WorldWideScience

Sample records for human heart tissues

  1. Tissue microarray profiling in human heart failure.

    Science.gov (United States)

    Lal, Sean; Nguyen, Lisa; Tezone, Rhenan; Ponten, Fredrik; Odeberg, Jacob; Li, Amy; Dos Remedios, Cristobal

    2016-09-01

    Tissue MicroArrays (TMAs) are a versatile tool for high-throughput protein screening, allowing qualitative analysis of a large number of samples on a single slide. We have developed a customizable TMA system that uniquely utilizes cryopreserved human cardiac samples from both heart failure and donor patients to produce formalin-fixed paraffin-embedded sections. Confirmatory upstream or downstream molecular studies can then be performed on the same (biobanked) cryopreserved tissue. In a pilot study, we applied our TMAs to screen for the expression of four-and-a-half LIM-domain 2 (FHL2), a member of the four-and-a-half LIM family. This protein has been implicated in the pathogenesis of heart failure in a variety of animal models. While FHL2 is abundant in the heart, not much is known about its expression in human heart failure. For this purpose, we generated an affinity-purified rabbit polyclonal anti-human FHL2 antibody. Our TMAs allowed high-throughput profiling of FHL2 protein using qualitative and semiquantitative immunohistochemistry that proved complementary to Western blot analysis. We demonstrated a significant relative reduction in FHL2 protein expression across different forms of human heart failure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    Science.gov (United States)

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  3. Guided Tissue Regeneration in Heart Valve Replacement: From Preclinical Research to First-in-Human Trials

    Directory of Open Access Journals (Sweden)

    L. Iop

    2015-01-01

    Full Text Available Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient’s cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application.

  4. Guided tissue regeneration in heart valve replacement: from preclinical research to first-in-human trials.

    Science.gov (United States)

    Iop, L; Gerosa, G

    2015-01-01

    Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient's cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application.

  5. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Lisa U.; Lundqvist, Annika [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg (Sweden); Asp, Julia [Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Synnergren, Jane [Systems Biology Research Center, School of Life Sciences, University of Skoevde, Skoevde (Sweden); Johansson, Cecilia Thalen [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg (Sweden); Palmqvist, Lars [Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jeppsson, Anders [Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg (Sweden); Hulten, Lillemor Mattsson, E-mail: Lillemor.Mattsson@wlab.gu.se [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg (Sweden)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  6. Spectroscopic fluorescence measurements of lamb and human heart tissue in vitro

    Science.gov (United States)

    Filippidis, George; Zacharakis, Giannis; Kochiadakis, G. E.; Chrysostomakis, S. I.; Vardas, P. E.; Fotakis, Costas; Papazoglou, Theodore G.

    2003-10-01

    Laser-induced fluorescence spectra were obtained during the exposure of lamb heart (n=20) tissue to Argon-ion radiation (457.9nm). Fluorescence spectra from different heart compartments (the left and right atria and ventricles, the myocardium, the epicardium, and the aorta) were recorded. Simple algebraic algorithms based on the spectral intensity variation were constructed in order to detect spectral features and characterize the different cardiac compartments. Additionally, it was investigated whether each chamber exhibited constant spectral response. After the end of each experiment the lamb hearts were stored in formalin (10%). The samples were irradiated again after forty eight (48) hours in order to investigate the spectral differences that appear due to formalin conservation. Similar fluorescence measurements were taken from a limited number of human heart tissues (n=2) ex vivo.

  7. Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue.

    Science.gov (United States)

    Ardehali, Reza; Ali, Shah R; Inlay, Matthew A; Abilez, Oscar J; Chen, Michael Q; Blauwkamp, Timothy A; Yazawa, Masayuki; Gong, Yongquan; Nusse, Roeland; Drukker, Micha; Weissman, Irving L

    2013-02-26

    A goal of regenerative medicine is to identify cardiovascular progenitors from human ES cells (hESCs) that can functionally integrate into the human heart. Previous studies to evaluate the developmental potential of candidate hESC-derived progenitors have delivered these cells into murine and porcine cardiac tissue, with inconclusive evidence regarding the capacity of these human cells to physiologically engraft in xenotransplantation assays. Further, the potential of hESC-derived cardiovascular lineage cells to functionally couple to human myocardium remains untested and unknown. Here, we have prospectively identified a population of hESC-derived ROR2(+)/CD13(+)/KDR(+)/PDGFRα(+) cells that give rise to cardiomyocytes, endothelial cells, and vascular smooth muscle cells in vitro at a clonal level. We observed rare clusters of ROR2(+) cells and diffuse expression of KDR and PDGFRα in first-trimester human fetal hearts. We then developed an in vivo transplantation model by transplanting second-trimester human fetal heart tissues s.c. into the ear pinna of a SCID mouse. ROR2(+)/CD13(+)/KDR(+)/PDGFRα(+) cells were delivered into these functioning fetal heart tissues: in contrast to traditional murine heart models for cell transplantation, we show structural and functional integration of hESC-derived cardiovascular progenitors into human heart.

  8. 3D engineered cardiac tissue models of human heart disease: learning more from our mice.

    Science.gov (United States)

    Ralphe, J Carter; de Lange, Willem J

    2013-02-01

    Mouse engineered cardiac tissue constructs (mECTs) are a new tool available to study human forms of genetic heart disease within the laboratory. The cultured strips of cardiac cells generate physiologic calcium transients and twitch force, and respond to electrical pacing and adrenergic stimulation. The mECT can be made using cells from existing mouse models of cardiac disease, providing a robust readout of contractile performance and allowing a rapid assessment of genotype-phenotype correlations and responses to therapies. mECT represents an efficient and economical extension to the existing tools for studying cardiac physiology. Human ECTs generated from iPSCMs represent the next logical step for this technology and offer significant promise of an integrated, fully human, cardiac tissue model.

  9. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology.

    Directory of Open Access Journals (Sweden)

    Sebastian Schaaf

    Full Text Available Human embryonic stem cell (hESC progenies hold great promise as surrogates for human primary cells, particularly if the latter are not available as in the case of cardiomyocytes. However, high content experimental platforms are lacking that allow the function of hESC-derived cardiomyocytes to be studied under relatively physiological and standardized conditions. Here we describe a simple and robust protocol for the generation of fibrin-based human engineered heart tissue (hEHT in a 24-well format using an unselected population of differentiated human embryonic stem cells containing 30-40% α-actinin-positive cardiac myocytes. Human EHTs started to show coherent contractions 5-10 days after casting, reached regular (mean 0.5 Hz and strong (mean 100 µN contractions for up to 8 weeks. They displayed a dense network of longitudinally oriented, interconnected and cross-striated cardiomyocytes. Spontaneous hEHT contractions were analyzed by automated video-optical recording and showed chronotropic responses to calcium and the β-adrenergic agonist isoprenaline. The proarrhythmic compounds E-4031, quinidine, procainamide, cisapride, and sertindole exerted robust, concentration-dependent and reversible decreases in relaxation velocity and irregular beating at concentrations that recapitulate findings in hERG channel assays. In conclusion this study establishes hEHT as a simple in vitro model for heart research.

  10. Guided Tissue Regeneration in Heart Valve Replacement: From Preclinical Research to First-in-Human Trials

    OpenAIRE

    Iop, L.; Gerosa, G.

    2015-01-01

    Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient’s cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation...

  11. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.

    Science.gov (United States)

    Hirt, Marc N; Boeddinghaus, Jasper; Mitchell, Alice; Schaaf, Sebastian; Börnchen, Christian; Müller, Christian; Schulz, Herbert; Hubner, Norbert; Stenzig, Justus; Stoehr, Andrea; Neuber, Christiane; Eder, Alexandra; Luther, Pradeep K; Hansen, Arne; Eschenhagen, Thomas

    2014-09-01

    Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT.

  12. Rapid manufacturing techniques for the tissue engineering of human heart valves.

    Science.gov (United States)

    Lueders, Cora; Jastram, Ben; Hetzer, Roland; Schwandt, Hartmut

    2014-10-01

    Three-dimensional (3D) printing technologies have reached a level of quality that justifies considering rapid manufacturing for medical applications. Herein, we introduce a new approach using 3D printing to simplify and improve the fabrication of human heart valve scaffolds by tissue engineering (TE). Custom-made human heart valve scaffolds are to be fabricated on a selective laser-sintering 3D printer for subsequent seeding with vascular cells from human umbilical cords. The scaffolds will be produced from resorbable polymers that must feature a number of specific properties: the structure, i.e. particle granularity and shape, and thermic properties must be feasible for the printing process. They must be suitable for the cell-seeding process and at the same time should be resorbable. They must be applicable for implementation in the human body and flexible enough to support the full functionality of the valve. The research focuses mainly on the search for a suitable scaffold material that allows the implementation of both the printing process to produce the scaffolds and the cell-seeding process, while meeting all of the above requirements. Computer tomographic data from patients were transformed into a 3D data model suitable for the 3D printer. Our current activities involve various aspects of the printing process, material research and the implementation of the cell-seeding process. Different resorbable polymeric materials have been examined and used to fabricate heart valve scaffolds by rapid manufacturing. Human vascular cells attached to the scaffold surface should migrate additionally into the inner structure of the polymeric samples. The ultimate intention of our approach is to establish a heart valve fabrication process based on 3D rapid manufacturing and TE. Based on the computer tomographic data of a patient, a custom-made scaffold for a valve will be produced on a 3D printer and populated preferably by autologous cells. The long-term goal is to support

  13. Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues.

    Science.gov (United States)

    Kerscher, Petra; Turnbull, Irene C; Hodge, Alexander J; Kim, Joonyul; Seliktar, Dror; Easley, Christopher J; Costa, Kevin D; Lipke, Elizabeth A

    2016-03-01

    Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.

  14. Human engineered heart tissue as a model system for drug testing.

    Science.gov (United States)

    Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas

    2016-01-15

    Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.

  15. Modeling the Human Scarred Heart In Vitro : Toward New Tissue Engineered Models

    NARCIS (Netherlands)

    Deddens, Janine C.; Sadeghi, Amir Hossein; Hjortnaes, Jesper; van Laake, Linda W.; Buijsrogge, Marc; Doevendans, Pieter A.; Khademhosseini, Ali; Sluijter, Joost P G

    2017-01-01

    Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An

  16. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure.

    Science.gov (United States)

    Schechter, Matthew A; Hsieh, Michael K H; Njoroge, Linda W; Thompson, J Will; Soderblom, Erik J; Feger, Bryan J; Troupes, Constantine D; Hershberger, Kathleen A; Ilkayeva, Olga R; Nagel, Whitney L; Landinez, Gina P; Shah, Kishan M; Burns, Virginia A; Santacruz, Lucia; Hirschey, Matthew D; Foster, Matthew W; Milano, Carmelo A; Moseley, M Arthur; Piacentino, Valentino; Bowles, Dawn E

    2014-01-01

    The molecular differences between ischemic (IF) and non-ischemic (NIF) heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins) and 823 phosphopeptides (corresponding to 400 proteins) from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins) exhibited a ≥ 2-fold alteration in phosphorylation state (pfailure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.

  17. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure.

    Directory of Open Access Journals (Sweden)

    Matthew A Schechter

    Full Text Available The molecular differences between ischemic (IF and non-ischemic (NIF heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins and 823 phosphopeptides (corresponding to 400 proteins from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins exhibited a ≥ 2-fold alteration in phosphorylation state (p<0.05 when comparing IF and NIF. The degree of protein phosphorylation at these 37 sites was specifically dependent upon the heart failure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.

  18. Cardiomyocyte Clusters Derived from Human Embryonic Stem Cells Share Similarities with Human Heart Tissue

    Institute of Scientific and Technical Information of China (English)

    Julia Asp; Daniella Steel; Marianne Jonsson; Caroline Améen; Kerstin Dahlenborg; Anders Jeppsson; Anders Lindahl; Peter Sartipy

    2010-01-01

    @@ Cardiotoxicity testing is a key activity in the pharmaceutical industry in order to detect detrimental effects of new drugs.A reliable human in vitro model would both be beneficial in selection of lead compounds and be important for reducing animal experimentation.

  19. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets - Relevance for tissue engineering

    NARCIS (Netherlands)

    Balguid, A.; Rubbens, M.P.; Mol, A.; Bank, R.A.; Bogers, A.J.J.C.; Kats, J.P. van; Mol, B.A.J.M. de; Baaijens, F.P.T.; Bouten, C.V.C.

    2007-01-01

    A major challenge in tissue engineering of functional heart valves is to determine and mimic the dominant tissue structures that regulate heart valve function and in vivo survival. In native heart valves, the anisotropic matrix architecture assures sustained and adequate functioning under

  20. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves.

    Science.gov (United States)

    van Geemen, Daphne; Soares, Ana L F; Oomen, Pim J A; Driessen-Mol, Anita; Janssen-van den Broek, Marloes W J T; van den Bogaerdt, Antoon J; Bogers, Ad J J C; Goumans, Marie-José T H; Baaijens, Frank P T; Bouten, Carlijn V C

    2016-01-01

    There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.

  1. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves.

    Directory of Open Access Journals (Sweden)

    Daphne van Geemen

    Full Text Available There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.

  2. Leu-7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue.

    Science.gov (United States)

    Ikeda, T; Iwasaki, K; Shimokawa, I; Sakai, H; Ito, H; Matsuo, T

    1990-01-01

    The distribution pattern of Leu-7 (HNK-1) in developing human embryonic hearts and rat hearts was studied by immunohistochemistry. Human and rat embryos at Streeter's stages XIII approximately XX and fetus stage I were used. Leu-7, which is absent in the newborn rat heart, is expressed transiently in the embryo and fetus I stages. The earliest embryonic heart shows two incomplete circular structures with immunoreactivity in the myocardium along the primitive atrioventricular cushion and bulboventricular canal. These two structures become localized topographically in the definitive atrioventricular node and atrioventricular bundle after rearrangement and partial disappearance during embryonic development. At Streeter's stages XVIII approximately XX, Leu-7 immunoreactivity appears to localize topographically in almost all the pathways of the conduction system, although some discontinuities are observed in the atrioventricular junction and atrial internodal tracts. Thereafter, immunoreactivity decreases gradually and differentially by site and stage. The precise nature of Leu-7 immunoreactive cells, that is, whether or not they are neurogenic or myogenic, is not revealed by this study. The present observations are discussed in connection with the hypothesis that specialized ring tissue is the primordium of the conduction system.

  3. Correlation between endogenous polyamines in human cardiac tissues and clinical parameters in patients with heart failure.

    Science.gov (United States)

    Meana, Clara; Rubín, José Manuel; Bordallo, Carmen; Suárez, Lorena; Bordallo, Javier; Sánchez, Manuel

    2016-02-01

    Polyamines contribute to several physiological and pathological processes, including cardiac hypertrophy in experimental animals. This involves an increase in ornithine decarboxylase (ODC) activity and intracellular polyamines associated with cyclic adenosine monophosphate (cAMP) increases. The aim of the study was to establish the role of these in the human heart in living patients. For this, polyamines (by high performance liquid chromatography) and the activity of ODC and N(1)-acetylpolyamine oxidases (APAO) were determined in the right atrial appendage of 17 patients undergoing extracorporeal circulation to correlate with clinical parameters. There existed enzymatic activity associated with the homeostasis of polyamines. Left atria size was positively associated with ODC (r = 0.661, P = 0.027) and negatively with APAO-N(1) -acetylspermine (r = -0.769, P = 0.026), suggesting that increased levels of polyamines are associated with left atrial hemodynamic overload. Left ventricular ejection fraction (LVEF) and heart rate were positively associated with spermidine (r = 0.690, P = 0.003; r = 0.590, P = 0.021) and negatively with N(1)-acetylspermidine (r = -0.554, P = 0.032; r = -0.644, P = 0.018). LVEF was negatively correlated with cAMP levels (r = -0.835, P = 0.001) and with cAMP/ODC (r = -0.794, P = 0.011), cAMP/spermidine (r = -0.813, P = 0.001) and cAMP/spermine (r = -0.747, P = 0.003) ratios. Abnormal LVEF patients showed decreased ODC activity and spermidine, and increased N(1) -acetylspermidine, and cAMP. Spermine decreased in congestive heart failure patients. The trace amine isoamylamine negatively correlated with septal wall thickness (r = -0.634, P = 0.008) and was increased in cardiac heart failure. The results indicated that modifications in polyamine homeostasis might be associated with cardiac function and remodelling. Increased cAMP might have a deleterious effect on function. Further studies should confirm these findings and the involvement of

  4. [Heart tissue from embryonic stem cells].

    Science.gov (United States)

    Zimmermann, W-H

    2008-09-01

    Embryonic stem cells can give rise to all somatic cells, making them an attractive cell source for tissue engineering applications. The propensity of cells to form tissue-like structures in a culture dish has been well documented. We and others made use of this intrinsic property to generate bioartificial heart muscle. First proof-of-concept studies involved immature heart cells mainly from fetal chicken, neonatal rats and mice. They eventually provided evidence that force-generating heart muscle can be engineered in vitro. Recently, the focus shifted to the application of stem cells to eventually enable the generation of human heart muscle and reach following long-term goals: (1) development of a simplified in vitro model of heart muscle development; (2) generation of a human test-bed for drug screening and development; (3) allocation of surrogate heart tissue to myocardial repair applications. This overview will provide the background for cell-based myocardial repair, introduce the main myocardial tissue engineering concepts, discuss the use of embryonic and non-embryonic stem cells, and lays out the potential direct and indirect therapeutic use of human tissue engineered myocardium.

  5. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve : An in vitro and in vivo feasibility study

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y. John

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was

  6. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve : An in vitro and in vivo feasibility study

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y. John

    2012-01-01

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was

  7. Heart tissue grown in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  8. SEM investigation of heart tissue samples

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, R; Amoroso, M [Physics Department, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies (Trinidad and Tobago)

    2010-07-01

    We used the scanning electron microscope to examine the cardiac tissue of a cow (Bos taurus), a pig (Sus scrofa), and a human (Homo sapiens). 1mm{sup 3} blocks of left ventricular tissue were prepared for SEM scanning by fixing in 96% ethanol followed by critical point drying (cryofixation), then sputter-coating with gold. The typical ridged structure of the myofibrils was observed for all the species. In addition crystal like structures were found in one of the samples of the heart tissue of the pig. These structures were investigated further using an EDVAC x-ray analysis attachment to the SEM. Elemental x-ray analysis showed highest peaks occurred for gold, followed by carbon, oxygen, magnesium and potassium. As the samples were coated with gold for conductivity, this highest peak is expected. Much lower peaks at carbon, oxygen, magnesium and potassium suggest that a cystallized salt such as a carbonate was present in the tissue before sacrifice.

  9. Computer Simulation of the Beating Human Heart

    Science.gov (United States)

    Peskin, Charles S.; McQueen, David M.

    2001-06-01

    The mechanical function of the human heart couples together the fluid mechanics of blood and the soft tissue mechanics of the muscular heart walls and flexible heart valve leaflets. We discuss a unified mathematical formulation of this problem in which the soft tissue looks like a specialized part of the fluid in which additional forces are applied. This leads to a computational scheme known as the Immersed Boundary (IB) method for solving the coupled equations of motion of the whole system. The IB method is used to construct a three-dimensional Virtual Heart, including representations of all four chambers of the heart and all four valves, in addition to the large arteries and veins that connect the heart to the rest of the circulation. The chambers, valves, and vessels are all modeled as collections of elastic (and where appropriate, actively contractile) fibers immersed in viscous incompressible fluid. Results are shown as a computer-generated video animation of the beating heart.

  10. Effect of recombinant human erythropoietin on mitomycin C-induced oxidative stress and genotoxicity in rat kidney and heart tissues.

    Science.gov (United States)

    Rjiba-Touati, K; Ayed-Boussema, I; Guedri, Y; Achour, A; Bacha, H; Abid-Essefi, S

    2016-01-01

    Mitomycin C (MMC) is an antineoplastic agent used for the treatment of several human malignancies. Nevertheless, the prolonged use of the drug may result in a serious heart and kidney injuries. Recombinant human erythropoietin (rhEPO) has recently been shown to exert an important cytoprotective effect in experimental brain injury and ischemic acute renal failure. The aim of the present work is to investigate the cardioprotective and renoprotective effects of rhEPO against MMC-induced oxidative damage and genotoxicity. Our results showed that MMC induced oxidative stress and DNA damage. rhEPO administration in any treatment conditions decreased oxidative damage induced by MMC. It reduced malondialdehyde and protein carbonyl levels. rhEPO ameliorated reduced glutathione plus oxidized glutathione modulation and the increased catalase activity after MMC treatment. Furthermore, rhEPO restored DNA damage caused by MMC. We concluded that rhEPO administration especially in pretreatment condition protected rats against MMC-induced heart and renal oxidative stress and genotoxicity.

  11. Tissue-engineered heart valve: future of cardiac surgery.

    Science.gov (United States)

    Rippel, Radoslaw A; Ghanbari, Hossein; Seifalian, Alexander M

    2012-07-01

    Heart valve disease is currently a growing problem, and demand for heart valve replacement is predicted to increase significantly in the future. Existing "gold standard" mechanical and biological prosthesis offers survival at a cost of significantly increased risks of complications. Mechanical valves may cause hemorrhage and thromboembolism, whereas biologic valves are prone to fibrosis, calcification, degeneration, and immunogenic complications. A literature search was performed to identify all relevant studies relating to tissue-engineered heart valve in life sciences using the PubMed and ISI Web of Knowledge databases. Tissue engineering is a new, emerging alternative, which is reviewed in this paper. To produce a fully functional heart valve using tissue engineering, an appropriate scaffold needs to be seeded using carefully selected cells and proliferated under conditions that resemble the environment of a natural human heart valve. Bioscaffold, synthetic materials, and preseeded composites are three common approaches of scaffold formation. All available evidence suggests that synthetic scaffolds are the most suitable material for valve scaffold formation. Different cell sources of stem cells were used with variable results. Mesenchymal stem cells, fibroblasts, myofibroblasts, and umbilical blood stem cells are used in vitro tissue engineering of heart valve. Alternatively scaffold may be implanted and then autoseeded in vivo by circulating endothelial progenitor cells or primitive circulating cells from patient's blood. For that purpose, synthetic heart valves were developed. Tissue engineering is currently the only technology in the field with the potential for the creation of tissues analogous to a native human heart valve, with longer sustainability, and fever side effects. Although there is still a long way to go, tissue-engineered heart valves have the capability to revolutionize cardiac surgery of the future.

  12. Data from acellular human heart matrix

    Directory of Open Access Journals (Sweden)

    Pedro L Sánchez

    2016-09-01

    Full Text Available Perfusion decellularization of cadaveric hearts removes cells and generates a cell-free extracellular matrix scaffold containing acellular vascular conduits, which are theoretically sufficient to perfuse and support tissue-engineered heart constructs. This article contains additional data of our experience decellularizing and testing structural integrity and composition of a large series of human hearts, “Acellular human heart matrix: a critical step toward whole heat grafts” (Sanchez et al., 2015 [1]. Here we provide the information about the heart decellularization technique, the valve competence evaluation of the decellularized scaffolds, the integrity evaluation of epicardial and myocardial coronary circulation, the pressure volume measurements, the primers used to assess cardiac muscle gene expression and, the characteristics of donors, donor hearts, scaffolds and perfusion decellularization process.

  13. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells.

    Science.gov (United States)

    Cebotari, Serghei; Tudorache, Igor; Jaekel, Thomas; Hilfiker, Andres; Dorfman, Suzanne; Ternes, Waldemar; Haverich, Axel; Lichtenberg, Artur

    2010-03-01

    Detergents are powerful agents for tissue decellularization. Despite this, the high toxicity of detergent residua can be a major limitation. This study evaluated the efficacy of detergent removal from decellularized pulmonary valves (PVs) and the consequences of repopulation with human endothelial cells (HECs). Porcine PVs were treated with 1% sodium deoxycholate (SDC), group A; 1% sodium dodecyl sulfate (SDS), group B; and a mixture of 0.5% SDC/0.5% SDS, group C (n = 5 each). After each of 10 succeeding wash cycles (WCs), samples of the washing solution (WS) were analyzed by solid phase extraction and high performance liquid chromatography for the presence of detergents. Metabolic activity of HEC was also assessed in the WS samples (cytotoxicity and MTS assays). Decellularized and washed PVs were reseeded with HEC. Histological analysis demonstrated efficient tissue decellularization in all groups. Detergents' concentration in all WSs decreased exponentially and was below 50 mg/L after 6, 8, and 4 WCs in groups A, B, and C, respectively. This concentration resulted in no significant toxic influence on cell cultures, and scaffolds could be efficiently reseeded with HEC. In conclusion, intensive washing of detergent decellularized valvular scaffolds lowers the residual contamination below a hazardous threshold and allows their successful repopulation with HEC for tissue engineering purposes.

  14. Cryodissection of vessels of the human heart

    Directory of Open Access Journals (Sweden)

    Okolokulak E.S.

    2015-03-01

    Full Text Available Background. One of the most actual problems of applied morphology is the problem of demonstrativeness. In the educational process it is important to demonstrate the organs taken from the human body with all features of their structure preserved. The basic method of normal anatomy is a dissection of cadaveric material. It gives anatomical preparations demonstrating the structure of the human body. But classical dissection has certain difficulties: the complexity of layer-by-layer tissue separation and extraction of important anatomical structures. Currently for the manufacture of anatomical preparations a number of other methods are used: method of corrosion and polymeric embalming. However these techniques are time consuming, expensive, and also can cause damage to the structures of the heart during their extraction out of adipose tissue. Objective. To create a new method for the dissection of the human heart, allowing to reduce the time and to improve the quality of the preparations. Methods. We have prepared two solutions with different freezing temperature. Tissue which needed to be preserved (myocardium was impregnated with solution №1. Tissue that need to be deleted (adipose tissue, impregnated with solution №2. After freezing the heart myocardium frizzes, but unfrozen adipose tissue could be easily separated. We examined 30 human hearts: 15 preparations by the classical dissection, 15 preparations with the help of cryodissection. Results. Preparation of hearts by the classical method took about 180 minutes, with the help of cryodissection – 30 minutes. Visualization of the coronary arteries and their branches after our method is better, myocardium is smooth, also preserve the natural color of the drug. Additionally, there is no contact of the researcher with harmful conservatives (for example formaldehyde. Conclusion. We have developed a method for dissection of cadaveric material, which improves the quality of anatomical

  15. Morphology and biomechanics of human heart

    Science.gov (United States)

    Chelnokova, Natalia O.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Polienko, Asel V.; Ivanov, Dmitry V.

    2016-03-01

    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart.

  16. Pathogenic Mineralization of Calcium Phosphate on Human Heart Valves

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    When calcium phosphate forms in soft tissues such as blood vessels and heart valves, it causes disease. The abnormal formation of calcium phosphate is called pathogenic mineralization or pathogenic calcification. Cases of rheumatic heart disease (RHD) always occur with fibrotic and calcified tissue of heart valve. In this article, samples taken from calcified human heart valves were studied. The characterization was performed by scanning electronic micrascope, X-ray Diffraction and transmission electron microscopy with selective diffraction patterns. It is found for the first time that calcium phosphate grains existing in the calcified human heart valves contain octacalcium phosphate (OCP).

  17. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve: an in vitro and in vivo feasibility study.

    Science.gov (United States)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y John

    2012-08-01

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was aimed to assess the basic in vitro and in vivo characteristics of the human vascular cells seeded on decellularized bovine pericardium. In vitro, bovine pericardium samples with cell seeding were inspected on day 7, 14, and 21 by histology, scanning electron microscopy, and immunohistochemistry. In vivo, experiments were performed in nude mice by bilateral dorsal incision for the implantation of decellularized bovine pericardium with and without cell seeding. Results demonstrated that a total of 8-10 × 10(6) cells were obtained within 4-5 wk by the primary co-culture, which were detected positive for von Willebrand factor, α-smooth muscle actin antibodies, and fibronectin, indicating the presence of endothelial cells, smooth muscle cells, and fibroblasts, respectively. In vitro, the seeded cells showed a steady increase of endothelial activity from day 1 to day 7 and remained stable until day 21. After 30 days of implantation in vivo, the cells on the decellularized bovine pericardium could differentiate directionally and show all the identities of human endothelial cells, smooth muscle cells, and fibroblasts. These results indicate that the human vascular cells from the saphenous vein are an optional cell source for seeding on decellularized bovine pericardium scaffold for constructing TEHV. Copyright © 2012 Wiley Periodicals, Inc.

  18. Current Status of Tissue Engineering Heart Valve.

    Science.gov (United States)

    Shinoka, Toshiharu; Miyachi, Hideki

    2016-11-01

    The development of surgically implantable heart valve prostheses has contributed to improved outcomes in patients with cardiovascular disease. However, there are drawbacks, such as risk of infection and lack of growth potential. Tissue-engineered heart valve (TEHV) holds great promise to address these drawbacks as the ideal TEHV is easily implanted, biocompatible, non-thrombogenic, durable, degradable, and ultimately remodels into native-like tissue. In general, three main components used in creating a tissue-engineered construct are (1) a scaffold material, (2) a cell type for seeding the scaffold, and (3) a subsequent remodeling process driven by cell accumulation and proliferation, and/or biochemical and mechanical signaling. Despite rapid progress in the field over the past decade, TEHVs have not been translated into clinical applications successfully. To successfully utilize TEHVs clinically, further elucidation of the mechanisms for TEHV remodeling and further translational research outcome evaluations will be required. Tissue engineering is a major breakthrough in cardiovascular medicine that holds amazing promise for the future of reconstructive surgical procedures. In this article, we review the history of regenerative medicine, advances in the field, and state-of-the-art in valvular tissue engineering. © The Author(s) 2016.

  19. Tubular heart valves from decellularized engineered tissue.

    Science.gov (United States)

    Syedain, Zeeshan H; Meier, Lee A; Reimer, Jay M; Tranquillo, Robert T

    2013-12-01

    A novel tissue-engineered heart valve (TEHV) was fabricated from a decellularized tissue tube mounted on a frame with three struts, which upon back-pressure cause the tube to collapse into three coapting "leaflets." The tissue was completely biological, fabricated from ovine fibroblasts dispersed within a fibrin gel, compacted into a circumferentially aligned tube on a mandrel, and matured using a bioreactor system that applied cyclic distension. Following decellularization, the resulting tissue possessed tensile mechanical properties, mechanical anisotropy, and collagen content that were comparable to native pulmonary valve leaflets. When mounted on a custom frame and tested within a pulse duplicator system, the tubular TEHV displayed excellent function under both aortic and pulmonary conditions, with minimal regurgitant fractions and transvalvular pressure gradients at peak systole, as well as well as effective orifice areas exceeding those of current commercially available valve replacements. Short-term fatigue testing of one million cycles with pulmonary pressure gradients was conducted without significant change in mechanical properties and no observable macroscopic tissue deterioration. This study presents an attractive potential alternative to current tissue valve replacements due to its avoidance of chemical fixation and utilization of a tissue conducive to recellularization by host cell infiltration.

  20. [Human brown adipose tissue].

    Science.gov (United States)

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  1. Model human heart or brain signals

    CERN Document Server

    Tuncay, Caglar

    2008-01-01

    A new model is suggested and used to mimic various spatial or temporal designs in biological or non biological formations where the focus is on the normal or irregular electrical signals coming from human heart (ECG) or brain (EEG). The electrical activities in several muscles (EMG) or neurons or other organs of human or various animals, such as lobster pyloric neuron, guinea pig inferior olivary neuron, sepia giant axon and mouse neocortical pyramidal neuron and some spatial formations are also considered (in Appendix). In the biological applications, several elements (cells or tissues) in an organ are taken as various entries in a representative lattice (mesh) where the entries are connected to each other in terms of some molecular diffusions or electrical potential differences. The biological elements evolve in time (with the given tissue or organ) in terms of the mentioned connections (interactions) besides some individual feedings. The anatomical diversity of the species (or organs) is handled in terms o...

  2. Human Tissue Stimulator

    Science.gov (United States)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  3. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States); Fisher, Robyn L. [Vitron Inc., Tucson, AZ (United States); Vickers, Alison E.M., E-mail: vickers_alison@allergan.com [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States)

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  4. Sodium MRI in human heart: a review.

    Science.gov (United States)

    Bottomley, Paul A

    2016-02-01

    This paper offers a critical review of the properties, methods and potential clinical application of sodium ((23)Na) MRI in human heart. Because the tissue sodium concentration (TSC) in heart is about ~40 µmol/g wet weight, and the (23)Na gyromagnetic ratio and sensitivity are respectively about one-quarter and one-11th of that of hydrogen ((1)H), the signal-to-noise ratio of (23)Na MRI in the heart is about one-6000th of that of conventional cardiac (1)H MRI. In addition, as a quadrupolar nucleus, (23)Na exhibits ultra-short and multi-component relaxation behavior (T1 ~ 30 ms; T2 ~ 0.5-4 ms and 12-20 ms), which requires fast, specialized, ultra-short echo-time MRI sequences, especially for quantifying TSC. Cardiac (23)Na MRI studies from 1.5 to 7 T measure a volume-weighted sum of intra- and extra-cellular components present at cytosolic concentrations of 10-15 mM and 135-150 mM in healthy tissue, respectively, at a spatial resolution of about 0.1-1 ml in 10 min or so. Currently, intra- and extra-cellular sodium cannot be unambiguously resolved without the use of potentially toxic shift reagents. Nevertheless, increases in TSC attributable to an influx of intra-cellular sodium and/or increased extra-cellular volume have been demonstrated in human myocardial infarction consistent with prior animal studies, and arguably might also be seen in future studies of ischemia and cardiomyopathies--especially those involving defects in sodium transport. While technical implementation remains a hurdle, a central question for clinical use is whether cardiac (23)Na MRI can deliver useful information unobtainable by other more convenient methods, including (1)H MRI.

  5. The Sydney Heart Bank: improving translational research while eliminating or reducing the use of animal models of human heart disease.

    Science.gov (United States)

    Dos Remedios, C G; Lal, S P; Li, A; McNamara, J; Keogh, A; Macdonald, P S; Cooke, R; Ehler, E; Knöll, R; Marston, S B; Stelzer, J; Granzier, H; Bezzina, C; van Dijk, S; De Man, F; Stienen, G J M; Odeberg, J; Pontén, F; Linke, W; van der Velden, J

    2017-08-14

    The Sydney Heart Bank (SHB) is one of the largest human heart tissue banks in existence. Its mission is to provide high-quality human heart tissue for research into the molecular basis of human heart failure by working collaboratively with experts in this field. We argue that, by comparing tissues from failing human hearts with age-matched non-failing healthy donor hearts, the results will be more relevant than research using animal models, particularly if their physiology is very different from humans. Tissue from heart surgery must generally be used soon after collection or it significantly deteriorates. Freezing is an option but it raises concerns that freezing causes substantial damage at the cellular and molecular level. The SHB contains failing samples from heart transplant patients and others who provided informed consent for the use of their tissue for research. All samples are cryopreserved in liquid nitrogen within 40 min of their removal from the patient, and in less than 5-10 min in the case of coronary arteries and left ventricle samples. To date, the SHB has collected tissue from about 450 failing hearts (>15,000 samples) from patients with a wide range of etiologies as well as increasing numbers of cardiomyectomy samples from patients with hypertrophic cardiomyopathy. The Bank also has hearts from over 120 healthy organ donors whose hearts, for a variety of reasons (mainly tissue-type incompatibility with waiting heart transplant recipients), could not be used for transplantation. Donor hearts were collected by the St Vincent's Hospital Heart and Lung transplantation team from local hospitals or within a 4-h jet flight from Sydney. They were flushed with chilled cardioplegic solution and transported to Sydney where they were quickly cryopreserved in small samples. Failing and/or donor samples have been used by more than 60 research teams around the world, and have resulted in more than 100 research papers. The tissues most commonly requested are

  6. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of

  7. From cardiac tissue engineering to heart-on-a-chip: beating challenges.

    Science.gov (United States)

    Zhang, Yu Shrike; Aleman, Julio; Arneri, Andrea; Bersini, Simone; Piraino, Francesco; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2015-06-11

    The heart is one of the most vital organs in the human body, which actively pumps the blood through the vascular network to supply nutrients to as well as to extract wastes from all other organs, maintaining the homeostasis of the biological system. Over the past few decades, tremendous efforts have been exerted in engineering functional cardiac tissues for heart regeneration via biomimetic approaches. More recently, progress has been made toward the transformation of knowledge obtained from cardiac tissue engineering to building physiologically relevant microfluidic human heart models (i.e. heart-on-chips) for applications in drug discovery. The advancement in stem cell technologies further provides the opportunity to create personalized in vitro models from cells derived from patients. Here, starting from heart biology, we review recent advances in engineering cardiac tissues and heart-on-a-chip platforms for their use in heart regeneration and cardiotoxic/cardiotherapeutic drug screening, and then briefly conclude with characterization techniques and personalization potential of the cardiac models.

  8. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  9. Signaling pathways in failing human heart muscle cells.

    Science.gov (United States)

    Drexler, H; Hasenfuss, G; Holubarsch, C

    1997-07-01

    Experimental studies have delineated important signaling pathways in cardiomyocytes and their alterations in heart failure; however, there is now evidence that these observations are not necessarily applicable to human cardiac muscle cells. For example, angiotensin II (A II) does not exert positive inotropic effects in human ventricular muscle cells, in contrast to observation in rats. Thus, it is important to elucidate cardiac signaling pathways in humans in order to appreciate the functional role of neurohumoral or mechanical stimulation in human myocardium in health and disease. In the present article, we review signal pathways in the failing human heart based on studies in human cardiac tissues and in vivo physiological studies related to A II, nitric oxide, and β-adrenergic stimulation. (Trends Cardiovasc Med 1997; 7:151-160). © 1997, Elsevier Science Inc.

  10. Arrhythmogenic remodelling of activation and repolarization in the failing human heart.

    Science.gov (United States)

    Holzem, Katherine M; Efimov, Igor R

    2012-11-01

    Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics-2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated with heart failure is a leading cause of disease mortality and has been a major investigational focus examined using many animal models of heart failure. While these studies have provided an important foundation for understanding the arrhythmogenic pathophysiology of heart failure, the need for corroborating studies conducted on human heart tissue has been increasingly recognized. Many human heart studies of conduction and repolarization remodelling have now been published and shed some light on important, potentially arrhythmogenic, changes in human heart failure. These studies are being conducted at multiple experimental scales from isolated cells to whole-tissue preparations and have provided insight into regulatory mechanisms such as decreased protein expression, alternative mRNA splicing of ion channel genes, and defective cellular trafficking. Further investigations of heart failure in the human myocardium will be essential for determining possible therapeutic targets to prevent arrhythmia in heart failure and for facilitating the translation of basic research findings to the clinical realm.

  11. Application of stereolithography for scaffold fabrication for tissue engineered heart valves.

    Science.gov (United States)

    Sodian, Ralf; Loebe, Matthias; Hein, Andreas; Martin, David P; Hoerstrup, Simon P; Potapov, Evgenij V; Hausmann, Harald; Lueth, Tim; Hetzer, Roland

    2002-01-01

    A crucial factor in tissue engineering of heart valves is the functional and physiologic scaffold design. In our current experiment, we describe a new fabrication technique for heart valve scaffolds, derived from x-ray computed tomography data linked to the rapid prototyping technique of stereolithography. To recreate the complex anatomic structure of a human pulmonary and aortic homograft, we have used stereolithographic models derived from x-ray computed tomography and specific software (CP, Aachen, Germany). These stereolithographic models were used to generate biocompatible and biodegradable heart valve scaffolds by a thermal processing technique. The scaffold forming polymer was a thermoplastic elastomer, a poly-4-hydroxybutyrate (P4HB) and a polyhydroxyoctanoate (PHOH) (Tepha, Inc., Cambridge, MA). We fabricated one human aortic root scaffold and one pulmonary heart valve scaffold. Analysis of the heart valve included functional testing in a pulsatile bioreactor under subphysiological and supraphysiological flow and pressure conditions. Using stereolithography, we were able to fabricate plastic models with accurate anatomy of a human valvular homograft. Moreover, we fabricated heart valve scaffolds with a physiologic valve design, which included the sinus of Valsalva, and that resembled our reconstructed aortic root and pulmonary valve. One advantage of P4HB and PHOH was the ability to mold a complete trileaflet heart valve scaffold from a stereolithographic model without the need for suturing. The heart valves were tested in a pulsatile bioreactor, and it was noted that the leaflets opened and closed synchronously under subphysiological and supraphysiological flow conditions. Our preliminary results suggest that the reproduction of complex anatomic structures by rapid prototyping techniques may be useful to fabricate custom made polymeric scaffolds for the tissue engineering of heart valves.

  12. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Boerboom, R.A.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of whic

  13. Bioartificial heart: a human-sized porcine model--the way ahead.

    Directory of Open Access Journals (Sweden)

    Alexander Weymann

    Full Text Available BACKGROUND: A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Native hearts decellularized with preserved architecture and vasculature may provide an acellular tissue platform for organ regeneration. We sought to develop a tissue-engineered whole-heart neoscaffold in human-sized porcine hearts. METHODS: We decellularized porcine hearts (n = 10 by coronary perfusion with ionic detergents in a modified Langendorff circuit. We confirmed decellularization by histology, transmission electron microscopy and fluorescence microscopy, quantified residual DNA by spectrophotometry, and evaluated biomechanical stability with ex-vivo left-ventricular pressure/volume studies, all compared to controls. We then mounted the decellularized porcine hearts in a bioreactor and reseeded them with murine neonatal cardiac cells and human umbilical cord derived endothelial cells (HUVEC under simulated physiological conditions. RESULTS: Decellularized hearts lacked intracellular components but retained specific collagen fibers, proteoglycan, elastin and mechanical integrity; quantitative DNA analysis demonstrated a significant reduction of DNA compared to controls (82.6±3.2 ng DNA/mg tissue vs. 473.2±13.4 ng DNA/mg tissue, p<0.05. Recellularized porcine whole-heart neoscaffolds demonstrated re-endothelialization of coronary vasculature and measurable intrinsic myocardial electrical activity at 10 days, with perfused organ culture maintained for up to 3 weeks. CONCLUSIONS: Human-sized decellularized porcine hearts provide a promising tissue-engineering platform that may lead to future clinical strategies in the treatment of heart failure.

  14. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve

    Science.gov (United States)

    VeDepo, Mitchell C; Detamore, Michael S; Hopkins, Richard A; Converse, Gabriel L

    2017-01-01

    The tissue-engineered heart valve portends a new era in the field of valve replacement. Decellularized heart valves are of great interest as a scaffold for the tissue-engineered heart valve due to their naturally bioactive composition, clinical relevance as a stand-alone implant, and partial recellularization in vivo. However, a significant challenge remains in realizing the tissue-engineered heart valve: assuring consistent recellularization of the entire valve leaflets by phenotypically appropriate cells. Many creative strategies have pursued complete biological valve recellularization; however, identifying the optimal recellularization method, including in situ or in vitro recellularization and chemical and/or mechanical conditioning, has proven difficult. Furthermore, while many studies have focused on individual parameters for increasing valve interstitial recellularization, a general understanding of the interacting dynamics is likely necessary to achieve success. Therefore, the purpose of this review is to explore and compare the various processing strategies used for the decellularization and subsequent recellularization of tissue-engineered heart valves. PMID:28890780

  15. A new approach to heart valve tissue engineering

    DEFF Research Database (Denmark)

    Kaasi, Andreas; Cestari, Idágene A.; Stolf, Noedir A G.

    2011-01-01

    The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes...... chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber......, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 µm filter was placed at the reservoir. Pressure...

  16. Total excitation of the isolated human heart

    NARCIS (Netherlands)

    Durrer, D.; Dam, R.Th. van; Freud, G.E.; Janse, M.J.; Meijler, F.L.; Arzbaecher, R.C.

    1970-01-01

    To obtain information conceming the time course and instantaneous distribution of the excitatory process of the normal human healt, studies were made on isolated human hearts from seven individuals who died from various cerebral conditions, but who had no history of cardiac disease. Measurements wer

  17. Tissue Engineered Human Skin Equivalents

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2012-01-01

    Full Text Available Human skin not only serves as an important barrier against the penetration of exogenous substances into the body, but also provides a potential avenue for the transport of functional active drugs/reagents/ingredients into the skin (topical delivery and/or the body (transdermal delivery. In the past three decades, research and development in human skin equivalents have advanced in parallel with those in tissue engineering and regenerative medicine. The human skin equivalents are used commercially as clinical skin substitutes and as models for permeation and toxicity screening. Several academic laboratories have developed their own human skin equivalent models and applied these models for studying skin permeation, corrosivity and irritation, compound toxicity, biochemistry, metabolism and cellular pharmacology. Various aspects of the state of the art of human skin equivalents are reviewed and discussed.

  18. Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering.

    Science.gov (United States)

    Parker, Kevin K; Ingber, Donald E

    2007-08-29

    The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.

  19. Organization of ventricular fibrillation in the human heart.

    Science.gov (United States)

    Ten Tusscher, Kirsten H W J; Hren, Rok; Panfilov, Alexander V

    2007-06-22

    Sudden cardiac death is a major cause of death in the industrialized world, claiming approximately 300,000 victims annually in the United States alone. In most cases, sudden cardiac death is caused by ventricular fibrillation (VF). Experimental studies in large animal hearts have shown that the uncoordinated contractions during VF are caused by large numbers of chaotically wandering reentrant waves of electrical activity. However, recent clinical data on VF in the human heart seem to suggest that human VF may have a markedly different organization. Here, we use a detailed model of the human ventricles, including a detailed description of cell electrophysiology, ventricular anatomy, and fiber direction anisotropy, to study the organization of human VF. We show that characteristics of our simulated VF are qualitatively similar to the clinical data. Furthermore, we find that human VF is driven by only approximately 10 reentrant sources and thus is much more organized than VF in animal hearts of comparable size, where VF is driven by approximately 50 sources. We investigate the influence of anisotropy ratio, tissue excitability, and restitution properties on the number of reentrant sources driving VF. We find that the number of rotors depends strongest on minimum action potential duration, a property that differs significantly between human and large animal hearts. Based on these findings, we suggest that the simpler spatial organization of human VF relative to VF in large animal hearts may be caused by differences in minimum action potential duration. Both the simpler spatial organization of human VF and its suggested cause may have important implications for treating and preventing this dangerous arrhythmia in humans.

  20. High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration.

    Science.gov (United States)

    Huang, Chih-Chung; Su, Ta-Han; Shih, Cho-Chiang

    2015-02-01

    The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration.

  1. Cardiac spheroids as promising in vitro models to study the human heart microenvironment

    DEFF Research Database (Denmark)

    Polonchuk, Liudmila; Chabria, Mamta; Badi, Laura

    2017-01-01

    and fibroblasts at ratios approximating those present in vivo. The cellular organisation, extracellular matrix and microvascular network mimic human heart tissue. These spheroids have been employed to investigate the dose-limiting cardiotoxicity of the common anti-cancer drug doxorubicin. Viability......, biochemistry and pharmacology in vitro, offering a promising alternative to animals and standard cell cultures with regard to mechanistic insights and prediction of toxic effects in human heart tissue....

  2. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.

    Science.gov (United States)

    Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C

    2016-01-15

    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing.

  3. Reorganized PKA-AKAP associations in the failing human heart.

    Science.gov (United States)

    Aye, Thin-Thin; Soni, Siddarth; van Veen, Toon A B; van der Heyden, Marcel A G; Cappadona, Salvatore; Varro, Andras; de Weger, Roel A; de Jonge, Nicolaas; Vos, Marc A; Heck, Albert J R; Scholten, Arjen

    2012-02-01

    Here we reveal that the characterization of large-scale re-arrangements of signaling scaffolds induced by heart failure can serve as a novel concept to identify more specific therapeutic targets. In the mammalian heart, the cAMP pathway, with the cAMP-dependent protein kinase (PKA) in a central role, acts directly downstream of adrenergic receptors to mediate cardiac contractility and rhythm. Heart failure, characterized by severe alterations in adrenergic stimulation is, amongst other interventions, often treated with β-blockers. Contrasting results, however, have shown both beneficial and detrimental effects of decreased cAMP levels in failing hearts. We hypothesize that the origin of this behavior lies in the complex spatiotemporal organization of the regulatory subunit of PKA (PKA-R), which associates tightly with various A-kinase anchoring proteins (AKAPs) to specifically localize PKA's activity. Using chemical proteomics directly applied to human patient and control heart tissue we demonstrate that the association profile of PKA-R with several AKAPs is severely altered in the failing heart, for instance effecting the interaction between PKA and the novel AKAP SPHKAP was 6-fold upregulated upon failing heart conditions. Also a significant increase in captured cGMP-dependent protein kinase (PKG) and phosphodiesterase 2 (PDE2) was observed. The observed altered profiles can already explain many aspects of the aberrant cAMP-response in the failing human heart, validating that this dataset may provide a resource for several novel, more specific, treatment options. This article is part of a Special Issue entitled "Local Signaling in Myocytes".

  4. Human Tissue Research: Who Owns the Results.

    Science.gov (United States)

    Wagner, Allen B.

    1987-01-01

    Ownership issues in the results of research generally and of human tissue research specifically are explored. While acknowledging some uncertainty in the law, it is found that human tissue may be lawfully accessed for research and that use of human tissue does not modify the general allocation of interests. (MSE)

  5. Radiation Effect on Human Tissue

    Science.gov (United States)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered

  6. Patents and heart valve surgery - II: tissue valves.

    Science.gov (United States)

    Cheema, Faisal H; Kossar, Alexander P; Rehman, Atiq; Younas, Fahad; Polvani, Gianluca

    2013-08-01

    Valvular heart disease affects millions of Americans yearly and currently requires surgical intervention to repair or replace the defective valves. Through a close-knit collaboration between physicians, scientists and biomedical engineers, a vast degree of research and development has been aimed towards the optimization of prosthetic heart valves. Although various methods have made fantastic strides in producing durable prostheses, the therapeutic efficacy of prosthetic valves is inherently limited by a dependency upon lifelong anticoagulant regimens for recipients - a difficult challenge for many in clinical setting. Thus, biological tissue valves have been developed to circumvent vascular and immunemediated complications by incorporating biological materials to mimic native valves while still maintaining a necessary level of structural integrity. Over the past decade, a multitude of patents pertaining to the refinement of designs as well as the advancement in methodologies and technologies associated with biological tissue valves have been issued. This review seeks to chronicle and characterize such patents in an effort to track the past, present, and future progress as well as project the trajectory of tissue valves in the years to come.

  7. Tissue-specific effects of acetylcholine in the canine heart

    DEFF Research Database (Denmark)

    Callø, Kirstine; Goodrow, Robert; Olesen, Søren-Peter

    2013-01-01

    INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh...... on action potentials in canine atria, Purkinje and ventricular tissue as well as on ionic currents in isolated cells. METHODS: Action potentials were recorded from ventricular slices, Purkinje fibers, and arterially perfused atrial preparations. Whole-cell currents were recorded under voltage...

  8. Lactate kinetics in human tissues at rest and during exercise

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2010-01-01

    of lactate in skeletal muscle. With the introduction of lactate isotopes muscle lactate kinetics and oxidation could be studied and a simultaneous lactate uptake and release was observed, not only in muscle but also in other tissues. Therefore, this review will discuss in vivo human: (1) skeletal muscle...... lactate metabolism at rest and during exercise and suggestions are put forward to explain the simultaneous lactate uptake and release; and (2) lactate metabolism in the heart, liver, kidneys, brain, adipose tissue and lungs will be discussed and its potential importance in these tissues....

  9. Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues

    Directory of Open Access Journals (Sweden)

    RINI PUSPITANINGRUM

    2010-09-01

    Full Text Available An understanding of the underpinning physiology and biochemistry of animals is essential to properly understand the impact of anthropogenic changes and natural catastrophes upon the conservation of endangered species. An observation on the tissue location of the key respiratory protein, myoglobin, now opens up new opportunities for understanding how hypoxia tolerance impacts on diving lifestyle in turtles. The respiratory protein, myoglobin has functions other than oxygen binding which are involved in hypoxia tolerance, including metabolism of reactive oxygen species and of the vascular function by metabolism of nitric oxide. Our work aims to determine whether myoglobin expression in the green turtle exists in multiple non muscle tissues and to confirm the hypothesis that reptiles also have a distributed myoglobin expression which is linked to the hypoxiatolerant trait. This initial work in turtle hatch Chelonia mydas confirms the presence of myoglobin transcriptin brain, heart and liver tissues. Furthermore, it will serve as a tool for completing the sequence and generating an in situ hybridization probe for verifying of cell location in expressing tissues.

  10. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development

    Science.gov (United States)

    High, Frances A.; Jain, Rajan; Stoller, Jason Z.; Antonucci, Nicole B.; Lu, Min Min; Loomes, Kathleen M.; Kaestner, Klaus H.; Pear, Warren S.; Epstein, Jonathan A.

    2009-01-01

    Notch signaling is vital for proper cardiovascular development and function in both humans and animal models. Indeed, mutations in either JAGGED or NOTCH cause congenital heart disease in humans and NOTCH mutations are associated with adult valvular disease. Notch typically functions to mediate developmental interactions between adjacent tissues. Here we show that either absence of the Notch ligand Jagged1 or inhibition of Notch signaling in second heart field tissues results in murine aortic arch artery and cardiac anomalies. In mid-gestation, these mutants displayed decreased Fgf8 and Bmp4 expression. Notch inhibition within the second heart field affected the development of neighboring tissues. For example, faulty migration of cardiac neural crest cells and defective endothelial-mesenchymal transition within the outflow tract endocardial cushions were observed. Furthermore, exogenous Fgf8 was sufficient to rescue the defect in endothelial-mesenchymal transition in explant assays of endocardial cushions following Notch inhibition within second heart field derivatives. These data support a model that relates second heart field, neural crest, and endocardial cushion development and suggests that perturbed Notch-Jagged signaling within second heart field progenitors accounts for some forms of congenital and adult cardiac disease. PMID:19509466

  11. Distribution of miRNA expression across human tissues.

    Science.gov (United States)

    Ludwig, Nicole; Leidinger, Petra; Becker, Kurt; Backes, Christina; Fehlmann, Tobias; Pallasch, Christian; Rheinheimer, Steffi; Meder, Benjamin; Stähler, Cord; Meese, Eckart; Keller, Andreas

    2016-05-05

    We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10(-8)) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Human heart conjugate cooling simulation: unsteady thermo-fluid-stress analysis.

    Science.gov (United States)

    Abdoli, Abas; Dulikravich, George S; Bajaj, Chandrajit; Stowe, David F; Jahania, M Salik

    2014-11-01

    The main objective of this work was to demonstrate computationally that realistic human hearts can be cooled much faster by performing conjugate heat transfer consisting of pumping a cold liquid through the cardiac chambers and major veins while keeping the heart submerged in cold gelatin filling a cooling container. The human heart geometry used for simulations was obtained from three-dimensional, high resolution CT-angio scans. Two fluid flow domains for the right (pulmonic) and left (systemic) heart circulations, and two solid domains for the heart tissue and gelatin solution were defined for multi-domain numerical simulation. Detailed unsteady temperature fields within the heart tissue were calculated during the conjugate cooling process. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart due to the coolant fluid shear and normal forces and to examine the thermal stress caused by temperature variation inside the heart. It was demonstrated that a conjugate cooling effort with coolant temperature at +4°C is capable of reducing the average heart temperature from +37°C to +8°C in 25 minutes for cases in which the coolant was steadily pumped only through major heart inlet veins and cavities. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Characterization of muscarinic receptor subtypes in human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with (/sup 3/H)Pirenzepine and (/sup 3/H)N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M/sub 1/ neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M/sub 1/, the cardiac M/sub 2/ and the glandular M/sub 3/.

  14. Heart Disease: A Price Humans Pay for Fertility?

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_166826.html Heart Disease: A Price Humans Pay for Fertility? Study finds ... 22, 2017 (HealthDay News) -- Certain genes linked to heart disease may also improve your chances of having children, ...

  15. Reconstitution of the Frank-Starling Mechanism in Engineered Heart Tissues

    OpenAIRE

    Asnes, Clara F.; Marquez, J. Pablo; Elson, Elliot L.; Wakatsuki, Tetsuro

    2006-01-01

    According to the Frank-Starling mechanism, as the heart is stretched, it increases its contraction force. Reconstitution of the Frank-Starling mechanism is an important milestone for producing functional heart tissue constructs. Spontaneously contracting engineered heart tissues (EHTs) were reconstituted by growing dissociated chicken embryo cardiomyocytes in collagen matrices. Twitch and baseline tensions were recorded at precisely controlled levels of tissue strain. The EHTs showed a steep ...

  16. Epicardial adipose tissue in patients with heart failure

    Directory of Open Access Journals (Sweden)

    Michaely Henrik

    2010-07-01

    Full Text Available Abstract Purpose The aim of this study was to evaluate the extent of epicardial adipose tissue (EAT and its relationship with left ventricular (LV parameters assessed by cardiovascular magnetic resonance (CMR in patients with congestive heart failure (CHF and healthy controls. Background EAT is the true visceral fat deposited around the heart which generates various bioactive molecules. Previous studies found that EAT is related to left ventricular mass (LVM in healthy subjects. Further studies showed a constant EAT to myocardial mass ratio in normal, ischemic and hypertrophied hearts. Methods CMR was performed in 66 patients with CHF due to ischemic cardiomyopathy (ICM, or dilated cardiomyopathy (DCM and 32 healthy controls. Ventricular volumes, dimensions and LV function were assessed. The amount of EAT was determined volumetrically and expressed as mass indexed to body surface area. Additionally, the EAT/LVM and the EAT/left ventricular remodelling index (LVRI ratios were calculated. Results Patients with CHF had less indexed EAT mass than controls (22 ± 5 g/m2 versus 34 ± 4 g/m2, p 2 versus 23 ± 6 g/m2, p = 0.14. Linear regression analysis showed that with increasing LV end-diastolic diameter (LV-EDD (r = 0.42, p = 0.0004 and LV end-diastolic mass (LV-EDM (r = 0.59, p Conclusion Patients with CHF revealed significantly reduced amounts of EAT. An increase in LVM is significantly related to an increase in EAT in both patients with CHF and controls. However, different from previous reports the EAT/LVEDM-ratio in patients with CHF was significantly reduced compared to healthy controls. Furthermore, the LV function correlated best with the indexed EAT/LVRI ratio in CHF patients. Metabolic abnormalities and/or anatomic alterations due to disturbed cardiac function and geometry seem to play a key role and are a possible explanation for these findings.

  17. Application of hydrogels in heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Wu, Yan; West, Jennifer L; Grande-Allen, K Jane

    2015-01-01

    With an increasing number of patients requiring valve replacements, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve.

  18. Effect of contractile protein alterations on cardiac myofilament function in human heart failure

    NARCIS (Netherlands)

    Narolska, N.A.

    2006-01-01

    The main objective of this thesis was to elucidate the effect of translational and post-translational alterations in contractile proteins occurring during heart failure on contractile function in human cardiac tissue. Isometric force and ATPase activity measurements were performed in skinned human

  19. Effects of laser interaction with living human tissues

    Science.gov (United States)

    Molchanova, O. E.; Protasov, E. A.; Protasov, D. E.; Smirnova, A. V.

    2016-09-01

    With the help of a highly sensitive laser device with the wavelength λ = 0.808 pm, which is optimal for deep penetration of the radiation into biological tissues, the effects associated with the appearance of uncontrolled human infrasonic vibrations of different frequencies were investigated. It was established that the observed fluctuations are associated with the vascular system which is characterized by its own respiratory movements, occurring synchronously with the movements of the respiratory muscles, the operation of the heart muscle, and the effect of compression ischemia. The effect of “enlightenment” of a tissue is observed with stopping of blood flow in vessels by applying a tourniquet on the wrist.

  20. The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.

    Science.gov (United States)

    Iaizzo, Paul A

    2016-12-01

    Pre- and post-evaluations of implantable cardiac devices require innovative and critical testing in all phases of the design process. The Visible Heart(®) Project was successfully launched in 1997 and 3 years later the Atlas of Human Cardiac Anatomy website was online. The Visible Heart(®) methodologies and Atlas website can be used to better understand human cardiac anatomy, disease states and/or to improve cardiac device design throughout the development process. To date, Visible(®) Heart methodologies have been used to reanimate 75 human hearts, all considered non-viable for transplantation. The Atlas is a unique free-access website featuring novel images of functional and fixed human cardiac anatomies from >400 human heart specimens. Furthermore, this website includes education tutorials on anatomy, physiology, congenital heart disease and various imaging modalities. For instance, the Device Tutorial provides examples of commonly deployed devices that were present at the time of in vitro reanimation or were subsequently delivered, including: leads, catheters, valves, annuloplasty rings, leadless pacemakers and stents. Another section of the website displays 3D models of vasculature, blood volumes, and/or tissue volumes reconstructed from computed tomography (CT) and magnetic resonance images (MRI) of various heart specimens. A new section allows the user to interact with various heart models. Visible Heart(®) methodologies have enabled our laboratory to reanimate 75 human hearts and visualize functional cardiac anatomies and device/tissue interfaces. The website freely shares all images, video clips and CT/MRI DICOM files in honour of the generous gifts received from donors and their families. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  1. Cryobanking of human ovarian tissue

    DEFF Research Database (Denmark)

    Ernst, Erik; Andersen, Anders Nyboe; Andersen, Claus Yding

    2014-01-01

    Cryopreservation of ovarian tissue is one way of preserving fertility in young women with a malignant disease or other disorders that require gonadotoxic treatment. The purpose of the study was to explore how many women remained interested in continued cryostorage of their ovarian tissue beyond...... an initial 5-year period. Between 1999 and 2006, a total of 201 girls and young women had one ovary cryopreserved for fertility preservation in Denmark. One hundred of these met our inclusion criteria, which included a follow-up period of at least 5 years, and were mailed a questionnaire. The response rate...... was 95%. Sixteen of the patients (17%) stated that they wanted disposal of their tissue; the main reason was completion of family (63%). The mean age of those requesting disposal was 36.6 years, whereas those still wanting their tissue stored were significantly younger, with a mean age of 33.0 years (P...

  2. Identification of Tissue-Specific Protein-Coding and Noncoding Transcripts across 14 Human Tissues Using RNA-seq.

    Science.gov (United States)

    Zhu, Jinhang; Chen, Geng; Zhu, Sibo; Li, Suqing; Wen, Zhuo; Bin Li; Zheng, Yuanting; Shi, Leming

    2016-06-22

    Many diseases and adverse drug reactions exhibit tissue specificity. To better understand the tissue-specific expression characteristics of transcripts in different human tissues, we deeply sequenced RNA samples from 14 different human tissues. After filtering many lowly expressed transcripts, 24,729 protein-coding transcripts and 1,653 noncoding transcripts were identified. By analyzing highly expressed tissue-specific protein-coding transcripts (TSCTs) and noncoding transcripts (TSNTs), we found that testis expressed the highest numbers of TSCTs and TSNTs. Brain, monocytes, ovary, and heart expressed more TSCTs than the rest tissues, whereas brain, placenta, heart, and monocytes expressed more TSNTs than other tissues. Co-expression network constructed based on the TSCTs and TSNTs showed that each hub TSNT was co-expressed with several TSCTs, allowing functional annotation of TSNTs. Important biological processes and KEGG pathways highly related to the specific functions or diseases of each tissue were enriched with the corresponding TSCTs. These TSCTs and TSNTs may participate in the tissue-specific physiological or pathological processes. Our study provided a unique data set and systematic analysis of expression characteristics and functions of both TSCTs and TSNTs based on 14 distinct human tissues, and could facilitate future investigation of the mechanisms behind tissue-specific diseases and adverse drug reactions.

  3. Sustainable three-dimensional tissue model of human adipose tissue.

    Science.gov (United States)

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  4. Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts.

    Directory of Open Access Journals (Sweden)

    Kaytlyn A Gerbin

    Full Text Available Cardiac tissue engineering is a promising approach to provide large-scale tissues for transplantation to regenerate the heart after ischemic injury, however, integration with the host myocardium will be required to achieve electromechanical benefits. To test the ability of engineered heart tissues to electrically integrate with the host, 10 million human embryonic stem cell (hESC-derived cardiomyocytes were used to form either scaffold-free tissue patches implanted on the epicardium or micro-tissue particles (~1000 cells/particle delivered by intramyocardial injection into the left ventricular wall of the ischemia/reperfusion injured athymic rat heart. Results were compared to intramyocardial injection of 10 million dispersed hESC-cardiomyocytes. Graft size was not significantly different between treatment groups and correlated inversely with infarct size. After implantation on the epicardial surface, hESC-cardiac tissue patches were electromechanically active, but they beat slowly and were not electrically coupled to the host at 4 weeks based on ex vivo fluorescent imaging of their graft-autonomous GCaMP3 calcium reporter. Histologically, scar tissue physically separated the patch graft and host myocardium. In contrast, following intramyocardial injection of micro-tissue particles and suspended cardiomyocytes, 100% of the grafts detected by fluorescent GCaMP3 imaging were electrically coupled to the host heart at spontaneous rate and could follow host pacing up to a maximum of 300-390 beats per minute (5-6.5 Hz. Gap junctions between intramyocardial graft and host tissue were identified histologically. The extensive coupling and rapid response rate of the human myocardial grafts after intramyocardial delivery suggest electrophysiological adaptation of hESC-derived cardiomyocytes to the rat heart's pacemaking activity. These data support the use of the rat model for studying electromechanical integration of human cardiomyocytes, and they

  5. Aluminium in human breast tissue.

    Science.gov (United States)

    Exley, Christopher; Charles, Lisa M; Barr, Lester; Martin, Claire; Polwart, Anthony; Darbre, Philippa D

    2007-09-01

    Aluminium is omnipresent in everyday life and increased exposure is resulting in a burgeoning body burden of this non-essential metal. Personal care products are potential contributors to the body burden of aluminium and recent evidence has linked breast cancer with aluminium-based antiperspirants. We have used graphite furnace atomic absorption spectrometry (GFAAS) to measure the aluminium content in breast biopsies obtained following mastectomies. The aluminium content of breast tissue and breast tissue fat were in the range 4-437 nmol/g dry wt. and 3-192 nmol/g oil, respectively. The aluminium content of breast tissue in the outer regions (axilla and lateral) was significantly higher (P=0.033) than the inner regions (middle and medial) of the breast. Whether differences in the regional distribution of aluminium in the breast are related to the known higher incidence of tumours in the outer upper quadrant of the breast remains to be ascertained.

  6. Expression of immunoreactive urocortin in human tissue

    Institute of Scientific and Technical Information of China (English)

    GU Qing; Vicki L Clifton; CUI Ying; HUI Ning; ZHOU Xiao-ning; HE Qian; HAN Qing-feng; SHA Jin-yan; Roger Smith

    2001-01-01

    To localize where urocortin is expressed in human tissue in an attempt to study its physiological functions. Methods: Expression of immunoreactive urocortin in different human tissue was examined using a specific urocortin antibody and the immunoperoxidase staining method. Results: Immunoreactive urocortin was observed in the anterior pituitary cells, decidual stromal cells, syncytiotrophoblasts, amnion epithelium, the vascular smooth muscles of myometrium, fallopian tube and small intestine. Conclusion: The study indicates that urocortin is expressed in some specific areas of human tissue. The data are consistent with the hypothesis that urocortin is produced locally as an endocrine factor, which may act as a neural regulator and a regulator of local blood flow.

  7. Engineered heart tissue: a novel tool to study the ischemic changes of the heart in vitro.

    Directory of Open Access Journals (Sweden)

    Rajesh G Katare

    Full Text Available BACKGROUND: Understanding the basic mechanisms and prevention of any disease pattern lies mainly on development of a successful experimental model. Recently, engineered heart tissue (EHT has been demonstrated to be a useful tool in experimental transplantation. Here, we demonstrate a novel function for the spontaneously contracting EHT as an experimental model in studying the acute ischemia-induced changes in vitro. METHODOLOGY/PRINCIPAL FINDINGS: EHT was constructed by mixing cardiomyocytes isolated from the neonatal rats and cultured in a ring-shaped scaffold for five days. This was followed by mechanical stretching of the EHT for another one week under incubation. Fully developed EHT was subjected to hypoxia with 1% O(2 for 6 hours after treating them with cell protective agents such as cyclosporine A (CsA and acetylcholine (ACh. During culture, EHT started to show spontaneous contractions that became more synchronous following mechanical stretching. This was confirmed by the increased expression of gap junctional protein connexin 43 and improved action potential recordings using an optical mapping system after mechanical stretching. When subjected to hypoxia, EHT demonstrated conduction defects, dephosphorylation of connexin-43, and down-regulation of cell survival proteins identical to the adult heart. These effects were inhibited by treating the EHT with cell protective agents. CONCLUSIONS/SIGNIFICANCE: Under hypoxic conditions, the EHT responds similarly to the adult myocardium, thus making EHT a promising material for the study of cardiac functions in vitro.

  8. ILK induces cardiomyogenesis in the human heart.

    Directory of Open Access Journals (Sweden)

    Alexandra Traister

    Full Text Available BACKGROUND: Integrin-linked kinase (ILK is a widely conserved serine/threonine kinase that regulates diverse signal transduction pathways implicated in cardiac hypertrophy and contractility. In this study we explored whether experimental overexpression of ILK would up-regulate morphogenesis in the human fetal heart. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultures of human fetal myocardial cells (19-22 weeks gestation yielded scattered aggregates of cardioblasts positive for the early cardiac lineage marker nk × 2.5 and containing nascent sarcomeres. Cardiac cells in colonies uniformly expressed the gap junction protein connexin 43 (C × 43 and displayed a spectrum of differentiation with only a subset of cells exhibiting the late cardiomyogenic marker troponin T (cTnT and evidence of electrical excitability. Adenovirus-mediated overexpression of ILK potently increased the number of new aggregates of primitive cardioblasts (p<0.001. The number of cardioblast colonies was significantly decreased (p<0.05 when ILK expression was knocked down with ILK targeted siRNA. Interestingly, overexpression of the activation resistant ILK mutant (ILK(R211A resulted in much greater increase in the number of new cell aggregates as compared to overexpression of wild-type ILK (ILK(WT. The cardiomyogenic effects of ILK(R211A and ILK(WT were accompanied by concurrent activation of β-catenin (p<0.001 and increase expression of progenitor cell marker islet-1, which was also observed in lysates of transgenic mice with cardiac-specific over-expression of ILK(R211A and ILK(WT. Finally, endogenous ILK expression was shown to increase in concert with those of cardiomyogenic markers during directed cardiomyogenic differentiation in human embryonic stem cells (hESCs. CONCLUSIONS/SIGNIFICANCE: In the human fetal heart ILK activation is instructive to the specification of mesodermal precursor cells towards a cardiomyogenic lineage. Induction of cardiomyogenesis by ILK

  9. Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure

    Science.gov (United States)

    Lou, Qing; Fedorov, Vadim V.; Glukhov, Alexey V.; Moazami, Nader; Fast, Vladimir G.; Efimov, Igor R.

    2011-01-01

    Background Excitation-contraction (EC) coupling is altered in the end-stage heart failure (HF). However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective is to study functional remodeling of EC coupling and calcium handling in failing and nonfailing human hearts. Methods and Results We simultaneously optically mapped action potentials (AP) and calcium transients (CaT) in coronary-perfused left ventricular wedge preparations from nonfailing (n = 6) and failing (n = 5) human hearts. Our major findings are: (1) CaT duration minus AP duration was longer at sub-endocardium in failing compared to nonfailing hearts during bradycardia (40 beats/min). (2) The transmural gradient of CaT duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 beats/min). (3) CaT in failing hearts had a flattened plateau at the midmyocardium; and exhibited a “two-component” slow rise at sub-endocardium in three failing hearts. (4) CaT relaxation was slower at sub-endocardium than that at sub-epicardium in both groups. Protein expression of sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) was lower at sub-endocardium than that at sub-epicardium in both nonfailing and failing hearts. SERCA2a protein expression at sub-endocardium was lower in hearts with ischemic cardiomyopathy compared with nonischemic cardiomyopathy. Conclusions For the first time, we present direct experimental evidence of transmural heterogeneity of EC coupling and calcium handling in human hearts. End-stage HF is associated with the heterogeneous remodeling of EC coupling and calcium handling. PMID:21502574

  10. Grating-based tomography of human tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  11. Nanog expression in heart tissues induced by acute myocardial infarction.

    Science.gov (United States)

    Luo, Huanhuan; Li, Qiong; Pramanik, Jogen; Luo, Jiankai; Guo, Zhikun

    2014-10-01

    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.

  12. NCI’s Cooperative Human Tissue Network

    Science.gov (United States)

    Quality biospecimens are a foundational resource for cancer research. One of NCI’s longest running biospecimen programs is the Cooperative Human Tissue Network, a resource mainly for basic discovery and early translational research.

  13. In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep

    OpenAIRE

    Kluin, Jolanda Jolanda; Talacua, Hanna; Smits, AIPM Anthal; Emmert, MY Maximilian; Brugmans, MCP Marieke; Fioretta, ES Emanuela; Dijkman, PE Petra; Söntjens, SHM Serge; Duijvelshoff, R Renee; Dekker, S Sylvia; Janssen - van den Broek, WJT Marloes; Lintas, Valentina; Vink, A Aryan; Hoerstrup, S Simon; Janssen, HM Henk

    2017-01-01

    The creation of a living heart valve is a much-wanted alternative for current valve prostheses that suffer from limited durability and thromboembolic complications. Current strategies to create such valves, however, require the use of cells for in vitro culture, or decellularized human- or animal-derived donor tissue for in situ engineering. Here, we propose and demonstrate proof-of-concept of in situ heart valve tissue engineering using a synthetic approach, in which a cell-free, slow degrad...

  14. In vivo tissue engineering of heart valves: evolution of a novel concept.

    Science.gov (United States)

    Schleicher, Martina; Wendel, Hans Peter; Fritze, Olaf; Stock, Ulrich A

    2009-07-01

    Current tissue-engineering principles of heart valves include tissue- or stem cell-derived cells with subsequent in vitro incubation on various scaffolds prior to implantation. Limitations of this approach include a long in vitro culture, an accompanied risk of infection and sophisticated, cost-intensive infrastructures. An 'off-the-shelf' heart valve with in vivo endothelialization and tissue-regeneration potential would overcome these limitations. Additionally, the development of a heart valve with growth potential would be a huge improvement for pediatric patients. This article discusses different starter matrices, homing and immobilization strategies of host cells and masking approaches of inflammatory structures for in vivo surface and tissue engineering of heart valves. Novel concepts will be presented based on highly specific DNA-aptamers immobilized on the heart valve surface as capture molecules for endothelial progenitor cells circulating in the bloodstream.

  15. Epidermal growth factor (urogastrone) in human tissues.

    Science.gov (United States)

    Hirata, Y; Orth, D N

    1979-04-01

    Human epidermal growth factor (hEGF), which stimulates the growth of a variety of tissues, was first isolated from mouse submandibular glands, but is also excreted in large amounts (about 50 micrograms/day) in human urine and is probably identical to human beta-urogastrone (hUG), a potent inhibitor of stimulated gastric acid secretion. However, the primary tissue source of hEGF/hUG is as yet unknown. The hEGF/hUG in homogenates of human salivary glands and a wide variety of other endocrine and nonendocrine tissues was extracted by Amberlite CG-50 cation exchange chromatography and immune affinity chromatography using the immunoglobulin fraction of rabbit anti-hEGF serum covalently bound to agarose. The extracts were subjected to homologous hEGF RIA. Immunoreactive hEGF was found in extracts of adult submandibular gland, thyroid gland, duodenum, jejunum, and kidney, but not in several fetal tissues. The tissue immunoreactive hEGF was similar to standard hEGF in terms of immunoreactivity and elution from Sephadex G-50 Fine resin, but its concentrations were very low (1.3-5.5 ng/g wet tissue). Thus, it is not certain that these tissues represent the only source of the large amounts of hEGF/hUG that appear to be filtered by the kidneys each day.

  16. Gentamicin concentrations in human subcutaneous tissue

    DEFF Research Database (Denmark)

    Lorentzen, Hanne; Kallehave, Finn Lasse; Kolmos, Hans Jørn Jepsen

    1996-01-01

    in human subcutaneous adipose tissue by a microdialysis technique. Seven healthy young volunteers each had four microdialysis probes placed in the fat (subcutaneous) layer of the abdominal skin. After the administration of a 240-mg gentamicin intravenous bolus, consecutive measurements of the drug...... of the gentamicin concentration in human subcutaneous tissue. In this adipose tissue, the peak concentrations of gentamicin were approximately seven times the MIC for Pseudomonas aeruginosa and 33 times the MIC for Staphylococcus aureus after the administration of an intravenous bolus of 240 mg, indicating......Wound infections frequently originate from the subcutaneous tissue. The effect of gentamicin in subcutaneous tissue has, however, normally been evaluated from concentrations in blood or wound fluid. The aim of the present study was to investigate the pharmacokinetic properties of gentamicin...

  17. Clonality evaluation in human tissues

    Directory of Open Access Journals (Sweden)

    Villamizar-Rivera, Nicolás

    2015-07-01

    Full Text Available Malignant proliferations are usually clonal. While most times the biological potential can be established through routine pathologic and clinical examinations, some cases are difficult to classify. Moreover, in some situations there are dominant clones whose analysis is important, such as in autoimmune diseases and immunodeficiency. This paper presents in an understandable way the main techniques for the study of clonality, namely: evaluation of gene rearrangements of antigen receptor, and evaluation of human antigen receptor gene.

  18. Activated tissue renin-angiotensin systems add to the progression of heart failure

    NARCIS (Netherlands)

    Pinto, YM; Buikema, H; vanGilst, WH; Lie, KI

    1996-01-01

    In this paper, we review the hypothesis that activated tissue renin-angiotensin systems play a detrimental role in heart failure. The main arguments for this idea are discussed: a) tissue renin-angiotensin systems behave functionally distinct from the circulating renin-angiotensin system; b) tissue

  19. Establishing human heart chromium, cobalt and vanadium concentrations by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Day, Patrick L; Eckdahl, Steven J; Maleszewski, Joseph J; Wright, Thomas C; Murray, David L

    2017-05-01

    Chromium, cobalt, and vanadium are used in metallic joint prosthesis. Case studies have associated elevated heart tissue cobalt concentrations with myocardial injury. To document the long term heart metal ion concentrations, a validated inductively coupled plasma mass spectroscopy (ICP-MS) method was needed. The method utilized a closed-vessel microwave digestion system to digest the samples. An ICP-MS method utilizing Universal Cell Technology was used to determine our target analyte concentrations. Accuracy was verified using reference materials. Precision, sensitivity, recovery and linearity studies were performed. This method was used to establish a reference range for a non-implant containing cohort of 80 autopsy human heart tissues RESULTS: This method demonstrated an analytic measurement range of 0.5-100ng/mL for each element. Accuracy was within ±10% of target value for each element. Within-run precision for each element was below 20% CV. The chromium, vanadium and cobalt concentrations (mean±SD) were 0.1523±0.2157μg/g, 0.0094±0.0211μg/g and 0.1039±0.1305μg/g respectively in 80 non-implant containing human heart tissue samples. This method provides acceptable recovery of the chromium, cobalt and vanadium in heart tissue; allowing assessment of the effects of metallic joint prosthesis on myocardial health. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Demand for human allograft tissue in Canada.

    Science.gov (United States)

    Lakey, Jonathan R T; Mirbolooki, Mohammadreza; Rogers, Christina; Mohr, Jim

    2007-01-01

    There is relatively little known about the demand for allograft tissues in Canada. The Canadian Council for Donation and Transplantation (CCDT) is a national advisory body that undertook a comprehensive "market survey" to estimate surgical demand for human allograft tissues in Canada. The report "Demand for Human Allograft Tissue in Canada" reflects survey results sent to 5 prominent User Groups. User Groups were identified as orthopaedic surgeons; neurosurgeons; corneal transplant surgeons; plastic surgeons, specifically those at Canadian Burn Units; and cardiac surgeons (adult and paediatric surgery). The demand for allograft grafts was determined and then extrapolated across the total User Group and then increases in allograft tissue use over the next 1-2 years across User Groups were predicted. The overall response rate for the survey was 21.4%. It varied from a low of 19.6% for the orthopaedic survey to a high of 40.5% for the corneal survey. The estimated current demand for allograft tissue in Canada ranges from a low of 34,442 grafts per year to a high of 62,098 grafts per year. The predicted increase in use of allograft tissue over the next 1-2 year period would suggest that annual demand could rise to somewhere in the range of 42,589-72,210 grafts. The highest rated preferences (98% and 94%) were for accredited and Canadian tissue banks, respectively. This study represents a key step in addressing the paucity of information concerning the demand for allograft tissue in Canada.

  1. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    Science.gov (United States)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  2. Protective effects of protocatechuic acid on TCDD-induced oxidative and histopathological damage in the heart tissue of rats.

    Science.gov (United States)

    Ciftci, Osman; Disli, Olcay Murat; Timurkaan, Necati

    2013-10-01

    2,3,7,8-Tetracholorodibenzo-p-dioxin (TCDD) is a highly toxic environmental contaminant that causes severe toxic effects in animal and human. In this study, we investigated the toxic effects of TCDD and the preventive effects of protocatechuic acid (PCA), a widespread phenolic compound, in the heart tissue of rats. For this purpose, 3-4 months old 28 rats with 280-310 g body weights were equally divided into 4 groups (control, TCDD, PCA, TCDD + PCA group). A 2 μg/kg dose of 2,3,7,8-TCDD and 100 mg/kg dose of PCA were dissolved in corn oil and given orally to the rats for 45 days. The results indicated that TCDD induced oxidative stress by increasing the level of thiobarbituric acid reactive substance and by decreasing the levels of glutathione, catalase, glutathione peroxidase and superoxide dismutase in the heart tissue of rats. In contrast, PCA treatment prevents the toxic effects of TCDD on oxidative stress. In addition, histopathological alterations such as necrosis and hemorrhage occurred in TCDD group, and PCA treatment partially prevents these alterations in heart tissue. In this study, it was concluded that TCDD exposure led to toxic effects in heart tissue and PCA treatment could prevent the toxicity of TCDD.

  3. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    Science.gov (United States)

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  4. [Human lung connective tissue in postnatal ontogeny].

    Science.gov (United States)

    Kasimtsev, A A; Nikolaev, V G

    1993-01-01

    Changes of the connective tissue structures, appearing during all postnatal ontogenesis stages were studied in 147 human lung specimens of different age groups (from newborns up to 82-year-olds). Qualitative and quantitative composition of connective tissue structures changes with the age which leads to the lateral aggregation of the fibers and growth of the general mass of the connective tissue. Heterochronia of the age variability manifestations in different regions of the lung framework was demonstrated. The original age transformations of connective tissue structures are characteristic for the basal lung regions. With the exception of perivasal connective tissue, similar changes in the region of the lung apexes appear 3-5 years later. This gives an opportunity to distinguish three anatomic zones in the lungs in an apico-basal direction, characterising the local nature of the age changes manifestations.

  5. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering.

    Science.gov (United States)

    Schmidt, Dörthe; Achermann, Josef; Odermatt, Bernhard; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P

    2008-07-01

    Fetal stem cells represent a promising cell source for heart valve tissue engineering. In particular, amniotic fluid-derived cells (AFDC) have been shown to lead to autologous fetal-like heart valve tissues in vitro for pediatric application. In order to expand the versatility of these cells also for adult application, cryopreserved AFDC were investigated as a potential life-long available cell source for heart valve tissue engineering. Human AFDC were isolated using CD133 magnetic beads, and then differentiated and analyzed. After expansion of CD133- as well as CD133+ cells up to passage 7, a part of the cells was cryopreserved. After four months, the cells were re-cultured and phenotyped by flow cytometry and immunohistochemistry, including expression of CD44, CD105, CD90, CD34, CD31, CD141, eNOS and vWF, and compared to their non-cryopreserved counterparts. The stem cell potential was investigated in differentiation assays. The viability of cryopreserved AFDC for heart valve tissue engineering was assessed by creating heart valve leaflets in vitro. After cryopreservation, amniotic fluid-derived CD133- and CD133+ cells retained their stem cell-like phenotype, expressing mainly CD44, CD90 and CD105. This staining pattern was comparable to that of their non-cryopreserved counterparts. Moreover, CD133- cells demonstrated differentiation potential into osteoblast-like and adipocyte-like cells. CD133+ cells showed characteristics of endothelial-like cells by eNOS, CD141 and beginning vWF expression. When used for the fabrication of heart valve leaflets, cryopreserved CD133- cells produced extracellular matrix elements comparable to their non-cryopreserved counterparts. Moreover, the resulting tissues showed a cellular layered tissue formation covered by functional endothelia. The mechanical properties were similar to those of tissues fabricated from non-cryopreserved cells. The study results suggest that the use of cell bank technology fetal amniotic fluid

  6. Microarray Expression Profile of Circular RNAs in Heart Tissue of Mice with Myocardial Infarction-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Hong-Jin Wu

    2016-06-01

    Full Text Available Background/Aims: Myocardial infarction (MI is a serious complication of atherosclerosis associated with increasing mortality attributable to heart failure. This study is aimed to assess the global changes in and characteristics of the transcriptome of circular RNAs (circRNAs in heart tissue during MI induced heart failure (HF. Methods: Using a post-myocardial infarction (MI model of HF in mice, we applied microarray assay to examine the transcriptome of circRNAs deregulated in the heart during HF. We confirmed the changes in circRNAs by quantitative PCR. Results: We revealed and confirmed a number of circRNAs that were deregulated during HF, which suggests a potential role of circRNAs in HF. Conclusions: The distinct expression patterns of circulatory circRNAs during HF indicate that circRNAs may actively respond to stress and thus serve as biomarkers of HF diagnosis and treatment.

  7. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene

    DEFF Research Database (Denmark)

    Bentzon, J F; Stenderup, K; Hansen, F D

    2005-01-01

    Engraftment of mesenchymal stem cells (MSC) in peripheral tissues for replenishing of local stem cell function has been proposed as a therapeutic approach to degenerative diseases. We have previously reported the development of an immortalized human telomerase reverse transcriptase transduced MSC...... that infused cells were efficiently arrested in microvasculature during first-pass, but only for a fraction of the infused cells was arrest followed by vascular emigration and tissue engraftment. Few engrafted cells in lungs, heart, and kidney glomeruli remained after 4 weeks. These observations are consistent...

  8. Cardiovascular Tissue Engineering Research Support at the National Heart, Lung, and Blood Institute

    OpenAIRE

    Lundberg, Martha Shauck

    2013-01-01

    Tissue engineering aims at building three-dimensional living substitutes that are equal to or better than the damaged tissue to be replaced. The development of such a tissue replacement requires a multidisciplinary approach and careful attention to the optimal cell source, the interactions of growth factors and extracellular milieu, and the scaffolding design. This article is a review of the National Heart, Lung, and Blood Institute's (NHLBI) tissue engineering programs, which support researc...

  9. Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts.

    Science.gov (United States)

    Banfi, Cristina; Brioschi, Maura; Wait, Robin; Begum, Shajna; Gianazza, Elisabetta; Fratto, Pasquale; Polvani, Gianluca; Vitali, Ettore; Parolari, Alessandro; Mussoni, Luciana; Tremoli, Elena

    2006-03-01

    Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.

  10. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  11. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  12. Lubricin in human breast tissue expander capsules.

    Science.gov (United States)

    Cheriyan, Thomas; Guo, Lifei; Orgill, Dennis P; Padera, Robert F; Schmid, Thomas M; Spector, Myron

    2012-10-01

    Capsular contraction is the most common complication of breast reconstruction surgery. While presence of the contractile protein alpha smooth muscle actin (α-SMA) is considered among the causes of capsular contraction, the exact etiology and pathophysiology is not fully understood. The objective of this study was to investigate the possible role of lubricin in capsular formation and contraction by determining the presence and distribution of the lubricating protein lubricin in human breast tissue expander capsules. Related aims were to evaluate select histopathologic features of the capsules, and the percentage of cells expressing α-SMA, which reflects the myofibroblast phenotype. Capsules from tissue expanders were obtained from eight patients. Lubricin, at the tissue-implant interface, in the extracellular matrix, and in cells, and α-SMA-containing cells were evaluated immunohistochemically. The notable finding was that lubricin was identified in all tissue expander capsules: as a discrete layer at the tissue-implant interface, extracellular, and intracellular. There was a greater amount of lubricin in the extracellular matrix in the intimal-subintimal zone when compared with the tissue away from the implant. Varying degrees of synovial metaplasia were seen at the tissue-implant interface. α-SMA-containing cells were also seen in all but one patient. The findings might help us better understand factors involved in capsule formation.

  13. Tissue-specific effects of acetylcholine in the canine heart

    DEFF Research Database (Denmark)

    Callø, Kirstine; Goodrow, Robert; Olesen, Søren-Peter;

    2013-01-01

    INTRODUCTION: Acetylcholine (ACh) release from the vagus nerve slows heart rate and atrioventricular conduction. ACh stimulates a variety of receptors and channels, including an inward rectifying current (IK,ACh). The effect of ACh in ventricle is still debated. We compare the effect of ACh...

  14. Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells.

    Science.gov (United States)

    Komae, Hyoe; Sekine, Hidekazu; Dobashi, Izumi; Matsuura, Katsuhisa; Ono, Minoru; Okano, Teruo; Shimizu, Tatsuya

    2017-03-01

    The most radical treatment currently available for severe heart failure is heart transplantation; however, the number of donor hearts is limited. A better approach is to make human cardiac tissues. We developed an original cell sheet-based tissue-engineering technology to fabricate human cardiac tissue by layering myocardial cell sheets. Human induced pluripotent stem (iPS) cells were differentiated into cardiomyocytes to fabricate cardiomyocyte sheets. Initially, three-layer human iPS cardiomyocyte (hiPSCM) sheets were transplanted on subcutaneous tissues of nude rats. Next, to fabricate thicker tissue, three-layer sheets were transplanted on one day, then additional three-layer sheets were transplanted onto them the following day, after the first sheets were vascularized. On day 3, the final three-layer sheets were again transplanted, creating a nine-layer graft (multi-step transplantation procedure). In the last step, six-layer sheets were transplanted on fat tissues of the inguinal portion, which were subsequently resected together with the femoral arteries and veins to make transplantable grafts with connectable vessels. They were then transplanted ectopically to the neck portion of other rats by anastomosing vessels with the host's jugular arteries and veins. Transplanted three-layer hiPSCMs were beating and, histologically, showed a cardiac muscle-like structure with vascular systems. Moreover, transplanted hiPSCMs proliferated and matured in vivo. Significantly thicker tissues were fabricated by a multi-step transplantation procedure. The ectopically transplanted graft survived and continued to beat. We succeeded in fabricating functional human cardiac tissue with cell sheet technology. Transplanting this cardiac tissue may become a new treatment option for severe heart failure. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Effects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats

    Directory of Open Access Journals (Sweden)

    Noushin Naghsh

    2013-03-01

    Full Text Available Background & Objective: The silver nanoparticles are important in many applications of nanoparticles on human health . The toxicity of silver nanoparticles are not well documented yet. The aim of this study was to investigate the effect of silver nanoparticles on lactate dehydrogenase activity and histological changes in heart tissue.   Materials &Methods: In this study, 40 adult male wistar rats of 220±20gr were divided in to five groups including control and four experimental groups. The latter groups were injected intraperitoneally spherical nano silver particles of 50, 100, 200 and 400 ppm respectively for five consecutive days. Then three, eight and twelve days after the last injection, blood samples were collected and lactate dehydrogenase (LDH activity was assayed . Also, tissue samples from the heart muscle were prepared and studied after staining with Hematoxiline-Eosine. Data of LDH activity was analyzed by One way- ANOVA- test and P-value of ≤ 0.05 were considered as significant.   Results : The result showed that different concentrations of silver nanoparticles have no significant effect on the lactate dehydrogenase (p=0.192 . T he histological study of the tissue after exposure to 400 ppm concentration of silver nanoparticles showed the start of primary apoptosis in heart tissue.   Conclusion: The LDH activity was not changed significantly after exposure to different concentration of silver nanoparticles, which shows the safety of these particles on LDH activity.

  16. Beta adrenergic receptors in human cavernous tissue

    Energy Technology Data Exchange (ETDEWEB)

    Dhabuwala, C.B.; Ramakrishna, C.V.; Anderson, G.F.

    1985-04-01

    Beta adrenergic receptor binding was performed with /sup 125/I iodocyanopindolol on human cavernous tissue membrane fractions from normal tissue and transsexual procedures obtained postoperatively, as well as from postmortem sources. Isotherm binding studies on normal fresh tissues indicated that the receptor density was 9.1 fmoles/mg. with a KD of 23 pM. Tissue stored at room temperature for 4 to 6 hours, then at 4C in saline solution for 19 to 20 hours before freezing showed no significant changes in receptor density or affinity, and provided evidence for the stability of postmortem tissue obtained within the same time period. Beta receptor density of 2 cavernous preparations from transsexual procedures was not significantly different from normal control tissues, and showed that high concentrations of estrogen received by these patients had no effect on beta adrenergic receptor density. Displacement of /sup 125/iodocyanopindolol by 5 beta adrenergic agents demonstrated that 1-propranolol had the greatest affinity followed by ICI 118,551, zinterol, metoprolol and practolol. When the results of these displacement studies were subjected to Scatfit, non- linear regression line analysis, a single binding site was described. Based on the relative potency of the selective beta adrenergic agents it appears that these receptors were of the beta 2 subtype.

  17. Automated Texture Analysis and Determination of Fibre Orientation of Heart Tissue: A Morphometric Study

    Science.gov (United States)

    Hofer, Ernst; Asslaber, Martin; Ahammer, Helmut

    2016-01-01

    The human heart has a heterogeneous structure, which is characterized by different cell types and their spatial configurations. The physical structure, especially the fibre orientation and the interstitial fibrosis, determines the electrical excitation and in further consequence the contractility in macroscopic as well as in microscopic areas. Modern image processing methods and parameters could be used to describe the image content and image texture. In most cases the description of the texture is not satisfying because the fibre orientation, detected with common algorithms, is biased by elements such as fibrocytes or endothelial nuclei. The goal of this work is to figure out if cardiac tissue can be analysed and classified on a microscopic level by automated image processing methods with a focus on an accurate detection of the fibre orientation. Quantitative parameters for identification of textures of different complexity or pathological attributes inside the heart were determined. The focus was set on the detection of the fibre orientation, which was calculated on the basis of the cardiomyocytes’ nuclei. It turned out that the orientation of these nuclei corresponded with a high precision to the fibre orientation in the image plane. Additionally, these nuclei also indicated very well the inclination of the fibre. PMID:27505420

  18. 21 CFR 1270.42 - Human tissue offered for import.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human tissue offered for import. 1270.42 Section...) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.42 Human tissue offered for import. (a...

  19. Development of the pacemaker tissues of the heart

    NARCIS (Netherlands)

    Christoffels, V.M.; Smits, G.J.; Kispert, A.; Moorman, A.F.M.

    2010-01-01

    Pacemaker and conduction system myocytes play crucial roles in initiating and regulating the contraction of the cardiac chambers. Genetic defects, acquired diseases, and aging cause dysfunction of the pacemaker and conduction tissues, emphasizing the clinical necessity to understand the molecular

  20. Scaling Behaviour and Memory in Heart Rate of Healthy Human

    Institute of Scientific and Technical Information of China (English)

    CAI Shi-Min; PENG Hu; YANG Hui-Jie; ZHOU Tao; ZHOU Pei-Ling; WANG Bing-Hong

    2007-01-01

    We investigate a set of complex heart rate time series from healthy human in different behaviour states with the detrended fluctuation analysis and diffusion entropy (DE) method. It is proposed that the scaling properties are influenced by behaviour states. The memory detected by DE exhibits an approximately same pattern after a detrending procedure. Both of them demonstrate the long-range strong correlations in heart rate. These findings may be helpful to understand the underlying dynamical evolution process in the heart rate control system, as well as to model the cardiac dynamic process.

  1. Application of simple biomechanical and biochemical tests to heart valve leaflets: implications for heart valve characterization and tissue engineering.

    Science.gov (United States)

    Huang, Hsiao-Ying S; Balhouse, Brittany N; Huang, Siyao

    2012-11-01

    A simple biomechanical test with real-time displacement and strain mapping is reported, which provides displacement vectors and principal strain directions during the mechanical characterization of heart valve tissues. The maps reported in the current study allow us to quickly identify the approximate strain imposed on a location in the samples. The biomechanical results show that the aortic valves exhibit stronger anisotropic mechanical behavior than that of the pulmonary valves before 18% strain equibiaxial stretching. In contrast, the pulmonary valves exhibit stronger anisotropic mechanical behavior than aortic valves beyond 28% strain equibiaxial stretching. Simple biochemical tests are also conducted. Collagens are extracted at different time points (24, 48, 72, and 120 h) at different locations in the samples. The results show that extraction time plays an important role in determining collagen concentration, in which a minimum of 72 h of extraction is required to obtain saturated collagen concentration. This work provides an easy approach for quantifying biomechanical and biochemical properties of semilunar heart valve tissues, and potentially facilitates the development of tissue engineered heart valves.

  2. How Live Performance Moves the Human Heart.

    Science.gov (United States)

    Shoda, Haruka; Adachi, Mayumi; Umeda, Tomohiro

    2016-01-01

    We investigated how the audience member's physiological reactions differ as a function of listening context (i.e., live versus recorded music contexts). Thirty-seven audience members were assigned to one of seven pianists' performances and listened to his/her live performances of six pieces (fast and slow pieces by Bach, Schumann, and Debussy). Approximately 10 weeks after the live performance, each of the audience members returned to the same room and listened to the recorded performances of the same pianists' via speakers. We recorded the audience members' electrocardiograms in listening to the performances in both conditions, and analyzed their heart rates and the spectral features of the heart-rate variability (i.e., HF/TF, LF/HF). Results showed that the audience's heart rate was higher for the faster than the slower piece only in the live condition. As compared with the recorded condition, the audience's sympathovagal balance (LF/HF) was less while their vagal nervous system (HF/TF) was activated more in the live condition, which appears to suggest that sharing the ongoing musical moments with the pianist reduces the audience's physiological stress. The results are discussed in terms of the audience's superior attention and temporal entrainment to live performance.

  3. Integrated Transcriptome Map Highlights Structural and Functional Aspects of the Normal Human Heart.

    Science.gov (United States)

    Caracausi, Maria; Piovesan, Allison; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-04-01

    A systematic meta-analysis of the available gene expression profiling datasets for the whole normal human heart generated a quantitative transcriptome reference map of this organ. Transcriptome Mapper (TRAM) software integrated 32 gene expression profile datasets from different sources returning a reference value of expression for each of the 43,360 known, mapped transcripts assayed by any of the experimental platforms used in this regard. Main findings include the visualization at the gene and chromosomal levels of the classical description of the basic histology and physiology of the heart, the identification of suitable housekeeping reference genes, the analysis of stoichiometry of gene products, and the focusing on chromosome 21 genes, which are present in one excess copy in Down syndrome subjects, presenting cardiovascular defects in 30-40% of cases. Independent in vitro validation showed an excellent correlation coefficient (r = 0.98) with the in silico data. Remarkably, heart/non-cardiac tissue expression ratio may also be used to anticipate that effects of mutations will most probably affect or not the heart. The quantitative reference global portrait of gene expression in the whole normal human heart illustrates the structural and functional aspects of the whole organ and is a general model to understand the mechanisms underlying heart pathophysiology. J. Cell. Physiol. 232: 759-770, 2017. © 2016 Wiley Periodicals, Inc.

  4. Neuro-adaptive control in beating heart surgery based on the viscoelastic tissue model

    Directory of Open Access Journals (Sweden)

    Setareh Rezakhani

    2014-04-01

    Full Text Available In this paper, the problem of 3D heart motion in beating heart surgery is resolved by proposing a parallel force-motion controller. Motion controller is designed based on neuro-adaptive approach to compensate 3D heart motion and deal with uncertainity in dynamic parameters, while an implicit force control is implemented by considering a viscoelastic tissue model. Stability analysis is proved through Lypanov’s stability theory and Barballet’s lemma. Simulation results, for D2M2 robot, which is done in nominal case and viscoelastic parameter mismatches demonstrate the robust performance of the controller.

  5. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle.

    Science.gov (United States)

    Morash, Andrea J; Kotwica, Aleksandra O; Murray, Andrew J

    2013-09-01

    Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O₂) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and β-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO₂ production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation.

  6. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.

    Science.gov (United States)

    Loerakker, S; Argento, G; Oomens, C W J; Baaijens, F P T

    2013-07-26

    Tissue engineering represents a promising technique to overcome the limitations of the current valve replacements, since it allows for creating living autologous heart valves that have the potential to grow and remodel. However, also this approach still faces a number of challenges. One particular problem is regurgitation, caused by cell-mediated tissue retraction or the mismatch in geometrical and material properties between tissue-engineered heart valves (TEHVs) and their native counterparts. The goal of the present study was to assess the influence of valve geometry and tissue anisotropy on the deformation profile and closed configuration of TEHVs. To achieve this aim, a range of finite element models incorporating different valve shapes was developed, and the constitutive behavior of the tissue was modeled using an established computational framework, where the degree of anisotropy was varied between values representative of TEHVs and native valves. The results of this study suggest that valve geometry and tissue anisotropy are both important to maximize the radial strains and thereby the coaptation area. Additionally, the minimum degree of anisotropy that is required to obtain positive radial strains was shown to depend on the valve shape and the pressure to which the valves are exposed. Exposure to pulmonary diastolic pressure only yielded positive radial strains if the anisotropy was comparable to the native situation, whereas considerably less anisotropy was required if the valves were exposed to aortic diastolic pressure.

  7. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    Science.gov (United States)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  8. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard;

    2013-01-01

    of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...

  9. Chromosomally integrated human herpesvirus 6 in heart failure: prevalence and treatment.

    Science.gov (United States)

    Kühl, Uwe; Lassner, Dirk; Wallaschek, Nina; Gross, Ulrich M; Krueger, Gerhard R F; Seeberg, Bettina; Kaufer, Benedikt B; Escher, Felicitas; Poller, Wolfgang; Schultheiss, Heinz-Peter

    2015-01-01

    Human herpesvirus 6 (HHV-6) A and B are two betaherpesviruses that are associated with many conditions including roseola, drug-induced hypersensitivity syndrome, limbic encephalitis, and myocarditis. HHV-6 is integrated in the germline [chromosomically integrated HHV-6 (ciHHV-6)] in ∼0.8% of the human population. To date, the prevalence, species distribution, and treatment responses of ciHHV-6 are unknown for cardiac patients. We determined the prevalence of HHV-6 and ciHHV-6 genotypes in 1656 endomyocardial biopsies of patients with persisting unexplained symptoms of heart failure. Infection of cardiac tissue was identified by nested PCR, electron microscopy, and immunohistochemistry. Virus load and mRNA levels were followed in ciHHV-6 patients treated with ganciclovir. HHV-6 was detected in 273 of 1656 cardiac tissues (16.5%; HHV-6B, 98.2%, HHV-6A, 1.8%) by PCR. Nineteen of the 1656 patients (1.1%) presented with persistently high HHV-6 copy numbers indicative of ciHHV-6. Sequencing confirmed ciHHV-6A in seven patients (36.8%) which was considerably higher than detected in non-ciHHV-6 patients. Inheritance was demonstrated in three selected families, confirming ciHHV-6 chromosomal integration by PCR and fluorescence in situ hybridization. HHV-6 reactivation and chromosomal integration were confirmed in peripheral blood mononuclear cells and heart tissue. Virus particles were identified in degenerating myocytes and interstitial cells. Antiviral treatment abolished viral mRNA and ameliorated cardiac symptoms. Virus replication in cardiac tissue of ciHHV-6 heart failure patients suggests that ciHHV-6 reactivation causes persistence of unexplained heart failure symptoms. We demonstrated that antiviral treatment, effective in decreasing viral transcripts and clinical complaints of cardiomyopathies, is a new therapeutic option for ciHHV-6-associated diseases. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  10. Human tissue legislation in South Africa: Focus on stem cell ...

    African Journals Online (AJOL)

    Human tissue legislation in South Africa: Focus on stem cell research and therapy. ... Related Substances Act, the Consumer Protection Act, the Children's Act and ... human tissue legislation in SA, the legislator has an opportunity to mirror the ...

  11. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    Science.gov (United States)

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.

  12. Analysis of necroptotic proteins in failing human hearts.

    Science.gov (United States)

    Szobi, Adrián; Gonçalvesová, Eva; Varga, Zoltán V; Leszek, Przemyslaw; Kuśmierczyk, Mariusz; Hulman, Michal; Kyselovič, Ján; Ferdinandy, Péter; Adameová, Adriana

    2017-04-28

    Cell loss and subsequent deterioration of contractile function are hallmarks of chronic heart failure (HF). While apoptosis has been investigated as a participant in the progression of HF, it is unlikely that it accounts for the total amount of non-functional tissue. In addition, there is evidence for the presence of necrotic cardiomyocytes in HF. Therefore, the objective of this study was to investigate the necroptotic proteins regulating necroptosis, a form of programmed necrosis, and thereby assess its potential role in human end-stage HF. Left ventricular samples of healthy controls (C) and patients with end-stage HF due to myocardial infarction (CAD) or dilated cardiomyopathy (DCM) were studied. Immunoblotting for necroptotic and apoptotic markers was performed. Triton X-114 fractionated samples were analyzed to study differences in subcellular localization. Elevated expression of RIP1 (receptor-interacting protein), pSer(227)-RIP3 and its total levels were observed in HF groups compared to controls. On the other hand, caspase-8 expression, a proapoptotic protease negatively regulating necroptosis, was downregulated suggesting activation of necroptosis signaling. Total mixed-lineage kinase domain-like protein (MLKL) expression did not differ among the groups; however, active cytotoxic forms of MLKL were present in all HF samples while they were expressed at almost undetectable levels in controls. Interestingly, pThr(357)-MLKL unlike pSer(358)-MLKL, was higher in DCM than CAD. In HF, the subcellular localization of both RIP3 and pThr(357)-MLKL was consistent with activation of necroptosis signaling. Expression of main apoptotic markers has not indicated importance of apoptosis. This is the first evidence showing that human HF of CAD or DCM etiology is positive for markers of necroptosis which may be involved in the development of HF.

  13. FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.

    Energy Technology Data Exchange (ETDEWEB)

    LIPFERT, F.W.; SULLIVAN, T.M.

    2005-09-21

    Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks

  14. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation.

    Science.gov (United States)

    Fujiu, Katsuhito; Shibata, Munehiko; Nakayama, Yukiteru; Ogata, Fusa; Matsumoto, Sahohime; Noshita, Koji; Iwami, Shingo; Nakae, Susumu; Komuro, Issei; Nagai, Ryozo; Manabe, Ichiro

    2017-05-01

    Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6C(lo) macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6C(lo) macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.

  15. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats.

    Science.gov (United States)

    Yüce, Abdurrauf; Ateşşahin, Ahmet; Ceribaşi, Ali Osman; Aksakal, Mesut

    2007-11-01

    Cisplatin is one of the most active cytotoxic agents in the treatment of cancer. High doses of cisplatin have also been known to produce hepatotoxicity, and several studies suggest that supplemental antioxidants can reduce cisplatin-induced hepatotoxicity. The present study was designed to determine the effects on the liver and heart oxidant/antioxidant system and the possible protective effects of ellagic acid on liver and heart toxicity induced by cisplatin. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The rats were killed at the end of the treatment period. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione-peroxidase (GSH-Px) and catalase (CAT) activities were determined in liver and heart tissue. While administration of cisplatin increased the MDA levels in liver and heart tissues, it decreased the GSH, GSH-Px and CAT in these samples when compared to the control group. The administration of ellagic acid to cisplatin-treated rats decreased the MDA levels, and increased GSH, GSH-Px and CAT in these samples. Cisplatin caused marked damages in the histopathological status of liver and heart tissues. These damages were ameliorated by ellagic acid administration. In conclusion, ellagic acid may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters.

  16. Cytochemical localization of adenylate cyclase activity in heart tissue with cerium.

    Science.gov (United States)

    Schulze, W; Will-Shahab, L; Küttner, I

    1986-01-01

    Adenylate cyclase (AC) activity showed a doses depending inactivation of the basal activity and of the sodium fluoride stimulation by cerium in homogenates of unfixed and fixed guinea pig hearts. The isoproterenol and guanine nucleotide stimulation was not more than two times of the basal activity in glutaraldehyde-prefixed heart homogenates in the presence of 2 mmol/l CeCl3. The inactivation of the AC (activity) by cerium was less than in the presence of lead. Test tube experiments showed no differences in the precipitation of imidodiphosphate in comparison with inorganic phosphate. The substrate AMP-PNP was not spontaneously hydrolysed by 2 mmol/l CeCl3. Ultrastructural analysis of cytochemical incubation of glutaraldehyde-fixed slices and small pieces of guinea pig heart tissue showed fine-amorphous precipitations of reaction products localized along the plasma membrane of the sarcolemma, the nexuses of the intercalated discs and the T-tubule membranes. No precipitates were found neither on the junctional nor on other SR membranes. Nonspecific coarse and clumped precipitates have been detected in the intercellular space on components of the basal membranes. It was not able to demonstrate cytochemically stimulation of AC by hormones or by sodium fluoride. The localization of the basal AC activity in heart tissue seems to be better with cerium as capture agent than with lead. However, differences in the localization of the AC activity in heart tissue were not observed.

  17. Tissue Doppler echocardiography in persons with hypertension, diabetes, or ischaemic heart disease: the Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Mogelvang, Rasmus; Sogaard, Peter; Pedersen, Sune A

    2009-01-01

    AIMS: To test the hypothesis that echocardiographic tissue Doppler imaging (TDI) reveals reduced myocardial function in hypertension, diabetes, and ischaemic heart disease (IHD) in the general population. METHODS AND RESULTS: Within a large, community-based population study, cardiac function...... and diastolic cardiac function in hypertension [n = 345; LD 10.1 (+/-standard deviation, SD 2.0 mm), P diabetes [n = 65; LD 9.8 (+/-SD 2.2 mm), P ....001] compared with controls [n = 533; LD 11.4 (+/-SD 2.0 mm); E/e' 9.0 (x/SD 1.3)]. This pattern remained significant after adjusting for age, sex, body mass index, heart rate, and the results of conventional echocardiography. CONCLUSION: In the general population, persons with hypertension, diabetes, or IHD...

  18. Total lymphatic irradiation and bone marrow in human heart transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  19. Are brain and heart tissue prone to the development of thiamine deficiency?

    NARCIS (Netherlands)

    Klooster, Astrid; Larkin, James R.; Wiersema-Buist, Janneke; Gans, Reinold O. B.; Thornalley, Paul J.; Navis, Gerjan; van Goor, Harry; Leuvenink, Henri G. D.; Bakker, Stephan J. L.

    2013-01-01

    Thiamine deficiency is a continuing problem leading to beriberi and Wernicke's encephalopathy. The symptoms of thiamine deficiency develop in the heart, brain and neuronal tissue. Yet, it is unclear how rapid thiamine deficiency develops and which organs are prone to development of thiamine deficien

  20. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.

    Science.gov (United States)

    Xue, Yingfei; Sant, Vinayak; Phillippi, Julie; Sant, Shilpa

    2017-01-15

    Valvular heart diseases are the third leading cause of cardiovascular disease, resulting in more than 25,000 deaths annually in the United States. Heart valve tissue engineering (HVTE) has emerged as a putative treatment strategy such that the designed construct would ideally withstand native dynamic mechanical environment, guide regeneration of the diseased tissue and more importantly, have the ability to grow with the patient. These desired functions could be achieved by biomimetic design of tissue-engineered constructs that recapitulate in vivo heart valve microenvironment with biomimetic architecture, optimal mechanical properties and possess suitable biodegradability and biocompatibility. Synthetic biodegradable elastomers have gained interest in HVTE due to their excellent mechanical compliance, controllable chemical structure and tunable degradability. This review focuses on the state-of-art strategies to engineer biomimetic elastomeric scaffolds for HVTE. We first discuss the various types of biodegradable synthetic elastomers and their key properties. We then highlight tissue engineering approaches to recreate some of the features in the heart valve microenvironment such as anisotropic and hierarchical tri-layered architecture, mechanical anisotropy and biocompatibility.

  1. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than......To investigate whether the sodium-potassium pump or Na+,K+-ATPase concentration in muscles is related to the capacity for muscle performance, the 3H-ouabain binding site concentration or 3-O-methylflourescein phosphatase activity was determined in samples of heart ventricular muscles from trained...... was increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  2. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H

    1991-01-01

    was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...... were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period...

  3. Generation of Shox2-Cre allele for tissue specific manipulation of genes in the developing heart, palate, and limb

    OpenAIRE

    Sun, Cheng; ZHANG, Tao; Liu, Chao; Gu, Shuping; Chen, Yiping

    2013-01-01

    Shox2 is expressed in several developing organs in a tissue specific manner in both mice and humans, including the heart, palate, limb, and nervous system. To better understand the spatial and temporal expression patterns of Shox2 and to systematically dissect the genetic cascade regulated by Shox2, we created Shox2-LacZ and Shox2-Cre knock-in mouse lines. We show that the Shox2-LacZ allele expresses beta-galactosidase reporter gene in a fashion that recapitulates the endogenous Shox2 express...

  4. From zebrafish heart jogging genes to mouse and human orthologs: using Gene Ontology to investigate mammalian heart development.

    Science.gov (United States)

    Khodiyar, Varsha K; Howe, Doug; Talmud, Philippa J; Breckenridge, Ross; Lovering, Ruth C

    2013-01-01

    For the majority of organs in developing vertebrate embryos, left-right asymmetry is controlled by a ciliated region; the left-right organizer node in the mouse and human, and the Kuppfer's vesicle in the zebrafish. In the zebrafish, laterality cues from the Kuppfer's vesicle determine asymmetry in the developing heart, the direction of 'heart jogging' and the direction of 'heart looping'.  'Heart jogging' is the term given to the process by which the symmetrical zebrafish heart tube is displaced relative to the dorsal midline, with a leftward 'jog'. Heart jogging is not considered to occur in mammals, although a leftward shift of the developing mouse caudal heart does occur prior to looping, which may be analogous to zebrafish heart jogging. Previous studies have characterized 30 genes involved in zebrafish heart jogging, the majority of which have well defined orthologs in mouse and human and many of these orthologs have been associated with early mammalian heart development.    We undertook manual curation of a specific set of genes associated with heart development and we describe the use of Gene Ontology term enrichment analyses to examine the cellular processes associated with heart jogging.  We found that the human, mouse and zebrafish 'heart jogging orthologs' are involved in similar organ developmental processes across the three species, such as heart, kidney and nervous system development, as well as more specific cellular processes such as cilium development and function. The results of these analyses are consistent with a role for cilia in the determination of left-right asymmetry of many internal organs, in addition to their known role in zebrafish heart jogging.    This study highlights the importance of model organisms in the study of human heart development, and emphasises both the conservation and divergence of developmental processes across vertebrates, as well as the limitations of this approach.

  5. Hippocampus and epilepsy: Findings from human tissues.

    Science.gov (United States)

    Huberfeld, G; Blauwblomme, T; Miles, R

    2015-03-01

    Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal

  6. Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Bai, X P; Zheng, H X; Fang, R; Wang, T R; Li, Y; Tian, W M [Department of Life Science and Engineering, Harbin Institute of Technology, Harbin, 150080 (China); Hou, X L [The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001 (China); Chen, X B, E-mail: tianweiming@gmail.com [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada)

    2011-08-15

    Cardiac tissue engineering holds great promise for the treatment of myocardial infarction. However, insufficient cell migration into the scaffolds used and inflammatory reactions due to scaffold biodegradation remain as issues to be addressed. Engineered heart tissue (EHT) grafts fabricated by means of a cell encapsulation technique provide cells with a tissue-like environment, thereby potentially enhancing cellular processes such as migration, proliferation, and differentiation, and tissue regeneration. This paper presents a study on the fabrication and characterization of EHT grafts from novel alginate/collagen composite microbeads by means of cell encapsulation. Specifically, the microbeads were fabricated from alginate and collagen by barium ion cross-linking, with neonatal rat cardiomyocytes encapsulated in the composite microbeads during the fabrication of the EHT grafts. To evaluate the suitablity of these EHT grafts for heart muscle repair, the growth of cardiac cells in the microbeads was examined by means of confocal microscopy and staining with DAPI and F-actin. The EHT grafts were analyzed by scanning electron microscopy and transmission electron microscopy, and the contractile function of the EHT grafts monitored using a digital video camera at different time points. The results show the proliferation of cardiac cells in the microbeads and formation of interconnected multilayer heart-like tissues, the presence of well-organized and dense cell structures, the presence of intercalated discs and spaced Z lines, and the spontaneous synchronized contractility of EHT grafts (at a rate of 20-30 beats min{sup -1} after two weeks in culture). Taken together, these observations demonstrate that the novel alginate/collagen composite microbeads can provide a tissue-like microenvironment for cardiomyocytes that is suitable for fabricating native heart-like tissues.

  7. Fractionated magnetic-resonance elastography on the human heart; Fraktionierte Magnetresonanzelastographie am menschlichen Herzen

    Energy Technology Data Exchange (ETDEWEB)

    Rump, Jens

    2008-07-28

    Imaging techniques, including magnetic resonance imaging, belong to the most important tools in modern medical diagnostics. Another diagnostic aid is palpation, which is suitable for the qualitative characterization of pathological changes in organs near the surface. Magnetic resonance elastography (MRE) is a combination of these techniques. In principle, MRE uses motionsensitive MR-imaging to depict tissue deformation caused by externally induced shear waves. The type of deformation supply useful information about the elasticity of the tissue. Cardiac disorders are among the most common diseases. The goal of this study was to develop a method of applying in-vivo MRE to the human heart. The development of the mechanical stimulus, ultimately resulting in the introduction of an audio speaker as the source of vibration, provided the necessary means to introduce vibrations into inner organs. A crucial factor in applying MRE to the heart is the speed of the recording, which led to the development of 'fractional MRE'. The currently conventional fast heart imaging techniques were used as a starting point. The use of an unbalanced phase preparation gradient in the balanced steady-state imaging technique resulted in an improved phase-to-noise ratio. Along with the spoiled steady-state MRE imaging technique, initial MRE-studies on the human heart were performed. For the first time, externally induced mechanical vibrations were successfully introduced into the heart and were detected using fractional MRE with a high temporal resolution. The modulation of the shear wave amplitudes observed in the myocard of 6 healthy subjects correlated with the phases of the cardiac cycle. The techniques and methods developed here are a step toward routine clinical application of MRE of the heart and indicate high potential in the area of early diagnosis of cardiac disease. (orig.)

  8. Influence of heart failure on nucleolar organization and protein expression in human hearts

    Energy Technology Data Exchange (ETDEWEB)

    Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel [Cardiocirculatory Unit, Research Center, Hospital Universitario La Fe, Valencia (Spain); Azorin, Inmaculada [Experimental Neurology, Research Center, Hospital Universitario La Fe, Valencia (Spain); Sirera, Rafael [Biotechnology Department, Universidad Politecnica, Valencia (Spain); Martinez-Dolz, Luis [Cardiology Unit, Hospital Universitario La Fe, Valencia (Spain); Hove, Leif; Cinca, Juan [Cardiology Unit, Hospital San Pau, Barcelona (Spain); Lago, Francisca; Gonzalez-Juanatey, Jose R. [Cardiology Unit, Institute of Biomedical Research, Hospital Clinicode Santiagode Compostela (Spain); Salvador, Antonio [Experimental Neurology, Research Center, Hospital Universitario La Fe, Valencia (Spain); Portoles, Manuel, E-mail: portoles_man@gva.es [Cell Biology and Pathology Unit, Research Center, Hospital Universitario La Fe, Valencia (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levels according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.

  9. Proteomic analysis of effluents from perfused human heart for transplantation: identification of potential biomarkers for ischemic heart damage

    Directory of Open Access Journals (Sweden)

    Li Hong

    2012-03-01

    proteins in myocardial metabolism during ischemia. Conclusion It is the first time to use effluents of human perfused heart to study the proteins released during myocardial ischemia by HPLC-Chip-MS system. There might be many potential biomarkers for mild ischemic injury in myocardium, especially isoform 8 of titin and M-type of PGAM2 that are more specific in the cardiac tissue than in the others. Furthermore, glycolysis is one of the important conversions during early ischemia in myocardium. This finding may provide new insight into pathology and biology of myocardial ischemia, and potential diagnostic and therapeutic biomarkers.

  10. Haploinsufficiency of TAB2 causes congenital heart defects in humans

    DEFF Research Database (Denmark)

    Thienpont, Bernard; Zhang, Litu; Postma, Alex V;

    2010-01-01

    Congenital heart defects (CHDs) are the most common major developmental anomalies and the most frequent cause for perinatal mortality, but their etiology remains often obscure. We identified a locus for CHDs on 6q24-q25. Genotype-phenotype correlations in 12 patients carrying a chromosomal deletion...... in cardiac development was further supported by its conserved expression in the developing human and zebrafish heart. Moreover, a critical, dosage-sensitive role during development was demonstrated by the cardiac defects observed upon titrated knockdown of tab2 expression in zebrafish embryos...

  11. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II.

    Science.gov (United States)

    Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter

    2005-06-01

    1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P0.1). FK506 had no effect on contractile force (P=0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC(epsilon) compared to samples incubated without PKC(epsilon). 6 Endogenous cardiostimulants which activate G(alpha)q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

  12. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    Science.gov (United States)

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart

    Science.gov (United States)

    Mahoney, Vanessa M.; Mezzano, Valeria; Mirams, Gary R.; Maass, Karen; Li, Zhen; Cerrone, Marina; Vasquez, Carolina; Bapat, Aneesh; Delmar, Mario; Morley, Gregory E.

    2016-05-01

    Studies have demonstrated non-myocytes, including fibroblasts, can electrically couple to myocytes in culture. However, evidence demonstrating current can passively spread across scar tissue in the intact heart remains elusive. We hypothesize electrotonic conduction occurs across non-myocyte gaps in the heart and is partly mediated by Connexin43 (Cx43). We investigated whether non-myocytes in ventricular scar tissue are electrically connected to surrounding myocardial tissue in wild type and fibroblast-specific protein-1 driven conditional Cx43 knock-out mice (Cx43fsp1KO). Electrical coupling between the scar and uninjured myocardium was demonstrated by injecting current into the myocardium and recording depolarization in the scar through optical mapping. Coupling was significantly reduced in Cx43fsp1KO hearts. Voltage signals were recorded using microelectrodes from control scars but no signals were obtained from Cx43fsp1KO hearts. Recordings showed significantly decreased amplitude, depolarized resting membrane potential, increased duration and reduced upstroke velocity compared to surrounding myocytes, suggesting that the non-excitable cells in the scar closely follow myocyte action potentials. These results were further validated by mathematical simulations. Optical mapping demonstrated that current delivered within the scar could induce activation of the surrounding myocardium. These data demonstrate non-myocytes in the scar are electrically coupled to myocytes, and coupling depends on Cx43 expression.

  14. Desensitization of human adipose tissue to adrenaline stimulation studied by microdialysis

    DEFF Research Database (Denmark)

    Stallknecht, Bente; Bülow, J; Frandsen, E

    1997-01-01

    1. Desensitization of fat cell lipolysis to catecholamine exposure has been studied extensively in vitro but only to a small extent in human adipose tissue in vivo. 2. We measured interstitial glycerol concentrations by microdialysis in subcutaneous, abdominal adipose tissue in healthy humans......M, respectively) or a low, a high and a low concentration (2.5, 4.6 and 2.6 nM, respectively) in order to examine both desensitization and the dose dependency of adipose tissue lipolysis to adrenaline. 3. Adipose tissue lipolysis was calculated and was found to vary directly with arterial adrenaline concentration...... in adipose tissue blood flow in response to adrenaline was also reduced by prior adrenaline exposure, but no consistent desensitization could be demonstrated for whole-body energy expenditure, blood pressure and heart rate. 5. In the basal state, arterial plasma and interstitial adrenaline concentrations did...

  15. Stem cell markers in the heart of the human newborn

    Directory of Open Access Journals (Sweden)

    Armando Faa

    2016-07-01

    Full Text Available The identification of cardiac progenitor cells in mammals raises the possibility that the human heart contains a population of stem cells capable of generating cardiomyocytes and coronary vessels. Several recent studies now show that the different cell types that characterize the adult human heart arise from a common ancestor. Human cardiac stem cells differentiate into cardiomyocytes, and, in lesser extent, into smooth muscle and endothelial cells. The characterization of human cardiac stem cells (CSCs has important clinical implications. In recent years, CD117 (c-kit has been reported to mark a subtype of stem/progenitor cells in the human heart, with stem cell-like properties, including the ability to self-renewal and clonogenicity multipotentiality. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  16. Characterization of RNA isolated from eighteen different human tissues: results from a rapid human autopsy program.

    Science.gov (United States)

    Walker, Douglas G; Whetzel, Alexis M; Serrano, Geidy; Sue, Lucia I; Lue, Lih-Fen; Beach, Thomas G

    2016-09-01

    Many factors affect the integrity of messenger RNA from human autopsy tissues including postmortem interval (PMI) between death and tissue preservation and the pre-mortem agonal and disease states. In this communication, we describe RNA isolation and characterization of 389 samples from 18 different tissues from elderly donors who were participants in a rapid whole-body autopsy program located in Sun City, Arizona ( www.brainandbodydonationprogram.org ). Most tissues were collected within a PMI of 2-6 h (median 3.15 h; N = 455), but for this study, tissue from cases with longer PMIs (1.25-29.25 h) were included. RNA quality was assessed by RNA integrity number (RIN) and total yield (ng RNA/mg tissue). RIN correlated with PMI for heart (r = -0.531, p = 0.009) and liver (r = -558, p = 0.0017), while RNA yield correlated with PMI for colon (r = -485, p = 0.016) and skin (r = -0.460, p = 0.031). RNAs with the lowest integrity were from skin and cervix where 22.7 and 31.4 % of samples respectively failed to produce intact RNA; by contrast all samples from esophagus, lymph node, jejunum, lung, stomach, submandibular gland and kidney produced RNA with measurable RINs. Expression levels in heart RNA of 4 common housekeeping normalization genes showed significant correlations of Ct values with RIN, but only one gene, glyceraldehyde-3 phosphate dehydrogenase, showed a correlation of Ct with PMI. There were no correlations between RIN values obtained for liver, adrenal, cervix, esophagus and lymph node and those obtained from corresponding brain samples. We show that high quality RNA can be produced from most human autopsy tissues, though with significant differences between tissues and donors. The RNA stability and yield did not depend solely on PMI; other undetermined factors are involved, but these do not include the age of the donor.

  17. Fabrication of a Novel Hybrid Scaffold for Tissue Engineered Heart Valve

    Institute of Scientific and Technical Information of China (English)

    Hao HONG; Niangno DONG; Jiawei SHI; Si CHEN; Chao GUO; Ping HU; Hongxu QI

    2009-01-01

    The aim of this study was to fabricate biomatrix/polymer hybrid scaffolds using an elec-trospinning technique. Then tissue engineered heart valves were engineered by seeding mesenchymal stromal cells (MSCs) onto the scaffolds. The effects of the hybrid scaffolds on the proliferation of seed cells, formation of extracellular matrix and mechanical properties of tissue engineered heart valves were investigated. MSCs were obtained from rats. Porcine aortic heart valves were decellularized, coated with poly(3-hydroxybutyrate-co-4-hydroxybutyrate) using an electrospinning technique, and reseeded and cultured over a time period of 14 days. In control group, the decellularized valve scaffolds were re-seeded and cultured over an equivalent time period. Specimens of each group were examined histologi-cally (hematoxylin-eosin [HE] staining, immunohistostaining, and scanning electron microscopy), bio-chemically (DNA and 4-hydroxyproline) and mechanically. The results showed that recellularization was comparable to the specimens of hybrid scaffolds and controls. The specimens of hybrid scaffolds and controls revealed comparable amounts of cell mass and 4-hydroxyproline (P>0.05). However, the specimens of hybrid scaffolds showed a significant increase in mechanical strength, compared to the controls (P<0.05). This study demonstrated the superiority of the hybrid scaffolds to increase the me-chanical strength of tissue engineered heart valves. And compared to the decellularized valve scaffolds,the hybrid scaffolds showed similar effects on the proliferation of MSCs and formation of extracellular matrix. It was believed that the hybrid scaffolds could be used for the construction of tissue engineered heart valves.

  18. Stem cell therapy and tissue engineering for correction of congenital heart disease

    Science.gov (United States)

    Avolio, Elisa; Caputo, Massimo; Madeddu, Paolo

    2015-01-01

    This review article reports on the new field of stem cell therapy and tissue engineering and its potential on the management of congenital heart disease. To date, stem cell therapy has mainly focused on treatment of ischemic heart disease and heart failure, with initial indication of safety and mild-to-moderate efficacy. Preclinical studies and initial clinical trials suggest that the approach could be uniquely suited for the correction of congenital defects of the heart. The basic concept is to create living material made by cellularized grafts that, once implanted into the heart, grows and remodels in parallel with the recipient organ. This would make a substantial improvement in current clinical management, which often requires repeated surgical corrections for failure of implanted grafts. Different types of stem cells have been considered and the identification of specific cardiac stem cells within the heterogeneous population of mesenchymal and stromal cells offers opportunities for de novo cardiomyogenesis. In addition, endothelial cells and vascular progenitors, including cells with pericyte characteristics, may be necessary to generate efficiently perfused grafts. The implementation of current surgical grafts by stem cell engineering could address the unmet clinical needs of patients with congenital heart defects. PMID:26176009

  19. Prediction of matrix-to-cell stress transfer in heart valve tissues.

    Science.gov (United States)

    Huang, Siyao; Huang, Hsiao-Ying Shadow

    2015-01-01

    Non-linear and anisotropic heart valve leaflet tissue mechanics manifest principally from the stratification, orientation, and inhomogeneity of their collagenous microstructures. Disturbance of the native collagen fiber network has clear consequences for valve and leaflet tissue mechanics and presumably, by virtue of their intimate embedment, on the valvular interstitial cell stress-strain state and concomitant phenotype. In the current study, a set of virtual biaxial stretch experiments were conducted on porcine pulmonary valve leaflet tissue photomicrographs via an image-based finite element approach. Stress distribution evolution during diastolic valve closure was predicted at both the tissue and cellular levels. Orthotropic material properties consistent with distinct stages of diastolic loading were applied. Virtual experiments predicted tissue- and cellular-level stress fields, providing insight into how matrix-to-cell stress transfer may be influenced by the inhomogeneous collagen fiber architecture, tissue anisotropic material properties, and the cellular distribution within the leaflet tissue. To the best of the authors' knowledge, this is the first study reporting on the evolution of stress fields at both the tissue and cellular levels in valvular tissue and thus contributes toward refining our collective understanding of valvular tissue micromechanics while providing a computational tool enabling the further study of valvular cell-matrix interactions.

  20. Nonlinear Control of Heart Rate Variability in Human Infants

    Science.gov (United States)

    Sugihara, George; Allan, Walter; Sobel, Daniel; Allan, Kenneth D.

    1996-03-01

    Nonlinear analyses of infant heart rhythms reveal a marked rise in the complexity of the electrocardiogram with maturation. We find that normal mature infants (gestation >= 35 weeks) have complex and distinctly nonlinear heart rhythms (consistent with recent reports for healthy adults) but that such nonlinearity is lacking in preterm infants (gestation parasympathetic-sympathetic interaction and function are presumed to be less well developed. Our study further shows that infants with clinical brain death and those treated with atropine exhibit a similar lack of nonlinear feedback control. These three lines of evidence support the hypothesis championed by Goldberger et al. [Goldberger, A. L., Rigney, D. R. & West, B. J. (1990) Sci. Am. 262, 43-49] that autonomic nervous system control underlies the nonlinearity and possible chaos of normal heart rhythms. This report demonstrates the acquisition of nonlinear heart rate dynamics and possible chaos in developing human infants and its loss in brain death and with the administration of atropine. It parallels earlier work documenting changes in the variability of heart rhythms in each of these cases and suggests that nonlinearity may provide additional power in characterizing physiological states.

  1. Tissue Doppler Septal Tei Index Indicates Severity of Illness in Pediatric Patients with Congestive Heart Failure

    Science.gov (United States)

    Mejia, Aura A Sanchez; Simpson, Kathleen E.; Hildebolt, Charles F; Pahl, Elfriede; Matthews, Kathleen L; Rainey, Cheryl A; Canter, Charles E; Jay, Patrick Y; Johnson, Mark C

    2013-01-01

    Background: The Doppler Tei index is an independent predictor of outcomes in adult heart failure. Tissue Doppler imaging (TDI) may be a superior method to measure the Tei index in children, as it is less affected by heart rate variability. We hypothesized that the TDI Tei index reflects severity of illness in pediatric heart failure. Methods: Twenty-five pediatric heart failure patients were prospectively enrolled. Listing for heart transplantation or death were the outcomes used to define severity of illness. Baseline demographics, brain natriuretic peptide (BNP), standard echocardiographic and TDI-derived parameters were analyzed to determine outcome indicators. Results: Ten of the 25 patients (40%) were listed for transplantation. There were no deaths. Multivariate analysis combining age, heart rate, standard echocardiographic parameters, and BNP, resulted in shortening fraction (p=0.002) as the best indicator of listing for transplantation (R2 = 0.32). A second multivariate analysis combining age, heart rate, TDI parameters and BNP, resulted in age (p = 0.03) and septal Tei index (p = 0.03) as the best predictive model (R2 = 0.36). The area under the receiver operating characteristic (ROC) curve for septal Tei index was 0.84 (0.64-0.96, 95% confidence interval) and it was comparable to the ROC curve for shortening fraction, p=0.76. Optimal values of sensitivity (100%) and specificity (60%) were obtained with septal Tei index values > 0.51. Conclusion: The TDI septal Tei index is an indicator of disease severity in pediatric heart failure patients and offers potential advantages in comparison with standard echocardiographic measures of left ventricular ejection. PMID:24061276

  2. Dynamic Properties of Human Bronchial Airway Tissues

    CERN Document Server

    Wang, Jau-Yi; Pallai, Prathap; Corrigan, Chris J; Lee, Tak H

    2011-01-01

    Young's Modulus and dynamic force moduli were measured on human bronchial airway tissues by compression. A simple and low-cost system for measuring the tensile-strengh of soft bio-materials has been built for this study. The force-distance measurements were undertaken on the dissected bronchial airway walls, cartilages and mucosa from the surgery-removed lungs donated by lung cancer patients with COPD. Young's modulus is estimated from the initial slope of unloading force-displacement curve and the dynamic force moduli (storage and loss) are measured at low frequency (from 3 to 45 Hz). All the samples were preserved in the PBS solution at room temperature and the measurements were perfomed within 4 hours after surgery. Young's modulus of the human bronchial airway walls are fond ranged between 0.17 and 1.65 MPa, ranged between 0.25 to 1.96 MPa for cartilages, and between 0.02 to 0.28 MPa for mucosa. The storage modulus are found varying 0.10 MPa with frequency while the loss modulus are found increasing from ...

  3. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  4. General anesthesia suppresses normal heart rate variability in humans

    Science.gov (United States)

    Matchett, Gerald; Wood, Philip

    2014-06-01

    The human heart normally exhibits robust beat-to-beat heart rate variability (HRV). The loss of this variability is associated with pathology, including disease states such as congestive heart failure (CHF). The effect of general anesthesia on intrinsic HRV is unknown. In this prospective, observational study we enrolled 100 human subjects having elective major surgical procedures under general anesthesia. We recorded continuous heart rate data via continuous electrocardiogram before, during, and after anesthesia, and we assessed HRV of the R-R intervals. We assessed HRV using several common metrics including Detrended Fluctuation Analysis (DFA), Multifractal Analysis, and Multiscale Entropy Analysis. Each of these analyses was done in each of the four clinical phases for each study subject over the course of 24 h: Before anesthesia, during anesthesia, early recovery, and late recovery. On average, we observed a loss of variability on the aforementioned metrics that appeared to correspond to the state of general anesthesia. Following the conclusion of anesthesia, most study subjects appeared to regain their normal HRV, although this did not occur immediately. The resumption of normal HRV was especially delayed on DFA. Qualitatively, the reduction in HRV under anesthesia appears similar to the reduction in HRV observed in CHF. These observations will need to be validated in future studies, and the broader clinical implications of these observations, if any, are unknown.

  5. Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia.

    Science.gov (United States)

    Chung, Hyun-Joong; Sulkin, Matthew S; Kim, Jong-Seon; Goudeseune, Camille; Chao, Hsin-Yun; Song, Joseph W; Yang, Sang Yoon; Hsu, Yung-Yu; Ghaffari, Roozbeh; Efimov, Igor R; Rogers, John A

    2014-01-01

    Stable pH is an established biomarker of health, relevant to all tissues of the body, including the heart. Clinical monitoring of pH in a practical manner, with high spatiotemporal resolution, is particularly difficult in organs such as the heart due to its soft mechanics, curvilinear geometry, heterogeneous surfaces, and continuous, complex rhythmic motion. The results presented here illustrate that advanced strategies in materials assembly and electrochemical growth can yield interconnected arrays of miniaturized IrOx pH sensors encapsulated in thin, low-modulus elastomers to yield conformal monitoring systems capable of noninvasive measurements on the surface of the beating heart. A thirty channel custom data acquisition system enables spatiotemporal pH mapping with a single potentiostat. In vitro testing reveals super-Nernstian sensitivity with excellent uniformity (69.9 ± 2.2 mV/pH), linear response to temperature (-1.6 mV °C(-1) ), and minimal influence of extracellular ions (sensor arrays on balloon catheters and on skin-like stretchable membranes. Real-time measurement of pH on the surfaces of explanted rabbit hearts and a donated human heart during protocols of ischemia-reperfusion illustrate some of the capabilities. Envisioned applications range from devices for biological research, to surgical tools and long-term implants.

  6. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease.

    Science.gov (United States)

    Nazarenko, Maria S; Markov, Anton V; Lebedev, Igor N; Freidin, Maxim B; Sleptcov, Aleksei A; Koroleva, Iuliya A; Frolov, Aleksei V; Popov, Vadim A; Barbarash, Olga L; Puzyrev, Valery P

    2015-01-01

    Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.

  7. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease.

    Directory of Open Access Journals (Sweden)

    Maria S Nazarenko

    Full Text Available Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.

  8. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  9. Second heart field and the development of the outflow tract in human embryonic heart.

    Science.gov (United States)

    Yang, Yan-Ping; Li, Hai-Rong; Cao, Xi-Mei; Wang, Qin-Xue; Qiao, Cong-Jin; Ya, Jing

    2013-04-01

    The second heart field (SHF) is indicated to contribute to the embryonic heart development. However, less knowledge is available about SHF development of human embryo due to the difficulty of collecting embryos. In this study, serial sections of human embryos from Carnegie stage 10 (CS10) to CS16 were stained with antibodies against Islet-1 (Isl-1), Nkx2.5, GATA4, myosin heavy chain (MHC) and α-smooth muscle actin (α-SMA) to observe spatiotemporal distribution of SHF and its contribution to the development of the arterial pole of cardiac tube. Our findings suggest that during CS10 to CS12, SHF of the human embryo is composed of the bilateral pharyngeal mesenchyme, the central mesenchyme of the branchial arch and splanchnic mesoderm of the pericardial cavity dorsal wall. With development, SHF translocates and consists of ventral pharyngeal mesenchyme and dorsal wall of the pericardial cavity. Hence, the SHF of human embryo shows a dynamic spatiotemporal distribution pattern. The formation of the Isl-1 positive condense cell prongs provides an explanation for the saddle structure formation at the distal pole of the outflow tract. In human embryo, the Isl-1 positive cells of SHF may contribute to the formation of myocardial outflow tract (OFT) and the septum during different development stages.

  10. Multifractal heart rate dynamics in human cardiovascular model

    Science.gov (United States)

    Kotani, Kiyoshi; Takamasu, Kiyoshi; Safonov, Leonid; Yamamoto, Yoshiharu

    2003-05-01

    Human cardiovascular and/or cardio-respiratory systems are shown to exhibit both multifractal and synchronous dynamics, and we recently developed a nonlinear, physiologically plausible model for the synchronization between heartbeat and respiration (Kotani, et al. Phys. Rev. E 65: 051923, 2002). By using the same model, we now show the multifractality in the heart rate dynamics. We find that beat-to-beat monofractal noise (fractional Brownian motion) added to the brain stem cardiovascular areas results in significantly broader singularity spectra for heart rate through interactions between sympathetic and parasympathetic nervous systems. We conclude that the model proposed here would be useful in studying the complex cardiovascular and/or cardio- respiratory dynamics in humans.

  11. Systemic Lupus Erythematosus and Systemic Autoimmune Connective Tissue Disorders behind Recurrent Diastolic Heart Failure

    Directory of Open Access Journals (Sweden)

    Luis Miguel Blasco Mata

    2012-01-01

    Full Text Available Diastolic heart failure (DHF remains unexplained in some patients with recurrent admissions after full investigation. A study was directed for screening SLE and systemic autoimmune connective tissue disorders in recurrent unexplained DHF patients admitted at a short-stay and intermediate care unit. It was found that systemic autoimmune conditions explained 11% from all of cases. Therapy also prevented new readmissions. Autoimmunity should be investigated in DHF.

  12. Development of heart failure assessed by tissue Doppler imaging in hypertensive Dahl rats

    OpenAIRE

    宮田, 聖子||ミヤタ, セイコ||Miyata, Seiko; 山田, 亜紀||ヤマダ, アキ||Yamada, Aki||Iwami Yamada, Aki; 橋本, 克徳||ハシモト, カツノリ||Hashimoto, Katsunori; 黒木, 祥子||クロキ, ショウコ||Kuroki, Shoko; 岩本, 隆司||イワモト, タカシ||Iwamoto, Takashi; 野田, 明子||ノダ, アキコ||Noda, Akiko

    2014-01-01

    Objective: Tissue Doppler imaging (TDI) has been recognized as a useful tool to assess regional myocardial function. The purpose of this study was to evaluate the development of heart failure in hypertensive Dahl rats using echocardiography with TDI. Methods: Dahl salt-sensitive (DS) rats were placed on 8% NaCl diet from 7 weeks old. As an age-matched control, DS rats were consistently placed on normal diet. In these rats, echocardiography was performed successively. We evaluated interventric...

  13. The human heart: application of the golden ratio and angle.

    Science.gov (United States)

    Henein, Michael Y; Zhao, Ying; Nicoll, Rachel; Sun, Lin; Khir, Ashraf W; Franklin, Karl; Lindqvist, Per

    2011-08-04

    The golden ratio, or golden mean, of 1.618 is a proportion known since antiquity to be the most aesthetically pleasing and has been used repeatedly in art and architecture. Both the golden ratio and the allied golden angle of 137.5° have been found within the proportions and angles of the human body and plants. In the human heart we found many applications of the golden ratio and angle, in addition to those previously described. In healthy hearts, vertical and transverse dimensions accord with the golden ratio, irrespective of different absolute dimensions due to ethnicity. In mild heart failure, the ratio of 1.618 was maintained but in end-stage heart failure the ratio significantly reduced. Similarly, in healthy ventricles mitral annulus dimensions accorded with the golden ratio, while in dilated cardiomyopathy and mitral regurgitation patients the ratio had significantly reduced. In healthy patients, both the angles between the mid-luminal axes of the pulmonary trunk and the ascending aorta continuation and between the outflow tract axis and continuation of the inflow tract axis of the right ventricle approximate to the golden angle, although in severe pulmonary hypertension, the angle is significantly increased. Hence the overall cardiac and ventricular dimensions in a normal heart are consistent with the golden ratio and angle, representing optimum pump structure and function efficiency, whereas there is significant deviation in the disease state. These findings could have anatomical, functional and prognostic value as markers of early deviation from normality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Transcriptomics resources of human tissues and organs

    OpenAIRE

    Uhlén, Mathias; Hallström, Björn M; Lindskog, Cecilia; Mardinoglu, Adil; Pontén, Fredrik; Nielsen, Jens

    2016-01-01

    Abstract Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large‐scale transcriptomics studies have analyzed the expression of protein‐coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue‐restricted manner. Here...

  15. Differential effects of chronic cyanide intoxication on heart, lung and pancreatic tissues.

    Science.gov (United States)

    Okolie, N P; Osagie, A U

    2000-06-01

    The histotoxic effects of chronic cyanide insult on heart, lung and pancreatic tissues, and some corroborative enzyme and metabolite changes were studied in New Zealand White rabbits using colorimetric, enzymatic and histochemical methods. Two groups of rabbits were fed for 10 months on either pure growers mash or grower mash +702 ppm inorganic cyanide. There were no significant differences in time-course profiles of serum amylase and fasting blood glucose between the cyanide-fed group and control. Pancreatic islet and heart histologies showed no pathological changes, and there were no significant differences in both serum and heart aspartate transaminase activities between the two groups. However, there were significant decreases (Pactivity in the lungs of the cyanide-fed group, with corresponding significant (Pactivity of the enzyme. Histological examination of lung tissue of the cyanide-treated rabbits revealed focal areas of pulmonary oedema and necrosis. These results suggest the existence of variabilities in tissue susceptibilities to the toxic effect of chronic cyanide exposure. It would appear that chronic cyanide exposure may not predispose to diabetes in the presence of adequate protein intake.

  16. Dielectric characterisation of human tissue samples

    NARCIS (Netherlands)

    Rossum, W.L. van; Nennie, F.; Deiana, D.; Veen, A.J. van der; Monni, S.

    2014-01-01

    The electrical properties of tissues samples are required for investigation and simulation purposes in biomedical applications of EM sensors. While available open literature mostly deals with ex-vivo characterization of isolated tissues, knowledge on dielectric properties of these tissues in their o

  17. Transcriptomics resources of human tissues and organs

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Hallström, Björn M.; Lindskog, Cecilia

    2016-01-01

    a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome......Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide...

  18. Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue.

    Science.gov (United States)

    Valero-Muñoz, María; Li, Shanpeng; Wilson, Richard M; Hulsmans, Maarten; Aprahamian, Tamar; Fuster, José J; Nahrendorf, Matthias; Scherer, Philipp E; Sam, Flora

    2016-01-01

    Despite the increasing prevalence of heart failure with preserved ejection fraction (HFpEF) in humans, there are no evidence-based therapies for HFpEF. Clinical studies suggest a relationship between obesity-associated dysfunctional adipose tissue (AT) and HFpEF. However, an apparent obesity paradox exists in some HF populations with a higher body mass index. We sought to determine whether HFpEF exerted effects on AT and investigated the involved mechanisms. Mice underwent d-aldosterone infusion, uninephrectomy, and were given 1% saline for 4 weeks. HFpEF mice developed hypertension, left ventricular hypertrophy, and diastolic dysfunction and had higher myocardial natriuretic peptide expression. Although body weights were similar in HFpEF and sham-operated mice, white AT was significantly smaller in HFpEF than in sham (epididymal AT, 7.59 versus 10.67 mg/g; inguinal AT, 6.34 versus 8.38 mg/g). These changes were associated with smaller adipocyte size and increased beiging markers (ucp-1, cidea, and eva) in white AT. Similar findings were seen in HFpEF induced by transverse aortic constriction. Increased activation of natriuretic peptide signaling was seen in white AT of HFpEF mice. The ratio of the signaling receptor, natriuretic peptide receptor type A, to the clearance receptor, nprc, was increased as was p38 mitogen-activated protein kinase activation. However, HFpEF mice failed to regulate body temperature during cold temperature exposure. In HFpEF, despite a larger brown AT mass (5.96 versus 4.50 mg/g), brown AT showed reduced activity with decreased uncoupling protein 1 (ucp-1), cell death-inducing DFFA-like effector a (cidea), and epithelial V-like antigen (eva) expression and decreased expression of lipolytic enzymes (hormone-sensitive lipase, lipoprotein lipase, and fatty acid binding protein 4) versus sham. These findings show that HFpEF is associated with beiging in white AT and with dysfunctional brown AT. © 2015 American Heart Association, Inc.

  19. Noninvasive estimation of tissue edema in healthy volunteers and in patients suffering from heart failure

    Science.gov (United States)

    Gurfinkel, Yuri I.; Mikhailov, Valery M.; Kudutkina, Marina I.

    2004-06-01

    Capillaries play a critical role in cardiovascular function as the point of exchange of nutrients and waste products between tissues and circulation. A common problem for healthy volunteers examined during isolation, and for the patients suffering from heart failure is a quantitative estimation tissue oedema. Until now, objective assessment body fluids retention in tissues did not exist. Optical imaging of living capillaries is a challenging and medically important scientific problem. Goal of the investigation was to study dynamic of microcriculation parameters including tissue oedema in healthy volunteers during extended isolation and relative hypokinesia as a model of mission to the International Space Station. The other aim was to study dynamic of microcirculation parameters including tissue oedema in patients suffering from heart failure under treatment. Healthy volunteers and patients. We studied four healthy male subjects at the age of 41, 37, 40, and 48 before the experiment (June 1999), and during the 240-d isolation period starting from July3, 1999. Unique hermetic chambers with artidicial environmental parameters allowed performing this study with maximum similarity to real conditions in the International Space Station (ISS). With the regularity of 3 times a week at the same time, each subject recorded three video episodes with the total length of one-minute using the optical computerized capillaroscope for noninvasive measurement of the capillary diameters sizes, capillary blood velocity as well as the size of the perivascular zone. All this parameters of microcirculation determined during three weeks in 15 patients (10 male, 5 female, aged 62,2+/-8,8) suffering from heart failure under Furosemid 40 mg 2 times a week, as diuretic. Results. About 1500 episodes recorded on laser disks and analyzed during this experiment. Every subject had wave-like variations of capillary blood velocity within the minute, week, and month ranges. It was found that the

  20. Cardiac tissue structure. Electric field interactions in polarizing the heart: 3D computer models and applications

    Science.gov (United States)

    Entcheva, Emilia

    1998-11-01

    The goal of this research is to investigate the interactions between the cardiac tissue structure and applied electric fields in producing complex polarization patterns. It is hypothesized that the response of the heart in the conditions of strong electric shocks, as those applied in defibrillation, is dominated by mechanisms involving the cardiac muscle structure perceived as a continuum. Analysis is carried out in three-dimensional models of the heart with detailed fiber architecture. Shock-induced transmembrane potentials are calculated using the bidomain model in its finite element implementation. The major new findings of this study can be summarized as follows: (1) The mechanisms of polarization due to cardiac fiber curvature and fiber rotation are elucidated in three-dimensional ellipsoidal hearts of variable geometry; (2) Results are presented showing that the axis of stimulation and the polarization axis on a whole heart level might differ significantly due to geometric and anisotropic factors; (3) Virtual electrode patterns are demonstrated numerically inside the ventricular wall in internal defibrillation conditions. The role of the tissue-bath interface in shaping the shock-induced polarization is revealed; (4) The generation of 3D phase singularity scrolls by shock-induced intramural virtual electrode patterns is proposed as evidence for a possible new mechanism for the failure to defibrillate. The results of this study emphasize the role of unequal anisotropy in the intra- and extracellular domains, as well as the salient fiber architecture characteristics, such as curvature and transmural rotation, in polarizing the myocardium. Experimental support of the above findings was actively sought and found in recent optical mapping studies using voltage-sensitive dyes. If validated in vivo, these findings would significantly enrich the prevailing concepts about the mechanisms of stimulation and defibrillation of the heart.

  1. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  2. Human Cell and Tissue Establishment Registration Public Query

    Data.gov (United States)

    U.S. Department of Health & Human Services — This application provides Human Cell and Tissue registration information for registered, inactive, and pre-registered firms. Query options are by Establishment Name,...

  3. Bioreactor Conditioning for Accelerated Remodeling of Fibrin-Based Tissue Engineered Heart Valves

    Science.gov (United States)

    Schmidt, Jillian Beth

    Fibrin is a promising scaffold material for tissue engineered heart valves, as it is completely biological, allows for engineered matrix alignment, and is able to be degraded and replaced with collagen by entrapped cells. However, the initial fibrin matrix is mechanically weak, and extensive in vitro culture is required to create valves with sufficient mechanical strength and stiffness for in vivo function. Culture in bioreactor systems, which provide cyclic stretching and enhance nutrient transport, has been shown to increase collagen production by cells entrapped in a fibrin scaffold, accelerating strengthening of the tissue and reducing the required culture time. In the present work, steps were taken to improve bioreactor culture conditions with the goal of accelerating collagen production in fibrin-based tissue engineered heart valves using two approaches: (i) optimizing the cyclic stretching protocol and (ii) developing a novel bioreactor system that permits transmural and lumenal flow of culture medium for improved nutrient transport. The results indicated that incrementally increasing strain amplitude cyclic stretching with small, frequent increments in strain amplitude was optimal for collagen production in our system. In addition, proof of concept studies were performed in the novel bioreactor system and increased cellularity and collagen deposition near the lumenal surface of the tissue were observed.

  4. Metabolic Characteristics of Human Hearts Preserved for 12 Hours by Static Storage, Antegrade Perfusion or Retrograde Coronary Sinus Perfusion

    Science.gov (United States)

    Cobert, Michael L.; Merritt, Matthew E.; West, LaShondra M.; Ayers, Colby; Jessen, Michael E.; Peltz, Matthias

    2014-01-01

    Objective(s) Machine perfusion of donor hearts is a promising strategy to increase the donor pool. Antegrade perfusion is effective but can lead to aortic valve incompetence and non-nutrient flow. Experience with retrograde coronary sinus perfusion of donor hearts has been limited. We tested the hypothesis that retrograde perfusion could support myocardial metabolism over an extended donor ischemic interval. Methods Human hearts from donors rejected or not offered for transplantation were preserved for 12 hours in University of Wisconsin Machine Perfusion Solution by: 1. Static hypothermic storage 2. Hypothermic antegrade machine perfusion or 3. Hypothermic retrograde machine perfusion. Myocardial oxygen consumption (MVO2), and lactate accumulation were measured. Ventricular tissue was collected for proton (1H) and phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) to evaluate the metabolic state of the myocardium. Myocardial water content was determined at end-experiment. Results Stable perfusion parameters were maintained throughout the perfusion period with both perfusion techniques. Lactate/alanine ratios were lower in perfused hearts compared to static hearts (pperfused groups. High energy phosphates were better preserved in both perfused groups (pperfused (80.2±.8%) compared to both antegrade perfused (76.6±.8%, p=.02) and static storage hearts (76.7±1%, p=.02). Conclusions In conclusion, machine perfusion by either the antegrade or the retrograde technique can support myocardial metabolism over long intervals. Machine perfusion appears promising for long term preservation of human donor hearts. PMID:24642559

  5. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    Science.gov (United States)

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.

  6. Favorable Effects of the Detergent and Enzyme Extraction Method for Preparing Decellularized Bovine Pericardium Scaffold for Tissue Engineered Heart Valves

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Wang, Xue-Ning; Zhu, Ya-Bin; Gu, Y. John

    2009-01-01

    Bovine pericardium has been extensively applied as the biomaterial for artificial heart valves and may potentially be used as a scaffold for tissue-engineered heart valves after decellularization. Although various methods of decellularization are currently available, it is unknown which method is

  7. Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity.

    Science.gov (United States)

    Sojka, Stephen; Amin, Nirav M; Gibbs, Devin; Christine, Kathleen S; Charpentier, Marta S; Conlon, Frank L

    2014-08-01

    The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR (CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophan-rich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development. © 2014. Published by The Company of Biologists Ltd.

  8. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip.

    Science.gov (United States)

    Grosberg, Anna; Alford, Patrick W; McCain, Megan L; Parker, Kevin Kit

    2011-12-21

    Traditionally, muscle physiology experiments require multiple tissue samples to obtain morphometric, electrophysiological, and contractility data. Furthermore, these experiments are commonly completed one at a time on cover slips of single cells, isotropic monolayers, or in isolated muscle strips. In all of these cases, variability of the samples hinders quantitative comparisons among experimental groups. Here, we report the design of a "heart on a chip" that exploits muscular thin film technology--biohybrid constructs of an engineered, anisotropic ventricular myocardium on an elastomeric thin film--to measure contractility, combined with a quantification of action potential propagation, and cytoskeletal architecture in multiple tissues in the same experiment. We report techniques for real-time data collection and analysis during pharmacological intervention. The chip is an efficient means of measuring structure-function relationships in constructs that replicate the hierarchical tissue architectures of laminar cardiac muscle.

  9. The effect of extremely low frequency magnetic field on heart tissue iron density

    Directory of Open Access Journals (Sweden)

    Yusuf Nergiz

    2011-06-01

    Full Text Available The aim of this histological study was to investigate the effects of extremely low frequency, low intensity magnetic field on the heart muscle ıron density.Materials and methods: In this study, 45 male Spraque Dawley rats were introduced and were divided into three groups as sham, control and experiment group. The experimental group was exposed to a 0.25 mT to Extremely Low Frequency Magnetic Field (ELF-MF for 14 days, 3h a day in metacrylate boxes. The sham group was treated like the experimental group, except for ELF-MF exposure. For control, nothing applied to rats in this group and they completed their life cycle in the cage during the study period. After exposure period, the rats were sacrificed under ketalar anesthesia (50 mg / kg, intramuscularly. Heart tissues were immediately fixed in 10% neutral formaldehyde and embedded in paraffin blocks. Histological sections from cardiac tissue stained by hematoxylin-eosin, Perls’ Prussian blue for iron pigments. Histological slides were photographed under a Nikon DS-2MV photomicroscope.Results: The architecture and histology of the control, sham and experimental group were observed as normal. No differences were observed between the control, sham and experimental rat groups in the iron stain of heart tissues.Conclusion: As a result of our study, we did not observe differences between the control and ELF-MF (experimental group. In this investigation we demonstrated that the exposure of cardiac tissue of rats to the ELF-MF did not change in the iron stain study. J Clin Exp Invest 2011;2(2:144-8

  10. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human......Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative...... secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns...

  11. Distribution and characteristics of telocytes as nurse cells in the architectural organization of engineered heart tissues.

    Science.gov (United States)

    Zhou, Jin; Wang, Yan; Zhu, Ping; Sun, HongYu; Mou, YongChao; Duan, CuiMi; Yao, AnNing; Lv, ShuangHong; Wang, ChangYong

    2014-02-01

    Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues, and have been given the name "telocytes". Recent studies have demonstrated the potential roles of telocytes in heart development, renewal, and repair. However, further research on the functions of telocytes is limited by the complicated in vivo environment. This study was designed to construct engineered heart tissue (EHT) as a three-dimensional model in vitro to better understand the role of telocytes in the architectural organization of the myocardium. EHTs were constructed by seeding neonatal cardiomyocytes in collagen/Matrigel scaffolds followed by culture under persistent static stretch. Telocytes in EHTs were identified by histology, toluidine blue staining, immunofluorescence, and transmission electron microscopy. The results from histology and toluidine blue staining demonstrated widespread putative telocytes with compact toluidine blue-stained nuclei, which were located around cardiomyocytes. Prolongations from the cell bodies showed a characteristic dichotomous branching pattern and formed networks in EHTs. Immunofluorescence revealed positive staining of telocytes for CD34 and vimentin with typical moniliform prolongations. A series of electron microscopy images further showed that typical telocytes embraced the cardiomyocytes with their long prolongations and exhibited a marked appearance of nursing cardiomyocytes during the construction of EHTs. This finding highlights the great importance of telocytes in the architectural organization of EHTs. It also suggests that EHT is an appropriate physical and pathological model system in vitro to study the roles of telocytes during heart development and regeneration.

  12. Lights on for HIF-1α: genetically enhanced mouse cardiomyocytes for heart tissue imaging.

    Science.gov (United States)

    Hesse, Amke R; Levent, Elif; Zieseniss, Anke; Tiburcy, Malte; Zimmermann, Wolfram H; Katschinski, Dörthe M

    2014-01-01

    The hypoxia inducible factor-1 (HIF-1) is a suitable marker for tissue oxygenation. We intended to develop cardiomyocytes (CMs) expressing the oxygen-dependent degradation domain of HIF-1α fused to the firefly luciferase (ODD-Luc) followed by proof-of-concept for its applicability in the assessment of heart muscle oxygenation. We first generated embryonic stem cell (ESC) lines (ODD-Luc ESCs) from a Tg ROSA26 ODD-Luc/+ mouse. Subsequent CMs selection was facilitated by stable integration of an antibiotic resistance expressed under the control of the αMHC promoter. ODD-Luc ESCs showed a strong Luc-signal within 1 h of hypoxia (1% oxygen), which coincided with endogenous HIF-1α. Engineered heart muscle (EHM) constructed with ODD-Luc CMs confirmed the utility of the model to sense hypoxia, and monitor reoxygenation also in a multicellular heart muscle model. Pharmacologically induced inotropy/chronotropy under isoprenaline resulted in enhanced Luc-signal suggesting enhanced oxygen consumption, leading to notable myocardial hypoxia. ODD-Luc-CMs can be used to monitor dynamic changes of cardiomyocyte oxygenation in living heart muscle samples. We provide proof-of-concept for pharmacologically induced myocardial interventions and envision applications of the developed model in drug screens and fundamental studies of ischemia/reperfusion injury. © 2014 S. Karger AG, Basel.

  13. Lights on for HIF-1α: Genetically Enhanced Mouse Cardiomyocytes for Heart Tissue Imaging

    Directory of Open Access Journals (Sweden)

    Amke R. Hesse

    2014-07-01

    Full Text Available Background/Aims: The hypoxia inducible factor-1 (HIF-1 is a suitable marker for tissue oxygenation. We intended to develop cardiomyocytes (CMs expressing the oxygen-dependent degradation domain of HIF-1α fused to the firefly luciferase (ODD-Luc followed by proof-of-concept for its applicability in the assessment of heart muscle oxygenation. Methods and Results: We first generated embryonic stem cell (ESC lines (ODD-Luc ESCs from a Tg ROSA26 ODD-Luc/+ mouse. Subsequent CMs selection was facilitated by stable integration of an antibiotic resistance expressed under the control of the αMHC promoter. ODD-Luc ESCs showed a strong Luc-signal within 1 h of hypoxia (1% oxygen, which coincided with endogenous HIF-1α. Engineered heart muscle (EHM constructed with ODD-Luc CMs confirmed the utility of the model to sense hypoxia, and monitor reoxygenation also in a multicellular heart muscle model. Pharmacologically induced inotropy/chronotropy under isoprenaline resulted in enhanced Luc-signal suggesting enhanced oxygen consumption, leading to notable myocardial hypoxia. Conclusions: ODD-Luc-CMs can be used to monitor dynamic changes of cardiomyocyte oxygenation in living heart muscle samples. We provide proof-of-concept for pharmacologically induced myocardial interventions and envision applications of the developed model in drug screens and fundamental studies of ischemia/reperfusion injury.

  14. Changes in the organization of excitation-contraction coupling structures in failing human heart.

    Directory of Open Access Journals (Sweden)

    David J Crossman

    Full Text Available BACKGROUND: The cardiac myocyte t-tubular system ensures rapid, uniform cell activation and several experimental lines of evidence suggest changes in the t-tubular system and associated excitation-contraction coupling proteins may occur in heart failure. METHODS AND RESULTS: The organization of t-tubules, L-type calcium channels (DHPRs, ryanodine receptors (RyRs and contractile machinery were examined in fixed ventricular tissue samples from both normal and failing hearts (idiopathic (non-ischemic dilated cardiomyopathy using high resolution fluorescent imaging. Wheat germ agglutinin (WGA, Na-Ca exchanger, DHPR and caveolin-3 labels revealed a shift from a predominantly transverse orientation to oblique and axial directions in failing myocytes. In failure, dilation of peripheral t-tubules occurred and a change in the extent of protein glycosylation was evident. There was no change in the fractional area occupied by myofilaments (labeled with phalloidin but there was a small reduction in the number of RyR clusters per unit area. The general relationship between DHPRs and RyR was not changed and RyR labeling overlapped with 51±3% of DHPR labeling in normal hearts. In longitudinal (but not transverse sections there was an ∼30% reduction in the degree of colocalization between DHPRs and RyRs as measured by Pearson's correlation coefficient in failing hearts. CONCLUSIONS: The results show that extensive remodelling of the t-tubular network and associated excitation-contraction coupling proteins occurs in failing human heart. These changes may contribute to abnormal calcium handling in heart failure. The general organization of the t-system and changes observed in failure samples have subtle differences to some animal models although the general direction of changes are generally similar.

  15. Improvement of Heart Failure by Human Amniotic Mesenchymal Stromal Cell Transplantation in Rats

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Taghi Razavi Tousi

    2016-11-01

    Full Text Available Background: Recently, stem cells have been considered for the treatment of heart diseases, but no marked improvement has been recorded. This is the first study to examine the functional and histological effects of the transplantation of human amniotic mesenchymal stromal cells (hAMSCs in rats with heart failure (HF.Methods: This study was conducted in the years 2014 and 2015. 35 male Wistar rats were randomly assigned into 5 equal experimental groups (7 rats each as 1- Control 2- Heart Failure (HF 3- Sham 4- Culture media 5- Stem Cell Transplantation (SCT. Heart failure was induced using 170 mg/kg/d of isoproterenol subcutaneously injection in 4 consecutive days. The failure confirmed by the rat cardiac echocardiography on day 28. In SCT group, 3×106 cells in 150 µl of culture media were transplanted to the myocardium. At the end, echocardiographic and hemodynamic parameters together with histological evaluation were done.Results: Echocardiography results showed that cardiac ejection fraction in HF group increased from 58/73 ± 9% to 81/25 ± 6/05% in SCT group (p value < 0.001. Fraction shortening in HF group was increased from 27/53 ± 8/58% into 45/55 ± 6/91% in SCT group (p value < 0.001. Furthermore, hAMSCs therapy significantly improved mean diastolic blood pressure, mean arterial pressure, left ventricular systolic pressure, rate pressure product, and left ventricular end-diastolic pressure compared to those in the HF group, with the values reaching the normal levels in the control group. A marked reduction in fibrosis tissue was also found in the SCT group (p value < 0.001 compared with the animals in the HF group.Conclusion: The transplantation of hAMSCs in rats with heart failure not only decreased the level of fibrosis but also conferred significant improvement in heart performance in terms of echocardiographic and hemodynamic parameters.

  16. Estrogen receptors in human vaginal tissue

    NARCIS (Netherlands)

    Wiegerinck, M.A.H.M.; Poortman, J.; Agema, A.R.; Thijssen, J.H.H.

    1980-01-01

    The presence of specific estrogen receptors could be demonstrated in vaginal tissue, obtained during operation from 38 women, age 27–75 yr. In 23 premenopausal women the receptor concentration in the vaginal tissue varied between 12 and 91 fmol/mg protein, no significant difference in the receptor

  17. Lipolysis in human adipose tissue during exercise

    DEFF Research Database (Denmark)

    Lange, Kai Henrik Wiborg; Lorentsen, Jeanne; Isaksson, Fredrik

    2002-01-01

    Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous...... exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue...... adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest...

  18. Fundamentals of gas phase plasmas for treatment of human tissue.

    Science.gov (United States)

    Kushner, Mark J; Babaeva, Natalia Yu

    2011-01-01

    The use of gas phase plasmas for treating human tissue is at the intersection of two disciplines - plasma physics and engineering, and medicine. In this paper, a primer will be provided for the medical practitioner on the fundamentals of generating gas phase plasmas at atmospheric pressure in air for the treatment of human tissue. The mechanisms for gas phase plasmas interacting with tissue and biological fluids will also be discussed using results from computer modeling.

  19. A point-process model of human heartbeat intervals: new definitions of heart rate and heart rate variability.

    Science.gov (United States)

    Barbieri, Riccardo; Matten, Eric C; Alabi, Abdulrasheed A; Brown, Emery N

    2005-01-01

    Heart rate is a vital sign, whereas heart rate variability is an important quantitative measure of cardiovascular regulation by the autonomic nervous system. Although the design of algorithms to compute heart rate and assess heart rate variability is an active area of research, none of the approaches considers the natural point-process structure of human heartbeats, and none gives instantaneous estimates of heart rate variability. We model the stochastic structure of heartbeat intervals as a history-dependent inverse Gaussian process and derive from it an explicit probability density that gives new definitions of heart rate and heart rate variability: instantaneous R-R interval and heart rate standard deviations. We estimate the time-varying parameters of the inverse Gaussian model by local maximum likelihood and assess model goodness-of-fit by Kolmogorov-Smirnov tests based on the time-rescaling theorem. We illustrate our new definitions in an analysis of human heartbeat intervals from 10 healthy subjects undergoing a tilt-table experiment. Although several studies have identified deterministic, nonlinear dynamical features in human heartbeat intervals, our analysis shows that a highly accurate description of these series at rest and in extreme physiological conditions may be given by an elementary, physiologically based, stochastic model.

  20. A simulation study of the reaction of human heart to biphasic electrical shocks

    Directory of Open Access Journals (Sweden)

    Seemann Gunnar

    2004-06-01

    Full Text Available Abstract Background This article presents a study, which examines the effects of biphasic electrical shocks on human ventricular tissue. The effects of this type of shock are not yet fully understood. Animal experiments showed the superiority of biphasic shocks over monophasic ones in defibrillation. A mathematical computer simulation can increase the knowledge of human heart behavior. Methods The research presented in this article was done with different models representing a three-dimensional wedge of ventricular myocardium. The electrophysiology was described with Priebe-Beuckelmann model. The realistic fiber twist, which is specific to human myocardium was included. Planar electrodes were placed at the ends of the longest side of the virtual cardiac wedge, in a bath medium. They were sources of electrical shocks, which varied in magnitude from 0.1 to 5 V. In a second arrangement ring electrodes were placed directly on myocardium for getting a better view on secondary electrical sources. The electrical reaction of the tissue was generated with a bidomain model. Results The reaction of the tissue to the electrical shock was specific to the initial imposed characteristics. Depolarization appeared in the first 5 ms in different locations. A further study of the cardiac tissue behavior revealed, which features influence the response of the considered muscle. It was shown that the time needed by the tissue to be totally depolarized is much shorter when a biphasic shock is applied. Each simulation ended only after complete repolarization was achieved. This created the possibility of gathering information from all states corresponding to one cycle of the cardiac rhythm. Conclusions The differences between the reaction of the homogeneous tissue and a tissue, which contains cleavage planes, reveals important aspects of superiority of biphasic pulses. ...

  1. Primary cilia and coordination of signaling pathways in heart development and tissue Homeostasis

    DEFF Research Database (Denmark)

    Clement, Christian Alexandro

    of primary cilia in coordinating Hh signaling in human pancreatic development and postnatal tissue homeostasis. In cultures of human pancreatic duct adenocarcinoma cell lines PANC-1 and CFPAC-1, Ptc in addition to Gli2 and Smo localize to primary cilia. These findings are consistent with the idea...

  2. Impaired mitochondrial function in chronically ischemic human heart

    DEFF Research Database (Denmark)

    Stride, Nis Ottesen; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    mitochondrial damage, hereby reinforcing a vicious circle. Ischemic preconditioning has been proven protective in acute ischemia, but the subject of chronic ischemic preconditioning has not been explored in humans. We hypothesized that mitochondrial respiratory capacity would be diminished in chronic ischemic...... regions of human myocardium but that these mitochondria would be more resistant to ex vivo ischemia and, second, that ROS generation would be higher in ischemic myocardium. The aim of this study was to test mitochondrial respiratory capacity during hyperoxia and hypoxia, to investigate ROS production......, and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared...

  3. The patterns and expression of KDR in normal tissues of human internal organs.

    Science.gov (United States)

    Huang, Jianfei; Zhu, Huijun; Wang, Xudong; Tang, Qi; Huang, Hua; Wu, Kerong; Zhu, Jin; Feng, Zhenqing; Shi, Gongshen

    2011-12-01

    KDR has been implicated for playing an important role in the formation of new blood vessels and in solid tumor growth. It was considered as one of the most important regulators of angiogenesis and a key target in anticancer treatment. In the present study, we characterized KDR mRNA and protein expression in normal tissues of perinatal and adult tissues using One-step Real-Time RT-PCR and immunohistochemistry with a self-made anti-KDR antibody. The expression of KDR mRNA and protein in perinatal internal organs were all higher than in adult organs including brain, kidney, liver, lung and heart, respectively. KDR protein was presented in the cell plasma membrane of human internal tissues. The expression of KDR protein was raised in macrophage of spleen, and decreased in neurons of brain, myocardium, bronchial epithelial cells and alveolar epithelial cell, proximal and distal tubules cells, and hepatic cells with the maturity process of human organs. Notably, the order of KDR protein expression from highest to lowest is as follows: brain, liver, heart, kidney, and lung in adult tissues with statistically significant. It follows that how to balance the potential therapeutic side effect with human internal organs in targeted therapy of over-expressing KDR tumor.

  4. Mesenchymal Stem Cell Levels of Human Spinal Tissues.

    Science.gov (United States)

    Harris, Liam; Vangsness, C Thomas

    2017-09-06

    .: Systematic Review. .: The aim of this study was to investigate, quantify, compare and compile the various mesenchymal stem cell tissue sources within human spinal tissues to act as a compendium for clinical and research application. .: Recent years have seen a dramatic increase in academic and clinical understanding of human mesenchymal stem cells (MSCs). Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. .: The PubMED, MEDLINE, EMBASE and Cochrane databases were searched for articles relating to the harvest, characterization, isolation and quantification of human mesenchymal stem cells from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. .: Human mesenchymal stem cell levels varied widely between spinal tissues. Yields for Intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500- 61,875 cells/ 0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000- 500,000 cells per gram of tissue. Annulus fibrosus FACS treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584-234,137 MSCs/gram of tissue. .: Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human mesenchymal stem cells. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of mesenchymal stem cells, and may

  5. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.

    Science.gov (United States)

    Pahor, Kevin; Olson, Greg; Forbes, Shari L

    2013-09-01

    The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.

  6. Vitamin D3 (cholecalciferol) boosts hydrogen sulfide tissue concentrations in heart and other mouse organs.

    Science.gov (United States)

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Opoka, Włodzimierz

    2012-01-01

    Vitamin D3 is a crucial co-regulator of bone growth and remodeling, neuromuscular function, inflammation, proliferation, differentiation and apoptosis of cells. Intensive research on endogenous sulfur metabolism has revealed that hydrogen sulfide (H2S) is an important modulator of various physiological processes in mammals. Noteworthy, these compounds are perceived as potential agents in the treatment of numerous disorders, including cardiovascular diseases and different types of cancer. The interaction between vitamin D3 and H2S is unknown. The aim of the study is to assess the influence of cholecalciferol (vitamin D3, calcitriol) on H2S tissue concentrations in mouse brain, heart and kidney. Twenty four SJL mice were given intraperitoneal injections of cholecalciferol at 10000 IU/kg body weight (b.w.) per day (group A, n = 8) or 40000 IU/kg b.w. per day (group B, n = 8). The control group (n = 8) received physiological saline. Free H2S tissue concentrations were measured via the SIEGEL spectrophotometric modified method. There was a significant progressive increase in the H2S concentration along with the rising cholecalciferol doses as compared to the control group in the heart (by 29.6% and by 74.1%, respectively). Higher vitamin D3 dose caused H2S accumulation in the brain (by 10.9%) and in the kidney (by 10.1%). Our study has proven that cholecalciferol affects H2S tissue concentration in different mouse organs.

  7. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model.

    Science.gov (United States)

    Song, Yan; Ahn, Jinsoo; Suh, Yeunsu; Davis, Michael E; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI's Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.

  8. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure.

    Directory of Open Access Journals (Sweden)

    Mehregan Movassagh

    Full Text Available Epigenetic mechanisms such as microRNA and histone modification are crucially responsible for dysregulated gene expression in heart failure. In contrast, the role of DNA methylation, another well-characterized epigenetic mark, is unknown. In order to examine whether human cardiomyopathy of different etiologies are connected by a unifying pattern of DNA methylation pattern, we undertook profiling with ischaemic and idiopathic end-stage cardiomyopathic left ventricular (LV explants from patients who had undergone cardiac transplantation compared to normal control. We performed a preliminary analysis using methylated-DNA immunoprecipitation-chip (MeDIP-chip, validated differential methylation loci by bisulfite-(BS PCR and high throughput sequencing, and identified 3 angiogenesis-related genetic loci that were differentially methylated. Using quantitative RT-PCR, we found that the expression of these genes differed significantly between CM hearts and normal control (p<0.01. Moreover, for each individual LV tissue, differential methylation showed a predicted correlation to differential expression of the corresponding gene. Thus, differential DNA methylation exists in human cardiomyopathy. In this series of heterogeneous cardiomyopathic LV explants, differential DNA methylation was found in at least 3 angiogenesis-related genes. While in other systems, changes in DNA methylation at specific genomic loci usually precede changes in the expression of corresponding genes, our current findings in cardiomyopathy merit further investigation to determine whether DNA methylation changes play a causative role in the progression of heart failure.

  9. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    Science.gov (United States)

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.

  10. Degradable Chitosan-Collagen Composites Seeded with Cells as Tissue Engineered Heart Valves.

    Science.gov (United States)

    Fu, Jian-Hua; Zhao, Man; Lin, Yan-Rong; Tian, Xu-Dong; Wang, Ya-Dong; Wang, Zhen-Xing; Wang, Le-Xin

    2017-01-01

    Degradable collagen-chitosan composite materials have been used to fabricate tissue engineered heart valves. The aims of this study were to demonstrate that the collagen-chitosan composite scaffolds are cytocompatible, and endothelial cells can be differentiated from bone marrow mesenchymal stem cells (BMSCs) when seeded onto the scaffolds. The adhesion and biological activities of the seeded cells were also investigated. Collagen-chitosan composite material was used as the cell matrix, and smooth muscle cells, fibroblasts and BMSCs were used as seed cells. After four weeks of in vitro culture, the smooth muscle cells, fibroblasts, and BMSCs were sequentially seeded into the collagen-chitosan composite material. After four weeks in culture, the cellular density and activity were assessed on segments of the tissue engineered heart valve scaffolds to determine the cell viability and proliferation in the collagen-chitosan composite material. The tissue engineered heart valves stained positively for both smooth muscle actin and endothelial cell factor VIII, suggesting that the seeded cells were in fact smooth muscle cells, fibroblasts, and endothelial cells. The 6-ketone prostaglandin content, as measured by radioimmunoassay, of the collagen-chitosan cell culture fluid was higher than that of the serum-free medium (P chitosan composite scaffolds. The seeded cells retained their biological activity after being cultured in vitro and seeded into the collagen-chitosan composite material. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  11. In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep.

    Science.gov (United States)

    Kluin, Jolanda; Talacua, Hanna; Smits, Anthal I P M; Emmert, Maximilian Y; Brugmans, Marieke C P; Fioretta, Emanuela S; Dijkman, Petra E; Söntjens, Serge H M; Duijvelshoff, Renée; Dekker, Sylvia; Janssen-van den Broek, Marloes W J T; Lintas, Valentina; Vink, Aryan; Hoerstrup, Simon P; Janssen, Henk M; Dankers, Patricia Y W; Baaijens, Frank P T; Bouten, Carlijn V C

    2017-05-01

    The creation of a living heart valve is a much-wanted alternative for current valve prostheses that suffer from limited durability and thromboembolic complications. Current strategies to create such valves, however, require the use of cells for in vitro culture, or decellularized human- or animal-derived donor tissue for in situ engineering. Here, we propose and demonstrate proof-of-concept of in situ heart valve tissue engineering using a synthetic approach, in which a cell-free, slow degrading elastomeric valvular implant is populated by endogenous cells to form new valvular tissue inside the heart. We designed a fibrous valvular scaffold, fabricated from a novel supramolecular elastomer, that enables endogenous cells to enter and produce matrix. Orthotopic implantations as pulmonary valve in sheep demonstrated sustained functionality up to 12 months, while the implant was gradually replaced by a layered collagen and elastic matrix in pace with cell-driven polymer resorption. Our results offer new perspectives for endogenous heart valve replacement starting from a readily-available synthetic graft that is compatible with surgical and transcatheter implantation procedures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Tissue localization of human trefoil factors 1, 2, and 3

    DEFF Research Database (Denmark)

    Madsen, Jens; Nielsen, Ole; Tornøe, Ida

    2007-01-01

    pattern of the three trefoil factors analyzing mRNA from a panel of 20 human tissues by conventional reverse transcriptase (RT) PCR and, in addition, by real-time PCR. These findings were supported by immunohistochemical analysis of paraffin-embedded human tissues using rabbit polyclonal antibodies raised...... against these factors. TFF1 showed highest expression in the stomach and colon, whereas TFF2 and TFF3 showed highest expression in stomach and colon, respectively. All three TFFs were found in the ducts of pancreas. Whereas TFF2 was found to be restricted to these two tissues, the structurally more...... closely related TFF1 and TFF3 showed a more general tissue distribution and were found to colocalize on an array of mucosal surfaces. This is the first thorough parallel description of the tissue distribution of TFFs in normal tissues, and it provides a baseline for similar analysis in diseased tissues...

  13. Diagnose human colonic tissues by terahertz near-field imaging

    Science.gov (United States)

    Chen, Hua; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhao, Tian

    2015-03-01

    Based on a terahertz (THz) pipe-based near-field imaging system, we demonstrate the capability of THz imaging to diagnose freshly surgically excised human colonic tissues. Through THz near-field scanning the absorbance of the colonic tissues, the acquired images can clearly distinguish cancerous tissues from healthy tissues fast and automatically without pathological hematoxylin and eosin stain diagnosis. A statistical study on 58 specimens (20 healthy tissues and 38 tissues with tumor) from 31 patients (mean age: 59 years; range: 46 to 79 years) shows that the corresponding diagnostic sensitivity and specificity on colonic tissues are both 100%. Due to its capability to perform quantitative analysis, our study indicates the potential of the THz pipe-based near-field imaging for future automation on human tumor pathological examinations.

  14. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts.

    Science.gov (United States)

    Holzem, Katherine M; Vinnakota, Kalyan C; Ravikumar, Vinod K; Madden, Eli J; Ewald, Gregory A; Dikranian, Krikor; Beard, Daniel A; Efimov, Igor R

    2016-08-01

    During human heart failure, the balance of cardiac energy use switches from predominantly fatty acids (FAs) to glucose. We hypothesized that this substrate shift was the result of mitochondrial degeneration; therefore, we examined mitochondrial oxidation and ultrastructure in the failing human heart by using respirometry, transmission electron microscopy, and gene expression studies of demographically matched donor and failing human heart left ventricular (LV) tissues. Surprisingly, respiratory capacities for failing LV isolated mitochondria (n = 9) were not significantly diminished compared with donor LV isolated mitochondria (n = 7) for glycolysis (pyruvate + malate)- or FA (palmitoylcarnitine)-derived substrates, and mitochondrial densities, assessed via citrate synthase activity, were consistent between groups. Transmission electron microscopy images also showed no ultrastructural remodeling for failing vs. donor mitochondria; however, the fraction of lipid droplets (LDs) in direct contact with a mitochondrion was reduced, and the average distance between an LD and its nearest neighboring mitochondrion was increased. Analysis of FA processing gene expression between donor and failing LVs revealed 0.64-fold reduced transcript levels for the mitochondrial-LD tether, perilipin 5, in the failing myocardium (P = 0.003). Thus, reduced FA use in heart failure may result from improper delivery, potentially via decreased perilipin 5 expression and mitochondrial-LD tethering, and not from intrinsic mitochondrial dysfunction.-Holzem, K. M., Vinnakota, K. C., Ravikumar, V. K., Madden, E. J., Ewald, G. A., Dikranian, K., Beard, D. A., Efimov, I. R. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts.

  15. Development and application of human virtual excitable tissues and organs: from premature birth to sudden cardiac death.

    Science.gov (United States)

    Holden, Arun V

    2010-12-01

    The electrical activity of cardiac and uterine tissues has been reconstructed by detailed computer models in the form of virtual tissues. Virtual tissues are biophysically and anatomically detailed, and represent quantitatively predictive models of the physiological and pathophysiological behaviours of tissue within an isolated organ. The cell excitation properties are quantitatively reproduced by equations that describe the kinetics of a few dozen proteins. These equations are derived from experimental measurements of membrane potentials, ionic currents, fluxes, and concentrations. Some of the measurements were taken from human cells and human ion channel proteins expressed in non-human cells, but they were mostly taken from cells of other animal species. Data on tissue geometry and architecture are obtained from the diffusion tensor magnetic resonance imaging of ex vivo or post mortem tissue, and are used to compute the spread of current in the tissue. Cardiac virtual tissues are well established and reproduce normal and pathological patterns of cardiac excitation within the atria or ventricles of the human heart. They have been applied to increase the understanding of normal cardiac electrophysiology, to evaluate the candidate mechanisms for re-entrant arrhythmias that lead to sudden cardiac death, and to predict the tissue level effects of mutant or pharmacologically-modified ion channels. The human full-term virtual uterus is still in development. This virtual tissue reproduces the in vitro behaviour of uterine tissue biopsies, and provides possible mechanisms for premature labour.

  16. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  17. Heart-type Fatty Acid-binding Protein Is Essential for Efficient Brown Adipose Tissue Fatty Acid Oxidation and Cold Tolerance*

    OpenAIRE

    Vergnes, Laurent; Chin, Robert; Young, Stephen G.; Reue, Karen

    2010-01-01

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3−/− mice exhibit ...

  18. New treatments using alginate in order to reduce the calcification of bovine bioprosthetic heart valve tissue.

    Science.gov (United States)

    Shanthi, C; Rao, K P

    1997-01-01

    Calcification limits the functional lifetime of cardiac valve substitutes fabricated from glutaraldehyde preserved bovine pericardium. Host factors, mainly younger age, and implant factors, mainly glutaraldehyde cross-linking, are implicated in the calcification process. Glutaraldehyde cross-linking is believed to activate the potential sites in the tissues for biocalcification. In the present work, we investigated the possibility of using alginate azide (AA) instead of glutaraldehyde for the preservation of pericardial tissues in order to enhance the durability of bioprosthetic heart valves. Grafting with poly(GMA-BA) copolymer to the alginate azide cross-linked pericardial (AACPC) tissue was carried out to obtain better stability, strength, and anticalcification properties. The strength property and thermal stability of the AA cross-linked tissues were studied. Calcification studies in rat subdermal models reveal that AA cross-linking reduces the calcification to negligible levels. After 30 days implantation, the calcium content was found to be 10.4 +/- 1.2 and 6.1 +/- 0.3 micrograms mg-1 for untreated AACPC and polymer grafted AACPC, respectively, compared to a value of 100 +/- 1.2 micrograms mg-1 calcium recorded for control glutaraldehyde cross-linked pericardial (GCPC) tissues.

  19. Human parvovirus PARV4 DNA in tissues from adult individuals: a comparison with human parvovirus B19 (B19V

    Directory of Open Access Journals (Sweden)

    Rotellini Matteo

    2010-10-01

    Full Text Available Abstract Background PARV4 is a new member of the Parvoviridae family not closely related to any of the known human parvoviruses. Viremia seems to be a hallmark of PARV4 infection and viral DNA persistence has been demonstrated in a few tissues. Till now, PARV4 has not been associated with any disease and its prevalence in human population has not been clearly established. This study was aimed to assess the tissue distribution and the ability to persist of PARV4 in comparison to parvovirus B19 (B19V. Results PARV4 and B19V DNA detection was carried out in various tissues of individuals without suspect of acute viral infection, by a real time PCR and a nested PCR, targeting the ORF2 and the ORF1 respectively. Low amount of PARV4 DNA was found frequently (>40% in heart and liver of adults individuals, less frequently in lungs and kidneys (23,5 and 18% respectively and was rare in bone marrow, skin and synovium samples (5,5%, 4% and 5%, respectively. By comparison, B19V DNA sequences were present in the same tissues with a higher frequency (significantly higher in myocardium, skin and bone marrow except than in liver where the frequency was the same of PARV4 DNA and in plasma samples where B19V frequency was significantly lower than that of PARV4 Conclusions The particular tropism of PARV4 for liver and heart, here emerged, suggests to focus further studies on these tissues as possible target for viral replication and on the possible role of PARV4 infection in liver and heart diseases. Neither bone marrow nor kidney seem to be a common target of viral replication.

  20. Tissue-specific mRNA expression profiles of human solute carrier 35 transporters.

    Science.gov (United States)

    Nishimura, Masuhiro; Suzuki, Satoshi; Satoh, Tetsuo; Naito, Shinsaku

    2009-01-01

    Pairs of forward and reverse primers and TaqMan probes specific to each of 23 human solute carrier 35 (SLC35) transporters were prepared. The mRNA expression level of each target transporter was analyzed in total RNA from single and pooled specimens of adult human tissues (adipose tissue, adrenal gland, bladder, bone marrow, brain, cerebellum, colon, heart, kidney, liver, lung, mammary gland, ovary, pancreas, peripheral leukocytes, placenta, prostate, retina, salivary gland, skeletal muscle, small intestine, smooth muscle, spinal cord, spleen, stomach, testis, thymus, thyroid gland, tonsil, trachea, and uterus), from pooled specimens of fetal human tissues (brain, heart, kidney, liver, spleen, and thymus), and from three human cell lines (HeLa cell line ATCC#: CCL-2, human cell line Hep G2, and human breast carcinoma cell line MDA-435) by real-time reverse transcription PCR using an Applied Biosystems 7500 Fast Real-Time PCR System. The mRNA expression of SLC35As, SLC35Bs, SLC35Cs, SLC35D1, SLC35D2, SLC35Es, and SLC35F5 was found to be ubiquitous in both adult and fetal tissues. SLC35D3 mRNA was expressed at the highest levels in the adult retina. SLC35F1 mRNA was expressed at high levels in the adult and fetal brain. SLC35F2 mRNA was expressed at the highest levels in the adult salivary gland. Both SLC35F3 and SLC35F4 mRNAs were expressed at the highest levels in the adult cerebellum. Further, individual differences in the mRNA expression levels of human SLC35 transporters in the liver were also evaluated. Our newly determined expression profiles were used to study the gene expression in 31 adult human tissues, 6 fetal human tissues, and 3 cell lines, and tissues with high transcriptional activity for human SLC35 transporters were identified. These results are expected to be valuable for research concerning the clinical diagnosis of disease.

  1. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns.

    Science.gov (United States)

    Lokk, Kaie; Modhukur, Vijayachitra; Rajashekar, Balaji; Märtens, Kaspar; Mägi, Reedik; Kolde, Raivo; Koltšina, Marina; Nilsson, Torbjörn K; Vilo, Jaak; Salumets, Andres; Tõnisson, Neeme

    2014-04-01

    DNA epigenetic modifications, such as methylation, are important regulators of tissue differentiation, contributing to processes of both development and cancer. Profiling the tissue-specific DNA methylome patterns will provide novel insights into normal and pathogenic mechanisms, as well as help in future epigenetic therapies. In this study, 17 somatic tissues from four autopsied humans were subjected to functional genome analysis using the Illumina Infinium HumanMethylation450 BeadChip, covering 486 428 CpG sites. Only 2% of the CpGs analyzed are hypermethylated in all 17 tissue specimens; these permanently methylated CpG sites are located predominantly in gene-body regions. In contrast, 15% of the CpGs are hypomethylated in all specimens and are primarily located in regions proximal to transcription start sites. A vast number of tissue-specific differentially methylated regions are identified and considered likely mediators of tissue-specific gene regulatory mechanisms since the hypomethylated regions are closely related to known functions of the corresponding tissue. Finally, a clear inverse correlation is observed between promoter methylation within CpG islands and gene expression data obtained from publicly available databases. This genome-wide methylation profiling study identified tissue-specific differentially methylated regions in 17 human somatic tissues. Many of the genes corresponding to these differentially methylated regions contribute to tissue-specific functions. Future studies may use these data as a reference to identify markers of perturbed differentiation and disease-related pathogenic mechanisms.

  2. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Argento, G; Simonet, M; Oomens, C W J; Baaijens, F P T

    2012-11-15

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the validation of a computational micro-scale model that takes into account the structural features of the electrospun material, and is suitable for studying the multi-scale scaffold mechanics. We show that the computational tool developed is able to describe and predict the mechanical behavior of electrospun scaffolds characterized by different microstructures. Moreover, we explore the global mechanical properties of valve-shaped scaffolds with different microstructural features, and compare the deformation of these scaffolds when submitted to diastolic pressures with a tissue engineered and a native valve. It is shown that a pronounced degree of anisotropy is necessary to reproduce the deformation patterns observed in the native heart valve.

  3. GLP-1 receptor localization in monkey and human tissue

    DEFF Research Database (Denmark)

    Pyke, Charles; Heller, R Scott; Kirk, Rikke Kaae

    2014-01-01

    and increase heart rate. Using a new monoclonal antibody for immunohistochemistry, we detected GLP-1 receptor (GLP-1R) in important target organs in humans and monkeys. In the pancreas, GLP-1R was predominantly localized in β-cells with a markedly weaker expression in acinar cells. Pancreatic ductal epithelial...

  4. Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients.

    Science.gov (United States)

    Kakimoto, Yu; Ito, Shinji; Abiru, Hitoshi; Kotani, Hirokazu; Ozeki, Munetaka; Tamaki, Keiji; Tsuruyama, Tatsuaki

    2013-12-16

    Few proteomic studies have examined human cardiac tissue following acute lethal infarction. Here, we applied a novel proteomic approach to formalin-fixed, paraffin-embedded human tissue and aimed to reveal the molecular changes in the very early phase of acute myocardial infarction. Heart tissue samples were collected from 5 patients who died within 7 hours of myocardial infarction and from 5 age- and sex-matched control cases. Infarcted and control myocardia were histopathologically diagnosed and captured using laser microdissection. Proteins were extracted using an originally established method and analyzed using liquid chromatography-tandem mass spectrometry. The label-free quantification demonstrated that the levels of 21 proteins differed significantly between patients and controls. In addition to known biomarkers, the sarcoplasmic protein sorbin and SH3 domain-containing protein 2 (SORBS2) was greatly reduced in infarcted myocardia. Immunohistochemical analysis of cardiac tissues confirmed the decrease, and Western blot analysis showed a significant increase in serum sorbin and SH3 domain-containing protein 2 in acute myocardial infarction patients (n=10) compared with control cases (n=11). Our advanced comprehensive analysis using patient tissues and serums indicated that sarcoplasmic sorbin and SH3 domain-containing protein 2 is released from damaged cardiac tissue into the bloodstream upon lethal acute myocardial infarction. The proteomic strategy presented here is based on precise microscopic findings and is quite useful for candidate biomarker discovery using human tissue samples stored in depositories.

  5. Transcriptomics resources of human tissues and organs.

    Science.gov (United States)

    Uhlén, Mathias; Hallström, Björn M; Lindskog, Cecilia; Mardinoglu, Adil; Pontén, Fredrik; Nielsen, Jens

    2016-04-04

    Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Multispot two-photon imaging of mice heart tissue detecting calcium waves

    Science.gov (United States)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, G.; Mongillo, M.; Pavone, F. S.

    2012-06-01

    High rate, full field image acquisition in multiphoton imaging is achievable by parallelization of the excitation and of the detection paths. Via a Diffractive Optical Elements (DOEs) which splits a pulsed laser, and a spatial resolved descanned detection path, a new approach to microscopy has been developed. By exploiting the three operating mode, single beam, 16 beamlets or 64 beamlets, the best experimental conditions can be found by adapting the power per beamlet. This Multiphoton Multispot system (MCube) has been characterized in thick tissue samples, and subsequently used for the first time for Ca2+ imaging of acute heart slices. A test sample with fixed mice heart slices with embedded sub-resolution fluorescent beads has been used to test the capability of optical axial resolution up to ~200 microns in depth. Radial and axial resolutions of 0.6 microns and 3 microns have been respectively obtained with a 40X water immersion objective, getting close to the theoretical limit. Then images of heart slices cardiomyocites, loaded with Fluo4-AM have been acquired. The formation of Ca2+ waves during electrostimulated beating has been observed, and the possibility of easily acquire full frame images at 15 Hz (16 beamlets) has been demonstrated, towards the in vivo study of time resolved cellular dynamics and arrhythmia trigger mechanisms in particular. A very high speed two-photon Random Access system for in vivo electrophysiological studies, towards the correlation of voltage and calcium signals in arrhythmia phenomena, is now under developing at Light4tech.

  7. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification ...

  8. Microarray-Based Differential Expression Monitoring of 79 Novel Genes in Human Fetal Tissues

    Institute of Scientific and Technical Information of China (English)

    Ma; Shu-hua; Wang; Dun-cheng; 等

    2003-01-01

    79 ESTs fragments with represents corresponding novel genes were obtained by sequencing and bioinformatics analysis of human fetal kidney cDNA library. Microarray was prepared by using these novel EST fragments by automatic spotting. Expression patters of 79 ESTs of novel genes from human fetal kidney were analyzed in fetal brain and fetal heart tissues of 20-week-and 26-week-age fetus by performing of cDNA chip hybridization. This provides clues for studying exact functions of the novel genes. 8 genes were obtained which were expressed differentially in the fetal brain and heart of 20-week-and 26-week-age respectively. Then differentially expressed genes were identified by Northern analysis. The more exact function of the novel genes is under study.

  9. Natural Rubber Nanocomposite with Human-Tissue-Like Mechanical Characteristic

    Science.gov (United States)

    Murniati, Riri; Novita, Nanda; Sutisna; Wibowo, Edy; Iskandar, Ferry; Abdullah, Mikrajuddin

    2017-07-01

    The blends of synthetic rubber and natural rubber with nanosilica were prepared using a blending technique in presence of different filler volume fraction. The effect of filler on morphological and mechanical characteristics was studied. Utilization of human cadaver in means of medical study has been commonly used primarily as tools of medical teaching and training such as surgery. Nonetheless, human cadaver brought inevitable problems. So it is necessary to find a substitute material that can be used to replace cadavers. In orthopaedics, the materials that resemble in mechanical properties to biological tissues are elastomers such as natural rubber (latex) and synthetic rubber (polyurethanes, silicones). This substitution material needs to consider the potential of Indonesia to help the development of the nation. Indonesia is the second largest country producer of natural rubber in the world. This paper aims to contribute to adjusting the mechanical properties of tissue-mimicking materials (TMMs) to the recommended range of biological tissue value and thus allow the development of phantoms with greater stability and similarity to human tissues. Repeatability for the phantom fabrication process was also explored. Characteristics were then compared to the control and mechanical characteristics of different human body part tissue. Nanosilica is the best filler to produce the best nanocomposite similarities with human tissue. We produced composites that approaching the properties of human internal tissues.

  10. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  11. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  12. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    Science.gov (United States)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  13. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel.

    Science.gov (United States)

    Johnson, Todd D; Dequach, Jessica A; Gaetani, Roberto; Ungerleider, Jessica; Elhag, Dean; Nigam, Vishal; Behfar, Atta; Christman, Karen L

    2014-01-01

    Heart failure (HF) after myocardial infarction (MI) is a leading cause of death in the western world with a critical need for new therapies. A previously developed injectable hydrogel derived from porcine myocardial matrix (PMM) has had successful results in both small and large animal MI models. In this study, we sought to evaluate the impact of tissue source on this biomaterial, specifically comparing porcine and human myocardium sources. We first developed an analogous hydrogel derived from human myocardial matrix (HMM). The biochemical and physical properties of the PMM and HMM hydrogels were then characterized, including residual dsDNA, protein content, sulfated glycosaminoglycan (sGAG) content, complex viscosity, storage and loss moduli, and nano-scale topography. Biochemical activity was investigated with in vitro studies for the proliferation of vascular cells and differentiation of human cardiomyocyte progenitor cells (hCMPCs). Next, in vivo gelation and material spread were confirmed for both PMM and HMM after intramyocardial injection. After extensive comparison, the matrices were found to be similar, yet did show some differences. Because of the rarity of collecting healthy human hearts, the increased difficulty in processing the human tissue, shifts in ECM composition due to aging, and significant patient-to-patient variability, these studies suggest that the HMM is not a viable option as a scalable product for the clinic; however, the HMM has potential as a tool for in vitro cell culture.

  14. Biomechanical conditioning of tissue engineered heart valves: Too much of a good thing?

    Science.gov (United States)

    Parvin Nejad, Shouka; Blaser, Mark C; Santerre, J Paul; Caldarone, Christopher A; Simmons, Craig A

    2016-01-15

    Surgical replacement of dysfunctional valves is the primary option for the treatment of valvular disease and congenital defects. Existing mechanical and bioprosthetic replacement valves are far from ideal, requiring concomitant anticoagulation therapy or having limited durability, thus necessitating further surgical intervention. Heart valve tissue engineering (HVTE) is a promising alternative to existing replacement options, with the potential to synthesize mechanically robust tissue capable of growth, repair, and remodeling. The clinical realization of a bioengineered valve relies on the appropriate combination of cells, biomaterials, and/or bioreactor conditioning. Biomechanical conditioning of valves in vitro promotes differentiation of progenitor cells to tissue-synthesizing myofibroblasts and prepares the construct to withstand the complex hemodynamic environment of the native valve. While this is a crucial step in most HVTE strategies, it also may contribute to fibrosis, the primary limitation of engineered valves, through sustained myofibrogenesis. In this review, we examine the progress of HVTE and the role of mechanical conditioning in the synthesis of mechanically robust tissue, and suggest approaches to achieve myofibroblast quiescence and prevent fibrosis.

  15. Trace Elements in the Conductive Tissue of Beef Heart Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P.O.

    1965-08-15

    By means of neutron activation analysis, samples of four beef hearts taken from the bundle of His and adjacent ventricular muscle, the AV node and adjacent atrial muscle are investigated with respect to the concentration of 23 trace elements. The bulk elements K, Na and P are also determined. A recently developed ion-exchange technique, combined with subsequent {gamma}-spectrometry, is used. The following trace elements are determined: Ag, As, Au, Ba, Br, .Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Rb, Sb, Sc, Se, Sm, W and Zn. In the conductive tissue compared to adjacent muscle tissue, calculations on a wet weight basis show a lower concentration of Cs, Cu, Fe, K, P, Rb and Zn in the former, and a higher concentration of Ag, Au, Br, Ca and Na. The mean differences ({mu}g/g wet tissue), as well as their degree of significance, between the bundle of His and adjacent tissue from the ventricular septum, between the AV node and adjacent atrial muscle, between the ventricular septum and the right atrium, and between the bundle of His and the AV node are given for the elements Cu, Fe, K, Na, P and Zn.

  16. Photon emission from normal and tumor human tissues.

    Science.gov (United States)

    Grasso, F; Grillo, C; Musumeci, F; Triglia, A; Rodolico, G; Cammisuli, F; Rinzivillo, C; Fragati, G; Santuccio, A; Rodolico, M

    1992-01-15

    Photon emission in the visible and near ultraviolet range by samples of human tissue removed during surgery has been measured by means of a low noise photomultiplier coupled to a data acquisition system. The results show that among the 25 analyzed samples the 9 from normal tissues had an emission rate of the order of some tens of photons/cm2 min, while most of the 16 tumor tissue samples had a very much higher rate.

  17. Training human mesenchymal stromal cells for bone tissue engineering applications

    NARCIS (Netherlands)

    Doorn, J.

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are an interesting source for cell therapies and tissue engineering applications, because these cells are able to differentiate into various target tissues, such as bone, cartilage, fat and endothelial cells. In addition, they secrete a wide array of growth fa

  18. Altered autophagy in human adipose tissues in obesity

    Science.gov (United States)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  19. Microwave non-contact imaging of subcutaneous human body tissues

    Science.gov (United States)

    Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-01-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415

  20. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  1. Activation and inhibition of the endogenous opioid system in human heart failure.

    OpenAIRE

    Oldroyd, K. G.; Gray, C E; Carter, R.; Harvey, K.; Borland, W; BEASTALL, G; Cobbe, S M

    1995-01-01

    BACKGROUND--In a canine model of congestive heart failure beta endorphin concentrations were high and opioid receptor antagonists exerted beneficial haemodynamic effects. In humans previous studies have suggested that opioid peptides may modify the perception of breathlessness and fatigue in heart failure. METHODS--Plasma concentrations of beta endorphin were measured in patients with acute and chronic heart failure and cardiogenic shock. A subgroup of eight patients with New York Heart Assoc...

  2. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography

    Science.gov (United States)

    Li, Peng; Liu, Aiping; Shi, Liang; Yin, Xin; Rugonyi, Sandra; Wang, Ruikang K.

    2011-11-01

    We present a method to assess the in vivo radial strain and strain rate of the myocardial wall, which is of great importance to understand the biomechanics of cardiac development, using tissue Doppler optical coherence tomography (tissue-DOCT). Combining the structure and velocity information acquired from tissue-DOCT, the velocity distribution in the myocardial wall is plotted, from which the radial strain and strain rate are evaluated. The results demonstrate that tissue-DOCT can be used as a useful tool to describe tissue deformation, especially, the biomechanical characteristics of the embryonic heart.

  3. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    Directory of Open Access Journals (Sweden)

    Maura Brioschi

    Full Text Available Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF. The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14 and non-failing human hearts (n = 13 were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS, the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01. We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK, whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  4. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    Science.gov (United States)

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  5. Human heart rate variability relation is unchanged during motion sickness

    Science.gov (United States)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  6. Emergence of dynamical complexity related to human heart rate variability

    Science.gov (United States)

    Chang, Mei-Chu; Peng, C.-K.; Stanley, H. Eugene

    2014-12-01

    We apply the refined composite multiscale entropy (MSE) method to a one-dimensional directed small-world network composed of nodes whose states are binary and whose dynamics obey the majority rule. We find that the resulting fluctuating signal becomes dynamically complex. This dynamical complexity is caused (i) by the presence of both short-range connections and long-range shortcuts and (ii) by how well the system can adapt to the noisy environment. By tuning the adaptability of the environment and the long-range shortcuts we can increase or decrease the dynamical complexity, thereby modeling trends found in the MSE of a healthy human heart rate in different physiological states. When the shortcut and adaptability values increase, the complexity in the system dynamics becomes uncorrelated.

  7. Ultrastructural changes, increased oxidative stress, inflammation, and altered cardiac hypertrophic gene expressions in heart tissues of rats exposed to incense smoke.

    Science.gov (United States)

    Al-Attas, Omar S; Hussain, Tajamul; Ahmed, Mukhtar; Al-Daghri, Nasser; Mohammed, Arif A; De Rosas, Edgard; Gambhir, Dikshit; Sumague, Terrance S

    2015-07-01

    Incense smoke exposure has recently been linked to cardiovascular disease risk, heart rate variability, and endothelial dysfunction. To test the possible underlying mechanisms, oxidative stress, and inflammatory markers, gene expressions of cardiac hypertrophic and xenobiotic-metabolizing enzymes and ultrastructural changes were measured, respectively, using standard, ELISA-based, real-time PCR, and transmission electron microscope procedures in heart tissues of Wistar rats after chronically exposing to Arabian incense. Malondialdehyde, tumor necrosis alpha (TNF)-α, and IL-4 levels were significantly increased, while catalase and glutathione levels were significantly declined in incense smoke-exposed rats. Incense smoke exposure also resulted in a significant increase in atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, CYP1A1 and CYP1A2 messenger RNAs (mRNAs). Rats exposed to incense smoke displayed marked ultrastructural changes in heart muscle with distinct cardiac hypertrophy, which correlated with the augmented hypertrophic gene expression as well as markers of cardiac damage including creatine kinase-myocardial bound (CK-MB) and lactate dehydrogenase (LDH). Increased oxidative stress, inflammation, altered cardiac hypertrophic gene expression, tissue damage, and architectural changes in the heart may collectively contribute to increased cardiovascular disease risk in individuals exposed to incense smoke. Increased gene expressions of CYP1A1 and CYP1A2 may be instrumental in the incense smoke-induced oxidative stress and inflammation. Thus, incense smoke can be considered as a potential environmental pollutant and its long-term exposure may negatively impact human health.

  8. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  9. Decellularization of human and porcine lung tissues for pulmonary tissue engineering.

    Science.gov (United States)

    O'Neill, John D; Anfang, Rachel; Anandappa, Annabelle; Costa, Joseph; Javidfar, Jeffrey; Wobma, Holly M; Singh, Gopal; Freytes, Donald O; Bacchetta, Matthew D; Sonett, Joshua R; Vunjak-Novakovic, Gordana

    2013-09-01

    The only definitive treatment for end-stage organ failure is orthotopic transplantation. Lung extracellular matrix (LECM) holds great potential as a scaffold for lung tissue engineering because it retains the complex architecture, biomechanics, and topologic specificity of the lung. Decellularization of human lungs rejected from transplantation could provide "ideal" biologic scaffolds for lung tissue engineering, but the availability of such lungs remains limited. The present study was designed to determine whether porcine lung could serve as a suitable substitute for human lung to study tissue engineering therapies. Human and porcine lungs were procured, sliced into sheets, and decellularized by three different methods. Compositional, ultrastructural, and biomechanical changes to the LECM were characterized. The suitability of LECM for cellular repopulation was evaluated by assessing the viability, growth, and metabolic activity of human lung fibroblasts, human small airway epithelial cells, and human adipose-derived mesenchymal stem cells over a period of 7 days. Decellularization with 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) showed the best maintenance of both human and porcine LECM, with similar retention of LECM proteins except for elastin. Human and porcine LECM supported the cultivation of pulmonary cells in a similar way, except that the human LECM was stiffer and resulted in higher metabolic activity of the cells than porcine LECM. Porcine lungs can be decellularized with CHAPS to produce LECM scaffolds with properties resembling those of human lungs, for pulmonary tissue engineering. We propose that porcine LECM can be an excellent screening platform for the envisioned human tissue engineering applications of decellularized lungs. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    Science.gov (United States)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  11. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  12. Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.

    Science.gov (United States)

    Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian

    2017-06-22

    Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gender differences in electrophysiological gene expression in failing and non-failing human hearts.

    Directory of Open Access Journals (Sweden)

    Christina M Ambrosi

    Full Text Available The increasing availability of human cardiac tissues for study are critically important in increasing our understanding of the impact of gender, age, and other parameters, such as medications and cardiac disease, on arrhythmia susceptibility. In this study, we aimed to compare the mRNA expression of 89 ion channel subunits, calcium handling proteins, and transcription factors important in cardiac conduction and arrhythmogenesis in the left atria (LA and ventricles (LV of failing and nonfailing human hearts of both genders. Total RNA samples, prepared from failing male (n = 9 and female (n = 7, and from nonfailing male (n = 9 and female (n = 9 hearts, were probed using custom-designed Taqman gene arrays. Analyses were performed to explore the relationships between gender, failure state, and chamber expression. Hierarchical cluster analysis revealed chamber specific expression patterns, but failed to identify disease- or gender-dependent clustering. Gender-specific analysis showed lower expression levels in transcripts encoding for K(v4.3, KChIP2, K(v1.5, and K(ir3.1 in the failing female as compared with the male LA. Analysis of LV transcripts, however, did not reveal significant differences based on gender. Overall, our data highlight the differential expression and transcriptional remodeling of ion channel subunits in the human heart as a function of gender and cardiac disease. Furthermore, the availability of such data sets will allow for the development of disease-, gender-, and, most importantly, patient-specific cardiac models, with the ability to utilize such information as mRNA expression to predict cardiac phenotype.

  14. I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology.

    Science.gov (United States)

    Sidorov, Veniamin Y; Samson, Philip C; Sidorova, Tatiana N; Davidson, Jeffrey M; Lim, Chee C; Wikswo, John P

    2017-01-15

    Engineered 3D cardiac tissue constructs (ECTCs) can replicate complex cardiac physiology under normal and pathological conditions. Currently, most measurements of ECTC contractility are either made isometrically, with fixed length and without control of the applied force, or auxotonically against a variable force, with the length changing during the contraction. The "I-Wire" platform addresses the unmet need to control the force applied to ECTCs while interrogating their passive and active mechanical and electrical characteristics. A six-well plate with inserted PDMS casting molds containing neonatal rat cardiomyocytes cultured with fibrin for 13-15days is mounted on the motorized mechanical stage of an inverted microscope equipped with a fast sCMOS camera. A calibrated flexible probe provides strain load of the ECTC via lateral displacement, and the microscope detects the deflections of both the probe and the ECTC. The ECTCs exhibited longitudinally aligned cardiomyocytes with well-developed sarcomeric structure, recapitulated the Frank-Starling force-tension relationship, and demonstrated expected transmembrane action potentials, electrical and mechanical restitutions, and responses to both β-adrenergic stimulation and blebbistatin. The I-Wire platform enables creation and mechanical and electrical characterization of ECTCs, and hence can be valuable in the study of cardiac diseases, drug screening, drug development, and the qualification of cells for tissue-engineered regenerative medicine. There is a growing interest in creating engineered heart tissue constructs for basic cardiac research, applied research in cardiac pharmacology, and repair of damaged hearts. We address an unmet need to characterize fully the performance of these tissues with our simple "I-Wire" assay that allows application of controlled forces to three-dimensional cardiac fiber constructs and measurement of both the electrical and mechanical properties of the construct. The advantage of I

  15. Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model.

    Science.gov (United States)

    Im, Uk Bin; Kwon, Soon Sung; Kim, Kiwoong; Lee, Yong Ho; Park, Yong Ki; Youn, Chan Hyun; Shim, Eun Bo

    2008-01-01

    We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.

  16. A Simple Dissection Method for the Conduction System of the Human Heart

    Science.gov (United States)

    Yanagawa, Nariaki; Nakajima, Yuji

    2009-01-01

    A simple dissection guide for the conduction system of the human heart is shown. The atrioventricular (AV) node, AV bundle, and right bundle branch were identified in a formaldehyde-fixed human heart. The sinu-atrial (SA) node could not be found, but the region in which SA node was contained was identified using the SA nodal artery. Gross…

  17. A Simple Dissection Method for the Conduction System of the Human Heart

    Science.gov (United States)

    Yanagawa, Nariaki; Nakajima, Yuji

    2009-01-01

    A simple dissection guide for the conduction system of the human heart is shown. The atrioventricular (AV) node, AV bundle, and right bundle branch were identified in a formaldehyde-fixed human heart. The sinu-atrial (SA) node could not be found, but the region in which SA node was contained was identified using the SA nodal artery. Gross…

  18. Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba.

    Science.gov (United States)

    Ferreira, Renata Maria; Costa, Marise Teresinha Brenner Affonso da; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira

    2016-04-01

    Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors.

  19. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure.

    Science.gov (United States)

    Vegter, Eline L; Ovchinnikova, Ekaterina S; Silljé, Herman H W; Meems, Laura M G; van der Pol, Atze; van der Velde, A Rogier; Berezikov, Eugene; Voors, Adriaan A; de Boer, Rudolf A; van der Meer, Peter

    2017-01-01

    We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.

  20. Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep.

    Science.gov (United States)

    Theodoridis, Karolina; Tudorache, Igor; Calistru, Alexandru; Cebotari, Serghei; Meyer, Tanja; Sarikouch, Samir; Bara, Christoph; Brehm, Ralph; Haverich, Axel; Hilfiker, Andres

    2015-06-01

    In vivo repopulation of decellularized allografts with recipient cells leads to a positive remodeling of the graft matrix in juvenile sheep. In light of the increasing number of heart valve replacements among older patients (>65 years), this study focused on the potential for matrix-guided tissue regeneration in elderly sheep. Pulmonary valve replacement was performed in seven-year old sheep using decellularized (DV), decellularized and CCN1-coated (RV), or decellularized and in vitro reendothelialized pulmonary allografts (REV) (n=6, each group). CCN1 coating was applied to support re-endothelialization. In vitro re-endothelialization was conducted with endothelial-like cells derived from peripheral blood. Echocardiograms of all grafts showed adequate graft function after implantation and at explantation 3 or 6 months later. All explants were macroscopically free of thrombi at explantation, and revealed repopulation of the allografts on the adventitial side of valvular walls and proximal in the cusps. Engrafted cells expressed vimentin, sm α-actin, and myosin heavy chain 2, while luminal cell lining was positive for vWF and eNOS. Cellular repopulation of valvular matrix demonstrates the capacity for matrix-guided regeneration even in elderly sheep but is not improved by in vitro endothelialization, confirming the suitability of decellularized matrix for heart valve replacement in older individuals.

  1. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue

    Science.gov (United States)

    Cuello, Friederike; Luther, Pradeep; Schulze, Thomas; Eder, Alexandra; Streichert, Thomas; Mannhardt, Ingra; Hirt, Marc N.; Schaaf, Sebastian; Stenzig, Justus; Force, Thomas

    2016-01-01

    Introduction Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. Methods and Results We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). Conclusion This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux. PMID:26840448

  2. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog.

    Science.gov (United States)

    LeGrice, I J; Smaill, B H; Chai, L Z; Edgar, S G; Gavin, J B; Hunter, P J

    1995-08-01

    We have studied the three-dimensional arrangement of ventricular muscle cells and the associated extracellular connective tissue matrix in dog hearts. Four hearts were potassium-arrested, excised, and perfusion-fixed at zero transmural pressure. Full-thickness segments were cut from the right and left ventricular walls at a series of precisely located sites. Morphology was visualized macroscopically and with scanning electron microscopy in 1) transmural planes of section and 2) planes tangential to the epicardial surface. The appearance of all specimens was consistent with an ordered laminar arrangement of myocytes with extensive cleavage planes between muscle layers. These planes ran radially from endocardium toward epicardium in transmural section and coincided with the local muscle fiber orientation in tangential section. Stereological techniques were used to quantify aspects of this organization. There was no consistent variation in the cellular organization of muscle layers (48.4 +/- 20.4 microns thick and 4 +/- 2 myocytes across) transmurally or in different ventricular regions (23 sites in 6 segments), but there was significant transmural variation in the coupling between adjacent layers. The number of branches between layers decreased twofold from subepicardium to midwall, whereas the length distribution of perimysial collagen fibers connecting muscle layers was greatest in the midwall. We conclude that ventricular myocardium is not a uniformly branching continuum but a laminar hierarchy in which it is possible to identify three axes of material symmetry at any point.

  3. 21 CFR 1270.43 - Retention, recall, and destruction of human tissue.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retention, recall, and destruction of human tissue... HUMAN TISSUE INTENDED FOR TRANSPLANTATION Inspection of Tissue Establishments § 1270.43 Retention, recall, and destruction of human tissue. (a) Upon a finding that human tissue may be in violation of the...

  4. Transcriptional regulation of the sodium channel gene (SCN5A) by GATA4 in human heart.

    Science.gov (United States)

    Tarradas, Anna; Pinsach-Abuin, Mel Lina; Mackintosh, Carlos; Llorà-Batlle, Oriol; Pérez-Serra, Alexandra; Batlle, Montserrat; Pérez-Villa, Félix; Zimmer, Thomas; Garcia-Bassets, Ivan; Brugada, Ramon; Beltran-Alvarez, Pedro; Pagans, Sara

    2017-01-01

    Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Human natural killer cell development in secondary lymphoid tissues.

    Science.gov (United States)

    Freud, Aharon G; Yu, Jianhua; Caligiuri, Michael A

    2014-04-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34(+)CD45RA(+) hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Human natural killer cell development in secondary lymphoid tissues

    Science.gov (United States)

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  7. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues

    Science.gov (United States)

    Basha, Omer; Barshir, Ruth; Sharon, Moran; Lerman, Eugene; Kirson, Binyamin F.; Hekselman, Idan; Yeger-Lotem, Esti

    2017-01-01

    Knowledge of the molecular interactions of human proteins within tissues is important for identifying their tissue-specific roles and for shedding light on tissue phenotypes. However, many protein–protein interactions (PPIs) have no tissue-contexts. The TissueNet database bridges this gap by associating experimentally-identified PPIs with human tissues that were shown to express both pair-mates. Users can select a protein and a tissue, and obtain a network view of the query protein and its tissue-associated PPIs. TissueNet v.2 is an updated version of the TissueNet database previously featured in NAR. It includes over 40 human tissues profiled via RNA-sequencing or protein-based assays. Users can select their preferred expression data source and interactively set the expression threshold for determining tissue-association. The output of TissueNet v.2 emphasizes qualitative and quantitative features of query proteins and their PPIs. The tissue-specificity view highlights tissue-specific and globally-expressed proteins, and the quantitative view highlights proteins that were differentially expressed in the selected tissue relative to all other tissues. Together, these views allow users to quickly assess the unique versus global functionality of query proteins. Thus, TissueNet v.2 offers an extensive, quantitative and user-friendly interface to study the roles of human proteins across tissues. TissueNet v.2 is available at http://netbio.bgu.ac.il/tissuenet. PMID:27899616

  8. Study of myocardial cell inhomogeneity of the human heart: Simulation and validation using polarized light imaging.

    Science.gov (United States)

    Desrosiers, Paul Audain; Michalowicz, Gabrielle; Jouk, Pierre-Simon; Usson, Yves; Zhu, Yuemin

    2016-05-01

    The arrangement or architecture of myocardial cells plays a fundamental role in the heart's function and its change was shown to be directly linked to heart diseases. Inhomogeneity level is an important index of myocardial cell arrangements in the human heart. The authors propose to investigate the inhomogeneity level of myocardial cells using polarized light imaging simulations and experiments. The idea is based on the fact that the myosin filaments in myocardial cells have the same properties as those of a uniaxial birefringent crystal. The method then consists in modeling the myosin filaments of myocardial cells as uniaxial birefringent crystal, simulating the behavior of the latter by means of the Mueller matrix, and measuring the final intensity of polarized light and consequently the inhomogeneity level of myocardial cells in each voxel through the use of crossed polarizers. The method was evaluated on both simulated and real tissues and under various myocardial cell configurations including parallel cells, crossed cells, and cells with random orientations. When myocardial cells run perfectly parallel to each other, all the polarized light was blocked by those parallel myocardial cells, and a high homogeneity level was observed. However, if myocardial cells were not parallel to each other, some leakage of the polarized light was observed, thus causing the decrease of the polarized light amplitude and homogeneity level. The greater the crossing angle between myocardial cells, the smaller the amplitude of the polarized light and the greater the inhomogeneity level. For two populations of myocardial cell crossing at an angle, the resulting azimuth angle of the voxel was the bisector of this angle. Moreover, the value of the inhomogeneity level began to decrease from a nonzero value when the voxel was not totally homogeneous, containing for example cell crossing. The proposed method enables the physical information of myocardial tissues to be estimated and the

  9. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  10. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  11. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  12. Genome-wide analysis of alternative splicing during human heart development

    Science.gov (United States)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-01-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development. PMID:27752099

  13. Genome-wide analysis of alternative splicing during human heart development

    Science.gov (United States)

    Wang, He; Chen, Yanmei; Li, Xinzhong; Chen, Guojun; Zhong, Lintao; Chen, Gangbing; Liao, Yulin; Liao, Wangjun; Bin, Jianping

    2016-10-01

    Alternative splicing (AS) drives determinative changes during mouse heart development. Recent high-throughput technological advancements have facilitated genome-wide AS, while its analysis in human foetal heart transition to the adult stage has not been reported. Here, we present a high-resolution global analysis of AS transitions between human foetal and adult hearts. RNA-sequencing data showed extensive AS transitions occurred between human foetal and adult hearts, and AS events occurred more frequently in protein-coding genes than in long non-coding RNA (lncRNA). A significant difference of AS patterns was found between foetal and adult hearts. The predicted difference in AS events was further confirmed using quantitative reverse transcription-polymerase chain reaction analysis of human heart samples. Functional foetal-specific AS event analysis showed enrichment associated with cell proliferation-related pathways including cell cycle, whereas adult-specific AS events were associated with protein synthesis. Furthermore, 42.6% of foetal-specific AS events showed significant changes in gene expression levels between foetal and adult hearts. Genes exhibiting both foetal-specific AS and differential expression were highly enriched in cell cycle-associated functions. In conclusion, we provided a genome-wide profiling of AS transitions between foetal and adult hearts and proposed that AS transitions and deferential gene expression may play determinative roles in human heart development.

  14. Tissue-Mimicking Geometrical Constraints Stimulate Tissue-Like Constitution and Activity of Mouse Neonatal and Human-Induced Pluripotent Stem Cell-Derived Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Götz Pilarczyk

    2016-01-01

    Full Text Available The present work addresses the question of to what extent a geometrical support acts as a physiological determining template in the setup of artificial cardiac tissue. Surface patterns with alternating concave to convex transitions of cell size dimensions were used to organize and orientate human-induced pluripotent stem cell (hIPSC-derived cardiac myocytes and mouse neonatal cardiac myocytes. The shape of the cells, as well as the organization of the contractile apparatus recapitulates the anisotropic line pattern geometry being derived from tissue geometry motives. The intracellular organization of the contractile apparatus and the cell coupling via gap junctions of cell assemblies growing in a random or organized pattern were examined. Cell spatial and temporal coordinated excitation and contraction has been compared on plain and patterned substrates. While the α-actinin cytoskeletal organization is comparable to terminally-developed native ventricular tissue, connexin-43 expression does not recapitulate gap junction distribution of heart muscle tissue. However, coordinated contractions could be observed. The results of tissue-like cell ensemble organization open new insights into geometry-dependent cell organization, the cultivation of artificial heart tissue from stem cells and the anisotropy-dependent activity of therapeutic compounds.

  15. High and low mammographic density human breast tissues maintain histological differential in murine tissue engineering chambers.

    Science.gov (United States)

    Chew, G L; Huang, D; Lin, S J; Huo, C; Blick, T; Henderson, M A; Hill, P; Cawson, J; Morrison, W A; Campbell, I G; Hopper, J L; Southey, M C; Haviv, I; Thompson, E W

    2012-08-01

    Mammographic density (MD) is the area of breast tissue that appears radiologically white on mammography. Although high MD is a strong risk factor for breast cancer, independent of BRCA1/2 mutation status, the molecular basis of high MD and its associated breast cancer risk is poorly understood. MD studies will benefit from an animal model, where hormonal, gene and drug perturbations on MD can be measured in a preclinical context. High and low MD tissues were selectively sampled by stereotactic biopsy from operative specimens of high-risk women undergoing prophylactic mastectomy. The high and low MD tissues were transferred into separate vascularised biochambers in the groins of SCID mice. Chamber material was harvested after 6 weeks for histological analyses and immunohistochemistry for cytokeratins, vimentin and a human-specific mitochondrial antigen. Within-individual analysis was performed in replicate mice, eliminating confounding by age, body mass index and process-related factors, and comparisons were made to the parental human tissue. Maintenance of differential MD post-propagation was assessed radiographically. Immunohistochemical staining confirmed the preservation of human glandular and stromal components in the murine biochambers, with maintenance of radiographic MD differential. Propagated high MD regions had higher stromal (p = 0.0002) and lower adipose (p = 0.0006) composition, reflecting the findings in the original human breast tissue, although glands appeared small and non-complex in both high and low MD groups. No significant differences were observed in glandular area (p = 0.4) or count (p = 0.4) between high and low MD biochamber tissues. Human mammary glandular and stromal tissues were viably maintained in murine biochambers, with preservation of differential radiographic density and histological features. Our study provides a murine model for future studies into the biomolecular basis of MD as a risk factor for breast cancer.

  16. Rice Germosprout Extract Protects Erythrocytes from Hemolysis and the Aorta, Brain, Heart, and Liver Tissues from Oxidative Stress In Vitro

    Science.gov (United States)

    Hussain, Jakir; Islam, Saiful

    2016-01-01

    Identifying dietary alternatives for artificial antioxidants capable of boosting antihemolytic and antioxidative defense has been an important endeavor in improving human health. In the present study, we studied antihemolytic and antioxidative effects of germosprout (i.e., the germ part along with sprouted stems plus roots) extract prepared from the pregerminated rice. The extract contained considerable amounts of antioxidant β-carotene (414 ± 12 ng/g of extract) and phytochemicals such as total polyphenols (12.0 ± 1.1 mg gallic acid equivalent/g of extract) and flavonoids (11.0 ± 1.4 mg catechin equivalent/g of extract). The antioxidant potential of the extract was assessed by its DPPH- (2,2-diphenyl-1-picrylhydrazyl-) free radical scavenging activity where we observed that germosprout extract had considerable antioxidative potentials. To evaluate antihemolytic effect of the extract, freshly prepared erythrocytes were incubated with either peroxynitrite or Fenton's reagent in the absence or presence of the extract. We observed that erythrocytes pretreated with the extract exhibited reduced degree of in vitro hemolysis. To support the proposition that germosprout extract could act as a good antioxidative agent, we also induced in vitro oxidative stress in erythrocyte membranes and in the aorta, brain, heart, and liver tissue homogenates in the presence of the extract. As expected, germosprout extract decreased oxidative stress almost to the same extent as that of vitamin E, as measured by lipid peroxide levels, in all the mentioned tissues. We conclude that rice germosprout extract could be a good natural source of antioxidants to reduce oxidative stress-induced hemolysis and damage of blood vessels and other tissues. PMID:27413391

  17. Rice Germosprout Extract Protects Erythrocytes from Hemolysis and the Aorta, Brain, Heart, and Liver Tissues from Oxidative Stress In Vitro

    Directory of Open Access Journals (Sweden)

    Shahdat Hossain

    2016-01-01

    Full Text Available Identifying dietary alternatives for artificial antioxidants capable of boosting antihemolytic and antioxidative defense has been an important endeavor in improving human health. In the present study, we studied antihemolytic and antioxidative effects of germosprout (i.e., the germ part along with sprouted stems plus roots extract prepared from the pregerminated rice. The extract contained considerable amounts of antioxidant β-carotene (414±12 ng/g of extract and phytochemicals such as total polyphenols (12.0±1.1 mg gallic acid equivalent/g of extract and flavonoids (11.0±1.4 mg catechin equivalent/g of extract. The antioxidant potential of the extract was assessed by its DPPH- (2,2-diphenyl-1-picrylhydrazyl- free radical scavenging activity where we observed that germosprout extract had considerable antioxidative potentials. To evaluate antihemolytic effect of the extract, freshly prepared erythrocytes were incubated with either peroxynitrite or Fenton’s reagent in the absence or presence of the extract. We observed that erythrocytes pretreated with the extract exhibited reduced degree of in vitro hemolysis. To support the proposition that germosprout extract could act as a good antioxidative agent, we also induced in vitro oxidative stress in erythrocyte membranes and in the aorta, brain, heart, and liver tissue homogenates in the presence of the extract. As expected, germosprout extract decreased oxidative stress almost to the same extent as that of vitamin E, as measured by lipid peroxide levels, in all the mentioned tissues. We conclude that rice germosprout extract could be a good natural source of antioxidants to reduce oxidative stress-induced hemolysis and damage of blood vessels and other tissues.

  18. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle

    OpenAIRE

    Morash, Andrea J.; Kotwica, Aleksandra O; Murray, Andrew J.

    2013-01-01

    Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O2) on the transcription fac...

  19. Structure and function relationship of human heart from DENSE MRI

    Science.gov (United States)

    Moghaddam, Abbas N.; Gharib, Morteza

    2007-03-01

    The study here, suggests a macroscopic structure for the Left Ventricle (LV), based on the heart kinematics which is obtained through imaging. The measurement of the heart muscle deformation using the Displacement ENcoding with Stimulated Echoes (DENSE) MRI, which describes the heart kinematics in the Lagrangian frame work, is used to determine the high resolution patterns of true myocardial strain. Subsequently, the tangential Shortening Index (SI) and the thickening of the LV wall are calculated for each data point. Considering the heart as a positive-displacement pump, the contribution of each segment of LV in the heart function, can be determined by the SI and thickening of the wall in the same portion. Hence the SI isosurfaces show the extent and spatial distribution of the heart activity and reveals its macro structure. The structure and function of the heart are, therefore, related which in turn results in a macroscopic model for the LV. In particular, it was observed that the heart functionality is not uniformly distributed in the LV, and the regions with greater effect on the pumping process, form a band which wraps around the heart. These results, which are supported by the established histological evidence, may be considered as a landmark in connecting the structure and function of the heart through imaging. Furthermore, the compatibility of this model with microscopic observations about the fiber direction is investigated. This method may be used for planning as well as post evaluation of the ventriculoplasty.

  20. 3D reconstruction of a human heart fascicle using SurfDriver

    Science.gov (United States)

    Rader, Robert J.; Phillips, Steven J.; LaFollette, Paul S., Jr.

    2000-06-01

    The Temple University Medical School has a sequence of over 400 serial sections of adult normal ventricular human heart tissue, cut at 25 micrometer thickness. We used a Zeiss Ultraphot with a 4x planapo objective and a Pixera digital camera to make a series of 45 sequential montages to use in the 3D reconstruction of a fascicle (muscle bundle). We wrote custom software to merge 4 smaller image fields from each section into one composite image. We used SurfDriver software, developed by Scott Lozanoff of the University of Hawaii and David Moody of the University of Alberta, for registration, object boundary identification, and 3D surface reconstruction. We used an Epson Stylus Color 900 printer to get photo-quality prints. We describe the challenge and our solution to the following problems: image acquisition and digitization, image merge, alignment and registration, boundary identification, 3D surface reconstruction, 3D visualization and orientation, snapshot, and photo-quality prints.

  1. Engineered human broncho-epithelial tissue-like assemblies

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  2. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  3. Argonaute proteins in cardiac tissue contribute to the heart injury during viral myocarditis.

    Science.gov (United States)

    Sun, Shougang; Ma, Jialiang; Zhang, Quan; Wang, Qiongying; Zhou, Lei; Bai, Feng; Hu, Hao; Chang, Peng; Yu, Jing; Gao, Bingren

    2016-01-01

    MicroRNAs (miRNAs) are a group of short, noncoding, regulatory RNA molecules the dysregulation of which contributes to the pathogenesis of myocarditis. Argonaute proteins are essential components of miRNA-induced silencing complex and play important roles during miRNA biogenesis and function. However, the expression pattern of four AGO family members has not yet been detected in the coxsackievirus B3 (CVB3)-induced myocarditis tissue samples. In this study, we detected the expression of four AGOs in the CVB3-infected mouse heart tissues and found that AGO1 and AGO3 up-regulated significantly at 4 and 8h after CVB3 infection. Further in vitro research indicated that up-regulated AGO1 and AGO3 are related to the down-regulated TNFAIP3, which is a negative regulator of NF-κB pathway. Subsequently, we confirmed that TNFAIP3 is a direct target of miR-19a/b, and during CVB3 infection, the expression of miR-19a/b and miR-125a/b is not significantly changed. TNFAIP3 level is mainly reduced by up-regulated AGO1 and AGO3. This research sheds light on the relationship between overexpressed AGO proteins and CVB3-induced myocarditis, and this provides potential therapeutic target for viral myocarditis.

  4. Myocardial tissue Doppler velocities in fetuses with hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Himesh V Vyas

    2011-01-01

    Full Text Available Background : Tissue Doppler Imaging (TDI is a sensitive index of myocardial function. Its role in the fetus has not been extensively evaluated. Objective: To compare myocardial tissue Doppler velocities in fetuses with hypoplastic left heart syndrome (HLHS to those of normal fetuses (matched for gestational age. Methods: Cross-sectional retrospective study conducted at 2 large perinatal centers (2003-2007. Fetuses with HLHS ( n = 13 were compared with normal fetuses ( n = 207 in 5 gestational age groups. TDI data included peak systolic (s′, peak early (e′, and late diastolic velocities (a′. Linear regression was used to compare TDI parameters in fetuses with HLHS to normal fetuses matched for gestational age. Results: Fetuses with HLHS had significantly reduced lateral tricuspid annular e′ as compared to normal fetuses. Both normal fetuses and those with HLHS had linear increase in TDI velocities with advancing gestational age. Conclusions: TDI velocities are abnormal in fetuses with HLHS. TDI can be useful in serial follow-up of cardiac function in fetuses with HLHS.

  5. Neighborhood safety and adipose tissue distribution in African Americans: the Jackson Heart Study.

    Directory of Open Access Journals (Sweden)

    Do Quyen Pham

    Full Text Available OBJECTIVE: Patterns of fat distribution are heavily influenced by psychological stress, sex, and among women, by menopause status. Emerging evidence suggests the lack of perceived neighborhood safety due to crime may contribute to psychological stress and obesity among exposed residents. Our objective is to determine if perceived neighborhood safety is associated with abdominal adiposity among African-American men and women, and among pre- and postmenopausal women in the Jackson Heart Study. DESIGN AND METHODS: We examined associations between perceived neighborhood safety, fat distribution, and other individual-level covariates among Jackson Heart Study participants (N = 2,881. Abdominal adiposity was measured via computed tomography scans measuring the volumes of visceral, subcutaneous and total adipose tissue. We also measured body mass index (BMI, and waist circumference. Multivariable regression models estimated associations between perceived neighborhood safety, adiposity, and covariates by sex and menopause status. RESULTS: Adjusting for all covariates, women who strongly disagreed their neighborhood was safe from crime had a higher BMI compared to women who felt safe [Std B 0.083 95% CI (0.010, 0.156]. Premenopausal women who felt most unsafe had higher BMI, waist circumference, and volumes of visceral and total adipose tissue than those who felt safe [Std B 0.160 (0.021, 0.299, Std B 0.142 (0.003, 0.280, Std B 0.150 (0.014, 0.285, Std B 0.154 (0.019, 0.290, respectively]. We did not identify associations between neighborhood safety and adiposity among men and postmenopausal women. CONCLUSIONS: Our data suggest that abdominal adipose tissue distribution patterns are associated with perceived neighborhood safety in some groups, and that patterns may differ by sex and menopause status, with most associations observed among pre-menopausal women. Further research is needed to elucidate whether there are causal mechanisms underlying sex

  6. Advancing biomaterials of human origin for tissue engineering.

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2016-02-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  7. Muscarinic M3 receptor subtype gene expression in the human heart.

    Science.gov (United States)

    Hellgren, I; Mustafa, A; Riazi, M; Suliman, I; Sylvén, C; Adem, A

    2000-01-20

    The heart is an important target organ for cholinergic function. In this study, muscarinic receptor subtype(s) in the human heart were determined using reverse transcription-polymerase chain reaction. Our results demonstrated muscarinic receptor M2 and M3 subtype RNA in left/right atria/ventricles of donor hearts. Receptor autoradiography analysis using selective muscarinic ligands indicated an absence of M1 receptor subtype in the human heart. The level of muscarinic receptor binding in atria was two to three times greater than in ventricles. Our results suggest that muscarinic receptors in the human heart are of the M2 and M3 subtypes. This is the first report of M3 receptors in the human myocardium.

  8. Olfactomedin-like 3 (OLFML3) gene expression in baboon and human ocular tissues: cornea, lens, uvea and retina

    Science.gov (United States)

    Rodríguez-Sánchez, Iràm Pablo; Garza-Rodríguez, Maria Lourdes; Mohamed-Noriega, Karim; Voruganti, Venkata Saroja; Tejero, Maria Elizabeth; Delgado-Enciso, Ivan; Ibave, Diana Cristina Perez; Schlabritz-Loutsevitch, Natalia E.; Mohamed-Noriega, Jibran; Martinez-Fierro, Margarita L; Reséndez-Pérez, Diana; Cole, Shelley A; Cavazos-Adame, Humberto; Comuzzie, Anthony G.; Mohamed-Hamsho, Jesús; Barrera-Saldaña, Hugo Alberto

    2013-01-01

    Background Olfactomedin-like is a polyfunctional polymeric glycoprotein. This family has at least four members. One member of this family is OLFML3, which is preferentially expressed in placenta but is also detected in other adult tissues including the liver and heart. However, the orthologous rat gene is expressed in the iris, sclera, trabecular meshwork, retina, and optic nerve. Methods OLFML3 amplification was performed by RT-PCR from human and baboon ocular tissues. The products were cloned and sequenced. Results We report OFML3 expression in human and baboon eye. The full CDS has 1221 bp, from which a OFR of 406 amino acid was obtained. The baboon OLFML3 gene nucleotidic sequence has 98%, and amino acidic 99% similarity with humans. Conclusions OLFML3 expression in human and baboon ocular tissues and its high similarity make the baboon a powerful model to deduce the physiological and/or metabolic function of this protein in the eye. PMID:23398349

  9. Heavy metals burden in kidney and heart tissues of Scarus ghobban fish from the eastern province of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Waqar Ashraf

    2010-04-01

    Full Text Available Levels of selected heavy metals (Pb, Co, Cu, Ni, Zn, Mn and Cd in the heart and kidney tissues of parrot fish, collected from the Arabian Gulf, Eastern Province of Saudi Arabia, were determined by wet-digestion based atomic absorption method. The results showed that accumulation pattern of analyzed metals in the kidney tissues followed the order; Zn > Cu > Co > Pb > Ni > Mn > Cd. In the heart tissue the analyzed metals followed similar pattern of metal accumulation. The average Pb (0.85 ± 0.50 ppm, Cd (0.12 ± 0.07 ppm, Ni (0.92 ± 0.35 ppm and Mn (0.86 ± 0.43 ppm were significantly lower in the heart tissue whereas Zn (26.4 ± 12.9 ppm and Cu (3.29 ± 2.18 ppm were higher in the kidney tissues. In general, the data indicated that marine fish from the sampling site of the Arabian Gulf contain relatively less burden of heavy metals in their tissues.

  10. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method.

    Science.gov (United States)

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca(2+) concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart.

  11. Three-dimensional quantitative micromorphology of pre- and post-implanted engineered heart valve tissues.

    Science.gov (United States)

    Eckert, Chad E; Mikulis, Brandon T; Gottlieb, Danielle; Gerneke, Dane; LeGrice, Ian; Padera, Robert F; Mayer, John E; Schoen, Frederick J; Sacks, Michael S

    2011-01-01

    There is a significant gap in our knowledge of engineered heart valve tissue (EHVT) development regarding detailed three-dimensional (3D) tissue formation and remodeling from the point of in vitro culturing to full in vivo function. As a step toward understanding the complexities of EHVT formation and remodeling, a novel serial confocal microscopy technique was employed to obtain 3D microstructural information of pre-implant (PRI) and post-implant for 12 weeks (POI) EHVT fabricated from PGA:PLLA scaffolds and seeded with ovine bone-marrow-derived mesenchymal stem cells. Custom scaffold fiber tracking software was developed to quantify scaffold fiber architectural features such as length, tortuosity, and minimum scaffold fiber-fiber separation distance and scaffold fiber orientation was quantified utilizing a 3D fabric tensor. In addition, collagen and cellular density of ovine pulmonary valve leaflet tissue were also analyzed for baseline comparisons. Results indicated that in the unseeded state, scaffold fibers formed a continuous, oriented network. In the PRI state, the scaffold showed some fragmentation with a scaffold volume fraction of 7.79%. In the POI specimen, the scaffold became highly fragmented, forming a randomly distributed short fibrous network (volume fraction of 2.03%) within a contiguous, dense collagenous matrix. Both PGA and PLLA scaffold fibers were observed in the PRI and POI specimens. Collagen density remained similar in both PRI and POI specimens (74.2 and 71.5%, respectively), though the distributions in the transmural direction appeared slightly more homogenous in the POI specimen. Finally, to guide future 2D histological studies for large-scale studies (since acquisition of high-resolution volumetric data is not practical for all specimens), we investigated changes in relevant collagen and scaffold metrics (collagen density and scaffold fiber orientation) with varying section spacing. It was found that a sectioning spacing up to 25

  12. Left ventricular long axis tissue Doppler systolic velocity is independently related to heart rate and body size.

    Science.gov (United States)

    Peverill, Roger E; Chou, Bon; Donelan, Lesley

    2017-01-01

    The physiological factors which affect left ventricular (LV) long-axis function are not fully defined. We investigated the relationships of resting heart rate and body size with the peak velocities and amplitudes of LV systolic and early diastolic long axis motion, and also with long-axis contraction duration. Two groups of adults free of cardiac disease underwent pulsed-wave tissue Doppler imaging at the septal and lateral mitral annular borders. Group 1 (n = 77) were healthy subjects heart rate, height or body surface area (BSA) for either LV wall in either group, but SDur was inversely correlated with heart rate for both walls and both groups, and after adjustment for heart rate, males in both groups had a shorter septal SDur. Septal and lateral s` were independently and positively correlated with SExc, heart rate and height in both groups, independent of sex and age. There were no correlations of heart rate, height or BSA with either e` or EDExc for either wall in either group. Heart rate and height independently modify the relationship between s` and SExc, but neither are related to EDExc or e`. These findings suggest that s` and SExc cannot be used interchangeably for the assessment of LV long-axis contraction.

  13. Characteristic parameters of electromagnetic signals from a human heart system

    Institute of Scientific and Technical Information of China (English)

    Liu Xin-Yuan; Pei Liu-Qing; Wang Yin; Zhang Su-Ming; Gao Hong-Lei; Dai Yuan-Dong

    2011-01-01

    The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG)and magnetocardiography (MCG)are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired;the MCG data are captured using a high-T, radio frequency superconducting quantum interference device (HTc rf SQUIDs)and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency fz of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs)of ECG and MCG in the time-frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and fz for healthy subjects. We have postulated the following criterion:if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology.

  14. Human Cardiosphere-Derived Cells From Advanced Heart Failure Patients Exhibit Augmented Functional Potency in Myocardial Repair

    Science.gov (United States)

    Shen, Deliang; Sun, Baiming; Blusztajn, Agnieszka; Xie, Yucai; Ibrahim, Ahmed; Aminzadeh, Mohammad Amin; Liu, Weixin; Li, Tao-Sheng; De Robertis, Michele A.; Marbán, Linda; Czer, Lawrence S. C.; Trento, Alfredo; Marbán, Eduardo

    2014-01-01

    Objectives This study sought to compare the regenerative potency of cells derived from healthy and diseased human hearts. Background Results from pre-clinical studies and the CADUCEUS (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction) trial support the notion that cardiosphere-derived cells (CDCs) from normal and recently infarcted hearts are capable of regenerating healthy heart tissue after myocardial infarction (MI). It is unknown whether CDCs derived from advanced heart failure (HF) patients retain the same regenerative potency. Methods In a mouse model of acute MI, we compared the regenerative potential and functional benefits of CDCs derived from 3 groups: 1) non-failing (NF) donor: healthy donor hearts post-transplantation; 2) MI: patients who had an MI 9 to 35 days before biopsy; and 3) HF: advanced cardiomyopathy tissue explanted at cardiac transplantation. Results Cell growth and phenotype were identical in all 3 groups. Injection of HF CDCs led to the greatest therapeutic benefit in mice, with the highest left ventricular ejection fraction, thickest infarct wall, most viable tissue, and least scar 3 weeks after treatment. In vitro assays revealed that HF CDCs secreted higher levels of stromal cell-derived factor 1 (SDF-1), which may contribute to the cells’ augmented resistance to oxidative stress, enhanced angiogenesis, and improved myocyte survival. Histological analysis indicated that HF CDCs engrafted better, recruited more endogenous stem cells, and induced greater angiogenesis and cardiomyocyte cell-cycle re-entry. CDC-secreted SDF-1 levels correlated with decreases in scar mass over time in CADUCEUS patients treated with autologous CDCs. Conclusions CDCs from advanced HF patients exhibit augmented potency in ameliorating ventricular dysfunction post-MI, possibly through SDF-1–mediated mechanisms. PMID:24511463

  15. Electrospun human keratin matrices as templates for tissue regeneration.

    Science.gov (United States)

    Sow, Wan Ting; Lui, Yuan Siang; Ng, Kee Woei

    2013-04-01

    The aim of this work was to study the feasibility of fabricating human hair keratin matrices through electrospinning and to evaluate the potential of these matrices for tissue regeneration. Keratin was extracted from human hair using Na2S and blended with poly(ethylene oxide) in the weight ratio of 60:1 for electrospinning. Physical morphology and chemical properties of the matrices were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. Cell viability and morphology of murine and human fibroblasts cultured on the matrices were evaluated through the Live/Dead(®) assay and scanning electron microscopy. Electrospun keratin matrices were successfully produced without affecting the chemical conformation of keratin. Fibroblasts cultured on keratin matrices showed healthy morphology and penetration into matrices at day 7. Electrospun human hair keratin matrices provide a bioinductive and structural environment for cell growth and are thus attractive as alternative templates for tissue regeneration.

  16. Cyclooxygenase products sensitize muscle mechanoreceptors in humans with heart failure.

    Science.gov (United States)

    Middlekauff, Holly R; Chiu, Josephine; Hamilton, Michele A; Fonarow, Gregg C; Maclellan, W Robb; Hage, Antoine; Moriguchi, Jaime; Patel, Jignesh

    2008-04-01

    Prior work in animals and humans suggests that muscle mechanoreceptor control of sympathetic activation [muscle sympathetic nerve activity (MSNA)] during exercise in heart failure (HF) patients is heightened compared with that of healthy humans and that muscle mechanoreceptors are sensitized by metabolic by-products. We sought to determine whether cyclooxygenase products and/or endogenous adenosine, two metabolites of ischemic exercise, sensitize muscle mechanoreceptors during rhythmic handgrip (RHG) exercise in HF patients. Indomethacin, which inhibits the production of prostaglandins, and saline control were infused in 12 HF patients. In a different protocol, aminophylline, which inhibits adenosine receptors, and saline control were infused in 12 different HF patients. MSNA was recorded (microneurography). During exercise following saline, MSNA increased in the first minute of exercise, consistent with baseline heightened mechanoreceptor sensitivity. MSNA continued to increase during 3 min of RHG, indicative that muscle mechanoreceptors are sensitized by ischemia metabolites. Indomethacin, but not aminophylline, markedly attenuated the increase in MSNA during the entire 3 min of low-level rhythmic exercise, consistent with the sensitization of muscle mechanoreceptors by cyclooxygenase products. Interestingly, even the early increase in MSNA was abolished by indomethacin infusion, indicative of the very early generation of cyclooxygenase products after the onset of exercise in HF patients. In conclusion, muscle mechanoreceptors mediate the increase in MSNA during low-level RHG exercise in HF. Cyclooxygenase products, but not endogenous adenosine, play a central role in muscle mechanoreceptor sensitization. Finally, muscle mechanoreceptors in patients with HF have heightened basal sensitivity to mechanical stimuli, which also appears to be mediated by the early generation of cyclooxygenase products, resulting in exaggerated early increases in MSNA.

  17. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts

    OpenAIRE

    Fuller, Stephen J.; Osborne, Sally A.; Leonard, Sam J.; Hardyman, Michelle A.; Vaniotis, George; Allen, Bruce G.; Sugden, Peter H.; Clerk, Angela

    2015-01-01

    Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) d...

  18. Resonance of about-weekly human heart rate rhythm with solar activity change.

    Science.gov (United States)

    Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V

    1996-12-01

    In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in sunspot area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or relates to a sunspot cycle.

  19. The Mef2 Transcription Network Is Disrupted in Myotonic Dystrophy Heart Tissue, Dramatically Altering miRNA and mRNA Expression

    Directory of Open Access Journals (Sweden)

    Auinash Kalsotra

    2014-01-01

    Full Text Available Cardiac dysfunction is the second leading cause of death in myotonic dystrophy type 1 (DM1, primarily because of arrhythmias and cardiac conduction defects. A screen of more than 500 microRNAs (miRNAs in a DM1 mouse model identified 54 miRNAs that were differentially expressed in heart. More than 80% exhibited downregulation toward the embryonic expression pattern and showed a DM1-specific response. A total of 20 of 22 miRNAs tested were also significantly downregulated in human DM1 heart tissue. We demonstrate that many of these miRNAs are direct MEF2 transcriptional targets, including miRNAs for which depletion is associated with arrhythmias or fibrosis. MEF2 protein is significantly reduced in both DM1 and mouse model heart samples, and exogenous MEF2C restores normal levels of MEF2 target miRNAs and mRNAs in a DM1 cardiac cell culture model. We conclude that loss of MEF2 in DM1 heart causes pathogenic features through aberrant expression of both miRNA and mRNA targets.

  20. HPASubC: A suite of tools for user subclassification of human protein atlas tissue images

    Directory of Open Access Journals (Sweden)

    Toby C Cornish

    2015-01-01

    Full Text Available Background: The human protein atlas (HPA is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10′s of 1000′s of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC and/or smooth muscle cell (SMCs specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.

  1. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective

    Science.gov (United States)

    Balasubramanian, Preethi; Prabhakaran, Molamma P.; Sireesha, Merum; Ramakrishna, Seeram

    The extracellular matrix is a complex biological structure encoded with various proteins, among which the collagen family is the most significant and abundant of all, contributing 30-35% of the whole-body protein. "Collagen" is a generic term for proteins that forms a triple-helical structure with three polypeptide chains, and around 29 types of collagen have been identified up to now. Although most of the members of the collagen family form such supramolecular structures, extensive diversity exists between each type of collagen. The diversity is not only based on the molecular assembly and supramolecular structures of collagen types but is also observed within its tissue distribution, function, and pathology. Collagens possess complex hierarchical structures and are present in various forms such as collagen fibrils (1.5-3.5 nm wide), collagen fibers (50-70 nm wide), and collagen bundles (150-250 nm wide), with distinct properties characteristic of each tissue providing elasticity to skin, softness of the cartilage, stiffness of the bone and tendon, transparency of the cornea, opaqueness of the sclera, etc. There exists an exclusive relation between the structural features of collagen in human tissues (such as the collagen composition, collagen fibril length and diameter, collagen distribution, and collagen fiber orientation) and its tissue-specific mechanical properties. In bone, a transverse collagen fiber orientation prevails in regions of higher compressive stress whereas longitudinally oriented collagen fibers correlate to higher tensile stress. The immense versatility of collagen compels a thorough understanding of the collagen types and this review discusses the major types of collagen found in different human tissues, highlighting their tissue-specific uniqueness based on their structure and mechanical function. The changes in collagen during a specific tissue damage or injury are discussed further, focusing on the many tissue engineering applications for

  2. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterase may be a first line of defense against poisons that are eaten or inhaled.

  3. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  4. Human Bites of the Face with Tissue Losses in Cosmopolitan ...

    African Journals Online (AJOL)

    Dr. Milaki Asuku

    Abstract. A retrospective series of thirty-six cases of human bites to the face with tissue losses requiring .... other authors 3, 5The expression 'snatched lover' featured .... literature is replete with reports on re-implantation of ... review of 22 cases.

  5. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    Science.gov (United States)

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  6. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF...

  7. Expression and activation of caspase-6 in human fetal and adult tissues.

    Directory of Open Access Journals (Sweden)

    Nelly Godefroy

    Full Text Available Caspase-6 is an effector caspase that has not been investigated thoroughly despite the fact that Caspase-6 is strongly activated in Alzheimer disease brains. To understand the full physiological impact of Caspase-6 in humans, we investigated Caspase-6 expression. We performed western blot analyses to detect the pro-Caspase-6 and its active p20 subunit in fetal and adult lung, kidney, brain, spleen, muscle, stomach, colon, heart, liver, skin, and adrenals tissues. The levels were semi-quantitated by densitometry. The results show a ubiquitous expression of Caspase-6 in most fetal tissues with the lowest levels in the brain and the highest levels in the gastrointestinal system. Caspase-6 active p20 subunits were only detected in fetal stomach. Immunohistochemical analysis of a human fetal embryo showed active Caspase-6 positive apoptotic cells in the dorsal root ganglion, liver, lung, kidney, ovary, skeletal muscle and the intestine. In the adult tissues, the levels of Caspase-6 were lower than in fetal tissues but remained high in the colon, stomach, lung, kidney and liver. Immunohistological analyses revealed that active Caspase-6 was abundant in goblet cells and epithelial cells sloughing off the intestinal lining of the adult colon. These results suggest that Caspase-6 is likely important in most tissues during early development but is less involved in adult tissues. The low levels of Caspase-6 in fetal and adult brain indicate that increased expression as observed in Alzheimer Disease is a pathological condition. Lastly, the high levels of Caspase-6 in the gastrointestinal system indicate a potential specific function of Caspase-6 in these tissues.

  8. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  9. Synchrotron refractive-index microradiography of human liver cancer tissue

    Institute of Scientific and Technical Information of China (English)

    TONG Yongpeng; ZHANG Guilin; LI Yan; HWU Yeukuang; TSAI Wenli; JE Jung Ho; Margaritondo G.; YUAN Dong

    2005-01-01

    Three human liver tissue samples (~5 mm × 40 mm × 20 mm) were excised from a cancer patient's liver during surgery. The microradiology analysis was performed with a non-standard approach on a synchrotron. High-resolution refractive-index edge-enhanced microradiographs that cover a larger volume of the liver tissue sample were obtained. The cancer tissue and normal tissue could be clearly identified and distinguished based on their different textures. Furthermore, new blood vessel hyperplasia was found near the cancer area. Blood vessels with a diameter smaller than 20 μm could be identified. These findings were fully consistent with the histopathological examination of the same area. Microradiographs of the newly formed blood vessels at different angles were also obtained. This result shows that it is possible to further develop this approach into a technique of microradiographic imaging for clinic diagnosis of liver cancer at the early stage.

  10. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  11. Mineral oil in human tissues, Part I: concentrations and molecular mass distributions.

    Science.gov (United States)

    Barp, Laura; Kornauth, Christoph; Wuerger, Tanja; Rudas, Margaretha; Biedermann, Maurus; Reiner, Angelika; Concin, Nicole; Grob, Koni

    2014-10-01

    Of 37 subjects aged 25-91 y (mean 67 y), mineral oil hydrocarbons were measured in subcutaneous abdominal fat tissue, mesenteric lymph nodes (MLN), spleen, liver and lung, for some of them also in kidney, heart and brain. No mineral oil aromatic hydrocarbons (MOAH) were detected. The mean concentration of mineral oil saturated hydrocarbons (MOSH) in the mesenteric lymph nodes was 223 mg/kg, in liver 131 mg/kg, in fat tissue 130 mg/kg, in spleen 93 mg/kg and in lung 12 mg/kg. They were clearly lower in kidney, heart and brain. The maxima, found in MLN and spleen, were 1390 and 1400 mg/kg, respectively. For a quarter of the subjects a total amount of MOSH in the body above 5 g was calculated. The MOSH composition in the fat tissue and the MLN appeared virtually identical and varied little between the subjects. It was centered on the n-alkanes C23-C24, ranged from C16 to C35 and included hydrocarbons of plant origin. The MOSH in spleen and liver had almost the same composition for a given subject, but varied somewhat between subjects. They were centered between C25 and C27, ranged from C18 to beyond C45 and were without hydrocarbons of plant origin. Part of the MOSH seem to be strongly accumulated, resulting in far higher concentrations in human tissues related to exposure than observed in shorter term animal experiments. The composition of the accumulated MOSH does not support that Class I mineral oils, sometimes termed "food grade", are less accumulated in the human body than Class II and III oils, which questions the present classification.

  12. Electrical admittance for filling of the heart during lower body negative pressure in humans

    DEFF Research Database (Denmark)

    Cai, Yujia; Holm, S; Jenstrup, M;

    2000-01-01

    lower body negative pressure (LBNP) in humans. Changes in Thorax(ICW) were compared with positron emission tomography-determined C(15)O-labeled erythrocytes over the heart. During -40 mmHg LBNP, the blood volume of the heart decreased by 21 +/- 3% as the erythrocyte volume was reduced by 20 +/- 2...

  13. Evidence for differential sympathetic and parasympathetic reinnervation after heart transplantation in humans

    NARCIS (Netherlands)

    Tio, RA; Reyners, AKL; Van Veldhuisen, DJ; Van den Berg, MP; Brouwer, RMHJ; Haaksma, J; Smit, AJ; Crijns, HJGM

    1997-01-01

    During heart transplantation (HTX) all neural connections are severed, Ln humans, signs of autonomic reinnervation have been found, in this study non-invasive tests were used to compare signs of sympathetic and parasympathetic reinnervation. Non-invasive autonomic function tests and heart rate varia

  14. Resonant Raman detectors for noninvasive assessment of carotenoid antioxidants in human tissue

    Science.gov (United States)

    Gellermann, Werner; Sharifzadeh, Mohsen; Ermakova, Maia R.; Ermakov, Igor V.; Bernstein, P. S.

    2003-07-01

    Carotenoid antioxidants form an important part of the human body's anti-oxidant system and are thought to play an important role in disease prevention. Studies have shown an inverse correlation between high dietary intake of carotenoids and risk of certain cancers, heart disease and degenerative diseases. For example, the carotenoids lutein and zeaxanthin, which are present in high concentrations in the human retina, are thought to prevent age-related macular degeneration, the leading cause of blindness in the elderly in the Western world. We have developed various clinical prototype instruments, based on resonance Raman spectroscopy, that are able to measure carotenoid levels directly in the tissue of interest. At present we use the Raman technology to quantify carotenoid levels in the human retina, in skin, and in the oral cavity. We use resonant excitation of the π-conjugated molecules in the visible wavelength range and detect the molecules' carbon-carbon stretch frequencies. The spectral properties of the various carotenoids can be explored to selectively measure in some cases individual carotenoid species linked ot the prevention of cancer, in human skin. The instrumentation involves home-built, compact, high-throughput Raman systems capable of measuring physiological carotenoid concentrations in human subjects rapidly and quantitatively. The instruments have been demonstrated for field use and screening of tissue carotenoid status in large populations. In Epidemiology, the technology holds promise as a novel, noninvasive and objective biomarker of fruit and vegetable uptake.

  15. Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium

    Science.gov (United States)

    de Vries, Marieke; Bennink, Miranda B.; van Lent, Peter L. E. M.; van der Kraan, Peter M.; Koenders, Marije I.; Thurlings, Rogier M.; van de Loo, Fons A. J.

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease affecting cartilage and is the most common form of arthritis worldwide. One third of OA patients have severe synovitis and less than 10% have no evidence of synovitis. Moreover, synovitis is predictive for more severe disease progression. This offers a target for therapy but more research on the pathophysiological processes in the synovial tissue of these patients is needed. Functional studies performed with synovial tissue will be more approachable when this material, that becomes available by joint replacement surgery, can be stored for later use. We set out to determine the consequences of slow-freezing of human OA synovial tissue. Therefore, we validated a method that can be applied in every routine laboratory and performed a comparative study of five cryoprotective agent (CPA) solutions. To determine possible deleterious cryopreservation-thaw effects on viability, the synovial tissue architecture, metabolic activity, RNA quality, expression of cryopreservation associated stress genes, and expression of OA characteristic disease genes was studied. Furthermore, the biological activity of the cryopreserved tissue was determined by measuring cytokine secretion induced by the TLR ligands lipopolysaccharides and Pam3Cys. Compared to non frozen synovium, no difference in cell and tissue morphology could be identified in the conditions using the CS10, standard and CryoSFM CPA solution for cryopreservation. However, we observed significantly lower preservation of tissue morphology with the Biofreeze and CS2 media. The other viability assays showed trends in the same direction but were not sensitive enough to detect significant differences between conditions. In all assays tested a clearly lower viability was detected in the condition in which synovium was frozen without CPA solution. This detailed analysis showed that OA synovial tissue explants can be cryopreserved while maintaining the morphology, viability and

  16. Comparative Proteome Analysis of Human Lung Squamous Carcinoma Tissue

    Institute of Scientific and Technical Information of China (English)

    LI Cui; TANG Can'e; DUAN Chaojun; YI Hong; XIAO Zhiqiang; CHEN Zhuchu

    2006-01-01

    Objective: To establish the two-dimensional electrophoresis profiles with high resolution and reproducibility from human lung squamous carcinoma tissue and paired normal tumor-adjacent bronchial epithelial tissue, and to identify differential expression tumor-associated proteins by using proteome analysis. Methods: Comparative proteome analysis with 20 human lung squamous carcinoma tissues and the paired normal bronchial epithelial tissues adjacent to tumors was carried out. The total proteins of human lung squamous carcinoma tissue and paired normal tumor-adjacent bronchial epithelial tissue were separated by means of immobilized pH gradient-based two-dimensional gel electrophoresis (2-DE) and silver staining. The differential expression proteins were analyzed and then identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Results: (1) Well-resolved, reproducible 2-DE patterns of human lung squamous carcinoma and adjacent normal bronchial epithelial tissues were obtained. For tumor tissue, average spots of 3 gels were 1567±46, and 1436±54 spots were matched with an average matching rate of 91.6%. For control, average spots of 3 gels were 1349±58, and 1228±35 spots were matched with an average matching rate of 91.03%. The average position deviation of matched spots was 0.924±0.128 mm in IEF direction, and 1.022±0.205 mm in SDS-PAGE direction; (2)A total of 1178±56 spots were matched between the electrophoretic maps of 20 human lung squamous carcinoma tissues and paired normal tumor-adjacent bronchial epithelial tissues. Seventy-six differentially expressed proteins were screened; (3) Sixty-eight differential proteins were identified by PMF, some proteins were the products of oncogenes, and others involved in the regulation of cell cycle and signal transduction;(4) In order to validate the reliability of the identified results, the expression of 3 proteins mdm2, c-jun and EGFR, which was correlated with lung

  17. High-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms.

    Science.gov (United States)

    Jayasundara, Nishad; Kozal, Jordan S; Arnold, Mariah C; Chan, Sherine S L; Di Giulio, Richard T

    2015-01-01

    Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism's vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate-a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in

  18. High-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms.

    Directory of Open Access Journals (Sweden)

    Nishad Jayasundara

    Full Text Available Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2, which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2 and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism's vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate-a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important

  19. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.

    Science.gov (United States)

    Majumder, Rupamanjari; Pandit, Rahul; Panfilov, A V

    2014-10-01

    Wave propagation around various geometric expansions, structures, and obstacles in cardiac tissue may result in the formation of unidirectional block of wave propagation and the onset of reentrant arrhythmias in the heart. Therefore, we investigated the conditions under which reentrant spiral waves can be generated by high-frequency stimulation at sharp-edged obstacles in the ten Tusscher-Noble-Noble-Panfilov (TNNP) ionic model for human cardiac tissue. We show that, in a large range of parameters that account for the conductance of major inward and outward ionic currents of the model [fast inward Na(+) current (INa), L-type slow inward Ca(2+) current (ICaL), slow delayed-rectifier current (IKs), rapid delayed-rectifier current (IKr), inward rectifier K(+) current (IK1)], the critical period necessary for spiral formation is close to the period of a spiral wave rotating in the same tissue. We also show that there is a minimal size of the obstacle for which formation of spirals is possible; this size is ∼2.5 cm and decreases with a decrease in the excitability of cardiac tissue. We show that other factors, such as the obstacle thickness and direction of wave propagation in relation to the obstacle, are of secondary importance and affect the conditions for spiral wave initiation only slightly. We also perform studies for obstacle shapes derived from experimental measurements of infarction scars and show that the formation of spiral waves there is facilitated by tissue remodeling around it. Overall, we demonstrate that the formation of reentrant sources around inexcitable obstacles is a potential mechanism for the onset of cardiac arrhythmias in the presence of a fast heart rate.

  20. Tissue-engineered models of human tumors for cancer research

    Science.gov (United States)

    Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. Areas covered In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. Expert opinion While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function. PMID:25662589

  1. Ischemic heart disease induces upregulation of endothelin receptor mRNA in human coronary arteries

    DEFF Research Database (Denmark)

    Wackenfors, Angelica; Emilson, Malin; Ingemansson, Richard;

    2004-01-01

    and controls using real-time polymerase chain reaction (real-time PCR). In addition, the suitability of organ culture as a model mimicking endothelin receptor changes in cardiovascular disease was evaluated by in vitro pharmacology and real-time PCR. Endothelin ETA and ETB receptor mRNA levels were......Endothelin has been implicated in the pathogenesis of ischemic heart disease and congestive heart failure. The aims were to quantify endothelin type A (ETA) and type B (ETB) receptor mRNA levels in human coronary arteries from patients with ischemic heart disease, congestive heart failure...

  2. Enabling research with human embryonic and fetal tissue resources

    Science.gov (United States)

    Gerrelli, Dianne; Lisgo, Steven; Copp, Andrew J.; Lindsay, Susan

    2015-01-01

    Summary Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large scale genomic/transcriptomic studies. Increasingly HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention. PMID:26395135

  3. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  4. Prognostic values of tissue factor and its alternatively splice transcripts in human gastric cancer tissues.

    Science.gov (United States)

    Wu, Min; Chen, Lujun; Xu, Ting; Xu, Bin; Jiang, Jingting; Wu, Changping

    2017-08-08

    We have previously reported that the higher expression of TF in human esophageal cancer tissues was significantly associated with tumor invasion, intratumoral microvessel density and patients' postoperative prognoses. Besides its trans-membranous form, TF also has alternatively spliced transcripts. In the present study, the transcripts of the two TF isoforms, flTF and asTF, in human gastric cancer tissues were determined by real-time PCR, and the correlation between the expression of TF isoforms and patient's clinicopathological features was also analyzed. Our results showed that the relative mRNA expression levels of flTF and asTF in human gastric cancer tissues was significantly higher than those in normal tissues (P=0.035 and P=0.006, respectively). The relative mRNA expression level of asTF was significantly associated with age (P=0.018), meanwhile, we could not find that flTF or asTF expression level was correlated with any other characteristics of the patients, including gender, TNM stage, pathological grade, tumor size, histological type, or chemotherapy sensitivity. Univariate analysis demonstrated that the overall survival rate of gastric cancer patients with lower flTF or asTF expression level was greater than those with higher expression level (P=0.018 and =0.038, respectively). Multivariate COX model analysis also demonstrated that flTF expression (P=0.048) or asTF expression (P=0.002) could be used as independent prognostic predictors in human gastric cancer. Thus, both flTF and asTF mRNA expression levels in cancer tissues could be used as useful risk factors for evaluating the prognoses of patients suffering from gastric cancer.

  5. Injury Response of Resected Human Brain Tissue In Vitro.

    Science.gov (United States)

    Verwer, Ronald W H; Sluiter, Arja A; Balesar, Rawien A; Baaijen, Johannes C; de Witt Hamer, Philip C; Speijer, Dave; Li, Yichen; Swaab, Dick F

    2015-07-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by resection (interruption of the circulation) and aggravated by the preparation of slices (severed neuronal and glial processes and blood vessels) reflect the reaction of human brain tissue to severe injury. We investigated this process using immunocytochemical markers, reverse transcriptase quantitative polymerase chain reaction and Western blot analysis. Essential features were rapid shrinkage of neurons, loss of neuronal marker expression and proliferation of reactive cells that expressed Nestin and Vimentin. Also, microglia generally responded strongly, whereas the response of glial fibrillary acidic protein-positive astrocytes appeared to be more variable. Importantly, some reactive cells also expressed both microglia and astrocytic markers, thus confounding their origin. Comparison with post-mortem human brain tissue obtained at rapid autopsies suggested that the reactive process is not a consequence of epilepsy. © 2014 International Society of Neuropathology.

  6. FT-Raman spectroscopy study of human breast tissue

    Science.gov (United States)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  7. Identification of rheological properties of human body surface tissue.

    Science.gov (United States)

    Benevicius, Vincas; Gaidys, Rimvydas; Ostasevicius, Vytautas; Marozas, Vaidotas

    2014-04-11

    According to World Health Organization obesity is one of the greatest public health challenges of the 21st century. It has tripled since the 1980s and the numbers of those affected continue to rise at an alarming rate, especially among children. There are number of devices that act as a prevention measure to boost person's motivation for physical activity and its levels. The placement of these devices is not restricted thus the measurement errors that appear because of the body rheology, clothes, etc. cannot be eliminated. The main objective of this work is to introduce a tool that can be applied directly to process measured accelerations so human body surface tissue induced errors can be reduced. Both the modeling and experimental techniques are proposed to identify body tissue rheological properties and prelate them to body mass index. Multi-level computational model composed from measurement device model and human body surface tissue rheological model is developed. Human body surface tissue induced inaccuracies can increase the magnitude of measured accelerations up to 34% when accelerations of the magnitude of up to 27 m/s(2) are measured. Although the timeframe of those disruptions are short - up to 0.2 s - they still result in increased overall measurement error.

  8. Occurrence of human bocaviruses and parvovirus 4 in solid tissues.

    Science.gov (United States)

    Norja, Päivi; Hedman, Lea; Kantola, Kalle; Kemppainen, Kaisa; Suvilehto, Jari; Pitkäranta, Anne; Aaltonen, Leena-Maija; Seppänen, Mikko; Hedman, Klaus; Söderlund-Venermo, Maria

    2012-08-01

    Human bocaviruses 1-4 (HBoV1-4) and parvovirus 4 (PARV4) are recently discovered human parvoviruses. HBoV1 is associated with respiratory infections of young children, while HBoV2-4 are enteric viruses. The clinical manifestations of PARV4 remain unknown. The objective of this study was to determine whether the DNAs of HBoV1-4 and PARV4 persist in human tissues long after primary infection. Biopsies of tonsillar tissue, skin, and synovia were examined for HBoV1-4 DNA and PARV4 DNA by PCR. Serum samples from the tissue donors were assayed for HBoV1 and PARV4 IgG and IgM antibodies. To obtain species-specific seroprevalences for HBoV1 and for HBoV2/3 combined, the sera were analyzed after virus-like particle (VLP) competition. While HBoV1 DNA was detected exclusively in the tonsillar tissues of 16/438 individuals (3.7%), all of them ≤8 years of age. HBoV2-4 and PARV4 DNAs were absent from all tissue types. HBoV1 IgG seroprevalence was 94.9%. No subject had HBoV1 or PARV4 IgM, nor did they have PARV4 IgG. The results indicate that HBoV1 DNA occurred in a small proportion of tonsils of young children after recent primary HBoV1 infection, but did not persist long in the other tissue types studied, unlike parvovirus B19 DNA. The results obtained by the PARV4 assays are in line with previous results on PARV4 epidemiology. Copyright © 2012 Wiley Periodicals, Inc.

  9. Tissue-engineered microenvironment systems for modeling human vasculature.

    Science.gov (United States)

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2014-09-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used

  10. An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver

    Directory of Open Access Journals (Sweden)

    Xie Linglin

    2011-12-01

    Full Text Available Abstract Background Many groups, including our own, have proposed the use of DNA methylation profiles as biomarkers for various disease states. While much research has been done identifying DNA methylation signatures in cancer vs. normal etc., we still lack sufficient knowledge of the role that differential methylation plays during normal cellular differentiation and tissue specification. We also need thorough, genome level studies to determine the meaning of methylation of individual CpG dinucleotides in terms of gene expression. Results In this study, we have used (insert statistical method here to compile unique DNA methylation signatures from normal human heart, lung, and kidney using the Illumina Infinium 27 K methylation arraysand compared those to gene expression by RNA sequencing. We have identified unique signatures of global DNA methylation for human heart, kidney and liver, and showed that DNA methylation data can be used to correctly classify various tissues. It indicates that DNA methylation reflects tissue specificity and may play an important role in tissue differentiation. The integrative analysis of methylation and RNA-Seq data showed that gene methylation and its transcriptional levels were comprehensively correlated. The location of methylation markers in terms of distance to transcription start site and CpG island showed no effects on the regulation of gene expression by DNA methylation in normal tissues. Conclusions This study showed that an integrative analysis of methylation array and RNA-Seq data can be utilized to discover the global regulation of gene expression by DNA methylation and suggests that DNA methylation plays an important role in normal tissue differentiation via modulation of gene expression.

  11. Characteristic of c-Kit+ progenitor cells in explanted human hearts

    OpenAIRE

    Matuszczak, Sybilla; Czapla, Justyna; Jarosz-Biej, Magdalena; Wiśniewska, Ewa; Cichoń, Tomasz; Smolarczyk, Ryszard; Kobusińska, Magdalena; Gajda, Karolina; Wilczek, Piotr; Śliwka, Joanna; Zembala, Michał; Zembala, Marian; Szala, Stanisław

    2014-01-01

    According to literature data, self-renewing, multipotent, and clonogenic cardiac c-Kit+ progenitor cells occur within human myocardium. The aim of this study was to isolate and characterize c-Kit+ progenitor cells from explanted human hearts. Experimental material was obtained from 19 adult and 7 pediatric patients. Successful isolation and culture was achieved for 95 samples (84.1 %) derived from five different regions of the heart: right and left ventricles, atrium, intraventricular septum,...

  12. Myocardial bridges of the coronary arteries in the human fetal heart.

    Science.gov (United States)

    Cakmak, Yusuf Ozgür; Cavdar, Safiye; Yalin, Aymelek; Yener, Nuran; Ozdogmus, Omer

    2010-09-01

    During the last century, many investigators reported on myocardial bridges in the adult human heart. In the present study, 39 human fetal hearts (the mean gestastional age was 30 weeks) were studied for myocardial bridging, and the results were correlated with adult data. Among the 39 (27 male and 12 female) fetal hearts studied, 26 bridges were observed on 18 fetal hearts (46.2%). Ten of the bridges had one myocardial bridge, whereas double myocardial bridges were observed in eight fetal hearts. The most frequent myocardial bridges were observed on the left anterior descending artery (LAD), which had 13 bridges (50%). Eight (30.7%) myocardial bridges were on the diagonal artery, and on the posterior descending artery there were five (19.3%). Myocardial bridges were not observed on the circumflex artery. The data presented in this study may provide potentially useful information for the preoperative evaluation of the newborn and may have a clinical implication for sudden fetal death.

  13. Phosphorylated dihydroceramides from common human bacteria are recovered in human tissues.

    Directory of Open Access Journals (Sweden)

    Frank C Nichols

    Full Text Available Novel phosphorylated dihydroceramide (PDHC lipids produced by the periodontal pathogen Porphyromonas gingivalis include phosphoethanolamine (PE DHC and phosphoglycerol dihydroceramides (PG DHC lipids. These PDHC lipids mediate cellular effects through Toll-like receptor 2 (TLR2 including promotion of IL-6 secretion from dendritic cells and inhibition of osteoblast differentiation and function in vitro and in vivo. The PE DHC lipids also enhance (TLR2-dependent murine experimental autoimmune encephalomyelitis (EAE, a model for multiple sclerosis. The unique non-mammalian structures of these lipids allows for their specific quantification in bacteria and human tissues using multiple reaction monitoring (MRM-mass spectrometry (MS. Synthesis of these lipids by other common human bacteria and the presence of these lipids in human tissues have not yet been determined. We now report that synthesis of these lipids can be attributed to a small number of intestinal and oral organisms within the Bacteroides, Parabacteroides, Prevotella, Tannerella and Porphyromonas genera. Additionally, the PDHCs are not only present in gingival tissues, but are also present in human blood, vasculature tissues and brain. Finally, the distribution of these TLR2-activating lipids in human tissues varies with both the tissue site and disease status of the tissue suggesting a role for PDHCs in human disease.

  14. The content and distribution of troponin I, troponin T, myoglobin, and alpha-hydroxybutyric acid dehydrogenase in the human heart

    NARCIS (Netherlands)

    Swaanenburg, JCJM; Visser-VanBrummen, PJ; DeJongste, MJL; Tiebosch, ATHM

    2001-01-01

    We studied the content and distribution of heart-specific markers troponin I and troponin T in relation to conventional non-heart specific myoglobin and alpha-hydroxybutyric acid dehydrogenase (HBD) in the hearts of 34 patients who died of various causes. Tissue was obtained from the right and left

  15. Soft tissues store and return mechanical energy in human running.

    Science.gov (United States)

    Riddick, R C; Kuo, A D

    2016-02-08

    During human running, softer parts of the body may deform under load and dissipate mechanical energy. Although tissues such as the heel pad have been characterized individually, the aggregate work performed by all soft tissues during running is unknown. We therefore estimated the work performed by soft tissues (N=8 healthy adults) at running speeds ranging 2-5 m s(-1), computed as the difference between joint work performed on rigid segments, and whole-body estimates of work performed on the (non-rigid) body center of mass (COM) and peripheral to the COM. Soft tissues performed aggregate negative work, with magnitude increasing linearly with speed. The amount was about -19 J per stance phase at a nominal 3 m s(-1), accounting for more than 25% of stance phase negative work performed by the entire body. Fluctuations in soft tissue mechanical power over time resembled a damped oscillation starting at ground contact, with peak negative power comparable to that for the knee joint (about -500 W). Even the positive work from soft tissue rebound was significant, about 13 J per stance phase (about 17% of the positive work of the entire body). Assuming that the net dissipative work is offset by an equal amount of active, positive muscle work performed at 25% efficiency, soft tissue dissipation could account for about 29% of the net metabolic expenditure for running at 5 m s(-1). During running, soft tissue deformations dissipate mechanical energy that must be offset by active muscle work at non-negligible metabolic cost.

  16. Selenoprotein P mRNA expression in human hepatic tissues

    Institute of Scientific and Technical Information of China (English)

    Chun-Li Li; Ke-Jun Nan; Tao Tian; Chen-Guang Sui; Yan-Fang Liu

    2007-01-01

    AIM: To investigate the expression of Selenoprotein P mRNA (SePmRNA) in tissues of normal liver, liver cirrhosis and hepatocellular carcinoma (HCC), and its relationship with HCC occurrence and development.METHODS: The expression of SePmRNA in tissues of normal liver, liver cirrhosis and HCC were detected by in situ hybridization using a cDNA probe.RESULTS: The enzyme digesting products of pBluescript-Human Selenoprotein P were evaluated by electrophoresis.The positive expression of SePmRNA was found in the tissues of normal liver,liver cirrhosis and HCC.The expression of SeP mRNA was found in hepatic interstitial substance,especially in endothelial cells and lymphocytes of vasculature.The positive rate of SePmRNA in normal liver tissue was 84.6% (11/13) and the positive signals appeared in the nucleus and cytoplasm,mostly in the nucleolus,and the staining granules were larger in the nucleolus and around the nucleus.The positive rate of SePmRNA in liver cirrhosis tissue was 45.O% (9/20) and the positive signals were mainly in the nucleolus and cytoplasm,being less around the nucleus and inner nucleus than that in normal liver tissue. The positive rate of SePmRNA in HCC tissue was 30.0% (9/30) and the positive signals were in the cytoplasm, but less in the nucleus.CONCLUSION: SePmRNA expression in the tissues of normal liver and HCC is significantly different (84.6% vs 30.0%, P = 0.003), suggesting that SeP might play a role in the occurrence and development of HCC.

  17. The TissueNet v.2 database: A quantitative view of protein-protein interactions across human tissues.

    Science.gov (United States)

    Basha, Omer; Barshir, Ruth; Sharon, Moran; Lerman, Eugene; Kirson, Binyamin F; Hekselman, Idan; Yeger-Lotem, Esti

    2017-01-04

    Knowledge of the molecular interactions of human proteins within tissues is important for identifying their tissue-specific roles and for shedding light on tissue phenotypes. However, many protein-protein interactions (PPIs) have no tissue-contexts. The TissueNet database bridges this gap by associating experimentally-identified PPIs with human tissues that were shown to express both pair-mates. Users can select a protein and a tissue, and obtain a network view of the query protein and its tissue-associated PPIs. TissueNet v.2 is an updated version of the TissueNet database previously featured in NAR. It includes over 40 human tissues profiled via RNA-sequencing or protein-based assays. Users can select their preferred expression data source and interactively set the expression threshold for determining tissue-association. The output of TissueNet v.2 emphasizes qualitative and quantitative features of query proteins and their PPIs. The tissue-specificity view highlights tissue-specific and globally-expressed proteins, and the quantitative view highlights proteins that were differentially expressed in the selected tissue relative to all other tissues. Together, these views allow users to quickly assess the unique versus global functionality of query proteins. Thus, TissueNet v.2 offers an extensive, quantitative and user-friendly interface to study the roles of human proteins across tissues. TissueNet v.2 is available at http://netbio.bgu.ac.il/tissuenet. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Minimal changes in heart rate of incubating American Oystercatchers (Haematopus palliatus) in response to human activity

    Science.gov (United States)

    Borneman, Tracy E.; Rose, Eli T.; Simons, Theodore R.

    2014-01-01

    An organism's heart rate is commonly used as an indicator of physiological stress due to environmental stimuli. We used heart rate to monitor the physiological response of American Oystercatchers (Haematopus palliatus) to human activity in their nesting environment. We placed artificial eggs with embedded microphones in 42 oystercatcher nests to record the heart rate of incubating oystercatchers continuously for up to 27 days. We used continuous video and audio recordings collected simultaneously at the nests to relate physiological response of birds (heart rate) to various types of human activity. We observed military and civilian aircraft, off-road vehicles, and pedestrians around nests. With the exception of high-speed, low-altitude military overflights, we found little evidence that oystercatcher heart rates were influenced by most types of human activity. The low-altitude flights were the only human activity to significantly increase average heart rates of incubating oystercatchers (12% above baseline). Although statistically significant, we do not consider the increase in heart rate during high-speed, low-altitude military overflights to be of biological significance. This noninvasive technique may be appropriate for other studies of stress in nesting birds.

  19. Crataegus songarica methanolic extract accelerates enzymatic status in kidney and heart tissue damage in albino rats and its in vitro cytotoxic activity.

    Science.gov (United States)

    Ganie, Showkat Ahmad; Ali Dar, Tanveer; Zargar, Sabuhi; Bhat, Aashiq Hussain; Dar, Khalid Bashir; Masood, Akbar; Zargar, Mohammad Afzal

    2016-07-01

    Crataegus songarica K. Koch (Rosaceae) has been used in folk medicine to treat various diseases. This study evaluates the effect of C. songarica methanol extract on the kidney and heart tissue damage of albino rats, and to determine cytotoxic activity of various extracts of songarica on various human cancer cell lines. Rats were divided into six groups, Group I received water only; Group II received CCl4 (1 mL/kg b wt) intraperitoneal; C. songarica extract (at doses of 100, 200 and 300 mg/kg b wt) orally for 15 days. Cytotoxic activity was determined by SRB method using MCF-7, HeLa, HepG2, SF-295, SW480 and IMR-32 cell lines. Compared with CCl4 group, administration of C. songarica extract at the dose of 300 mg/kg b wt, significantly decreases serum creatinine (59.74%), urea (40.23%) and cholesterol (54 mg/dL), MDA (0.007 nmol/mg protein) in kidney and (0.025 nmol/mg protein) in heart tissue, along with evaluation of GSH (209.79 ± 54.6), GR (111.45 ± 2.84), GPx (94.01 ± 14.80), GST (201.71) in kidney tissue and GSH (51.47 ± 1.47), GR (45.42 ± 6.69), GPx (77.19 ± 10.94), GST (49.89) in heart tissue. In addition, methanol, ethanol and ethyl acetate extracts exhibited potent anticancer activity on six cancer cell lines with IC50 values ranging from 28.57 to 85.106 µg/mL. Crataegus songarica methanol extract has a potential antioxidant effect as it protects the kidney and heart tissue against CCl4-induced toxicity, prevents DNA damage and showed strong anticancer activity.

  20. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper;

    OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from...

  1. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper;

    2016-01-01

    OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from...

  2. Vanadium in foods and in human body fluids and tissues.

    Science.gov (United States)

    Byrne, A R; Kosta, L

    1978-07-01

    Using neutron activation analysis, vanadium was analysed in a range of foods, human body fluids and tissues. On the basis of these results and those of other workers, it was concluded that daily dietary intake amounts to some tens of micrograms. Analysis of body fluids (including milk, blood and excreta) and organs and tissues provided an estimate for the total body pool of vanadium in man of about 100 microgram. Vanadium was not detectable in blood and urine at the level of 0.3 ng/g, while low levels were found in muscle, fat, bone, teeth and other tissues. The relationship between dietary intake to pulmonary absorption is discussed in relation to the occurrence of vanadium in man-made air particulates. The very low levels found in milks and eggs suggest minimal vanadium requirements in growth. The findings are discussed in the light of previous results and also in relation to the possible essentiality of vanadium.

  3. An Introduction to The Royan Human Ovarian Tissue Bank

    Science.gov (United States)

    Abtahi, Naeimeh Sadat; Ebrahimi, Bita; Fathi, Rouhollah; Khodaverdi, Sepideh; Mehdizadeh Kashi, Abolfazl; Valojerdi, Mojtaba Rezazadeh

    2016-01-01

    From December 2000 until 2010, the researchers at Royan Institute conducted a wide range of investigations on ovarian tissue cryopreservation with the intent to provide fertility pres- ervation to cancer patients that were considered to be candidates for these services. In 2010, Royan Institute established the Royan Human Ovarian Tissue Bank as a subgroup of the Embryology Department. Since its inception, approximately 180 patients between the ages of 747 years have undergone consultations. Ovarian samples were cryopreserved from 47 patients (age: 7-35 years) diagnosed with cervical adenocarcinoma (n=9); breast carcinoma (n=7), Ewing’s sarcoma (n=7), opposite side ovarian tumor (n=7), endometrial adenocarci- noma (n=4), malignant colon tumors (n=3), as well as Hodgkin’s lymphoma, major thalas- semia and acute lymphoblastic leukemia (n=1-2 patients for each disease). Additionally, two patients requested ovarian tissue transplantation after completion of their treatments. PMID:27441061

  4. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data

    Science.gov (United States)

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S.

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers. PMID:27861625

  5. Pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) of Zebrafish heart using high frame rate ultrasound biomicroscopy.

    Science.gov (United States)

    Park, Jinhyoung; Huang, Ying; Chen, Ruimin; Lee, Jungwoo; Cummins, Thomas M; Zhou, Qifa; Lien, Ching-Ling; Shung, K K

    2013-01-01

    This paper reports a pulse inversion chirp coded tissue harmonic imaging (PI-CTHI) method for visualizing small animal hearts that provides fine spatial resolution at a high frame rate without sacrificing the echo signal to noise ratio (eSNR). A 40 MHz lithium niobate (LiNbO(3)) single element transducer is employed to evaluate the performance of PI-CTHI by scanning tungsten wire targets, spherical anechoic voids, and zebrafish hearts. The wire phantom results show that PI-CTHI improves the eSNR by 4 dB from that of conventional pulse inversion tissue harmonic imaging (PI-THI), while still maintaining a spatial resolution of 88 and 110 μm in the axial and lateral directions, respectively. The range side lobe level of PI-CTHI is 11 dB lower than that of band-pass filtered CTHI (or F-CTHI). In the anechoic sphere phantom study, the contrast-to-noise ratio of PI-CTHI is found to be 2.7, indicating a 34% enhancement over conventional PI-THI. Due to such improved eSNR and contrast resolution, blood clots in zebrafish hearts can be readily visualized throughout heart regeneration after 20% of the ventricle is removed. Disappearance of the clots in the early stages of the regeneration has been observed for 7 days without sacrificing the fish.

  6. Two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  7. Expression of the endocannabinoid receptors in human fascial tissue

    Directory of Open Access Journals (Sweden)

    C. Fede

    2016-06-01

    Full Text Available Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1 and CB2 (cannabinoid receptor 2 in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.

  8. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...

  9. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo

    OpenAIRE

    Scotney, Hannah; Symonds, Michael E; Law, James; Budge, Helen; Sharkey, Don; Manolopoulos, Konstantinos N.

    2017-01-01

    Introduction: Brown adipose tissue (BAT) is a thermogenic organ with substantial metabolic capacity and has important roles in the maintenance of body weight and metabolism. Regulation of BAT is primarily mediated through the ß-adrenoceptor (ß-AR) pathway. The in vivo endocrine regulation of this pathway in humans is unkown. The objective of our study was to assess the in vivo BAT temperature responses to acute glucocorticoid administration.\\ud Methods: We studied 8 healthy male volunteers, n...

  10. High-Throughput Tissue Bioenergetics Analysis Reveals Identical Metabolic Allometric Scaling for Teleost Hearts and Whole Organisms

    OpenAIRE

    Nishad Jayasundara; Kozal, Jordan S.; Arnold, Mariah C.; Chan, Sherine S. L.; Di Giulio, Richard T.

    2015-01-01

    Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by i...

  11. Human interstitial cellular model in therapeutics of heart valve calcification.

    Science.gov (United States)

    He, Caimei; Tang, Hai; Mei, Zijian; Li, Nichujie; Zeng, Zhi; Darko, Kwame Oteng; Yin, Yulong; Hu, Chien-An Andy; Yang, Xiaoping

    2017-05-23

    Calcific aortic valve disease is a common, severe heart condition that is currently with no proven, effective drug treatment and requires a surgical valve replacement or an entire heart explanation. Thus, developing novel, targeted therapeutic approaches becomes a major goal for cardiovascular disease research. To achieve this goal, isolated heart valve interstitial cells could be an advanced model to explore molecular mechanisms and measure drug efficacy. Based on this progress, molecular mechanisms that harbor components of  inflammation and fibrosis coupled with proteins, for example, BMP-2, TLRs, RANKL, Osteoprotegerin, have been proposed. Small molecules or antibodies targeting these proteins have shown promising efficacy for either reversing or slowing down calcification development in vitro. In this review, we summarize these potential therapeutics with some highlights of interstitial cellular models.

  12. Regulatory roles of microRNAs in human dental tissues.

    Science.gov (United States)

    Sehic, Amer; Tulek, Amela; Khuu, Cuong; Nirvani, Minou; Sand, Lars Peter; Utheim, Tor Paaske

    2017-01-05

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that provide an efficient pathway for regulation of gene expression at a post-transcriptional level. Tooth development is regulated by a complex network of cell-cell signaling during all steps of organogenesis. Most of the congenital dental defects in humans are caused by mutations in genes involved in developmental regulatory networks. Whereas the developmental morphological stages of the tooth development already are thoroughly documented, the implicated genetic network is still under investigation. The involvement of miRNAs in the regulation of tooth genetic network was suggested for the first time in 2008. MiRNAs regulate tooth morphogenesis by fine-tuning the signaling networks. Unique groups of miRNAs are expressed in dental epithelium compared with mesenchyme, as well as in molars compared with incisors. The present review focuses on the current state of knowledge on the expression and function of miRNAs in human dental tissues, including teeth and the surrounding structures. Herein, we show that miRNAs exhibit specific roles in human dental tissues and are involved in gingival and periodontal disease, tooth movement and eruption, dental pulp physiology including repair and regeneration, differentiation of dental cells, and enamel mineralization. In light of similarities between the tooth development and other organs originating from the epithelium, further understanding of miRNAs` function in dental tissues may have wide biological relevance. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dissecting cis regulation of gene expression in human metabolic tissues.

    Directory of Open Access Journals (Sweden)

    Radu Dobrin

    Full Text Available Complex diseases such as obesity and type II diabetes can result from a failure in multiple organ systems including the central nervous system and tissues involved in partitioning and disposal of nutrients. Studying the genetics of gene expression in tissues that are involved in the development of these diseases can provide insights into how these tissues interact within the context of disease. Expression quantitative trait locus (eQTL studies identify mRNA expression changes linked to proximal genetic signals (cis eQTLs that have been shown to affect disease. Given the high impact of recent eQTL studies, it is important to understand what role sample size and environment plays in identification of cis eQTLs. Here we show in a genotyped obese human population that the number of cis eQTLs obey precise scaling laws as a function of sample size in three profiled tissues, i.e. omental adipose, subcutaneous adipose and liver. Also, we show that genes (or transcripts with cis eQTL associations detected in a small population are detected at approximately 90% rate in the largest population available for our study, indicating that genes with strong cis acting regulatory elements can be identified with relatively high confidence in smaller populations. However, by increasing the sample size we allow for better detection of weaker and more distantly located cis-regulatory elements. Yet, we determined that the number of tissue specific cis eQTLs saturates in a modestly sized cohort while the number of cis eQTLs common to all tissues fails to reach a maximum value. Understanding the power laws that govern the number and specificity of eQTLs detected in different tissues, will allow a better utilization of genetics of gene expression to inform the molecular mechanism underlying complex disease traits.

  14. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  15. Right ventricular arrhythmogenesis in failing human heart: the role of conduction and repolarization remodeling

    Science.gov (United States)

    Lou, Qing; Janks, Deborah L.; Holzem, Katherine M.; Lang, Di; Onal, Birce; Ambrosi, Christina M.; Fedorov, Vadim V.; Wang, I-Wen

    2012-01-01

    Increased dispersion of repolarization has been suggested to underlie increased arrhythmogenesis in human heart failure (HF). However, no detailed repolarization mapping data were available to support the presence of increased dispersion of repolarization in failing human heart. In the present study, we aimed to determine the existence of enhanced repolarization dispersion in the right ventricular (RV) endocardium from failing human heart and examine its association with arrhythmia inducibility. RV free wall preparations were dissected from five failing and five nonfailing human hearts, cannulated and coronary perfused. RV endocardium was optically mapped from an ∼6.3 × 6.3 cm2 field of view. Action potential duration (APD), dispersion of APD, and conduction velocity (CV) were quantified for basic cycle lengths (BCL) ranging from 2,000 ms to the functional refractory period. We found that RV APD was significantly prolonged within the failing group compared with the nonfailing group (560 ± 44 vs. 448 ± 39 ms, at BCL = 2,000 ms, P < 0.05). Dispersion of APD was increased in three failing hearts (161 ± 5 vs. 86 ± 19 ms, at BCL = 2,000 ms). APD alternans were induced by rapid pacing in these same three failing hearts. CV was significantly reduced in the failing group compared with the nonfailing group (81 ± 11 vs. 98 ± 8 cm/s, at BCL = 2,000 ms). Arrhythmias could be induced in two failing hearts exhibiting an abnormally steep CV restitution and increased dispersion of repolarization due to APD alternans. Dispersion of repolarization is enhanced across the RV endocardium in the failing human heart. This dispersion, together with APD alternans and abnormal CV restitution, could be responsible for the arrhythmia susceptibility in human HF. PMID:23042951

  16. Expression cartography of human tissues using self organizing maps

    Science.gov (United States)

    2011-01-01

    Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs). SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues. Conclusions The SOM technique

  17. Expression cartography of human tissues using self organizing maps

    Directory of Open Access Journals (Sweden)

    Löffler Markus

    2011-07-01

    Full Text Available Abstract Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs. SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues. SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues

  18. Expression cartography of human tissues using self organizing maps.

    Science.gov (United States)

    Wirth, Henry; Löffler, Markus; von Bergen, Martin; Binder, Hans

    2011-07-27

    Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs). SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues. The SOM technique provides a more intuitive and

  19. Muscle metaboreflex and autonomic regulation of heart rate in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Adlan, Ahmed M; Shantsila, Alena

    2013-01-01

    We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff inflation) during leg cycling...

  20. Encounters with the Human Heart: An Interview with John Stone.

    Science.gov (United States)

    Flynn, Dale Bachman

    1995-01-01

    Interviews Dale Bachman Flynn, professor of cardiology and dean of admissions and student affairs at Emory University School of Medicine, about his "In the Country of Hearts," a collection of stories about his medical practice. Discusses Flynn's personal life; his life-long practice of writing; and his interest in the intersections among medicine,…

  1. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.

    Science.gov (United States)

    Cortes, Daniel H; Jacobs, Nathan T; DeLucca, John F; Elliott, Dawn M

    2014-06-27

    The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390kPa) compared to the NP (100kPa) or AF (30kPa). The permeability was very different across tissue regions, with the AF permeability (64 E(-16)m(4)/Ns) higher than the NP and CEP (~5.5 E(-16)m(4)/Ns). Additionally, a normalized time-constant (3000s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical

  2. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes.

    Science.gov (United States)

    Bianchi, Vanessa J; Weber, Joanna F; Waldman, Stephen D; Backstein, David; Kandel, Rita A

    2017-02-01

    When serially passaged in standard monolayer culture to expand cell number, articular chondrocytes lose their phenotype. This results in the formation of fibrocartilage when they are used clinically, thus limiting their use for cartilage repair therapies. Identifying a way to redifferentiate these cells in vitro is critical if they are to be used successfully. Transforming growth factor beta (TGFβ) family members are known to be crucial for regulating differentiation of fetal limb mesenchymal cells and mesenchymal stromal cells to chondrocytes. As passaged chondrocytes acquire a progenitor-like phenotype, the hypothesis of this study was that TGFβ supplementation will stimulate chondrocyte redifferentiation in vitro in serum-free three-dimensional (3D) culture. Human articular chondrocytes were serially passaged twice (P2) in monolayer culture. P2 cells were then placed in high-density (3D) culture on top of membranes (Millipore) and cultured for up to 6 weeks in chemically defined serum-free redifferentiation media (SFRM) in the presence or absence of TGFβ. The tissues were evaluated histologically, biochemically, by immunohistochemical staining, and biomechanically. Passaged human chondrocytes cultured in SFRM supplemented with 10 ng/mL TGFβ3 consistently formed a continuous layer of articular-like cartilage tissue rich in collagen type 2 and aggrecan and lacking collagen type 1 and X in the absence of a scaffold. The tissue developed a superficial zone characterized by expression of lubricin and clusterin with horizontally aligned collagen fibers. This study suggests that passaged human chondrocytes can be used to bioengineer a continuous layer of articular cartilage-like tissue in vitro scaffold free. Further study is required to evaluate their ability to repair cartilage defects in vivo.

  3. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.

    Science.gov (United States)

    Feric, Nicole T; Radisic, Milica

    2016-01-15

    Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice.

    Science.gov (United States)

    Stöhr, Andrea; Friedrich, Felix W; Flenner, Frederik; Geertz, Birgit; Eder, Alexandra; Schaaf, Sebastian; Hirt, Marc N; Uebeler, June; Schlossarek, Saskia; Carrier, Lucie; Hansen, Arne; Eschenhagen, Thomas

    2013-10-01

    Myosin-binding protein C (Mybpc3)-targeted knock-in mice (KI) recapitulate typical aspects of human hypertrophic cardiomyopathy. We evaluated whether these functional alterations can be reproduced in engineered heart tissue (EHT) and yield novel mechanistic information on the function of cMyBP-C. EHTs were generated from cardiac cells of neonatal KI, heterozygous (HET) or wild-type controls (WT) and developed without apparent morphological differences. KI had 70% and HET 20% lower total cMyBP-C levels than WT, accompanied by elevated fetal gene expression. Under standard culture conditions and spontaneous beating, KI EHTs showed more frequent burst beating than WT and occasional tetanic contractions (14/96). Under electrical stimulation (6Hz, 37°C) KI EHTs exhibited shorter contraction and relaxation times and a twofold higher sensitivity to external [Ca(2+)]. Accordingly, the sensitivity to verapamil was 4-fold lower and the response to isoprenaline or the Ca(2+) sensitizer EMD 57033 2- to 4-fold smaller. The loss of EMD effect was verified in 6-week-old KI mice in vivo. HET EHTs were apparently normal under basal conditions, but showed similarly altered contractile responses to [Ca(2+)], verapamil, isoprenaline and EMD. In contrast, drug-induced changes in intracellular Ca(2+) transients (Fura-2) were essentially normal. In conclusion, the present findings in auxotonically contracting EHTs support the idea that cMyBP-C's normal role is to suppress force generation at low intracellular Ca(2+) and stabilize the power-stroke step of the cross bridge cycle. Pharmacological testing in EHT unmasked a disease phenotype in HET. The altered drug response may be clinically relevant.

  5. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart.

    Science.gov (United States)

    Anderson, Ethan J; Kypson, Alan P; Rodriguez, Evelio; Anderson, Curtis A; Lehr, Eric J; Neufer, P Darrell

    2009-11-10

    The aim of this study was to determine the impact of diabetes on oxidant balance and mitochondrial metabolism of carbohydrate- and lipid-based substrates in myocardium of type 2 diabetic patients. Heart failure represents a major cause of death among diabetic patients. It has been proposed that derangements in cardiac metabolism and oxidative stress may underlie the progression of this comorbidity, but scarce evidence exists in support of this mechanism in humans. Mitochondrial oxygen (O(2)) consumption and hydrogen peroxide (H(2)O(2)) emission were measured in permeabilized myofibers prepared from samples of the right atrial appendage obtained from nondiabetic (n = 13) and diabetic (n = 11) patients undergoing nonemergent coronary artery bypass graft surgery. Mitochondria in atrial tissue of type 2 diabetic individuals show a sharply decreased capacity for glutamate and fatty acid-supported respiration, in addition to an increased content of myocardial triglycerides, as compared to nondiabetic patients. Furthermore, diabetic patients show an increased mitochondrial H(2)O(2) emission during oxidation of carbohydrate- and lipid-based substrates, depleted glutathione, and evidence of persistent oxidative stress in their atrial tissue. These findings are the first to directly investigate the effects of type 2 diabetes on a panoply of mitochondrial functions in the human myocardium using cellular and molecular approaches, and they show that mitochondria in diabetic human hearts have specific impairments in maximal capacity to oxidize fatty acids and glutamate, yet increased mitochondrial H(2)O(2) emission, providing insight into the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of heart failure in diabetic patients. 2009 by the American College of Cardiology Foundation

  6. Substrate-Specific Derangements in Mitochondrial Metabolism and Redox Balance in Atrium of Type 2 Diabetic Human Heart

    Science.gov (United States)

    Anderson, Ethan J.; Kypson, Alan P.; Rodriguez, Evelio; Anderson, Curtis A.; Lehr, Eric J.; Neufer, P. Darrell

    2009-01-01

    Objective This aim of this study was to determine the impact of diabetes on oxidant balance and mitochondrial metabolism of carbohydrate- and lipid-based substrates in myocardium of type 2 diabetic patients. Background Heart failure represents a major cause of death among diabetics, and it has been proposed that derangements in cardiac metabolism and oxidative stress may underlie the progression of this co-morbidity, but scarce evidence exists in support of this mechanism in humans. Methods Mitochondrial O2 consumption and H2O2 emission were measured in permeabilized myofibers prepared from samples of right atrial appendage obtained from non-diabetic (n=13) and diabetic (n=11) patients undergoing non-emergent coronary artery bypass graft surgery. Results Mitochondria in atrial tissue of type 2 diabetic individuals display a sharply decreased capacity for glutamate and fatty acid-supported respiration, in addition to an increased content of myocardial triglycerides, as compared to non-diabetics. Furthermore, diabetics display an increased mitochondrial H2O2 emission during oxidation of carbohydrate- and lipid-based substrates, depleted glutathione, and evidence of persistent oxidative stress in their atrial tissue. Conclusions These findings are the first to directly investigate the effects of type 2 diabetes on a panoply of mitochondrial functions in the human myocardium using cellular and molecular approaches, and they demonstrate that mitochondria in diabetic human heart have specific impairments in maximal capacity to oxidize fatty acids and glutamate, yet increased mitochondrial H2O2 emission, providing insight into the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of heart failure in diabetic patients. PMID:19892241

  7. Brown adipose tissue in humans: therapeutic potential to combat obesity.

    Science.gov (United States)

    Carey, Andrew L; Kingwell, Bronwyn A

    2013-10-01

    Harnessing the considerable capacity of brown adipose tissue (BAT) to consume energy was first proposed as a potential target to control obesity nearly 40years ago. The plausibility of this approach was, however, questioned due to the prevailing view that BAT was either not present or not functional in adult humans. Recent definitive identification of functional BAT in adult humans as well as a number of important advances in the understanding of BAT biology has reignited interest in BAT as an anti-obesity target. Proof-of-concept evidence demonstrating drug-induced BAT activation provides an important foundation for development of targeted pharmacological approaches with clinical application. This review considers evidence from both human and relevant animal studies to determine whether harnessing BAT for the treatment of obesity via pharmacological intervention is a realistic goal. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Evidence for two types of brown adipose tissue in humans.

    Science.gov (United States)

    Lidell, Martin E; Betz, Matthias J; Dahlqvist Leinhard, Olof; Heglind, Mikael; Elander, Louise; Slawik, Marc; Mussack, Thomas; Nilsson, Daniel; Romu, Thobias; Nuutila, Pirjo; Virtanen, Kirsi A; Beuschlein, Felix; Persson, Anders; Borga, Magnus; Enerbäck, Sven

    2013-05-01

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  9. Characterization of Leukocyte Formin FMNL1 Expression in Human Tissues

    Science.gov (United States)

    Heuser, Vanina D.; Iljin, Kristiina; Kampf, Caroline; Uhlen, Mathias; Carpén, Olli

    2014-01-01

    Formins are cytoskeleton regulating proteins characterized by a common FH2 structural domain. As key players in the assembly of actin filaments, formins direct dynamic cytoskeletal processes that influence cell shape, movement and adhesion. The large number of formin genes, fifteen in the human, suggests distinct tasks and expression patterns for individual family members, in addition to overlapping functions. Several formins have been associated with invasive cell properties in experimental models, linking them to cancer biology. One example is FMNL1, which is considered to be a leukocyte formin and is known to be overexpressed in lymphomas. Studies on FMNL1 and many other formins have been hampered by a lack of research tools, especially antibodies suitable for staining paraffin-embedded formalin-fixed tissues. Here we characterize, using bioinformatics tools and a validated antibody, the expression pattern of FMNL1 in human tissues and study its subcellular distribution. Our results indicate that FMNL1 expression is not restricted to hematopoietic tissues and that neoexpression of FMNL1 can be seen in epithelial cancer. PMID:24700756

  10. A novel SCID mouse model for studying spontaneous metastasis of human lung cancer to human tissue.

    Science.gov (United States)

    Teraoka, S; Kyoizumi, S; Seyama, T; Yamakido, M; Akiyama, M

    1995-05-01

    We established a novel severe combined immunodeficient (SCID) mouse model for the study of human lung cancer metastasis to human lung. Implantation of both human fetal and adult lung tissue into mammary fat pads of SCID mice showed a 100% rate of engraftment, but only fetal lung implants revealed normal morphology of human lung tissue. Using these chimeric mice, we analyzed human lung cancer metastasis to both mouse and human lungs by subcutaneous inoculation of human squamous cell carcinoma and adenocarcinoma cell lines into the mice. In 60 to 70% of SCID mice injected with human-lung squamous-cell carcinoma, RERF-LC-AI, cancer cells were found to have metastasized to both mouse lungs and human fetal lung implants but not to human adult lung implants 80 days after cancer inoculation. Furthermore, human-lung adenocarcinoma cells, RERF-LC-KJ, metastasized to the human lung implants within 90 days in about 40% of SCID mice, whereas there were no metastases to the lungs of the mice. These results demonstrate the potential of this model for the in vivo study of human lung cancer metastasis.

  11. Severe pneumonia after heart transplantation as a result of human parvovirus B19.

    Science.gov (United States)

    Janner, D; Bork, J; Baum, M; Chinnock, R

    1994-01-01

    The diverse manifestations of human parvovirus B19 infection have been well established. Erythema infectiosum, fetal hydrops, adult arthropathy, and aplastic anemia in patients with hemoglobinopathies or underlying immunocompromise have been described. Recently we successfully treated a patient who, after heart transplantation, had fever, rash, and pneumonia with respiratory failure caused by human parovirus B19. Human parovirus B19 has not been reported previously as a pathogen causing pulmonary disease after pediatric heart transplantation, and we wish to report it at this time.

  12. Analysis of the scattering performance of human retinal tissue layers

    Science.gov (United States)

    Zhu, Dan; Gao, Zhisan; Ye, Haishui; Yuan, Qun

    2017-02-01

    Human retina is different from other ocular tissues, such as cornea, crystalline lens and vitreous because of high scattering performance. As an anisotropic tissue, we cannot neglect its impact on the polarization state of the scattered light. In this paper, Mie scattering and radiative transfer theory are applied to analyze the polarization state of backscattered light from four types of retinal tissues, including neural retina, retinal pigment epithelial (RPE), choroid and sclera. The results show that the most backscattered zones in different depths have almost the same electrical fields of Jones vector, which represents the polarization state of light, whether neural retina layer is under normal incidence or oblique incidence. Very little change occurs in the polarization of backscattered light compared to that of the incident light. Polarization distribution of backward scattered light from neural retina layer doesn't make apparent effects on polarization phase shifting in spectral domain OCT because its thickness is far less than photon mean free path, while other retinal tissues do not meet this rule.

  13. Chromium Content in the Human Hip Joint Tissues

    Institute of Scientific and Technical Information of China (English)

    Barbara Brodziak-Dopiera; Jerzy Kwapuliski; Krzysztof Sobczyk; Danuta Wiechua

    2015-01-01

    Objective Chromium has many important functions in the human body. For the osseous tissue, its role has not been clearly defined. This study was aimed at determining chromium content in hip joint tissues. Methods A total of 91 hip joint samples were taken in this study, including 66 from females and 25 from males. The sample tissues were separated according to their anatomical parts. The chromium content was determined by the AAS method. The statistical analysis was performed with U Mann-Whitney's non-parametric test, P≤0.05. Results The overall chromium content in tissues of the hip joint in the study subjects was as follows:5.73 µg/g in the articular cartilage, 5.33 µg/g in the cortical bone, 17.86 µg/g in the cancellous bone, 5.95 µg/g in the fragment of the cancellous bone from the intertrochanteric region, and 1.28 µg/g in the joint capsule. The chromium contents were observed in 2 group patients, it was 7.04 µg/g in people with osteoarthritis and 12.59 µg/g in people with fractures. Conclusion The observed chromium content was highest in the cancellous bone and the lowest in the joint capsule. Chromium content was significantly different between the people with hip joint osteoarthritis and the people with femoral neck fractures.

  14. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    Science.gov (United States)

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  15. Cardiac Fibroblast-Derived Extracellular Matrix (Biomatrix as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart

    Directory of Open Access Journals (Sweden)

    Clotilde Castaldo

    2013-01-01

    Full Text Available Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix, composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  16. Heart-type fatty acid-binding protein is essential for efficient brown adipose tissue fatty acid oxidation and cold tolerance.

    Science.gov (United States)

    Vergnes, Laurent; Chin, Robert; Young, Stephen G; Reue, Karen

    2011-01-07

    Brown adipose tissue has a central role in thermogenesis to maintain body temperature through energy dissipation in small mammals and has recently been verified to function in adult humans as well. Here, we demonstrate that the heart-type fatty acid-binding protein, FABP3, is essential for cold tolerance and efficient fatty acid oxidation in mouse brown adipose tissue, despite the abundant expression of adipose-type fatty acid-binding protein, FABP4 (also known as aP2). Fabp3(-/-) mice exhibit extreme cold sensitivity despite induction of uncoupling and oxidative genes and hydrolysis of brown adipose tissue lipid stores. However, using FABP3 gain- and loss-of-function approaches in brown adipocytes, we detected a correlation between FABP3 levels and the utilization of exogenous fatty acids. Thus, Fabp3(-/-) brown adipocytes fail to oxidize exogenously supplied fatty acids, whereas enhanced Fabp3 expression promotes more efficient oxidation. These results suggest that FABP3 levels are a determinant of fatty acid oxidation efficiency by brown adipose tissue and that FABP3 represents a potential target for modulation of energy dissipation.

  17. Tissue specific DNA methylation of CpG islands in normal human adult somatic tissues distinguishes neural from non-neural tissues.

    Science.gov (United States)

    Ghosh, Srimoyee; Yates, Allan J; Frühwald, Michael C; Miecznikowski, Jeffrey C; Plass, Christoph; Smiraglia, Dominic

    2010-08-16

    Although most CpG islands are generally thought to remain unmethylated in all adult somatic tissues, recent genome-wide approaches have found that some CpG islands have distinct methylation patterns in various tissues, with most differences being seen between germ cells and somatic tissues. Few studies have addressed this among human somatic tissues and fewer still have studied the same sets of tissues from multiple individuals. In the current study, we used Restriction Landmark Genomic Scanning to study tissue specific methylation patterns in a set of twelve human tissues collected from multiple individuals. We identified 34 differentially methylated CpG islands among these tissues, many of which showed consistent patterns in multiple individuals. Of particular interest were striking differences in CpG island methylation, not only among brain regions, but also between white and grey matter of the same region. These findings were confirmed for selected loci by quantitative bisulfite sequencing. Cluster analysis of the RLGS data indicated that several tissues clustered together, but the strongest clustering was in brain. Tissues from different brain regions clustered together, and, as a group, brain tissues were distinct from either mesoderm or endoderm derived tissues which demonstrated limited clustering. These data demonstrate consistent tissue specific methylation for certain CpG islands, with clear differences between white and grey matter of the brain. Furthermore, there was an overall pattern of tissue specifically methylated CpG islands that distinguished neural tissues from non-neural.

  18. Characterization of human myoblast cultures for tissue engineering.

    Science.gov (United States)

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  19. Type 2 diabetes, obesity, and sex difference affect the fate of glucose in the human heart

    OpenAIRE

    Peterson, Linda R.; Herrero, Pilar; Coggan, Andrew R.; Kisrieva-Ware, Zulia; Saeed, Ibrahim; Dence, Carmen; Koudelis, Deborah; McGill, Janet B.; Lyons, Matthew R.; Novak, Eric; Dávila-Román, Víctor G.; Waggoner, Alan D.; Gropler, Robert J.

    2015-01-01

    Type 2 diabetes, obesity, and sex difference affect myocardial glucose uptake and utilization. However, their effect on the intramyocellular fate of glucose in humans has been unknown. How the heart uses glucose is important, because it affects energy production and oxygen efficiency, which in turn affect heart function and adaptability. We hypothesized that type 2 diabetes, sex difference, and obesity affect myocardial glucose oxidation, glycolysis, and glycogen production. In a first-in-hum...

  20. A new approach to heart valve tissue engineering: mimicking the heart ventricle with a ventricular assist device in a novel bioreactor.

    Science.gov (United States)

    Kaasi, Andreas; Cestari, Idágene A; Stolf, Noedir A G; Leirner, Adolfo A; Hassager, Ole; Cestari, Ismar N

    2011-04-01

    The 'biomimetic' approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD's inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 µm filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 °C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The 'cardiomimetic' approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages.

  1. Computational model of soft tissues in the human upper airway.

    Science.gov (United States)

    Pelteret, J-P V; Reddy, B D

    2012-01-01

    This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.

  2. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    NARCIS (Netherlands)

    van Geer, M.A.; Kuhlmann, K.F.D.; Bakker, C.T.; ten Kate, F.J.W.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions. METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices. Tissue slic

  3. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    NARCIS (Netherlands)

    van Geer, M.A.; Kuhlmann, K.F.D.; Bakker, C.T.; ten Kate, F.J.W.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions. METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices. Tissue slic

  4. Expression of PKD2 gene in human renal tissue and other tissues

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-kun; SHEN Xue-fei; MEI Chang-lin; TANG Bing; SUN Tian-mei; SONG Ji

    2004-01-01

    Objective: To study the expression of PKD2 gene in human kidney and other tissues. Methods: The expression of PKD2 was detected by reverse transcription PCR(RT-PCR) and in situ hybridization(ISH). The results of ISH were analyzed by micromegakargocytes. Results: Distribution of pkd-2 in normal adult kidney was stronger in proximal convoluted tubule, Henle's loop ascending branch, distal convoluted tubule and cortical collecting ducts, and inferior signal were observed in fetal kidney. Negative was seen in ADPKD 2 kidney. Conclusion: Down-regulation of PKD2 gene expression in kidney may take effect on the occurrence and development of ADPKD2.

  5. 组织工程心脏瓣膜的研究进展%Advancements in Tissue Engineering Heart Valves

    Institute of Scientific and Technical Information of China (English)

    傅杰

    2011-01-01

    Valve replacement is currently still the most effective treatment option for valvular heart disease. However, clinical efficacy of artificial heart valves is far from satisfactory. The discovery and development of tissue engineering opens the door to many new alternatives. This article reviews advancements in tissue engineering heart valves including the selection of seed cells, the choice of scaffold material, the methods of valve formation in vitro, the efficacy of using animals, and clinical application.%心脏瓣膜置换术仍然是当前治疗心脏瓣膜病最有效的治疗方法,但目前临床应用的人工心脏瓣膜疗效却不尽如人意.随着组织工程学的兴起与发展,组织工程心脏瓣膜的研究越来越受到关注并成为研究的热点.现对组织工程心脏瓣膜研究在种子细胞的选择、支架材料的选择、瓣膜体外构建方法、动物实验与临床应用等方面取得的进展,进行综述.

  6. Tissue perfusion in neonates undergoing open-heart surgery using autologous umbilical cord blood or donor blood components.

    Science.gov (United States)

    Chasovskyi, K; Fedevych, O; McMullan, D M; Mykychak, Y; Vorobiova, G; Zhovnir, V; Yemets, I

    2015-09-01

    This study evaluates the hemoglobin-oxygen relationship and tissue perfusion during cardiopulmonary bypass (CPB) in neonates undergoing open-heart surgery using autologous umbilical cord blood or donor blood components. We compared perioperative hematocrit (Hct), fetal hemoglobin (HbF), p(50)O(2), pH, pCO(2), serum lactate, duration of mechanical ventilation and intensive care unit (ICU) length of stay in neonates undergoing open-heart surgery using autologous umbilical cord blood (Group I, N=45) or donor blood components (Group II, N=65). The groups were similar with respect to diagnosis, weight, type of procedure, duration of CPB and duration of myocardial ischemia. Mean p(50)O(2) was significantly lower in Group I during CPB (19.7 vs. 22.3 mmHg, p=0.004) and at the end of CPB (20.1 vs. 22.8 mmHg, p=0.003). Median peak lactate during CPB was higher in Group I (4.8 vs. 2.2 mmol/l, pblood, tissue oxygen delivery appears to be preserved in neonates who undergo open-heart surgery using autologous umbilical cord blood. © The Author(s) 2014.

  7. The failing human heart is unable to use the Frank-Starling mechanism.

    Science.gov (United States)

    Schwinger, R H; Böhm, M; Koch, A; Schmidt, U; Morano, I; Eissner, H J; Uberfuhr, P; Reichart, B; Erdmann, E

    1994-05-01

    There is evidence that the failing human left ventricle in vivo subjected to additional preload is unable to use the Frank-Starling mechanism. The present study compared the force-tension relation in human nonfailing and terminally failing (heart transplants required because of dilated cardiomyopathy) myocardium. Isometric force of contraction of electrically driven left ventricular papillary muscle strips was studied under various preload conditions (2 to 20 mN). To investigate the influence of inotropic stimulation, the force-tension relation was studied in the presence of the cardiac glycoside ouabain. In skinned-fiber preparations of the left ventricle, developed tension was measured after stretching the preparations to 150% of the resting length. To evaluate the length-dependent activation of cardiac myofibrils by Ca2+ in failing and nonfailing myocardium, the tension-Ca2+ relations were also measured. After an increase of preload, the force of contraction gradually increased in nonfailing myocardium but was unchanged in failing myocardium. There were no differences in resting tension, muscle length, or cross-sectional area of the muscles between both groups. Pretreatment with ouabain (0.02 mumol/L) restored the force-tension relation in failing myocardium and preserved the force-tension relation in nonfailing tissue. In skinned-fiber preparations of the same hearts, developed tension increased significantly after stretching only in preparations from nonfailing but not from failing myocardium. The Ca2+ sensitivity of skinned fibers was significantly higher in failing myocardium (EC50, 1.0; 95% confidence limit, 0.88 to 1.21 mumol/L) compared with nonfailing myocardium (EC50, 1.7; 95% confidence limit, 1.55 to 1.86 mumol/L). After increasing the fiber length by stretching, a significant increase in the sensitivity of the myofibrils to Ca2+ was observed in nonfailing but not in failing myocardium. These experiments provide evidence for an impaired force

  8. Mean Organ Doses Resulting From Non-Human Primate Whole Thorax Lung Irradiation Prescribed to Mid-Line Tissue.

    Science.gov (United States)

    Prado, Charlotte; Kazi, Abdul; Bennett, Alexander; MacVittie, Thomas; Prado, Karl

    2015-11-01

    Multi-organ dose evaluations and the effects of heterogeneous tissue dose calculations have been retrospectively evaluated following irradiation to the whole thorax and lung in non-human primates (NHP). A clinical-based approach was established to evaluate actual doses received in the heart and lungs during whole thorax lung irradiation. Anatomical structure and organ densities have been introduced in the calculations to show the effects of dose distribution through heterogeneous tissue. Mean organ doses received by non-human primates undergoing whole thorax lung irradiations were calculated using a treatment planning system that is routinely used in clinical radiation oncology. The doses received by non-human primates irradiated following conventional dose calculations have been retrospectively reconstructed using computerized tomography-based, heterogeneity-corrected dose calculations. The use of dose volume descriptors for irradiation to organs at risk and tissue exposed to radiation is introduced. Mean and partial-volume doses to lung and heart are presented and contrasted. The importance of exact dose definitions is highlighted, and the relevance of precise dosimetry to establish organ-specific dose response relationships in NHP models of acute and delayed effects of acute radiation exposure is emphasized.

  9. Lipolysis and lipid mobilization in human adipose tissue.

    Science.gov (United States)

    Lafontan, Max; Langin, Dominique

    2009-09-01

    Triacylglycerol (TAG) stored in adipose tissue (AT) can be rapidly mobilized by the hydrolytic action of the three main lipases of the adipocyte. The non-esterified fatty acids (NEFA) released are used by other tissues during times of energy deprivation. Until recently hormone-sensitive lipase (HSL) was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. A novel lipase named adipose triglyceride lipase/desnutrin (ATGL) has been identified as playing an important role in the control of fat cell lipolysis. Additionally perilipin and other proteins of the surface of the lipid droplets protecting or exposing the TAG core of the droplets to lipases are also potent regulators of lipolysis. Considerable progress has been made in understanding the mechanisms of activation of the various lipases. Lipolysis is under tight hormonal regulation. The best understood hormonal effects on AT lipolysis concern the opposing regulation by insulin and catecholamines. Heart-derived natriuretic peptides (i.e., stored in granules in the atrial and ventricle cardiomyocytes and exerting stimulating effects on diuresis and natriuresis) and numerous autocrine/paracrine factors originating from adipocytes and other cells of the stroma-vascular fraction may also participate in the regulation of lipolysis. Endocrine and autocrine/paracrine factors cooperate and lead to a fine regulation of lipolysis in adipocytes. Age, anatomical site, sex, genotype and species differences all play a part in the regulation of lipolysis. The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity and probably in several inborn errors of metabolism.

  10. THREE DIMENSIONAL RECONSTRUCTION OF HUMAN HEART SURFACE FROM SINGLE IMAGE- VIEW UNDER DIFFERENT ILLUMINATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Aqeel Al-Surmi

    2013-01-01

    Full Text Available The 3D reconstruction from a single-view image is a longstanding issue in computer vision literature, especially in the medical field. Traditional medical imaging techniques that provide information about the heart and which are used to reconstruct the heart model, include Magnetic Resonance Imaging (MRI and Computed Tomography (CT images. However, in some cases, they are not available and the applications that use these techniques to model the human heart only produce acceptable results after a long process, which involves acquiring the input data, as well as the segmentation process, the matching process, effort and cost. Therefore, it would be useful to be able to use a 2D single image to reconstruct the 3D heart surface model. We introduce an image-based human heart surface reconstruction from a single image as input. To model the surface of the heart, the proposed method, first, detects and corrects the specular reflection from the heart’s surface, which causes deformation of the surface in the R3. Second, it extrudes the three axes for each image pixel (e.g., x, y and z axes from the input image, in which the z-axis is calculated using the intensity value. Finally, a 3D reconstruction of the heart surface is created to help the novice cardiac surgeon to reduce the period of time in learning cardiac surgery and to enhance their perception of the operating theatre. The experimental results for images of the heart show the efficiency of the proposed method compared to the existing methods.

  11. 75 FR 9226 - Agency Information Collection Activities; Proposed Collection; Comment Request; Human Tissue...

    Science.gov (United States)

    2010-03-01

    ... Collection; Comment Request; Human Tissue Intended for Transplantation AGENCY: Food and Drug Administration... solicits comments on the information collection requirements relating to FDA regulations for human tissue... of information technology. Human Tissue Intended for Transplantation--21 CFR Part 1270 (OMB Control...

  12. 78 FR 41403 - Agency Information Collection Activities; Proposed Collection; Comment Request; Human Tissue...

    Science.gov (United States)

    2013-07-10

    ... Collection; Comment Request; Human Tissue Intended for Transplantation AGENCY: Food and Drug Administration... solicits comments on the information collection requirements relating to FDA regulations for human tissue... appropriate, and other forms of information technology. Human Tissue Intended for Transplantation--21 CFR Part...

  13. Popeye domain-containing 1 is down-regulated in failing human hearts.

    Science.gov (United States)

    Gingold-Belfer, Rachel; Bergman, Michael; Alcalay, Yifat; Schlesinger, Hadassa; Aravot, Dan; Berman, Marius; Salman, Hertzel; Brand, Thomas; Kessler-Icekson, Gania

    2011-01-01

    Congestive heart failure, a complex disease of heterogeneous etiology, involves alterations in the expression of multiple genes. The Popeye domain-containing (POPDC) family of three novel muscle-restricted genes (POPDC1-3) is evolutionarily conserved and developmentally regulated. In mice, POPDC1 has been shown to play an important role in skeletal and cardiac muscles subjected to injury or stress. However, it has never been explored in human hearts. In biopsies from non-failing and failing human hearts, we examined the cellular distribution of POPDC1 as well as the expression patterns of POPDC1-3 mRNAs. POPDC1 was visualized by immunohistochemistry and estimated by Western immunoblotting. The mRNA levels of POPDC1-3 and ß myosin heavy chain (MYHC7) were assessed using reverse transcription/quantitative polymerase chain reaction. POPDC1 was predominantly localized in the sarcolemma with an enhanced expression in the intercalated discs. In failing hearts, many cardiomyocytes appeared deformed and POPDC1 labeling was deranged. The three POPDC mRNAs were expressed in the four heart chambers with higher transcript levels in the ventricles compared to the atria. Heart failure concurred with reduced levels of POPDC1 mRNA and protein in the left ventricle. Correlation analyses of mRNA levels among the failing heart specimens indicated the coordinated regulation of POPDC1 with POPDC3 and of POPDC2 with MYHC7. It can be concluded that POPDC gene expression is modified in end-stage heart failure in humans in a manner suggesting regulatory and/or functional differences between the three family members and that POPDC1 is particularly susceptible to this condition.

  14. Tissue engineered humanized bone supports human hematopoiesis in vivo.

    Science.gov (United States)

    Holzapfel, Boris M; Hutmacher, Dietmar W; Nowlan, Bianca; Barbier, Valerie; Thibaudeau, Laure; Theodoropoulos, Christina; Hooper, John D; Loessner, Daniela; Clements, Judith A; Russell, Pamela J; Pettit, Allison R; Winkler, Ingrid G; Levesque, Jean-Pierre

    2015-08-01

    Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Marketing of human organs and tissues is justified and necessary.

    Science.gov (United States)

    Kevorkian, J

    1989-01-01

    The bioethical guidelines now banning commerce in human body parts to be used for transplantation manifest unrealistic and arbitrary inflexibility which perpetuates and worsens the deficit in organ supply. Instead of relying on traditionally revered but now outmoded and even irrelevant bioethical maxims, formulators of the guidelines should have concentrated on a more meaningful situational adaptation to contemporary real-life circumstances. Many unexpectedly relevant and important nuances of concepts such as property, ownership, and altruism must now be taken into account. Hypothetical examples explore the morality of a universal ban by fiat and the associated problems of organ supply and demand, of cost and affordability, and of fair equity. It is difficult to justify purely altruistic organ donation today, when the health care professions and industries are frantically pursuing commercial profits. It is concluded that the ban should be scrapped in favor of a well-organized, open, and legally regulated commercial market for human organs and tissues.

  16. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Dimitrios. G. Aggelis

    2015-03-01

    Full Text Available The study describes the acoustic emission (AE activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis. The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.

  17. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    Full Text Available Ji Jun, Ji Shang-Yi, Yang Jian-An, He Xia, Yang Xiao-Han, Ling Wen-Ping, Chen Xiao-LingDepartment of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of ChinaBackground: There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined.Aims: To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound.Methods: A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method

  18. Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue

    DEFF Research Database (Denmark)

    Petersen, G.; Moesgaard, B.; Hansen, Harald S.

    2005-01-01

    The endogenous levels of the two cannabinoid receptor ligands 2-arachidonoyl glycerol and anandamide, and their respective congeners, monoacyl glycerols and N-acylethanolamines, as well as the phospholipid precursors of N-acylethanolamines, were measured by gas chromatography-mass spectrometry in...... in glioblastoma (WHO grade IV) tissue and meningioma (WHO grade I) tissue and compared with human non-tumour brain tissue. Furthermore, the metabolic turnover of N-acylethanolamines was compared by measurements of the enzymatic activity of N-acyltransferase, N...

  19. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  20. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  1. Human papillomavirus detection in paraffin-embedded colorectal cancer tissues.

    Science.gov (United States)

    Tanzi, Elisabetta; Bianchi, Silvia; Frati, Elena R; Amicizia, Daniela; Martinelli, Marianna; Bragazzi, Nicola L; Brisigotti, Maria Pia; Colzani, Daniela; Fasoli, Ester; Zehender, Gianguglielmo; Panatto, Donatella; Gasparini, Roberto

    2015-01-01

    Human papillomavirus (HPV) has a well-recognized aetiological role in the development of cervical cancer and other anogenital tumours. Recently, an association between colorectal cancer and HPV infection has been suggested, although this is still controversial. This study aimed at detecting and characterizing HPV infection in 57 paired biopsies from colorectal cancers and adjacent intact tissues using a degenerate PCR approach. All amplified fragments were genotyped by means of sequencing. Overall, HPV prevalence was 12.3 %. In particular, 15.8 % of tumour tissues and 8.8 % of non-cancerous tissue samples were HPV DNA-positive. Of these samples, 85.7 % were genotyped successfully, with 41.7 % of sequences identifying four genotypes of the HR (high oncogenic risk) clade Group 1; the remaining 58.3 % of HPV-genotyped specimens had an unclassified β-HPV. Examining additional cases and analysing whole genomes will help to outline the significance of these findings.

  2. The PAXgene(® tissue system preserves phosphoproteins in human tissue specimens and enables comprehensive protein biomarker research.

    Directory of Open Access Journals (Sweden)

    Sibylle Gündisch

    Full Text Available Precise quantitation of protein biomarkers in clinical tissue specimens is a prerequisite for accurate and effective diagnosis, prognosis, and personalized medicine. Although progress is being made, protein analysis from formalin-fixed and paraffin-embedded tissues is still challenging. In previous reports, we showed that the novel formalin-free tissue preservation technology, the PAXgene Tissue System, allows the extraction of intact and immunoreactive proteins from PAXgene-fixed and paraffin-embedded (PFPE tissues. In the current study, we focused on the analysis of phosphoproteins and the applicability of two-dimensional gel electrophoresis (2D-PAGE and enzyme-linked immunosorbent assay (ELISA to the analysis of a variety of malignant and non-malignant human tissues. Using western blot analysis, we found that phosphoproteins are quantitatively preserved in PFPE tissues, and signal intensities are comparable to that in paired, frozen tissues. Furthermore, proteins extracted from PFPE samples are suitable for 2D-PAGE and can be quantified by ELISA specific for denatured proteins. In summary, the PAXgene Tissue System reliably preserves phosphoproteins in human tissue samples, even after prolonged fixation or stabilization times, and is compatible with methods for protein analysis such as 2D-PAGE and ELISA. We conclude that the PAXgene Tissue System has the potential to serve as a versatile tissue fixative for modern pathology.

  3. Con A affinity glycoproteomics of normal human liver tissue

    Institute of Scientific and Technical Information of China (English)

    SUN QiangLing; LU HaoJie; LIU YinKun; LU WenJing; CHENG Gang; ZHOU HaiJun; ZHOU XinWen; WEI LiMing; DAI Zhi; GUO Kun

    2007-01-01

    In order to establish the novel high throughput, high efficiency and Iow cost technological platform for the research of N-glycoproteomics, to resolve the significance of characteristic expression profile of glycoprotein and to find the proteins with biological functional importance, the glycoproteins with high-mannose core and the two antennary types were purified and enriched by the Con A affinity chromatography. Con A affinity protein expression profiles of normal human liver tissue were generated by using SDS-PAGE, two-dimensional electrophoresis (2-DE) followed by fast fluorescence staining based on multiplexed proteomics (MP) technology. 301 visible protein spots on the gel were detected and 85 of glycoproteins were further successfully identified via peptide mass fingerprinting (PMF) by a matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS/MS) and annotated to IPI databases. Identified glycoproteins definitely take part in the regulation of cell cycle and metabolic processes. The glycosylation sites were predicted with NetNGlyc 1.0 and NetOGlyc 3.1 software, meanwhile they were classified according to the geneontology methods. The construction of Con A affinity glycoprotein database of normal human liver tissue would contribute to the subsequent research.

  4. Con A affinity glycoproteomics of normal human liver tissue

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to establish the novel high throughput, high efficiency and low cost technological platform for the research of N-glycoproteomics, to resolve the significance of characteristic expression profile of glycoprotein and to find the proteins with biological functional importance, the glycoproteins with high-mannose core and the two antennary types were purified and enriched by the Con A affinity chromatography. Con A affinity protein expression profiles of normal human liver tissue were gener- ated by using SDS-PAGE, two-dimensional electrophoresis (2-DE) followed by fast fluorescence stain- ing based on multiplexed proteomics (MP) technology. 301 visible protein spots on the gel were de- tected and 85 of glycoproteins were further successfully identified via peptide mass fingerprinting (PMF) by a matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF- MS/MS) and annotated to IPI databases. Identified glycoproteins definitely take part in the regulation of cell cycle and metabolic processes. The glycosylation sites were predicted with NetNGlyc 1.0 and NetOGlyc 3.1 software, meanwhile they were classified according to the geneontology methods. The construction of Con A affinity glycoprotein database of normal human liver tissue would contribute to the subsequent research.

  5. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    Science.gov (United States)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  6. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities.

  7. State and history of heart tissue preparation for proton microprobe elemental analysis at the Eindhoven Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Quaedackers, J.A.; Mutsaers, P.H.A.; Goeij, J.J.M. de; Voigt, M.J.A. de; Vusse, G.J. van der

    1999-09-02

    Proton microprobe techniques are useful in investigating ischemia-reperfusion induced ion shifts between cardiac muscle cells and interstitial fluid. Preliminary results have shown that proper analysis of ion concentrations in various cardiac compartments is hampered by dislocation of elements during sample preparation. In this study the different stages of the preparation were evaluated as possible sources of artifacts. After improvements of the sample preparation procedure, sharp ion concentration gradients within heart tissue preparations were obtained, indicating no noticeable ion dislocation at the scale of the measurements.

  8. Autonomic control of the heart during exercise in humans: role of skeletal muscle afferents.

    Science.gov (United States)

    Fisher, James P

    2014-02-01

    What is the topic of this review? The autonomic nervous system plays a key role in bringing about the cardiovascular responses to exercise necessitated by the increased metabolic requirements of the active skeletal muscle. The complex interaction of central and peripheral neural control mechanisms evokes a decrease in parasympathetic activity and an increase sympathetic activity to the heart during exercise. What advances does it highlight? This review presents some of the recent insights provided by human studies into the role of mechanically and metabolically sensitive skeletal muscle afferents in the regulation of cardiac autonomic control during exercise. The autonomic responses to exercise are orchestrated by the interactions of several central and peripheral neural mechanisms. This report focuses on the role of peripheral feedback from skeletal muscle afferents in the autonomic control of the heart during exercise in humans. Heart rate responses to passive calf stretch are abolished with cardiac parasympathetic blockade, indicating that the activation of mechanically sensitive skeletal muscle afferents (muscle mechanoreceptors) can inhibit cardiac parasympathetic activity and is likely to contribute to the increase in heart rate at the onset of exercise. Recent experiments show that the partial restriction of blood flow to the exercising skeletal muscles, to augment the activation of metabolically sensitive skeletal muscle afferents (muscle metaboreceptors) in humans, evokes an increase in heart rate that is attenuated with β1-adrenergic blockade, thus suggesting that this response is principally mediated via an increase in cardiac sympathetic activity. Heart rate remains at resting levels during isolated activation of muscle metaboreceptors with postexercise ischaemia following hand grip, unless cardiac parasympathetic activity is inhibited, whereupon a sympathetically mediated increase in heart rate is unmasked. During postexercise ischaemia following leg

  9. [Significance and Expressions of MMP-1, TIMP-1 and TGF-β1 in Valve Tissue of Rheumatic Heart Disease].

    Science.gov (United States)

    Yu, Yi; Li, Zeng-Qi; Chen, Kun; Zhan, Ping; Liao, Jian; Ruan, Qin-Yun

    2017-01-01

    To explore expressions of matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinases-1 (TIMP-1) and transforming growth factor-β1 (TGF-β1) in valve tissue of rheumatic heart disease (RHD), and to analyzed their roles in RHD. The expressions of MMP-1, TIMP-1 and TGF-β1 proteins and mRNAs were tested by Western blot and RT-PCR methods in valve tissues in participants with (experimental group, n=30) and without RHD (control group, n=15). Collagen fibers were detected by Masson staining, and collagen volume fraction (CVF) was caculated. The correlations of CVF and the expressions of MMP-1, TIMP-1 and TGF-β1 were analyzed. The collagen fibers, CVF, and the protein and mRNA expressions of MMP-1 and TGF-β1 in experimental group were higher than those in control group, while the protein and mRNA expressions of TIMP-1 in experimental group were lower than those in control group. The expression of TIMP-1 was negatively correlated with TGF-β1 and CVF in valve tissues, while MMP-1 was positively correlated with them. The expression of TGF-β1 was positively correlated with CVF in valve tissues. MMP-1, TIMP-1 and TGF-β1 contribute to the progression of fibrosis in RHD.

  10. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    Science.gov (United States)

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. © FASEB.

  11. Linking the Heart and the Head: Humanism and Professionalism in Medical Education and Practice.

    Science.gov (United States)

    Montgomery, Lynda; Loue, Sana; Stange, Kurt C

    2017-05-01

    This paper articulates a practical interpretive framework for understanding humanism in medicine through the lens of how it is taught and learned. Beginning with a search for key tensions and relevant insights in the literature on humanism in health professions education, we synthesized a conceptual model designed to foster reflection and action to realize humanistic principles in medical education and practice. The resulting model centers on the interaction between the heart and the head. The heart represents the emotive domains of empathy, compassion, and connectedness. The head represents the cognitive domains of knowledge, attitudes, and beliefs. The cognitive domains often are associated with professionalism, and the emotive domains with humanism, but it is the connection between the two that is vital to humanistic education and practice. The connection between the heart and the head is nurtured by critical reflection and conscious awareness. Four provinces of experience nurture humanism: (1) personal reflection, (2) action, (3) system support, and (4) collective reflection. These domains represent potential levers for developing humanism. Critical reflection and conscious awareness between the heart and head through personal reflection, individual and collective behavior, and supportive systems has potential to foster humanistic development toward healing and health.

  12. Gouty tophus simulating soft tissue tumor in a heart transplant recipient

    Energy Technology Data Exchange (ETDEWEB)

    Chaoui, A.; Garcia, J. [Department of Radiology, University Hospital of Geneva, 24, Rue Micheli-du-Crest, CH-1211 Geneva 14 (Switzerland); Kurt, A.M. [Department of Pathology, University Hospital of Geneva, Geneva (Switzerland)

    1997-10-01

    Gouty arthritis is the most frequent rheumatological complication among cyclosporine-treated organ transplant recipients. We report one case of pseudotumoral intramuscular tophaceous deposit of the forearm, in a heart transplant patient with a history of traumatic wound to the same area 17 years previously, and with no known arthritis. (orig.) With 4 figs., 10 refs.

  13. Limb Ischemia after Heart Transplantation: An Unusual Case of Tissue Embolism

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Mirhosseini

    2017-05-01

    Full Text Available Major complications of heart transplantation include graft rejection, infection, graft arteriosclerosis, malignancy, and drug toxicity. Among these complications, infections and thrombophilic disorders are of particular interest owing to their major contribution to morbidity and mortality among heart transplantation patients. Thrombophilic disorders are caused by imbalance between hypercoagulation and fibrinolytic states. In this report, we describe a 43-year-old man who had unusual complications of heart transplantation. We presume that the unusual postoperative complications of the patient might have been caused by a faulty surgical procedure, improper use of anticoagulant agents, and incomplete prophylaxis for infections. During the postoperative period, the patient suffered arterial obstruction three times, for which he underwent clot removal via embolectomy. In addition to arterial obstruction, the patient had a mobile mass in the left atrium that was removed by open cardiac surgery. The frozen sample of the cardiac mass was positive for Acinetobacter baumannii. After 7 days of observation in the hospital and proper antibiotic regimen, the patient was sent home with no additional complaints and normal physical examination. We conclude that in heart transplantation patients, the precise performance of the surgical procedure, postoperative care, and early removal of the embolus might reduce morbidities and mortality due to thrombophilic disorders.

  14. Analytic Simulation of Tissue Damage from Penetrating Wounds to the Heart

    Science.gov (United States)

    2006-12-01

    from Penetrating Wounds to the Heart PRINCIPAL INVESTIGATOR: Robert D. Eisler Amiya K...0084 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert D. Eisler 5d. PROJECT NUMBER Amiya K. Chatterjee Steven F...solutions in curvilinear geometries”, Journal of Vibrations and Acoustics, Transactions of the ASME 125, 133-136. [6] Hamdi, S., Enright , W., Schiesser

  15. Regional pulmonary perfusion following human heart-lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. (Royal Victoria Hospital, Montreal, Quebec (Canada))

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  16. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-an; FAN You-qi; LI Chang-ling; HE Hong; SUN Yong; LV Bin-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells.BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI)control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5× 106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplantation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and

  17. MORPHOLOGICAL STUDY OF CORONARY SINUS IN HUMAN CADAVERIC HEARTS

    Directory of Open Access Journals (Sweden)

    R. Manoranjitham

    2015-09-01

    Full Text Available Background: The coronary sinus is a dilated venous channel opening into the right atrium of the heart. The coronary venous system has gained importance in recent years for electrophysiological procedures like arrhythmia ablation, biventricular pacing and implantation of cardiac pacemakers. The present study aims to study the formation and tributaries of coronary sinus and also the morphology of thebesian valve. Materials and Methods: 30 formalin fixed cadaveric hearts available in the department of Anatomy, Dhanalakshmi Srinivasan Medical College and Hospital, Perambalur, Tamil nadu, was used for the study. The formation and tributaries of coronary sinus were noted. The length of coronary sinus in millimeters was measured from the union of great cardiac vein and left marginal vein upto the opening of the coronary sinus in the right atrium with vernier calipers. The width of the coronary ostium in the right atrium was measured in millimeters with vernier calipers. Results: In 93.33% specimens the coronary sinus was formed by the union of great cardiac vein and left marginal vein. In 3.33% specimens it was formed by the union of great cardiac vein and posterior vein of left ventricle, and in 3.33% specimens it was formed by the union of great cardiac vein and oblique vein of left atrium. The left marginal vein was absent in 2 specimens and small cardiac vein was absent in 1 specimen. The mean length of coronary sinus was 54.98 + 12.2mm. The mean width of coronary sinus ostium was 9.35 + 3.24mm. The Thebesian valve was present in 93.33% specimens and it was semilunar in shape. Conclusion: The knowledge of coronary sinus anatomy will be helpful during electrophysiological procedures.

  18. Quantification of carbonic anhydrase gene expression in ventricle of hypertrophic and failing human heart

    Directory of Open Access Journals (Sweden)

    Alvarez Bernardo V

    2013-01-01

    Full Text Available Abstract Background Carbonic anhydrase enzymes (CA catalyze the reversible hydration of carbon dioxide to bicarbonate in mammalian cells. Trans-membrane transport of CA-produced bicarbonate contributes significantly to cellular pH regulation. A body of evidence implicates pH-regulatory processes in the hypertrophic growth pathway characteristic of hearts as they fail. In particular, Na+/H+ exchange (NHE activation is pro-hypertrophic and CA activity activates NHE. Recently Cardrase (6-ethoxyzolamide, a CA inhibitor, was found to prevent and revert agonist-stimulated cardiac hypertrophy (CH in cultured cardiomyocytes. Our goal thus was to determine whether hypertrophied human hearts have altered expression of CA isoforms. Methods We measured CA expression in hypertrophied human hearts to begin to examine the role of carbonic anhydrase in progression of human heart failure. Ventricular biopsies were obtained from patients undergoing cardiac surgery (CS, n = 14, or heart transplantation (HT, n = 13. CS patients presented mild/moderate concentric left ventricular hypertrophy and normal right ventricles, with preserved ventricular function; ejection fractions were ~60%. Conversely, HT patients with failing hearts presented CH or ventricular dilation accompanied by ventricular dysfunction and EF values of 20%. Non-hypertrophic, non-dilated ventricular samples served as controls. Results Expression of atrial and brain natriuretic peptide (ANP and BNP were markers of CH. Hypertrophic ventricles presented increased expression of CAII, CAIV, ANP, and BNP, mRNA levels, which increased in failing hearts, measured by quantitative real-time PCR. CAII, CAIV, and ANP protein expression also increased approximately two-fold in hypertrophic/dilated ventricles. Conclusions These results, combined with in vitro data that CA inhibition prevents and reverts CH, suggest that increased carbonic anhydrase expression is a prognostic molecular marker of cardiac

  19. Prostate tissue stiffness as measured with a resonance sensor system: a study on silicone and human prostate tissue in vitro.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2006-07-01

    Prostate cancer is the most common form of cancer in men in Europe and in the USA. Some prostate tumours are stiffer than the surrounding normal tissue, and it could therefore be of interest to measure prostate tissue stiffness. Resonance sensor technology based on piezoelectric resonance detects variations in tissue stiffness due to a change in the resonance frequency. An impression-controlled resonance sensor system was used to detect stiffness in silicone rubber and in human prostate tissue in vitro using two parameters, both combinations of frequency change and force. Variations in silicone rubber stiffness due to the mixing ratio of the two components could be detected (pprostate tissue showed that there existed a statistically significant (MANOVA test, pprostates. Our results indicated that the resonance sensor could be used to detect stiffness variations in silicone and in human prostate tissue in vitro. This is promising for the development of a future diagnostic tool for prostate cancer.

  20. Recombinant proteins secreted from tissue-engineered bioartificial muscle improve cardiac dysfunction and suppress cardiomyocyte apoptosis in rats with heart failure

    Institute of Scientific and Technical Information of China (English)

    RONG Shu-ling; WANG Yong-jin; WANG Xiao-lin; LU Yong-xin; WU Yin; LIU Qi-yun; MI Shao-hua; XU Yu-lan

    2010-01-01

    Background Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats.Methods Ligation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n=6) and MI-GFP group (n=6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n=6)and S-GFP group (n=6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting.Results Primary rat myoblasts were retrovirally transduced to

  1. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  2. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart.

    Science.gov (United States)

    Kakimoto, Yu; Tanaka, Masayuki; Kamiguchi, Hiroshi; Hayashi, Hideki; Ochiai, Eriko; Osawa, Motoki

    2016-05-15

    Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Resonance Raman detection of carotenoid antioxidants in living human tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, M.; Ermakova, Maia; Gellermann, W.

    2011-01-01

    Increasing evidence points to the beneficial effects of carotenoid antioxidants in the human body. Several studies, for example, support the protective role of lutein and zeaxanthin in the prevention of age-related eye diseases. If present in high concentrations in the macular region of the retina, lutein and zeaxanthin provide pigmentation in this most light sensitive retinal spot, and as a result of light filtering and/or antioxidant action, delay the onset of macular degeneration with increasing age. Other carotenoids, such as lycopene and beta-carotene, play an important role as well in the protection of skin from UV and short-wavelength visible radiation. Lutein and lycopene may also have protective function for cardiovascular health, and lycopene may play a role in the prevention of prostate cancer. Motivated by the growing importance of carotenoids in health and disease, and recognizing the lack of any accepted noninvasive technology for the detection of carotenoids in living human tissue, we explore resonance Raman spectroscopy as a novel approach for noninvasive, laser optical carotenoid detection. We review the main results achieved recently with the Raman detection approach. Initially we applied the method to the detection of macular carotenoid pigments, and more recently to the detection of carotenoids in human skin and mucosal tissues. Using skin carotenoid Raman instruments, we measure the carotenoid response from the stratum corneum layer of the palm of the hand for a population of 1375 subjects and develope a portable skin Raman scanner for field studies. These experiments reveal that carotenoids are a good indicator of antioxidant status. They show that people with high oxidative stress, like smokers, and subjects with high sunlight exposure, in general, have reduced skin carotenoid levels, independent of their dietary carotenoid consumption. We find the Raman technique to be precise, specific, sensitive, and well suitable for clinical as well as

  4. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart.

    Science.gov (United States)

    Frahm, Thomas; Mohamed, Salaheldien A; Bruse, Petra; Gemünd, Christine; Oehmichen, Manfred; Meissner, Christoph

    2005-11-01

    During the ageing process, an increase of mitochondrial DNA (mtDNA) deletions and other mutations have been reported. These structural alterations of mtDNA are assumed to cause a reduction in the respiratory chain activity and may contribute to the ageing process. Therefore, the question arises if the accumulation of deleted mtDNA is compensated in vivo by an increase of mtDNA synthesis via a feedback mechanism. We designed two human mtDNA-specific oligonucleotide probes for quantitative mtDNA analysis of 5 different tissues from 50 individuals aged from 8 weeks to 93 years. The amount of mtDNA was approximately 1.1 +/- 0.5% (4617 +/- 2099 copies) in the caudate nucleus, 1.0 +/- 0.5% (4198 +/- 2099 copies) in the frontal lobe cortex, 0.3 +/- 0.2% (1259 +/- 840 copies) in the cerebellar cortex, 1.0 +/- 0.4% (4198 +/- 1679 copies) in skeletal muscle and 2.2+/-1.3% (9235 +/- 5457 copies) in heart muscle. We did not observe any significant change in the absolute copy number during ageing in five different tissues, and therefore, found no evidence for the postulated feedback mechanism. Our study indicates that mtDNA copy number is tissue-specific and depends on the energy demand of the tissue.

  5. Sleep Stage Dependence of Invariance Characteristics in Fluctuations of Healthy Human Heart Rate

    Science.gov (United States)

    Togo, Fumiharu; Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu

    2005-08-01

    The outstanding feature of healthy human heart rate is the robust scale invariance in the non-Gaussian probability density function (PDF), which is preserved not only in a quiescent condition, but also in a dynamic state during waking hours [K. Kiyono et al. Phys. Rev. Lett. 93 (2004)]. Together with 1/f like scaling, this characteristic is a strong indication of far-from-equilibrium, critical-like dynamics of heart rate regulation. Our results suggest that healthy human heart rate departs from a critical state-like operation during sleeping hours, at a rate which is heterogeneous with respect to sleep stages annotated according to traditional techniques. We study specific contributions of sleep stages to the relative departure from criticality through the analysis of sleep stage dependence of the root mean square of multiscale local energy and the multiscale PDF. There is a possibility that the involvement of cortical activity may be important for a critical state-like operation.

  6. Metabolic gene profile in early human fetal heart development

    National Research Council Canada - National Science Library

    Iruretagoyena, J I; Davis, W; Bird, C; Olsen, J; Radue, R; Teo Broman, A; Kendziorski, C; Splinter BonDurant, S; Golos, T; Bird, I; Shah, D

    2014-01-01

    .... In order to describe normal cardiac development during late first and early second trimester in human fetuses this study used microarray and pathways analysis and created a corresponding 'normal' database...

  7. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Jon-Jon Santiago

    Full Text Available Fibroblast growth factor 2 (FGF-2 is a multifunctional protein synthesized as high (Hi- and low (Lo- molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD and 68% (±25 SD of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2 reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes

  8. Molecular and Immunohistochemical Characterization of Historical Long-Term Preserved Fixed Tissues from Different Human Organs.

    Science.gov (United States)

    Hühns, Maja; Röpenack, Paula; Erbersdobler, Andreas

    2015-01-01

    University and museum collections are very important sources of biological samples that can be used to asses the past and present genetic diversity of many species. Modern genetic and immunohistochemical techniques can be used on long-term preserved fixed tissues from museum specimens to answer epidemiological questions. A proof of principle was established to apply modern molecular genetics and immunohistochemical methods to these old specimens and to verify the original diagnosis. We analysed 19 specimens from our university collection including human organs that had been in fixative for more than 80 years. The tissues originated from lung, colon, brain, heart, adrenal gland, uterus and skin. We isolated amplifiable DNA from these wet preparations and performed mutational analysis of BRAF, KRAS and EGFR. The tissues were also embedded in paraffin and used for modern histology and immunohistochemistry. Our data show that amplifiable DNA is extractable and ranged from 0.25 to 22.77 μg of total DNA. In three specimens BRAFV600E or KRASG12D mutations were found. Additionally, expression of different proteins like vimentin and GFAP was detected immunohistochemical in six investigated specimens. On the basis of our results the original diagnosis was altered in three specimens. Our work showed that it is possible to extract amplifiable DNA suitable for sequence analysis from long-term fixed tissue. Furthermore, histology and immunohistochemistry is feasible in specimens fixed long time ago. We conclude that these old preparations are suitable for further epidemiological research and that our methods open up new opportunities for future studies.

  9. Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds.

    Science.gov (United States)

    Ellenberg, Ursula; Mattern, Thomas; Seddon, Philip J

    2013-01-01

    Intuition is a poor guide for evaluating the effects of human disturbance on wildlife. Using the endangered Yellow-eyed penguin, Megadyptes antipodes, as an example, we show that heart rate responses provide an objective tool to evaluate human disturbance stimuli and encourage the wider use of this simple and low-impact approach. Yellow-eyed penguins are a flagship species for New Zealand's wildlife tourism; however, unregulated visitor access has recently been associated with reduced breeding success and lower first year survival. We measured heart rate responses of Yellow-eyed penguins via artificial eggs to evaluate a range of human stimuli regularly occurring at their breeding sites. We found the duration of a stimulus to be the most important factor, with elevated heart rate being sustained while a person remained within sight. Human activity was the next important component; a simulated wildlife photographer, crawling slowly around during his stay, elicited a significantly higher heart rate response than an entirely motionless human spending the same time at the same distance. Stimuli we subjectively might perceive as low impact, such as the careful approach of a 'wildlife photographer', resulted in a stronger response than a routine nest-check that involved lifting a bird up to view nest contents. A single, slow-moving human spending 20 min within 2 m from the nest may provoke a response comparable to that of 10 min handling a bird for logger deployment. To reduce cumulative impact of disturbance, any human presence in the proximity of Yellow-eyed penguins needs to be kept at a minimum. Our results highlight the need for objective quantification of the effects of human disturbance in order to provide a sound basis for guidelines to manage human activity around breeding birds.

  10. Expression of very low density lipoprotein receptor in the vascular wall. Analysis of human tissues by in situ hybridization and immunohistochemistry

    DEFF Research Database (Denmark)

    Multhaupt, H A; Gåfvels, M E; Kariko, K

    1996-01-01

    for the uptake and transport of triglyceride-rich lipoproteins, and perhaps facilitate the development of atherosclerosis in hypertriglyceridemic individuals, we used in situ hybridization and immunohistochemistry to determine whether VLDL receptor mRNA and protein was expressed in human vascular tissue. We......The recently cloned very low density lipoprotein (VLDL) receptor binds triglyceride-rich, apolipoprotein-E-containing lipoproteins with high affinity. The observation that VLDL receptor mRNA is abundantly expressed in extracts of tissues such as skeletal muscle and heart, but not liver, has led...... tissue suggests a potentially important role for this receptor in normal and pathophysiological vascular processes....

  11. New dimensions in tissue engineering: possible models for human physiology.

    Science.gov (United States)

    Baar, Keith

    2005-11-01

    Tissue engineering is a discipline of great promise. In some areas, such as the cornea, tissues engineered in the laboratory are already in clinical use. In other areas, where the tissue architecture is more complex, there are a number of obstacles to manoeuvre before clinically relevant tissues can be produced. However, even in areas where clinically relevant tissues are decades away, the tissues being produced at the moment provide powerful new models to aid the understanding of complex physiological processes. This article provides a personal view of the role of tissue engineering in advancing our understanding of physiology, with specific attention being paid to musculoskeletal tissues.

  12. MicroRNA expression variability in human cervical tissues.

    Directory of Open Access Journals (Sweden)

    Patrícia M Pereira

    Full Text Available MicroRNAs (miRNAs are short (approximately 22 nt non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. Cervical cancer is one of the most common cancers in women worldwide and there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform containing probes for mature miRNAs. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL and 9 low-grade squamous intraepithelial lesion (LSIL samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, deregulated miRNAs were identified in malignant and pre-malignant cervical tissues after tackling the high expression variability observed. We were also able to identify putative target genes of relevant candidate miRNAs. Our results show that miRNA expression shows natural variability among human samples, which complicates miRNA data profiling analysis. However, such expression noise can be filtered and does not prevent the identification of deregulated miRNAs that play a role in the malignant transformation of cervical squamous cells. Deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of this tumour type.

  13. Cartilage tissue engineering using pre-aggregated human articular chondrocytes

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-12-01

    Full Text Available In this study, we first aimed at determining whether human articular chondrocytes (HAC proliferate in aggregates in the presence of strong chondrocyte mitogens. We then investigated if the aggregated cells have an enhanced chondrogenic capacity as compared to cells cultured in monolayer. HAC from four donors were cultured in tissue culture dishes either untreated or coated with 1% agarose in the presence of TGFb-1, FGF-2 and PDGF-BB. Proliferation and stage of differentiation were assessed by measuring respectively DNA contents and type II collagen mRNA. Expanded cells were induced to differentiate in pellets or in Hyaff®-11 meshes and the formed tissues were analysed biochemically for glycosaminoglycans (GAG and DNA, and histologically by Safranin O staining. The amount of DNA in aggregate cultures increased significantly from day 2 to day 6 (by 3.2-fold, but did not further increase with additional culture time. Expression of type II collagen mRNA was about two orders of magnitude higher in aggregated HAC as compared to monolayer expanded cells. Pellets generated by aggregated HAC were generally more intensely stained for GAG than those generated by monolayer-expanded cells. Scaffolds seeded with aggregates accumulated more GAG (1.3-fold than scaffolds seeded with monolayer expanded HAC. In conclusion, this study showed that HAC culture in aggregates does not support a relevant degree of expansion. However, aggregation of expanded HAC prior to loading into a porous scaffold enhances the quality of the resulting tissues and could thus be introduced as an intermediate culture phase in the manufacture of engineered cartilage grafts.

  14. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.

    Science.gov (United States)

    Sin, Peter Y W; Webber, Matthew R; Galletly, Duncan C; Ainslie, Philip N; Brown, Stephen J; Willie, Chris K; Sasse, Alexander; Larsen, Peter D; Tzeng, Yu-Chieh

    2010-07-01

    The respiratory component of heart rate variability (respiratory sinus arrhythmia, RSA) has been associated with improved pulmonary gas exchange efficiency in humans via the apparent clustering and scattering of heart beats in time with the inspiratory and expiratory phases of alveolar ventilation, respectively. However, since human RSA causes only marginal redistribution of heart beats to inspiration, we tested the hypothesis that any association between RSA amplitude and pulmonary gas exchange efficiency may be indirect. In 11 patients with fixed-rate cardiac pacemakers and 10 healthy control subjects, we recorded R-R intervals, respiratory flow, end-tidal gas tension and the ventilatory equivalents for carbon dioxide and oxygen during 'fast' (0.25 Hz) and 'slow' paced breathing (0.10 Hz). Mean heart rate, mean arterial blood pressure, mean arterial pressure fluctuations, tidal volume, end-tidal CO(2), and were similar between pacemaker and control groups in both the fast and slow breathing conditions. Although pacemaker patients had no RSA and slow breathing was associated with a 2.5-fold RSA amplitude increase in control subjects (39 +/- 21 versus 97 +/- 45 ms, P exchange efficiency during variable-frequency paced breathing observed in prior human work is not contingent on RSA being present. Therefore, whether RSA serves an intrinsic physiological function in optimizing pulmonary gas exchange efficiency in humans requires further experimental validation.

  15. DIFFERENTIAL RESPONSE OF HEAT SHOCK PROTEINS TO UPHILL AND DOWNHILL EXERCISE IN HEART, SKELETAL MUSCLE, LUNG AND KIDNEY TISSUES

    Directory of Open Access Journals (Sweden)

    Pablo C. B. Lollo

    2013-09-01

    Full Text Available Running on a horizontal plane is known to increase the concentration of the stress biomarker heat-shock protein (HSP, but no comparison of the expression of HSP70 has yet been established between the uphill (predominantly concentric and downhill (predominantly eccentric muscle contractions exercise. The objective of the study was to investigate the relationships between eccentric and concentric contractions on the HSP70 response of the lung, kidney, gastrocnemius, soleus and heart. Twenty-four male Wistar weanling rats were divided into four groups: non-exercised and three different grades of treadmill exercise groups: horizontal, uphill (+7% and downhill (-7% of inclination. At the optimal time-point of six hours after the exercise, serum uric acid, creatine kinase (CK and lactate dehydrogenase (LDH were determined by standard methods and HSP70 by the Western blot analysis. HSP70 responds differently to different types of running. For kidney, heart, soleus and gastrocnemius, the HSP70 expression increased, 230, 180, 150 and 120% respectively of the reference (horizontal. When the contraction was concentric (uphill and compared to downhill the increase in response of HSP70 was greater in 80% for kidney, 75% for gastrocnemius, 60% for soleus and 280% for the heart. Uric acid was about 50% higher (0.64 ± 0.03 mg·dL-1 in the uphill group as compared to the horizontal or downhill groups. Similarly, the activities of serum CK and LDH were both 100% greater for both the uphill and downhill groups as compared to the horizontal group (2383 ± 253 and 647.00 ± 73 U/L, respectively. The responsiveness of HSP70 appeared to be quite different depending on the type of tissue, suggesting that the impact of exercise was not restricted to the muscles, but extended to the kidney tissue. The uphill exercise increases HSP70 beyond the eccentric type and the horizontal running was a lower HSP70 responsive stimulus

  16. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  17. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    Science.gov (United States)

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  18. [Effect of an anomalous broadening of the synchronization band after electric stimulation of heart tissues].

    Science.gov (United States)

    Mazurov, M E

    1987-01-01

    Synchronization effects of the second order induced by a change of the action potential (AP) shape in relation to the frequency of periodic stimulation were studied. Mechanism of anomalous increase of the synchronization band at periodic stimulation of the heart fibers was explained. By means of a modified method of synchronization diagrams the synchronization bands were calculated for possible stimulation regimes taking into account a change in RP shape and dynamic threshold (DT) depending on the frequency of the initiated regimes. Regions of stimulating signals parameters (multiplicity regions or prolonging regions) were discovered, within the range of which the same stimulating signal may induce different synchronization regimes. Physiological meaning of the existence of anomalous synchronization regimes which significantly broaden the adaptation possibilities of the heart is discussed.

  19. Tissue Doppler, strain and strain rate in ischemic heart disease "how I do it".

    Science.gov (United States)

    Mada, Razvan O; Duchenne, Jürgen; Voigt, Jens-Uwe

    2014-09-18

    Echocardiography is the standard method for assessing myocardial function in patients with ischemic heart disease. The acquisition and interpretation of echocardiographic images, however, remains a highly specialized task which often relies entirely on the subjective visual assessment of the reader and requires therefore, particular training and expertise. Myocardial deformation imaging allows quantifying myocardial function far beyond what can be done with sole visual assessment. It can improve the interpretation of regional dysfunction and offers sensitive markers of induced ischemia which can be used for stress tests. In the following, we recapitulate shortly the pathophysiological and technical basics and explain in a practical manner how we use this technique in investigating patients with ischemic heart disease.

  20. RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response.

    Science.gov (United States)

    Prunotto, Andrea; Stevenson, Brian J; Berthonneche, Corinne; Schüpfer, Fanny; Beckmann, Jacques S; Maurer, Fabienne; Bergmann, Sven

    2016-09-07

    The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the β-blocker atenolol (ATE) and the β-agonist isoproterenol (ISO). Differential expression analyses revealed a large set of genes responding to ISO (n = 1770 at FDR = 0.0001) and a comparatively small one responding to ATE (n = 23 at FDR = 0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r = -0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibit coherent transcription profiles across some strains and/or treatments. Correlations between these modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Our study provides new insights into the transcriptional response of the heart to perturbations of the β-adrenergic system, implicating several new genes that had not been associated to this system previously.

  1. Simulation of the contraction of the ventricles in a human heart model including atria and pericardium.

    Science.gov (United States)

    Fritz, Thomas; Wieners, Christian; Seemann, Gunnar; Steen, Henning; Dössel, Olaf

    2014-06-01

    During the contraction of the ventricles, the ventricles interact with the atria as well as with the pericardium and the surrounding tissue in which the heart is embedded. The atria are stretched, and the atrioventricular plane moves toward the apex. The atrioventricular plane displacement (AVPD) is considered to be a major contributor to the ventricular function, and a reduced AVPD is strongly related to heart failure. At the same time, the epicardium slides almost frictionlessly on the pericardium with permanent contact. Although the interaction between the ventricles, the atria and the pericardium plays an important role for the deformation of the heart, this aspect is usually not considered in computational models. In this work, we present an electromechanical model of the heart, which takes into account the interaction between ventricles, pericardium and atria and allows to reproduce the AVPD. To solve the contact problem of epicardium and pericardium, a contact handling algorithm based on penalty formulation was developed, which ensures frictionless and permanent contact. Two simulations of the ventricular contraction were conducted, one with contact handling of pericardium and heart and one without. In the simulation with contact handling, the atria were stretched during the contraction of the ventricles, while, due to the permanent contact with the pericardium, their volume increased. In contrast to that, in the simulations without pericardium, the atria were also stretched, but the change in the atrial volume was much smaller. Furthermore, the pericardium reduced the radial contraction of the ventricles and at the same time increased the AVPD.

  2. Paracetamol (acetaminophen) decreases hydrogen sulfide tissue concentration in brain but increases it in the heart, liver and kidney in mice.

    Science.gov (United States)

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Góralska, Marta; Piotrowska, Joanna

    2011-01-01

    The biological action ofN-acetyl-p-aminophenol - paracetamol (acetaminophen) has been demonstrated to involve different mechanisms and is still not clear. Hydrogen sulfide (H2S) has been shown to play an important role in many physiological and pathological processes including nociception. The interaction between acetaminophen and endogenous H2S is unknown. Twenty four female CBA strain mice were administered intraperitoneal injections of N-acetyl-p-aminophenol solution: paracetemol in doses of 30 mg/kg b.w. per day (group D1, n = 8) or 100 mg/kg b.w. per day (group D2, n = 8).. The control group (n = 8) received physiological saline in portions of the same volume--0.2 ml. The measurements of tissue H2S concentration were performed with the Siegel spectrophotometric modified method. In the brain, the H2S tissue level decreased, but more significantly in the lower drug dose group. Conversely, there was a significant rise in the H2S tissue concentration in D1 and D2 groups in heart and kidney with the increase more pronounced in the group with the lower paracetamol dose. In the liver only the higher acetaminophen dose elicited a change in H2S concentration, increasing after administration of acetaminophen at 100 mg/kg. Our study demonstrates that paracetamol induces H2S tissue concentration changes in different mouse organs.

  3. Tissue Doppler echocardiography and biventricular pacing in heart failure: Patient selection, procedural guidance, follow-up, quantification of success

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2004-09-01

    Full Text Available Abstract Asynchronous myocardial contraction in heart failure is associated with poor prognosis. Resynchronization can be achieved by biventricular pacing (BVP, which leads to clinical improvement and reverse remodeling. However, there is a substantial subset of patients with wide QRS complexes in the electrocardiogram that does not improve despite BVP. QRS width does not predict benefit of BVP and only correlates weakly with echocardiographically determined myocardial asynchrony. Determination of asynchrony by Tissue Doppler echocardiography seems to be the best predictor for improvement after BVP, although no consensus on the optimal method to assess asynchrony has been achieved yet. Our own preliminary results show the usefulness of Tissue Doppler Imaging and Tissue Synchronization Imaging to document acute and sustained improvement after BVP. To date, all studies evaluating Tissue Doppler in BVP were performed retrospectively and no prospective studies with patient selection for BVP according to echocardiographic criteria of asynchrony were published yet. We believe that these new echocardiographic tools will help to prospectively select patients for BVP, help to guide implantation and to optimize device programming.

  4. Differences in tissue distribution of iron from various clinically used intravenous iron complexes in fetal avian heart and liver.

    Science.gov (United States)

    Spicher, Karsten; Brendler-Schwaab, Susanne; Schlösser, Christoph; Catarinolo, Maria; Fütterer, Sören; Langguth, Peter; Enzmann, Harald

    2015-10-01

    Nanomedicines are more complex than most pharmacologically active substances or medicines and have been considered as non-biological complex drugs. For nanomedicines pivotal pharmacokinetic properties cannot be assessed by plasma concentration data from standard bioequivalence studies. Using intravenous iron complexes (IICs) as model we show that fetal avian tissues can be used to study time dependent tissue concentrations in heart and liver. Clear differences were found between equimolar doses of sucrose, gluconate or carboxymaltose coated iron particles. The range in tissue iron concentrations observed with these clinically widely used IICs provides an orientation as to what should be acceptable for any new IICs. Moreover, sensitivity of the experimental model was high enough to detect a 20% difference in tissue iron concentration. For the authorization of generic products under Article 10 (1) of Directive 2001/83/EC a plasma concentration of an active substance in the range of 80%-125% versus the reference product is usually considered acceptable. Based on its high discriminatory sensitivity this method was used to support a positive marketing authorization decision for a generic nanomedicine product.

  5. Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds

    OpenAIRE

    Ellenberg, Ursula; Mattern, Thomas; Seddon, Philip J.

    2013-01-01

    Intuition is a poor guide for evaluating the effects of human disturbance on wildlife. Using the endangered Yellow-eyed penguin, Megadyptes antipodes, as an example, we show that heart rate responses provide an objective tool to evaluate human disturbance stimuli and encourage the wider use of this simple and low-impact approach. Yellow-eyed penguins are a flagship species for New Zealand's wildlife tourism; however, unregulated visitor access has recently been associated with reduced breedin...

  6. Role of connexins in human congenital heart disease: the chicken and egg problem

    Directory of Open Access Journals (Sweden)

    Aida eSalameh

    2013-06-01

    Full Text Available Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone's anomaly often do not involve only the heart but also the great vessels and although occurring less frequently these severe cardiac malformations will become symptomatically within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade there is increasing evidence that cardiac gap junction proteins, the connexins (Cx, might have an impact on cardiac anomalies. In the heart mainly three of them (Cx40, Cx43 and Cx45 are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses potential role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.

  7. Role of connexins in human congenital heart disease: the chicken and egg problem.

    Science.gov (United States)

    Salameh, Aida; Blanke, Katja; Daehnert, Ingo

    2013-01-01

    Inborn cardiac diseases are among the most frequent congenital anomalies and are the main cause of death in infants within the first year of age in industrialized countries when not adequately treated. They can be divided into simple and complex cardiac malformations. The former ones, for instance atrial and ventricular septal defects, valvular or subvalvular stenosis or insufficiency account for up to 80% of cardiac abnormalities. The latter ones, for example transposition of the great vessels, Tetralogy of Fallot or Shone's anomaly often do not involve only the heart, but also the great vessels and although occurring less frequently, these severe cardiac malformations will become symptomatic within the first months of age and have a high risk of mortality if the patients remain untreated. In the last decade, there is increasing evidence that cardiac gap junction proteins, the connexins (Cx), might have an impact on cardiac anomalies. In the heart, mainly three of them (Cx40, Cx43, and Cx45) are differentially expressed with regard to temporal organogenesis and to their spatial distribution in the heart. These proteins, forming gap junction channels, are most important for a normal electrical conduction and coordinated synchronous heart muscle contraction and also for the normal embryonic development of the heart. Animal and also some human studies revealed that at least in some cardiac malformations alterations in certain gap junction proteins are present but until today no particular gap junction mutation could be assigned to a specific cardiac anomaly. As gap junctions have often been supposed to transmit growth and differentiation signals from cell to cell it is reasonable to assume that they are somehow involved in misdirected growth present in many inborn heart diseases playing a primary or contributory role. This review addresses the potentional role of gap junctions in the development of inborn heart anomalies like the conotruncal heart defects.

  8. Statin therapy blunts inflammatory activation and improves prognosis and left ventricular performance assessed by Tissue Doppler Imaging in subjects with chronic ischemic heart failure: results from the Daunia Heart Failure Registry

    Directory of Open Access Journals (Sweden)

    Michele Correale

    2011-01-01

    Full Text Available BACKGROUND: A limited number of studies have used Tissue Doppler Imaging (TDI to evaluate the effect of statin therapy on left ventricular dysfunction in patients with chronic heart failure. In this work, we aimed to determine whether statin administration influenced prognosis, inflammatory activation and myocardial performance evaluated by Tissue Doppler Imaging in subjects enrolled in the Daunia Heart Failure Registry, a local registry of patients with chronic heart failure. METHODS: This study retrospectively analyzed 353 consecutive outpatients with chronic heart failure (mean follow-up 384 days, based on whether statin therapy was used. In all patients, several Tissue Doppler Imaging parameters were measured; circulating levels of interleukin (IL-6, IL-10 and C-reactive protein were also assayed. RESULTS: Statin administration in 128 subjects with ischemic heart disease was associated with a lower incidence of adverse events (rehospitalization for HF 15% vs. 46%, p<0.001; ventricular arrhythmias 5% vs. 21%, p<0.01; cardiac death 1% vs. 8%, p<0.05, lower circulating levels of IL-6 (p<0.05 and IL-10 (p<0.01, lower rates of chronic heart failure (p<0.001 and better Tissue Doppler Imaging performance (E/E' ratio 12.82 + 5.42 vs. 19.85 + 9.14, p<0.001; ET: 260.62+ 44.16 vs. 227.11 +37.58 ms, p<0.05; TP: 176.79 + 49.93 vs. 136.7 + 37.78 ms, p<0.05 and St: 352.35 + 43.17 vs. 310.67 + 66.46 + 37.78 ms, p<0.05. CONCLUSIONS: Chronic ischemic heart failure outpatients undergoing statin treatment had fewer readmissions for adverse events, blunted inflammatory activation and improved left ventricular performance assessed by Tissue Doppler Imaging.

  9. Preparation of polyclonal antibody specific for NOR1 and detection of its expression pattern in human tissues and nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Bo Xiang; Mei Yi; Li Wang; Wei Liu; Wenling Zhang; Jue Ouyang; Ya Peng; Wenjuan Li; Ming Zhou; Huaying Liu; Minghua Wu; Rong Wang; Xiaoling Li; Guiyuan Li

    2009-01-01

    Oxidored-nitro domain containing protein 1 (NORI)gene is a novel nitroreductase gene first isolated from nasopharyngeal carcinoma (NPC). It plays an important role in the formation of chemical carcinogen and the carcinogenesis of NPC for its nitrosation function. Overexpression of the wild-type NOR1 gene in naso-pharyngeal carcinoma cells is effective to inhibit cell growth and proliferation. In this study, for the first time, we generated a highly specific NOR1 antibody and ana-lyzed NOR1 distribution in the human tissues and NPC biopsies. The results showed that NOR1 protein is predominantly expressed in human nasopharynx and tracheal tissues. Human heart, liver, spleen, stomach, colon, kidney, skeletal muscle, thymus, and pancreas are aH deficient of NORI protein. More importantly, we per-formed immunohistochemistry assay of NOR1 protein expression in the NPC tissues, and the result showed that NOR1 protein is frequently down-expressed in NPC. These data shed light on the selectivity of potential physiological functions of NOR1 and provides an indis-pensable reference to the carcinogenesis process of NPC and to identify or validate tissue-specific drug targets.

  10. Full-field bulge test for planar anisotropic tissues: part I--experimental methods applied to human skin tissue.

    Science.gov (United States)

    Tonge, Theresa K; Atlan, Lorre S; Voo, Liming M; Nguyen, Thao D

    2013-04-01

    The nonlinear anisotropic properties of human skin tissue were investigated using bulge testing. Full-field displacement data were obtained during testing of human skin tissues procured from the lower back of post-mortem human subjects using 3-D digital image correlation. To measure anisotropy, the dominant fiber direction of the tissue was determined from the deformed geometry of the specimen. Local strains and stress resultants were calculated along both the dominant fiber direction and the perpendicular direction. Variation in anisotropy and stiffness was observed between specimens. The use of stress resultants rather than the membrane stress approximation accounted for bending effects, which are significant for a thick nonlinear tissue. Of the six specimens tested, it was observed that specimens from older donors exhibited a stiffer and more isotropic response than those from younger donors. It was seen that the mechanical response of the tissue was negligibly impacted by preconditioning or the ambient humidity. The methods presented in this work for skin tissue are sufficiently general to be applied to other planar tissues, such as pericardium, gastrointestinal tissue, and fetal membranes. The stress resultant-stretch relations will be used in a companion paper to obtain material parameters for a nonlinear anisotropic hyperelastic model. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  12. Procoagulant tissue factor-exposing vesicles in human seminal fluid.

    Science.gov (United States)

    Franz, C; Böing, A N; Hau, C M; Montag, M; Strowitzki, T; Nieuwland, R; Toth, B

    2013-06-01

    Recent studies indicate that various types of vesicles, like microparticles (MP) and exosomes, are present in blood, saliva, bone marrow, urine and synovial fluid. These vesicles, which are released upon activation or shear stress, are thought to play a role in coagulation, neovascularisation, inflammation and intercellular signalling. Seminal fluid is a cell-, sperm- and protein-rich suspension. Although seminal fluid is known to contain vesicles like prostasomes, MP and exosomes have never been characterised. Therefore, the aim of our study was to analyse and characterise vesicles in seminal fluid in male partners of patients undergoing controlled ovarian stimulation for IVF/ICSI. MP from seminal fluid of patients during routine IVF/ICSI procedures were detected and analysed with flow cytometry (FACS) and transmission electron microscopy (TEM), using antibodies against tissue factor (TF), CD10, CD13, CD26 and annexin V. The coagulant properties of vesicles were studied using a fibrin generation test. MP were detected in human seminal fluid by both flow cytometry and TEM. Seminal fluid-derived MP expressed CD10, CD13, CD26 and TF, which was highly procoagulant and a powerful trigger of the extrinsic pathway of coagulation. The extent to which the procoagulant activity of MP in seminal fluid contributes to the implantation process itself and therefore affects human reproduction needs to be further elucidated.

  13. Human epithelial tissue culture study on restorative materials.

    Science.gov (United States)

    Forster, András; Ungvári, Krisztina; Györgyey, Ágnes; Kukovecz, Ákos; Turzó, Kinga; Nagy, Katalin

    2014-01-01

    Health condition of the gingival tissues contacting the surfaces of fixed prostheses is a result of multiple etiologic factors. The aim of the investigation discussed here was to evaluate the attachment and proliferation rate of cultured human epithelial cells on three commonly used restorative materials under in vitro conditions. Morphological and chemical structure of polished lithium-disilicate (IPS e.max Press, Ivoclar Vivadent AG, Germany), yttrium modified zirconium dioxide (5-TEC ICE Zirkon Translucent, Zirkonzahn GmbH Srl, Germany) and cobalt chromium alloy (Remanium star, Dentaurum GmbH & Co. KG, Germany) discs were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM). Human epithelial cells harvested and cultured from one donor, were applied to investigate cell attachment (24h observation) and proliferation (72h observation) via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and AlamarBlue(®) (AB) assays on control surface (cell-culture plate) and on the restorative materials (n=3×20 specimens/material). SEM and AFM revealed typical morphology and roughness features for the materials. Zirconia presented significantly higher Ra value. EDS confirmed typical elements on the investigated restorative materials: lithium-disilicate (Si, O); Zirconia (Zi, Y, O); CoCr (Co, Cr, W). All surfaces except CoCr exhibited significant cell proliferation according to MTT and AB assays after 72h compared to 24h. Among the restorative materials, CoCr samples showed the highest cell attachment as indicated by MTT assay. AB results showed that attachment and proliferation of human epithelial cells is supported more on lithium-disilicate. Both assays indicated the lowest value for zirconia. The results indicate that the restorative materials examined are equally suitable for subgingival restorations. Lithium-disilicate exhibited the best biocompatibility. The examined materials are indicated for use

  14. Common multifractality in the heart rate variability and brain activity of healthy humans

    Science.gov (United States)

    Lin, D. C.; Sharif, A.

    2010-06-01

    The influence from the central nervous system on the human multifractal heart rate variability (HRV) is examined under the autonomic nervous system perturbation induced by the head-up-tilt body maneuver. We conducted the multifractal factorization analysis to factor out the common multifractal factor in the joint fluctuation of the beat-to-beat heart rate and electroencephalography data. Evidence of a central link in the multifractal HRV was found, where the transition towards increased (decreased) HRV multifractal complexity is associated with a stronger (weaker) multifractal correlation between the central and autonomic nervous systems.

  15. Human thoracic anatomy relevant to implantable artificial hearts

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.B.; Kiraly, R.J.; Nose, Y.

    1976-10-01

    The objective of the study is to define the human thorax in a quantitative statistical manner such that the information will be useful to the designers of cardiac prostheses, both total replacement and assist devices. This report pertains specifically to anatomical parameters relevant to the total cardiac prosthesis. This information will also be clinically useful in that the proposed recipient of a cardiac prosthesis can by simple radiography be assured of an adequate fit with the prosthesis prior to the implantation.

  16. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tusscher, K H W J Ten; Panfilov, A V [Department of Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2006-12-07

    In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.

  17. Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions

    Science.gov (United States)

    Ten Tusscher, K. H. W. J.; Panfilov, A. V.

    2006-12-01

    In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.

  18. Physiological Function and Transplantation of Scaffold-Free and Vascularized Human Cardiac Muscle Tissue

    National Research Council Canada - National Science Library

    K. R. Stevens; K. L. Kreutziger; S. K. Dupras; F. S. Korte; M. Regnier; V. Muskheli; M. B. Nourse; K. Bendixen; H. Reinecke; C. E. Murry; William A. Catterall

    2009-01-01

    Success of human myocardial tissue engineering for cardiac repair has been limited by adverse effects of scaffold materials, necrosis at the tissue core, and poor survival after transplantation due to ischemie injury...

  19. Expression of Resistin Protein in Normal Human Subcutaneous Adipose Tissue and Pregnant Women Subcutaneous Adipose Tissue and Placenta

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yongming; GUO Tiecheng; ZHANG Muxun; GUO Wei; YU Meixia; XUE Keying; HUANG Shiang; CHEN Yanhong; ZHU Huanli; XU Lijun

    2006-01-01

    The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta and the relationship between obesity, type 2 diabetes mellitus (T2DM), pregnant physiological insulin resistance (IR) and gestational diabetes mellitus (GDM) was investigated. The expression of resistin protein in normal human abdominal, thigh, pregnant women abdominal, non-pregnant women abdominal subcutaneous adipose tissue and placenta was detected by using Western blotting method.Fasting serum glucose concentration was measured by glucose oxidase assay. Serum cholesterol (CHOL), serum triglycerides (TG), serum HDL cholesterol (HDL-C) and serum LDL cholesterol (LDL-C) were determined by full automatic biochemical instrument. Fasting insulin was measured by enzyme immunoassay to calculate insulin resistance index (IRI). Height, weight, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured to calculate body mass index (BMI) and body fat percentage (BF %). Resistin protein expression in pregnant women placental tissue (67 905±8441) (arbitrary A values) was much higher than that in subcutaneous adipose tissue in pregnant women abdomen (40 718 ± 3818, P < 0.01), non-pregnant women abdomen (38 288±2084, P<0.01), normal human abdomen (39 421±6087, P<0.01)and thigh (14 942 ±6706, P<0. 001) respectively. The resistin expression in abdominal subcutaneous adipose tissue showed no significant difference among pregnant, non-pregnant women and normal human, but much higher than that in thigh subcutaneous adipose tissue (P<0. 001). Pearson analysis revealed that resistin protein was correlated with BMI (r=0.42), fasting insulin concentration (r=0.38),IRI (r=0. 34), BF % (r=0.43) and fasting glucose (r=0. 39), but not with blood pressure,CHOL, TG, HDL-C and LDL-C. It was suggested that resistin protein expression in human abdominal subcutaneous adipose tissue was much higher

  20. 75 FR 34146 - Proposed Collection; Comment Request Resource for the Collection and Evaluation of Human Tissues...

    Science.gov (United States)

    2010-06-16

    ... HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request Resource for the Collection and Evaluation of Human Tissues and Cells From Donors With an Epidemiology Profile (NCI) SUMMARY... Collection: Title: Resource for the Collection and Evaluation of Human Tissues and Cells From Donors With an...

  1. A tissue and developmental specific enhancer is located downstream from the human β-globin gene.

    NARCIS (Netherlands)

    G. Kollias (George); J. Hurst; E. de Boer (Ernie); F.G. Grosveld (Frank)

    1987-01-01

    textabstractThe human P-globin gene is part of a multigene family and is expressed specifically in adult human erythroid tissue (for review, 1). When the human P-globin is introduced into fertilized mouse eggs, it is first activated in foetal liver and remains expressed in adult erythroid tissues

  2. Measurement of capillary permeability in canine heart determined by the tissue injection, residue detection method

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Paaske, W P; Haunsø, S

    1991-01-01

    In previous studies the tissue injection, residue detection method failed to provide results of diffusional capillary permeability comparable to those of other methods. For this reason we reconsidered the kinetic theory and found that it is necessary to take into account the apparent (restricted...... detection method and the single injection, residue detection method. Blood flow was measured independently with local 133Xenon washout. D and D' were measured by a true transient diffusion method. We found that the tissue injection, residue detection method gave results for capillary extraction and Pd......S-product similar to those obtained with a number of other methods based on indicator diffusion, so the tissue injection, residue detection method in its new kinetically correct formulation could prove useful in clinical studies of capillary permeability since it is applicable to determination of relative changes...

  3. Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Olesen, Søren-Peter; Christ, Torsten

    2009-01-01

    The cardiac action potential is primarily shaped by the orchestrated function of several different types of ion channels and transporters. One of the regional differences believed to play a major role in the progression and stability of the action potential is the transmural gradient of electrical...... activity across the ventricular wall. An altered balance in the ionic currents across the free wall is assumed to be a substrate for arrhythmia. A large fraction of patients with heart failure experience ventricular arrhythmia. However, the underlying substrate of these functional changes is not well......-established as expression analyses of human heart failure (HF) are sparse. We have investigated steady-state RNA levels by quantitative polymerase chain reaction of ion channels, transporters, connexin 43, and miR-1 in 11 end-stage HF and seven nonfailing (NF) hearts. The quantifications were performed on endo-, mid...

  4. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    Science.gov (United States)

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell