavage of BID, expression of FAS, cleavage of pro-caspase-9 and release of cytochrome c into cytosol. In addition, ASC-S treatment resulted in deregulation of transcription factors NF-ĸB, NFAT and AP1, which play an important role in the development of inflammation and cancer. Our data, for the first time, suggest that ASC-S has an apoptotic effect against HeLa cells by inducing change in mitochondrial membrane permeability, cytochrome c release and subsequent activation of caspase-3 and NF-ĸB. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72.

    Science.gov (United States)

    Martín, Rebeca; Martín, Carla; Escobedo, Susana; Suárez, Juan E; Quirós, Luis M

    2013-09-17

    The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process.

  4. A key inactivation factor of HeLa cell viability by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takehiko; Yokoyama, Mayo [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: sato@ifs.tohoku.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan)

    2011-09-21

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H{sub 2}O{sub 2} in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H{sub 2}O{sub 2}, we assessed the differences in the effects of plasma-treated medium and H{sub 2}O{sub 2}-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H{sub 2}O{sub 2} into the cells, response to H{sub 2}O{sub 2} decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H{sub 2}O{sub 2} is one of the main factors responsible for inactivation of HeLa cell viability. (fast track communication)

  5. Radioprotective effect of calorie restriction in Hela cells and SD rats

    International Nuclear Information System (INIS)

    Yang Yang; Chong Yu; Jiao Yang; Xu Jiaying; Fan Saijun

    2012-01-01

    Objective: To explore the effect of low calorie metabolism on the survival of HeLa cells exposed to X-rays, and the influence of starvation on the antioxidative factors in the blood of rats after irradiation. Methods: MTT method was used to evaluate the impact of different concentration glucose on the proliferation of HeLa cells. Colony formation assay was employed to detect the influence of glucose (1, 5, 10 and 25 mmol/L) on radiosensitivity of HeLa cells. Flow cytometry assay was used to analyze distribution of cell cycle and apoptosis. 60 male SD rats were randomly divided into 6 groups with 10 rats each. Rats in every two groups were fed ad libitum, fasted for 24 h and fasted for 48 h, respectively. Rats in one group of each approach were respectively exposed to whole-body X-rays at 11 Gy. At 2 h after irradiation,all of rats were sacrificed and their venous blood was collected. Elisa kits were used to detect superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Results: An increased viability was observed in HeLa cells treated with the glucose at low concentration (<25 mmol/L), while HeLa cell growth was inhibited by glucose at doses of >25 mmol/L. Relevant to cells treated with 1 mmoL/L glucose, SERs (sensitive enhancement ratio) in cells exposed to 5, 10 and 25 mmol/L glucose were 1.07, 1.10 and 1.23,respectively. A reduction of G 2 /M and S arrests and apoptosis caused by 6 Gy X-ray irradiation were observed [(49.68 ±1.88)% and (35.54±1.45)% at G 2 /M phase, (16.88 ±1.22)% and (10.23 ±1.65)% at S phase, t=10.42, 5.61, P<0.05] and in the cells treated with 1 mmol/L glucose compared with cells treated with 25 mmol/L glucose [(25.50 ± 0.95)% and (7.56 ± 1.07)%, t=21.72, P<0.05].Without irradiation, calorie restriction exhibited a negligible influence on SOD and T-AOC in rats. However, after 11 Gy irradiation, compared with rats fed ad libitum, the levels of SOD and T-AOC were significantly increased in rats with calorie restriction (t=40

  6. Action of caffeine on x-irradiated HeLa cells. II. Synergistic lethality

    International Nuclear Information System (INIS)

    Busse, P.M.; Bose, S.K.; Jones, R.W.; Tolmach, L.J.

    1977-01-01

    Postirradiation treatment of HeLa S3 cells with 1 mM caffeine results in a marked diminution of the surviving fraction as scored by colony formation. The decrease is dose dependent; the effect of a 24-hour postirradiation treatment of a nonsynchronous population with caffeine is to change the terminal slope of the survival curve and its intercept. D 0 is reduced from 130 to 60 rad; the extrapolation number is increased about twofold. The amount of postirradiation killing is maximal if cells are exposed to caffeine at a concentration of at least 1 mM for 8 hours; less than 10% of unirradiated cells are killed under these conditions. Dose-response curves were also obtained for synchronous cells at various phases of the cell cycle. Similar results were obtained at all cell ages, but the magnitude of the effect is age dependent. This age dependence was further explored in experiments in which mitotically collected cells were exposed to 300 or 500 rad doses at 2-hour intervals throughout the cell cycle. Treatment with caffeine for 24 hours after irradiation enchances the killing of cells late in the cycle more than cells in G1. The sensitivities of two other cell lines, CHO and EMT6, also were examined; both are substantially less sensitive to caffeine. The smaller cell-cycle dependence of CHO cells is qualitatively the same as that of HeLa cells

  7. Effect of different stress factors on IL-6 and leptin expression in HELA cell cultures

    International Nuclear Information System (INIS)

    Chu Zhenwei; Yang Tao; Wang Luhuan; Hao Xiuhua; Yan Guangtao

    2009-01-01

    Objective: To study the effect of three stress factors high glucose (HG), lipopolysaccharide (LPS) and hydrogen peroxide (H 2 O 2 ) on the expression of culture supernatant IL-6 (IL-6) and leptin contents of HELA cell line. Methods: HELA cell culture models of severe inflammatory response syndrome were prepared with cultures treated with 50 mmol/L glucose (HG), 4 μg/ ml LPS and 100 μmol/L H 2 O 2 respectively and supernatant contents of IL-6 and leptin were measured with RIA at 1h, 6h and 24h. Results: Generally speaking, the culture supernatant contents of IL-6 gradually increased and leptin contents gradually decreased with significant differences from those in cultures not treated with either stress factor at 6h and 12h (P<0.05). Conclusion: Leptin as a possible anti-inflammatory cytokine might plays an important protective role in severe inflammatory response. (authors)

  8. [S100A7 promotes the metastasis and epithelial-mesenchymal transition on HeLa and CaSki cells].

    Science.gov (United States)

    Tian, T; Hua, Z; Wang, L Z; Wang, X Y; Chen, H Y; Liu, Z H; Cui, Z M

    2018-02-25

    Objective: To elucidate the impact of over-expression of S100A7 on migration, invasion, proliferation, cell cycle, and epithelial-mesenchymal transition (EMT) in human cervical cancer HeLa and CaSki cells. Methods: (1) Immunohistochemistry of SP was used to examine the expression of S100A7 in 40 cases of squamous cervical cancer tissues and 20 cases of normal cervical tissues. (2) The vectors of pLVX-IRES-Neo-S100A7 and pLVX-IRES-Neo were used to transfect human cervical cancer HeLa and CaSki cells, and the positive clones were screened and identified. Next, transwell migration assay, cell counting kit-8 (CCK-8) assay and fluorescence activating cell sorter (FACS) were used to detect the effect of S100A7-overexpression on the migration, invasion, proliferation and cell cycle of cervical cancer cells. Furthermore, western blot was performed to observe the expression of epithelial marker (E-cadherin) and mesenchymal markers (N-cadherin, vimentin, and fibronectin) of EMT. Results: (1) S100A7 expression was significantly higher in cervical squamous cancer tissues (median 91.6) than that in normal cervical tissues (median 52.1; Z=- 2.948, P= 0.003) . (2) Stable S100A7-overexpressed cells were established using lentiviral-mediated gene delivery in HeLa and CaSki cells. S100A7 was detected by real-time quantitative reverse transcription PCR, S100A7 mRNA of S100A7-overexpressed cells were 119±3 and 177±16, increased significantly compared with control groups of median ( Pcells, the number of S100A7-overexpressed HeLa and CaSki cells that passed the transwell membrane assay were increased significanatly (572±51 vs 337±25, PHeLa and CaSki cells that passed the transwell membrane were respectively 441±15 and 110±14, elevated significantly compared with control cells (156±21 and 59±7; Pcell cycle progression of HeLa and CaSki cells ( P> 0.05) . Expression of E-cadherin was dramatically decreased, while N-cadherin, vimentin, and fibronectin increased in S100A7

  9. Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells

    Science.gov (United States)

    Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.

    2014-01-01

    Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959

  10. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    Science.gov (United States)

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  11. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  12. Effect of 5-fluorodeoxyuridine on DNA replication in ultraviolet-irradiated HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Brozmanova, J.; Masek, F.; Synzynys, B.I.; Saenko, A.S.

    1985-11-05

    In HeLa cells precultivated for 6 hours with 5-fluorodeoxyuridine (FUdR) and for 18 hours in FUdR-free medium, DNA synthesis was much more resistant to UV irradiation than that of untreated cells. DNA synthesized in FUdR-pretreated and UV irradiated cells represents a semiconservative DNA replication and shows more rapid shift of the pulse-labelled chased DNA to high molecular weight. This DNA synthesis is not induced by synchronization of the cell cycle. It is assumed that either the changes of chromatine structure, or an enhanced level of some enzymes might be involved in the replication of the damaged template. (author).

  13. A Novel Photosensitizer 31,131-phenylhydrazine -Mppa (BPHM and Its in Vitro Photodynamic Therapy against HeLa Cells

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-04-01

    Full Text Available Photodynamic therapy (PDT has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-31,131 bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa, and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm2. Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  14. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mayumi Okamoto

    2014-09-01

    Full Text Available Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD. The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.

  15. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy

    Science.gov (United States)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  16. Variability of the nucleoli number in the progenies of intact and UV-irradiated clonogenic Hela cells

    International Nuclear Information System (INIS)

    Kucheryavaya, N.A.; Zavol'naya, E.S.; Vakhtin, Yu.B.

    1981-01-01

    The coefficient of the ''nucleoli number'' character heritability (h 2 ) in the population of intact Hela cells equals 0.21 to 0.33. UV-irradiation enhances almost equally both the intraclonic and population variability of the nucleoli number and, as a result, the coefficient of the ''nucleoli number'' character heritability does not change in the population of UV-irradiated Hela cells

  17. Variability of the nucleoli number in the progenies of intact and UV-irradiated clonogenic Hela cells

    Energy Technology Data Exchange (ETDEWEB)

    Kucheryavaya, N.A.; Zavol' naya, E.S.; Vakhtin, Yu.B. (AN SSSR, Leningrad. Inst. Tsitologii)

    1981-01-01

    The coefficient of the ''nucleoli number'' character heritability (h/sup 2/) in the population of intact Hela cells equals 0.21 to 0.33. UV-irradiation enhances almost equally both the intraclonic and population variability of the nucleoli number and, as a result, the coefficient of the ''nucleoli number'' character heritability does not change in the population of UV-irradiated Hela cells.

  18. [The Effect of TALENs-mediated Downregulation Expression of Nanog on Malignant Behavior of Cervical Cancer HeLa Cells].

    Science.gov (United States)

    Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong

    2016-01-01

    To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P HeLa cells were observed when compared to those of wild-type HeLa cells (P HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.

  19. Laser stimulation can activate autophagy in HeLa cells

    International Nuclear Information System (INIS)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue; Lan, Bei; Cao, Youjia; He, Hao

    2014-01-01

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca 2+ dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  20. Laser stimulation can activate autophagy in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Lan, Bei; Cao, Youjia [Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, Tianjin (China); He, Hao, E-mail: haohe@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China); Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2014-10-27

    For decades, lasers have been a daily tool in most biological research for fluorescent excitation by confocal or multiphoton microscopy. More than 20 years ago, cell photodamage caused by intense laser stimulation was noticed by generating reactive oxygen species, which was then thought as the main damage effect by photons. In this study, we show that laser stimulation can induce autophagy, an important cell lysosomal pathway responding to immune stimulation and starvation, without any biochemical treatment. Two different types of laser stimulations are found to be capable of activating autophagy: continuous scanning by continuous-wave visible lasers and a short-time flash of femtosecond laser irradiation. The autophagy generation is independent from wavelength, power, and scanning duration of the visible lasers. In contrast, the power of femtosecond laser is very critical to autophagy because the multiphoton excited Ca{sup 2+} dominates autophagy signaling. In general, we show here the different mechanisms of autophagy generation by such laser stimulation, which correspond to confocal microscopy and cell surgery, respectively. Those results can help further understanding of photodamage and autophagy signaling.

  1. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    Science.gov (United States)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  2. HeLa cells response to photodynamic treatment with Radachlorin at various irradiation parameters

    Science.gov (United States)

    Belashov, A. V.; Zhikhoreva, A. A.; Belyaeva, T. N.; Kornilova, E. S.; Petrov, N. V.; Salova, A. V.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    Measurements of average phase shifts introduced by living HeLa cells to probe wave front were carried out. Variations of this value were monitored in the course of morphological changes caused by photodynamic treatment at various irradiation doses. Observations of changes in living cells were also performed by means of far field optical microscopy and confocal fluorescent microscopy. Quantitative analysis of the data obtained shows that average phase shift introduced by the cells may either increase or decrease depending upon major parameters of the treatment.

  3. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells.

    Science.gov (United States)

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-10-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  4. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hikone, Yuya [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Hirai, Go [RIKEN, Synthetic Organic Chemistry Laboratory (Japan); Mishima, Masaki [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Inomata, Kohsuke [RIKEN, Quantitative Biology Center (Japan); Ikeya, Teppei; Arai, Souichiro [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Shirakawa, Masahiro [Japan Agency for Medical Research and Development, AMED-CREST (Japan); Sodeoka, Mikiko [RIKEN, Synthetic Organic Chemistry Laboratory (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan)

    2016-10-15

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N–H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  5. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells

    International Nuclear Information System (INIS)

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-01-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N–H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  6. Real-time observation of irradiated Hela-cell Modified by Fluorescent ubiquitination-based Cell Cycle Indicator Using Synchrotron X-Ray Microbeam

    International Nuclear Information System (INIS)

    Narita, A.; Noguchi, M.; Kaminaga, K.; Yokoya, A.; Kobayashi, K.; Usami, N.; Fujii, K.

    2015-01-01

    Fluorescent ubiquitination-based cell-cycle indicator (FUCCI) human cancer (HeLa) cells (red indicates G1; green, S/G2) were exposed to a synchrotron X-ray microbeam. Cells in either G1 or S/G2 were irradiated selectively according to their colour in the same microscopic field. Time-lapse micrographs of the irradiated cells were acquired for 24 h after irradiation. For fluorescent immunostaining, phosphorylated histone proteins (γ-H2AX) indicated the induction of DNA double-strand breaks. The cell cycle was arrested by irradiation at S/G2. In contrast, cells irradiated at G1 progressed to S/G2. The foci were induced in cells irradiated at both G1 and S/G2, suggesting that the G1-S (or S) checkpoint pathway does not function in HeLa cells due to the fact that the cells are functionally p53 deficient, even though X-ray microbeam irradiation significantly induces double-strand breaks. These results demonstrate that single FUCCI cell exposure and live cell imaging are powerful methods for studying the effects of radiation on the cell cycle. (authors)

  7. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  8. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells.

    Science.gov (United States)

    Jafarian, A; Ghannadi, A; Mohebi, B

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents.

  9. Cloning of smac gene and its overexpression effects on radiosensitivity of HeLa cells to γ-rays

    International Nuclear Information System (INIS)

    Zhao Baofeng; Tian Mei; Lei Hongwei; Su Xu

    2006-01-01

    Objective: To clone smac gene and construct eukaryocytic expression vector pcDNA3.1/ smac. The smac gene was transfected into HeLa cells to explore the effects of over-expression of extrinsic smac gene on radiosensitivity to γ-rays of HeLa cells. Methods: The full-length smac gene was amplified from total RNA of HeLa cells by RTPCR. The RTPCR product was ligated with the vector pcDNA3.1 and sequenced. The correct pcDNA3.1/smac was transfected into HeLa cells. The expression of smac gene was tested by RTPCR and Western blot. The cellular growth inhibition rates were evaluated by MTT 48 horns after irradiation with different doses of γ-rays. Results: Recombinant eukaryocytic expression vector pcDNA3.1/smac was successfully constructed. RTPCR and Western blot results indicated that the expression of smac gene of HeLa/smac cells was significantly enhanced compared with the expression of smac gene of HeLa/pcDNA3.1 and HeLa cells. 48 hours after different doses of γ-ray irradiation was significantly higher in pcDNA3.1/smac transfected HeLa/smac cells than those of non-transfected HeLa cells or pcDNA3.1 transfected HeLa/pcDNA3.1 cells, inhabitation rates were 38.85%, 17.64% and 20.32%, respectively. Conclusions: smac gene was successfully cloned. Extrinsic smac gene over-expression could significantly enhance radiosensitivity to γ-ray of HeLa cells, which would herald a new approach to improve radiosensitivity of cervical cancer. (authors)

  10. The pro-survival function of p53 in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kang, Mi Young; Jang, Eun Yeong; Kim, Jin Hong [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    The rate of apoptosis and autophagy was variable with different p53 status after IR treatment of cells. The influence of p53 status on cell fate suggests a role of p53 in two fundamentally important cell biological pathways: autophagy and apoptosis. p53 coordinates cell cycle arrest and apoptosis to govern cell fate. This study was done to identify p53-mediated regulation of cell's fate. Autophagy induced by IR may prevent cells from undergoing apoptosis, implying an interlink modulation between autophagy and apoptosis. The rate of apoptosis and autophagy was determined with different p53 status after IR treatment of HeLa cells in this study. Our research on IR-induced cellular responses may provide new information about fate decision between the processes of apoptosis and autophagy.

  11. Deficit in DNA content relative to histones in X-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.; Neubort, S.

    1976-01-01

    The DNA and histone content of HeLa S-3 cell cultures was measured by direct mass assays 21 hours after 1000 rad of X-irradiation, when the cells were arrested in G2 phase. The nuclear DNA content of such cultures was found to be deficient (73 per cent of control values). In contrast, the synthesis of nuclear histones persisted, and the total histone content was close to 100 per cent of control values. When synchronously-growing cultures were irradiated in mid-S phase and examined 3.5 hours later in G2 phase, both DNA and histone content were equal to control values. (author)

  12. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells

    DEFF Research Database (Denmark)

    Birkelund, Svend; Johnsen, H; Christiansen, Gunna

    1994-01-01

    . By use of a monoclonal antibody against phosphotyrosine, we showed that three classes of proteins are tyrosine phosphorylated: a triple band of 68, 66, and 64 kDa, a 97-kDa band, and a 140-kDa band. The phosphorylation could be detected by immunoblotting from 15 min after infection of HeLa cells. We...... inactive. Attachment of EBs to host cells is medicated by a heparan sulfate-like glycosaminoglycan. Following attachment, the EB is internalized within a membrane-bound vesicle, and during the first 8 h of infection the vesicles are transported to a perinuclear location where they aggregate and fuse...

  13. Radiosensitizing effect of artesunate on nude mice transplanted with HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Zhou Yuanyuan; Feng Yang; Zhang Xuguang; Zhu Wei; Ni Qianying; Geng Chong; Chen Guanglie; Luo Judong; Fan Saijun; Cao Jianping

    2011-01-01

    Objective: To investigate the radiosensitization of artesunate on nude mouse transplanted with HeLa cells,and to explore its possible mechanisms. Methods: HeLa cells were inoculated into the nude mice to establish tumor model. Mice were randomly divided into 4 groups as blank control,artesunate group, radiation group and artesunate + radiation group when average volume of tumor were about 5 mm × 5 mm× 5 mm. During the term of treatment, the volume of tumors were measured every 2 days. After 14 days treatment, the mice were killed and tumor tissues were harvested for flow cytometry to detect the alteration of cell cycle. Meanwhile, the pathological change of the tumor tissue was observed with HE staining method, and the change of expression of cycle regulatory protein Cyclin B1, Cdc2 and Wee1 were detected by Western blot. Results: The growth of tumor was significantly inhibited by artesunate combined with radiation and its inhibition rate was 72.34%. Flow cytometry results showed that the percent of cells in G 1 phase increased and G 2 phase decreased in the artesunate + radiation group compared with those in irradiation group (t=4.41, 4.12, P<0.05). The expression level of Cyclin B1 was obviously increased while that of Wee1 decreased in the artesunate + radiation compared with irradiation group. There was no difference in the expression of Cdc2 among the four groups. Conclusions: Artesunate can dramatically increase the radiosensitivity of transplanted tumor of HeLa cells. The possible mechanism might be related to the decreasing G 2 phase by regulating the expression of Cyclin B1 and Wee1. (authors)

  14. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Evaluation of Radiosensitivity of HeLa Cells Infected with Polio Virus Irradiated by Co 60

    Directory of Open Access Journals (Sweden)

    F Seif

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: The main purpose of radiotherapy is exposing enough doses of radiation to tumor tissue and protecting the normal tissues around it. Tumor dose for each session in radiotherapy will be considered based on radiosensitivity of the tissues. The presence of viral diseases in tumoral area can affect the radiosensitivity of cells. This study aimed to evaluate the radiosensitivity of Hela cells infected with poliomyelitis virus irradiated by Co 60. Materials & Methods: In this study, the radiosensitivity of HeLa cells, with or without the viral infection, after gamma radiation of cobalt 60, was assessed. Results: Results of comparison of the radisensitivity of infected and uninfected cells indicates that after 2 Gy irradiation by Co 60, polio infection in low, moderate and high virus load, increases the cell death by 20-30%, 30-40% and 70-90% respectively. Conclusion : Radiosensitivity of tumoral cells increase when they are infected with viral agents. Results of this study showed that non cancer diseases should be considered when prescribing dose fraction in radiotherapy of cancers.

  16. Investigation of role of aspartame on apoptosis process in HeLa cells

    Directory of Open Access Journals (Sweden)

    Muthuraman Pandurangan

    2016-07-01

    Full Text Available Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. The study reports that consumption of aspartame containing product could lead to cancer. However, the effect of aspartame on apoptosis process in cancer is not yet understood clearly. HeLa cells were exposed to different concentrations (0.01–0.05 mg/ml of aspartame for 48 h. Cytotoxicity of aspartame on cancer cells was determined by SRB assay. The result indicates no significant changes on cell viability. Aspartame suppresses apoptosis process in cancer cells by down-regulation of mRNA expression of tumor suppressor gene p53, and pro-apoptotic gene bax. It up-regulates anti-apoptotic gene bcl-2 mRNA expression. In addition, Ki 67 and PCNA mRNA, and protein expressions were determined. Taking all these together, we conclude that aspartame may be a potent substance to slow-down the apoptosis process in HeLa cells. Further works are ongoing to understand the biochemical and molecular mechanism of aspartame in cancer cells.

  17. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake

    Directory of Open Access Journals (Sweden)

    Simon R. Hemelaar

    2018-01-01

    Full Text Available Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer research in HeLa cells.

  18. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang; Zhang, Mengying; Chen, Shuyu; Wang, Limu; Chang, Donald Choy; Wen, Weijia

    2010-01-01

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  19. The Response of HeLa Cells to Fluorescent NanoDiamond Uptake.

    Science.gov (United States)

    Hemelaar, Simon R; Saspaanithy, Babujhi; L'Hommelet, Severin R M; Perona Martinez, Felipe P; van der Laan, Kiran J; Schirhagl, Romana

    2018-01-26

    Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing) for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer) research in HeLa cells.

  20. [Production effect comparison of SEPP and GPx between HepG2 and Hela cells with different selenocompounds].

    Science.gov (United States)

    Wang, Qin; Gao, Lina; Han, Feng; Lu, Jiaxi; Liu, Yiqun; Sun, Licui; Huang, Zhenwu

    2016-03-01

    To compare the effect of several selenocompounds on the productions of SEPP and GPx in HepG2 and Hela cells. The cultured HepG2 and Hela cells were divided into the control, Na2SeO3, SeMet and MeSeCys groups. After adding the selected selenocompounds (with the respective concentration 0.01 and 0.1 μmol/L), the experimental groups were then incubated for 48 h and 72 h. Finally, the cell culture supernatants and homogenates were collected for the SEPP and GPx concentrations detection by a double-antibody sandwich enyme-linked immuno-sorbent-assay (ELISA). The SEPP and GPx concentrations in Hela cells treated with 0.1 μmol/L SeMet and MeSeCys were significantly higher than that in the control group (P cell treated with 0.1 μmol/L selenocompounds were significantly higher than that in Hela cells (P cells are more beneficial to the production of selenoproteins than Hela cells.

  1. Matrix Metallopeptidase 14 Plays an Important Role in Regulating Tumorigenic Gene Expression and Invasion Ability of HeLa Cells.

    Science.gov (United States)

    Zhang, Ying-Hui; Wang, Juan-Juan; Li, Min; Zheng, Han-Xi; Xu, Lan; Chen, You-Guo

    2016-03-01

    The objectives of this study were to investigate the functional effect of matrix metallopeptidase 14 (MMP14) on cell invasion in cervical cancer cells (HeLa line) and to study the underlying molecular mechanisms. Expression vector of short hairpin RNA targeting MMP14 was treated in HeLa cells, and then, transfection efficiency was verified by a florescence microscope. Transwell assay was used to investigate cell invasion ability in HeLa cells. Quantitative polymerase chain reaction and Western blotting analysis were used to detect the expression of MMP14 and relative factors in messenger RNA and protein levels, respectively. Matrix metallopeptidase 14 short hairpin RNA expression vector transfection obviously decreased MMP14 expression in messenger RNA and protein levels. Down-regulation of MMP14 suppressed invasion ability of HeLa cells and reduced transforming growth factor β1 and vascular endothelial growth factor B expressions. Furthermore, MMP14 knockdown decreased bone sialoprotein and enhanced forkhead box protein L2 expression in both RNA and protein levels. Matrix metallopeptidase 14 plays an important role in regulating invasion of HeLa cells. Matrix metallopeptidase 14 knockdown contributes to attenuating the malignant phenotype of cervical cancer cell.

  2. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line.

    Directory of Open Access Journals (Sweden)

    Muhammad Hammad Aziz

    Full Text Available Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs were tested in an in vitro cervical cancer model (HeLa cell line to optimize the parameters of photodynamic therapy (PDT for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM, an energy dispersive X-ray analysis (EDAX and a vibrating sample magnetometer (VSM analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA; this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA and by detection of intracellular reactive oxygen species (ROS production. Furthermore, 10-200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65-68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice.

  3. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line

    Science.gov (United States)

    Hammad Aziz, Muhammad; Fakhar-e-Alam, M.; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M.; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al.Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M.; AlSalhi, M. S.; Alahmed, Z. A.

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  4. The effect of caffeine on x-ray repair of radioresistant HeLa cells

    International Nuclear Information System (INIS)

    Kubo, Kihei; Koiwai, Soichiro; Morita, Kazuo

    1985-01-01

    The contribution of caffeine-modifiable repair process to the radiosensitivity of a radioresistant HeLa strain (RC-355) has been investigated in comparison with control HeLa strain (CC-24). Both the final slope and the shoulder of X-ray survival curve for log-phase cells were affected by caffeine posttreatment. When the treatment with 10 mM caffeine delayed, an increase in survival was observed with increasing interval between irradiation and the treatment. During first several hours of the repair interval, the steepness of the final slope of survival curve decreased rapidly, and rate of the decrease was found to be higher in RC-355 than in CC-24 cells. Longer time (24 hours or more) before the initiation of caffeine treatment was required for the complete recovery of the shoulder. When the cells were incubated in plateau-phase after irradiation, an appreciable increase in survival was observed in comparison with when plated immediately following X-ray. The increase was found to be greater for RC-355 than for CC-24. The results suggest that the radioresistant RC-355 cells repaired more X-ray-induced PLD than CC-24 cells did. (author)

  5. Nuclear proteome analysis of cisplatin-treated HeLa cells

    International Nuclear Information System (INIS)

    Wu Wei; Yan Chunlan; Gan Tieer; Chen Zhanghui; Lu Xianghong; Duerksen-Hughes, Penelope J.; Zhu Xinqiang; Yang Jun

    2010-01-01

    Cisplatin has been widely accepted as one of the most efficient anticancer drugs for decades. However, the mechanisms for the cytotoxic effects of cisplatin are still not fully understood. Cisplatin primarily targets DNA, resulting in the formation of DNA double strand breaks and eventually causing cell death. In this study, we applied two-dimensional electrophoresis coupled with LC-MS/MS to analyze the nuclear proteome of HeLa cells treated with cisplatin, in an effort to uncover new mechanistic clues regarding the cellular response to cisplatin. A total of 19 proteins were successfully identified, and these proteins are involved in a variety of basal metabolic and biological processes in cells, including biosynthesis, cell cycle, glycolysis and apoptosis. Six were related to the regulation of mRNA splicing, and we therefore asked whether the Fas gene might undergo alternative splicing following cisplatin treatment. This proved to be the case, as the splicing forms of Fas were modified in cisplatin-treated HeLa cells. This work provides novel information, from the perspective of the nuclear response, for understanding the cytotoxicity caused by cisplatin-induced DNA damage.

  6. Proteomic analysis of effects by x-rays and heavy ion in HeLa cells.

    Science.gov (United States)

    Bing, Zhitong; Yang, Guanghui; Zhang, Yanan; Wang, Fengling; Ye, Caiyong; Sun, Jintu; Zhou, Guangming; Yang, Lei

    2014-06-01

    Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiation-induced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects. The radioresistant cell line Hela cells were used. In our study, the stable isotope labelling with amino acids (SILAC) method coupled with 2D-LC-LTQ Orbitrap mass spectrometry was applied to identity and quantify the differentially expressed proteins after irradiation. The Western blotting experiment was used to validate the data. A total of 123 and 155 significantly changed proteins were evaluated with treatment of 2 Gy carbon and X-rays after radiation 1 h, respectively. These deregulated proteins were found to be mainly involved in several kinds of metabolism processes through Gene Ontology (GO) enrichment analysis. The two groups perform different response to different types of irradiation. The radioresistance of the cancer cells treated with 2 Gy X-rays irradiation may be largely due to glycolysis enhancement, while the greater killing effect of 2 Gy carbon may be due to unchanged glycolysis and decreased amino acid metabolism.

  7. Proteomic analysis of effects by x-rays and heavy ion in HeLa cells

    International Nuclear Information System (INIS)

    Bing, Zhitong; Yang, Guanghui; Zhang, Yanan; Wang, Fengling; Ye, Caiyong; Sun, Jintu; Zhou, Guangming; Yang, Lei

    2014-01-01

    Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiation-induced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects. The radioresistant cell line Hela cells were used. In our study, the stable isotope labelling with amino acids (SILAC) method coupled with 2D-LC-LTQ Orbitrap mass spectrometry was applied to identity and quantify the differentially expressed proteins after irradiation. The Western blotting experiment was used to validate the data. A total of 123 and 155 significantly changed proteins were evaluated with treatment of 2 Gy carbon and X-rays after radiation 1 h, respectively. These deregulated proteins were found to be mainly involved in several kinds of metabolism processes through Gene Ontology (GO) enrichment analysis. The two groups perform different response to different types of irradiation. The radioresistance of the cancer cells treated with 2 Gy X-rays irradiation may be largely due to glycolysis enhancement, while the greater killing effect of 2 Gy carbon may be due to unchanged glycolysis and decreased amino acid metabolism

  8. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    Science.gov (United States)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  9. Enhanced incorporation of radioactive inorganic phosphate into phospholipids of HeLa cells by tumor promoters

    International Nuclear Information System (INIS)

    Nishino, H.; Fujiki, H.; Terada, M.; Sato, S.

    1983-01-01

    Teleocidin, a new tumor promoter, increased incorporation of radioactive inorganic phosphate ( 32 P/sub i/) into phospholipids in HeLa cells. This effect was detected within 1 h on incubation of the cells in medium containing teleocidin. The half-maximum effective dose of teleocidin was approximately 10 ng/ml. The main effect of teleocidin was on the incorporation of 32 P/sub i/ into the phosphatidylcholine fraction, with a lesser effect on 32 P/sub i/ incorporation into other phospholipid fractions. Increased incorporation of 32 P/sub i/ into phospholipids was also observed on incubation of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), dihydroteleocidin B, or lyngbyatoxin A, which are all complete tumor promoters, and also with mezerein, which is an incomplete and second stage promoter. On the other hand, at concentrations of up to 1 microgram/ml, 4-O-methyl TPA and C/sub a/ 2 + ionophore A23187, which are incomplete and first stage promoters, and phorbol, which has no promoting activity in skin carcinogenesis, did not cause any increased incorporation of 32 P/sub i/ into phospholipid fractions of HeLa cells

  10. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    Science.gov (United States)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  11. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.

  12. Cysteine-rich buccal gland protein suppressed the proliferation, migration and invasion of hela cells through akt pathway.

    Science.gov (United States)

    Han, Jianmei; Liu, Yu; Jiang, Qi; Xiao, Rong

    2017-11-01

    Cysteine-rich buccal gland protein (CRBGP) as a member of cysteine-rich secretory proteins (CRISPs) superfamily was isolated from the buccal glands of Lampetra japonica, the blood suckers in the marine. Previous studies showed CRBGP could suppress angiogenesis probably due to its ion channel blocking activity. Whether CRBGP could also affect the activity of tumor cells has not been reported yet. In this study, CRBGP suppressed the proliferation of Hela cells with an IC 50 of 6.7 μM by inducing apoptosis. Both microscopic observation and Western blot indicated that CRBGP was able to induce the nuclei shrinking, downregulate the protein level of BCL2 and caspase 3 as well as upregulate the level of BAX in Hela cells, suggested that CRBGP might induce apoptosis of Hela cells in a mitochondrial-dependent pathway. Furthermore, CRBGP could disturb F-actin organization, which would finally cause the Hela cells to lose their shape and to lessen their abilities on adhesion, migration and invasion. Finally, CRBGP was shown to reduce the phosphorylation level of Akt, which indicated that CRBGP might inhibit the proliferation and metastasis of Hela cells through Akt pathway. CRBGP, as a voltage-gated sodium channel blocker, also possesses the anti-tumor abilities which provided information on the effects and action manner of the other CRISPs. © 2017 IUBMB Life, 69(11):856-866, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  13. Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells.

    Science.gov (United States)

    Li, Wei; Yu, K N; Ma, Jie; Shen, Jie; Cheng, Cheng; Zhou, Fangjian; Cai, Zhiming; Han, Wei

    2017-11-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. Although increasing evidence suggests that NTP selectively induces apoptosis in some types of tumor cells, the molecular mechanisms underlying this phenomenon remain unclear. In this study, we further investigated possible molecular mechanisms for NTP-induced apoptosis of HeLa cells. The results showed that NTP exposure significantly inhibited the growth and viability of HeLa cells. Morphological observation and flow cytometry analysis demonstrated that NTP exposure induced HeLa cell apoptosis. NTP exposure also activated caspase-9 and caspase-3, which subsequently cleaved poly (ADP- ribose) polymerase. Furthermore, NTP exposure suppressed Bcl-2 expression, enhanced Bax expression and translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c. Further studies showed that NTP treatment led to ROS generation, whereas blockade of ROS generation by N-acetyl-l-cysteine (NAC, ROS scavengers) significantly prevented NTP-induced mitochondrial alteration and subsequent apoptosis of HeLa cells via suppressing Bax translocation, cytochrome c and caspase-3 activation. Taken together, our results indicated that NTP exposure induced mitochondria-mediated intrinsic apoptosis of HeLa cells was activated by ROS generation. These findings provide insights to the therapeutic potential and clinical research of NTP as a novel tool in cervical cancer treatment. Copyright © 2017. Published by Elsevier Inc.

  14. Suppressive effect on HeLa cells proliferation by phenothiazine derivatives alone and combining with ionizing radiation

    International Nuclear Information System (INIS)

    Yan Yuqian; Wang Lin; Sui Jianli; Bai Bei; Zhou Pingkun; Yan Yuqiu; Sun Weijian

    2006-01-01

    Objective: To examine the antiproliferative effects of phenothiazine derivatives (PTZDs) alone on HeLa cells and in combination with ionizing radiation. Methods: MTT and colony-forming method were used to evaluate the proliferation activity and cellular radiosensitivity of HeLa cells. Results: We compared the antiproliferative effects of six phenothiazine derivatives, and found that the derivatives α-chloro-N-dimethylamine phenothiazine (PTZD2), α-triflumethyl-N-α(dimethylamine ethyl) phenothiazine (PTZD3) and α-chloro-N-(dimethylamine ethyl) phenothiazine (PTZD5) showed a significant antiproliferative effect at concentration of 10 μmol/L. HeLa cells proliferation was completely suppressed when treated with PTZDs of 40-50 μmol/L. PTZD2/PTZD3 and cobalt-60 gamma-irradiation showed synergistic suppressive effect on proliferation of HeLa cells. The enhancement ratios of 10 μmol/L PTZD3 combination with 2 Gy and 4 Gy irradiations were 3.5 and 1.8, respectively. The maximum synergistic suppressive effect was observed when cells administered with PTZD3 at 18 h before being irradiated. Conclusion: Phenothiazine derivatives show antiproliferations on HeLa cells, and differ in degrees. The synergistic anticancer effect could be obtained by combining phenothiazine derivatives with radiotherapy. (authors)

  15. Yeast CUP1 protects HeLa cells against copper-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.X. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China); College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou (China); Ma, Y.F.; Wang, Q.S.; Chen, Z.L.; Liao, R.R.; Pan, Y.C. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China)

    2015-06-12

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  16. The Antiproliferative Effect of Cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa Cells Involves Inhibition of Phosphorylation of Akt and S6k Kinases.

    Science.gov (United States)

    Hernández-Padilla, Laura; Vázquez-Rivera, Dolores; Sánchez-Briones, Luis A; Díaz-Pérez, Alma L; Moreno-Rodríguez, José; Moreno-Eutimio, Mario A; Meza-Carmen, Victor; Cruz, Homero Reyes-De la; Campos-García, Jesús

    2017-06-20

    Pseudomonas aeruginosa PAO1, a potential pathogen of plants and animals, produces the cyclodipeptides cyclo(l-Pro-l-Tyr), cyclo(l-Pro-l-Phe), and cyclo(l-Pro-l-Val) (PAO1-CDPs), whose effects have been implicated in inhibition of human tumor cell line proliferation. Our purpose was to investigate in depth in the mechanisms of HeLa cell proliferation inhibition by the PAO1-CDPs. The results indicate that PAO1-CDPs, both purified individually and in mixtures, inhibited HeLa cell proliferation by arresting the cell cycle at the G0-G1 transition. The crude PAO1-CDPs mixture promoted cell death in HeLa cells in a dose-dependent manner, showing efficacy similar to that of isolated PAO1-CDPs (LD 50 of 60-250 µM) and inducing apoptosis with EC 50 between 0.6 and 3.0 µM. Moreover, PAO1-CDPs showed a higher proapoptotic activity (~10³-10⁵ fold) than their synthetic analogs did. Subsequently, the PAO1-CDPs affected mitochondrial membrane potential and induced apoptosis by caspase-9-dependent pathway. The mechanism of inhibition of cells proliferation in HeLa cells involves inhibition of phosphorylation of both Akt-S473 and S6k-T389 protein kinases, showing a cyclic behavior of their expression and phosphorylation in a time and concentration-dependent fashion. Taken together our findings indicate that PI3K-Akt-mTOR-S6k signaling pathway blockage is involved in the antiproliferative effect of the PAO1-CDPs.

  17. Pro-inflammatory Cytokines Are Involved in Fluoride-Induced Cytotoxic Potential in HeLa Cells.

    Science.gov (United States)

    Wang, Hong-Wei; Zhou, Bian-Hua; Cao, Jian-Wen; Zhao, Jing; Zhao, Wen-Peng; Tan, Pan-Pan

    2017-01-01

    This study was designed to investigate the pro-inflammatory cytokines and their involvement in the cytotoxic potential of fluoride (F) in HeLa cells. HeLa cells were cultured with varying F concentrations (1-50 mg/L) for 48 h, and treatment effects were analyzed. The viability of HeLa cells was determined with a colorimetric method. The concentrations of IL-1β, IL-2, IL-6, and TNF-a in culture supernatant were measured through enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-1β, IL-2, IL-6 and TNF-a were subjected to transcript analysis and quantified through reverse transcription real-time PCR. Results showed that 10, 20 and 50 mg/L F significantly decreased the viability of HeLa cells incubated for 24 and 48 h. With their cytotoxic effect, the concentrations of IL-1β, IL-2, IL-6, and TNF-a decreased significantly in response to F, especially at 20 and 50 mg/L for 48 h. The mRNA expression levels of IL-1β, IL-2, IL-6, and TNF-a were downregulated at 50 mg/L F for 48 h. Therefore, F inhibited HeLa cell growth; as such, F could be used to alleviate the inhibition of pro-inflammatory cytokine expression.

  18. Degradation of structurally characterized proteins injected into HeLa cells. Basic measurements

    International Nuclear Information System (INIS)

    Rogers, S.W.; Rechsteiner, M.

    1988-01-01

    Thirty-five proteins of known x-ray structure were labeled by chloramine-T radioiodination or by reaction with 125I-Bolton-Hunter reagent and introduced into HeLa cells using red cell-mediated microinjection. Degradation rates of the injected proteins were then determined over the next 50 h by measuring the release of soluble isotope to the culture medium. Control experiments demonstrated that the measured rates were not compromised by proteolysis within RBCs, the presence of unfused RBCs, or degradation of protein released from RBCs to the medium. Degradation of some injected proteins was faster during the first 12 h after fusion than at later times, apparently a response of HeLa cells to trypsinization. However, all proteins exhibited first-order degradation rates between 24 and 48 h post injection. Except for seven proteins, stabilities measured during this interval were unaffected by the labeling procedure. Reductive methylation was used to choose among the seven discordant values, and half-lives for the 35 proteins ranged from 16 h for lysozyme to 214 h for yeast alcohol dehydrogenase. Since half-lives for six of the injected proteins closely match values obtained by in vivo measurements, we consider our estimates of the metabolic stabilities of the injected proteins to be generally accurate. Therefore, the half-lives obtained by microinjection should prove useful in the search for relationships between protein structure and intracellular stability

  19. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige

    1990-01-01

    The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.

  1. Plasma generated in culture medium induces damages of HeLa cells due to flow phenomena

    Science.gov (United States)

    Sato, Yusuke; Sato, Takehiko; Yoshino, Daisuke

    2018-03-01

    Plasma in a liquid has been anticipated as an effective tool for medical applications, however, few reports have described cellular responses to plasma generated in a liquid similar to biological fluids. Herein we report the effects of plasma generated in a culture medium on HeLa cells. The plasma in the culture medium produced not only heat, shock waves, and reactive chemical species but also a jet flow with sub millimeter-sized bubbles. Cells exposed to the plasma exhibited detachment, morphological changes, and changes in the actin cytoskeletal structure. The experimental results suggest that wall shear stress over 160 Pa was generated on the surface of the cells by the plasma. It is one of the main factors that cause those cellular responses. We believe that our findings would provide valuable insight into advancements in medical applications of plasma in a liquid.

  2. Evaluation of the effects of paederus beetle extract and gamma irradiation on HeLa cells

    Directory of Open Access Journals (Sweden)

    Fariba Samani

    2014-04-01

    Full Text Available Objective(s:Cervical cancer is a malignancy that is the second most common cause of death from cancer in women throughout the world. Paederus beetle (Paederus fuscipes extract (PBE, contains bioactive compounds such as pederine which has cytotoxic properties and blocks DNA and protein synthesis at very low concentrations. In this investigation we tried to determine the effects co-treatment with PBE and gamma irradiation on HeLa cells. Materials and Methods: The viability of the cells was measured by two methods: MTT and Colony assay. Results: We found that supplementing gamma irradiation therapy with PBE does not increase cell death and it might even interfere with its cytotoxicty at the concentrations below 0.1 ng/ml and the viability for irradiation vs irradiation + PBE was 37%: 60%.   Conclusion: This finding might be due to radioprotective effects of the very low doses of PBE against gamma radiation.

  3. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells.

    Science.gov (United States)

    Wu, H; Zhang, J; Shi, H

    2016-01-01

    Effect of the tumor suppression gene p16 on the biological characteristics of HeLa cervical carcinoma cells was explored. The expression of p16 protein was increased in HeLa tumor sphere cells, and no significant difference in tumor spheres from the first to the fourth passages. Compared with those of parental HeLa cells, the proportion of CD44+/CD24- and ABCG2+ cells increased significantly in tumor spheres. However after the cells were silenced by the p16-sh289 vector, expression of P16 protein and the cell number of CD44+/CD24- and ABCG2+ decreased. Moreover, HeLa cells with p16 gene silencing showed decreased abilities of sphere formation and matrigel invasion. More HeLa cells with p16 gene silence were needed for tumor formation in nude mice. Tumor size and weight in mouse model established with p16 gene silenced HeLa cells were less than those with HeLa parental cell model. The present results indicate that silencing of the p16 gene inhibits expression of cancer stem cell markers and tumorigenic ability of HeLa cells.

  4. Treatment of HeLa cells with Giloe (Tinospora cordifolia meirs) increases the radiosensitivity by increasing DNA damage

    International Nuclear Information System (INIS)

    Varma, Hari Krishna; Jagetia, Ganesh Chandra; Nayak, Vijayashree

    2014-01-01

    Radiotherapy is an important treatment modality and screening of phytoceuticals may enhance the clinical outcome of radiotherapy, therefore radiosensitizing activity of various guduchi (Tinospora cordifolia) extracts was studied in HeLa cells. Chromosomal aberrations were scored in HeLa cells treated with 10 μg/ml of aqueous, methanol, or methylene chloride guduchi extracts or doxorubicin before exposure to 0, 0.5, 1, 2 or 3 Gy of γ-radiation at 12, 24, 36 or 48 h post-irradiation. Irradiation of HeLa cells caused a dose dependent rise in the chromatid breaks, chromosome breaks, dicentric, centric rings, acentric fragments and total aberrations at all post-irradiation times and the dose response was linear quadratic for all types of aberrations scored. Chromatid breaks increased up to 12 h post-irradiation and declined steadily up to 48 h post-irradiation, whereas chromosome breaks, dicentric, acentric fragments and total aberrations elevated up to 24 h post-irradiation and declined thereafter. However, centric rings continued to rise steadily up to 48 h post-irradiation. Treatment of HeLa cells with aqueous, methanol or methylene chloride guduchi extract or doxorubicin before irradiation significantly enhanced various types of chromosomal aberrations and a maximum rise in the chromosome aberrations was observed in the HeLa cells treated with methylene chloride extract before irradiation when compared to other groups. Various guduchi extracts enhanced the effect of radiation in HeLa cells by increasing the molecular damage to cellular genome and their effect was similar to or even greater than doxorubicin (positive control) pretreatment, depending on the type of guduchi extract used. (author)

  5. LyGDI expression in HeLa cells increased its sensitivity to radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Zhou Xinwen; Xu Yaxiang

    2006-01-01

    Objective: In order to confirm whether LyGDI has apoptotic signal transduction function and can increase the apoptotic rate of radiation-induced cell death, the lyGDI and mutant D19lyGDI gene, which constructed with the pCDNA3. 1 His A, were transfected into no-endogenous lyGDI HeLa cells. Methods Transient expressions of lyGDI and D19lyGDI in HeLa cells were analyzed by Western blot using anti-mono antibody of LyGDI and Xpress tag. Cell apoptosis was assayed with Annexin V-FITC apoptosis kit. To select stable clone, the transferred HeLa cells had been maintained in G418 medium for 3 weeks, then a cell line, which stably expressed LyGDI and mutant D19lyGDI, was selected. The selected cell line was irradiated with 12 Gy 60 Co y-rays. Caspase-3 activity of the cells was determined by Western blot and cell viability by clone-forming assay after 48 hours post-irradiation culture. Results: Western blot and Annexin V-FITC apoptotic analysis revealed that lyGDI and D19lyGDI transient expressions in HeLa cells induced apoptosis; Caspase-3 activity measurement and clone-forming assay showed that lyGDI increased sensitivity to radiation-induced cell apoptosis. Conclusions: lyGDI performs function in apoptosis signal transduction, its expression in HeLa cells can increase the sensitivity to radiation-induced cell apoptosis. (authors)

  6. Phosphorylated Akt Protein at Ser473 Enables HeLa Cells to Tolerate Nutrient-Deprived Conditions

    Science.gov (United States)

    Fathy, Moustafa; Awale, Suresh; Nikaido, Toshio

    2017-12-29

    Background: Despite angiogenesis, many tumours remain hypovascular and starved of nutrients while continuing to grow rapidly. The specific biochemical mechanisms associated with starvation resistance, austerity, may be new biological characters of cancer that are critical for cancer progression. Objective: This study aim was to investigate the effect of nutrient starvation on HeLa cells and the possible mechanism by which the cells are able to tolerate nutrient-deprived conditions. Methods: Nutrient starvation was achieved by culturing HeLa cells in nutrient-deprived medium (NDM) and cell survival was estimated by using cell counting kit-8. The effect of starvation on cell cycle distribution and the quantitative analysis of apoptotic cells were investigated by flow cytometry using propidium iodide staining. Western blotting was used to detect the expression levels of Akt and phosphorylated Akt at Ser473 (Ser473p-Akt) proteins. Results: HeLa cells displayed extremely long survival when cultured in NDM. The percentage of apoptotic HeLa cells was significantly increased by starvation in a time-dependent manner. A significant increase in the expression of Ser473p-Akt protein after starvation was also observed. Furthermore, it was found that Akt inhibitor III molecule inhibited the cells proliferation in a concentration- and time-dependent manner. Conclusion: Results of the present study provide evidence that Akt activation may be implicated in the tolerance of HeLa cells for nutrient starvation and may help to suggest new therapeutic strategies designed to prevent austerity of cervical cancer cells through inhibition of Akt activation. Creative Commons Attribution License

  7. Radiation-induced thymine base damage and its excision repair in active and inactive chromatin of HeLa cells

    International Nuclear Information System (INIS)

    Patil, M.S.; Locher, S.E.; Hariharan, P.V.

    1985-01-01

    The extent of production and excision repair of 5,6-dihydroxydihydrothymine type base (t') damage was determined in transcriptionally active and inactive chromatin of HeLa cells after exposure to 6.8 MeV electrons. It was observed that not only the yield but also rate of repair of t' products was greater in the active chromatin compared to the inactive chromatin of HeLa cells. The results strongly indicate that the conformation of chromatin is an important factor in determining the sensitivity to radiation damage and accessibility to enzymes required for repair of such damage. (author)

  8. O-Linked N-Acetylglucosamine Transiently Elevates in HeLa Cells during Mitosis

    Directory of Open Access Journals (Sweden)

    Viktória Fisi

    2018-05-01

    Full Text Available O-linked N-acetylglucosamine (O-GlcNAc is a dynamic post-translational modification of serine and threonine residues on nuclear and cytoplasmic proteins. O-GlcNAc modification influences many cellular mechanisms, including carbohydrate metabolism, signal transduction and protein degradation. Multiple studies also showed that cell cycle might be modulated by O-GlcNAc. Although the role of O-GlcNAc in the regulation of some cell cycle processes such as mitotic spindle organization or histone phosphorylation is well established, the general behaviour of O-GlcNAc regulation during cell cycle is still controversial. In this study, we analysed the dynamic changes of overall O-GlcNAc levels in HeLa cells using double thymidine block. O-GlcNAc levels in G1, S, G2 and M phase were measured. We observed that O-GlcNAc levels are significantly increased during mitosis in comparison to the other cell cycle phases. However, this change could only be detected when mitotic cells were enriched by harvesting round shaped cells from the G2/M fraction of the synchronized cells. Our data verify that O-GlcNAc is elevated during mitosis, but also emphasize that O-GlcNAc levels can significantly change in a short period of time. Thus, selection and collection of cells at specific cell-cycle checkpoints is a challenging, but necessary requirement for O-GlcNAc studies.

  9. Autoradiography of DNA from Hela cells under normal conditions and after treatment with hydroxyurea

    International Nuclear Information System (INIS)

    Martinova, Y.S.; Angelova, P.A.; Roeva, I.G.

    1984-01-01

    The results are presented of the first stage of the elaboration of the novel autoradiographic technique for studying the replication of DNA fibers from nonsynchronized Hela cell cultures under normal conditions and after treatment with hydroxyurea. The preparations were covered with liquid nuclear emulsion Ilford L 4 . Exposure was carried out for 3 months at 4 deg C. After development, the autoradiograms were recorded quantitatively, and the length of the individual replicative segments was measured by means of an object micrometers. For each group (control and experimental) 100 segments from different cells were recorded. The results obtained were subjected to mathematical-statistical processing for determining the standard deviation. The application of hidroxyurea highly reduces the replicative elements, i.e. it actually inhibits DNA synthesis. This inhibition is due to reduction in the production of the four endogenous deoxynucleotides and affects the length of growth of the DNA chain, but the interreplicative distance as well

  10. Mapping and identification of HeLa cell proteins separated by immobilized pH-gradient two-dimensional gel electrophoresis and construction of a two-dimensional polyacrylamide gel electrophoresis database

    DEFF Research Database (Denmark)

    Shaw, AC; Rossel Larsen, M; Roepstorff, P

    1999-01-01

    The HeLa cell line, a human adenocarcinoma, is used in many research fields, since it can be infected with a wide range of viruses and intracellular bacteria. Therefore, the mapping of HeLa cell proteins is useful for the investigation of parasite host cell interactions. Because of the recent imp...... these and future data accessible for interlaboratory comparison, we constructed a 2-D PAGE database on the World Wide Web....... the mapping of [35S]methionine/cysteine-labeled HeLa cell proteins with the 2-D PAGE (IPG)-system, using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and N-terminal sequencing for protein identification. To date 21 proteins have been identified and mapped. In order to make...

  11. Staphylococcus aureus Lpl Lipoproteins Delay G2/M Phase Transition in HeLa Cells.

    Science.gov (United States)

    Nguyen, Minh-Thu; Deplanche, Martine; Nega, Mulugeta; Le Loir, Yves; Peisl, Loulou; Götz, Friedrich; Berkova, Nadia

    2016-01-01

    The cell cycle is an ordered set of events, leading to cell growth and division into two daughter cells. The eukaryotic cell cycle consists of interphase (G 1 , S, and G 2 phases), followed by the mitotic phase and G 0 phase. Many bacterial pathogens secrete cyclomodulins that interfere with the host cell cycle. In Staphylococcus aureus four cyclomodulins have been described so far that all represent toxins and are secreted into the culture supernatant. Here we show that the membrane-anchored lipoprotein-like proteins (Lpl), encoded on a genomic island called νSaα, interact with the cell cycle of HeLa cells. By comparing wild type and lpl deletion mutant it turned out that the lpl cluster is causative for the G2/M phase transition delay and also contributes to increased invasion frequency. The lipoprotein Lpl1, a representative of the lpl cluster, also caused G2/M phase transition delay. Interestingly, the lipid modification, which is essential for TLR2 signaling and activation of the immune system, is not necessary for cyclomodulin activity. Unlike the other staphylococcal cyclomodulins Lpl1 shows no cytotoxicity even at high concentrations. As all Lpl proteins are highly conserved there might be a common function that is accentuated by their multiplicity in a tandem gene cluster. The cell surface localized Lpls' suggests a correlation between G2/M phase transition delay and host cell invasion.

  12. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells

    Science.gov (United States)

    HUA, YUAN-YUAN; WANG, XIAO-SHU; ZHANG, YU; YAO, CHEN-GUO; ZHANG, XI-MING; XIONG, ZHENG-AI

    2012-01-01

    The application of pulsed electric fields (PEF) is emerging as a new technique for tumor therapy. Picosecond pulsed electric fields (psPEF) can be transferred to target deep tissue non-invasively and precisely, but the research of the biological effects of psPEF on cells is limited. Electric theory predicts that intense psPEF will target mitochondria and lead to changes in transmembrane potential, therefore, it is hypothesized that it can induce mitochondrial-mediated apoptosis. HeLa cells were exposed to psPEF in this study to investigate this hypothesis. MTT assay demonstrated that intense psPEF significantly inhibited the proliferation of HeLa cells in a dose-dependent manner. Typical characteristics of apoptosis in HeLa cells were observed, using transmission electron microscopy. Loss of mitochondrial transmembrane potential was explored using laser scanning confocal microscopy with Rhodamine-123 (Rh123) staining. Furthermore, the mitochondrial apoptotic events were also confirmed by western blot analysis for the release of cytochrome C and apoptosis-inducing factor from mitochondria into the cytosol. In addition, activation of caspase-3, caspase-9, upregulation of Bax, p53 and downregulation of Bcl-2 were observed in HeLa cells also indicating apoptosis. Taken together, these results demonstrate that intense psPEF induce cell apoptosis through a mitochondrial-mediated pathway. PMID:22307872

  13. On enhancing drugs effect on radiosensitivity of HeLa cells by inhibiting P13K/Akt signal transduction

    International Nuclear Information System (INIS)

    Xia Shu; Yu Shiying

    2006-01-01

    Objective: To explore the mechanism of PI3K/Akt in radiosensitization of docetaxel and cisplatin by inhibiting PI3K/Akt pathway in HeLa cells. Methods: To detect the 50% inhibition concentration (IC 50 ) of cisplatin and docetaxel in Hela cells by mono-nuclear cell direct cytotoxicity assay (MTT) in vitro. Using the IC 20 of cisplatin and docetaxel in Hela cell or in association with LY294002 for 24 h, then, the cells were irradiated by X-ray with 2,3,4,6,8 Gy. The cell survival fraction was computed by clone formation. Cell survival curve was fitted by multitarget one-hit model, and D q , D 0 , SF 2 , sensitizing enhancing ratio(SER) was calculated. The expression of pAkt and total Akt by western blot were detected. Apoptosis was detected by flow cytometry. Results: 1. Docetaxel and cisplatin improved the phosphorylation of Akt by irradiation obviously. 2. The SER of docetaxel + LY294002 + irradiation group (1.92) was higher than that of docetaxel + irradiation group(1.41). The SER of cisplatin + LY294002 + irradiation group(1.71) was higher than the cisplatin + irradiation group (1.37). 3. Apoptosis rate of docetaxel + LY294002 + irradiation and cisplatin + LY294002 + irradiation groups(12.5%, 10.2%) were higher than those of docetaxel + irradiation and cisplatin + irradiation groups(6.1%, 5.1%). Conclusions: PI3K/Akt signal transduction activation may be as an important reason of radiosensitization reduction of docetaxel and cisplatin in the HeLa cells. Our results show that inhibiting PI3K/Akt can improve the radiosensitization of docetaxel and cisplatin in the HeLa cells. (authors)

  14. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    International Nuclear Information System (INIS)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-01-01

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  15. Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carla Oliveira

    2011-01-01

    Full Text Available Frutalin is the α-D-galactose-binding lectin isolated from breadfruit seeds. Frutalin was obtained from two different sources: native frutalin was purified from its natural origin, and recombinant frutalin was produced and purified from Pichia pastoris. This work aimed to study and compare the effect of native and recombinant frutalin on HeLa cervical cancer cells proliferation and apoptosis. Furthermore, the interaction between frutalin and the HeLa cells was investigated by confocal microscopy. Despite having different carbohydrate-binding affinities, native and recombinant frutalin showed an identical magnitude of cytotoxicity on HeLa cells growth (IC50~100 μg/mL and equally induced cell apoptosis. The interaction studies showed that both lectins were rapidly internalised and targeted to HeLa cell's nucleus. Altogether, these results indicate that frutalin action is not dependent on its sugar-binding properties. This study provides important information about the bioactivity of frutalin and contributes to the understanding of the plant lectins cytotoxic activity.

  16. Efficacy of Proliferation of HeLa Cells under Three Different Low-Intensity Red Lasers Irradiation

    Directory of Open Access Journals (Sweden)

    H. Q. Yang

    2012-01-01

    Full Text Available This study was intended to compare the efficacy of proliferation of HeLa cells under three different low-intensity laser irradiation (LIL, that is, 633 nm, 658 nm, and 785 nm. The time-dependent responses of proliferation of HeLa cells after the red laser irradiation and the influence of fetal bovine serum (FBS at 1%, 2%, 5%, or 10% on the proliferation of cells were also investigated. The results indicated that the proliferation of HeLa cells in 10% FBS was in proliferation-specific homeostasis (PSH so that it was not modulated with LIL; the proliferation in FBS at 1%, 2%, or 5% was far from PSH so that it may be wavelength dependently modulated with LIL, and the maximum proliferation promotion was conducted with LIL at 633 nm amongst the three different LIL. It was concluded the wavelength-dependent photobiomodulation of LIL on proliferation of HeLa cells may be homeostatic.

  17. Methylation of nucleolar RNA in HeLa cells studied by autoradiography

    International Nuclear Information System (INIS)

    Cervera, J.; Martinez, A.; Renau-Piqueras, J.

    1984-01-01

    Methylation of nucleolar RNA was studied by autoradiography in HeLa cells using L-[methyl- 3 H]methionine and S-adenosyl-L-[methyl- 3 H]methionine as radioactive precursors. Pulse-labeling experiments show that nucleolar RNA methylation occurs on the newly synthesized RNA at the nucleolar fibrillar RNP component and mostly on the fibrillar ring of fibrillar centers, where pre-rRNA is being synthesized. Pulse-chase experiments show a shift of silver grains from the nucleolar fibrillar RNP component to the nucleolar granular component first and then to the cytoplasm. Labeling of nucleolar RNA via specific methylation permits the study of intranucleolar processing of pre-rRNA and confirms the sequence of labeling of the two nucleolar RNP components observed with radioactive uridine

  18. Visualizing the molecular sociology at the HeLa cell nuclear periphery.

    Science.gov (United States)

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-02-26

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness. Copyright © 2016, American Association for the Advancement of Science.

  19. Carboxymethyl chitin-glucan (CM-CG) protects human HepG2 and HeLa cells against oxidative DNA lesions and stimulates DNA repair of lesions induced by alkylating agents.

    Science.gov (United States)

    Slamenová, Darina; Kováciková, Ines; Horváthová, Eva; Wsólová, Ladislava; Navarová, Jana

    2010-10-01

    A large number of functional foods, including those that contain β-d-glucans, have been shown to prevent human DNA against genotoxic effects and associated development of cancer and other chronic diseases. In this paper, carboxymethyl chitin-glucan (CM-CG) isolated from Aspergillus niger was investigated from two standpoints: (1) DNA-protective effects against oxidative DNA damage induced by H(2)O(2) and alkylating DNA damage induced by MMS and MNNG, and (2) a potential effect on rejoining of MMS- and MNNG-induced single strand DNA breaks. The results obtained by the comet assay in human cells cultured in vitro showed that CM-CG reduced significantly the level of oxidative DNA lesions induced by H(2)O(2) but did not change the level of alkylating DNA lesions induced by MMS or MNNG. On the other side, the efficiency of DNA-rejoining of single strand DNA breaks induced by MMS and MNNG was significantly higher in HepG2 cells pre-treated with CM-CG. The antioxidative activity of carboxymethyl chitin-glucan was confirmed by the DPPH assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effects of Smac gene over-expression on radiotherapeutic sensitivity of cervical cancer cell line HeLa

    International Nuclear Information System (INIS)

    Zheng Liduan; Wang Liang; Tong Qiangsong; Fei Shihong; Xiong Yufang; Wu Gang

    2005-01-01

    Objective: To study the effects of extrinsic Smac gene transfection and its over-expression on radiotherapeutic sensitivity of cervical cancer cells, in order to explore a novel strategy for ameliorating radiotherapy of cervical cancer. Methods: After Smac gene was transferred into cells of cervical cancer cell line HeLa, the subclone cells were obtained by persistent G 418 selection. Cellular Smac gene expression was determined by RT-PCR and Western blot. After treatment with X-ray irradiation, cellular growth activity in vitro was investigated by MTT colorimetry. Cellular apoptosis and its rate were determined by electron microscopy, Annexin V-FITC and propidium iodide staining flow cytometry. Cellular Caspase-3 protein expression and its activity were assayed by Western blot and colorimetry. Results: RT-PCR and Western blot demonstrated that Smac mRNA and protein levels of HeLa/Smac cells, the selected subclone cells of cervical cancer cell line, were significantly higher than those of HeLa cells (P<0.01). After treated with 8 Gy X-ray irradiation, growth activity of HeLa/Smac cells reduced by 10.19%(P<0.01), as compared with that of HeLa cells. Partial HeLa/Smac cancer cells presented characteristic morphological changes of apoptosis under electron microscope, with an apoptosis rate of 16.4%, which was significantly higher than that of HeLa cells(6.2%, P<0.01). Compared with HeLa cells, Caspase-3 expression level in HeLa/Smac was improved significantly (P<0.01), while its activity was 3.42 times as much as that of HeLa cells (P<0.01). Conclusion: Stable transfection of extrinsic Smac gene and its over-expression in cervical cancer cell line could significantly enhance cellular caspase-3 expression and activity, ameliorate apoptosis-inducing effects of radiation on cancer cells, which would be a novel strategy to improve radiotherapeutic effects for cervical cancer. (authors)

  1. Ethanolic Neem (Azadirachta indica Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin

    Directory of Open Access Journals (Sweden)

    Chhavi Sharma

    2014-01-01

    Full Text Available The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE alone or in combination with cisplatin by cell viability assay on human breast (MCF-7 and cervical (HeLa cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1. ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2 in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers.

  2. Anticancer Activity of a Hexapeptide from Skate (Raja porosa Cartilage Protein Hydrolysate in HeLa Cells

    Directory of Open Access Journals (Sweden)

    Xin Pan

    2016-08-01

    Full Text Available In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY, which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p < 0.01. Thus, FIMGPY could induce apoptosis by upregulating the Bax/Bcl-2 ratio and caspase-3 activation. Using a DNA ladder method further confirmed that the anti-proliferation activity of FIMGPY was attributable to its role in inducing apoptosis. These results suggest that FIMGPY from skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer.

  3. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells.

    Science.gov (United States)

    Pan, Xin; Zhao, Yu-Qin; Hu, Fa-Yuan; Chi, Chang-Feng; Wang, Bin

    2016-08-16

    In this study, the hexapeptide Phe-Ile-Met-Gly-Pro-Tyr (FIMGPY), which has a molecular weight of 726.9 Da, was separated from skate (Raja porosa) cartilage protein hydrolysate using ultrafiltration and chromatographic methods, and its anticancer activity was evaluated in HeLa cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay indicated that FIMGPY exhibited high, dose-dependent anti-proliferation activities in HeLa cells with an IC50 of 4.81 mg/mL. Acridine orange/ethidium bromide (AO/EB) fluorescence staining and flow cytometry methods confirmed that FIMGPY could inhibit HeLa cell proliferation by inducing apoptosis. Western blot assay revealed that the Bax/Bcl-2 ratio and relative intensity of caspase-3 in HeLa cells treated with 7-mg/mL FIMGPY were 2.63 and 1.83, respectively, significantly higher than those of the blank control (p skate cartilage protein hydrolysate may have applications as functional foods and nutraceuticals for the treatment and prevention of cancer.

  4. Extracellular ATP elevates cytoplasmatic free Ca2+ in HeLa cells by the interaction with a 5'-nucleotide receptor

    NARCIS (Netherlands)

    Smit, M J; Leurs, R; Bloemers, S M; Tertoolen, L G; Bast, A; De Laat, S W; Timmerman, H

    1993-01-01

    In the present study we have characterized the effects of ATP and several other nucleotides on the intracellular Ca2+ levels of HeLa cells. Using fura-2 microscopy fluorescence measurements, the ATP-mediated increase in intracellular Ca2+ was shown to consist of a rapid rise which decreased after a

  5. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    Science.gov (United States)

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Serum ferritin in patients with cancer: determination with antibodies to HeLa cell and spleen ferritin

    International Nuclear Information System (INIS)

    Jones, B.M.; Worwood, M.; Jacobs, A.

    1980-01-01

    Some malignant tissues and cell lines contain acidic isoferritins and it has been suggested that the assay of such isoferritins in serum may be of value in the diagnosis of malignancy. This paper describes a radioimmunoassay for acidic ferritin purified from HeLa cells. Examination of purified heart, kidney, liver and spleen ferritin showed that the assay was highly specific for acidic isoferritins. Ferritin concentrations have been measured with antibodies to HeLa cell and spleen ferritin in extracts of normal and tumour tissue. Although the tumours contained more HeLa type ferritin than the corresponding normal tissue the HeLa/spleen type ferritin ratio was low. HeLa-type ferritin concentrations have been compared with values obtained with anti-spleen ferritin in over 1000 sera from normal subjects and patients with cancer and leukaemia. HeLa-type ferritin was not detected (<2 μg/l) in most normal sera. Concentrations of up to 53 μg/l were found in sera from patients with malignant disease but the HeLa/spleen type ferritin ratio was always very low. There appears to be little application for antibodies to HeLa cell or heart ferritin in the diagnosis or monitoring of cancer. (Auth.)

  7. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Hamzavi, Ramin; Nielsen, Peter E

    2008-01-01

    oligomer. This modification of the PNA does not interfere with the nucleic acid target binding affinity based on thermal stability of the PNA/RNA duplexes. When delivered to cultured HeLa pLuc705 cells by Lipofectamine, the PNAs showed dose-dependent nuclear antisense activity in the nanomolar range...

  8. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  9. Lamprey immune protein-1 (LIP-1) from Lampetra japonica induces cell cycle arrest and cell death in HeLa cells.

    Science.gov (United States)

    Chi, Xiaoyuan; Su, Peng; Bi, Dan; Tai, Zhao; Li, Yingying; Pang, Yue; Li, Qingwei

    2018-04-01

    The lamprey (Lampetra japonica), a representative of the jawless vertebrates, is the oldest extant species in the world. LIP-1, which has a jacalin-like domain and an aerolysin pore-forming domain, has previously been identified in Lampetra japonica. However, the structure and function of the LIP-1 protein have not been described. In this study, the LIP-1 gene was overexpressed in HeLa cells and H293T cells. The results showed that the overexpression of LIP-1 in HeLa cells significantly elevated LDH release (P HeLa cells, while it had no effect on H293T cell organelles. Array data indicated that overexpression of LIP-1 primarily upregulated P53 signaling pathways in HeLa cells. Cell cycle assay results confirmed that LIP-1 caused arrest in the G 2 /M phase of the cell cycle in HeLa cells. In summary, our findings provide insights into the function and characterization of LIP-1 genes in vertebrates and establish the foundation for further research into the biological function of LIP-1. Our observations suggest that this lamprey protein has the potential for use in new applications in the medical field. Copyright © 2018. Published by Elsevier Ltd.

  10. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    International Nuclear Information System (INIS)

    Rao Xiaotang; Zhang Yingyin; Yi Qiyi; Hou Heli; Xu Bo; Chu Liang; Huang Yun; Zhang Wenrui; Fenech, Michael; Shi Qinghua

    2008-01-01

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents

  11. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rao Xiaotang; Zhang Yingyin; Yi Qiyi; Hou Heli; Xu Bo; Chu Liang; Huang Yun; Zhang Wenrui [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fenech, Michael [CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000 (Australia); Shi Qinghua [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China)], E-mail: qshi@ustc.edu.cn

    2008-11-10

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents.

  12. Identification and characterization of a DNA primase activity present in herpes simplex virus type 1-infected HeLa cells

    International Nuclear Information System (INIS)

    Holmes, A.M.; Wietstock, S.M.; Ruyechan, W.T.

    1988-01-01

    A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4 degree C for several weeks, the DNA primase separated from the viral DNA polymerase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, the authors believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA

  13. N-methylation of the heterogeneous nuclear ribonucleoproteins in HeLa cells

    International Nuclear Information System (INIS)

    Rieker, J.P.

    1984-01-01

    Several of the core proteins on the 40S heterogeneous nuclear ribonucleoprotein particles (hnRNP) from HeLa cells contain N/sup G/,N/sup G/-dimethyl-L-arginine (uDMA). 3-deazaadenosine (c 3 Ado), an inhibitor of and substrate for s-adenosyl-L-homocysteine hydrolase, has been used to study the methylation patterns of the individual polypeptides. Trimethyllysine and uDMA formation in total cellular protein were inhibited in the presence of the drug while other methylated basic amino acids were unaffected. This inhibition was reversed within 60 min after removal of the drug from the medium. Monolayer HeLa cultures were incubated with [methyl- 3 H]-L-methoinine for 12 hours in the presence of 50 uM c 3 Ado. Purified particles were obtained by centrifugation of nuclear extracts on sucrose density gradients. The core proteins were isolated by two-dimensional gel electrophoresis, acid hydrolyzed and analyzed for radioactivity incorporated into methionine and methylated basic amino acids. The ratio of radioactivity incorporated into uDMA relative to that into methionine for the two major particle proteins with molecular weights of 31,000 (A 1 ) and 43,000 (A 2 ) was about 2.0 and 0.2 in control cultures. In the presence of c 3 Ado, these ratios were depressed 60 to 80%. Results of pulse-chase experiments suggested that A 1 and A 2 are metabolically stable proteins (t/sub 0.5/ > 75 hr), whether or not the proteins were undermethylated. Monomethyl-L-arginine may be a precursor in the formation of u-DMA

  14. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.

    Science.gov (United States)

    Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn

    2016-01-01

    The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

  15. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    Science.gov (United States)

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  16. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B. [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Bag, Jnanankur, E-mail: jbag@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  17. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-01-01

    Highlights: → Depletion of cellular PABP level arrests mRNA translation in HeLa cells. → PABP knock down leads to apoptotic cell death. → PABP depletion does not affect transcription. → PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  18. Enhanced reactivation of UV-irradiated adenovirus 2 in HeLa cells treated with non-mutagenic chemical agents

    Energy Technology Data Exchange (ETDEWEB)

    Piperakis, S.M.; McLennan, A.G. (Liverpool Univ. (UK). Dept. of Biochemistry)

    1985-03-01

    Treatment of HeLa cells with ethanol and sodium arsenite, compounds which are known to elicit the heat-shock response, before infection with UV-irradiated adenovirus 2 has been found to result in the enhanced reactivation of the damaged virus in a manner similar to that obtained by pre-irradiation or heating of the cells. Enhanced reactivation may be the result of the inhibition of DNA synthesis caused by these agents since hydroxyurea also produced a significant enhancement.

  19. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines

    OpenAIRE

    Najmeh Sarvmeili; Abbas Jafarian-Dehkordi; Behzad Zolfaghari

    2016-01-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extr...

  20. Cytotoxicity of cancer HeLa cells sensitivity to normal MCF10A cells in cultivations with cell culture medium treated by microwave-excited atmospheric pressure plasmas

    Science.gov (United States)

    Takahashi, Yohei; Taki, Yusuke; Takeda, Keigo; Hashizume, Hiroshi; Tanaka, Hiromasa; Ishikawa, Kenji; Hori, Masaru

    2018-03-01

    Cytotoxic effects of human epithelial carcinoma HeLa cells sensitivity to human mammary epithelial MCF10A cells appeared in incubation with the plasma-activated medium (PAM), where the cell culture media were irradiated with the hollow-shaped contact of a continuously discharged plasma that was sustained by application of a microwave power under Ar gas flow at atmospheric pressure. The discharged plasma had an electron density of 7  ×  1014 cm-3. As the nozzle exit to the plasma source was a distance of 5 mm to the medium, concentrations of 180 µM for H2O2 and 77 µM for NO2- were generated in the PAM for 30 s irradiation, resulting in the control of irradiation periods for aqueous H2O2 with a generation rate of 6.0 µM s-1, and nitrite ion (NO2- ) with a rate of 2.2 µM s-1. Effective concentrations of H2O2 and NO2- for the antitumor effects were revealed in the microwave-excited PAM, with consideration of the complicated reactions at the plasma-liquid interfaces.

  1. Heat Inactivation of Garlic (Allium sativum) Extract Abrogates Growth Inhibition of HeLa Cells.

    Science.gov (United States)

    Chintapalli, Renuka; Murray, Matthew J J; Murray, James T

    2016-07-01

    The potential anticancer properties of garlic (Allium sativum) may depend on the method of preparation and its storage. Storage of garlic has not been thoroughly investigated to determine whether anticancer properties are retained. Garlic was prepared and processed to mimic normal options for storage and preparation for consumption. Cytotoxicity was determined by crystal violet assay and mechanisms of cytotoxicity were established by microscopy, SDS-PAGE, and Western immunoblotting. Significant (P < 0.0001) cytotoxicity was observed in all preparations, except with boiled (cooked) garlic. Depending on the method of storage, garlic extract induced either type I or type II programmed cell death, detectable by caspase 9 cleavage, or Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage and LC3-II accumulation, respectively. The conflicting literature on the anticancer properties of garlic may be explained by differences in processing and storage. This study has highlighted that the potency of the antiproliferative properties of cooked garlic, compared to the uncooked form, is diminished in HeLa cells.

  2. HeLa cell tumor response to 60Co, Cs-137, Cf-252 radiations and cisplatin chemotherapy in nude mice

    International Nuclear Information System (INIS)

    Maruyama, Y.; Feola, J.M.; Beach, J.L.

    1984-01-01

    HeLa cells were implanted into athymic nude mice from tissue culture and solid tumors established (HeLa cell tumor or HCT). Large cell numbers of 1 X 10 7 were required to obtain consistent and progressive growth, and tumor growth followed a Gompertzian mode. Irradiation studies were carried out using acute Cobalt-60 (60Co), low-dose-rate (LDR) Cs-137 and LDR Cf-252. Cf-252, a neutron-emitting radioisotope, produced an immediate tumor shrinkage and regression response after a dose of 279 cGy. Acute 60Co or LDR Cs-137 irradiation with 1000 cGy had little effect on the HCT. After a dose of 2000 cGy of 60Co radiation tumor shrinkage followed a latent period of approximately 5 days. Cisplatin had no effect on the HCT in nude mice in stationary or late exponential growth

  3. Effect of guinea pig or monkey colonic mucus on Shigella aggregation and invasion of HeLa cells by Shigella flexneri 1b and 2a.

    OpenAIRE

    Dinari, G; Hale, T L; Washington, O; Formal, S B

    1986-01-01

    The effects of guinea pig and rhesus monkey colonic mucus preparations on Shigella aggregation and invasion of HeLa cell monolayers by Shigella flexneri serotype 1b, 2a, and 5 strains were investigated. Guinea pig mucus caused agglutination of S. flexneri serotype 1b but not of S. flexneri serotype 2a or 5. Guinea pig mucus also inhibited HeLa cell invasion by S. flexneri serotypes 1b and 2a. Monkey mucus neither agglutinated any Shigella strain nor inhibited HeLa cell invasion.

  4. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  5. CYTOCHEMICAL STUDIES OF THE NUCLEOPROTEINS OF HELA CELLS INFECTED WITH HERPES VIRUS.

    Science.gov (United States)

    Love, R; Wildy, P

    1963-05-01

    The morphological and cytochemical changes in HeLa cells infected with herpes virus have been studied at frequent intervals during infection and related to the growth of virus and the multiplicity of the virus inoculum. Infection with a high multiplicity inoculum produced enlargement and extrusion of small ribonucleoprotein (RNP) bodies in the nucleoli (nucleolini) to form RNP bodies in the nucleoplasm (B bodies) beginning (1/2) hour after infection. 3 hours after infection, RNP of the pars amorpha appeared to diffuse into the adjacent nucleoplasm, where, (1/2) hour later, the classical type A inclusion or A body first appeared. The A bodies displaced the B bodies and the nucleoli and eventually filled the nucleus. 6 hours after infection, minute granules containing RNA, DNA, and non-histone protein appeared inside the A bodies (A granules) and increased in number until the late stages of infection, when they disappeared. 18 hours after infection, at the time when the A bodies came to fill the nucleus completely, extrusion of RNP from the nucleus produced cytoplasmic masses which have been termed C bodies. B bodies were formed in the majority of cells before the maturation of infectious virus, but the number of B bodies could not be correlated with the amount of virus in the cell or with the multiplicity of the inoculum. It is suggested that the formation of B bodies may be the result of inhibition of the onset of mitotic division by a mechanism which does not inhibit the formation of RNA in the nucleolini. The nature of the A bodies, the A granules, and the C bodies is discussed and it is concluded that the A granules may represent aggregations of maturing virus in the nucleus. The progression of some C mitotic metaphases to the formation of post-C mitotic multinucleated giant cells is described. These are distinct from syncytia formed by cell fusion.

  6. SPATA4 Counteracts Etoposide-Induced Apoptosis via Modulating Bcl-2 Family Proteins in HeLa Cells.

    Science.gov (United States)

    Jiang, Junjun; Li, Liyuan; Xie, Mingchao; Fuji, Ryosuke; Liu, Shangfeng; Yin, Xiaobei; Li, Genlin; Wang, Zhao

    2015-01-01

    Spermatogenesis associated 4 (SPATA4) is a testis-specific gene first cloned by our laboratory, and plays an important role in maintaining the physiological function of germ cells. Accumulated evidence suggests that SPATA4 might be associated with apoptosis. Here we established HeLa cells that stably expressed SPATA4 to investigate the function of SPATA4 in apoptosis. SPATA4 protected HeLa cells from etoposide-induced apoptosis through the mitochondrial apoptotic pathway, in the way that SPATA4 suppressed decrease of the mitochondrial membrane potential, the release of cytochrome c, and subsequent activation of caspase-9 and -3. We further demonstrated that SPATA4 upregulated anti-apoptotic members of Bcl-2 family proteins, Bcl-2, and downregulated the pro-apoptotic member of Bcl-2 family proteins, Bax. Knockdown of SPATA4 in HeLa/SPATA4 cells could partially rescue expression levels of bcl-2 and bax. In conclusion, SPATA4 protects HeLa cells against etoposide-induced apoptosis through the mitochondrial apoptotic pathway. Our findings provide further evidence that SPATA4 plays a role in regulating apoptosis.

  7. [Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells].

    Science.gov (United States)

    Misic, V; El-Mogy, M; Geng, S; Haj-Ahmad, Y

    2016-01-01

    Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.

  8. Multiple signal transduction pathways in okadaic acid induced apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Jayaraj, R.; Gupta, Nimesh; Rao, P.V. Lakshmana

    2009-01-01

    Okadaic acid (OA) is the major component of diarrhetic shell fish poisoning toxins and a potent inhibitor of protein phosphatase 1 and 2A. We investigated the signal transduction pathways involved in OA induced cell death in HeLa cells. OA induced cytotoxicity and apoptosis at IC50 of 100 nM. OA treatment resulted in time dependent increase in reactive oxygen species and depleted intracellular glutathione levels. Loss of mitochondrial membrane permeability led to translocation of bax, cytochrome-c and AIF from mitochondria to cytosol. The cells under fluorescence microscope showed typical apoptotic morphology with condensed chromatin, and nuclear fragmentation. We investigated the mitochondrial-mediated caspase cascade. The time dependent activation and cleavage of of bax, caspases-8, 10, 9, 3 and 7 was observed in Western blot analysis. In addition to caspase-dependent pathway AIF mediated caspase-independent pathway was involved in OA mediated cell death. OA also caused time dependent inhibition of protein phosphatase 2A activity and phosphorylation of p38 and p42/44 MAP kinases. Inhibitor studies with Ac-DEVO-CHO and Z-VAD-FMK could not prevent the phosphorylation of p38 and p42/44 MAP kinases. Our experiments with caspase inhibitors Ac-DEVD-CHO, Z-IETD-FMK and Z-VAD-FMK inhibited capsase-3, 8 cleavages but did not prevent OA-induced apoptosis and DNA fragmentation. Similarly, pretreatment with cyclosporin-A and N-acetylcysteine could not prevent the DNA fragmentation. In summary, the results of our study show that OA induces multiple signal transduction pathways acting either independently or simultaneously leading to apoptosis

  9. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells.

    Science.gov (United States)

    Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru

    2018-03-30

    Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

  10. Fractionation of HeLa cell nuclear extracts reveals minor small nuclear ribonucleoprotein particles

    International Nuclear Information System (INIS)

    Kroemer, A.

    1987-01-01

    Upon chromatographic fractionation of HeLa cell nuclear extracts, small RNAs of 145 and 66/65 nucleotides, respectively, were detected that are distinct from the abundant small RNAs present in the extract. These RNAs are precipitated by antibodies directed against the trimethylguanosine cap structure, characteristic for small nuclear RNAs (snRNAs) of the U type. The RNAs of 145 and 66/65 nucleotides appear to be associated with at least one of the proteins common to the major small nuclear ribonucleoprotein particles U1 to U6, since they are specifically bound by anti-Sm antibodies. These criteria characterize the RNAs that are 145 and 66/65 nucleotides in length as U-type snRNAs. Upon gel filtration, the RNAs are found within particles of molecular weights ≅ 150,000 and 115,000 respectively. The RNA of 145 nucleotides represents a different minor snRNA, designated U11, whereas the RNA of 66/65 nucleotides may correspond to either mammalian U7 or U10 RNA

  11. Effects of natural flavones on membrane properties and citotoxicity of HeLa cells

    Directory of Open Access Journals (Sweden)

    Tatiana Herrerias

    Full Text Available The aim of this study was to determine whether eupafolin and hispidulin, flavones extracted from Eupatorium littorale Cabrera, Asteraceae, have the ability to change properties of biological membranes and promote cytotoxic effects. Eupafolin (50-200 µM decreased approximately 30% the rate and total amplitude of valinomycin induced swelling and 60-100% the energy-dependent mitochondrial swelling. Moreover, eupafolin (200 µM reduced 35% the mitochondrial permeability transition, and hispidulin did not change this parameter in any of the doses tested. The evaluation of phase transition of DMPC liposomes with the probe DPH demonstrated that hispidulin and eupafolin affect gel and fluid phase. With mitochondrial membrane as model, hispidulin increased the polarization of fluorescence when used DPH-PA probe. Eupafolin and hispidulin (100 µM promoted a reduction of 40% in cellular viability of HeLa cells in 24 h. Our results suggest that eupafolin and hispidulin have cytotoxic effects that can be explained, in part, by alterations promoted on biological membranes properties and mitochondrial bioenergetics.

  12. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  13. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    Science.gov (United States)

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  14. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Geryani

    2016-06-01

    Full Text Available Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI staining of DNA fragmentation by flow cytometry (sub-G1 peak. Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death.

  15. Comparative experimental studies into radioimmunoscintigraphy using radioactive antibodies in animals with HeLa cell carcinomas and Yoshida sarcomas

    International Nuclear Information System (INIS)

    Zettl, T.

    1988-01-01

    TPA-positive and TPA-negative tumour-bearing animal systems (HeLa cell carcinomas in RNU rats and Yoshida sarcomas in Wistar rats) were examined to show that the method of scanning can well be used to visualise tumour tissue. In this connection, further attempts were made to shed light on the specifity of immunoscintigraphy in the search for tumour tissue. 125-Iodine-anti-TPA was found to be a specific carcinoma-seeking substance. The amount of antibodies accumulating in the tumour was multiplied by previous intravenous treatment of test animals with unspecific immunoglobulin. In control studies using 125-iodine-immunoglobulin the site of the carcinomatous tissue could not be determined with sufficient diagnostic accuracy. It was found that the discriminating power of radioimmunoscintigraphy using 125-iodine-anti-TPA is quite unrelated to an increased circulation in the proliferating carcinomatous tissue. For the detection of TPA in HeLa cell carcinomas anti-TPA PAP stains were prepared. Radionuclide studies using 125-iodine-anti-TPA were also useful in the visualisation of the Yoshida sarcoma, even though this scores negative on TPA. Here, the amounts of radioactivity accumulating in the tumour were smaller than with the HeLa cell carcinoma. Moreover, peak levels were measured after no less than one day, as compared to the five days required for HeLa cell tumours to reach maximum levels. This finding would appear to provide presumptive evidence that there are other, unspecific mechanisms of tumour selectivity. (orig/MG) [de

  16. Effect of Phosphodiesterase in Regulating the Activity of Lysosomes in the HeLa Cell Line.

    Science.gov (United States)

    Hong, Eun-Seon; Kim, Bit-Na; Kim, Yang-Hoon; Min, Jiho

    2017-02-28

    The transport of lysosomal enzymes into the lysosomes depends on the phosphorylation of their chains and the binding of the phosphorylated residues to mannose-6-phosphate receptors. The efficiency of separation depends more on the phosphodiesterases (PDEs) than on the activity of the phosphorylation of mannose residues and can be determined in vitro. PDEs play important roles in regulation of the activation of lysosomes. The expression of proteins was confirmed by western blotting. All PDE4 series protein expression was reduced in high concentrations of rolipram. As a result of observing the fluorescence intensity after rolipram treatment, the lysosomal enzyme was activated at low concentrations and suppressed at high concentrations. High concentrations of rolipram recovered the original function. Antimicrobial activity was not shown in either 10 or 100 µ concentrations of rolipram in treated HeLa cells in vitro. However, the higher anticancer activity at lower rolipram concentration was shown in lysosomal enzyme treated with 10 µ of rolipram. The anticancer activity was confirmed through cathepsin B and D assay. Tranfection allowed examination of the relationship between PDE4 and lysosomal activity in more detail. Protein expression was confirmed to be reduced. Fluorescence intensity showed decreased activity of lysosomes and ROS in cells transfected with the antisense sequences of PDE4 A, B, C, and D. PDE4A showed anticancer activity, whereas lysosome from cells transfected with the antisense sequences of PDE4 B, C, and D had decreased anticancer activity. These results showed the PDE4 A, B, C, and D are conjunctly related with lysosomal activity.

  17. Combined antitumor activity of the nitroreductase/CB1954 suicide gene system and γ-rays in HeLa cells in vitro

    Science.gov (United States)

    Teng, Geling; Ju, Yuanrong; Yang, Yepeng; Hua, Hu; Chi, Jingyu; Mu, Xiuan

    2016-01-01

    Escherichia coli nitroreductase (NTR) may convert the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent, which may lead to DNA crosslinks and the apoptosis of cancer cells. NTR/CB1954 has been demonstrated to be an effective gene therapy in cancer cells. The present study examined whether the NTR/CB1954 suicide gene system had cytotoxic effects on HeLa cells and may improve the radiosensitivity of HeLa cells to γ-rays. It was observed that the NTR/CB1954 suicide gene system exerted marked cytotoxic effects on HeLa cells. The combined therapeutic effects of NTR/CB1954 and γ-rays on HeLa cells demonstrated a synergistic effect. CB1954 at concentrations of 12.5 and 25 µmol/l increased the sensitization enhancement ratio of HeLa cells to 1.54 and 1.66, respectively. Therefore, when compared with monotherapy, the combined therapy of NTR/CB1954 and γ-rays may increase the apoptotic rate and enhance the radiosensitivity of HeLa cells. The combined therapy of γ-ray radiation and the NTR/CB1954 suicide gene system may be a novel and potent therapeutic method for the treatment of cervical carcinoma. PMID:27840931

  18. Combined antitumor activity of the nitroreductase/CB1954 suicide gene system and γ-rays in HeLa cells in vitro.

    Science.gov (United States)

    Teng, Geling; Ju, Yuanrong; Yang, Yepeng; Hua, Hu; Chi, Jingyu; Mu, Xiuan

    2016-12-01

    Escherichia coli nitroreductase (NTR) may convert the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent, which may lead to DNA crosslinks and the apoptosis of cancer cells. NTR/CB1954 has been demonstrated to be an effective gene therapy in cancer cells. The present study examined whether the NTR/CB1954 suicide gene system had cytotoxic effects on HeLa cells and may improve the radiosensitivity of HeLa cells to γ‑rays. It was observed that the NTR/CB1954 suicide gene system exerted marked cytotoxic effects on HeLa cells. The combined therapeutic effects of NTR/CB1954 and γ‑rays on HeLa cells demonstrated a synergistic effect. CB1954 at concentrations of 12.5 and 25 µmol/l increased the sensitization enhancement ratio of HeLa cells to 1.54 and 1.66, respectively. Therefore, when compared with monotherapy, the combined therapy of NTR/CB1954 and γ‑rays may increase the apoptotic rate and enhance the radiosensitivity of HeLa cells. The combined therapy of γ‑ray radiation and the NTR/CB1954 suicide gene system may be a novel and potent therapeutic method for the treatment of cervical carcinoma.

  19. DNA of HeLa cells during caffeine-promoted recovery from X-ray induced G2 arrest

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.; Liebeskind, D.; Elequin, F.; Neubort, S.

    1980-01-01

    Progression of X-irradiated HeLa cells from G2 arrest through mitosis was promoted by 1mM caffeine. Caffeine promoted the return from abnormally high levels of radiation-induced immunoreactivity to antinucleoside antibodies, which indicates persistent DNA strand separation, to the low levels normally found in G2. With caffeine, the irradiated cells progressed through mitosis, producing daughter cells with the normal G1 content of DNA. Without caffeine, the DNA content of individual radiation-arrested cells retained G2 values and the abnormally high levels of immunoreactivity to antinucleoside antibodies. (author)

  20. Enhanced lethal effect of combined ACNU with x-ray on cultured HeLaS3 cells

    International Nuclear Information System (INIS)

    Kanazawa, Haruyuki; Miyamoto, Tadaaki

    1983-01-01

    The combined effects of ACNU and X-irradiation on cultured HeLaS 3 cells were investigated. Pretreatment with either ACNU or X-ray induced a substantial reduction in shoulder width the D 0 value of the dose-response curve for the other agent, given later was unchanged. ACNU did not inhibit the recovery of sublethal damage (SLD) induced by X-ray when this treatment preceded the spilit-dose experiment. Our results indicate that some cell damage induced by each agent is transmissible to the progeny of the surviving cells and that the interaction of ACNU and X-irradiation was lethal to the cells. (author)

  1. Effects of DNA polymerase inhibitors on replicative and repair DNA synthesis in ultraviolet-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Morita, T.; Nakamura, H.; Tsutsui, Y.; Nishiyama, Y.; Yoshida, S.

    1982-01-01

    Aphidicolin specifically inhibits eukaryotic DNA polymerase α, while 2',3'-dideoxythymidine 5'-triphosphate (d 2 TTP) inhibits DNA polymerase ν and ν but not α. 1-ν-D-Arabinofuranosylcytosine 5'-triphosphate (araCTP) inhibits both DNA polymerase α and ν although to a different extent. Here we measured the effects of these inhibitors on repair DNA synthesis of U.V.-irradiated HeLa cells by two different methods. Firstly, aphidicolin, 1-ν-D-arabinofuranosylcytosine (araC, a precursor of araCTP) and 2',3'-dideoxythimidine (d 2 Thd, a precursor of d 2 TTP) were added directly to the culture medium. In this case, aphidicolin and araC strongly inhibited replicative DNA synthesis of HeLa cells, and they also inhibited repair synthesis after U.V.-irradiation but to a much lesser extent. In contrast, high concentrations of d 2 Thd inhibited repair DNA synthesis to a higher extent than replicative DNA synthesis. Secondly, the active form of inhibitor, d 2 TTP, was microinjected directly into cytoplasm or nuclei or U.V.-irradiated HeLa cells. Microinjection of d 2 TTP effectively inhibited repair synthesis. The microinjection of d 2 TTP, into either cytoplasm or nucleus, strongly inhibited replicative synthesis. These results might indicate that multiple DNA polymerases are involved in repair synthesis as well as in replicative synthesis

  2. Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Alshatwi Ali A

    2009-11-01

    Full Text Available Abstract Background Cancer remains one of the most dreaded diseases causing an astonishingly high death rate, second only to cardiac arrest. The fact that conventional and newly emerging treatment procedures like chemotherapy, catalytic therapy, photodynamic therapy and radiotherapy have not succeeded in reverting the outcome of the disease to any drastic extent, has made researchers investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. This study progresses in the direction of identifying component(s from Nigella sativa with anti cancer acitivity. In the present study we investigated the efficacy of Organic extracts of Nigella sativa seed powder for its clonogenic inhibition and induction of apoptosis in HeLa cancer cell. Results Methanolic, n-Hexane and chloroform extracts of Nigella sativa seedz effectively killed HeLa cells. The IC50 values of methanolic, n-hexane, and chloroform extracts of Nigella sativa were 2.28 μg/ml, 2.20 μg/ml and 0.41 ng/ml, respectively. All three extracts induced apoptosis in HeLa cells. Apoptosis was confirmed by DNA fragmentation, western blot and terminal transferase-mediated dUTP-digoxigenin-end labeling (TUNEL assay. Conclusion Western Blot and TUNEL results suggested that Nigella sativa seed extracts regulated the expression of pro- and anti- apoptotic genes, indicating its possible development as a potential therapeutic agent for cervical cancer upon further investigation.

  3. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells

    Directory of Open Access Journals (Sweden)

    Kaba SI

    2015-03-01

    Full Text Available Said I Kaba, Elena M Egorova Institute of General Pathology and Pathophysiology, Moscow, Russia Abstract: In the last decade, much attention has been paid to studies of the effect of silver nanoparticles (Ag NPs on tumor cells. Apart from elucidation of the mechanism of NPs’ interaction with mammalian cells, these studies are aimed at discovering new effective antitumor drugs. In this work, we report about the toxic effects of Ag NPs observed on two types of tumor cells: HeLa (adhesive cells and U937 (suspension cells. The Ag NPs were obtained by an original method of biochemical synthesis. Particle size was 13.2±4.72 nm, and zeta potential was -61.9±3.2 mV. The toxicity of Ag NPs in the concentration range 0.5–8.0 µg Ag/mL was determined by means of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and cytofluorometry after 4 and 24 hours' incubation. It was found that Ag NPs had high toxicity toward both cell types. The minimal concentrations where a toxicity effect was registered (toxicity thresholds lied in the range 0.5–2.0 µg Ag/mL. In parallel with the Ag NP solution, cells were incubated with water solutions of the NP stabilizer (aerosol-OT and Ag+ ions (as silver nitrate. It was shown that aerosol-OT had no effect on the viability on HeLa cells, but was moderately toxic toward U937, though less dangerous for these cells than Ag NPs. With Ag+ ions, for HeLa no toxic effect was observed, while for U937 they were as toxic as the Ag NPs. The data obtained indicate that Ag NPs as used in this study may prove to be useful for the creation of medicines for cancer therapy. Keywords: silver nanoparticles, cell viability, apoptosis, tumor cells

  4. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    Science.gov (United States)

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-04-29

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  5. Quantitative Proteomics Analysis Reveals Novel Insights into Mechanisms of Action of Long Noncoding RNA Hox Transcript Antisense Intergenic RNA (HOTAIR) in HeLa Cells*

    Science.gov (United States)

    Zheng, Peng; Xiong, Qian; Wu, Ying; Chen, Ying; Chen, Zhuo; Fleming, Joy; Gao, Ding; Bi, Lijun; Ge, Feng

    2015-01-01

    Long noncoding RNAs (lncRNAs), which have emerged in recent years as a new and crucial layer of gene regulators, regulate various biological processes such as carcinogenesis and metastasis. HOTAIR (Hox transcript antisense intergenic RNA), a lncRNA overexpressed in most human cancers, has been shown to be an oncogenic lncRNA. Here, we explored the role of HOTAIR in HeLa cells and searched for proteins regulated by HOTAIR. To understand the mechanism of action of HOTAIR from a systems perspective, we employed a quantitative proteomic strategy to systematically identify potential targets of HOTAIR. The expression of 170 proteins was significantly dys-regulated after inhibition of HOTAIR, implying that they could be potential targets of HOTAIR. Analysis of this data at the systems level revealed major changes in proteins involved in diverse cellular components, including the cytoskeleton and the respiratory chain. Further functional studies on vimentin (VIM), a key protein involved in the cytoskeleton, revealed that HOTAIR exerts its effects on migration and invasion of HeLa cells, at least in part, through the regulation of VIM expression. Inhibition of HOTAIR leads to mitochondrial dysfunction and ultrastructural alterations, suggesting a novel role of HOTAIR in maintaining mitochondrial function in cancer cells. Our results provide novel insights into the mechanisms underlying the function of HOTAIR in cancer cells. We expect that the methods used in this study will become an integral part of functional studies of lncRNAs. PMID:25762744

  6. Dose-rate effects in plateau-phase cultures of S3 HeLa and V79 cells

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    Dose-rate effects on cell survival were studied for log-, fed plateau-, and unfed plateau-phase cultures of V79 and S3 HeLa cells. For log-phase cultures, repair, cell-cycle redistribution, and cell division during exposure can contribute to the overall dose-rate effect, but their relative contributions are difficult to determine. With plateau-phase cultures, the cell-cycle times are greatly lengthened, for those cells that are in cycle. Hence, the contribution to the overall dose-rate effect of cell-cycle redistribution and cell division during the exposure could be minimized using plateau-phase cultures. With respect to the acute dose-survival curves, there was a clear loss in effectiveness when the dose rate was lowered to 154 rad/hr for both fed and unfed plateau-phase HeLa and V79 cells. There was no further reduction in effectiveness per unit dose, however, when the dose rate was reduced to 55 rad/hr. Since there was virtually no cell division or cell-cycle redistribution, it may be that a limit to the repair-dependent dose-rate effect at 37 0 C has been reached at a dose rate of 154 rad/hr

  7. Observations of the first postirradiation division of HeLa cells following continuous or fractionated exposure to γ rays

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    The first postirradiation division of synchronized S3 HeLa cells was studied using both continuous and fractionated irradiation treatments. Synchronized HeLa cells continuously irradiated at a dose rate of 37 rad/hr eventually accumulate in mitosis. If the continuous irradiation is stopped before the cells enter G2 or even after they have progressed for a limited time into the G2 arrest that develops, very little subsequent accumulation of cells in mitosis occurs. If they progress for a longer time into the G2 arrest, then some mitotic accumulation does occur after the irradiation is stopped. When synchronized cells were allowed to progress through G1 and S before the irradiation was started, very little cell division occurred during subsequent continuous irradiation and extensive mitotic accumulation was observed. Thus, for continuous irradiation of HeLa cells, the dose received by a cell during G2 or a G2 delay apparently determines whether it will be able to divide if it reaches mitosis. Arguing against the notion that continuous irradiation during G2 is required to produce a mitotic accumulation was the result of an expriment which showed that a similar effect was obtained using two acute doses: the first to produce a G2 delay and the second to give the necessary dose during the delay. The first dose alone resulted in little mitotic accumulation. The time of delivery of the second dose during the G2 delay affected the extent of mitotic accumulation observed. There was less mitotic accumulation when second acute doses were given early or at intermediate times during the delay than when they were given late during the G2 delay. An accumulation of cells in mitosis was also observed by using a combination of low-dose-rate irradiation to induce a G2 delay, followed immediately by an acute dose of either 500 or 1000 rad. The low-dose-rate treatment alone resulted in no mitotic accumulation

  8. IL-8 is upregulated in cervical cancer tissues and is associated with the proliferation and migration of HeLa cervical cancer cells.

    Science.gov (United States)

    Jia, Linlin; Li, Fengying; Shao, Mingliang; Zhang, Wei; Zhang, Chunbin; Zhao, Xiaolian; Luan, Haiyan; Qi, Yaling; Zhang, Pengxia; Liang, Lichun; Jia, Xiuyue; Zhang, Kun; Lu, Yan; Yang, Zhe; Zhu, Xiulin; Zhang, Qi; Du, Jiwei; Wang, Weiqun

    2018-01-01

    Interleukin-8 (IL-8) serves an important function in chronic inflammation and cancer development; however, the underlying molecular mechanism(s) of IL-8 in uterine cervical cancer remains unclear. The present study investigated whether IL-8 and its receptors [IL-8 receptor (IL-8R)A and IL-8RB] contributed to the proliferative and migratory abilities of HeLa cervical cancer cells, and also investigated the potential underlying molecular mechanisms. Results demonstrated that IL-8 and its receptors were detected in HeLa cells, and levels of IL-8RA were significantly increased compared with those of IL-8RB. Furthermore, the level of IL-8 in cervical cancer tissues was significantly increased compared with that in normal uterine cervical tissues, and migratory and proliferative efficiencies of HeLa cells treated with exogenous IL-8 were increased, compared with untreated HeLa cells. In addition, exogenous IL-8 was able to downregulate endocytic adaptor protein (NUMB), and upregulate IL-8RA, IL-8RB and extracellular signal-regulated protein kinases (ERKs) expression levels in HeLa cells. Results suggest that IL-8 and its receptors were associated with the tumorigenesis of uterine cervical cancer, and exogenous IL-8 promotes the carcinogenic potential of HeLa cells by increasing the expression levels of IL-8RA, IL-8RB and ERK, and decreasing the expression level of NUMB.

  9. Effects of growth state and 3H labeling level on RNA turnover in WI-38 fibroblasts and HeLa cells

    International Nuclear Information System (INIS)

    Sameshima, M.; Schlessinger, D.

    1981-01-01

    The rate of turnover of prelabeled RNA in WI-38 human diploid fibroblasts varied with the level of 3 H incorporated, the cell density of cultures, and the arrest of growth by senescence. The half-life of RNA in sparse cultures of growing WI-38 diploid fibroblasts depended on the level of [ 3 H]uridine incorporated; extrapolated to zero levels of incorporation, the half-life was 15 to 20 days. At any level of incorporated [ 3 H]uridine, however, RNA half-life decreased to 4 to 5 days in superconfluent cultures as the culture growth slowed. A similar shortening of half-life was observed when growth was stopped by 3 H irradiation or clonal senescence. However, the rate of turnover was not simply dependent on whether cells were growing; for example, turnover did not increase when growth was arrested by incubating cells in conditioned medium. HeLa and L cells also showed an RNA half-life of about 14 to 20 days with an increase in turnover rate of crowded cultures. However, this increase occurred at higher cell densities than with the diploid fibroblasts. Also, the growth rate and rate of RNA turnover of HeLa and L cells were much less affected by incorporated 3 H. The differential responses to confluence and 3 H label can explain the higher turnover rate of RNA in normal human fibroblasts compared to SV40-transformed cells [S.A. Liebhaber, S. Wolf, and D. Schlessinger, Cell 13, 121-127 (1978)

  10. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.; Sunkara, P.S.

    1990-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author)

  11. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.; Sunkara, P.S. (Merrell Dow Research Inst., Cincinnati, OH (USA))

    1990-09-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author).

  12. Radiosensitizing effect of Chitosan on HeLa and LN 18 brain tumor cells exposed to electron beam radiation

    International Nuclear Information System (INIS)

    Rao, Shama; Shetty, Sukanya; Suchetha Kumari, N.; Madhu, L.N.

    2014-01-01

    Chitosan has been widely used for multiple applications because it is a non-toxic biocompatible, biodegradable, and adsorptive material. A previous study has shown that low-molecular-weight chitosan (LMWC) exerts a cytotoxic effect on oral cancer cells. Although a higher concentration of LMWC in comparison to cisplatin was needed in order to kill cancer cells, it was relatively less cytotoxic to non-cancer cells. Some of the well known anticancer drugs have the property of sensitizing the cell to radiation, which will be more applicable during combination therapy of cancer. The present study was undertaken to find the radiosensitizing effect of chitosan on Hela and Brain tumor (LN18) cells against electron beam radiation (EBR). Both the cancer cell lines, Hela and LN 18 were treated with different concentration of chitosan (50 and 100 μg/ml) pre and post exposure to 4 Gy EBR. The percentage of cell viability, percentage of apoptosis and ssDNA damage in the treated cells were assessed by MTT assay, DNA diffusion assay and comet assay respectively. The obtained results showed 62.13 1 5.08 and 65.24 1 2.45 percent Hela and LN 18 viable cells at 24 hour after the exposure to 4 Gy EBR. The percentage of viability was found to be decreased in cells exposed to EBR in the presence of chitosan. Supporting to this, percentage of apoptotic cells was found to be more in treated groups (28.13 1 4.34 and 25.13 1 3.76) when compared with control (23.19 1 1.07 and 20.79 1 4.86). Treatment of HeLa and LN18 before and after the exposure of EBR showed significantly (P<0.05) more frequency of micronucleus and % of DNA damage than the 4 Gy EBR control group. These results conclude the sensitizing effect of chitosan on cancer cell line against EBR exposure. (author)

  13. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Anti-apoptotic effect of caspase inhibitors on H₂O₂-treated HeLa cells through early suppression of its oxidative stress.

    Science.gov (United States)

    Park, Woo Hyun

    2014-05-01

    Oxidative stress-induced cytotoxicity in cervical cancer cells may be of toxicological interest. In the present study, the effects of exogenous H2O2 on cell growth and death in HeLa cervical cancer cells were investigated, and the anti-apoptotic effects of various caspase (pan-caspase, caspase-3, -8 or -9) inhibitors on H2O2-treated HeLa cells were also evaluated with regard to reactive oxygen species (ROS) and glutathione (GSH) levels. Based on MTT assays, H2O2 inhibited the growth of HeLa cells with an IC50 value of ~75 µM at 24 h. H2O2 increased the number of dead cells and Annexin V-FITC-positive cells in the HeLa cells, which was accompanied by the activation of caspase-3 and the loss of mitochondrial membrane potential (MMP; ΔΨm). However, relatively higher doses of H2O2 induced necrosis in HeLa cells. Caspase inhibitors significantly prevented H2O2-induced HeLa cell death. H2O2 increased ROS including O2•- at 24 h and increased the activity of catalase in HeLa cells. H2O2 also increased the ROS level at 1 h, and several caspase inhibitors attenuated the increased level at 1 h but not at 6, 12 and 24 h. H2O2 decreased the GSH level in HeLa cells at 1 h, and several caspase inhibitors attenuated the decreased level of GSH at this time. H2O2 induced GSH depletion at 24 h. In conclusion, H2O2 inhibited the growth of HeLa cells via apoptosis and/or necrosis, which was accompanied by intracellular increases in ROS levels and GSH depletion. Caspase inhibitors are suggested to suppress H2O2-induced oxidative stress to rescue HeLa cells at the early time point of 1 h.

  15. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.

  17. Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-01-01

    Antimycin A (AMA) is an inhibitor of the electron transport chain in mitochondria. In this study, we investigated the anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), superoxide dismutase (SOD) or catalase on AMA-induced HeLa cell death in relation to the cell cycle. Treatment with Z-VAD, SOD or catalase rescued some HeLa cells from AMA-induced apoptosis, but did not prevent the growth inhibition of HeLa cells by AMA. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S-phase arrest of the cell cycle at 72 h. Interestingly, Z-VAD, SOD and catalase intensified S-phase arrest in AMA-treated cells. In conclusion, treatment with Z-VAD, SOD or catalase decreased apoptotic levels in AMA-treated cells, which was associated with the enhancement of the S-phase arrest of the cell cycle in these cells.

  18. Synergistic combination of fluoro chalcone and doxorubicin on HeLa cervical cancer cells by inducing apoptosis

    Science.gov (United States)

    Arianingrum, Retno; Arty, Indyah Sulistyo; Atun, Sri

    2017-03-01

    Doxorubicin (Dox), a primary chemotherapeutic agent used for cancer treatment is known to have various side effect included multidrug resistance (MDR) phenomenon. Combination chemotherapy is one of some approaches to reduce Dox side effect. Chalcones have been reported to reduce the proliferation of many cancer cells. The research were conducted to investigate the cytotoxic activity and apoptosis induction of a chalcone derivate which is containing fluoro substituent [1 - (4" - fluorophenyl) -3 - (4' - hydroxy - 3' - methoxyphenyl) - 2 - propene - 1 -on] (FHM) and its combination with Dox on HeLa cells line. The observation of the cytotoxic activity was conducted using MTT [3 - (4, 5 - dimethyl thiazol - 2 - y1) - 2.5 - diphenyltetrazolium bromide] assay. Apoptosis induction was determined by flow cytometric. The changes of cell morphology were observed using phase contrast microscopy. The combination index (CI) was used to determine the effect of the combination. The study showed that FHM inhibited the HeLa cell growth with IC50 of 34 μM, while the IC50 of Dox was 1 μM. The combination had a higher inhibitory effect on cell growth compare to the single treatment of FHM and Dox. All of the combination doses under IC50 of FHM and Dox gave synergistic (CI: - 0.7) up to strong synergistic effect (CI: 0.l - 0.3). The synergistic effects of the combination were due to their ability to induce apoptosis in the HeLa cells. According to the result, FHM was potential to be developed as a co-chemotherapeutic agent with Dox for cervical cancer.

  19. Long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele‐specific MYC expression in HeLa cells

    Science.gov (United States)

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Lu, Fengmin

    2017-01-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis‐activate the expression of proto‐oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV‐integrated haplotype, and a long‐range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long‐range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence‐associated acidic β‐gal activity in HeLa cells. These data indicate a long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. PMID:28470669

  20. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells.

    Science.gov (United States)

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Chen, Xiangmei; Lu, Fengmin

    2017-08-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis-activate the expression of proto-oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV-integrated haplotype, and a long-range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long-range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence-associated acidic β-gal activity in HeLa cells. These data indicate a long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  1. ADP-ribosylation of nonhistone proteins from metaphase and interphase HeLa cells: factors responsible for differences

    International Nuclear Information System (INIS)

    Adolph, K.W.

    1986-01-01

    A striking reduction was previously detected for HeLa metaphase chromosomes, compared to interphase nuclei, in the number of modified nonhistone species. Several factors which could contribute to this cell cycle change in ADP-ribosylation have therefore been examined. In these experiments, mitotic or interphase cells were incubated with [ 32 P]NAD, chromosomes and nuclei were prepared, and the proteins were resolved by polyacrylamide gel electrophoresis. The level of incorporation of 32 P label was found to be substantially influenced by chromosome expansion, DNA nicking, disruption of chromosomes or nuclei, and the growth activity of cells. The level of ADP-ribosylation was not greatly affected by the presence of inhibitors of RNA, DNA, and protein synthesis. NAD concentration influenced the extent of labelling but not the pattern of labeled species. A similar change in the pattern from interphase to mitosis was observed for whole cells as well as for isolated chromosomes and nuclei. The procedure used to arrest cells in mitosis was not artifactually responsible for the results. The difference in metaphase and interphase ADP-ribosylation is not confined to HeLa cells, since comparable patterns were found for chromosomes and nuclei from Novikoff rat hepatoma cells

  2. Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells.

    Science.gov (United States)

    Vijayarathna, Soundararajan; Oon, Chern Ein; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-05-01

    Medicinal plants have been accepted as a gold mine, with respect to the diversity of their phytochemicals. Many medicinal plants extracts are potential anticancer agents. Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is one of the most significant native medicinal plants and is found throughout Malaysia. Hence, the present study was intended to assess the anticancer properties of P. longifolia leaf methanolic extract (PLME) and its underlying mechanisms. The Annexin V/PI flow cytometry analysis showed that PLME induces apoptosis in HeLa cells in dose-dependent manner whereas the PI flow cytometric analysis for cell cycle demonstrated the accumulation of cells at sub G0/G1, G0/G1 and G2/M phases. Investigation with JC-1 flow cytometry analysis indicated increase in mitochondria membrane potential depolarisation corresponding to increase in PLME concentrations. PLME was also shown to influence intracellular reactive oxygen species (ROS) by exerting anti-oxidant (half IC 50 ) and pro-oxidant (IC 50 and double IC 50 ) affect against HeLa cells. PLME treatment also displayed DNA damage in HeLa cells in concentration depended fashion. The proteomic profiling array exposed the expression of pro-apoptotic and anti-apoptotic proteins upon PLME treatment at IC 50 concentration in HeLa cells. Pro-apoptotic proteins; BAX, BAD, cytochrome c, caspase-3, p21, p27 and p53 were found to be significantly up-regulated while anti-apoptotic proteins; BCL-2 and BCL-w were found to be significantly down-regulated. This investigation postulated the role of p53 into mediating apoptosis, cell cycle arrest and mitochondrial potential depolarisation by modulating the redox status of HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Functional interaction between hMYH and hTRADD in the TNF-α-mediated survival and death pathways of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Vy Tran, An Hue; Hahm, Soo-Hyun; Han, Se Hee [Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Chung, Ji Hyung [Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836 (Korea, Republic of); Park, Geon Tae [Cornell University, Ithaca, NY 14850 (United States); Han, Ye Sun, E-mail: yshan@konkuk.ac.kr [College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-07-15

    Highlights: • We determine the interaction between hMYH and hTRADD. • We examine changes in the level of hMYH–hTRADD interaction under TNF-α treatment. • hTRADD–hMYH association is involved in the nuclear translocation of NFκB. • hTRADD–hMYH complex influences the TNFR1–TRADD association. - Abstract: The tumor necrosis factor (TNF) signaling pathway is a classical immune system pathway that plays a key role in regulating cell survival and apoptosis. The TNF receptor-associated death domain (TRADD) protein is recruited to the death domain of TNF receptor 1 (TNFR1), where it interacts with TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein (RIP) for the induction of apoptosis, necrosis, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and mitogen-activated protein (MAP) kinase activation. In this study, we found that the human MutY homolog (hMYH) interacted with human TRADD (hTRADD) via the C-terminal domain of hMYH. Moreover, under conditions promoting TNF-α-induced cell death or survival in HeLa cells, this interaction was weakened or enhanced, respectively. The interaction between hMYH and hTRADD was important for signaling pathways mediated by TNF-α. Our results also suggested that the hTRADD–hMYH association was involved in the nuclear translocation of NFκB and formation of the TNFR1–TRADD complex. Thus, this study identified a novel mechanism through which the hMYH–hTRADD interaction may affect the TNF-α signaling pathway. Implications: In HeLa cells, the hTRADD–hMYH interaction functioned in both cell survival and apoptosis pathways following TNF-α stimulation.

  4. Synthesis and methylation of ribosomal RNA in HeLa cells infected with the herpes virus pseudorabies virus

    International Nuclear Information System (INIS)

    Furlong, J.C.; Kyriakidis, S.; Stevely, W.S.

    1982-01-01

    The effects of infection with the herpes virus pseudorabies virus on the metabolism of HeLa cell ribosomal RNA were examined. There is a decline both in the synthesis of nucleolar 45S ribosomal precursor RNA and in its processing to mature cytoplasmic RNA. The methylated oligonucleotides in the ribosomal RNA species were studied. The methylation of cytoplasmic ribosomal RNA was essentially unchanged. However there was some undermethylation of the nucleolar precursor. If undermethylated RNA does not mature then this may partly explain the reduced processing in the infected cells. (Author)

  5. Cytotoxic and Immunomodulatory Potential Activity of Physalis peruviana Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells.

    Science.gov (United States)

    Mier-Giraldo, Helen; Díaz-Barrera, Luis Eduardo; Delgado-Murcia, Lucy Gabriela; Valero-Valdivieso, Manuel Fernando; Cáez-Ramírez, Gabriela

    2017-10-01

    It was purposed to evaluate the biological potential of ethanol and isopropanol crude extracts of ripe Physalis peruviana fruits. Cytotoxic and immunomodulatory effects of the expression of interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 (MCP-1) were evaluated on human cervical cancer (HeLa) and murine fibroblast (L929) cells. The composition was evaluated by high-performance liquid chromatography diode-array detection and high-performance liquid chromatography ultraviolet/visible detection. The presence of ursolic acid and rosmarinic acid was found in both solvents. However, gallic acid, quercetin, and epicatechin were higher in isopropanol extracts ( P < .05). The results indicated a relationship among the total polyphenol content, antioxidant activity, and cytotoxic activity that was dependent on the solvent used. Isopropanol extracts presented a half-maximal inhibition concentration value (IC 50 ) of 60.48 ± 3.8 μg/mL for HeLa cells and 66.62 ± 2.67 μg/mL for L929 fibroblasts. The extracts reduced the release of interleukin-6, interleukin-8, and MCP-1 in a dose-dependent manner. Extracts showed anticancer and immunomodulatory potential for new complementary pharmaceutical products development.

  6. Icotinib hydrochloride enhances chemo- and radiosensitivity by inhibiting EGFR signaling and attenuating RAD51 expression and function in Hela S3 cells

    Directory of Open Access Journals (Sweden)

    Wang X

    2018-03-01

    Full Text Available Xuanxuan Wang, Yanjun Gu, Hai Liu, Liming Shi, Xiaonan Sun Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China Background: Radiotherapy and cisplatin-based chemotherapy are currently considered as standard treatments employed for advanced cervical cancer (CC. However, patients with local recurrence or distant metastasis continue to have poor outcomes. EGFR overexpression correlated with chemo/radioresistance, and disease failure has been well proved in the previous studies. Hence, the aim of this study was to explore the therapeutic efficacy and underlying mechanism of the sensitization to radiation or cisplatin of icotinib hydrochloride (IH, a high-selective EGFR tyrosine kinase inhibitor (TKI, in the Hela S3 human CC cell line.Methods: Cell proliferation was measured with cell counting kit-8 (CCK-8 assay. Flow cytometry analysis was performed to examine cell cycle distribution and apoptosis. The phosphorylation of EGFR and its downstream signaling molecules were measured by Western blot analysis. γ-H2AX foci and RAD51 foci in the cellular nucleus were visualized using immunofluoresence staining. Expression levels of RAD51 in the whole cells and subceullar fractions were detected to demonstrate the impact of IH on DNA repair. Results: IH can significantly inhibit cell proliferation, redistribute cell cycle, enhance apoptosis and impair DNA damage response of Hela S3 cells following radiation or cisplatin treatment through suppressing the activation of the EGFR signaling pathway and attenuating the expression and function of homologous recombination (HR protein RAD51.Conclusion: This study suggests that IH is a potential sensitizer in radiotherapy and cisplatin-based chemotherapy for CC and RAD51 may serve as a prognosis biomarker for this combination treatment. Keywords: icotinib hydrochloride, cervical cancer, EGFR, radiotherapy, chemotherapy

  7. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    Science.gov (United States)

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica . Therefore, P. eldarica might have a good potential for active anticancer agents.

  8. Development of electrochemical reporter assay using HeLa cells transfected with vector plasmids encoding various responsive elements

    Energy Technology Data Exchange (ETDEWEB)

    Shiku, Hitoshi, E-mail: shiku@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Takeda, Michiaki; Murata, Tatsuya [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan); Akiba, Uichi; Hamada, Fumio [Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata gakuen-machi, Akita 010-8502 (Japan); Matsue, Tomokazu, E-mail: matsue@bioinfo.che.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-Aoba, Sendai 980-8579 (Japan)

    2009-04-27

    Electrochemical assay using HeLa cell lines transfected with various plasmid vectors encoding SEAP (secreted alkaline phosphatase) as the reporter has been performed by using SECM (scanning electrochemical microscopy). The plasmid vector contains different responsive elements that include GRE (glucocorticoid response elements), CRE (cAMP responsive elements), or {kappa}B (binding site for NF{kappa}B (nuclear factor kappa B)) upstream of the SEAP sequence. The transfected HeLa cells were patterned on a culture dish in a 4 x 4 array of circles of diameter 300 {mu}m by using the PDMS (poly(dimethylsiloxane)) stencil technique. The cellular array was first exposed to 100 ng mL{sup -1} dexamethasone, 10 ng mL{sup -1} forskolin, or 100 ng mL{sup -1} TNF-{alpha} (tumor necrosis factor {alpha}) after which it was further cultured in an RPMI culture medium for 6 h. After incubation, the cellular array was soaked in a measuring solution containing 4.7 mM PAPP (p-aminophenylphosphate) at pH 9.5, following which electrochemical measurements were performed immediately within 40 min. The SECM method allows parallel evaluation of different cell lines transfected with pGRE-SEAP, pCRE-SEAP, and pNF{kappa}B-SEAP patterned on the same solid support for detection of the oxidation current of PAP (p-aminophenol) flux produced from only 300 HeLa cells in each stencil pattern. The results of the SECM method were highly sensitive as compared to those obtained from the conventional CL (chemiluminescence) protocol with at least 5 x 10{sup 4} cells per well.

  9. Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells.

    Science.gov (United States)

    Barata, Joana F B; Zamarrón, Alicia; Neves, M Graça P M S; Faustino, M Amparo F; Tomé, Augusto C; Cavaleiro, José A S; Röder, Beate; Juarranz, Ángeles; Sanz-Rodríguez, Francisco

    2015-03-06

    The aim of this work was to synthesize new corrole β-cyclodextrin conjugates βCD1 (with one β-cyclodextrin moiety) and βCD2 (with two β-cyclodextrin moieties) from 5,10,15-tris(pentafluorophenyl)corrole (TPFC) and to test in vitro the efficacy of these compounds towards tumoral HeLa cells. No dark cytotoxicity was observed for TPFC and βCD1 at the concentration used for PDT cell treatment, even during long incubation periods (24 h). Fluorescence microscopy showed that TPFC and βCD1 accumulate in HeLa cells at lysosomes and in the Golgi apparatus, respectively. The cell survival after the PDT treatment with visible light was dependent on light exposure level and compound concentration. βCD1 was able to penetrate efficiently in the cytoplasm of the HeLa cells. In particular, we have analyzed the photodynamic effect of the corrole derivatives on the microtubules of HeLa cells and the morphological alterations on the mitotic spindle. TPFC and βCD1 caused photocytotoxicity in tumoral HeLa cells and induced a rapid metaphase blockage of cells that also showed clearly altered configurations of the mitotic spindle. The results showed that TPFC has the highest photosensitizing efficiency on tumoral cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    Science.gov (United States)

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.

    NARCIS (Netherlands)

    Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.A.M.; Olckers, A.; Westhuizen, F.H. van der

    2006-01-01

    The role of MT (metallothionein) gene expression was investigated in rotenone-treated HeLa cells to induce a deficiency of NADH:ubiquinone oxidoreductase (complex I). Complex I deficiency leads to a diversity of cellular consequences, including production of ROS (reactive oxygen species) and

  12. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    Science.gov (United States)

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  13. Lethal response of HeLa cells to x irradiation in the latter part of the generation cycle

    International Nuclear Information System (INIS)

    Griffith, T.D.; Tolmach, L.J.

    1976-01-01

    The age-response for the killing of HeLa S3 cells by x rays during the latter part of the generation cycle has been examined in detail. As synchronous cells move from the G1/S boundary through S phase, the relatively high sensitivity of late G1 cells gradually decreases; minimum sensitivity is reached in mid-S and maintained during the remainder of that phase. The response of cells as they progress from S to the point in G2 at which they are temporarily arrested by radiation (or by inhibitors of protein synthesis) was measured in populations free of both S phase cells and late G2 cells that had passed the arrest point: cells retain their high resistance from early G2 up to the arrest point. The response of G2 cells that have passed the arrest point before being irradiated was examined by exposing randomly growing cultures to x rays and collecting cells periodically thereafter, as they entered mitosis. Survival values very close to those of sensitive mitotic cells were found in the 2 h period after irradiation during which unarrested cells continued to reach mitosis. Values typical of late S/early G2 were found only after cells that had been arrested began arriving at mitosis. Thus, HeLa S3 cells undergo an abrupt increase in sensitivity at or near the arrest point. The sensitivity to a second irradiation of cells arrested in G2 by a conditioning x-ray dose increases rapidly in the early part of the arrest period

  14. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    International Nuclear Information System (INIS)

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-01-01

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H 2 O 2 -added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H 2 O 2 ) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H 2 O 2 . As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H 2 O 2 -medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H 2 O 2 -medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H 2 O 2 -medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in

  15. Dendrobium chrysanthum ethanolic extract induces apoptosis via p53 up-regulation in HeLa cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob

    2017-06-01

    Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.

  16. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Carrasco, L.; Bravo, R.

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells

  17. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.

    1989-05-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author).

  18. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.

    1989-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author)

  19. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  20. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    International Nuclear Information System (INIS)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-01-01

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs

  1. Medium from X-rayed cultures induces DNA strand-breaks in non-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Ikushima, T.; Okuyama, K.; Tanizaki, Y.

    2002-01-01

    There is growing evidence to indicate that several types of responses are induced by ionizing radiation in non-irradiated cells. Such bystander effects include the killing of non-irradiated cells, the induction of sister chromatid exchanges and chromosomal aberrations, and the induction of gene mutations and chromosomal instability and enhanced cell growth. In the present study, we assessed whether the medium from irradiated cultures can induce DNA strand-breaks in non-irradiated cells, using single-cell gel electrophoresis assay (comet assay). HeLa cells in culture were irradiated with 0.5 to 8 Gy of 140 kVp X-rays and one hour later, the medium was taken from the irradiated culture, passed through a filter and transferred to the parallel culture of non-irradiated HeLa cells as non-target cells. After incubation for 30 min, the comet assay was performed under alkaline and neutral conditions. Such treatments resulted in a dose-dependent increase in tail moment under either alkaline or neutral condition, indicating the induction of DNA single- or double-strand breaks, respectively. It was also shown that the clonogenic survival was reduced in the cells cultured in the medium from irradiated cultures. Such a change was not detected at all when medium alone was irradiated. These results provided disputed evidence that irradiated cells released certain genotoxic factor(s) into the culture medium that can induce DNA strand breaks leading to cell death. Our results suggest that physical contact between irradiated and non-irradiated cells may not be necessary for the bystander effects observed in this study. It appears that bystander responses may be mediated by multiple mechanisms

  2. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome

    Science.gov (United States)

    Diener, Christian; Muñoz-Gonzalez, Felipe; Encarnación, Sergio; Resendis-Antonio, Osbaldo

    2016-01-01

    During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway. PMID:27335086

  3. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Elbaum, Danek; Koper, Kamil; Stępień, Piotr; Szewczyk, Sebastian; Paterczyk, Bohdan

    2013-01-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er 3+ and Yb 3+ doped NaYF 4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF 4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics. (paper)

  4. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Szewczyk, Sebastian; Paterczyk, Bohdan; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Stępień, Piotr; Elbaum, Danek

    2013-06-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.

  5. Dataset on the effects of CYB5D2 on the distribution of HeLa cervical cancer cell cycle

    Directory of Open Access Journals (Sweden)

    Yanyun Xie

    2016-03-01

    Full Text Available We have recently reported that CYB5D2 plays a role in suppression of cervical cancer tumorigenesis, “CYB5D2 displays tumor suppression activities towards cervical cancer” [1]. We provide the accompany data here describing the effects of CYB5D2 overexpression and addition of recombinant CYB5D2 on HeLa cell cycle distribution. Furthermore, we will present the conditions used to specifically determine CYB5D2 expression in primary cervical and cervical cancer tissues using immunohistochemistry (IHC and the patient cohort involved in assessing the CYB5D2 protein levels in primary cervical and cervical cancer tissues.

  6. Effect of doxorubicin on cell survival and micronuclei formation in HeLa cells exposed to different doses of gamma-radiation

    International Nuclear Information System (INIS)

    Jagetia, G.C.; Nayak, V.

    2000-01-01

    Purpose: The present study was undertaken to obtain an insight into the combined effects of doxorubicin with radiation on the cell survival and micronuclei induction in HeLa cells. Material and Methods: HeLa S3 cells were allowed to grow till they reached plateau phase, inoculated with 10 μg/ml doxorubicin hydrochloride and then exposed to 0, 0.5, 1, 2 and 3 Gy γ-radiation. Clonogenicity of cell was measured using the colony forming assay, micronuclei formation using the micronucleus assay. Results: The treatment of HeLa cells with doxorubicin (adriamycin) for 2 hours before exposure to different doses of γ-radiation resulted in a significant and dose-dependent decline in the cell survival and cell proliferation when compared to the PBS+irradiation group. Conversely, the frequency of micronuclei increased in a dose-related manner in both the PBS+irradiation and doxorubicin+irradiation groups. The pretreatment of HeLa cells with doxorubicin before irradiation to various doses of γ-rays resulted in a significant elevation in the frequency of micronuclei when compared with the concurrent PBS+irradiation group. The dose-response relationship for both PBS+irradiation and doxorubicin+irradiation groups was linear. The correlation between cell survival and micronuclei induction was also determined for PBS or doxorubicin+irradiation group, where the clonogenicity of cells declined with the increase in micronuclei formation. The correlation between cell survical and micronuclei induction was linear quadratic for both PBS+irradiation and doxorubicin+irradiation groups. Conclusion: From our study it can be concluded that combination treatment with doxorubicin and radiation increased the genotoxic effect of the either treatment given alone. (orig.) [de

  7. Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine.

    Science.gov (United States)

    Lee, Su-Min; Park, Sin Young; Shin, Seoung Woo; Kil, In Sup; Yang, Eun Sun; Park, Jeen-Woo

    2009-02-01

    Staurosporine induces the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Recently, it was demonstrated that the control of cellular redox balance and the defense against oxidative damage is one of the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) by supplying NADPH for antioxidant systems. The present report shows that silencing of IDPc expression in HeLa cells greatly enhances apoptosis induced by staurosporine. Transfection of HeLa cells with an IDPc small interfering RNA (siRNA) markedly decreased activity of IDPc, enhancing the susceptibility of staurosporine-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that IDPc may play an important role in regulating the apoptosis induced by staurosporine and the sensitizing effect of IDPc siRNA on the apoptotic cell death of HeLa cells offers the possibility of developing a modifier of cancer chemotherapy.

  8. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    International Nuclear Information System (INIS)

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi

    2007-01-01

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth

  9. Effect of growth in lithium on ouabain binding, Na-K-ATPase and Na and K transport in hela cells.

    Science.gov (United States)

    Boardman, L J; Hume, S P; Lamb, J F; Polson, J

    1975-01-01

    1. HeLa cells were grown for 24 hr in growth medium in which part of the Na was replaced with Li. Ion contents, cell volumes and numbers, Na-K-ATPase and specific ouabain binding were measured. In some experiments the Na efflux and net Na transport was also measured. 2. Growth in Li caused a rise in the specific ouabain binding and membrane Na-K-ATPase of these cells. The Li concentrations in the cells necessary to produce this effect ranged up to 50 mM. 3. It is suggested that Li, like Na, acts on the genetic material of the cells to cause the production of more Na pumps within the membrane. PMID:124350

  10. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor

    Directory of Open Access Journals (Sweden)

    Feifei Tong

    2016-12-01

    Full Text Available Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  11. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    Science.gov (United States)

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The combined effect of thermal and chemotherapy on HeLa cells using magnetically actuated smart textured fibrous system.

    Science.gov (United States)

    Tiwari, Pranav; Agarwal, Sakshi; Srivastava, Sachchidanand; Jain, Shilpee

    2018-01-01

    Thermal therapy combined with chemotherapy is one of the advanced and efficient methods to eradicate cancer. In this work, we fabricated magnetically actuated smart textured (MAST) fibrous systems and studied their candidacy for cancer treatment. The polycaprolactone-Fe 3 O 4 based MAST fibers were fabricated using electrospinning technique. These MAST fibrous systems contained carbogenic quantum dots as a tracking agent and doxorubicin hydrochloride anticancer drug. Additionally, as fabricated MAST fibrous systems were able to deliver anticancer drug and heat energy simultaneously to kill HeLa cells in a 10 min period in vitro. After treatment, the metabolic activity and morphology of HeLa cells were analyzed. In addition, the mechanism of cell death was studied using flow cytometry. Interestingly, the navigation of these systems in the fluid can be controlled with the application of gradient magnetic field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 40-51, 2018. © 2016 Wiley Periodicals, Inc.

  13. Effects of artesunate combining with radiation on apoptosis in nude mice transplanted with HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Zhou Yuanyuan; Feng Yang; Cao Jianping; Zhu Wei; Ni Qianying; Geng Chong; Chen Guanglie; Luo Judong; Zhang Xuguang

    2011-01-01

    Objective: To investigate the effect of Artesunate combining with radiation on apoptosis in transplanted tumors. Methods: HeLa cells were inoculated into the nude mice to develop a tumor model. Mice were randomized into four groups as the control group, the Artesunate group,the irradiation group and the combination group when average volume of tumor achieved about 5 mm x 5 mm x 5 mm. During the period of treatment, the volume of tumors was measured per 2 days. After 14 days treatment, the mice were killed and tumor tissues were harvest, the tumor size and weight were measured, tumor inhibitory rate calculated and TUNEL assay was used to analysis the apoptosis of tumor tissue. Results: The tumor weight in combination group was significantly lower than that than in the irradiation group [(0.64 ± 0.11) gvs (1.31 ± 0.58) g] (P<0.05), the tumor inhibitory rate was 71.17%. The apoptosis in the combination group was obviously higher than that in the irradiation group [(77.5 ± 8.07) %vs (48.80 ± 6.71) %] (P<0.05 ). Conclusion: Artesunate can dramatically increase the radiosensitivity of tumor model transplanted with HeLa cells of cervical cancer, the possible mechanism of radiosensitization of Artesunate is related to increasing apoptosis of tumor cells. (authors)

  14. On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor.

    Science.gov (United States)

    Tong, Feifei; Lian, Yan; Han, Junliang

    2016-12-18

    Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information.

  15. Effects of alkylating carcinogens on human tumor cells in culture

    International Nuclear Information System (INIS)

    Goth-Goldstein, R.; Hughes, M.

    1987-01-01

    In Escherichia coli 3-methyladenine and 3-methylguanine have been identified as lethal lesions, since two types of alkylating agent-sensitive mutants were deficient in repair of either of these lesions. Similar alkylation-sensitive human cell lines exist. These are the tumor cell lines of the complex Mer - phenotype. All Mer - cells examined were hypersensitive to killing by MNNG and other alkylating agents, and failed to repair O 6 -methylguanine. The widely studied HeLa S3 cell line has the Mer + phenotype, but a Mer - variant (HeLa MR) has arisen. This offers the possibility to study Mer - and Mer + cells of otherwise similar genetic background. We are using these two variants to analyze the Mer - phenotype further. When HeLa S3 and HeLa MR were treated with a highly dose of MNNG, and the surviving population exposed to a second dose of MNNG 2-3 weeks later, HeLa S3 (Mer + ) cells were equally or even slightly more sensitive to a second exposure of MNNG, whereas the surviving HeLa MR (Mer - ) population was much more resistant to MNNG. 1 fig., 1 tab

  16. Radioadaptive response to the medium-mediated bystander induction of DNA strand breaks in HeLa cells

    International Nuclear Information System (INIS)

    Ikushima, T.; Okuyama, M.

    2003-01-01

    Full text: Numerous investigators have reported two cellular responses of importance at low doses that have a potential impact on the risk estimation of ionizing radiation. The radioadaptive response confers resistance to a subsequent dose by a low priming dose, while the bystander effect exaggerates the effect of small doses. The present study was conducted to examine the interaction of the radioadaptive response with the bystander effect in HeLa cells. The culture was irradiated with 0.5 to 8 Gy of 140 kVp X-rays and one hour later, the medium was taken, passed through a filter and transferred to the parallel culture of non-irradiated HeLa cells as non-targeted cells. After incubation for 30 min, the induced DNA damage was analyzed by the single cell gel-electrophoresis assay under alkaline or neutral conditions. The treatments resulted in a dose-dependent increase in tail moment under either conditions, indicating the induction of DNA single- and double-strand breaks. The clonogenic survival of non-irradiated cells was also reduced after they were cultured in the medium that was taken from irradiated cultures. Any change was not observed when the medium alone was irradiated. These results give the disputed evidence that certain genotoxic factor(s) released from irradiated cells into the culture medium can induce DNA strand breaks leading to cell death. It is also suggested that physical contact between irradiated and non-irradiated cells may not be required for the bystander effect. In adapted cells that were pre-exposed to 5 cGy of X-rays and cultured for 4 h beforehand, the yield of DNA strand breaks induced by X-rayed medium was reduced by about 50 %. The results, in conjunction with our early finding (Ikushima et al., 1996) suggest that the radioadaptive response resulting from such a low dose may diminish the bystander effect through an enhanced DNA repair function

  17. MCPIP1 contributes to the toxicity of proteasome inhibitor MG-132 in HeLa cells by the inhibition of NF-κB.

    Science.gov (United States)

    Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta

    2014-10-01

    Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.

  18. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Reynolds, S.D.; Holmblad, G.L.; Trier, J.E.

    1982-01-01

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60 Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  19. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    International Nuclear Information System (INIS)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.; Takegami, T.; Wimmer, E.

    1986-01-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T 1 -resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized 32 P-RNA. Incubation of preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor

  20. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells

    Directory of Open Access Journals (Sweden)

    Smith Charlotte M

    2013-01-01

    Full Text Available Abstract Background During metaphase clathrin stabilises the mitotic spindle kinetochore(K-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on a second function for clathrin in mitosis. Results Pitstop 2 did not impair clathrin recruitment to the spindle but disrupted its function once stationed there. Pitstop 2 trapped HeLa cells in metaphase through loss of mitotic spindle integrity and activation of the spindle assembly checkpoint, phenocopying clathrin depletion and aurora A kinase inhibition. Conclusions Pitstop 2 is therefore a new tool for investigating clathrin spindle dynamics. Pitstop 2 reduced viability in dividing HeLa cells, without affecting dividing non-cancerous NIH3T3 cells, suggesting that clathrin is a possible novel anti-mitotic drug target.

  1. Gene Expression Analysis Reveals the Concurrent Activation of Proapoptotic and Antioxidant-Defensive Mechanisms in Flavokawain B-Treated Cervical Cancer HeLa Cells.

    Science.gov (United States)

    Yeap, Swee Keong; Abu, Nadiah; Akthar, Nadeem; Ho, Wan Yong; Ky, Huynh; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Kamarul, Tunku

    2017-09-01

    Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H 2 O 2 -induced cell death is via neutralization of reactive oxygen species.

  2. Gene Expression Analysis Reveals the Concurrent Activation of Proapoptotic and Antioxidant-Defensive Mechanisms in Flavokawain B–Treated Cervical Cancer HeLa Cells

    Science.gov (United States)

    Yeap, Swee Keong; Abu, Nadiah; Akthar, Nadeem; Ho, Wan Yong; Ky, Huynh; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Kamarul, Tunku

    2016-01-01

    Flavokawain B (FKB) is known to possess promising anticancer abilities. This is demonstrated in various cancer cell lines including HeLa cells. Cervical cancer is among the most widely diagnosed cancer among women today. Though FKB has been shown to be effective in treating cancer cells, the exact molecular mechanism is still unknown. This study is aimed at understanding the effects of FKB on HeLa cells using a microarray-based mRNA expression profiling and proteome profiling of stress-related proteins. The results of this study suggest that FKB induced cell death through p21-mediated cell cycle arrest and activation of p38. However, concurrent activation of antioxidant-related pathways and iron sequestration pathway followed by activation of ER-resident stress proteins clearly indicate that FKB failed to induce apoptosis in HeLa cells via oxidative stress. This effect implies that the protection of HeLa cells by FKB from H2O2–induced cell death is via neutralization of reactive oxygen species. PMID:27458249

  3. Poly(3-hydroxybutyrate)/caffeic acid electrospun fibrous materials coated with polyelectrolyte complex and their antibacterial activity and in vitro antitumor effect against HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ignatova, Milena G. [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia (Bulgaria); Manolova, Nevena E., E-mail: manolova@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia (Bulgaria); Rashkov, Iliya B. [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia (Bulgaria); Markova, Nadya D. [Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 26, BG-1113 Sofia (Bulgaria); Toshkova, Reneta A.; Georgieva, Ani K.; Nikolova, Elena B. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia (Bulgaria)

    2016-08-01

    The purpose of this work was to investigate the possibility for the preparation of new poly(3-hydroxybutyrate) (PHB)/poly(ethylene glycol) (PEG)-based fibrous materials containing natural phenolic compound caffeic acid (CA) of diverse architectures, as well as to study the impact of the fiber composition on the in vitro CA release profile and on the biological properties of the fibrous materials. The application of the one-pot electrospinning enabled the fabrication of nanofibrous materials from PHB and PEG loaded with the CA. Materials with targeted design were obtained by coating with polyelectrolyte complex of alginate (Alg) and N,N,N-trimethylchitosan (TMCh). Three different processing paths were used to obtain coated mats: (i) with CA incorporated in the PHB/PEG core; (ii) with CA embedded in the Alg layer; and (iii) with CA included in the TMCh layer. The in vitro release of CA was modulated by controlling the composition and the architecture of the nanofibrous mats. The performed microbiological screening and MTT cell viability studies revealed that in contrast to the bare mats, the CA-containing nanofibrous materials were effective in suppressing the growth of the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and displayed good cytotoxicity against human cervical HeLa tumor cells. In addition, the proliferation of murine spleen lymphocytes and peritoneal macrophages was increased by the prepared CA-containing nanofibrous materials. The obtained materials are promising for antibacterial wound dressing applications as well as for application in local treatment of cervical tumors. - Highlights: • New caffeic acid-loaded materials from PHB and PEG were prepared by electrospinning. • Different design is achieved by coating and formation of polyelectrolyte complexes. • The control on the architecture of the mats enables modulating caffeic acid release. • The caffeic acid-loaded mats suppress the growth of

  4. Poly(3-hydroxybutyrate)/caffeic acid electrospun fibrous materials coated with polyelectrolyte complex and their antibacterial activity and in vitro antitumor effect against HeLa cells

    International Nuclear Information System (INIS)

    Ignatova, Milena G.; Manolova, Nevena E.; Rashkov, Iliya B.; Markova, Nadya D.; Toshkova, Reneta A.; Georgieva, Ani K.; Nikolova, Elena B.

    2016-01-01

    The purpose of this work was to investigate the possibility for the preparation of new poly(3-hydroxybutyrate) (PHB)/poly(ethylene glycol) (PEG)-based fibrous materials containing natural phenolic compound caffeic acid (CA) of diverse architectures, as well as to study the impact of the fiber composition on the in vitro CA release profile and on the biological properties of the fibrous materials. The application of the one-pot electrospinning enabled the fabrication of nanofibrous materials from PHB and PEG loaded with the CA. Materials with targeted design were obtained by coating with polyelectrolyte complex of alginate (Alg) and N,N,N-trimethylchitosan (TMCh). Three different processing paths were used to obtain coated mats: (i) with CA incorporated in the PHB/PEG core; (ii) with CA embedded in the Alg layer; and (iii) with CA included in the TMCh layer. The in vitro release of CA was modulated by controlling the composition and the architecture of the nanofibrous mats. The performed microbiological screening and MTT cell viability studies revealed that in contrast to the bare mats, the CA-containing nanofibrous materials were effective in suppressing the growth of the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and displayed good cytotoxicity against human cervical HeLa tumor cells. In addition, the proliferation of murine spleen lymphocytes and peritoneal macrophages was increased by the prepared CA-containing nanofibrous materials. The obtained materials are promising for antibacterial wound dressing applications as well as for application in local treatment of cervical tumors. - Highlights: • New caffeic acid-loaded materials from PHB and PEG were prepared by electrospinning. • Different design is achieved by coating and formation of polyelectrolyte complexes. • The control on the architecture of the mats enables modulating caffeic acid release. • The caffeic acid-loaded mats suppress the growth of

  5. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    Science.gov (United States)

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  6. Design and Synthesis of New Chacones Substituted with Azide/Triazole Groups and Analysis of Their Cytotoxicity Towards HeLa Cells

    Directory of Open Access Journals (Sweden)

    José A. F. P. Villar

    2012-08-01

    Full Text Available A series of new chalcones substituted with azide/triazole groups were designed and synthesized, and their cytotoxic activity was evaluated in vitro against the HeLa cell line. O-Alkylation, Claisen-Schmidt condensation and Cu(I-catalyzed cycloaddition of azides with terminal alkynes were applied in key steps. Fifteen compounds were tested against HeLa cells. Compound 8c was the most active molecule, with an IC50 value of 13.03 µM, similar to the value of cisplatin (7.37 µM.

  7. PMA synergistically enhances apicularen A-induced cytotoxicity by disrupting microtubule networks in HeLa cells

    International Nuclear Information System (INIS)

    Seo, Kang-Sik; Hwang, Byung-Doo; Kim, Jong-Seok; Park, Ji-Hoon; Song, Kyoung-Sub; Yun, Eun-Jin; Park, Jong-Il; Kweon, Gi Ryang; Yoon, Wan-Hee; Lim, Kyu

    2014-01-01

    Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells. Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively. We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G 1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKCα, but not PKCβ and PKCγ, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing α- and β-tubulin protein levels in a PKC-dependent manner. These results suggest that the synergy between PMA and apicularen A is involved by

  8. Intracellular localization analysis of npAu-PpIX in HeLa cells using specific dyes and confocal microscopy

    Science.gov (United States)

    Roblero-Bartolón, Victoria Gabriela; Maldonado-Alvarado, Elizabeth; Galván-Mendoza, José Iván; Ramón-Gallegos, Eva

    2012-10-01

    Cervical carcinoma (CC) represents the second leading cause of cancer death in Mexican women. No conventional treatments are being developed such as photodynamic therapy (PDT), involving the simultaneous presence of a photosensitizer (Ps), light of a specific wavelength and tissue oxygen. On the other hand, it has seen that the use of gold nanoparticles coupled to protoporphyrin IX increases the effectiveness of PDT. The aim of this study was to determine the site of accumulation of the conjugate npAu-PpIX in cells of cervical cancer by the use of specific dyes and confocal microscopy. The results indicate that the gold nanoparticles coupled to protoporphyrin IX are accumulated in both the cytoplasm and nucleus of HeLa cells.

  9. Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells.

    Science.gov (United States)

    Atkin, Jane; Halova, Lenka; Ferguson, Jennifer; Hitchin, James R; Lichawska-Cieslar, Agata; Jordan, Allan M; Pines, Jonathon; Wellbrock, Claudia; Petersen, Janni

    2014-03-15

    The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.

  10. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells

    Directory of Open Access Journals (Sweden)

    Elgjo Kjell

    2009-07-01

    Full Text Available Abstract Background Deproteinized DNA from eukaryotic and prokaryotic cells still contains a low-molecular weight peptidic fraction which can be dissociated by alkalinization of the medium. This fraction inhibits RNA transcription and tumor cell growth. Removal from DNA of normal cells causes amplification of DNA template activity. This effect is lower or absent in several cancer cell lines. Likewise, the amount of active peptides in cancer cell DNA extracts is lower than in DNA preparation of the corresponding normal cells. Such evidence, and their ubiquitous presence, suggests that they are a regulatory, conserved factor involved in the control of normal cell growth and gene expression. Results We report that peptides extracted from wheat bud chromatin induce growth inhibition, G2 arrest and caspase-dependent apoptosis in HeLa cells. The growth rate is decreased in cells treated during the S phase only and it is accompanied by DNA damage and DNA synthesis inhibition. In G2 cells, this treatment induces inactivation of the CDK1-cyclin B1 complex and an increase of active chk1 kinase expression. Conclusion The data indicate that the chromatin peptidic pool inhibits HeLa cell growth by causing defective DNA replication which, in turn, arrests cell cycle progression to mitosis via G2 checkpoint pathway activation.

  11. Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis.

    Science.gov (United States)

    Castilho, Ivana G; Dantas, Stéfani Thais Alves; Langoni, Hélio; Araújo, João P; Fernandes, Ary; Alvarenga, Fernanda C L; Maia, Leandro; Cagnini, Didier Q; Rall, Vera L M

    2017-08-01

    Staphylococcus aureus is a common pathogen that causes subclinical bovine mastitis due to several virulence factors. In this study, we analyzed S. aureus isolates collected from the milk of cows with subclinical mastitis that had 8 possible combinations of bap, icaA, and icaD genes, to determine their capacity to produce biofilm on biotic (bovine primary mammary epithelial cells and HeLa cells) and abiotic (polystyrene microplates) surfaces, and their ability to adhere to and invade these cells. We also characterized isolates for microbial surface components recognizing adhesive matrix molecules (MSCRAMM) and agr genes, and for their susceptibility to cefquinome sulfate in the presence of biofilm. All isolates adhered to and invaded both cell types, but invasion indexes were higher in bovine primary mammary epithelial cells. Using tryptic soy broth + 1% glucose on abiotic surfaces, 5 out of 8 isolates were biofilm producers, but only the bap + icaA + icaD + isolate was positive in Dulbecco's Modified Eagle's medium. The production of biofilm on biotic surfaces occurred only with this isolate and only on HeLa cells, because the invasion index for bovine primary mammary epithelial cells was too high, making it impossible to use these cells in this assay. Of the 5 biofilm producers in tryptic soy broth + 1% glucose, 4 presented with the bap/fnbA/clfA/clfB/eno/fib/ebpS combination, and all were protected from cefquinome sulfate. We found no predominance of any agr group. The high invasive potential of S. aureus made it impossible to observe biofilm in bovine primary mammary epithelial cells, and we concluded that cells with lower invasion rates, such as HeLa cells, were more appropriate for this assay. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress.

    Science.gov (United States)

    Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan

    2015-01-01

    The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

  13. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  14. Cyclooxygenase and cAMP-dependent protein kinase reorganize the actin cytoskeleton for motility in HeLa cells.

    Science.gov (United States)

    Glenn, Honor L; Jacobson, Bruce S

    2003-08-01

    The adhesion of a cell to its surrounding matrix is a key determinant in many aspects of cell behavior. Adhesion consists of distinct stages : attachment, cell spreading, motility, and/or immobilization. Interrelated signaling pathways regulate these stages, and many adhesion-related signals control the architecture of the cytoskeleton. The various cytoskeletal organizations then give rise to the specific stages of adhesion. It has been shown that arachidonic acid acts at a signaling branch point during cell attachment. Arachidonic acid is metabolized via lipoxygenase to activate actin polymerization and cell spreading. It is also metabolized by cyclooxygenase to generate small actin bundles. We have used confocal microscopy and indirect immunofluorescence to investigate the structure of these cyclooxygenase dependent actin bundles in HeLa cells. We have also employed cell migration assays and pharmacological modulation of cyclooxygenase and downstream signals. The results indicate that cyclooxygenase and PKA stimulate the formation of actin bundles that contain myosin II and associate with small focal adhesions. In addition, we demonstrate that this cytoskeletal organization correlates with increased cell motility. Copyright 2003 Wiley-Liss, Inc.

  15. The Induction of Growth Inhibition and Apoptosis in HeLa and MCF-7 Cells by Teucrium sandrasicum, Having Effective Antioxidant Properties.

    Science.gov (United States)

    Tarhan, Leman; Nakipoğlu, Mahmure; Kavakcıoğlu, Berna; Tongul, Burcu; Nalbantsoy, Ayşe

    2016-03-01

    The hidromethanolic (Met/W), ethyl acetate (EA(EA/W)), and water (W(EA/W)) extracts from Teucrium sandrasicum leaves (L) and flowers (F) were investigated for antioxidant properties and antiproliferative effects on HeLa, MCF-7, and L929. The highest DPPH scavenging, metal chelating capacities, and total phenolic and flavonoid contents were observed in Met/WL. The highest hydroxyl scavenging and reducing power capacities were found in EA(EA/W)L. Met/WL, EA(EA/W)L and EA(EA/W)F inhibited cancer cell growths, while they did not show significant cytotoxicity on L929. While the reactive oxygen species (ROS) levels were generally close to controls in HeLa, they were induced in MCF-7 with the treatment of Met/WL, EA(EA/W)L, and EA(EA/W)F and acted as antioxidant for L929. The highest apoptosis inductions were observed in Met/WL-treated HeLa and EA(EA/W)L-treated MCF-7, which were supported with the changes in mitochondrial membrane potentials. The highest caspase-9 activities were found in Met/WL-treated HeLa and EA(EA/W)F-treated MCF-7. Caspase-3 activity was only induced in EA(EA/W)F-treated HeLa.

  16. Antitumor Activity of Portulaca Oleracea L. Polysaccharide on HeLa Cells Through Inducing TLR4/NF-κB Signaling.

    Science.gov (United States)

    Zhao, Rui; Zhang, Tao; Ma, Baoling; Li, Xing

    2017-01-01

    Abstarct We have previously shown that Portulaca oleracea L. polysaccharide (POL-P3b) possesses the ability to inhibit cervical cancer cell growth in vitro and in vivo. In this study, we explored how toll-like receptor 4 (TLR4) signaling correlated with the antitumor mechanism of POL-P3b. Western blotting was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using enzyme-linked immunosorbent assay (ELISA) kits. The effects of POL-P3b on the proliferation and apoptosis in HeLa cells were determined by WST-8 assay and Hoechst 33342/propidium iodide (PI) assay. Our results demonstrated that lipopolysaccharide (LPS) binding to TLR4 on tumor cells could enhance HeLa cell proliferation and increase the expression of TLR4 and the downstream molecules. Treating HeLa cells with POL-P3b could decrease the proliferation of HeLa cells, and upregulate Bax level and downregulate Bcl-2 level in a concentration-dependent manner. In addition, POL-P3b inhibited the protein expression levels of TLR4, MyD88, TRAF6, Activator Protein-1 (AP-1) and nuclear factor-κB (NF-κB) subunit P65 in HeLa cells. Furthermore, POL-P3b also reduced the production of cytokine/chemokine. Taken together, the present work suggested the antitumor mechanism of POL-P3b by downregulating TLR4 downstream signaling pathway and inducing cell apoptosis. Our results may provide direct evidence to suggest that POL-P3b should be considered as a potent nutrient supplement for oncotherapy.

  17. Analysis of the factors in determining radiosensitivity in mammalian cells by using radio-sensitive and -resistant clones isolated from HeLa S3 cells in vitro

    International Nuclear Information System (INIS)

    Nikaido, Osamu; Horikawa, Masakatsu

    1976-01-01

    The factors in determining radiosensitivity of cultured mammalian cells were analysed by using two clones each having different radiosensitivities. The radiosensitive clones were isolated from HeLa S3 cells by the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-treatment, X-irradiation (200 R) and 5-bromodeoxyuridine (BUdR)-visible light method. On the other hand, the radioresistant clone was isolated by single X-irradiation (2000 R) from MNNG-treated HeLa S3 cell population. The radiosensitivities expressed in D sub(o) and D sub(q) values were 110 and 140 R in radiosensitive SM-1a clone and 180 and 230 R in radioresistant RM-1b clone respectively. The biological and biochemical characteristics of both clones such as the distribution of chromosome numbers, formation and rejoining of single strand breaks in DNA caused by X-irradiation, non-protein sulfhydryl (NPSH) and apparent total sulfhydryl (APSH) contents were measured. Among the characteristics analysed, different contents of NPSH in the cell were well correlated to their daiosensitivities among the original HeLa S3 cells, SM-1a and RM-1b clone. Additionally, it was found that the radioresistant L.P3 Co-3 cells isolated by Tsuboi et al. from the original mouse L.P3 cells by means of serial irradiation with 60 Co γ-rays have more abundant NPSH than the original L.P3 cells. From these results, it can be concluded that the amount of NPSH play the main role in determining radiosensitivity in cultured mammalian cells. (auth.)

  18. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway.

    Science.gov (United States)

    Li, Haixia; Shi, Baoyuan; Li, Yanyun; Yin, Fengfang

    2017-07-01

    Polydatin (PD), a stilbene compound extracted from Polygonum cuspidatum, is suggested to possess anti-cancer activities, including inhibition of cell proliferation, cell cycle arrest, and induction of apoptosis. The platelet-derived growth factor (PDGF)/AKT signaling pathway plays complex roles in tumor suppression. However, the effect of PD on the PDGF/AKT signaling pathway in laryngeal cancer and HeLa cells has not been explored. MTT assay and flow cytometry showed that PD inhibited cell proliferation and induced apoptosis in Hep-2 and AMC-HN-8 cells. Western blot analysis indicated that PD inhibited the expression levels of PDGF-B and phosphorylated AKT (p-AKT) in both cells. Treatment of PDGF-B siRNA or PDGFR inhibitor found that after the PDGF signaling was inactivated, p-AKT expression was significantly decreased in Hep-2 cells. Tumor xenograft experiment in nude mice indicated PD significantly inhibited the growth of Hep-2 cells in vivo. In conclusion, PD inhibited cell proliferation and induced apoptosis in laryngeal cancer and HeLa cells via inactivation of the PDGF/AKT signaling pathway. © 2017 Wiley Periodicals, Inc.

  19. Reversibility of membrane N-glycome of HeLa cells upon treatment with epigenetic inhibitors.

    Directory of Open Access Journals (Sweden)

    Tomislav Horvat

    Full Text Available Glycans are essential regulators of protein function and are now in the focus of research in many physiological and pathophysiological processes. There are numerous modes of regulating their biosynthesis, including epigenetic mechanisms implicated in the expression of glyco-genes. Since N-glycans located at the cell membrane define intercellular communication as well as a cellular response to a given environment, we developed a method to preferentially analyze this fraction of glycans. The method is based on incorporation of living cells into polyacrylamide gels, partial denaturation of membrane proteins with 3 M urea and subsequent release of N-glycans with PNGase F followed by HPLC analysis. Using this newly developed method, we revealed multiple effects of epigenetic inhibitors Trichostatin A, sodium butyrate and zebularine on the composition of N-glycans in human cells. The induced changes were found to be reversible after inhibitor removal. Given that many epigenetic inhibitors are currently explored as a therapeutic strategy in treatment of cancer, wherein surface glycans play an important role, the presented work contributes to our understanding of their efficiency in altering the N-glycan profile of cancer cells in culture.

  20. Inhibition of HeLa cell growth by doxorubicin-loaded and tuftsin-conjugated arginate-PEG microparticles

    Directory of Open Access Journals (Sweden)

    Tianmu Hu

    2018-03-01

    Full Text Available In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine (PEG-modified alginate microparticles (ALG-PEG MPs were developed then two different mechanisms were employed to load doxorubicin (Dox: 1 forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2 forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT, a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant (p > 0.05. In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.

  1. Assessment of Cytotoxic Activity of Rosemary (Rosmarinus officinalis L.), Turmeric (Curcuma longa L.), and Ginger (Zingiber officinale R.) Essential Oils in Cervical Cancer Cells (HeLa)

    Science.gov (United States)

    Santos, P. A. S. R.; Avanço, G. B.; Nerilo, S. B.; Marcelino, R. I. A.; Janeiro, V.; Valadares, M. C.

    2016-01-01

    The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L.), turmeric (CEO, Curcuma longa L.), and ginger (GEO, Zingiber officinale R.) essential oils in HeLa cells. Cytotoxicity tests were performed in vitro, using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50 obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells. PMID:28042599

  2. Assessment of Cytotoxic Activity of Rosemary (Rosmarinus officinalis L., Turmeric (Curcuma longa L., and Ginger (Zingiber officinale R. Essential Oils in Cervical Cancer Cells (HeLa

    Directory of Open Access Journals (Sweden)

    P. A. S. R. Santos

    2016-01-01

    Full Text Available The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L., turmeric (CEO, Curcuma longa L., and ginger (GEO, Zingiber officinale R. essential oils in HeLa cells. Cytotoxicity tests were performed in vitro, using tetrazolium (MTT and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50 obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs, and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.

  3. Assessment of Cytotoxic Activity of Rosemary (Rosmarinus officinalis L.), Turmeric (Curcuma longa L.), and Ginger (Zingiber officinale R.) Essential Oils in Cervical Cancer Cells (HeLa).

    Science.gov (United States)

    Santos, P A S R; Avanço, G B; Nerilo, S B; Marcelino, R I A; Janeiro, V; Valadares, M C; Machinski, Miguel

    2016-01-01

    The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L.), turmeric (CEO, Curcuma longa L.), and ginger (GEO, Zingiber officinale R.) essential oils in HeLa cells. Cytotoxicity tests were performed in vitro , using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC 50 obtained was 36.6  μ g/mL for CEO and 129.9  μ g/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81  μ g/mL of CEO and 32.12  μ g/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.

  4. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A.; Larsen, M.; Roepstorff, P.

    1999-01-01

    magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system...

  5. Increased expression of cyclin B1 mRNA coincides with diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine

    International Nuclear Information System (INIS)

    Bernhard, E.J.; Maity, A.; McKenna, W.G.; Muschel, R.J.

    1994-01-01

    The irradiation of cells results in delayed progression through the G 2 phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G 2 -phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G 2 -phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G 2 -phase arrest. In HeLa cells, the G 2 -phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G 2 -phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G 2 -phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs

  6. A systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells.

    Science.gov (United States)

    Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori

    2014-10-01

    Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection.

  7. The Targeted Antitumor Effects of C- PC/CMC-CD59sp Nanoparticles on HeLa Cells in Vitro and in Vivo.

    Science.gov (United States)

    Wang, Yujuan; Jiang, Liangqian; Yin, Qifeng; Liu, Huihui; Liu, Guoxiang; Zhu, Guoteng; Li, Bing

    2017-01-01

    The novel C-PC/CMC-CD59sp-NPs were made by carbocymethyl chitosan (CMC) loading C-phycocyanin (C-PC) with the lead of CD59 specific ligand peptide (CD59sp) for targeting, and the characteristics and targeted anti-tumor mechanism were explored in order to realize the targeted therapy of C-PC on the growth of HeLa cells both in vitro and vivo . The targeting nanoparticles were synthesized by ionic-gelation method, and the optimal condition was selected out by orthogonal analysis. The properties of nanoparticles were observed by laser particle analyzer and dynamic light scattering (DLS) and Fourier Transform Infrared Spectrometer (FTIR). The effects of nanoparticles on the proliferation of HeLa cells in vitro were assessed by MTT assay. The mice model with tumor was constructed by subcutaneous injection of HeLa cells into the left axilla of NU/NU mice. The weight of tumor and the spleen were tested. The expression quantities of cleaved caspase-3, Bcl-2 were determined by western blot and immunofluorescent staining. Results showed the morphology of the finally prepared nanoparticles was well distributed with a diameter distribution of 200±11.3 nm and zeta potential of -19.5±4.12mV. Under the guidance of CD59sp, the targeting nanoparticles could targetedly and efficiently arrive at the surface of HeLa cells, and had obvious inhibitory effect on HeLa cells proliferation both in vitro and vivo. Moreover, the nanoparticles could induce cell apoptosis by up-regulation of cleaved caspase-3 proteins expression, but down-regulation of Bcl-2 and cyclinD1 proteins. Our study provided a new idea for the research and development of marine drugs, and supplied a theoretical support for the target therapy of anticancer drug.

  8. Acid polypeptides as inhibitors of the repair of double-strand DNA breaks induced by γ-irradiation of Hela cells

    International Nuclear Information System (INIS)

    Medvedev, A.I.; Revina, G.I.; Kuzin, A.M.

    1990-01-01

    The effect of natural modificator's synthetic analogue -polyaspartylglytamate (AG) - on the repair of radiation-induced double-strand DNA breaks is studies. The radiation and modificator effects were determined by the criterion of the formation of chromosome recombinations and reproductive death of cells on Hela cell culture and in Chinese hamsters. It is shown that the incubation of Hela cells with AG doubles and triples the degradation effect of rdiation at 50 and 10 Gy doses. When radiation dose equals 1 Gy and repair time is G-22 h, 1.5 - 3 time - increased yield of chromotide and chromosome abberations is detected in Chinese hamster cells in the presence of the modificator during all periods of cell fixation. The effect of radiation mutagenic action enhancement by the modificator is not observed during the incubation of cells with AG 30-45 min after irradiation

  9. Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    Science.gov (United States)

    Guix, Maria; Meyer, Anne K.; Koch, Britta; Schmidt, Oliver G.

    2016-02-01

    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems.

  10. Unravelling the potential of a new uracil phosphoribosyltransferase (UPRT) from Arabidopsis thaliana in sensitizing HeLa cells towards 5-fluorouracil.

    Science.gov (United States)

    Narayanan, Sharmila; Sanpui, Pallab; Sahoo, Lingaraj; Ghosh, Siddhartha Sankar

    2016-10-01

    In silico studies with uracil phosphoribosyltransferase from Arabidopsis thaliana (AtUPRT) revealed its lower binding energies for uracil and 5-fluorouracil (5-FU) as compared to those of bacterial UPRT indicating the prospective of AtUPRT in gene therapy implications. Hence, AtUPRT was cloned and stably expressed in cervical cancer cells (HeLa) to investigate the effect of prodrug 5-FU on these transfected cancer cells. The treatment of AtUPRT-expressing HeLa (HeLa-UPP) cells with 5-FU for 72h resulted in significant decrease in cell viability. Moreover, 5-FU was observed to induce apoptosis and perturb mitochondrial membrane potential in HeLa-UPP cells. While cell cycle analysis revealed significant S-phase arrest as a result of 5-FU treatment in HeLa-UPP cells, quantitative gene expression analysis demonstrated simultaneous upregulation of important cell cycle related genes, cyclin D1 and p21. The survival fractions of non-transfected, vector-transfected and AtUPRT-transfected HeLa cells, following 5-FU treatment, were calculated to be 0.425, 0.366 and 0.227, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.; Busse, P.M.

    1977-01-01

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  12. Cellular Cultivation: Growing HeLa Cells Using Standard High School Laboratory Equipment.

    Science.gov (United States)

    Woloschak, Gayle; And Others

    1995-01-01

    Describes experiments to culture cells in a laboratory that provide students with hands-on experience in manipulating cells and a chance to observe cell growth characteristics first hand. Exposes students to sterile technique, cell culture, cell growth concepts, and eukaryotic cell structure. (JRH)

  13. The effect of 15 MeV electrons at different irradiation depth on the growth of HeLa cells

    International Nuclear Information System (INIS)

    Helmerking, B.

    1975-01-01

    The effect of fast electrons at relative depth doses of 100% and 30% with energy doses of 100 to 400 rad and a dose rate of 200 rad/min on HeLa cells was analyzed. For the evaluation of the irradiation effect, the cell count of irradiated cultures compared with the cell count of not irradiated cultures 16 d after irradiation. The determination of the cell numbers and thus the determination of the counting multiplication rate of the cells was done by isolated cell nuclei with a counter tube and a counter chamber. Irradiation of the cells took place in the plateau phase of the growth curve. After irradiation with a relative depth dose of 100% as well as of 30%, a decrease of the cell number of the cultures can be observed on the 16th day. After irradiation with 200 rad in 100%-depth a survival rate of 72% is found and in 30% depth a survival rate of 60%. At 300 rad the values are 44% for 100% depth, and 30% for 30% depth. For 400 rad the survival rate is 11% at 100% depth and 5% at 30% depth. On the basis of the above-mentioned values the survival rate after irradiation with 30% relative depth dose at the energy doses 200, 300 and 400 rad is increasingly less in comparison with the irradiation with 100% relative depth dose. In the range of 200 to 400 the RBW of the 100% depth in comparison with the 30% depth is constant with a value of 0.88 +- 0.03. The determination of the cell count of a culture by counting isolated nuclei, which is a new method of assessing an irradiation effect is discussed. The significance of this new criterion is compared with the known method of colony counting. The results are compared with results of other works using method of colony counting, and are discussed. (orig./MG) [de

  14. Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro.

    Science.gov (United States)

    Wang, Chengze; Gu, Weiting; Zhang, Yunpeng; Ji, Yawen; Wen, Yong; Xu, Xin

    2017-07-05

    Cigarette smoking is one of highly risk factors of cervical cancer. Recently nicotine has been reported to increase proliferation and invasion in some smoking related cancers, like non-small cell lung cancer and esophageal squamous cell cancer. However, the effects and mechanisms of nicotine stimulation on cervical cancer cells are not clear. Here, we investigated the effects and mechanisms of nicotine stimulation on HeLa cells in vitro. In our study, we found that nicotine could accelerate HeLa cells migration and invasion, activate PI3K/Akt and NF-κB pathways and increase the expression of Vimentin in vitro. Moreover, we demonstrated that the specific PI3K inhibitor LY294002 could reverse nicotine-induced cell migration and invasion, NF-κB activation and up-regulation of Vimentin. Inhibition of NF-κB by Pyrrolidine dithiocarbamate (PDTC) also antagonized nicotine-induced cell migration, invasion and up-regulation of Vimentin. Simply put, these findings suggest that nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. NF-κB and JNK mediated apoptosis and G0/G1 arrest of HeLa cells induced by rubiarbonol G, an arborinane-type triterpenoid from Rubia yunnanensis.

    Science.gov (United States)

    Zeng, Guang-Zhi; Wang, Zhe; Zhao, Li-Mei; Fan, Jun-Ting; Tan, Ning-Hua

    2018-06-28

    Rubia yunnanensis is a medicinal plant mainly grown in Yunnan province in Southwest China, and its root named "Xiaohongshen" has been used as a herb in Yunnan for the treatment of cancers. Three major types of chemical components, Rubiaceae-type cyclopeptides, quinones, and triterpenoids, were identified from R. yunnanensis, in which some of compounds including rubiarbonol G (RG), a unique arboriane-type triterpenoid, showed cytotoxicity on cancer cells. But the cytotoxic mechanism of RG has not been reported. To investigate the cytotoxic mechanism of RG on cancer cells. RG was evaluated its cytotoxicity on 7 cancer cell lines by the SRB assay, and detected the effect on apoptosis and cell cycle arrest by Annexin V-FITC/PI apoptosis assay and DNA contents analysis. The expression and activity of apoptosis and cell cycle related proteins were also investigated by western blot and caspase activity assay. Furthermore, the effect of RG on NF-κB signaling was also tested by luciferase assay, western blot, and immunofluorescence staining. RG showed potent cytotoxicity on 7 human cancer cell lines, whose activity was attributed to apoptosis induction and G 0 /G 1 arrest in HeLa cells. Results from the mechanism study showed that RG promoted the activation of ERK1/2 and JNK pathway in MAPK family, which in turn increased the expression of p53, thereby triggering the G 0 /G 1 arrest through p53/p21/cyclin D1 signaling. Moreover, RG-mediated JNK activation down-regulated the expression of the anti-apoptotic protein Bcl-2, which caused the release of cytochrome c to the cytosol and activated the cleavage of caspase cascade and poly(ADP-ribose) polymerase, thereby inducing apoptosis in HeLa cells. In addition, RG was also found to inhibit the activation of NF-κB signaling by down-regulating the expression and attenuating the translocation to nucleus of NF-κB p65, by which the down-stream p53, cyclin D1, Bcl-2, and caspases were regulated, thereby triggering apoptosis and G

  16. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    Directory of Open Access Journals (Sweden)

    Li D

    2015-04-01

    Full Text Available Donghong Li,1 Lei Li,2 Pengxi Li,1 Yi Li,3 Xiangyun Chen1 1State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, 2The First Department of Research Institute of Surgery, 3Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Photodynamic therapy (PDT is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I, reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP and glucose-regulated protein (GRP78, in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which

  17. Induction of G2/M arrest and apoptosis through mitochondria pathway by a dimer sesquiterpene lactone from Smallanthus sonchifolius in HeLa cells.

    Science.gov (United States)

    Kitai, Yurika; Zhang, Xia; Hayashida, Yushi; Kakehi, Yoshiyuki; Tamura, Hirotoshi

    2017-07-01

    Dimer sesquiterpene lactones (SLs), uvedafolin and enhydrofolin, against four monomer SLs isolated from yacon, Smallanthus sonchifolius, leaf were the most cytotoxic substances on HeLa cells (IC 50 values 2.96-3.17 μM at 24 hours). However, the cytotoxic mechanism of dimer SL has not been elucidated yet. Therefore, in this study, we clarified the in vitro cytotoxic mechanism of uvedafolin on the HeLa cells, and evaluated the cytotoxicity against NIH/3T3 cells which were used as normal cells. In consequence, the dimer SLs had low toxicity for the NIH/3T3 cells (IC 50 4.81-4.98 μM at 24 hours) and then the uvedafolin mediated cell cycle arrest at the G 2 /M phase and induced apoptosis on the HeLa cells evidenced by appearance of a subG1 peak. Uvedafolin induced apoptosis was attributed to caspase-9 and caspase-3/7 activities. An effectively induced apoptosis pathway was demonstrated from mitochondria membrane potential change and cytochrome c release to cytosol. These results reveal that uvedafolin induced apoptosis via the mitochondria pathway. The present results indicate the potential of uvedafolin as a leading compound of new anticancer agents. Copyright © 2016. Published by Elsevier B.V.

  18. Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells

    Science.gov (United States)

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C.; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C.; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M.F.; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P.; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-01-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. PMID:27694308

  19. Investigating the effect of poly-l-lactic acid nanoparticles carrying hypericin on the flow-biased diffusive motion of HeLa cell organelles.

    Science.gov (United States)

    Penjweini, Rozhin; Deville, Sarah; Haji Maghsoudi, Omid; Notelaers, Kristof; Ethirajan, Anitha; Ameloot, Marcel

    2017-07-19

    In this study, we investigate in human cervical epithelial HeLa cells the intracellular dynamics and the mutual interaction with the organelles of the poly-l-lactic acid nanoparticles (PLLA NPs) carrying the naturally occurring hydrophobic photosensitizer hypericin. Temporal and spatiotemporal image correlation spectroscopy was used for the assessment of the intracellular diffusion and directed motion of the nanocarriers by tracking the hypericin fluorescence. Using image cross-correlation spectroscopy and specific fluorescent labelling of endosomes, lysosomes and mitochondria, the NPs dynamics in association with the cell organelles was studied. Static colocalization experiments were interpreted according to the Manders' overlap coefficient. Nanoparticles associate with a small fraction of the whole-organelle population. The organelles moving with NPs exhibit higher directed motion compared to those moving without them. The rate of the directed motion drops substantially after the application of nocodazole. The random component of the organelle motions is not influenced by the NPs. Image correlation and cross-correlation spectroscopy are most appropriate to unravel the motion of the PLLA nanocarrier and to demonstrate that the rate of the directed motion of organelles is influenced by their interaction with the nanocarriers. Not all PLLA-hypericin NPs are associated with organelles. © 2017 Royal Pharmaceutical Society.

  20. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biosynthesis of reduced graphene oxide and its in-vitro cytotoxicity against cervical cancer (HeLa) cell lines.

    Science.gov (United States)

    Luo, Lan; Xu, Lina; Zhao, Haibo

    2017-09-01

    The present work proposed a simple, one pot, and green approach for the deoxygenation of graphene oxide (GO) using pyrogallol as reducing and stabilizing agent. This synthetic strategy prevents the utilization of toxic reducing reagents during synthesis. The characterization results of Ultra violet visible (UV-Vis), X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), Transmission electron microscopy (TEM) for the synthesized GO and reduced graphene oxide (RGO) indicated the strong removal of oxygen groups after reduction which followed by stabilization with oxidized form of pyrogallol. TEM analysis showed the thin transparent silk like sheets of graphene. FTIR analysis confirmed the stabilization of graphene sheets with oxidized pyrogallol molecules. XRD and XPS analysis represented the deoxygenation of GO to RGO. The in-vitro cytotoxicity of RGO towards HeLa cells is dose dependant. The prepared RGO also exhibited the percent cell viability of about 80% even at higher concentrations indicating the less toxic nature of the RGO stabilized with pyrogallol. These results have represented that this synthetic approach is effective for the preparation of bulk scale RGO in a simple, less expensive and eco-friendly method. Since this method avoids the use of chemical reagents that are toxic in nature, the produced graphene are likely to offer several potential biomedical applications. Copyright © 2017. Published by Elsevier B.V.

  2. pEgr-sTRAIL transfer in combination with 60Co γ ray irradiation to induce the apoptosis on HeLa cells and activation of Caspase-3

    International Nuclear Information System (INIS)

    Tian Mei; Guo Zhiying; Zhao Baofeng; Ruan Jianlei; Su Xu

    2009-01-01

    In order to approach the radiosensitivity of TRAIL expression controlled by Egr-1 promotor, the recombinant vector pEgr-sTRAIL was tranfected into HeLa cells, the early apoptosis and Caspase-3 activity were detected after different doses of 60 Co γ-ray irradiation. The results showed that pEgr-sTRAIL transfected in combination with γ-ray irradiation could significantly induce the apoptosis of HeLa cells in a dose-dependent manner. The higher activity of Capase-3 was also found in pEgr-sTRAIL irradiated group by using western blotting and spectrophotometry. Our result demonstrated that the activity of Caspase-3, as the apoptosis executor, play an important role in TRAIL-induced apoptosis and the enhanced TRAIL-induced apoptosis in transfected cells after irradiation can be controlled by radio-sensitive promoter Egr-1. (authors)

  3. The histone genes in HeLa cells are on individual transcriptional units

    International Nuclear Information System (INIS)

    Hackett, P.B.; Traub, P.; Gallwitz, D.

    1978-01-01

    The distances of the five major histone genes from their promotors have been investigated in order to determine whether in human cells these genes could be transcribed as a single polycistronic transcriptional unit. By measuring the decreases of both histone protein and histone mRNA synthesis as functions of the ultraviolet light dosage, it was possible to calculate the distances of the histone genes from their promotors. The inactivation kinetics for histone genes H1 and H3 are first-order, indicating a single type of transcriptional unit for each gene. The dose-response kinetics for genes H2A, H2B and H4 are first-order with two distinct rates; 10 to 15% of the genes for each of these histones appear to be much more sensitive to ultraviolet light inactivation than are the majority. It is concluded that the transcriptional units for 85 to 90% of the genes for H2A, H2B and H4 are similar. As determined by the inhibition of protein synthesis, the inactivation coefficients for the major component of each histone are: H1, 907 mm 2 /erg; H2A, 878 mm 2 /erg; H2B, 871 mm 2 /erg; H3, 965 mm 2 /erg; and H4, 792 mm 2 /erg. The sensitivities of histone mRNA synthesis to irradiation were measured by translation in vitro with similar results. The calculated target sizes for the genes (in base-pairs) are: H1, 1190; H2A, 1240; H2B, 1250; H3, 1130; and H4, 1380. This similarity in target sizes for all five of the histones genes indicates that they are primarily transcribed from individual transcriptional units. (author)

  4. Lysophosphatidylcholine-induced taurine release in HeLa cells involves protein kinase activity

    DEFF Research Database (Denmark)

    Lambert, Ian H.; Falktoft, Birgitte

    2001-01-01

    Calmodulin; CaMKII; Ehrlich ascites tumor cells; Ischemia; Lysophospholipids; NIH/3T3; Chelerythrine; Reactive oxygen species......Calmodulin; CaMKII; Ehrlich ascites tumor cells; Ischemia; Lysophospholipids; NIH/3T3; Chelerythrine; Reactive oxygen species...

  5. Association to HeLa cells and surface behavior of exogenous gangliosides studied with a fluorescent derivative of GM1

    International Nuclear Information System (INIS)

    Masserini, M.; Giuliani, A.; Palestini, P.; Acquotti, D.; Pitto, M.; Chigorno, V.; Tettamanti, G.

    1990-01-01

    Cultured HeLa cells were incubated with pyrene-GM1/ 3 H-radiolabeled GM1 ganglioside (1:4 M/M) mixtures for various times. The process of association of pyrene-GM1 with cells was qualitatively and quantitatively the same as that of 3 H-GM1. The pyrene-GM1 and 3 H-GM1 proportions in the various forms of association with cells were similar to that of the starting ganglioside mixture. After 2-h incubation, the association of ganglioside with cells was well established whereas almost no metabolic processing had occurred. During a 24-h incubation, pyrene- and 3 H-GM1 underwent similar metabolic processing and gave rise to catabolic (GM2 and GM3) and anabolic (GDla) derivatives. Fluorescence spectroscopy experiments carried out with the excimer formation technique on subcellular fractions containing plasma membranes showed that exogenous ganglioside was, in part, associated with the cells in a micellar form removable by trypsin treatment, and in part inserted in a seemingly molecular dispersion. Addition of Ca 2+ salts caused aggregation of the ganglioside, as indicated by the increase of the excimer:monomer fluorescence ratio. The phenomenon was Ca 2+ concentration dependent (maximum at 10 mM), and subsequent addition of EDTA has no effect. The saccharide portion of exogenously incorporated pyrene-GM1 was available to interact with external ligands, as shown by its ability to bind cholera toxin whose addition reduced the collision rate among the ganglioside lipid moieties

  6. Enhanced anti-proliferative efficacy of epothilone B loaded with Escherichia coli Nissle 1917 bacterial ghosts on the HeLa cells by mitochondrial pathway of apoptosis.

    Science.gov (United States)

    Zhu, Wenxing; Hao, Lujiang; Liu, Xinli; Orlando, Borrás-Hidalgo; Zhang, Yuyu

    2018-03-20

    Epothilones constitute a new class of microtubule-stabilizing anti-cancer agents with promising preclinical and clinical activity. However, its systemic application still causes some toxic side effects. To reduce these undesired effects, advanced drug delivery systems based on cell targeting carriers are needed currently. In this study, the high quality bacterial ghosts of the probiotic Escherichia coli Nissle 1917 (EcN) were prepared in a large scale and retained fully intact surface structures for specific attachment to mammalian cells. The EcN ghosts could be efficiently loaded with the low hydrophilic drug Epothilone B (Epo B) and the maximal load efficiency was approximately 2.5% (w/w). Cytotoxicity assays revealed that Epo B-ghosts exhibited enhanced anti-proliferative properties on the HeLa cells. The Epo B associated with EcN ghosts was more cytotoxic at least 10 times than the free Epo B at the same concentrations. Apoptosis assays showed that both Epo B-ghosts and free Epo B induced time course-dependent apoptosis and necrosis in HeLa cells, respectively. While the former induced more apoptosis and necrosis than the latter. Furthermore, the cytochrome C release and the activation of caspase-3 were more remarkable after treatment with the Epo B-ghosts compared to the free Epo B, which implied that Epo B-ghosts might more effectively induce the apoptosis mediated by mitochondrial pathway in HeLa cells. Therefore, the higher anti-proliferative effects of the Epo B-ghosts on the HeLa cells were mediated by mitochondrial pathway of apoptosis. The EcN ghosts may provide a useful drug delivery carrier for drug candidates in cancer therapy.

  7. Hsp105 family proteins suppress staurosporine-induced apoptosis by inhibiting the translocation of Bax to mitochondria in HeLa cells

    International Nuclear Information System (INIS)

    Yamagishi, Nobuyuki; Ishihara, Keiichi; Saito, Youhei; Hatayama, Takumi

    2006-01-01

    Hsp105 (Hsp105α and Hsp105β), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105α has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105α regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105α or Hsp105β by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105α or Hsp105β. In addition, we found that overexpression of Hsp105α or Hsp105β suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105α or Hsp105β. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells

  8. PARP-1 is a key player in controlling apoptosis induced by high LET carbon ion beam and low LET gamma radiation in HeLa cells

    International Nuclear Information System (INIS)

    Ghorai, Atanu; Ghosh, Utpal; Bhattacharyya, Nitai P.; Sarma, Asitikantha

    2014-01-01

    PARP-1 inhibitors have long been used as chemo-sensitizer or radio-sensitizer and specific PARP-1 inhibitors are also in clinical trial for the treatment of various cancers. PARP-1 is not only involved in DNA repair but also plays very complex role in induction of apoptosis in postirradiation condition. Our objective is to investigate role of PARP-1 in apoptosis triggered by high LET carbon ion beam (CIB) and low LET gamma. We have treated HeLa and PARP-1 knock down HeLa (Hsil) cells with various doses of CIB and gamma. We measured DNA damage by comet assay and various apoptotic parameters such as nuclear fragmentation, activation of caspase-3,8,9, AIF translocation etc. We observed higher DNA breaks and also higher apoptosis in HsiI cells compared with HeLa cells. Both CIB and gamma treatment results G2/M arrest but unlike gamma CIB makes S-phase delay, implicating that gamma and CIB triggers different pathway after DNA damage. Cell death by CIB or by gamma increased up on knocking down of PARP-1 but increase is higher for high LET CIB compared with low LET gamma. Furthermore, expression level of PARP-1 controls the intensity of overall apoptosis in cells in post-irradiation condition. So, combination of PARP-1 inhibition with high LET CIB could be a promising tool to combat cancer. (author)

  9. Apoptosis induction of epifriedelinol on human cervical cancer cell line

    African Journals Online (AJOL)

    Background: Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Methods: Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 μg/ml). Cytotoxicity of ...

  10. Radiosensitivity of Hela cells as a function of their position in the generation cycle

    International Nuclear Information System (INIS)

    Lepekhin, A.F.

    1975-01-01

    A cell population with a certain average duration of the phases of the generation cycle and synchronized by selection of karyokinetic cells is examined. A calculation is made of the distribution of cells throught the generation cycle, taking as a starting point the relative number of marked cells when DNA pulse marking takes place. An equation is established that connects the viability of a population irradiated with a fixed dose of weakly ionizing radiation at an arbitrary point in time after synchronization with the distribution of cells through the generation cycle and the viability of cells of different ages. The viability can be obtained as a solution of the equation for known values of population viability at several points in time after synchronization. Calculations are made for Helia cells. (author)

  11. Mechanism of derivation of radioresistance in HeLa cell population after repeated x-irradiation

    International Nuclear Information System (INIS)

    Kubo, Kihei; Koiwai, Soichiro; Morita, Kazuo

    1982-01-01

    The Radioresistant strain (X-8-5) was obtained from HeLa-SC population X-irradiated repeatedly for five times with 800 rad. The mean lethal dose (D 0 ) was 196 rad for X-8-5 cells, while it was 166 rad for control HeLa-SC cells. The fraction of cells containing an unusually long acrocentric chromosome (LA 2) exclusively increased with increasing number of irradiation of HeLa-SC population. A clonal strain with LA 2 marker was isolated from X-8-5 population and named RC-355. Since the RC-355 cells were more resistant (D 0 = 220 rad)than parental X-8-5 cells (D 0 = 196 rad), it was suggested that the cells with LA 2 were responsible for the radioresistance of X-8-5 population. The RC-355 cells were further subjected to the analysis of Q-banded karyotypes and it was observed that 18 types of specific markers (rm 1-17 and LA 2) were included in RC-355 cells in addition to 12 types of markers observed in most of HeLa-SC cells. Since the analysis of Q-banded karyotypes of RC-355 cells showed that RC-355 specific markers were not produced by radiation-induced rearrangements of HeLa-SC chromosomes, because twelve kinds of HeLa-SC markers were presented in RC-355 cells without any change, it was concluded that a small number of cells with LA 2 marker were originally presented in the control population and the relative fraction of them occupied increased after irradiation. (author)

  12. [Colocalization of nucleoli in cell nuclei of HeLa line].

    Science.gov (United States)

    Petrov, Iu P; Neguliaev, Iu A; Tsupkina, N V

    2014-01-01

    The pattern of localization of nucleoli relative to each other and to cell nucleus was studied in M-HeLa cell line. For this puspose, the following morphometric parameters were introduced. For the two-nucleolar cells: 1) the ratio of the nucleus long axis to the length of a segment between the centers of the nucleoli, and 2) the angle between the segment connecting the centers of the nucleoli and a longitudinal axis of cell nucleus. For the three-nucleolar cells: the ratio perimeter of the nucleus to perimeter of a triangle with vertexes in the centre of nucleoli. We have shown that the values of these parameters are individual for each cell but their values remain constant for the cell in spite of the changes in cell shape. These results allow us to conclude that, on the one hand, the nucleoli colocalization is individual for each cell, and, on the other hand, location of nucleoli in relation to nucleus is not changed during interphase. Thereby, the distance between nucleoli increases proportionally with nucleus growth.

  13. On Biophysical Properties and Sensitivity to Gap Junction Blockers of Connexin 39 Hemichannels Expressed in HeLa Cells

    Science.gov (United States)

    Vargas, Anibal A.; Cisterna, Bruno A.; Saavedra-Leiva, Fujiko; Urrutia, Carolina; Cea, Luis A.; Vielma, Alex H.; Gutierrez-Maldonado, Sebastian E.; Martin, Alberto J. M.; Pareja-Barrueto, Claudia; Escalona, Yerko; Schmachtenberg, Oliver; Lagos, Carlos F.; Perez-Acle, Tomas; Sáez, Juan C.

    2017-01-01

    Although connexins (Cxs) are broadly expressed by cells of mammalian organisms, Cx39 has a very restricted pattern of expression and the biophysical properties of Cx39-based channels [hemichannels (HCs) and gap junction channels (GJCs)] remain largely unknown. Here, we used HeLa cells transfected with Cx39 (HeLa-Cx39 cells) in which intercellular electrical coupling was not detected, indicating the absence of GJCs. However, functional HCs were found on the surface of cells exposed to conditions known to increase the open probability of other Cx HCs (e.g., extracellular divalent cationic-free solution (DCFS), extracellular alkaline pH, mechanical stimulus and depolarization to positive membrane potentials). Cx39 HCs were blocked by some traditional Cx HC blockers, but not by others or a pannexin1 channel blocker. HeLa-Cx39 cells showed similar resting membrane potentials (RMPs) to those of parental cells, and exposure to DCFS reduced RMPs in Cx39 transfectants, but not in parental cells. Under these conditions, unitary events of ~75 pS were frequent in HeLa-Cx39 cells and absent in parental cells. Real-time cellular uptake experiments of dyes with different physicochemical features, as well as the application of a machine-learning approach revealed that Cx39 HCs are preferentially permeable to molecules characterized by six categories of descriptors, namely: (1) electronegativity, (2) ionization potential, (3) polarizability, (4) size and geometry, (5) topological flexibility and (6) valence. However, Cx39 HCs opened by mechanical stimulation or alkaline pH were impermeable to Ca2+. Molecular modeling of Cx39-based channels suggest that a constriction present at the intracellular portion of the para helix region co-localizes with an electronegative patch, imposing an energetic and steric barrier, which in the case of GJCs may hinder channel function. Results reported here demonstrate that Cx39 form HCs and add to our understanding of the functional roles of Cx39 HCs

  14. Membrane Microdomain Structures of Liposomes and Their Contribution to the Cellular Uptake Efficiency into HeLa Cells.

    Science.gov (United States)

    Onuki, Yoshinori; Obata, Yasuko; Kawano, Kumi; Sano, Hiromu; Matsumoto, Reina; Hayashi, Yoshihiro; Takayama, Kozo

    2016-02-01

    The purpose of this study is to obtain a comprehensive relationship between membrane microdomain structures of liposomes and their cellular uptake efficiency. Model liposomes consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol (Ch) were prepared with various lipid compositions. To detect distinct membrane microdomains in the liposomes, fluorescence-quenching assays were performed at temperatures ranging from 25 to 60 °C using 1,6-diphenyl-1,3,5-hexatriene-labeled liposomes and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl. From the data analysis using the response surface method, we gained a better understanding of the conditions for forming distinct domains (Lo, Ld, and gel phase membranes) as a function of lipid composition. We further performed self-organizing maps (SOM) clustering to simplify the complicated behavior of the domain formation to obtain its essence. As a result, DPPC/DOPC/Ch liposomes in any lipid composition were integrated into five distinct clusters in terms of similarity of the domain structure. In addition, the findings from synchrotron small-angle X-ray scattering analysis offered further insight into the domain structures. As a last phase of this study, an in vitro cellular uptake study using HeLa cells was conducted using SOM clusters' liposomes with/without PEGylation. As a consequence of this study, higher cellular uptake was observed from liposomes having Ch-rich ordered domains.

  15. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    International Nuclear Information System (INIS)

    Kaida, Atsushi; Miura, Masahiko

    2013-01-01

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions

  16. In Vitro Ultramorphological Assessment of Apoptosis Induced by Zerumbone on (HeLa

    Directory of Open Access Journals (Sweden)

    Siddig Ibrahim Abdel Wahab

    2009-01-01

    Full Text Available Zerumbone (ZER, a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa, breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining, scanning and transmission electron microscopy (SEM and TEM, and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC50 of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.

  17. The intensity of the 1602 cm-1 band in human cells is related to mitochondrial activity

    NARCIS (Netherlands)

    Pully, V.V.; Otto, Cornelis

    2009-01-01

    We report a Raman band at 1602 cm−1 in the spectra of human cells, which previously had only been observed in mitochondria of yeast cells. This band, which has not yet been assigned to a particular molecular species, was found to occur in HeLa cells, peripheral blood lymphocytes, human mesenchymal

  18. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  19. Extracellular gentamicin reduces the activity of connexin hemichannels and interferes with p