WorldWideScience

Sample records for human health chitosan

  1. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T; Zhang, G; PY Lau, Carol; Zheng, L Z; Xie, X H; Wang, X L; Patrick, Y; Qin, L; Kumta, Shekhar M [Department of Orthopaedics and Traumatology, Chinese University of Hong Kong (Hong Kong); Wang, X H; He, K, E-mail: kumta@cuhk.edu.hk [Department of Mechanical Engineering, Institute of Bio-manufacturing Engineering, Tsinghua University, Beijing (China)

    2011-02-15

    Water-soluble phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) are two chemically modified chitosans. In this study, we found that P-chitosan significantly promotes cell proliferation of both human primary osteoblasts (OBs) and the OB like stromal cell component of the giant cell tumor of bone (GCTB) cells at the concentration from 125 to 1000 {mu}g ml{sup -1} at all time points of 1, 3, 5 and 7 days after treatment. Further investigation of the osteogenic effect of the P-chitosan suggested that it regulates the levels of osteoclastogenic factors, receptor activator of nuclear factor kappa B ligand and osteoprotegerin expression. An interesting finding is that S-chitosan at lower concentration (100 {mu}g ml{sup -1}) stimulates cell proliferation while a higher dose (1000 {mu}g ml{sup -1}) of S-chitosan inhibits it. The inhibitory effect of S-chitosan on human primary GCT stromal cells was greater than that of OBs (p < 0.05). Taken together, our findings elucidated the osteogenic effect of P-chitosan and the varying effects of S-chitosan on the proliferation of human primary OBs and GCT stromal cells and provided us the rationale for the construction of novel bone repair biomaterials with the dual properties of bone induction and bone tumor inhibition.

  2. Inhibitory effect of chitosan oligosaccharide on human hepatoma ...

    African Journals Online (AJOL)

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. Materials and Methods: MTT assay was applied to detect cell ...

  3. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Jefferson Muniz de Lima

    2015-01-01

    Full Text Available Chitosan is a polysaccharide composed of randomly distributed chains of β-(1-4 D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L−1. The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.

  4. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    International Nuclear Information System (INIS)

    Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Ganem-Rondero, A.; Martínez-Castañon, G.; Zavala-Alonso, N.; Martinez-Gutierrez, F.

    2016-01-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  5. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Díaz, M.; Alvarado-Gomez, E. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Magaña-Aquino, M. [Servicio de Epidemiologia del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosi (Mexico); Sánchez-Sánchez, R.; Velasquillo, C. [Laboratorio de Biotecnologia, Instituto Nacional de Rehabilitacion, Mexico, D.F. (Mexico); Gonzalez, C. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico); Ganem-Rondero, A. [Division de Estudios de Posgrado (Tecnologia Farmaceutica), Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Estado de Mexico (Mexico); Martínez-Castañon, G.; Zavala-Alonso, N. [Doctorado en Ciencias Odontológicas Facultad de Estomatologia, UASLP (Mexico); Martinez-Gutierrez, F. [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi (Mexico)

    2016-03-01

    The development of multi-species biofilms in chronic wounds is a serious health problem that primarily generates strong resistance mechanisms to antimicrobial therapy. The use of silver nanoparticles (AgNPs) as a broad-spectrum antimicrobial agent has been studied previously. However, their cytotoxic effects limit its use within the medical area. The purpose of this study was to evaluate the anti-biofilm capacity of chitosan gel formulations loaded with AgNPs, using silver sulfadiazine (SSD) as a standard treatment, on strains of clinical isolates, as well as their cytotoxic effect on human primary fibroblasts. Multi-species biofilm of Staphylococcus aureus oxacillin resistant (MRSA) and Pseudomonas aeruginosa obtained from a patient with chronic wound infection were carried out using a standard Drip Flow Reactor (DFR) under conditions that mimic the flow of nutrients in the human skin. Anti-biofilm activity of chitosan gels and SSD showed a log-reduction of 6.0 for MRSA when chitosan gel with AgNPs at a concentration of 100 ppm was used, however it was necessary to increase the concentration of the chitosan gel with AgNPs to 1000 ppm to get a log-reduction of 3.3, while the SSD showed a total reduction of both bacteria in comparison with the negative control. The biocompatibility evaluation on primary fibroblasts showed better results when the chitosan gels with AgNPs were tested even in the high concentration, in contrast with SSD, which killed all the primary fibroblasts. In conclusion, chitosan gel formulations loaded with AgNPs effectively prevent the formation of biofilm and kill bacteria in established biofilm, which suggest that chitosan gels with AgNPs could be used for prevention and treatment of infections in chronic wounds. The statistic significance of the biocompatibility of chitosan gel formulations loaded with AgNPs represents an advance; however further research and development are necessary to translate this technology into therapeutic and

  6. Releasing growth factors from activated human platelets after chitosan stimulation: a possible bio-material for platelet-rich plasma preparation.

    Science.gov (United States)

    Shen, E-Chin; Chou, Tz-Chong; Gau, Ching-Hwa; Tu, Hsiao-Pei; Chen, Yen-Teen; Fu, Earl

    2006-10-01

    Thrombin is commonly used for activating the platelets and releasing the growth factors on the application of platelet-rich plasma (PRP). We have previously reported that chitosan can enhance rabbit platelet aggregation. In this study, the effects of chitosan on the subsequent growth factors release after human platelets activation were examined to evaluate the possibility of chitosan being used as a substitute for thrombin during PRP preparation. Human platelet activation was determined by aggregation, adhesion and alpha-granule membrane glycoprotein expression. Platelet aggregation was measured by the turbidimetric method, the adhesion was directly examined on chitosan-coated glass plates under light microscope and scanning electron microscope (SEM), and the alpha-granule membrane glycoprotein was detected by fluorescent isothiocyanate (FITC)-conjugated anti-CD61 antibody through flow cytometry. The subsequent epidermal growth factor (EGF), platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets were assayed by ELISA after mixing with chitosan. The enhancing effects on the platelet adhesion and the aggregation from chitosan were observed. Under both microscopes, the adhesive platelets on the chitosan-coated plates were not only greater in number but also earlier in activation than those on the control plates. With flow cytometry, increased glycoprotein IIIa expression in platelets was detected after chitosan treatment. Greater concentrations of growth factors were measured from PRP after chitosan treatment than after the solvent treatment. Because of the observations of growth factors releasing from activated human platelets after chitosan stimulation, we suggest that chitosan may be an appropriate substitute for thrombin in PRP preparation.

  7. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan

    OpenAIRE

    Guiqiang Zhang; Jing Liu; Ruilian Li; Siming Jiao; Cui Feng; Zhuo A. Wang; Yuguang Du

    2018-01-01

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility...

  8. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  9. Can fungi compete with marine sources for chitosan production?

    Science.gov (United States)

    Ghormade, V; Pathan, E K; Deshpande, M V

    2017-11-01

    Chitosan, a β-1,4-linked glucosamine polymer is formed by deacetylation of chitin. It has a wide range of applications from agriculture to human health care products. Chitosan is commercially produced from shellfish, shrimp waste, crab and lobster processing using strong alkalis at high temperatures for long time periods. The production of chitin and chitosan from fungal sources has gained increased attention in recent years due to potential advantages in terms of homogenous polymer length, high degree of deacetylation and solubility over the current marine source. Zygomycetous fungi such as Absidia coerulea, Benjaminiella poitrasii, Cunninghamella elegans, Gongrenella butleri, Mucor rouxii, Mucor racemosus and Rhizopus oryzae have been studied extensively. Isolation of chitosan are reported from few edible basidiomycetous fungi like Agaricus bisporus, Lentinula edodes and Pleurotus sajor-caju. Other organisms from mycotech industries explored for chitosan production are Aspergillus niger, Penicillium chrysogenum, Saccharomyces cerevisiae and other wine yeasts. Number of aspects such as value addition to the existing applications of fungi, utilization of waste from agriculture sector, and issues and challenges for the production of fungal chitosan to compete with existing sources, metabolic engineering and novel applications have been discussed to adjudge the potential of fungal sources for commercial chitosan production. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    Science.gov (United States)

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  11. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  12. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    Science.gov (United States)

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. © 2015 Wiley Periodicals, Inc.

  13. Conjugation of Inulin Improves Anti-Biofilm Activity of Chitosan.

    Science.gov (United States)

    Zhang, Guiqiang; Liu, Jing; Li, Ruilian; Jiao, Siming; Feng, Cui; Wang, Zhuo A; Du, Yuguang

    2018-05-04

    Bacteria biofilm helps bacteria prevent phagocytosis during infection and increase resistance to antibiotics. Staphylococcus aureus is a Gram-positive pathogenic bacterium and is tightly associated with biofilm-related infections, which have led to great threat to human health. Chitosan, the only cationic polysaccharide in nature, has been demonstrated to have antimicrobial and anti-biofilm activities, which, however, require a relative high dosage of chitosan. Moreover, poor water solubility further restricts its applications on anti-infection therapy. Inulins are a group of polysaccharides produced by many types of plants, and are widely used in processed foods. Compared to chitosan, inulin is very soluble in water and possesses a mild antibacterial activity against certain pathogenic bacteria. In order to develop an effective strategy to treat biofilm-related infections, we introduce a method by covalent conjugation of inulin to chitosan. The physicochemical characterization of the inulin⁻chitosan conjugate was assayed, and the anti-biofilm activity was evaluated against S. aureus biofilm. The results indicated that, as compared to chitosan, this novel polysaccharide⁻polysaccharide conjugate significantly enhanced activities against S. aureus either in a biofilm or planktonic state. Of note, the conjugate also showed a broad spectrum anti-biofilm activity on different bacteria strains and low cellular toxicity to mammalian cells. These results suggested that chitosan conjugation of inulin was a viable strategy for treatment against biofilm-related infections. This finding may further spread the application of natural polysaccharides on treatments of infectious disease.

  14. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.

    Science.gov (United States)

    Zhang, Jinlong; Lu, Xiaohui; Feng, Guijuan; Gu, Zhifeng; Sun, Yuyu; Bao, Guofeng; Xu, Guanhua; Lu, Yuanzhou; Chen, Jiajia; Xu, Lingfeng; Feng, Xingmei; Cui, Zhiming

    2016-10-01

    Cell-based transplantation strategies hold great potential for spinal cord injury (SCI) repair. Chitosan scaffolds have therapeutic benefits for spinal cord regeneration. Human dental pulp stem cells (DPSCs) are abundant available stem cells with low immunological incompatibility and can be considered for cell replacement therapy. The purpose of this study is to investigate the role of chitosan scaffolds in the neural differentiation of DPSCs in vitro and to assess the supportive effects of chitosan scaffolds in an animal model of SCI. DPSCs were incubated with chitosan scaffolds. Cell viability and the secretion of neurotrophic factors were analyzed. DPSCs incubated with chitosan scaffolds were treated with neural differentiation medium for 14 days and then neural genes and protein markers were analyzed by Western blot and reverse transcription plus the polymerase chain reaction. Our study revealed a higher cell viability and neural differentiation in the DPSC/chitosan-scaffold group. Compared with the control group, the levels of BDNF, GDNF, b-NGF, and NT-3 were significantly increased in the DPSC/chitosan-scaffold group. The Wnt/β-catenin signaling pathway played a key role in the neural differentiation of DPSCs combined with chitosan scaffolds. Transplantation of DPSCs together with chitosan scaffolds into an SCI rat model resulted in the marked recovery of hind limb locomotor functions. Thus, chitosan scaffolds were non-cytotoxic and provided a conducive and favorable microenvironment for the survival and neural differentiation of DPSCs. Transplantation of DPSCs might therefore be a suitable candidate for treating SCI and other neuronal degenerative diseases.

  15. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    Science.gov (United States)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. Copyright © 2013. Published by

  16. Effect of Chitosan Properties on Immunoreactivity

    Science.gov (United States)

    Ravindranathan, Sruthi; Koppolu, Bhanu prasanth; Smith, Sean G.; Zaharoff, David A.

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application. PMID:27187416

  17. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  18. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  19. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. PMID:25246786

  20. Effect of Chitosan Properties on Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Sruthi Ravindranathan

    2016-05-01

    Full Text Available Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA, viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs. Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells and the amount of tumor necrosis factor-α (TNF-α released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.

  1. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    Science.gov (United States)

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  2. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.

    Science.gov (United States)

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs

    2017-08-09

    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  3. Phytase-mediated enzymatic mineralization of chitosan-enriched hydrogels

    DEFF Research Database (Denmark)

    Lišková, Jana; Douglas, Timothy E.L.; Wijnants, Robbe

    2018-01-01

    Hydrogels mineralized with calcium phosphate (CaP) are increasingly popular bone regeneration biomaterials. Mineralization can be achieved by phosphatase enzyme incorporation and incubation in calcium glycerophosphate (CaGP). Gellan gum (GG) hydrogels containing the enzyme phytase and chitosan...... oligomer were mineralized in CaGP solution and characterized with human osteoblast-like MG63 cells and adipose tissue-derived stem cells (ADSC). Phytase induced CaP formation. Chitosan concentration determined mineralization extent and hydrogel mechanical reinforcement. Phytase-induced mineralization...... promoted MG63 adhesion and proliferation, especially in the presence of chitosan, and was non-toxic to MG63 cells (with and without chitosan). ADSC adhesion and proliferation were poor without mineralization. Chitosan did not affect ADSC osteogenic differentiation....

  4. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery.

    Science.gov (United States)

    Millotti, Gioconda; Laffleur, Flavia; Perera, Glen; Vigl, Claudia; Pickl, Karin; Sinner, Frank; Bernkop-Schnürch, Andreas

    2014-10-01

    Chitosan-6-mercaptonicotinic acid (chitosan-6-MNA) is a thiolated chitosan with strong mucoadhesive properties and a pH-independent reactivity. This study aimed to evaluate the in vivo potential for the oral delivery of insulin. The comparison of the nonconjugated chitosan and chitosan-6-MNA was performed on several studies such as mucoadhesion, release, and in vivo studies. Thiolated chitosan formulations were both about 80-fold more mucoadhesive compared with unmodified ones. The thiolated chitosan tablets showed a sustained release for 5 h for the polymer of 20 kDa and 8 h for the polymer of 400 kDa. Human insulin was quantified in rats' plasma by means of ELISA specific for human insulin with no cross-reactivity with the endogenous insulin. In vivo results showed thiolation having a tremendous impact on the absorption of insulin. The absolute bioavailabilities were 0.73% for chitosan-6-MNA of 20 kDa and 0.62% for chitosan-6-MNA 400 kDa. The areas under the concentration-time curves (AUC) of chitosan-6-MNA formulations compared with unmodified chitosan were 4.8-fold improved for the polymer of 20 kDa and 21.02-fold improved for the polymer of 400 kDa. The improvement in the AUC with regard to the most promising aliphatic thiomer was up to 6.8-fold. Therefore, chitosan-6-MNA represents a promising excipient for the oral delivery of insulin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F [Department of Pharmaceutical Science, Zhujiang Hospital, Southern Medical University, Guangzhou 510282 (China); Yang, B, E-mail: andrewfxu1998@gmail.co [Department of Chemistry, Indiana University-Bloomington, Bloomington, IN 47405 (United States)

    2009-10-07

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  7. Functional gene silencing mediated by chitosan/siRNA nanocomplexes

    International Nuclear Information System (INIS)

    Ji, A M; Su, D; Che, O; Li, W S; Sun, L; Zhang, Z Y; Xu, F; Yang, B

    2009-01-01

    Chitosan/siRNA nanoparticles to knock down FHL2 gene expression were reported in this work. The physicochemical properties such as particle size, surface charge, morphology and complex stability of chitosan nanoparticle-incorporated siRNA were evaluated. Nanoparticles which were formulated with chitosan/siRNA exhibited irregular, lamellar and dendritic structures with a hydrodynamic radius size of about 148 nm and net positive charges with zeta-potential value of 58.5 mV. The knockdown effect of the chitosan/siRNA nanoparticles on gene expression in FHL2 over-expressed human colorectal cancer Lovo cells was investigated. The result showed that FHL2 siRNA formulated within chitosan nanoparticles could knock down about 69.6% FHL2 gene expression, which is very similar to the 68.8% reduced gene expression when siRNA was transfected with liposome Lipofectamine. Western analysis further showed significant FHL-2 protein expression reduced by the chitosan/siRNA nanoparticles. The results also showed that blocking FHL2 expression by siRNA could also inhibit the growth and proliferation of human colorectal cancer Lovo cells. The current results demonstrated that chitosan-based siRNA nanoparticles were a very efficient delivery system for siRNA in vivo as previously reported.

  8. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody

    Directory of Open Access Journals (Sweden)

    Yang J

    2014-05-01

    Full Text Available Jingjing Yang,1,3,* Xiaoping Huang,1,3,* Fanghong Luo,1 Xiaofeng Cheng,3 Lianna Cheng,3 Bin Liu,4 Lihong Chen,2 Ruyi Hu,1,3 Chunyan Shi,1,3 Guohong Zhuang,1,3 Ping Yin2 1Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China, 2The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China, 3Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China, 4Jilin Vocational College of Industry and Technology, Jilin, People's Republic of China  *These authors contributed equally to this work Objective: To prepare hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody, and study their characteristics, functions, and mechanisms of action. Materials and methods: The anti-human death receptor 5 single-chain antibody was constructed and expressed. Protein-loaded hydroxyethyl chitosan nanoparticles were prepared, and their size, morphology, particle-size distribution and surface zeta potential were measured by scanning electron microscopy and laser particle-size analysis. Mouse H22 hepatocellular carcinoma cells were cultured, and growth inhibition was examined using the CellTiter-Blue cell-viability assay. Flow cytometry and Hoechst 33342 were employed to measure cell apoptosis. Kunming mice with H22 tumor models were treated with protein-loaded hydroxyethyl chitosan nanoparticles, and their body weight and tumor size were measured, while hematoxylin and eosin staining was used to detect antitumor effects in vivo and side effects from tumors. Results: The protein-loaded hydroxyethyl chitosan nanoparticles had good stability; the zeta potential was -24.2±0.205, and the dispersion index was 0.203. The inhibition of the protein-loaded hydroxyethyl chitosan nanoparticles on H22 growth was both time- and dose-dependent. Increased expressions of active caspase 8, active caspase 3, and BAX were detected

  9. Glycol chitosan

    DEFF Research Database (Denmark)

    Danielsen, E Thomas; Danielsen, E Michael

    2017-01-01

    Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan...

  10. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Zhong, Zhaocai [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T{sub f}) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T{sub f} at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding.

  11. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)–chitosan scaffolds

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-01-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide–chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (T f ) and cooling rates was applied to obtain scaffolds with pore size ranging from 100 μm to 120 μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of T f at a slow cooling rate of 0.7 °C/min; a more rapid cooling rate under 5 °C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC–chitosan scaffolds with appropriate pores for potential tissue engineering. - Highlights: • Fabrication of recombinant human collagen-chitosan scaffolds by freezing drying • Influence of freeze drying protocols on lyophilized scaffolds • Pore size, microstructure, porosity, swelling and cell viability were compared. • The optimized porous scaffold is suitable for cell (HUVEC) seeding

  12. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Directory of Open Access Journals (Sweden)

    Ho MH

    2014-09-01

    Full Text Available Ming-Hua Ho,1,2 Mei-Hsiu Liao,3 Yi-Ling Lin,2 Chien-Hao Lai,3 Pei-I Lin,3 Ruei-Ming Chen2–4 1Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 2Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, 3Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; 4Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan Abstract: Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP messenger (mRNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses

  13. The Use of Chitosan to Enhance Photodynamic Inactivation against Candida albicans and Its Drug-Resistant Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Tsuimin Tsai

    2013-04-01

    Full Text Available Drug-resistant Candida infection is a major health concern among immunocompromised patients. Antimicrobial photodynamic inactivation (PDI was introduced as an alternative treatment for local infections. Although Candida (C. has demonstrated susceptibility to PDI, high doses of photosensitizer (PS and light energy are required, which may be harmful to eukaryotic human cells. This study explores the capacity of chitosan, a polycationic biopolymer, to increase the efficacy of PDI against C. albicans, as well as fluconazole-resistant clinical isolates in planktonic or biofilm states. Chitosan was shown to effectively augment the effect of PDI mediated by toluidine blue O (TBO against C. albicans that were incubated with chitosan for 30 min following PDI. Chitosan at concentrations as low as 0.25% eradicated C. albicans; however, without PDI treatment, chitosan alone did not demonstrate significant antimicrobial activity within the 30 min of incubation. These results suggest that chitosan only augmented the fungicidal effect after the cells had been damaged by PDI. Increasing the dosage of chitosan or prolonging the incubation time allowed a reduction in the PDI condition required to completely eradicate C. albicans. These results clearly indicate that combining chitosan with PDI is a promising antimicrobial approach to treat infectious diseases.

  14. PLA/chitosan/keratin composites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, Constantin Edi, E-mail: etanase@live.com [Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Spiridon, Iuliana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2014-07-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior.

  15. PLA/chitosan/keratin composites for biomedical applications

    International Nuclear Information System (INIS)

    Tanase, Constantin Edi; Spiridon, Iuliana

    2014-01-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior

  16. Role of Glycol Chitosan-incorporated Ursolic Acid Nanoparticles in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ursolic acid (UA)-incorporated glycol chitosan (GC) nanoparticles on inhibition of human osteosarcoma. Methods: U2OS and Saos-2 osteosarcoma cells were transfected with ursolic acid (UA) incorporated glycol chitosan (GC) nanoparticles. Ultraviolet (UV) spectrophotometry was used ...

  17. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...... of the release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with ... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  18. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  19. Potential of chitosan from Mucor rouxxi UCP064 as alternative natural compound to inhibit Listeria monocytogenes

    Science.gov (United States)

    Bento, Roberta A.; Stamford, Tânia L.M.; de Campos-Takaki, Galba M.; Stamford, Thayza C.M.; de Souza, Evandro L.

    2009-01-01

    Listeria monocytogenes is widely distributed in nature and the infection listeriosis is recognized as a potential threat for human health because of its mortality rate. The objective of this study was to evaluate the growth profile and chitosan production by Mucor rouxxi UCP 064 grown in yam bean (Pachyrhizus erosus L. Urban) medium. It was also to assess the anti-L. monocytogenes efficacy of the obtained chitosan. Higher values of biomass of M. rouxxi (16.9 g.L-1) and best yield of chitosan (62 mg.g-1) were found after 48 h of cultivation. Residual glucose and nitrogen in the growth media were 4.1 and 0.02 g.L-1 after 96 h, respectively. Obtained chitosan presented 85 % of degree of deacetylation and 2.60 x 104 g.mol-1 of viscosimetric molecular weight. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of chitosan against L. monocytogenes ATCC 7644 were, respectively, 2.5 and 5.0 mg.mL-1. At 2.5 and 5.0 mg.mL-1 chitosan caused cidal effect in a maximum time of 4 h. Bacterial count below 2 log cfu.mL-1 were found from 2 h onwards and no recovery in bacterial growth was noted in the remainder period. These results show the biotechnological potential of yam bean medium for chitosan production by Mucor rouxxi and support the possible rational use of chitosan from fungi as natural antimicrobial to control L. monocytogenes. PMID:24031403

  20. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Abdel-Mohdy, F.A.; El-Sawy, S.; Ibrahim, M.S.

    2005-01-01

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu 2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu 2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  1. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)-chitosan scaffolds.

    Science.gov (United States)

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide-chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100μm to 120μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7°C/min; a more rapid cooling rate under 5°C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC-chitosan scaffolds with appropriate pores for potential tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Chitosan for gene delivery and orthopedic tissue engineering applications.

    Science.gov (United States)

    Raftery, Rosanne; O'Brien, Fergal J; Cryan, Sally-Ann

    2013-05-15

    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  3. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Ligia L. Fernandes

    2011-01-01

    Full Text Available In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR and thermogravimetry (TG. The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide and the uptake of Neutral Red (NR were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties.

  4. Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold.

    Science.gov (United States)

    Annapoorna, M; Sudheesh Kumar, P T; Lakshman, Lakshmi R; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work, Hemigraphis alternata extract incorporated chitosan scaffold was synthesized and characterized for wound healing. The antibacterial activity of Hemigraphis incorporated chitosan scaffold (HIC) against Escherichia coli and Staphylococcus aureus was evaluated which showed a reduction in total colony forming units by 45-folds toward E. coli and 25-fold against S. aureus respectively. Cell viability studies using Human Dermal Fibroblast cells (HDF) showed 90% viability even at 48 h when compared to the chitosan control. The herbal scaffold made from chitosan was highly haemostatic and antibacterial. The obtained results were in support that the herbal scaffold can be effectively applied for infectious wounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    Science.gov (United States)

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  6. Photocrosslinkable chitosan as a biological adhesive.

    Science.gov (United States)

    Ono, K; Saito, Y; Yura, H; Ishikawa, K; Kurita, A; Akaike, T; Ishihara, M

    2000-02-01

    A photocrosslinkable chitosan to which both azide and lactose moieties were introduced (Az-CH-LA) was prepared as a biological adhesive for soft tissues and its effectiveness was compared with that of fibrin glue. Introduction of the lactose moieties resulted in a much more water-soluble chitosan at neutral pH. Application of ultraviolet light (UV) irradiation to photocrosslinkable Az-CH-LA produced an insoluble hydrogel within 60 s. This hydrogel firmly adhered two pieces of sliced ham with each other, depending upon the Az-CH-LA concentration. The binding strength of the chitosan hydrogel prepared from 30-50 mg/mL of Az-CH-LA was similar to that of fibrin glue. Compared to the fibrin glue, the chitosan hydrogel more effectively sealed air leakage from pinholes on isolated small intestine and aorta and from incisions on isolated trachea. Neither Az-CH-LA nor its hydrogel showed any cytotoxicity in cell culture tests of human skin fibroblasts, coronary endothelial cells, and smooth muscle cells. Furthermore, all mice studied survived for at least 1 month after implantation of 200 microL of photocrosslinked chitosan gel and intraperitoneal administration of up to 1 mL of 30 mg/mL of Az-CH-LA solution. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving as a new tissue adhesive in medical use. Copyright 2000 John Wiley & Sons, Inc.

  7. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Tg Ahbrizal Farizal Tg Ahmad; Norimah Yusof; Kamarudin Bahari; Kamaruddin Hashim

    2006-01-01

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  8. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    Science.gov (United States)

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  9. Denaturing gradient gel electrophoresis-polymerase chain reaction comparison of chitosan effects on anaerobic cultures of broiler cecal bacteria and Salmonella Typhimurium

    Science.gov (United States)

    Salmonella colonization and product contamination are major poultry industry problems. Alternatives to traditional antibiotics against Salmonella offer the potential to lessen the development of resistance to antibiotics of importance to human health. The chitin derivative chitosan has drawn substa...

  10. Preparation of an Environmentally Friendly Formulation of the Insecticide Nicotine Hydrochloride through Encapsulation in Chitosan/Tripolyphosphate Nanoparticles.

    Science.gov (United States)

    Yang, Ying; Cheng, Jiagao; Garamus, Vasil M; Li, Na; Zou, Aihua

    2018-02-07

    Insecticide nicotine hydrochloride (NCT) was formulated as nanoparticles composed of chitosan (CS) and sodium tripolyphosphate (TPP) to undermine its adverse impacts on human health and reinforce its physicochemical stability. The study investigated the preparation and characterization of chitosan/tripolyphosphate nanoparticles (CS/TPP NPs) with good encapsulation efficiency (55%), uniform morphology, and physicochemical stability (45 days) through dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS) measurements. A bioassay against Musca domestica NCT CS/TPP NPs exhibited good bioactivity and thermal stability. The effect of the monovalent salt (NaCl) on manipulating the formation and size distribution of ionically cross-linked nanoparticles was demonstrated as well. The formulation of NCT CS/TPP NPs could be a utility candidate in public health and agriculture.

  11. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  12. Chitosan-based nanosystems and their exploited antimicrobial activity.

    Science.gov (United States)

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  14. Comparison of cadmium adsorption onto chitosan and epichlorohydrin crosslinked chitosan/eggshell composite

    Science.gov (United States)

    Rahmi; Marlina; Nisfayati

    2018-05-01

    The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.

  15. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    International Nuclear Information System (INIS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-01-01

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  16. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sizhao, E-mail: bule-soul@hotmail.com; Feng, Jian, E-mail: fengj@nudt.edu.cn; Feng, Junzong; Jiang, Yonggang

    2017-02-28

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  17. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    Science.gov (United States)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  18. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation

    International Nuclear Information System (INIS)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-01-01

    Highlights: • Fabrication of flexible graphene oxide–chitosan nanocomposite layers was reported. • The flexibility of the chitosan layers were improved by adding graphene oxide sheets. • The nanocomposite layers with 1.5 wt% graphene oxide content showed yielded flexible and antibacterial surfaces for stem cell proliferation. - Abstract: Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)–chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs

  19. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Mazaheri, M. [Department of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran (Iran, Islamic Republic of); Akhavan, O., E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, PO Box 14588-89694, Tehran (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, PO Box 14588-89694, Tehran (Iran, Islamic Republic of)

    2014-05-01

    Highlights: • Fabrication of flexible graphene oxide–chitosan nanocomposite layers was reported. • The flexibility of the chitosan layers were improved by adding graphene oxide sheets. • The nanocomposite layers with 1.5 wt% graphene oxide content showed yielded flexible and antibacterial surfaces for stem cell proliferation. - Abstract: Graphene oxide (GO)–chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ∼1 μm and thickness of ∼1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ∼80% and 45%, respectively. Similar to the chitosan layer, the GO–chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)–chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  20. Impedance spectroscopy study of dehydrated chitosan and chitosan containing LiClO4

    International Nuclear Information System (INIS)

    Costa, M.M.; Terezo, A.J.; Matos, A.L.; Moura, W.A.; Giacometti, Jose A.; Sombra, A.S.B.

    2010-01-01

    Cast films of chitosan and chitosan containing LiClO 4 were characterized using Fourier transform infrared spectroscopy and the thermogravimetric technique. The electric properties of hydrated and dehydrated films were investigated with impedance spectroscopy in the frequency range from 0.1 Hz to 1 MHz, at temperatures varying from 30 to 110 o C. The frequency dependence of the impedance for dehydrated chitosan and chitosan containing LiClO 4 films indicated ionic conduction. Two relaxation peaks were evident on the imaginary curve of the electric modulus, which were assigned to ionic conduction. The peak at higher frequency was found for chitosan and chitosan containing LiClO 4 films. The peak at lower frequency was attributed to Li + conduction since it appeared only for the chitosan containing LiClO 4 . The peak frequency varied with the temperature according to an Arrhenius process with activation energies of circa of 0.6 and 0.45 eV, for H + and Li + conduction, respectively.

  1. Effectiveness of Postharvest Treatment with Chitosan to Control Citrus Green Mold

    Directory of Open Access Journals (Sweden)

    Mohamed El Guilli

    2016-03-01

    Full Text Available Control of green mold, caused by Penicillium digitatum, by fungicides raises several problems, such as emergence of resistant pathogens, as well as concerns about the environment and consumers’ health. As potential alternatives, the effects of chitosan on green mold disease and the quality attributes of citrus fruits were investigated. Fruits were wounded then treated with different concentrations of chitosan 24 h before their inoculation with P. digitatum. The results of in vitro experiment demonstrated that the antifungal activity against P. digitatum was improved in concert to the increase of chitosan concentration. In an in vivo study, green mold was significantly reduced by chitosan treatments. In parallel, chitinase and glucanase activities were enhanced in coated fruits. Evidence suggested that effects of chitosan coating on green mold of mandarin fruits might be related to its fungitoxic properties against the pathogen and/or the elicitation of biochemical defense responses in coated fruits. Further, quality attributes including fruit firmness, surface color, juice content, and total soluble solids, were not affected by chitosan during storage. Moreover, the loss of weight was even less pronounced in chitosan-coated fruit.

  2. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    Science.gov (United States)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  3. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    International Nuclear Information System (INIS)

    Patel, Nimitt G.; Kumar, Ajeet; Jayawardana, Veroni N.; Woodworth, Craig D.; Yuya, Philip A.

    2014-01-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films

  4. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    Science.gov (United States)

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Scanning electron microscopy and swelling test of shrimp shell chitosan and chitosan-RGD scaffolds

    Science.gov (United States)

    Mandacan, M. C.; Yuniastuti, M.; Amir, L. R.; Idrus, E.; Suniarti, D. F.

    2017-08-01

    Shrimp shell chitosan and chitosan-RGD scaffold membranes are produced to be biocompatible with tissue engineering. Nonetheless, their architectural properties have not yet been studied. Analyze the architectural properties of chitosan and chitosan-RGD scaffolds. Analyze pore count and size, interpore distance, and porosity (using SEM testing and ImageJ analysis) and water absorption (using a swelling test). The properties of the chitosan and chitosan-RGD scaffolds were as follows, respectively. The pore counts were 225 and 153; pore size, 171.4 μam and 180.2 μam interpore distance, 105.7 μam and 101.4 μam porosity, 22% and 10.2%; and water absorption, 9.1 mgH2O/mgScaffold and 19.3 mgH2O/mgScaffold. The shrimp shell chitosan-RGD membrane scaffold was found to have architectural properties that make it more conducive to use in tissue engineering.

  6. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira

    2013-01-01

    Full Text Available Objective: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. Materials and Methods: Chitosan and thiolated chitosan nanoparticles (NPs were prepared in order to obtain a NH3 + :PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. Results: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. Conclusion: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery.

  7. Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi.

    Science.gov (United States)

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annaian

    2017-06-01

    The chitin and chitosan of S. prashadi was prepared through demineralization, deproteinzation, deacetylation process and sulfation were carried by chlorosulfonic acid in N,N-dimethylformamide. The sulfate content in chitosan was found to be 18.9%. The carbon, hydrogen and nitrogen composition of the sulfated chitosan were recorded 39.09%, 6.95% and 6.58% respectively. The structural analysis was done by using FT-IR and NMR spectroscopy technique. The DSC curves of sulfated chitosan showed a large endothermic peak resolved with T o value of 54.57°C and T P value of 97.46°C. The morphology of sulfated chitin and sulfated chitosan were studied by SEM. The Further in vitro antioxidant activity of sulfated chitosan was screened by scavenging activity of superoxide radical assay, hydroxyl radical scavenging assay, metal-ion chelating effect and reducing power. Its anticoagulant activity was tested for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT). Results prove that sulfated chitosan has potent antioxidant and anticoagulant activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  9. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    Science.gov (United States)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  10. Preparation and characterisation of irradiated crab chitosan and New Zealand Arrow squid pen chitosan

    International Nuclear Information System (INIS)

    Shavandi, Amin; Bekhit, Adnan A.; Bekhit, Alaa El-Din A.; Sun, Zhifa; Ali, M. Azam

    2015-01-01

    The properties of chitosan from Arrow squid (Nototodarus sloanii) pen (CHS) and commercial crab shell (CHC) were investigated using FTIR, DSC, SEM and XRD before and after irradiation at the dose of 28 kGy in the presence or absence of 5% water. Also, the viscosity, deacetylation degree, water and oil holding capacities, colour and antimicrobial activities of the chitosan samples were determined. Irradiation decreased (P < 0.05) the viscosity of CHC from 0.21 to 0.03 Pa s and of CHS from 1.71 to 0.23 Pa s. The inclusion of water had no effect on the viscosity of irradiated chitosan. Irradiation did not affect the degree of deacetylation of CHC, but increased the deacetylation degree of CHS from 72.78 to 82.29% in samples with 5% water. Water and oil holding capacities of CHS (1197.30% and 873.3%, respectively) were higher (P < 0.05) than those found in CHC (340.70% and 264.40%, respectively). The water and oil holding capacities were decreased for both types of chitosan irradiation, but were not affected by the addition of water. Squid pen chitosan was whiter in colour (White Index = 90.06%) compared to CHC (White Index = 83.70%). Generally, the CHC samples (control and irradiated) exhibited better antibacterial activity compared to CHS, but the opposite was observed with antifungal activity. - Highlights: • Chitosan prepared from Arrow squid pens (Nototodarus sloanii). • Chitosan samples were gamma irradiated at 28 kGy. • Squid pen chitosan showed high fat and water uptake capacities compared to crab shell chitosan. • Gamma irradiation enhanced the DDA of squid pen chitosan but not crab shell chitosan.

  11. Effect of chitosan and coagulation factors on the wound repair phenotype of bioengineered blood clots.

    Science.gov (United States)

    Hoemann, Caroline D; Marchand, Catherine; Rivard, Georges-Etienne; El-Gabalawy, Hani; Poubelle, Patrice E

    2017-11-01

    Controlling the blood clot phenotype in a surgically prepared wound is an evolving concept in scaffold-guided tissue engineering. Here, we investigated the effect of added chitosan (80% or 95% Degree of Deacetylation, DDA) or coagulation factors (recombinant human Factor VIIa, Tissue Factor, thrombin) on inflammatory factors released by blood clots. We tested the hypothesis that 80% DDA chitosan specifically enhances leukotriene B 4 (LTB 4 ) production. Human or rabbit whole blood was combined with isotonic chitosan solutions, coagulation factors, or lipopolysaccharide, cultured in vitro at 37°C, and after 4hours the serum was assayed for LTB 4 or inflammatory factors. Only 80% DDA chitosan clots produced around 15-fold more LTB 4 over other clots including 95% DDA chitosan clots. All serum contained high levels of PDGF-BB and CXCL8. Normal clots produced very low type I cytokines compared to lipopolysaccharide clots, with even lower IL-6 and IL-12 and more CCL3/CCL4 produced by chitosan clots. Coagulation factors had no detectable effect on clot phenotype. Conclusion In blood clots from healthy individuals, 80% DDA chitosan has a unique influence of inducing more LTB 4 , a potent neutrophil chemoattractant, with similar production of PDGF-BB and CXCL8, and lower type I cytokines, compared to whole blood clots. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Denaturing Gradient Gel Electrophoresis-Polymerase Chain Reaction Comparison of Chitosan Effects on Anaerobic Cultures of Broiler Cecal Bacteria and Salmonella Typhimurium.

    Science.gov (United States)

    Hume, Michael; Sohail, Muhammad Umar

    2018-04-01

    Enteropathogen colonization and product contamination are major poultry industry problems. The emergence of antibiotic resistance, and associated risks to human health, is limiting the use of antibiotics as first-line defense against enteropathogens in poultry. The chitin derivative, chitosan, has drawn substantial attention for its bactericidal properties. Different molecular weight (MW) chitosans can have varied effects against different bacteria in monoculture. In the current study, cecal contents from each of three market-age broilers and Salmonella Typhimurium, as indicator enteropathogen, were exposed to in vitro anaerobic culture to three chitosan preparations (0.08%, wt/vol), low (LMW), medium (MMW), and coarse (CMW). Effects of chitosan and the carrier solvent acetic acid, on cecal bacteria and Salmonella, were examined by denaturing gradient gel electrophoresis (DGGE) and Salmonella enumeration. Bacterial profiles for the three cecal contents were shown by DGGE to be very different. Each of the three cecal contents grown in the presence of 0.08% acetic acid was very different from the same contents grown without the chitosan solvent. Culturing cecal contents in the presence of chitosan altered the bacterial DGGE profiles from the control and acetic acid-only cultures. The DGGE chitosan-treated profiles for all three cecal sources were identical to each other regardless of the MW chitosan in the culture medium. Compared with Salmonella in monoculture, Salmonella decreased (p < 0.05) by about 1.5 log CFU/mL when grown in mixed culture with cecal contents. Salmonella monocultures in the presence of 0.08% of the chitosan solvent acetic acid decreased (p < 0.05) counts by almost 3.5 log CFU/mL. Combining acetic acid and cecal contents reduced (p < 0.05) Salmonella by 7 log CFU/mL. Adding the chitosan preparations to the mixtures reduced (p < 0.05) Salmonella by 8 log CFU/mL.

  13. Fortification of extruded snacks with chitosan: Effects on techno functional and sensory quality.

    Science.gov (United States)

    Kumar, Raushan; Xavier, K A Martin; Lekshmi, Manjusha; Balange, Amjad; Gudipati, Venkateshwarlu

    2018-08-15

    Chitosan is a dietary fibre that possesses numerous functional, technological and physiological properties useful in improving food quality. Owing to its fat absorbing ability, chitosan is widely consumed as a health supplement in the form of tablets and capsules. With a view to enhance it consumption and availability, the current work was taken up to evaluate techno-functional quality improvement of shrimp based extruded snacks fortified with chitosan. Chitosan powder at 1, 2 and 3% (w/w) level was added to the base material (corn flour and rice flour in the ratio of 70:30 and 15% Acetes powder) for extrusion. Addition of chitosan in acetes based snacks significantly reduced expansion ratio, porosity and crispiness and increased the hardness value of the product. Chitosan addition had a significant effect (p > 0.05) on the moisture retention and total protein contents of the products as well. Thiobarbituric acid reactive substances (TBARS) value of chitosan fortified extrudate showed a significantly lower value than the control sample. A higher level of chitosan also resulted in colour reduction of the final product. The FTIR spectra of extrudate confirmed the stability of chitosan during extrusion conditions. The sensory score revealed that extrudate fortified with 1% chitosan was comparable to control sample. From this study it is concluded that 1% chitosan can be incorporated in Acetes based extruded snacks for an increased level of functionality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Gelatin/chitosan biofilm: preparation and characterization

    International Nuclear Information System (INIS)

    Trindade, Luciane da C.; Nunes, Raquel A.; Diniz, Nadie K.S.; Braga, Carla R.C.; Silva, Suedina M. de Lima

    2011-01-01

    In this study, gelatin, chitosan and gelatin/chitosan bio films using the ratio of gelatin/chitosan (50/50) were prepared by casting method. The bio films prepared were characterized by X-ray diffraction, scanning electron microscopy and dissolution ratio. According to the results, the incorporation of chitosan into gelatin indicate the decrease of crystallinity of chitosan, a compact structure without large pores and that the dissolution of gelatin/chitosan film is little influenced by hot water than gelatin films. (author)

  15. use of gamma irradiation for enhancing antibacterial activity of chitosan against pathogenic bacteria

    International Nuclear Information System (INIS)

    Taha, S.M.A.; Swailam, H.M.H.

    2009-01-01

    the effect of chitosan on growth of food poisoning bacteria including gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) and gram-positive bacteria (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) was investigated at ph 6.0 and 7.0 also, the effect of irradiation on the antibacterial activity of chitosan was studied . it was found that chitosan was more effective on the growth of gram-negative bacteria at ph 6 than ph 7 . addition of chitosan affected the growth of the tested pathogens in varying degrees compared to the control. as the concentration of chitosan increased, its effectiveness against these pathogens also increased. the growth for gram-positive and gram-negative bacterial isolates was completely inhibited at 0.6% chitosan after 72 hours of incubation. inactivation of these pathogens needs only 24 hour with 1.0% of chitosan. irradiation of chitosan at 50 kGy slightly increased the antimicrobial activity whereas at 100 kGy increased the antimicrobial activity and at 150 kGy the growth of these pathogens was completely inhibited . irradiation of chitosan at 50 kGy increased the flow index, whereas consistency index markedly decreased by increasing dose. the minimum inhibitory concentration (MIC) of unirradiated chitosan ranged from 0.35% to 0.50%, whereas the MIC of irradiated chitosan ranged from 0.1% to 0.45% depending on the bacteria and the irradiation dose used. these results demonstrate that irradiated chitosan was more effective to decontaminate pathogenic bacteria and can be easily used in different foods for enhancing health quality and ensuring safety

  16. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, Vitor C.; Mansur, Alexandra A.P.; Carvalho, Sandhra M.; Medeiros Borsagli, Fernanda G.L.; Pereira, Marivalda M.; Mansur, Herman S., E-mail: hmansur@demet.ufmg.br

    2016-02-01

    predominant calcium phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues. - Highlights: • Nanohydroxyapatite particles prepared using chitosan-based ligands via aqueous route • Effects of chitosan and CMC on the nucleation and growth of hydroxyapatite particles • Biocomposites of HA nanoparticles in chitosan and O-carboxymethyl chitosan matrices • Nanocomposites were non-cytotoxic tested with SAOS cells using in vitro MTT assay • Chitosan bionanocomposites were produced for potential bone repair bioapplications.

  17. Fabrication of chitosan microparticles loaded in chitosan and poly

    Indian Academy of Sciences (India)

    In recent decades, the use of microparticle-mediated drug delivery is widely applied in the field of biomedicalapplication. Here, we report the new dressing material with ciprofloxacin-loaded chitosan microparticle (CMP) impregnatedin chitosan (CH) and poly(vinyl alcohol) (PVA) scaffold for effective delivery of drug in a ...

  18. Radiation-induced changes in carboxymethylated chitosan

    International Nuclear Information System (INIS)

    Huang Ling; Peng Jing; Zhai Maolin; Li Jiuqiang; Wei Genshuan

    2007-01-01

    This study focuses on the radiation effect of γ-ray on carboxymethylated chitosan (CM-chitosan) in solid state. The changes in molecular weight of CM-chitosan with absorbed dose were monitored by viscosity method. Experimental results indicated that random chain scissions took place under irradiation. Radiation chemical yield (G d ) of CM-chitosan in solid state with N 2 -saturated was 0.49, which showed CM-chitosan has high radiation stability. Biomaterials composed of CM-chitosan can be thought to sterilize with low absorbed dose. FTIR and UV spectra showed that main chain structures of CM-chitosan were retained, carbonyl/carboxyl groups were formed and partial amino groups were eliminated in high absorbed dose. XRD patterns identified that the degradation of CM-chitosan occurred mostly in amorphous region

  19. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    Science.gov (United States)

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  20. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-08-01

    Full Text Available Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs. The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair.

  1. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891).

    Science.gov (United States)

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Thinesh, Thangadurai; Selvin, Joseph; Selvan, Kanagaraj Muthamizh; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-06-01

    Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. POTENTIAL ANTISTATIC PROPERTIES OF A CEMENT COMPOSITION MODIFIED BY CHITOSAN

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2012-10-01

    Full Text Available Environmental compatibility of construction materials and their impact onto the human organism and the environment are the essential factors to be taken account of in the course of construction. Therefore, natural renewable biological polymers arouse interest. Polysaccharide chitin takes a special position among them. It represents one of the most widely spread biological polymers; it is extracted from 100% renewable materials. It is part of the external skeleton of crustaceans and insects, and it also part of cell walls of mushrooms and algae. Any research of potential materials to be generated from chitin and its derivative chitosan may involve a practical implementation. The research of the antistatic properties followed the introduction of 1% of chitosan into the cement composition. Electrostatic field intensity was measured by Electrostatic Field Intensity Meter ST-01. The electrostatic property of the sample modified by chitosan turned out to be lower than the one of the benchmark sample by 5.6 times. The presence of chitosan in the cement composition makes no impact on strength-related properties of the construction material. The cement composition modified by chitosan may be used in the manufacturing of antistatic self-leveling floors.

  3. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen-Ta, E-mail: f10549@ntut.edu.tw [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Wu, Pai-Shuen [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China); Ko, Chih-Sheng [PhytoHealth Corporation, Maywufa Biopharma Group, Taipei, Taiwan (China); Huang, Te-Yang [Mackay Memorial Hospital, Taipei, Taiwan (China)

    2014-08-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering • Strontium phosphate can enhance the osteogenic differentiation of SHEDs • 3D scaffold under dynamic culture with optimal fluid rate enhance cellular differentiation.

  4. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold

    International Nuclear Information System (INIS)

    Su, Wen-Ta; Wu, Pai-Shuen; Ko, Chih-Sheng; Huang, Te-Yang

    2014-01-01

    Stem cells from human exfoliated deciduous teeth (SHEDs) have been considered as alternative sources of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages. Strontium has an important function in bone remodeling because it can simulate bone formation and decrease bone resorption. In this study, the effects of strontium phosphate on the osteogenic differentiation of SHEDs were investigated. Strontium phosphate was found to enhance the osteogenic differentiation of SHEDs with up-regulated osteoblast-related gene expression. The proliferation of SHEDs was slightly inhibited by chitosan scaffolds; however, type-I collagen expression, alkaline phosphatase activity, and calcium deposition on chitosan scaffolds containing strontium were significantly enhanced. Furthermore, cells seeded in a 3D scaffold under dynamic culture at an optimal fluid rate might enhance cellular differentiation than static culture in osteoblastic gene expression. This experiment might provide a useful cell resource and dynamic 3D culture for tissue engineering and bone repair. - Highlights: • SHEDs have been considered as alternative sources of adult stem cells in tissue engineering • Strontium phosphate can enhance the osteogenic differentiation of SHEDs • 3D scaffold under dynamic culture with optimal fluid rate enhance cellular differentiation

  5. In vitro evaluation of osteoprotegerin in chitosan for potential bone defect applications

    Directory of Open Access Journals (Sweden)

    Soher Nagi Jayash

    2016-08-01

    Full Text Available Background The receptor activator of nuclear factor kappa-B (RANK/RANK ligand/osteoprotegerin (OPG system plays a critical role in bone remodelling by regulating osteoclast formation and activity. OPG has been used systemically in the treatment of bone diseases. In searching for more effective and safer treatment for bone diseases, we investigated newly formulated OPG-chitosan complexes, which is prepared as a local application for its osteogenic potential to remediate bone defects. Methods We examined high, medium and low molecular weights of chitosan combined with OPG. The cytotoxicity of OPG in chitosan and its proliferation in vitro was evaluated using normal, human periodontal ligament (NHPL fibroblasts in 2D and 3D cell culture. The cytotoxicity of these combinations was compared by measuring cell survival with a tetrazolium salt reduction (MTT assay and AlamarBlue assay. The cellular morphological changes were observed under an inverted microscope. A propidium iodide and acridine orange double-staining assay was used to evaluate the morphology and quantify the viable and nonviable cells. The expression level of osteopontin and osteocalcin protein in treated normal human osteoblast cells was evaluated by using Western blot. Results The results demonstrated that OPG in combination with chitosan was non-toxic, and OPG combined with low molecular weight chitosan has the most significant effect on NHPL fibroblasts and stimulates proliferation of cells over the period of treatment.

  6. Encapsulation of testosterone by chitosan nanoparticles.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Khadjavi, Amina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Magnetto, Chiara [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Panariti, Alice [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Argenziano, Monica [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Gulino, Giulia Rossana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Rivolta, Ilaria [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Cavalli, Roberta [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Giribaldi, Giuliana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Guiot, Caterina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Prato, Mauro, E-mail: mauro.prato@unito.it [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino (Italy)

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  8. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    International Nuclear Information System (INIS)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-01-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  9. Adsorption of hexavalent chromium by graphite–chitosan binary ...

    Indian Academy of Sciences (India)

    Hexavalent chromium; graphite–chitosan composite; adsorption kinetics. 1. Introduction ... [2], while Cr(III) is less toxicity and relatively innocuous. Cr(VI) generates in ..... Human Environments (New York: Wiley Inter-Science) p 3. [4] U.S. EPA ...

  10. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    Directory of Open Access Journals (Sweden)

    Yolanda Osuna

    2012-01-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowed to determine that they were composed of 95 wt% of magnetic nanoparticles and 5 wt% of chitosan. 67% efficacy in the Pb+2 removal test indicated that only 60% of amino groups on CMNP surface bound to Pb, probably due to some degree of nanoparticle flocculation during the redispersion. The very low weight ratio chitosan to magnetic nanoparticles obtained in this study, 0.053, and the high yield of the precipitation reactions (≈97% are noticeable.

  11. Structure and properties of microcrystalline chitosan

    International Nuclear Information System (INIS)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado; Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele

    2016-01-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  12. Structure and properties of microcrystalline chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Luciano; Guimaraes, Fernando Machado; Paz, Luan Rios; Zanin, Gabrielle Brehm; Kmiec, Marzena; Tedesco, Felipe Melleu; Reis, Victoria Oliva dos; Silva, Matheus Machado, E-mail: lpighinelli@hotmail.com [Universidade Luterana, Sao Paulo, SP (Brazil); Becker, Cristiane Miotto; Zehetmeyer, Gislene; Rasia, Gisele [Centro Universitario SENAI CIMATEC, Salvador, BA (Brazil). Instituto de Engenharia de Materiais Polimericos

    2016-07-01

    Full text: The microcrystalline chitosan is a modified form of chitosan; it has been elaborated from obtaining method of chitosan salts. It is characterized by special properties of the initial chitosan such as biocompatibility, bioactivity, non-toxic, biodegradability [1]. The objective of this study is to develop a different method to obtain the microcrystalline chitosan and the following characterization of the initial chitosan and MCCh. The material was characterized by FTIR, scanning of electron microscopy, SEM, nuclear magnetic resonance, NMR, and x-ray diffraction. The results indicate that the process to obtain MCCh, did not change the structure of the initial chitosan. The MCCh shows the same functional groups of the initial chitosan. The NMR results shows the acetylated and deacetylated groups. The morphology shows a homogeneous structure of surface. The X-ray diffraction shows the reduction of the crystallinity in the MCCh, indicating a bigger amorphous structure of the MCCh. The chitosan and its derivatives are polymers with excellent properties to be used in regenerative medicine because of ensure efficiency in healing process. This polysaccharide has a great potential to develop a new generation of biomaterials that can be used in regenerative medicine and tissue engineering [2]. References: [1]. LI, Q. et al. Applications and properties of chitosan. In: GOOSEN, M. F. A. (Ed.). Applications of chitin and chitosan. Basel: Technomic, 1997. p. 3-29; [2]. Luciano Pighinelli, Magdalena Kucharska, Dariuz Wawro. Preparation of Microcrystalline chitosan: (MCCh0/tricalcium phosphate complex with Hydroxyapatite in sponge and fibre from for hard tissue regeneration. (author)

  13. Core shell methyl methacrylate chitosan nanoparticles: In vitro mucoadhesion and complement activation

    Directory of Open Access Journals (Sweden)

    F Atyabi

    2011-10-01

    Full Text Available Background and the purpose of the study: Studies show that chitosan nanoparticles increase mucoadhesivity and penetration of large molecules across mucosal surface. The aim of the present study was to investigate the use of thiolated chitosan in the development of polysaccharide-coated nanoparticles in order to confer specific functionality to the system. Methods: Methyl methacrylate nanoparticles were coated with thiolated chitosan using a radical polymerization method. Thiolation was carried out using glutathione (GSH to improve mucoadhesivity and permeation enhancing properties of chitosan. Mucoadhesion studies were carried out by calculating the amount of mucin adsorbed on nanoparticles in a specific period of time. Complement consumption was assessed in human serum (HS by measurement of the hemolytic capacity of the complement system after contact with nanoparticles.   Results:   The FT-IR and 1HNMR spectra both confirmed the synthesis and showed the conjugation of thiolated chitosan to methyl methacrylate (MMA homopolymer. Nanoparticles were spherical having a mean diameter within the range of about 334-650 nm and their positive zeta potential values indicated the presence of the cationic polysaccharide at the nanoparticle surface. Increasing the amount of thiolated chitosan led to mucoadhesivity and complement activation. However there was not dose dependent correlation between these phenomenons and the absence of thiolated chitosan led to particles with larger size, and without ability to activate complement process. Major conclusion: It can be concluded that nanoparticles could be used for the mucosal delivery of peptides and proteins. Results show that the thiolated chitosan had higher mucoadhesion and complement activation than unmodified chitosan.

  14. Pseudo-thermosetting chitosan hydrogels for biomedical application.

    Science.gov (United States)

    Berger, J; Reist, M; Chenite, A; Felt-Baeyens, O; Mayer, J M; Gurny, R

    2005-01-06

    To prepare transparent chitosan/beta-glycerophosphate (betaGP) pseudo-thermosetting hydrogels, the deacetylation degree (DD) of chitosan has been modified by reacetylation with acetic anhydride. Two methods (I and II) of reacetylation have been compared and have shown that the use of previously filtered chitosan, dilution of acetic anhydride and reduction of temperature in method II improves efficiency and reproducibility. Chitosans with DD ranging from 35.0 to 83.2% have been prepared according to method II under homogeneous and non-homogeneous reacetylation conditions and the turbidity of chitosan/betaGP hydrogels containing homogeneously or non-homogeneously reacetylated chitosan has been investigated. Turbidity is shown to be modulated by the DD of chitosan and by the homogeneity of the medium during reacetylation, which influences the distribution mode of the chitosan monomers. The preparation of transparent chitosan/betaGP hydrogels requires a homogeneously reacetylated chitosan with a DD between 35 and 50%.

  15. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid.

    Science.gov (United States)

    Ghalavand, M; Saadati, M; Ahmadi, A; Abbasi, E; Salimian, J

    2018-01-01

    The present study was aimed at comparing tetanus toxoid (TT)‑loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. TT‑loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).

  16. Ascorbic acid prevents cellular uptake and improves biocompatibility of chitosan nanoparticles.

    Science.gov (United States)

    Elshoky, Hisham A; Salaheldin, Taher A; Ali, Maha A; Gaber, Mohamed H

    2018-04-11

    Chitosan nanoparticles have many applications, such as gene and drug delivery, due to their biocompatibility. Chitosan nanoparticles are currently produced by dissolution in acetic acid that affects the biocompatibility at acidic pH. Here, we synthesized and characterized chitosan (CS) and ascorbate chitosan (AsCS) nanoparticles and investigated their cytotoxic effects, internalization, and distribution in the human colon carcinoma cell line using confocal laser scanning microscopy (CLSM). The CS and AsCS nanoparticles were spherical with average particle sizes of 44±8.4nm and 87±13.6nm, respectively. CS nanoparticles were taken up by the cells and showed dose-dependent cytotoxicity. By contrast, AsCS nanoparticles were not internalized and showed no cytotoxicity. Therefore, AsCS nanoparticles are more biocompatible than CS nanoparticles and may be more suitable for extracellular drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Fabrication of β-chitosan nanoparticles and its anticancer potential against human hepatoma cells.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Annaian

    2017-01-01

    β-Chitosan from the gladius was enzymatically depolymerized and utilized for the synthesis of β-chitosan nanoparticles using sodium tripolyphosphate by ionotropic gelation. The size and zeta potential of β-Chitosan nanoparticles (β-CNP) were determined. The structural features were evaluated by FT-IR and NMR spectral analysis. The morphological characterization, composition and surface topography of β-CNP were explored by SEM, EDAX and AFM techniques. The thermal and crystallographic nature of β-CNP was also studied. The cell viability of HepG2 cells inhibited by β-CNP was detected in a dose-dependent manner. The inhibitory concentration of β-CNP was 30μg/ml. Various biochemical parameters such as TBARS and lipid hydroperoxides, enzymatic and non-enzymatic antioxidant (SOD, CAT, GPx and GSH) studies proved the anticancer property of β-CNP in HepG2 cells. This study suggests that β-CNP should be a promising drug for treating hepatocellular carcinoma in future. Copyright © 2016. Published by Elsevier B.V.

  18. Synthesis of conjugated chitosan and its effect on drug permeation from transdermal patches.

    Science.gov (United States)

    Satheeshababu, B K; Shivakumar, K L

    2013-03-01

    The aim of this study was to synthesis the conjugated chitosan by covalent attachment of thiol moieties to the cationic polymer, mediated by a carbodiimide to improve permeation properties of chitosan. Thioglycolic acid was covalently attached to chitosan by the formation of amide bonds between the primary amino groups of the polymer and the carboxylic acid groups of thioglycolic acid. Hence, these polymers are called as thiomers or thiolated polymers. Conjugation of chitosan was confirmed by Fourier transform-infrared and differential scanning calorimetric analysis. Matrix type transdermal patches of carvedilol were prepared using the different proportions of chitosan and chitosan-thioglycolic acid conjugates (2:0, 1.7:0.3, 1.4:0.6, 1:1, 0.6:1.4 and 0.3:1.7) by solvent casting technique. Prepared matrix type patches were evaluated for their physicochemical characterization followed by in vitro evaluation. Selected formulations were subjected for their ex vivo studies on Wistar albino rat skin and human cadaver skin using the modified Franz diffusion cell. As the proportion of conjugated chitosan increased, the transdermal patches showed increased drug permeation. The mechanism of drug release was found to be nonFickian profiles. The present study concludes that the transdermal patches of carvedilol using conjugated chitosan with different proportions of chitosan were successfully developed to provide improved drug permeation. The transdermal patches can be a good approach to improve drug bioavailability by bypassing the extensive hepatic first-pass metabolism of the drug.

  19. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    Science.gov (United States)

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  20. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    International Nuclear Information System (INIS)

    Tao, Y.; Zhang, H.; Gao, B.; Guo, J.; Hu, Y.; Su, Z.

    2011-01-01

    Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC) has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs) on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800?nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD) activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia

  1. Radiation processing of chitosan derivative and its characteristics

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by a carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial agent and it overcome the problem of bad smell using acetic acid. (Author)

  2. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  3. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.

    Science.gov (United States)

    Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-09-01

    Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    Science.gov (United States)

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Flow Cytometry Detection of Bacterial Cell Entrapment within the Chitosan Hydrogel and Antibacterial Property of Extracted Chitosan

    Directory of Open Access Journals (Sweden)

    Nafise Sadat Majidi

    2016-09-01

    Full Text Available Background:   Chitosan is unbranched polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine. Chitosan, derived from shrimp shell, has broad antimicrobial properties against Gram-negative, Gram-positive bacteria and fungi. Methods:  Chitosan was extracted from shrimp shell and studied for cell entrapment and anti-bacterial properties. The hydrogel chitosan was used as the beads for cell entrapment and chitosan beads were designed to deliver cells and nutrients. These data confirmed with flow cytometric analyses.                 Results:   Experimental results exhibited that internal diffusion through the chitosan matrix was the main mechanism for whole gelation by TPP (Tri-polyphosphate. The minimum inhibitory concentration (MIC for chitosan against Staphylococcus aureus and Escherichia coli was 16 and 32 μg/ml respectively. Conclusion:  Despite the antimicrobial properties of chitosan, trapped bacteria in the gel network were alive and were chelated indicating that their access to the outside was limited.

  6. Alginate-Chitosan Particulate System for Sustained Release of ...

    African Journals Online (AJOL)

    Erah

    1School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia, 2Division of ... Both calcium alginate beads and the beads treated with chitosan failed to release ..... also found to fit the classical power law.

  7. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  8. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    International Nuclear Information System (INIS)

    Noh, Young Chang

    2007-08-01

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  9. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  10. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  11. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  12. Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms.

    Science.gov (United States)

    Xie, Ting; Liao, Zhenlin; Lei, Huan; Fang, Xiang; Wang, Jie; Zhong, Qingping

    2017-09-01

    Biofilm is a community composed of microbes and the extracellular polymeric substances. This special architecture poses a significant public health risk as it increases the fitness of bacteria in harsh conditions and renders bacterial resistance to antimicrobial agents and cleaning. In this study, we investigated the inhibition and eradication effects of chitosan on the biofilm of Vibrio parahaemolyticus, an important food-borne pathogen. The crystal violet staining, [2, 3-bis (2-methoxy-4-nitro-5- sulfophenyl)-2H-tetrazolium-5-carboxanilide] (XTT) reduction method, phenol-sulfuric acid method, fluorescence microscope and confocal laser scanning microscope (CLSM) observation were conducted. The results indicated that the minimum inhibitory concentration (MIC) of chitosan was 1.25 mg/mL. Sub-MIC of chitosan could significantly inhibit biofilm formation, reduce the metabolic activities and the secretion of extracellular polysaccharide (EPS). Moreover, chitosan at 4MIC could eradicate 85.06% mature biofilm of V. parahaemolyticus, and decrease 81.43% EPS in mature biofilm. These results were also confirmed by the visual images obtained from fluorescence microscopy and CLSM. This study elucidated that chitosan was not only effective to prevent biofilm formation, but also eradicate mature biofilms of V. parahaemolyticus. Copyright © 2017. Published by Elsevier Ltd.

  13. Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic.

    Science.gov (United States)

    Gupta, Vinod Kumar; Fakhri, Ali; Agarwal, Shilpi; Azad, Mona

    2017-10-01

    We report the synthesis of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids as performance adsorbents for Lincosamides such as Clindamycin antibiotic removal. Isotherms and kinetic studies were determined to understand the adsorption behavior both two adsorbent. At low adsorbent dose, removals are increased in the adsorption process, and performance is better with Ag 2 S-chitosan nanohybrids due to the special surface area increased. The average sizes and surface area of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids were found as 50nm, 70nm and 180.18, 238.24m 2 g -1 , respectively. In particular, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids show high maximum Clindamycin adsorption capacity (q max ) of 153.21, and 181.28mgg -1 , respectively. More strikingly, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids are also demonstrated to nearly completely remove Clindamycin from drinking water. The excellent adsorption performance along with their cost effective, convenient synthesis makes this range of adsorbents highly promising for commercial applications in drinking water and wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bromine pretreated chitosan for adsorption of lead

    Indian Academy of Sciences (India)

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine ...

  15. Fragmentation of the radiation degraded chitosan by centrifugal filter and application of the fragmented chitosan in cotton fabrics finishing

    International Nuclear Information System (INIS)

    Luu Thi Tho; Nguyen Van Thong; Vu Thi Hong Khanh; Tran Minh Quynh

    2014-01-01

    Three kind of Vietnamese chitosans with the same deacetylation degrees of about 75% and viscosity average molecular weights are 69.000, 187.000 and 345.000 Da, respectively, were produced from shrimp shells and cuttle-bone at the MTV chitosan company (Kien Giang). These chitosans were irradiated at 25, 50, 75, 100, 200 and 500 kGy under Cobalt-60 gamma source at Hanoi Irradiation Center in order to prepare a series of chitosan segments with wide distribution of molecular weights. Different chitosan samples of the predetermined average molecular weight from 3,000 to 50,000 Da were separated from the irradiated chitosans by ultrafiltration with series of filter membranes (Centriprep devices). Molecular properties of the fragmented chitosans were analysed with gel permeation chromatography, Fourier transfer infra red spectrometry, and the results suggested that principal characteristics of chitosan were not affected by gamma irradiation, even its deacetylation degrees was increased. Solubility of the fragmented chitosans were much improved by radiation processing, and the chitosans having molecular weights below 5.000 Da were water-soluble polymers, which can easily apply as the auxiliary agent in textile. (author)

  16. Enhanced attachment and growth of periodontal cells on glycine-arginine-glycine-aspartic modified chitosan membranes

    Directory of Open Access Journals (Sweden)

    Hsiao-Pei Tu

    2016-01-01

    Full Text Available Background: Chitosan, a polymeric carbohydrate derived from the exoskeleton of arthropod, has been suggested to be an excellent biomaterial for improving wound healing, especially for bones. To improve the periodontal cell attachment and growth, the cell adhesive peptide glycine-arginine-glycine-aspartic acid (Gly-Arg-Gly-Asp, GRGD grafted chitosan membrane was introduced in this study. Materials and Methods: Two types of commercial chitosan, three types of primary cultured cells, and two established cell lines were used. Human gingival and periodontal fibroblasts (hGF and hPDL, human root derived cell (hRDC, and rat calvaria bone cell (rCalB were cultured on the GRGD-fixed by ultraviolet light photochemical method on the chitosan membrane. With (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium assay and propidium iodine (PI staining, the cell adhesion and growth on GRGD-grafted chitosan were examined. Basal mRNA expressions of the receptors for GRGD, integrin αv (ITG αv and ITG β3, in the human gingival fibroblast cell line and mouse osteoblast cell line (MC3T3-E1 were examined with real-time polymerase chain reaction. Results: Because the cell adhesion/growth patterns on two chitosan membranes were similar, the GRGD modification was performed on one membrane (Primex only. For periodontal cells (hGFs, hPDLs, and hRDCs, the number of attached cells were increased on the membrane with the high concentration of GRGD than those on the membrane unmodified or modified with low concentration GRGD. For rCalBs cells, a different pattern was noted: GRGD modification did not enhance the calvaria cells attachment or growth. Moreover, mRNA expressions of ITG αv and β3 in AG09319 cells were significantly higher than those in MC3T3-E1 cells. Conclusions: With the limitation of this study, we suggested that GRGD-modified chitosan, especially at high concentration, could enhance the growth of various periodontal

  17. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  18. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  19. Interactions between chitosan and cells measured by AFM

    International Nuclear Information System (INIS)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua; Hsieh, Hsyue-Jen; Li, Chung-Hsing; Hung, Chang-Hsiang; Li, Hsi-Hsin

    2010-01-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  20. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su [Department of Agricultural Bioechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-06-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI.

  1. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  2. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kieu N. Lan [Post Harvest Technology Inst. of Vietnam (Viet Nam)

    2000-09-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by {gamma}-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  3. Plasticized chitosan/polyolefin films produced by extrusion.

    Science.gov (United States)

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Kieu N, Lan; Nguyen D, Lam; Yoshii, Fumio; Kume, Tamikazu

    2000-01-01

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by γ-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  5. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  6. Water-Soluble Chitosan Nanoparticles Inhibit Hypercholesterolemia Induced by Feeding a High-Fat Diet in Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Yi Tao

    2011-01-01

    Full Text Available Chitosan, a deacetylated product of chitin, has been demonstrated to lower cholesterol in humans and animals. However, chitosan is not fully soluble in water which would influence absorption in the human intestine. In addition, water-soluble chitosan (WSC has higher reactivity compared to chitosan. The present study was designed to clarify the effects of WSC and water-soluble chitosan nanoparticles (WSC-NPs on hypercholesterolemia induced by feeding a high-fat diet in male Sprague-Dawley rats. WSC-NPs were prepared by the ionic gelation method and the spray-drying technique. The nanoparticles were spherical in shape and had a smooth surface. The mean size of WSC-NPs was 650 nm variing from 500 to 800 nm. Results showed that WSC-NPs reduced the blood lipids and plasma viscosity significantly and increased the serum superoxide dismutase (SOD activities significantly. This paper is the first report of the lipid-lowering effects of WSC-NPs suggesting that the WSC-NPs could be used for the treatment of hypercholesterolemia.

  7. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol

    Directory of Open Access Journals (Sweden)

    Shete Amol S

    2012-12-01

    Full Text Available Abstract Background and the purpose of the study Carvedilol nonselective β-adrenoreceptor blocker, chemically (±-1-(Carbazol-4-yloxy-3-[[2-(o-methoxypHenoxy ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1, and intestinal fluid (simulated, TS without pancreatin, pH 7.5 Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Methods The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, electron microscopy, in vitro dissolution studies and stability studies. Results The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. Conclusion This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble

  8. Structure of chitosan thermosensitive gels containing graphene oxide

    Science.gov (United States)

    Tylman, Michał; Pieklarz, Katarzyna; Owczarz, Piotr; Maniukiewicz, Waldemar; Modrzejewska, Zofia

    2018-06-01

    The supramolecular hydrogels of chitosan and graphene oxide (GO) have been prepared at temperature of the human body, by controlling the concentration of GO and ratio of chitosan to GO. During the preparation of gels the sodium β-glycerophosphate (Na-β-GP) was used as a neutralizing agent. The structure of obtained gels was determined on the basis of FTIR spectra and XRD diffraction patterns. The results of structural studies have been referenced to gels without graphene oxide. It was found that the gels crystalline structure after the addition of GO does not change. The XRD diffraction patterns are characterized by a number of peaks associated with precipitated NaCl during drying and presence of sodium β-glycerophosphate.

  9. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  10. Oral Vaccination Based on DNA-Chitosan Nanoparticles against Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Carolina R. Oliveira

    2012-01-01

    Full Text Available The development of a vaccine would be essential for the control of schistosomiasis, which is recognized as the most important human helminth infection in terms of morbidity and mortality. A new approach of oral vaccination with DNA-chitosan nanoparticles appears interesting because of their great stability and the ease of target accessibility, besides chitosan immunostimulatory properties. Here we described that chitosan nanoparticles loaded with plasmid DNA encoding Rho1-GTPase protein of Schistosoma mansoni, prepared at different molar ratios of primary amines to DNA phosphate anion (N/P, were able to complex electrostatically with DNA and condense it into positively charged nanostructures. Nanoparticles were able to maintain zeta potential and size characteristics in media that simulate gastric (SGF and intestinal fluids (SIF. Further in vivo studies showed that oral immunization was not able to induce high levels of specific antibodies but induced high levels of the modulatory cytokine IL-10. This resulted in a significative reduce of liver pathology, although it could not protect mice of infection challenge with S. mansoni worms. Mice immunized only with chitosan nanoparticles presented 47% of protection against parasite infection, suggesting an important role of chitosan in inducing a protective immune response against schistosomiasis, which will be more explored in further studies.

  11. The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture.

    Science.gov (United States)

    Paramasivan, Sathish; Jones, Damien; Baker, Leonie; Hanton, Lyall; Robinson, Simon; Wormald, Peter J; Tan, Lorwai

    2014-01-01

    Chitosan-dextran gel has been used as an antihemostatic agent and antiadhesive agent after endoscopic sinus surgery. Because Staphylococcus aureus biofilms have been implicated in recalcitrant chronic rhinosinusitis, this study aimed to further investigate the (i) anti-inflammatory, (ii) bacterial biofilm inhibition, (iii) antiproliferative effects, and (iv) wound-healing properties of chitosan and chitosan-dextran gel. Fibroblasts were isolated from human nasal tissue and were used to determine the effects of chitosan and chitosan-dextran gel on (i) cell proliferation, (ii) wound healing, (iii) inflammation in fibroblast cultures challenged with superantigens S. aureus enterotoxin B (SEB) and toxic shock syndrome toxin (TSST), and (iv) on S. aureus biofilms. Chitosan was highly effective at reducing IL-8 expression after TSST and SEB challenge. Chitosan was also effective at reducing IL-8 expression of nonchallenged fibroblasts showing its anti-inflammatory effects on fibroblasts in a diseased state. Chitosan-dextran gel showed strong antibiofilm properties at 50% (v/v) concentration in vitro. Dextran, on its own, showed antibiofilm properties at 1.25% (w/v) concentration. Chitosan, on its own, reduced proliferation of fibroblasts to 82% of control proliferation and chitosan-dextran gel reduced proliferation of the fibroblasts to 0.04% of control proliferation. Relative to the no treatment controls, chitosan-dextran gel significantly delayed the wound-healing rate over the first 48 hours of the experiment. Chitosan-dextran gel reduced fibroblast proliferation and wound-healing time, showing a possible mechanism of reducing adhesions in the postsurgical period. Chitosan reduced IL-8 levels, showing its anti-inflammatory properties. Chitosan-dextran gel and dextran treatment showed antibiofilm properties in our model.

  12. Metal removal from aqueous media by polymer-assisted ultrafiltration with chitosan

    Directory of Open Access Journals (Sweden)

    Grégorio Crini

    2017-05-01

    Full Text Available Polymer assisted ultrafiltration (PAUF is a relatively new process in water and wastewater treatment and the subject of an increasing number of papers in the field of membrane science. Among the commercial polymers used, poly(ethyleneimine and poly(acrylic acid are the most popular to complex numerous metal ions. Recently, there is an increasing interest in the use of chitosan, a natural linear polymer, as chelating agent for complexing metals. Chitosan has a high potential in wastewater treatment mainly due to its polyelectrolyte properties at acidic pH. The objectives of this review are to present the PAUF process and to highlight the advantages gained from the use of chitosan in the process of complexation–ultrafiltration. For this, a PAUF-based literature survey has been compiled and is discussed. From these data, chitosan, a biopolymer that is non-toxic to humans and the environment, is found to be effective in removing metal ions and exhibits high selectivity. It might be a promising polyelectrolyte for PAUF purposes.

  13. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to chitosan and reduction in body weight (ID 679, 1499), maintenance of normal blood LDL-cholesterol concentrations (ID 4663), reduction of intestinal transit time (ID

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to chitosan and reduction in body weight, maintenance of normal blood LDL-cholesterol concentrations, reduction of intestinal transit time and reduction of inflammation. The scientific substantiation is based on the information provided by the Member States in the consolidated list...... of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders. The food constituent that is the subject of the health claim is chitosan. The Panel considers that chitosan is sufficiently characterised....

  14. Review of antimicrobial and antioxidative activities of chitosans in food.

    Science.gov (United States)

    Friedman, Mendel; Juneja, Vijay K

    2010-09-01

    Interest in chitosan, a biodegradable, nontoxic, non-antigenic, and biocompatible biopolymer isolated from shellfish, arises from the fact that chitosans are reported to exhibit numerous health-related beneficial effects, including strong antimicrobial and antioxidative activities in foods. The extraordinary interest in the chemistry and application in agriculture, horticulture, environmental science, industry, microbiology, and medicine is attested by about 17,000 citations on this subject in the Scopus database. A special need exists to develop a better understanding of the role of chitosans in ameliorating foodborne illness. To contribute to this effort, this overview surveys and interprets our present knowledge of the chemistry and antimicrobial activities of chitosan in solution, as powders, and in edible films and coating against foodborne pathogens, spoilage bacteria, and pathogenic viruses and fungi in several food categories. These include produce, fruit juices, eggs and dairy, cereal, meat, and seafood products. Also covered are antimicrobial activities of chemically modified and nanochitosans, therapeutic properties, and possible mechanisms of the antimicrobial, antioxidative, and metal chelating effects. Further research is suggested in each of these categories. The widely scattered data on the multifaceted aspects of chitosan microbiology, summarized in the text and in 10 tables and 8 representative figures, suggest that low-molecular-weight chitosans at a pH below 6.0 presents optimal conditions for achieving desirable antimicrobial and antioxidative-preservative effects in liquid and solid foods. We are very hopeful that the described findings will be a valuable record and resource for further progress to improve microbial food safety and food quality.

  15. Effectiveness of chitosan against wine-related microorganisms.

    Science.gov (United States)

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  16. Alkyl chitosan film-high strength, functional biomaterials.

    Science.gov (United States)

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  17. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    Science.gov (United States)

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  18. Microencapsulation of norfloxacin in chitosan/chitosan oligosaccharides and its application in shrimp culture.

    Science.gov (United States)

    Lian, Ziru; Pan, Rong; Wang, Jiangtao

    2016-11-01

    Norfloxacin chitosan/chitosan oligosaccharide microcapsules (NCCM) were prepared by emulsion-chemical crosslinking method. The characteristics of obtained microcapsules were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and release experiments. Cumulative release profile of norfloxacin from the chitosan microcapsules in natural seawater was measured and the controlled release of drugs was at a uniform rate in 48h. The chitosan microcapsules were applied onto the antibacterial study of the shrimp culture in natural seawater. It is observed that the seawater in the NCCM added groups was relatively clear and the biomass of Vibrio increased slowly in contrast to the control and norfloxacin groups. The inhibition rate of Vibrio in norfloxacin groups obvioursly decreased after the 5 th day, whereas, it remained high and stable during experiment period in NCCM groups. The results showed that the chitosan microcapsules as release materials have excellent antibacterial effects on Vibrio in the farming of Penaeus vannamei Boone. The controlled release could obviously reduce dosage of antibiotics and delivery times, and effectively improve the utilization rate of norfloxacin drugs for shrimps. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra...... molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using...

  20. Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic acid)/chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shekh M. [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Mahoney, Christopher [Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Sankar, Jagannathan [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Mechanical Engineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Marra, Kacey G. [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Department of Plastic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15250 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15250 (United States); Bhattarai, Narayan, E-mail: nbhattar@ncat.edu [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-01-15

    Graphical abstract: - Highlights: • Magnesium gluconate contained PLGA/chitosan microspheres were fabricated. • In vitro release of magnesium ions was performed using Xylidyl Blue assay. • Chitosan coated PLGA can significantly control the release of magnesium ions. • Cellular compatibility was tested using adipose-derived stem cells and PC12 cells. • The cells encounter acceptably low levels of damage in contact with microspheres. - Abstract: The goal of this study was to fabricate and investigate the chitosan coated poly(lactic-co-glycolic acid) (PLGA) microspheres for the development of controlled release magnesium delivery system. PLGA based microspheres are ideal vehicles for many controlled release drug delivery applications. Chitosan is a naturally occurring biodegradable and biocompatible polysaccharide, which can coat the surface of PLGA to alter the release of drugs. Magnesium gluconate (MgG) was encapsulated in the PLGA and PLGA/chitosan microspheres by utilizing the double emulsion solvent evaporation technique for controlled release study. The microspheres were tested with respect to several physicochemical and biological properties, including morphology, chemical structure, chitosan adsorption efficiency, magnesium encapsulation efficiency, in vitro release of magnesium ions, and cellular compatibility using both human adipose-derived stem cells (ASCs) and PC12 cells. Chitosan coated PLGA microspheres can significantly control the release of magnesium ions compared to uncoated PLGA microspheres. Both coated and uncoated microspheres showed good cellular compatibility.

  1. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  2. Combined effect of chitosan and water activity on growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on maize-based media.

    Science.gov (United States)

    Ferrochio, Laura V; Cendoya, Eugenia; Zachetti, Vanessa G L; Farnochi, Maria C; Massad, Walter; Ramirez, Maria L

    2014-08-18

    The objectives of the present study were to determine the in vitro efficacy of chitosan (0.5, 1.0, 2.0 and 3.0mg/mL) under different water availabilities (0.995, 0.99, 0.98, 0.96 and 0.93) at 25°C on lag phase, growth rate and fumonisin production by isolates of Fusarium verticillioides and Fusarium proliferatum. The presence of chitosan affected growth and fumonisin production, and this effect was dependent on the dose and aW treatment used. The presence of chitosan increased the lag phase, and reduced the growth rate of both Fusarium species significantly at all concentrations used, especially at 0.93 aW. Also, significant reduction of fumonisin production was observed in both Fusarium species at all conditions assayed. The present study has shown the combined effects of chitosan and aW on growth and fumonisin production by the two most important Fusarium species present on maize. Low molecular weight (Mw) chitosan with more than 70% of degree of deacetylation (DD) at 0.5mg/mL was able to significantly reduce growth rate and fumonisin production on maize-based media, with maximum levels of reduction in both parameters obtained at the highest doses used. As fumonisins are unavoidable contaminants in food and feed chains, their presence needs to be reduced to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize. In this scenario post-harvest use of chitosan could be an important alternative treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes

    International Nuclear Information System (INIS)

    Saranwong, N.; Inthanon, K.; Wongkham, W.; Wanichapichart, P.; Suwannakachorn, D.; Yu, L.D.

    2012-01-01

    Surface of chitosan membrane was modified with argon (Ar) and nitrogen (N) plasma immersion ion implantation (PIII) for human skin fibroblasts F1544 cell attachment. The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Cell attachment patterns were evaluated by scanning electron microscopy (SEM). The enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of focal adhesion kinase (FAK). The results showed that Ar PIII had an enhancement effect on the cell attachment while N-PIII had an inhibition effect. Filopodial analysis revealed more microfilament cytoplasmic spreading on the edge of cells attached on the Ar-treated membranes than N-treated membranes. Higher level FAK was found in Ar-treated membranes than that in N-treated membranes.

  4. Green synthesis approach: extraction of chitosan from fungus mycelia.

    Science.gov (United States)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam

    2013-12-01

    Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.

  5. HPLC detection of loss rate and cell migration of HUVECs in a proanthocyanidin cross-linked recombinant human collagen-peptide (RHC)–chitosan scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Deng, Aipeng [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yang [Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Gao, Lihu; Xu, Na; Liu, Xin; Hu, Lunxiang; Chen, Junhua [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Shulin, E-mail: yshulin@njust.edu.cn [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2015-11-01

    Porous scaffolds with appropriate pore structure, biocompatibility, mechanical property and processability play an important role in tissue engineering. In this paper, we fabricated a recombinant human collagen-peptide (RHC)–chitosan scaffold cross-linked by premixing 30% proanthocyanidin (PA) in one-step freeze-drying. To remove the residual acetic acid, optimized 0.2 M phosphate buffer of pH 6.24 with 30% ethanol (PBSE) was selected to neutralize the lyophilized scaffold followed by three times deionized water rinse. Ninhydrin assay was used to characterize the components loss during the fabrication process. To detect the exact RHC loss under optimized neutralization condition, high performance liquid chromatography (HPLC) equipped size exclusion chromatography column was used and the total RHC loss rate through PBSE rinse was 19.5 ± 5.08%. Fourier transform infrared spectroscopy (FT-IR) indicated hydrogen bonding among RHC, chitosan and PA, it also presented a probative but not strong hydrophobic interaction between phenyl rings of polyphenols and pyrrolidine rings of proline in RHC. Further, human umbilical vein endothelial cell (HUVEC) viability analyzed by a scanning electron microscope (SEM) and acridine orange/ethidium bromide (AO/EB) fluorescence staining exhibited that this scaffold could not only promote cell proliferation on scaffold surface but also permit cells migration into the scaffold. qRT-PCR exhibited that the optimized scaffold could stimulate angiogenesis associated genes VEGF and CD31 expression. These characterizations indicated that this scaffold can be considered as an ideal candidate for tissue engineering. - Highlights: • PA cross-linked recombinant human collagen–chitosan scaffold. • Fabrication in one-step lyophilization with neutralization. • HPLC detection of RHC loss rate • HUVEC proliferation and migration in scaffold • Angiogenesis associated gene expressions were increased in scaffold cell culturing.

  6. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    Science.gov (United States)

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse.

  7. Degradation of chitosan for rice crops application

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamaruddin Hashim; Abdul Rahim Harun; Khairul Zaman; Hj Dahlan

    2013-01-01

    A variety of techniques including chemical and enzymatic hydrolysis, and radiation degradation processes can be used to prepare low molecular weight chitosan. Degradation of chitosan by radiation can be carried out in solid state and liquid state. Radiation degraded polysaccharides has been reported to exhibit growth-stimulating activity like phytohormones that induce the promotion in germination, shoot and root elongation in variety of plants. In this study, the chitosan was irradiated in solid state (powder form) by gamma rays within the dose range of 25-75 kGy. And the irradiated chitosan was then irradiated in solution form in the presence of hydrogen peroxide. The effects of irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer. The molecular weight and viscosity of the chitosan decreased with increment of absorbed doses. In the presence of hydrogen peroxide, the molecular weight of chitosan could be further decreased. The effect of radiation degraded chitosan on the growth promotion of rice was investigated and it was shown during seedling period of 15 days for transplanting whereby the growth is 15%-20% faster than using chemicals growth promoters. (authors)

  8. Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat.

    Science.gov (United States)

    Tayel, Ahmed A; Ibrahim, Sami I A; Al-Saman, Mahmoud A; Moussa, Shaaban H

    2014-08-01

    Raw and processed meat contaminated with pathogenic microorganisms is a continuing worldwide problem facing health and industry overseers. Fungal chitosan was extracted, purified and characterized from Aspergillus brasiliensis (niger) ATCC 16404 grown in date syrup (dips) and applied as a potential meat biopreservative. The main features of produced chitosan were a deacetylation degree of 81.3%, a molecular weight of 31,000Da, 96% solubility in 1% acetic acid solution and a harmonized IR-spectrum to standard commercial chitosan. The application of fungal chitosan, as a natural and safe biopreservative for minced meat, was conducted in comparison with potassium sorbate, as a commercial meat preservative. Treated meat samples with 0.02% chitosan was the least trials in microbial contents, i.e. total count, coliforms, β-glucuronidase-positive Escherichia coli, Enterobacteriaceae, yeasts and molds, Staphylococcus aureus and coagulase positive staphylococci. The antimicrobial activity of fungal chitosan was considerably greater than that of potassium sorbate or their combination at 0.01% from each. Sensory characteristics, e.g. color, odor and texture, of treated meat with chitosan, were higher than those of control and potassium sorbate treated samples. Fungal chitosan, however, could be recommended as a powerful, natural and eco-friendly alternative for meat preservation and overall quality maintenance. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  10. Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats

    International Nuclear Information System (INIS)

    Stefan, Marius; Melnig, Viorel; Pricop, Daniela; Neagu, Anca; Mihasan, Marius; Tartau, Liliana; Hritcu, Lucian

    2013-01-01

    The impact of nanoparticles in medicine and biology has increased rapidly in recent years. Gold nanoparticles (AuNP) have advantageous properties such as chemical stability, high electron density and affinity to biomolecules. However, the effects of AuNP on human body after repeated administration are still unclear. Therefore, the purpose of the present study was to evaluate the effects of gold-11.68 nm (AuNP1, 9.8 μg) and gold-22.22 nm (AuNP2, 19.7 μg) nanoparticles capped with chitosan on brain and liver tissue reactivity in male Wistar rats exposed to lipopolysaccharide (LPS from Escherichia coli serotype 0111:B4, 250 μg) upon 8 daily sessions of intraperitoneal administration. Our results suggest that the smaller size of chitosan-capped AuNP shows the protective effects against LPS-induced toxicity, suggesting a very high potential for biomedical applications. - Highlights: ► Smaller size of chitosan-capped gold nanoparticles acts against LPS-induced toxicity. ► Larger size of chitosan-capped gold nanoparticles agglomerated inside neurons and induced toxicity in combination with LPS. ► Chitosan has excellent biocompatible proprieties. ► Smaller size of chitosan-capped gold nanoparticles demonstrates great potential in biomedical applications.

  11. The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film

    Directory of Open Access Journals (Sweden)

    Vanessa Tiemi Kimura

    Full Text Available Abstract Chitosan film is used as a dressing to heal burns. The physical and biological properties of the film can be modified by the addition of phytotherapic compounds. This work used the casting -solvent evaporation technique to prepare chitosan film containing andiroba oil (Carapa guianensis which has anti-inflammatory, antibiotic, and healing properties. The objective of this study was to determine the effect of the concentrations of chitosan and andiroba oil on the physical properties of chitosan films. The emulsion films were evaluated concerning the mechanical properties and fluid handling capacity. Additionally, scanning electron microscopy and thermal analysis were performed. The results showed that the barrier and mechanical properties were affected by the addition of andiroba oil, and these may be modulated as a function of the concentration of oil added to the film. The thermal analysis showed no evidence of chemical interactions between the oil and chitosan.

  12. 5-Fluorouracil Encapsulated Chitosan Nanoparticles for pH-Stimulated Drug Delivery: Evaluation of Controlled Release Kinetics

    Directory of Open Access Journals (Sweden)

    R. Seda Tığlı Aydın

    2012-01-01

    Full Text Available Nanoparticles consisting of human therapeutic drugs are suggested as a promising strategy for targeted and localized drug delivery to tumor cells. In this study, 5-fluorouracil (5-FU encapsulated chitosan nanoparticles were prepared in order to investigate potentials of localized drug delivery for tumor environment due to pH sensitivity of chitosan nanoparticles. Optimization of chitosan and 5-FU encapsulated nanoparticles production revealed 148.8±1.1 nm and 243.1±17.9 nm particle size diameters with narrow size distributions, which are confirmed by scanning electron microscope (SEM images. The challenge was to investigate drug delivery of 5-FU encapsulated chitosan nanoparticles due to varied pH changes. To achieve this objective, pH sensitivity of prepared chitosan nanoparticle was evaluated and results showed a significant swelling response for pH 5 with particle diameter of ∼450 nm. In vitro release studies indicated a controlled and sustained release of 5-FU from chitosan nanoparticles with the release amounts of 29.1–60.8% due to varied pH environments after 408 h of the incubation period. pH sensitivity is confirmed by mathematical modeling of release kinetics since chitosan nanoparticles showed stimuli-induced release. Results suggested that 5-FU encapsulated chitosan nanoparticles can be launched as pH-responsive smart drug delivery agents for possible applications of cancer treatments.

  13. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  14. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  15. Enhancement of antimicrobial activity of chitosan by irradiation

    International Nuclear Information System (INIS)

    Matsuhashi, S.; Kume, T.

    1997-01-01

    Antimicrobial activity of irradiated chitosan was studied against Escherichia coli B/r. Irradiation of chitosan at 100 kGy under dry conditions was effective in increasing the activity, and inhibited the growth of E. coli completely. The molecular weight of chitosan significantly decreased with the increase in irradiation dose, whereas the relative surface charge of chitosan was decreased only 3% by 100 kGy irradiation. Antimicrobial activity assay of chitosan fractionated according to molecular weight showed that 1 x 10 5 -3 x 10 5 fraction was most effective in suppressing the growth of E coli. This fraction comprised only 8% of the 100 kGy irradiated chitosan. On the other hand, chitosan whose molecular weight was less than 1 x 10 5 had no activity. The results show that low dose irradiation, specifically 100 kGy, of chitosan gives enough degradation to increase its antimicrobial activity as a result of a change in molecular weight. (Author)

  16. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heidari, Fatemeh [Department of Materials Science and Engineering, School of Engineering, Yasouj University, Yasuj 75918-74934 (Iran, Islamic Republic of); Razavi, Mehdi [BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Brunel Institute for Bioengineering, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Bahrololoom, Mohammad E. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bazargan-Lari, Reza [Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht (Iran, Islamic Republic of); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Kotturi, Hari [Department of Biology, University of Central Oklahoma, Edmond, OK 73034 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe{sub 3}O{sub 4}) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. - Highlights: • Chitosan (CS)/magnetite composite presented the maximum bending strength. • Adding hydroxyapatite and magnetite to the CS enhances its mechanical properties. • Magnetic does not have reverse effect on the cyto-compatibility of samples.

  17. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Twana Mohammed M. Ways

    2018-03-01

    Full Text Available Mucoadhesive drug delivery systems are desirable as they can increase the residence time of drugs at the site of absorption/action, provide sustained drug release and minimize the degradation of drugs in various body sites. Chitosan is a cationic polysaccharide that exhibits mucoadhesive properties and it has been widely used in the design of mucoadhesive dosage forms. However, its limited mucoadhesive strength and limited water-solubility at neutral and basic pHs are considered as two major drawbacks of its use. Chemical modification of chitosan has been exploited to tackle these two issues. In this review, we highlight the up-to-date studies involving the synthetic approaches and description of mucoadhesive properties of chitosan and chitosan derivatives. These derivatives include trimethyl chitosan, carboxymethyl chitosan, thiolated chitosan, chitosan-enzyme inhibitors, chitosan-ethylenediaminetetraacetic acid (chitosan-EDTA, half-acetylated chitosan, acrylated chitosan, glycol chitosan, chitosan-catechol, methyl pyrrolidinone-chitosan, cyclodextrin-chitosan and oleoyl-quaternised chitosan. We have particularly focused on the effect of chemical derivatization on the mucoadhesive properties of chitosan. Additionally, other important properties including water-solubility, stability, controlled release, permeation enhancing effect, and in vivo performance are also described.

  18. Radiation depolymerization of chitosan to prepare oligomers

    International Nuclear Information System (INIS)

    Hai, Le; Bang Diep, Tran; Nagasawa, Naotsugu; Yoshii, Fumio; Kume, Tamikazu

    2003-01-01

    Radiation depolymerization of chitosan was carried out by gamma irradiation in the solid state. The radiation-chemical depolymerization yield of chitosan in the solid state, Gd, determined by gel permeation chromatography, is 0.9 for chitosan 10B and 1.8 for chitosan 8B. Low molecular weight chitosan/or oligochitosans were separated from a chitosan depolymerized by gamma radiation, using mixtures of methanol-water and acetone as the solvents. Due to the differences in solubility revealed upon radiolysis, extracts became subdivided into precipitates and soluble fractions. The biological effect of oligochitosan in each fraction was evaluated; the preliminary results indicated that the oligochitosan with M w -bar=2x10 4 inhibited the growth of fungi at 100 ppm and that with M w -bar=800 only enhanced the growth of the same typical fungi

  19. Extraction and Characterization of Chitin and Chitosan from Blue Crab and Synthesis of Chitosan Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Nimet Bölgen

    2016-08-01

    Full Text Available Polymeric scaffolds produced by cryogelation technique have attracted increasing attention for tissue engineering applications. Cryogelation is a technique which enables to produce interconnected porous matrices from the frozen reaction mixtures of polymers or monomeric precursors. Chitosan is a biocompatible, biodegradable, nontoxic, antibacterial, antioxidant and antifungal natural polymer that is obtained by deacetylation of chitin, which is mostly found in the exoskeleton of many crustacean. In this study, chitin was isolated from the exoskeleton of blue crap (Callinectes sapidus using a chemical method. Callinectes sapidus samples were collected from a market, as a waste material after it has been consumed as food. Demineralization, deproteinization and decolorization steps were applied to the samples to obtain chitin. Chitosan was prepared from isolated chitin by deacetylation at high temperatures. The chemical compositon of crab shell, extracted chitin and chitosan were characterized with FTIR analyses. And also to determine the physicochemical and functional properties of the produced chitosan; solubility, water binding and fat binding analysis were performed. Chitosan cryogel scaffolds were prepared by crosslinking reaction at cryogenic conditions at constant amount of chitosan (1%, w/v with different ratios of glutaraldehyde (1, 3, and 6%, v/v as crosslinker. The chemical structure of the scaffolds were examined by FTIR. Also, the water uptake capacity of scaffolds have been determined. Collectively, the results suggested that the characterized chitosan cryogels can be potential scaffolds to be used in tissue engineering applications.

  20. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes.

    Science.gov (United States)

    Dumont, Vitor C; Mansur, Alexandra A P; Carvalho, Sandhra M; Medeiros Borsagli, Fernanda G L; Pereira, Marivalda M; Mansur, Herman S

    2016-02-01

    phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues.

  1. Aging phenomena of chitosan and chitosan-diclofenac sodium system detected by low-frequency dielectric spectroscopy.

    Science.gov (United States)

    Bodek, K H; Bak, G W

    1999-09-01

    The use of natural polymers for design of dosage form has received considerable attention recently, especially from the safety point of view. Among these polymers, chitosan shows very interesting biological, chemical and physical properties which makes it possible to use chitosan for various pharmaceutical applications. Microcrystalline chitosan (MCCh) is a special multifunctional polymeric material existing in the form of either of gelatinous water dispersion or a powder. Thermal aging of chitosan and chitosan-diclofenac sodium mixture have been studied using low-frequency dielectric measurements. The aging was carried out by annealing in ambient atmosphere in the temperature range between 25 degrees C and 100 degrees C. The dielectric losses in the aged samples proved to decrease by about one order of magnitude. The additional measurements of molecular weight distribution and infrared absorption were also carried out for better understanding of nature of the ageing phenomena. Partial evacuation of water, cross-linking and improvement of structural order may be suggested to be a result of thermal aging of the investigated materials.

  2. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets.

    Science.gov (United States)

    Huanbutta, Kampanart; Cheewatanakornkool, Kamonrak; Terada, Katsuhide; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2013-08-14

    Magnetic resonance imaging (MRI) and gravimetric techniques were used to assess swelling and erosion behaviors of hydrophilic matrix tablets made of chitosan. The impact of salt form, molecular weight (MW) and dissolution medium on swelling behavior and drug (theophylline) release was studied. The matrix tablets made of chitosan glycolate (CGY) showed the greatest swelling in both acid and neutral media, compared to chitosan aspartate, chitosan glutamate and chitosan lactate. MRI illustrated that swelling region of CGY in both media was not different in the first 100 min but glassy region (dry core) in 0.1N HCl was less than in pH 6.8 buffer. The tablets prepared from chitosan with high MW swelled greater than those of low MW. Moreover, CGY can delay drug release in the acid condition due to thick swollen gel and low erosion rate. Therefore, CGY may be suitably applied as sustained drug release polymer or enteric coating material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  4. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Lan, K.N.; Lam, N.D.; Kume, Tamikazu

    2000-01-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  5. Preparation of alginate coated chitosan microparticles for vaccine delivery

    Directory of Open Access Journals (Sweden)

    Wei YuQuan

    2008-11-01

    Full Text Available Abstract Background Absorption of antigens onto chitosan microparticles via electrostatic interaction is a common and relatively mild process suitable for mucosal vaccine. In order to increase the stability of antigens and prevent an immediate desorption of antigens from chitosan carriers in gastrointestinal tract, coating onto BSA loaded chitosan microparticles with sodium alginate was performed by layer-by-layer technology to meet the requirement of mucosal vaccine. Results The prepared alginate coated BSA loaded chitosan microparticles had loading efficiency (LE of 60% and loading capacity (LC of 6% with mean diameter of about 1 μm. When the weight ratio of alginate/chitosan microparticles was greater than 2, the stable system could be obtained. The rapid charge inversion of BSA loaded chitosan microparticles (from +27 mv to -27.8 mv was observed during the coating procedure which indicated the presence of alginate layer on the chitosan microparticles surfaces. According to the results obtained by scanning electron microscopy (SEM, the core-shell structure of BSA loaded chitosan microparticles was observed. Meanwhile, in vitro release study indicated that the initial burst release of BSA from alginate coated chitosan microparticles was lower than that observed from uncoated chitosan microparticles (40% in 8 h vs. about 84% in 0.5 h. SDS-polyacrylamide gel electrophoresis (SDS-PAGE assay showed that alginate coating onto chitosan microparticles could effectively protect the BSA from degradation or hydrolysis in acidic condition for at least 2 h. The structural integrity of alginate modified chitosan microparticles incubated in PBS for 24 h was investigated by FTIR. Conclusion The prepared alginate coated chitosan microparticles, with mean diameter of about 1 μm, was suitable for oral mucosal vaccine. Moreover, alginate coating onto the surface of chitosan microparticles could modulate the release behavior of BSA from alginate coated chitosan

  6. Chitosan-nanosilica hybrid materials: Preparation and properties

    International Nuclear Information System (INIS)

    Podust, T.V.; Kulik, T.V.; Palyanytsya, B.B.; Gun’ko, V.M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K.

    2014-01-01

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO 2 , TiO 2 /SiO 2 and Al 2 O 3 /SiO 2 ). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S BET of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface

  7. Chitosan-nanosilica hybrid materials: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Podust, T.V., E-mail: tania_list@yahoo.com [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Kulik, T.V., E-mail: tanyakulyk@i.ua [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Palyanytsya, B.B.; Gun’ko, V.M. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164 (Ukraine); Tóth, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Mikhalovska, L. [School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Menyhárd, A. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary); Institute of Materials Science and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences (Hungary); László, K. [Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2014-11-30

    Highlights: • Hybrid chitosan-nanosilica materials were synthesized using an adsorption modification method. • The chitosan adsorption capacity is higher on the silica/titania and silica/alumina than on the fumed silica. • Nanosilicas undergo structural and textural alterations due to modification by chitosan. • The more severe chitosan thermodestruction occurs on the silica/titania and silica/alumina surfaces than on the plain silica surface. - Abstract: The research focuses on the synthesis of novel organic–inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO{sub 2}, TiO{sub 2}/SiO{sub 2} and Al{sub 2}O{sub 3}/SiO{sub 2}). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area S{sub BET} of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  8. Chitosan coating as an antibacterial surface for biomedical applications.

    Directory of Open Access Journals (Sweden)

    Mélanie D'Almeida

    Full Text Available A current public health issue is preventing post-surgical complications by designing antibacterial implants. To achieve this goal, in this study we evaluated the antibacterial activity of an animal-free chitosan grafted onto a titanium alloy.Animal-free chitosan binding on the substrate was performed by covalent link via a two-step process using TriEthoxySilylPropyl Succinic Anhydride (TESPSA as the coupling agent. All grafting steps were studied and validated by means of X-ray Photoelectron Spectroscopy (XPS, Time-of-Flight secondary ion mass spectrometry (ToF-SIMS analyses and Dynamic-mode Secondary Ion Mass Spectrometry (DSIMS. The antibacterial activity against Escherichia coli and Staphylococcus aureus strains of the developed coating was assessed using the number of colony forming units (CFU.XPS showed a significant increase in the C and N atomic percentages assigned to the presence of chitosan. A thick layer of polymer deposit was detected by ToF-SIMS and the results obtained by DSIMS measurements are in agreement with ToF-SIMS and XPS analyses and confirms that the coating synthesis was a success. The developed coating was active against both gram negative and gram positive tested bacteria.The success of the chitosan immobilization was proven using the surface characterization techniques applied in this study. The coating was found to be effective against Escherichia coli and Staphylococcus aureus strains.

  9. New sizing agents and flocculants derived from chitosan

    International Nuclear Information System (INIS)

    Hebeish, A.; Higay, A.; El-Shafei, A.

    2005-01-01

    Novel approaches for development of new textile sizing agents and flocculants were undertaken. One of these approaches is based on acid hydrolysis of chitosan and the other involves its carboxy methylation. Characterization of the hydrolyzed chitosan was performed through monitoring nitrogen content and apparent viscosity, while carboxymethyl chitosan was analyzed for degree of substitution (DS) along with apparent viscosity. Factors affecting both hydrolysis and carboxy methylation were investigated. The nitrogen content and apparent viscosity of chitosan decrease variably by increasing HCl concentration as well as time and temperature of hydrolysis. On the other hand, the DS of carboxymethyl chitosan increases by increasing the concentration of both sodium hydroxide and monochloroacetic acid and similarly increases by prolonging the duration and raising the temperature of carboxy methylation; in contrast with apparent viscosity which is inversely related to these parameters. Aqueous solutions of hydrolyzed chitosan or carboxymethyl chitosan were applied to light cotton fabric with a view to envision the technical feasibility of such water soluble chitosan for textile sizing. The size add-on on the light fabric is directly related to the concentration of the hydrolyzed or carboxymethyl chitosan in the sizing solution and so does the apparent viscosity of the latter. Hundred percent size removals could be achieved with the hydrolyzed chitosan irrespective or the size solution concentration provided that the latter is not less than 8%. Different situation is encountered with carboxymethyl chitosan where the percent size removal increase from 81% to 95% by increasing its concentration in the sizing solution from 5 % to 15%. Drying the sized fabric at 80 degree C for 5 minutes or 120 degree C for 3 minutes has practically no effect on percent size removal. The same holds true for heat treatment of the sized fabric at higher temperatures (up to 160 degree C) for longer

  10. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  11. Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold

    Directory of Open Access Journals (Sweden)

    Esmaeil Mirzaei

    2014-04-01

    Full Text Available   Objective(s: To improve water stability of electrospun chitosan/ Polyethylene oxide (PEO nanofibers, genipin, a biocompatible and nontoxic agent, was used to crosslink chitosan based nanofibers.   Materials and Methods: Different amounts of genipin were added to the chitosan/PEO solutions, chitosan/PEO weight ratio 90/10 in 80 % acetic acid, and the solutions were then electrospun to form nanofibers. The spun nanofibers were exposed to water vapor to complete crosslinking. The nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM, Fourier transform infrared-attenuated total reflection (FTIR-ATR spectroscopy, swelling test, MTT cytotoxicity, and cell attachment. Results: SEM images of electrospun mats showed that genipin-crosslinked nanofibers retained their fibrous structure after immerging in PBS (pH=7.4 for 24 hours, while the uncrosslinked samples lost their fibrous structure, indicating the water stability of genipin-crosslinked nanofibers. The genipin-crosslinked mats also showed no significant change in swelling ratio in comparison with uncrosslinked ones. FTIR-ATR spectrum of uncrosslinked and genipin-crosslinked chitosan nanofibers revealed the reaction between genipin and amino groups of chitosan. Cytotoxicity of genipin-crosslinked nanofibers was examined by MTT assay on human fibroblast cells in the presence of nanofibers extraction media. The genipin-crosslinked nanofibers did not show any toxic effects on fibroblast cells at the lowest and moderate amount of genipin. The fibroblast cells also showed a good adhesion on genipin-crosslinked nanofibers. Conclusion: This electrospun matrix would be used for biomedical applications such as wound dressing and scaffold for tissue engineering without the concern of toxicity.

  12. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response.

    Science.gov (United States)

    Giretova, Maria; Medvecky, Lubomir; Stulajterova, Radoslava; Sopcak, Tibor; Briancin, Jaroslav; Tatarkova, Monika

    2016-12-01

    Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified. The significantly enhanced proliferation activity with faster population growth of osteoblasts were found on enzymatically degraded biopolymer composite films with α-tricalcium phosphate and nanohydroxyapatite. No cytotoxicity of composite films prepared from lysozyme degraded scaffolds containing a large fraction of low molecular weight chitosans (LMWC), was revealed after 10 days of cultivation. Contrary to above in the higher cytotoxicity origin untreated nanohydroxyapatite films and porous composite scaffolds. The results showed that the synergistic effect of surface distribution, morphology of nanohydroxyapatite particles, microtopography and the presence of LMWC due to chitosan degradation in composite films were responsible for compensation of the cytotoxicity of nanohydroxyapatite composite films or porous composite scaffolds.

  13. Maillard reaction products from chitosan-xylan ionic liquid solution.

    Science.gov (United States)

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Molecular interactions in gelatin/chitosan composite films.

    Science.gov (United States)

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  16. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dariusz Wawro

    2011-10-01

    Full Text Available This paper describes a method for preparing chitosan fibers modified with hydroxyapatite (HAp, tricalcium phosphate (β-TCP, and HAp/β-TCP nanoparticles. Fiber-grade chitosan derived from the northern shrimp (Pandalus borealis and nanoparticles of tricalcium phosphate (β-TCP and hydroxyapatite (HAp suspended in a diluted chitosan solution were used in the investigation. Diluted chitosan solution containing nanoparticles of Hap/β-TCP was introduced to a 5.16 wt% solution of chitosan in 3.0 wt% acetic acid. The properties of the spinning solutions were examined. Chitosan fibers modified with nanoparticles of HAp/β-TCP were characterized by a level of tenacity and calcium content one hundred times higher than that of regular chitosan fibers.

  17. Suppression of Zn stress on barley by irradiated chitosan

    International Nuclear Information System (INIS)

    Nagasawa, N.; Mitomo, H.; Ha, P.T.L.; Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T.

    2001-01-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10 5 to ca. 6 x 10 3 by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of 62 Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  18. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  19. Some features of irradiated chitosan and its biological effect

    International Nuclear Information System (INIS)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G d ) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  20. Antifungal activity of low molecular weight chitosan produced from non-traditional marine resources

    Directory of Open Access Journals (Sweden)

    Francisco Pires Avelelas

    2014-06-01

    Full Text Available The four plants pathogens, Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum are responsible for several diseases affecting different plant species in Portugal, such as pines (H. annosum, chestnuts (P. cinnamomi and C. parasitica and eucalyptus (B. cinerea. These pathogens incurs in large economic losses, and ultimately causes the death of these plants. The use of biopolymers as antimicrobial agents, such as chitosan (derived from chitin, is increasing, in order to reduce the negative impact of conventional chemical treatments on the environment, avoiding health risks. Therefore, eco-friendly polymers were produced through (1 N-acetylation with addition of acetic anhydride and (2 hydrogen peroxide of chitosan samples, obtained from two different sources: shrimp (commercial chitosan and swimming crab bycatch specie Polybius henslowii. The chemical structure and molecular weight of the prepared chitosan derivatives, water soluble chitosan (WSC and chitooligosaccharides (COS, was confirmed by Fourier Transform Infrared (FT-IR and Gel Permeation Chromatography (GPC and their antifungal activity evaluated against Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum. The concentration range varied from 0.0125 to 0.1 mg/mL and inhibition percentages were determined by differences in radial growth on the agar plates for all species. Although not all species tested exhibited equal vulnerability towards the concentrations range, antifungal activity of chitosan samples proved to be dependent, increasing the inhibitory capacity with lower concentrations. The results obtained support the use of chitosan fromPolybius henslowii when compared with commercial chitosan with shrimp towards antifungal approaches, suggesting that chitin producers can rely on this crab waste as a raw material for chitin extraction, adding value to this bycatch specie. Financial support was obtained

  1. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  2. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  3. Determination of the Optimum Conditions for Production of Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Dustgani

    2007-12-01

    Full Text Available Bioedegradable nanoparticles are intensively investigated for their potential applications in drug delivery systems. Being a biocompatible and biodegradable polymer, chitosan holds great promise for use in this area. This investigation was concerned with determination and optimization of the effective parameters involved in the production of chitosan nanoparticles using ionic gelation method. Studied variables were concentration and pH of the chitosan solution, the ratio of chitosan to sodium tripolyphosphate therein and the molecular weight of chitosan. For this purpose, Taguchistatistical method was used for design of experiments in three levels. The size of chitosan nanoparticle was determined using laser light scattering. The experimental results showed that concentration of chitosan solution was the most important parameter and chitosan molecular weight the least effective parameter. The optimum conditions for preparation of nanoparticles were found to be 1 mg/mL chitosan solution with pH=5, chitosan to sodium tripolyphosphate ratio of 3 and chitosan molecular weight of 200,000 daltons. The average nanoparticle size at optimum conditions was found to be about 150 nm.

  4. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  5. Some features of irradiated chitosan and its biological effect

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi [Nuclear Research Institute, VAEC, Dalat (Viet Nam); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G{sub d}) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  6. Degree of Acetylization Chitosan Gonggong Snail Shells

    Science.gov (United States)

    Horiza, H.; Iskandar, I.; Aldo, N.

    2018-04-01

    Chitosan is a polysaccharide obtained from the deacetylation of chitin, which is generally derived from crustacean animal waste and animal skins other sea. One marine animals that have compounds that can be processed chitin chitosan is derived from the snail Gonggong marine waters of Riau Islands province. The purpose of this study was to determine the degree of chitosan from the shells of snails asetilisasi Gonggong. This research is an experimental research laboratory. The results of this study indicate that the degree of chitosan shell snail deasetilisasi Gonggong is 70.27%.

  7. Chitosan pretreatment for cotton dyeing with black tea

    Science.gov (United States)

    Campos, J.; Díaz-García, P.; Montava, I.; Bonet-Aracil, M.; Bou-Belda, E.

    2017-10-01

    Chitosan is used in a wide range of applications due to its intrinsic properties. Chitosan is a biopolymer obtained from chitin and among their most important aspects highlights its bonding with cotton and its antibacterial properties. In this study two different molecular weight chitosan are used in the dyeing process of cotton with black tea to evaluate its influence. In order to evaluate the effect of the pretreatment with chitosan, DSC and reflection spectrophotometer analysis are performed. The curing temperature is evaluated by the DSC analysis of cotton fabric treated with 15 g/L of chitosan, whilst the enhancement of the dyeing is evaluated by the colorimetric coordinates and the K/S value obtained spectrophotometrically. This study shows the extent of improvement of the pretreatment with chitosan in dyeing with natural products as black tea.

  8. Chitosan-based coatings in the prevention of intravascular catheter-associated infections.

    Science.gov (United States)

    Mendoza, Gracia; Regiel-Futyra, Anna; Tamayo, Alejandra; Monzon, Marta; Irusta, Silvia; de Gregorio, Miguel Angel; Kyzioł, Agnieszka; Arruebo, Manuel

    2018-01-01

    Central venous access devices play an important role in patients with prolonged intravenous administration requirements. In the last years, the coating of these devices with bactericidal compounds has emerged as a potential tool to prevent bacterial colonization. Our study describes the modification of 3D-printed reservoirs and silicone-based catheters, mimicking central venous access devices, through different approaches including their coating with the well known biocompatible and bactericidal polymer chitosan, with the anionic polysaccharide alginate; also, plasma treated surfaces were included in the study to promote polymer adhesion. The evaluation of the antimicrobial action of those surface modifications compared to that exerted by a model antibiotic (ciprofloxacin) adsorbed on the surface of the devices was carried out. Surface characterization was developed by different methodologies and the bactericidal effects of the different coatings were assayed in an in vitro model of Staphylococcus aureus infection. Our results showed a significant reduction in the reservoir roughness (≤73%) after coating though no changes were observed for coated catheters which was also confirmed by scanning electron microscopy, pointing to the importance of the surface device topography for the successful attachment of the coating and for the subsequent development of bactericidal effects. Furthermore, the single presence of chitosan on the reservoirs was enough to fully inhibit bacterial growth exerting the same efficiency as that showed by the model antibiotic. Importantly, chitosan coating showed low cytotoxicity against human keratinocytes, human lung adenocarcinoma epithelial cells, and murine colon carcinoma cells displaying viability percentages in the range of the control samples (>95%). Chitosan-based coatings are proposed as an effective and promising solution in the prevention of microbial infections associated to medical devices.

  9. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

    Science.gov (United States)

    Jiang, Tao; Khan, Yusuf; Nair, Lakshmi S; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-06-01

    Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications.

  10. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    San Juan, A; Montembault, A; Royaud, I; David, L; Gillet, D; Say, J P; Rouif, S; Bouet, T

    2012-01-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  11. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  12. Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold

    Directory of Open Access Journals (Sweden)

    Ge S

    2012-10-01

    Full Text Available Shaohua Ge,1 Ning Zhao,1 Lu Wang,1 Meijiao Yu,1 Hong Liu,2 Aimei Song,1 Jing Huang,1 Guancong Wang,2 Pishan Yang11Key Laboratory of Oral Biomedicine of Shandong Province, Department of Periodontology, School of Stomatology, 2Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, ChinaBackground: A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo.Methods: Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively.Results: PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair.Conclusion: This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration.Keywords: periodontal ligament, stem

  13. Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications.

    Science.gov (United States)

    Sreekumar, Sruthi; Lemke, Philipp; Moerschbacher, Bruno M; Torres-Giner, Sergio; Lagaron, Jose M

    2017-10-01

    In the present study, a well-defined set of chitosans, with different degrees of acetylation (DA) and degrees of polymerization (DP), were processed by solution electrospraying from a water-based solvent. The solution properties, in terms of surface tension, conductivity, viscosity, and pH, were characterized and related to the physico-chemical properties of the chitosans. It was observed that both DA and DP values of a given chitosan, in combination with biopolymer concentration, mainly determined solution viscosity. This was, in turn, the major driving factor that defined the electrosprayability of chitosan. In addition, the physico-chemical properties of chitosans highly influenced solution conductivity and results indicated that the chitosan solutions with low or low-to-medium values of conductivity were the most optimal for electrospraying. The results obtained here also demonstrate that a good process control can be achieved by adjusting the working conditions, i.e. applied voltage, flow-rate, and tip-to-collector distance. Finally, it was also shown that electrosprayability of chitosan with inadequate physico-chemical properties can be improved by solution mixing of very different kinds of this polysaccharide. The resultant electrosprayed submicron chitosan capsules can be applied for encapsulation of food additives and to develop bioactive coatings of interest in food packaging, where these particles alone or containing functional ingredients can be released from the package into the food to promote a health benefit.

  14. An Investigation of Chitosan for Sorption of Radionuclides

    Science.gov (United States)

    2012-06-05

    Valenta et al. found that hydrogels made of EDTA-chitsoan were resistant to bacterial growth [88]. Nishi et al. found that alka- line earth metals...reviews of chitosan deriva- tives have been recently published [8, 21, 75, 89]. 10 Table 2.1: Select applications of chitosan. From [72, 75]. Agriculture ...pharmaceuticals 2.1.3 Chitosan applications Chitosan has found applications in a wide range of fields, including agriculture , water treatment, biomedical

  15. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  16. Effect of chitosan coatings on postharvest green asparagus quality.

    Science.gov (United States)

    Qiu, Miao; Jiang, Hengjun; Ren, Gerui; Huang, Jianying; Wang, Xiangyang

    2013-02-15

    Fresh postharvest green asparagus rapidly deteriorate due to its high respiration rate. The main benefits of edible active coatings are their edible characteristics, biodegradability and increase in food safety. In this study, the quality of the edible coatings based on 0.50%, 0.25% high-molecular weight chitosan (H-chitosan), and 0.50%, 0.25% low-molecular weight chitosan (L-chitosan) on postharvest green asparagus was investigated. On the basis of the results obtained, 0.25% H-chitosan and 0.50% L-chitosan treatments ensured lower color variation, less weight loss and less ascorbic acid, decrease presenting better quality of asparagus than other concentrations of chitosan treatments and the control during the cold storage, and prolonging a shelf life of postharvest green asparagus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    Science.gov (United States)

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Interaction between chitosan and its related enzymes: A review.

    Science.gov (United States)

    Shinya, Shoko; Fukamizo, Tamo

    2017-11-01

    Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide. The association/dissociation of positively charged glucosamine residues to/from the binding pocket of a GH2 exo-β-glucosaminidase controls the p K a of the catalytic acid, thereby maintaining the high catalytic potency of the enzyme. In contrast to chitosanases, chitosan-binding modules only accommodate a couple of glucosamine residues, predominantly recognizing the non-reducing end glucosamine residue of chitosan by electrostatic interactions and a hydrogen-bonding network. These structural findings on chitosan-related enzymes may contribute to future applications for the efficient conversion of the chitin/chitosan biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. β-Chitin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice.

    Science.gov (United States)

    Abdelmalek, Baha Eddine; Sila, Assaâd; Haddar, Anissa; Bougatef, Ali; Ayadi, Mohamed Ali

    2017-11-01

    Chitin is the second most abundant polysaccharide in biomass after cellulose and the term chitosan usually refers to a family of polymers obtained after chitin deacetylation. The aim of this work was the preparation and the characterization of chitin and chitosan from the gladius (pen) of the European squid (Loligo vulgaris). A high level of deproteinization (more than 80%) was recorded using Alcalase ® with an enzyme/protein ratio of 10U/mg. The demineralization of the gladius was completely achieved within 8h at room temperature in HCl. 13 C NMR, FTIR, and XRD diffractograms of prepared chitin and chitosan were taken and then degree of deacetylation of chitosan was calculated using 13 C CP/MAS-NMR Spectroscopic. Further, in vitro antioxidant capacity of chitosan was evaluated on 1,1-diphenyl-2-picrylhydrazyl method (IC 50 =3.2mgmL -1 ) and the β-carotene bleaching assay (IC 50 =3.3mgmL -1 ). Antimicrobial activity was also investigated and assays indicated that prepared chitosan exhibited marked inhibitory activity against all microbial strains tested. Additionally, chitosan was tested such as clarifying agent for apple juice and showed powerful clarification capability, without affecting nutritional value. Furthermore, the results suggested that prepared chitosan could be used as alternative additive in pharmaceutical preparations and food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    Science.gov (United States)

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  1. Emerging Chitosan-Based Films for Food Packaging Applications.

    Science.gov (United States)

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  2. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  3. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  4. Grape Preservation Using Chitosan Combined with β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Yu Youwei

    2013-01-01

    Full Text Available The effect of 1% chitosan combined with 2% β-cyclodextrin to the preservation of fresh grapes under ambient temperature was investigated. The results indicated that the hydrogen bond formed between the hydroxyl group of β-cyclodextrin and the amidogen or hydroxyl group of chitosan and the crystal form of chitosan was also changed when cyclodextrin was doped into chitosan coating. The compound coating could prolong the shelf life of grapes, maintain lower respiration rate and higher activities of superoxide dismutase, peroxidase, and catalase during storage time, and restrain weight loss and malonaldehyde content increase. Coating grapes with chitosan + β-cyclodextrin was a good method in postharvested grape preservation.

  5. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  6. Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films.

    Science.gov (United States)

    Mujtaba, Muhammad; Salaberria, Asier M; Andres, María A; Kaya, Murat; Gunyakti, Ayse; Labidi, Jalel

    2017-11-01

    Use of plastic based packaging tools is causing both health and economic problems. To overcome this situation, researchers are focusing on the use of different biomaterials such as chitosan and cellulose. The current study was conducted to check the effect of flax (Linum usitatissimum) cellulose nanocrystals (CNC) on mechanical and barrier properties of chitosan-based films. CNC was incorporated in different concentrations (5, 10, 20 and 30%). CNC was isolated from flax fiber using acid hydrolysis method. Tensile strength (TS) and young modulus (YM) values increased with the increase of CNC concentration. Chitosan film with 20% CNC revealed the highest YM value as 52.35MPa. No significant improvement was recorded in water vapor permeability due to overall lower film crystallinity. All the films were observed to be transparent up to an acceptable level. SEM and AFM analysis confirmed the homogeneity of films. A gradual enhancement was recorded in the antimicrobial activity of chitosan/CNC composite films. No significant improvement revealed in the thermal stability of composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Multilayered Films Produced by Layer-by-Layer Assembly of Chitosan and Alginate as a Potential Platform for the Formation of Human Adipose-Derived Stem Cell aggregates

    Directory of Open Access Journals (Sweden)

    Javad Hatami

    2017-09-01

    Full Text Available The construction of multilayered films with tunable properties could offer new routes to produce biomaterials as a platform for 3D cell cultivation. In this study, multilayered films produced with five bilayers of chitosan and alginate (CHT/ALG were built using water-soluble modified mesyl and tosyl–CHT via layer-by-layer (LbL self-assembly. NMR results demonstrated the presences of mesyl (2.83 ppm and tosyl groups (2.39, 7.37 and 7.70 ppm in the chemical structure of modified chitosans. The buildup of multilayered films was monitored by quartz-crystal-microbalance (QCM-D and film thickness was estimated using the Voigt-based viscoelastic model. QCM-D results demonstrated that CHT/ALG films constructed using mesyl or tosyl modifications (mCHT/ALG were significantly thinner in comparison to the CHT/ALG films constructed with unmodified chitosan (p < 0.05. Adhesion analysis demonstrated that human adipose stem cells (hASCs did not adhere to the mCHT/ALG multilayered films and formed aggregates with sizes between ca. 100–200 µm. In vitro studies on cell metabolic activity and live/dead staining suggested that mCHT/ALG multilayered films are nontoxic toward hACSs. Multilayered films produced via LbL assembly of ALG and off-the-shelf, water-soluble modified chitosans could be used as a scaffold for the 3D aggregates formation of hASCs in vitro.

  8. Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite.

    Science.gov (United States)

    Habiba, Umma; Joo, Tan Chin; Siddique, Tawsif A; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-11-01

    The chitosan/polyvinyl alcohol/TiO 2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO 2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO 2 composite can be a very useful material for dye removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong

    2017-12-01

    Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 166Ho-chitosan as a radiation synovectomy agent - biocompatibility study of 166Ho-chitosan in rabbits

    International Nuclear Information System (INIS)

    Kim, Sug Jun; Lee, Soo Yong; Jeon, Dae Geun; Lee Jong Seok

    1997-01-01

    Radiation synovectomy is a noninvasive therapy that has been investigated as an alternative to surgical synovectomy. It is been successfully employed in the treatment of synovitis in rheumatoid arthrits and other inflammatory arthropathies. We developed the 166 Ho-chitosan complex for possible use as a radiation synovectomy agent. Holmium is the more practical isotope based on its higher radioactivity and logner half-life. And isotope based on its higher radioactivity and logner half-life. And chitosan is ideal and suitable particles based on its soluble and biodegradable characteristics. So we investigated the biocompatibility of the 166 Ho-chitosan complex to evaluated the suitability as a radiation synovectomy agent. In this study, we performed in vivo and in vitro stability test and biodistribution test. Our results indicate that 166 Ho-chitosan may be an effective radiopharmaceutical for radiation synovectomy. (author). 30 refs., 7 tabs

  11. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  12. Development of a PVAl/chitosan composite membrane compatible with the dermo-epidermic system

    International Nuclear Information System (INIS)

    Almeida, Tiago Luiz de

    2009-03-01

    Due to the frequent incidence of people with skin lesions such as burns and ulcers and the lack of available donors, biomaterials with the capacity to mimic skin must be developed. In order to develop these biomaterials, polymers are used in the attempt to achieve characteristics which are closer to the target organ. In this direction, for several years our group has been developing dermo-epidermic substitutes, specifically biodegradable and biocompatible membranes made up of PVAl and chitosan. PVAl, a synthetic polymer, was used to imitate part of the human dermis and chitosan, a polymer of organic origin, was used in this study to stimulate growth and maintenance of the epidermis. Due to the variations of these commercially obtained polymers, the objective of this study was to characterize their physical and chemical properties, comparing them with the membrane previously obtained by our group with the intention of confirming the hypotheses of interferences put forward in this study. The PVAl membranes in the study (PVAl MP) that obtained characteristics most similar to the standard were those irradiated with 13 and 15 kGy; this last was chosen because it was the minimum dose necessary to achieve sterility. These membranes were also those which had the largest percentage of pores between 70 and 100 μm. For chitosan, the principal characteristics studied were the degree of acetylation (DA) and average molecular weight, both results demonstrated different characteristics than commercially indicated. Various membrane preparation protocols were carried out from the chitosan solution (2%). The membrane composed of the solution of chitosan homogenized with glycerol (20%) and dried at room temperature had the best interaction with keratinocytes. To finalize the study, this chitosan solution was poured over a PVAl membrane, lyophilized and impregnated with chitosan (2%) solution and the compound was kept at room temperature until a chitosan film formed on the upper

  13. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  14. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  15. Use of the montmorillonite as crosslink agents for chitosan

    International Nuclear Information System (INIS)

    Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Braga, Carla R. Costa; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    The montmorillonite (the main constituent of bentonite) has been the most commonly used inorganic load in the formation of nanocomposites chitosan / layered silicate. To evaluate its effect as an agent for the reticulation of chitosan, a sodium montmorillonite, Cloisite Na + , supplied by Southern Clay Products, Texas, USA, was used. For the reticulation of chitosan dispersions of chitosan / Cloisite Na + were prepared in different proportions and the obtained films characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). The results indicated that the Cloisite Na + was for efficient and the reticulation of the chitosan and can be used in place of sulfuric acid, which is one of the most common reticulants for chitosan. (author)

  16. Enhancement of Antibacterial activity of Chitosan by gamma irradiation

    International Nuclear Information System (INIS)

    Bashandy, A.S.; Ibrahim, H.M.M.

    2006-01-01

    The antibacterial activity of irradiated and non-irradiated chitosan against E.coli, S.aureus, Salmonella, Strep. fecalis,Closteridium and P. aerugenosa was studied. Up to 1.25 mg/l, chitosan hardly suppressed the growth of all the strains while 3 mg/l of chitosan clearly inhibited the growth of all the studied strains. Therefore, the concentration of 3 mg/l of chitosan in the medium was adopted in this study. Irradiation at 100 KGy under dry conditions was effective in increasing the activity of chitosan and the growth of bacterial strains which was completely inhibited. It was also found that the addition of chitosan to dressing membranes present good barrier properties against microbes especially that irradiated at 100 KGy

  17. Thiolated chitosans: useful excipients for oral drug delivery.

    Science.gov (United States)

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  18. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    Science.gov (United States)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  19. Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries.

    Science.gov (United States)

    Rickett, Todd A; Amoozgar, Zohreh; Tuchek, Chad A; Park, Joonyoung; Yeo, Yoon; Shi, Riyi

    2011-01-10

    Restoring continuity to severed peripheral nerves is crucial to regeneration and enables functional recovery. However, the two most common agents for coaptation, sutures and fibrin glues, have drawbacks such as inflammation, pathogenesis, and dehiscence. Chitosan-based adhesives are a promising alternative, reported to have good cytocompatibility and favorable immunogenicity. A photo-cross-linkable hydrogel based on chitosan is proposed as a new adhesive for peripheral nerve anastomosis. Two Az-chitosans were synthesized by conjugating 4-azidobenzoic acid with low (LMW, 15 kDa) and high (HMW, 50-190 kDa) molecular weight chitosans. These solutions formed a hydrogel in less than 1 min under UV light. The LMW Az-chitosan was more tightly cross-linked than the HMW variant, undergoing significantly less swelling and possessing a higher rheological storage modulus, and both Az-chitosan gels were stiffer than commercial fibrin glue. Severed nerves repaired by Az-chitosan adhesives tolerated longitudinal forces comparable or superior to fibrin glue. Adhesive exposure to intact nerves and neural cell culture showed both Az-chitosans to be nontoxic in the acute (minutes) and chronic (days) time frames. These results demonstrate that Az-chitosan hydrogels are cytocompatible and mechanically suitable for use as bioadhesives in peripheral neurosurgeries.

  20. Poly(D,L-Lactide-Co-Glycolide) Tubes With Multifilament Chitosan Yarn or Chitosan Sponge Core in Nerve Regeneration.

    Science.gov (United States)

    Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna

    2016-11-01

    The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities--a review.

    Science.gov (United States)

    Jarmila, Vinsová; Vavríková, Eva

    2011-01-01

    Chitosan is a linear polysaccharide with a good biodegradability, biocompatibility, and no toxicity, which provide it with huge potential for future development. The chitosan molecule appears to be a suitable polymeric complex for many biomedical applications. This review gathers current findings on the antibacterial, antifungal, antitumour and antioxidant activities of chitosan derivatives and concurs with our previous review presenting data collected up to 2008. Antibacterial activity is based on molecular weight, the degree of deacetylation, the type of substitutents, which can be cationic or easily form cations, and the type of bacterium. In general, high molecular weight chitosan cannot pass through cell membranes and forms a film that protects cells against nutrient transport through the microbial cell membrane. Low molecular weight chitosan derivatives are water soluble and can better incorporate the active molecule into the cell. Gram-negative bacteria, often represented by Escherichia coli, have an anionic bacterial surface on which cationic chitosan derivatives interact electrostatically. Thus, many chitosan conjugates have cationic components such as ammonium, pyridinium or piperazinium substituents introduced into their molecules to increase their positive charge. Gram-positive bacteria like Staphylococcus aureus are inhibited by the binding of lower molecular weight chitosan derivatives to DNA or RNA. Chitosan nanoparticles exhibit an increase in loading capacity and efficacy. Antitumour active compounds such as doxorubicin, paclitaxel, docetaxel and norcantharidin are used as drug carriers. It is evident that chitosan, with its low molecular weight, is a useful carrier for molecular drugs requiring targeted delivery. The antioxidant scavenging activity of chitosan has been established by the strong hydrogen-donating ability of chitosan. The low molecular weight and greater degree of quarternization have a positive influence on the antioxidant activity

  2. Synthesis of (2-pyridyl)-Acetyl Chitosan and Its Antioxidant Activity

    International Nuclear Information System (INIS)

    Li, Rongchun

    2011-01-01

    In this paper, chloracetyl chitosan (CACTS) was prepared at first. In the molecules of CACTS, there are active chlorine groups, which can take part in other reactions. Thus, number of chitosan derivatives will be obtained after chlorine is substituted. Choosing pyridine as the active group, a novel water-soluble chitosan derivative, (2-pyridyl)-acetyl chitosan (PACTS) was obtained and its antioxidant activity against hydroxyl radicals and superoxide radicals was assessed. The results indicated that PACTS had better antioxidant activity than that of chitosan, carboxymethyl chitosan (CMCTS), hydroxypropyl chitosan (HPCTS), and Vitamin C. And the IC 50 values against hydroxyl radicals and superoxide radicals were 0.31 mg/mL and 0.21 mg/mL, respectively

  3. Preparation and characterization of magnetic chitosan particles for hyperthermia application

    International Nuclear Information System (INIS)

    Park, Ji-Ho; Im, Ki-Hyeong; Lee, Se-Ho; Kim, Dong-Hyun; Lee, Doug-Youn; Lee, Yong-Keun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-01-01

    The size and shape of magnetic chitosan particles were found to be dependent on both the barium ferrite/chitosan (BF/C) ratio and viscosity of a chitosan solution. The saturation magnetization of magnetic chitosan particles varied directly with the BF/C ratio, while coercivity remained almost constant. Notably, incorporated chitosan was shown to exert substantial activity with regard to low cytotoxicity and high heating rate

  4. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  5. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  6. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    Science.gov (United States)

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    Science.gov (United States)

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  8. Mechanical property, degradation rate, and bone cell growth of chitosan coated titanium influenced by degree of deacetylation of chitosan.

    Science.gov (United States)

    Yuan, Youling; Chesnutt, Betsy M; Wright, Lee; Haggard, Warren O; Bumgardner, Joel D

    2008-07-01

    Chitosan has shown promise as a coating for dental/craniofacial and orthopaedic implants. However, the effects of degree of deacetylation (DDA) of chitosan on coating bond strength, degradation, and biological performance is not known. The aim of this project was to evaluate bonding, degradation, and bone cell growth on titanium coated with chitosans of different DDA and from different manufacturers. Three different chitosans, 80.6%, 81.7%, and 92.3% DDA were covalently bonded to titanium coupons via silane-glutaraldehyde molecules. Bond strengths were evaluated in mechanical tensile tests, and degradation, over 5 weeks, was conducted in cell culture medium with and without 100 microg/mL lysozyme. Cytocompatibility was evaluated for 10 days using UMR 106 osteoblastic cells. Results showed that mean chitosan coating bond strengths ranged from 2.2-3.8 MPa, and that there was minimal affect of DDA on coating bond strengths. The coatings exhibited little dissolution over 5 weeks in medium with or without lysozyme. However, the molecular weight (MW) of the chitosan coatings remaining on the titanium samples after 5 weeks decreased by 69-85% with the higher DDA chitosan coatings exhibiting less percent change in MW than the lower DDA materials. The growth of the UMR 106 osteoblast cells on the 81.7% DDA chitosan coating was lower on days 3 and 5, as compared with the other two coatings, but by day 10, there were no differences in growth among three coatings or to the uncoated titanium controls. Differences in growth were attributed to differences in manufacturer source material, though all coatings were judged to be osteocompatible in vitro. 2007 Wiley Periodicals, Inc.

  9. Omics for Investigating Chitosan as an Antifungal and Gene Modulator

    Directory of Open Access Journals (Sweden)

    Federico Lopez-Moya

    2016-03-01

    Full Text Available Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.

  10. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries.

    Science.gov (United States)

    Sun, Xiuxiu; Narciso, Jan; Wang, Zhe; Ference, Christopher; Bai, Jinhe; Zhou, Kequan

    2014-05-01

    Chitosan coating plus different essential oils was developed and applied to fresh blueberries in order to find more natural treatments to preserve fresh fruit quality and safety during postharvest storage. Studies were 1st performed in vitro where wild-type Escherichia coli and Penicillium digitatum were grown in suitable media, and then subjected to 6 essential oils. Three compounds, carvacrol (CAR), cinnamaldehyde (CIN), and trans-cinnamaldehyde (ECIN) had high antimicrobial capacity and were selected for an in vivo study for postharvest storage of blueberries. The selected essential oils, 0.5% each, were added into a chitosan solution and coated on fresh blueberries. After storage at 5, 10, and 20 °C for various days, fruit firmness and microbial populations were evaluated. The chitosan coating substantially decreased bacteria and yeasts/molds on the fruit, and all 3 essential oils added to the antimicrobial activities. Further dosage experiments showed that the antimicrobial activity remained even when lowering CAR concentration to 0.1% and ECIN to 0.2%. Chitosan, CAR, and ECIN also maintained fruit firmness. Our results suggest that chitosan coatings containing essential oils are effective in extending the shelf life of fresh blueberries. Blueberries are high-value fruit with strong antioxidant capacity and other health-promoting benefits. However, microbial food safety is an increasing concern, and decay and softening limits their storability. A combination of ≥ 0.1% CAR or ≥ 0.2% ECIN with a chitosan coating effectively reduced softening of fresh berries and decay by inhibiting microbial growth. © 2014 Institute of Food Technologists®

  11. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    Yang, Chung-Yao; Sung, Chun-Yen; Shuai, Hung-Hsun; Cheng, Chao-Min; Yeh, J Andrew

    2013-01-01

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  12. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  13. Vitamin D-fortified chitosan films from mushroom waste

    Science.gov (United States)

    Brown mushroom (Agaricus bisporus) stalk bases from mushroom waste were treated with UV-B light to rapidly increase vitamin D2 content. Chitin was also recovered from this waste and converted into chitosan by N-deacetylation. FTIR spectra showed that the mushroom chitosan were similar to chitosan fr...

  14. Regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials.

    Science.gov (United States)

    Hsiao, Ya-Chuan; Yang, Tsung-Lin

    2017-01-01

    The lacrimal gland is an important organ responsible for regulating tear synthesis and secretion. The major work of lacrimal gland (LG) is to lubricate the ocular surface and maintain the health of eyes. Functional deterioration of the lacrimal gland happens because of aging, diseases, or therapeutic complications, but without effective treatments till now. The LG originates from the epithelium of ocular surface and develops by branching morphogenesis. To regenerate functional LGs, it is required to explore the way of recapitulating and facilitating the organ to establish the intricate and ramified structure. In this study, we proposed an approach using chitosan biomaterials to create a biomimetic environment beneficial to the branching structure formation of developing LG. The morphogenetic effect of chitosan was specific and optimized to promote LG branching. With chitosan, increase in temporal expression and local concentration of endogenous HGF-related molecules creates an environment around the emerging tip of LG epithelia. By efficiently enhancing downstream signaling of HGF pathways, the cellular activities and behaviors were activated to contribute to LG branching morphogenesis. The morphogenetic effect of chitosan was abolished by either ligand or receptor deprivation, or inhibition of downstream signaling transduction. Our results elucidated the underlying mechanism accounting for chitosan morphogenetic effects on LG, and also proposed promising approaches with chitosan to assist tissue structure formation of the LG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  16. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  17. Chitosan: collagen sponges. In vitro mineralization

    International Nuclear Information System (INIS)

    Martins, Virginia da C.A.; Silva, Gustavo M.; Plepis, Ana Maria G.

    2011-01-01

    The regeneration of bone tissue is a problem that affects many people and scaffolds for bone tissue growth has been widely studied. The aim of this study was the in vitro mineralization of chitosan, chitosan:native collagen and chitosan:anionic collagen sponges. The sponges were obtained by lyophilization and mineralization was made by soaking the sponges in alternating solutions containing Ca 2+ and PO 4 3- . The mineralization was confirmed by infrared spectroscopy, energy dispersive X-ray and X-ray diffraction observing the formation of phosphate salts, possibly a carbonated hydroxyapatite since Ca/P=1.80. The degree of mineralization was obtained by thermogravimetry calculating the amount of residue at 750 deg C. The chitosan:anionic collagen sponge showed the highest degree of mineralization probably due to the fact that anionic collagen provides additional sites for interaction with the inorganic phase. (author)

  18. SOLID-STATE FERMENTATIVE PRODUCTION AND BIOACTIVITY OF FUNGAL CHITOSAN

    Directory of Open Access Journals (Sweden)

    Barry Aigbodion Omogbai

    2013-10-01

    Full Text Available Chitosan production was investigated using a laboratory-scale solid substrate fermentation (SSF technique with four species of fungi: Penicillium expansum, Aspergillus niger, Rhizopus oryzae and Fusarium moniliforme.The peak growth for the organisms was after 16 days. Aspergillus niger had the highest growth with a maximal dry cell biomass of 15.8g/kg after 16 days cultivation on corn straw under solid substrate fermentation. This was closely followed by Rhizopus oryzae (14.6g/kg, Penicillium expansum (13.8g/kg and Fusarium moniliforme (10.6g/kg respectively. The fungus Rhizopus oryzae had the highest chitosan production with a maximum of 8.57g/kg in 16 days under solid substrate fermentation (SSF with a medium containing corn straw. Aspergillus niger showed a modest chitosan yield of 6.8g/kg. Penicillium expansum and Fusarium moniliforme had low chitosan yields of 4.31g/kg and 3.1g/kg respectively. The degree of deacetylation of fungal chitosans ranged between 75.3-91.5% with a viscosity of 3.6-7.2 centipoises (Cp.Chitosan extracted from Rhizopus oryzae was found to have antibacterial activity on some bacterial isolates. At a concentration of 50mg/L, Rhizopus oryzae chitosan paralleled crab chitosan in susceptibility testing against some food-borne bacterial pathogens. Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Bacillus subtilis showed inhibition rates of 83.2%, 67.9%, 63.8% and 62.4% respectively in response to 50mg/l Rhizopus oryzae chitosan in 24 h. The rate of inhibition (% increased with increase in chitosan concentration.

  19. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  20. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  1. Chitosan magnetic nanoparticles for drug delivery systems.

    Science.gov (United States)

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  2. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior

    International Nuclear Information System (INIS)

    Braga, C.R.C.; Melo, F.M.A. de; Vitorino, I.F.; Fook, M.V.L.; Silva, S.M.L.

    2010-01-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  3. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests.

    Science.gov (United States)

    da Silva, Sara Baptista; Ferreira, Domingos; Pintado, Manuela; Sarmento, Bruno

    2016-03-01

    In this study, chitosan nanoparticles were used to encapsulate antioxidant rosmarinic acid, Salvia officinalis (sage) and Satureja montana (savory) extracts as rosmarinic acid natural vehicles. The nanoparticles were prepared by ionic gelation using chitosan and sodium tripolyphosphate (TPP) in a mass ratio of 7:1, at pH 5.8. Particle size distribution analysis and transmission electron microscopy (TEM) confirmed the size ranging from 200 to 300 nm, while surface charge of nanoparticles ranged from 20 to 30 mV. Nanoparticles demonstrate to be safe without relevant cytotoxicity against retina pigment epithelium (ARPE-19) and human cornea cell line (HCE-T). The permeability study in HCE monolayer cell line showed an apparent permeability coefficient Papp of 3.41±0.99×10(-5) and 3.24±0.79×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. In ARPE-19 monolayer cell line the Papp was 3.39±0.18×10(-5) and 3.60±0.05×10(-5) cm/s for rosmarinic acid loaded chitosan nanoparticles and free in solution, respectively. Considering the mucin interaction method, nanoparticles indicate mucoadhesive proprieties suggesting an increased retention time over the ocular mucosa after instillation. These nanoparticles may be promising drug delivery systems for ocular application in oxidative eye conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Amphiphilic chitosan derivatives as carrier agents for rotenone

    Science.gov (United States)

    Kamari, Azlan; Aljafree, Nurul Farhana Ahmad

    2017-08-01

    In the present study, the feasibility of amphiphilic chitosan derivatives, namely oleoyl carboxymethyl chitosan (OCMCs), N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) and deoxycholic acid carboxymethyl chitosan (DACMCs) as carrier agents for rotenone in water-insoluble pesticide formulations was investigated. Fourier Transform Infrared (FTIR) Spectrometer, CHN-O Elemental Analyser (CHN-O) and Transmission Electron Microscope (TEM) were used to characterise amphiphilic chitosan derivatives. The critical micelle concentration (CMC) of amphiphilic chitosan derivatives was determined using a Fluorescence Spectrometer. A High Performance Liquid Chromatography (HPLC) was used to determine the ability of OCMCs, DCMCs and DACMCs to load and release rotenone in an in vitro system. Based on TEM analysis, results have shown that amphiphilic chitosan derivatives formed self-assembly and exhibited spherical shape. The CMC values determined for OCMCs, DCMCs and DACMCs were 0.093, 0.098 and 0.468 mg/mL, respectively. The encapsulation efficiency (EE) values for the materials were more than 97.0%, meanwhile the loading capacity (LC) values were greater than 0.90%. OCMCs, DCMCs and DACMCs micelles exhibited an excellent ability to control the release of rotenone, of which 90.0% of rotenone was released within 40 to 52 h. In conclusion, OCMCs, DCMCs and DACMCs possess several key features to act as effective carrier agents for rotenone. Overall, amphiphilic chitosan derivatives produced in this study were successfully increased the solubility of rotenone by 49.0 times higher than free rotenone.

  5. Progress of research on the adsorption of chitosan and its derivatives to uranium

    International Nuclear Information System (INIS)

    Wang Caixia; Liu Yunhai; Hua Rong; Pang Cui; Wang Yong

    2010-01-01

    This paper has summarized the study on the adsorption of chitosan and its derivatives to uranium in recent years at home and abroad. It was found that the derivatives can be serine-type chitosan, methyl phosphoric acid modified chitosan, 3,4-dihydroxy benzoic acid-type chitosan, chitosan with 3,4-dihydroxybenzoic acid moiety, chitosan resin possessing a phenylarsonic acid moiety, quadrol modified chitosan, chitosan modified with molecular imprinting technique, polyacrylamide hydrogel, chitosan-coated perlite and so on. The application vista of chitosan and its derivatives to Absorpt uranium in water has been prospected. (authors)

  6. Study of sorption properties of nickel on chitosan; Studium sorpcnych vlastnosti niklu na chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pivarciova, L; Rosskopfova, O; Galambos, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Sorption of nickel on the selected sorbent was studied by a batch method. The effect of contact time and pH to reach sorption equilibrium was studied. During sorption of Ni{sup 2+} ions there proceed predominantly ion-exchange reactions on its surface. Time to reach sorption equilibrium of nickel on chitosan was 14 hours. Sorption percentage after 14 hours reached a value of 84 %. Solutions with starting pH value between 3.9 and 8.1 were used for sorption of nickel. A sorption of nickel on chitosan was > 97% in monitored interval of pH after 24 hours of contact . At an initial pH from 3.9 to 6.4 was the final pH 6.6 due to protonisation of amino groups. A pH value was 6.4 after sorption of 7.1. Sorption of nickel is reduced by increasing of concentrations of Ni{sup 2+} ions in the solution. Langmuir isotherm was used for interpretation of nickel sorption on chitosan. A maximum sorption capacity for chitosan was 2,67 {center_dot} 10{sup -3} mol/g{sup -}1. (authors)

  7. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.

    Science.gov (United States)

    Morris, Viola B; Nimbalkar, Siddharth; Younesi, Mousa; McClellan, Phillip; Akkus, Ozan

    2017-01-01

    Extracellular matrix mimetic hydrogels which hybridize synthetic and natural polymers offer molecularly-tailored, bioactive properties and tunable mechanical strength. In addition, 3D bioprinting by stereolithography allows fabrication of internal pores and defined macroscopic shapes. In this study, we formulated a hybrid biocompatible resin using natural and synthetic polymers (chitosan and polyethylene glycol diacrylate (PEGDA), respectively) by controlling molecular weight of chitosan, feed-ratios, and photo-initiator concentration. Ear-shaped, hybrid scaffolds were fabricated by a stereolithographic method using a 405 nm laser. Hybrid hydrogel scaffolds of chitosan (50-190 kDa) and PEGDA (575 Da) were mixed at varying feed-ratios. Some of the cationic, amino groups of chitosan were neutralized by dialysis in acidic solution containing chitosan in excess of sodium acetate solution to inhibit quenching of newly formed photoradicals. A feed-ratio of 1:7.5 was found to be the most appropriate of the formulations considered in this study in terms of mechanical properties, cell adhesion, and printability. The biofabricated hybrid scaffold showed interconnected, homogeneous pores with a nominal pore size of 50 µm and an elastic modulus of ~400 kPa. Moreover, long-term cell viability and cell spreading was observed via actin filament staining. Printability of the biocompatible resin was confirmed by printing thresholded MR images of an ear and the feed ratio of 1:7.5 provided the most faithful reproduction of the shape. To the best of our knowledge, this is the first report of stereolithographic printing hybridizing cell-adhesive properties of chitosan with mechanical robustness of PEG in scaffolds suitable for repair of complex tissue geometries, such as those of the human ear.

  8. Aerogels from Chitosan Solutions in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Gonzalo Santos-López

    2017-12-01

    Full Text Available Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs, 1-butyl-3-methylimidazolium acetate (BMIMAc, and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc, in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m2/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

  9. Metal Complexation with Chitosan and its Grafted Copolymer

    International Nuclear Information System (INIS)

    Abo-Hussen, A.A.; Elkholy, S.S.; Elsabee, M.Z.

    2005-01-01

    The adsorption of M (II); Co (II), Ni (If), Cu (II), Zn (II) and Cd (II) from aqueous solutions by chitosan flakes and beads have been studied. The maximum up-take of M (II) ions on chitosan beads was greater than on flakes. Batch adsorption experiments were carried out as a function of ph, agitation period and initial concentration of the metal ions. A ph of 6.0 was found to be optimum for M (II) adsorption on chitosan flakes and beads. The uptake of the ions was determined from the changes in its concentration, as measured by ultraviolet and visible spectroscopy. The metal ions uptake of chitosan grafted with vinyl pyridine (VP) is higher than that of the chitosan. The experimental data of the adsorption equilibrium from M (II)-solutions correlated well with the Langmuir and Freundlich equations. Several spectroscopic methods have been used to study the formation of the polymer/metal cation complex. The cation coordination is accompanied by proton displacement off the polymer or by fixation of a hydroxide ion in aqueous solutions. The largest ionic displacement is observed with Cu (II) and Zn (II) demonstrating the largest affinity of chitosan for these ions. The FT-IR spectral of the complexes show that both the amino and hydroxyl groups of chitosan participated in the chelation process. The ESR spectra of Cu-complex show an absorption at gi 2.06, g// = 2.23, A// x 10-4 (cm-1) = 160 and G = 3.8 indicating the formation of square planar structure. The adsorption of M (II) ions followed the sequence Cu (II) > Zn (II) > Cd (II) > Ni (II) > Co (II), this order seems to be independent on the size and the physical form of chitosan. SEM shows small membranous structure on the surface of chitosan flakes as compared to Cu (Il)- chitosan complex. EDTA was used for the desorption studies

  10. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  11. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material.

    Science.gov (United States)

    Bordenave, Nicolas; Grelier, Stephane; Coma, Veronique

    2010-01-11

    This study reports the elaboration of water-resistant, antimicrobial, chitosan and paper-based materials as environmentally friendly food packaging materials. Two types of papers were coated with chitosan-palmitic acid emulsions or with a blend of chitosan and O,O'-dipalmitoylchitosan (DPCT). Micromorphology studies showed that inclusion of hydrophobic compounds into the chitosan matrix was enhanced by grafting them onto chitosan and that this led to their penetration of the paper's core. Compared to chitosan-coated papers, the coating of chitosan-palmitic emulsion kept vapor-barrier properties unchanged (239 and 170 g.m(-2).d(-1) versus 241 and 161 g.m(-2).d(-1)), while the coating of chitosan-DPCT emulsion dramatically deteriorated them (441 and 442 g.m(-2).d(-1)). However, contact angle measurements (110-120 degrees after 1 min) and penetration dynamics analysis showed that both strategies improved liquid-water resistance of the materials. Kit-test showed that all hydrophobized chitosan-coated papers kept good grease barrier properties (degree of resistance 6-8/12). Finally, all chitosan-coated materials exhibited over 98% inhibition on Salmonella Typhimurium and Listeria monocytogenes .

  12. Chitosan composite hydrogels reinforced with natural clay nanotubes.

    Science.gov (United States)

    Huang, Biao; Liu, Mingxian; Zhou, Changren

    2017-11-01

    Here, chitosan composites hydrogels were prepared by addition of halloysite nanotubes (HNTs) in the chitosan KOH/LiOH/urea solution. The raw chitosan and chitosan/HNTs composite hydrogels were obtained by heat treatment at 60°C for 8h and then regeneration in ethanol solution. The viscosity of the composite solution is increased with HNTs content. The Fourier transform infrared spectroscopy (FT-IR) shows that the hydrogen bonds interactions exist between the HNTs and the chitosan. X-ray diffraction (XRD) results show that the crystal structure of HNT is not changed in the composite hydrogels. The compressive property test and storage modulus determination show that the mechanical properties and anti-deformation ability of the composite hydrogel significantly increase owing to the reinforcing effect of HNTs. The composites hydrogel with 66.7% HNTs can undergo 7 times compression cycles without breaking with compressive strength of 0.71MPa at 70% deformation, while pure chitosan hydrogel is broken after bearing 5 compression cycles with compressive strength of 0.14MPa and a maximum deformation of 59%. A porous structure with pore size of 100-500μm is found in the composite hydrogels by scanning electron microscopy (SEM), and the pore size and the swelling ratio in NaCl solution decrease by the addition of HNTs and the immersing of ethanol. Chitosan/HNTs composite hydrogels show low cytotoxicity towards MC3T3-E1 cells. Also, the composite hydrogels show a maximum drug entrapment efficiency of 45.7% for doxorubicin (DOX) which is much higher than that of pure chitosan hydrogel (27.5%). All the results illustrate that the chitosan/HNTs composite hydrogels show promising applications as biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Polyvinyl alcohol/chitosan/montmorillonite nanocomposites preparation by freeze/thaw cycles and characterization

    Directory of Open Access Journals (Sweden)

    Părpăriţă Elena

    2014-12-01

    Full Text Available Polyvinyl alcohol (PVA and chitosan (CS based hydrogels are often chosen to obtain hydrogels as being considered non-toxic for human body. The present study aims the preparation and physical chemical characterisation of hydrogels based PVA and CS by using an environmental friendly method i.e. freeze/thaw. In this method the only parameters affecting the hydrogels’ properties is the PVA concentration in solution, time and number of cycles of freezing / thawing. Repeated freezing and thawing cycles resulted in production of a highly elastic polyvinyl alcohol hydrogel with higher degree of crystallization. Adding chitosan in polyvinyl alcohol hydrogel is giving to the newly formed material, biocompatibility and antibacterial properties due to the free amino groups of chitosan. Higher mechanical and thermal characteristics of PVA/CS based hydrogels were obtained by addition of a small amount of inorganic nanoparticles (montmorillonite clay, C30B into the matrix (i.e. 1%. Scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, near-infrared chemical imaging spectroscopy (NI-CI, X-ray diffraction (XRD, thermogravimetric analysis (TG, swelling and rheological measurements were used to characterize the polyvinyl alcohol/chitosan/montmorillonite properties. The swelling degree increased with decreasing chitosan content in hydrogels and the variation is opposite in nanocomposites, decreasing after introducing the nanoclay. The swelling behaviour was influenced by the presence of the nanoparticles. The plasticizer effect of the nanoparticles was reflected by obtaining a more compact hydrogel network with higher mechanical and thermal properties. The proposed materials can be a promising alternative in biomedical applications

  14. Physicochemical Characterization of Biopolymer Chitosan Extracted from Shrimp Shells

    Directory of Open Access Journals (Sweden)

    Nezamaddin Mengelizadeh

    2015-02-01

    Full Text Available Chitosan is a deacetylated derivative of chitin, which is a naturally abundant mucopolysaccharide, supporting the matter of crustaceans, insects, and fungi. Because of its unique properties, such as non-toxicity, biodegradability, and biocompatibility, chitosan has a wide range of applications in various fields. The objective of the present work is to extract the polymer chitosan from Persian Gulf shrimp shells. In order to determine the physicochemical characteristics of the extracted chitosan, degree of deacetylation, molecular weight, water and fat binding capacities extraction rate, and apparent viscosity were measured using a variety of techniques including viscometry, weight measurement method and Fourier transform infrared spectroscopy (FTIR. The results of the study of the physicochemical properties, molecular weight (6.7×105 Da, degree of deacetylation (57%, ash content as well as yield (0.5% of the prepared chitosan indicated that shrimp processing wastes (shrimp shells are a good source of chitosan. The water binding capacity (521% and fat binding capacity (327% of the prepared chitosan are in good agreement with the other studies. The elemental analysis showed the C, H and N contents of 35.92%, 7.02%, and 8.66%, respectively. In this study, the antimicrobial activity of chitosan was evaluated against Staphylococcus aureus and Escherichia coli. The results indicated the high potential of chitosan as an antibacterial agent. Moreover, the results of the study indicated that shrimp shells are a rich source of chitin as 25.21% of the shell’s dry weight.

  15. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone.

    Science.gov (United States)

    Muzzarelli, Riccardo A A; El Mehtedi, Mohamad; Bottegoni, Carlo; Aquili, Alberto; Gigante, Antonio

    2015-12-11

    The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010-2015 have met the expectations of an interdisciplinary audience.

  16. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone

    Directory of Open Access Journals (Sweden)

    Riccardo A. A. Muzzarelli

    2015-12-01

    Full Text Available The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010–2015 have met the expectations of an interdisciplinary audience.

  17. Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone

    Science.gov (United States)

    Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Bottegoni, Carlo; Aquili, Alberto; Gigante, Antonio

    2015-01-01

    The present review article intends to direct attention to the technological advances made since 2009 in the area of genipin-crosslinked chitosan (GEN-chitosan) hydrogels. After a concise introduction on the well recognized characteristics of medical grade chitosan and food grade genipin, the properties of GEN-chitosan obtained with a safe, spontaneous and irreversible chemical reaction, and the quality assessment of the gels are reviewed. The antibacterial activity of GEN-chitosan has been well assessed in the treatment of gastric infections supported by Helicobacter pylori. Therapies based on chitosan alginate crosslinked with genipin include stem cell transplantation, and development of contraction free biomaterials suitable for cartilage engineering. Collagen, gelatin and other proteins have been associated to said hydrogels in view of the regeneration of the cartilage. Viability and proliferation of fibroblasts were impressively enhanced upon addition of poly-l-lysine. The modulation of the osteocytes has been achieved in various ways by applying advanced technologies such as 3D-plotting and electrospinning of biomimetic scaffolds, with optional addition of nano hydroxyapatite to the formulations. A wealth of biotechnological advances and know-how has permitted reaching outstanding results in crucial areas such as cranio-facial surgery, orthopedics and dentistry. It is mandatory to use scaffolds fully characterized in terms of porosity, pore size, swelling, wettability, compressive strength, and degree of acetylation, if the osteogenic differentiation of human mesenchymal stem cells is sought: in fact, the novel characteristics imparted by GEN-chitosan must be simultaneously of physico-chemical and cytological nature. Owing to their high standard, the scientific publications dated 2010–2015 have met the expectations of an interdisciplinary audience. PMID:26690453

  18. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue

    International Nuclear Information System (INIS)

    Sarem, Melika; Moztarzadeh, Fathollah; Mozafari, Masoud; Shastri, V. Prasad

    2013-01-01

    Meniscus lesions are frequently occurring injuries with poor ability to heal. Typical treatment procedure includes removal of damaged regions, which can lead to sub-optimal knee biomechanics and early onset of osteoarthritis. Some of the drawbacks of current treatment approach present an opportunity for a tissue engineering solution. In this study, gelatin (G)/chitosan (Cs) scaffolds were synthesized via gel casting method and cross-linked with naturally derived cross-linker, genipin, through scaffold cross-linking method. Based on the characteristics of native meniscus tissue microstructure and function, three different layers were chosen to design the macroporous multilayered scaffolds. The multi-layered scaffolds were investigated for their ability to support human-derived meniscus cells by evaluating their morphology and proliferation using MTT assay at various time points. Based on structural, mechanical and cell compatibility considerations, laminated scaffolds composed of G60/Cs40, G80/Cs20 and G40/Cs60 samples, for the first, second and third layers, respectively, could be an appropriate combination for meniscus tissue engineering applications. - Graphical abstract: The wedge shaped multilayer/multiporous G/Cs meniscus scaffolds were mimicked by MR images of anatomical knee meniscus. The layers were chosen as G60/Cs40, G80/Cs20 and G40/Cs60, according to their characteristics similar to meniscus natural tissue, as the first, second and third layers, respectively. - Highlights: • Different gelatin/chitosan systems were chosen to engineer a multilayered scaffold. • The compressive modulus increased gradually by increasing the gelatin concentration. • Further addition of gelatin showed a meaningful decrease in the water uptake degree. • The layers supported cell growth and mimicked the meniscus fibrocartilage structure

  19. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue

    Energy Technology Data Exchange (ETDEWEB)

    Sarem, Melika [Sports Engineering Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Institute for Macromolecular Chemistry, University of Freiburg, Hermann Staudinger Haus, Freiburg D-79104 (Germany); Helmholtz Virtual Institute: Multifunctional Biomaterials for Medicine, Freiburg (Germany); Moztarzadeh, Fathollah [Sports Engineering Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Mozafari, Masoud, E-mail: mozafari.masoud@gmail.com [Sports Engineering Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Helmerich Advanced Technology Research Center, School of Material Science and Engineering, Oklahoma State University, OK 74106 (United States); Shastri, V. Prasad [Institute for Macromolecular Chemistry, University of Freiburg, Hermann Staudinger Haus, Freiburg D-79104 (Germany); Helmholtz Virtual Institute: Multifunctional Biomaterials for Medicine, Freiburg (Germany)

    2013-12-01

    Meniscus lesions are frequently occurring injuries with poor ability to heal. Typical treatment procedure includes removal of damaged regions, which can lead to sub-optimal knee biomechanics and early onset of osteoarthritis. Some of the drawbacks of current treatment approach present an opportunity for a tissue engineering solution. In this study, gelatin (G)/chitosan (Cs) scaffolds were synthesized via gel casting method and cross-linked with naturally derived cross-linker, genipin, through scaffold cross-linking method. Based on the characteristics of native meniscus tissue microstructure and function, three different layers were chosen to design the macroporous multilayered scaffolds. The multi-layered scaffolds were investigated for their ability to support human-derived meniscus cells by evaluating their morphology and proliferation using MTT assay at various time points. Based on structural, mechanical and cell compatibility considerations, laminated scaffolds composed of G60/Cs40, G80/Cs20 and G40/Cs60 samples, for the first, second and third layers, respectively, could be an appropriate combination for meniscus tissue engineering applications. - Graphical abstract: The wedge shaped multilayer/multiporous G/Cs meniscus scaffolds were mimicked by MR images of anatomical knee meniscus. The layers were chosen as G60/Cs40, G80/Cs20 and G40/Cs60, according to their characteristics similar to meniscus natural tissue, as the first, second and third layers, respectively. - Highlights: • Different gelatin/chitosan systems were chosen to engineer a multilayered scaffold. • The compressive modulus increased gradually by increasing the gelatin concentration. • Further addition of gelatin showed a meaningful decrease in the water uptake degree. • The layers supported cell growth and mimicked the meniscus fibrocartilage structure.

  20. Studies on electrospun nylon-6/chitosan complex nanofiber interactions

    International Nuclear Information System (INIS)

    Zhang Haitao; Li Shubai; Branford White, Christopher J.; Ning Xin; Nie Huali; Zhu Limin

    2009-01-01

    Composite membranes of nylon-6/chitosan nanofibers with different weight ratio of nylon-6 to chitosan were fabricated successfully using electrospinning. Morphologies of the nanofibers were investigated by scanning electron microscopy (SEM) and the intermolecular interactions of the nylon-6/chitosan complex were evaluated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) as well as mechanical testing. We found that morphology and diameter of the nanofibers were influenced by the concentration of the solution and weight ratio of the blending component materials. Furthermore FT-IR analyses on interactions between components demonstrated an IR band frequency shift that appeared to be dependent on the amount of chitosan in the complex. Observations from XRD and DSC suggested that a new fraction of γ phase crystals appeared and increased with the increasing content of chitosan in blends, this indicated that intermolecular interactions occurred between nylon-6 and chitosan. Results from performance data in mechanical showed that intermolecular interactions varied with varying chitosan content in the fibers. It was concluded that a new composite product was created and the stability of this system was attributed to strong new interactions such as hydrogen bond formation between the nylon-6 polymers and chitosan structures.

  1. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  2. Chitosan as a Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties.

    Directory of Open Access Journals (Sweden)

    Leslie John Ray Foster

    Full Text Available Chitosan is a biomaterial with a range of current and potential biomedical applications. Manipulation of chitosan degree of deacetylation (DDA to achieve specific properties appears feasible, but studies investigating its influence on properties are often contradictory. With a view to the potential of chitosan in the regeneration of nerve tissue, the influence of DDA on the growth and health of olfactory ensheathing cells (OECs was investigated. There was a linear increase in OEC proliferation as the DDA increased from 72 to 85%. This correlated with linear increases in average surface roughness (0.62 to 0.78 μm and crystallinity (4.3 to 10.1% of the chitosan films. Mitochondrial activity and membrane integrity of OECs was significantly different for OECs cultivated on chitosan with DDAs below 75%, while those on films with DDAs up to 85% were similar to cells in asynchronous growth. Apoptotic indices and cell cycle analysis also suggested that chitosan films with DDAs below 75% were cytocompatible but induced cellular stress, while OECs grown on films fabricated from chitosan with DDAs above 75% showed no significant differences compared to those in asynchronous growth. Tensile strength and elongation to break varied with DDA from 32.3 to 45.3 MPa and 3.6 to 7.1% respectively. DDA had no significant influence on abiotic and biotic degradation profiles of the chitosan films which showed approximately 8 and 20% weight loss respectively. Finally, perceived patterns in property changes are subject to change based on potential variations in DDA analysis. NMR examination of the chitosan samples here revealed significant differences depending upon which peaks were selected for integration; 6 to 13% in DDA values within individual samples. Furthermore, differences between DDA values determined here and those reported by the commercial suppliers were significant and this may also be a source of concern when selecting commercial chitosans for

  3. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  4. Sorption of technetium on composite chitosan-hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2013-01-01

    Biomaterials such as natural polymers (chitosan) and hydroxyapatite have an important application in material for bone replacement. Most of chitosan/hydroxyapatite composites are prepared by mixing hydroxyapatite particles with chitosan matrices. Another method of preparation of chitosan/hydroxyapatite composite is in-situ generation of nano-hydroxyapatite in chitosan matrix. The most common biomaterial used in the past years in hard tissue regeneration was hydroxyapatite, owing to its properties as biocompatibility, bioactivity, non-toxicity, non-immunogenicity etc. Chitosan is a polyaminosacharide, partially deacetylated product of chitin. Chitosan can be used in combination with other materials to enhance bone growth such as bone filling paste. The aims of this work were: the influence of the contact time on sorption of pertechnate anions on chitosan/hydroxyapatite composites; the effect of pH on sorption of pertechnate anions on chitosan/hydroxyapatite composites; the effect of foreign ions on sorption of pertechnate anions on chitosan/hydroxyapatite composites. The author concluded: the percentage of technetium sorption after 1 hour of contact time was > 97 %. In the initial pH range of 2.9-10.2, the percentage of technetium sorption on chitosan/hydroxyapatite composites CH/HA(A), CH/HA(B), CH/HA 30:70, ZCH was > 98 % and on CH/HA 50:50 was > 94%. The competition effect of Fe 2+ towards TcO 4 :- sorption is stronger than competition effect of other observed cations for all examined composites with the same weight ratio. The percentage of the technetium sorption was the same for all composites with the weight ratio of 30:70. (authors)

  5. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stoleru, Elena; Dumitriu, Raluca Petronela [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Munteanu, Bogdanel Silvestru [“Al. I. Cuza” University, Faculty of Physics, 11 Carol I Blvd., 700506 Iasi (Romania); Zaharescu, Traian [INCDIE ICPE CA, Bucharest (Romania); Tănase, Elisabeta Elena; Mitelut, Amalia [Industrial Biotechnology Department, Faculty of Biotechnology – USAMV Bucharest (Romania); Ailiesei, Gabriela-Liliana [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Vasile, Cornelia, E-mail: cvasile@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania)

    2016-03-30

    Graphical abstract: - Highlights: • PLA requires functionalization prior to surface attaching chitosan. • Chitosan with different molecular weights was grafted onto PLA surface. • Antibacterial, antifungal, antioxidant PLA-based materials are obtained. • Nano-fibers coatings obtained by electrospinning of high molecular weight chitosan. - Abstract: A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by “grafting to” of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  6. Viscometric studies of chitosan radiation degradation

    International Nuclear Information System (INIS)

    Rapado, M.; Ceausoglu, I.; Hunkeler, D.

    2001-01-01

    The paper presents the preliminary results, related to the viscometric studies on chitosan gamma radiation degradation. To follow the effects on the processes of chitosan transformations caused by irradiation in vacuum irradiated solutions changes of viscosity, and viscosity average molecular weight were measured The influence of absorbed dose on the chitosan molecular weight was studied using the Mark-Houwink-Sakurada equation. Various relationships for the for the determination of the intrinsic viscosity were made vias the Huggins, Kramer and Schulz- Blaschke models. The distinct decrease of intrinsic viscosity indicates that the main change scission was the dominating process

  7. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  8. Investigation of Galactosylated Low Molecular Weight Chitosan ...

    African Journals Online (AJOL)

    was coupled with low molecular weight chitosan (LMWC) using carbodiimide chemistry. .... High molecular weight chitosan (minimum 85% ..... membrane permeability of drug and mutual repulsion ... coating thickness and the lower solubility of.

  9. The molecular understanding of interfacial interactions of functionalized graphene and chitosan

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong

    2016-01-01

    Graphical abstract: The type of the functional groups can be used to modulating interactions between graphene sheet and chitosan. - Highlights: • Investigate interfacial interactions between chitosan and functionalized graphene by DFT. • Observe covalent linkages between COOH-modified graphene and chitosan units. • Multi-functionalized graphene regulates the interfacial interactions with chitosan. • It is useful for guiding the preparation of graphene/chitosan composites. - Abstract: Graphene-reinforced chitosan scaffolds have been extensively studied for several years as promising hard tissue replacements. However, the interfacial interactions between graphene and chitosan are strongly related to the solubility, processability, and mechanical properties of graphene-reinforced chitosan (G–C) composites. The functionalization of graphene is regarded as the most effective way to improve the abovementioned properties of the G–C composite. In this study, the interfacial interactions between chitosan and functionalized graphene sheets with carboxylization (COOH-), amination (NH 2 -), and hydroxylation (OH-) groups were systematically studied at the electronic level using the method of ab initio simulations based on quantum mechanics theory and the observations were compared with reported experimental results. The covalent linkages between COOH-modified graphene and the chitosan units were demonstrated and the combination of multi-functionalization on graphene could regulate the interfacial interactions between graphene and the chitosan. The interfacial interactions between chitosan and properly functionalized graphene are critical for the preparation of G–C-based composites for tissue engineering scaffolds and other applications.

  10. Highly Response and Sensitivity Chitosan-Polyvinyl alcohol Based Hexanal Sensors

    Directory of Open Access Journals (Sweden)

    Abd Wahab Nur Zuraihan

    2016-01-01

    Full Text Available This work is to study the sensing properties of chitosanpolyvinyl alcohol film sensors upon hexanal gas exposure using vapour sensing technique. The sensor fabrication process was done using electrochemical deposition method by deposit the sensing materials on the gold patterned electrode with chitosan/PVA. The response value of chitosan-PVA film sensors towards hexanal was taken as an output voltage using electrical testing method. In this study, 1.75% of chitosan with 5% of PVA were mixed with the ratio of (95:5 was tested upon exposure to hexanal gas. The concentration of the hexanal was varied as 10 ppm, 20 ppm, 30 ppm. It was found that the chitosan-PVA film sensors showed fast response, stable, good stability, good recovery, repeatable and good sensitivity towards hexanal exposure. The morphology of the pure chitosan and chitosan-PVA was analyzed by scanning electron microscope (SEM and the interaction between chitosan and PVA was examined by Fourier Transform Infrared Spectroscopy (FTIR. The FTIR results indicate the changes in characteristics of the spectral peaks due to the formation of the intermolecular bonds between chitosan and PVA. The SEM morphology of the composites showed flat smooth surface that be a sign of uniform distribution of chitosan and PVA mixture throughout the films.

  11. Fabrication and application of coaxial polyvinyl alcohol/chitosan nanofiber membranes

    Directory of Open Access Journals (Sweden)

    Kuo Ting-Yun

    2017-12-01

    Full Text Available It is difficult to fabricate chitosan-wrapped coaxial nanofibers, because highly viscous chitosan solutions might hinder the manufacturing process. To overcome this difficulty, our newly developed method, which included the addition of a small amount of gum arabic, was utilized to prepare much less viscous chitosan solutions. In this way, coaxial polyvinyl alcohol (PVA/chitosan (as core/shell nanofiber membranes were fabricated successfully by coaxial electrospinning. The core/shell structures were confirmed by TEM, and the existence of PVA and chitosan was also verified using FT-IR and TGA. The tensile strength of the nanofiber membranes was increased from 0.6-0.7 MPa to 0.8-0.9 MPa after being crosslinked with glutaraldehyde. The application potential of the PVA/chitosan nanofiber membranes was tested in drug release experiments by loading the core (PVA with theophylline as a model drug. The use of the coaxial PVA/chitosan nanofiber membranes in drug release extended the release time of theophylline from 5 minutes to 24 hours. Further, the release mechanisms could be described by the Korsmeyer-Peppas model. In summary, by combining the advantages of PVA and chitosan (good mechanical strength and good biocompatibility respectively, the coaxial PVA/chitosan nanofiber membranes are potential biomaterials for various biomedical applications.

  12. Study on growth-promotion of paddy plants treated with oligo chitosan

    International Nuclear Information System (INIS)

    Norhashidah Talip; Maznah Mahmud; Norzita Yacob; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2010-01-01

    Chitosan has been degraded to produced oligo chitosan with different molecular weight using gamma ray irradiation from a Co-60 source in solid state (powder form) and liquid state (aqueous solution). Study on growth promotion of paddy plants was done using oligo chitosan and conventional plant growth promoter as a comparison. Oligo chitosan was used with different molecular weight and different concentrations. Smaller molecular weight of oligo chitosan with smaller concentration showed better result than bigger molecular weight of oligo chitosan as a plant growth promoter. This study also showed that conventional growth promoter can be replaced with oligo chitosan as it is more effective as plant growth promoter as well as more environmental friendly. (author)

  13. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  14. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Science.gov (United States)

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chan, Wai Yee

    2015-01-01

    Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted. PMID:26287217

  15. Management of External Hemorrhage in Tactical Combat Casualty Care: Chitosan-Based Hemostatic Gauze Dressings. TCCC Guidelines Change 13-05

    Science.gov (United States)

    2014-09-23

    control model of Grade IV liver injury was developed and used to test Celox granules (chitosan) and QuikClot ACS+ ( zeolite ) against standard liver...reports, a question about safety may still linger. Are these current FDA-approved third- generation dressings safe for human use ? Furthermore, do all...Successful outcomes are also reported using newer chitosan-based dressings in civilian hospital- based surgical case reports and prehospital (battlefield

  16. Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Andréa Arruda Martins Shimojo

    2015-01-01

    Full Text Available This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C and lyophilization of chitosan solutions (1, 2, or 3% w/v. The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days.

  17. Chitosan as a bioactive polymer: Processing, properties and applications.

    Science.gov (United States)

    Muxika, A; Etxabide, A; Uranga, J; Guerrero, P; de la Caba, K

    2017-12-01

    Chitin is one of the most abundant natural polysaccharides in the world and it is mainly used for the production of chitosan by a deacetylation process. Chitosan is a bioactive polymer with a wide variety of applications due to its functional properties such as antibacterial activity, non-toxicity, ease of modification, and biodegradability. This review summarizes the most common chitosan processing methods and highlights some applications of chitosan in various industrial and biomedical fields. Finally, environmental concerns of chitosan-based films, considering the stages from raw materials extraction up to the end of life after disposal, are also discussed with the aim of finding more eco-friendly alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The production of fully deacetylated chitosan by compression method

    Directory of Open Access Journals (Sweden)

    Xiaofei He

    2016-03-01

    Full Text Available Chitosan’s activities are significantly affected by degree of deacetylation (DDA, while fully deacetylated chitosan is difficult to produce in a large scale. Therefore, this paper introduces a compression method for preparing 100% deacetylated chitosan with less environmental pollution. The product is characterized by XRD, FT-IR, UV and HPLC. The 100% fully deacetylated chitosan is produced in low-concentration alkali and high-pressure conditions, which only requires 15% alkali solution and 1:10 chitosan powder to NaOH solution ratio under 0.11–0.12 MPa for 120 min. When the alkali concentration varied from 5% to 15%, the chitosan with ultra-high DDA value (up to 95% is produced.

  19. Nuclear imaging evaluation of galactosylation of chitosan

    International Nuclear Information System (INIS)

    Jeong, Hwan Jeong; Kim, Eun Mi; Kim, Chang Guhn; Park, In Kyu; Cho, Chong Su; Bom, Hee Seung

    2004-01-01

    Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelater, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan Cytotoxicity of 99 mTc-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with 99 mTc-GMC and 99 mTc-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. The results of MTT assay indicated that 99 mTc-GMC was non-toxic. 99 mTc-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, 99 mTc-MC showed faint liver uptake. 99 mTc-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetability is a clear example of the great benefit proffered by nuclear imaging

  20. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  1. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part II: Antibacterial Activity of PVA/Chitosan Hydrogel Synthesized by Gamma Irradiation

    International Nuclear Information System (INIS)

    Mahlous, M.; Tahtat, D.; Benamer, S.; Nacer Khodja, A.; Larbi Youcef, S.

    2010-01-01

    Poly(vinyl alcohol) (PVA) is a synthetic polymer used in a large range of medical, commercial, industrial and food applications, manufacture of paper products, surgical threads, wound care, and food-contact applications. It was recently used as a coating for dietary supplements and pharmaceutical capsules. Cross-linked PVA microspheres are also used for controlled release of oral drugs. Chitin, a polysaccharide from which chitosan is derived, is the second most abundant natural polysaccharide after cellulose. Chitin is obtained from the exoskeletons (crab, shrimps and squid pen) fungi, insects, and some algae. Chitosan, a non toxic and biocompatible cationic polysaccharide, is produced by partial deacetylation of chitin; these properties of chitosan provide high potential for many applications. Chitosan has been widely used in vastly diverse fields, such as in biomedical applications drug delivery in agriculture metal ion sorption. The most important characteristic of chitosan is the deacetylation degree (DD) which influences its physical and chemical behaviors. Evaluation of DD can be carried out by FT-IR spectroscopy potentiometric titration, first derivative UV spectrophotometry, 1 H-NMR and X-ray diffraction. Chitosan extracted from squid pen chitin is inherently purer than crustacean chitosans, it does not contain large amounts of calcium carbonate, and it does contain large amounts of protein. The purity of squid pen chitosan makes it particularly suitable for medical and cosmetic application. Application of radiation for the formation of hydrogels for medical use offers a unique possibility to combine the formation and sterilization of the product in a single technological step. The main aim of this study is to synthesis poly(vinyl alcohol) hydrogels containing different moieties of chitosan by gamma irradiation at a dose of 25 kGy, and investigate the antibacterial effect of chitosan contained in the hydrogel

  3. Quantitative assessment of the effects of chitosan intervention on blood pressure control

    Directory of Open Access Journals (Sweden)

    Huang H

    2017-12-01

    Full Text Available Haohai Huang,1,* Ying Zou,2,3,* Honggang Chi2 1Department of Clinical Pharmacy, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, 2Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 3Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, China *These authors contributed equally to this work Background: Chitosan is a popular dietary fiber often used to reduce dietary fat absorption to control weight and blood lipids. However, its effects on blood pressure (BP have not been fully elucidated. We evaluated the effects of chitosan administration on systolic blood pressure (SBP and diastolic blood pressure (DBP through a pooled analysis of available randomized controlled trials (RCTs. Materials and methods: Electronic searches were conducted in Medline, Cochrane Library, Scopus, and EMBASE to identify relevant human placebo-control RCTs. Trials that reported BP changes from baseline to study endpoint in patients receiving treatment of chitosan were included for analysis. Weighted mean difference (WMD and 95% CIs were pooled using fixed-effects or random-effects models. Statistical heterogeneity, prespecified subgroup, publication bias, sensitivity analysis, and meta-regression assessments were also tested. Results: Six hundred and seventeen participants from eight trials with 10 arms were included. Overall, chitosan administration did not significantly lower SBP (WMD: -1.41 mmHg, 95% CI: -3.29 to 0.47; P=0.14 and DBP (WMD: -0.61 mmHg, 95% CI: -1.75 to 0.52; P=0.29. However, our subgroup analyses indicated that chitosan consumption significantly reduced DBP in shorter-term (<12 weeks and higher-dose (>2.4 g/day arms. Funnel plots or Egger’s tests analysis (P=0.36 and 0.43 for SBP and DBP, respectively demonstrated that

  4. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    Science.gov (United States)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  5. FTIR studies of chitosan acetate based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Arof, A.K.

    2003-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. As such, depending on the degree of deacetylation, the carbonyl, C=O-NHR band can be observed at ∼1670 cm -1 and the amine, NH 2 band at 1590 cm -1 . When lithium triflate is added to chitosan to form a film of chitosan acetate-salt complex, the bands assigned to chitosan in the complex and the spectrum as a whole shift to lower wavenumbers. The carbonyl band is observed to shift to as low as 1645 cm -1 and the amine band to as low as 1560 cm -1 . These indicate chitosan-salt interactions. Also present are the bands due to lithium triflate i.e. ∼761, 1033, 1182 and 1263 cm -1 . When chitosan and ethylene carbonate (EC) are dissolved in acetic acid to form a film of plasticized chitosan acetate, the bands in the infrared spectrum of the films do not show any significant shift indicating that EC does not interact with chitosan. EC-LiCF 3 SO 3 interactions are indicated by the shifting of the C-O bending band from 718 cm -1 in the spectrum of EC to 725 cm -1 in the EC-salt spectrum. The Li + -EC is also evident in the ring breathing region at 893 cm -1 in the pure EC spectrum. This band has shifted to 898 cm -1 in the EC-salt spectrum. C=O stretching in the doublet observed at 1774 and 1803 cm -1 in the spectrum of pure EC has shifted to 1777 and 1808 cm -1 in the EC-salt spectrum

  6. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    Science.gov (United States)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  7. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  8. Development of Chitosan Acetate Films for Transdermal Delivery of ...

    African Journals Online (AJOL)

    Erah

    Methods: Chitosan acetate was chemically modified with acetaldehyde and the solution was prepared ... from solution [3]. In this regard possibilities for the potential use of chitosan as an absorption enhancer in the more basic environment of the large intestine, colon and ..... impregnation of ophthalmic drugs on chitosan.

  9. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin.

    Science.gov (United States)

    Mortazavian, Elaheh; Dorkoosh, Farid Abedin; Rafiee-Tehrani, Morteza

    2014-05-01

    The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81 kg/mm(2) tensile strength and 2.47 N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.

  10. Lactic acid demineralization of shrimp shell and chitosan synthesis

    Directory of Open Access Journals (Sweden)

    Alewo Opuada AMEH

    2015-05-01

    Full Text Available The use of lactic acid was compared to hydrochloric acid for shrimp shell demineralization in chitosan synthesis. Five different acid concentrations were considered for the study: 1.5M, 3.0M, 4.5M, 6.0M and 7.5M. After demineralization, the shrimp shell were deproteinized and subsequently deacetylated to produce chitosan using sodium hydroxide solution. The synthesized chitosan samples were characterized using solubility, FTIR, SEM, XRD and viscosity. The SEM, FTIR and XRD analysis indicated that chitosan was synthesized with a high degree of deacetylation (83.18±2.11 when lactic acid was used and 84.2±5.00 when HCl was used. The degree of deacetylation and the molecular weight of the chitosan samples were also estimated. ANOVA analysis (at 95% confidence interval indicated that acid type and concentration did not significantly affect the solubility, degree of deacetylation, viscosity and molecular weight of the chitosan within the range considered.

  11. Functionalization of chitosan by click chemistry

    Science.gov (United States)

    Cheaburu-Yilmaz, Catalina Natalia; Karavana, Sinem Yaprak; Yilmaz, Onur

    2017-12-01

    Chitosan modification represents a challenge nowadays. The variety of compounds which can be obtained with various architectures and different functionalities made it attractive to be used in fields like pharmacy and material science. Presents study deals with the chemical modification of chitosan by using click chemistry technique. The study adopted the approach of clicking azidated chitosan with a synthesized alkyne terminated polymer i.e. poly N isopropylacrylamide with thermoresponsive properties. Structures were confirmed by the FT-IR and HNMR spectra. Thermal characterization was performed showing different thermal behaviour with the chemical modification. The final synthesized graft copolymer can play important role within pharmaceutical formulations carrying drugs for topical or oral treatments.

  12. Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold

    Directory of Open Access Journals (Sweden)

    Takeshi Ikeda

    2014-01-01

    Full Text Available Cells, growth factors, and scaffolds are the three main factors required to create a tissue-engineered construct. After the appearance of bovine spongiform encephalopathy (BSE, considerable attention has therefore been focused on nonbovine materials. In this study, we examined the properties of a chitosan porous scaffold. A porous chitosan sponge was prepared by the controlled freezing and lyophilization of different concentrations of chitosan solutions. The materials were examined by scanning electron microscopy, and the porosity, tensile strength, and basic fibroblast growth factor (bFGF release profiles from chitosan sponge were examined in vitro. The morphology of the chitosan scaffolds presented a typical microporous structure, with the pore size ranging from 50 to 200 μm. The porosity of chitosan scaffolds with different concentrations was approximately 75–85%. A decreasing tendency for porosity was observed as the concentration of the chitosan increased. The relationship between the tensile properties and chitosan concentration indicated that the ultimate tensile strength for the sponge increased with a higher concentration. The in vitro bFGF release study showed that the higher the concentration of chitosan solution became, the longer the releasing time of the bFGF from the chitosan sponge was.

  13. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Science.gov (United States)

    Stoleru, Elena; Dumitriu, Raluca Petronela; Munteanu, Bogdanel Silvestru; Zaharescu, Traian; Tănase, Elisabeta Elena; Mitelut, Amalia; Ailiesei, Gabriela-Liliana; Vasile, Cornelia

    2016-03-01

    A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by ;grafting to; of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  14. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guandong Zhang

    2012-01-01

    Full Text Available Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs with controllable optical absorption in the near infrared (NIR region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS, O-carboxymethyl chitosan (CMCS, and a blend of CS and CMCS for utilizations in physiologic conditions. The surface properties, optical stability, and photothermal ablation efficiency on hepatocellular carcinoma cells (HepG2 and human dermal fibroblast cells (HDF demonstrate that these gold nanocomposites have great potential as a therapeutic agent in in vitro tests. The CS-coated nanocomposites show the highest efficiency for the photo-ablation on the HepG2 cells, and the CS and CMCS blended coated particles show the best discrimination between the cancer cell and normal cells. The well-controlled NIR absorption and the biocompatible surface of these nanocomposites allow low-power NIR laser activation and low-dosage particle injection for the cancer cell treatment.

  15. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  16. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part I: Radiation Degradation of Chitosan in Solid State and in Solution

    International Nuclear Information System (INIS)

    Mahlous, M.; Tahtat, D.; Benamer, S.; Nacer Khodja, A.; Larbi Youcef, S.

    2010-01-01

    Chitosan is a partially deacetylated product of chitin, a very abundant polysaccharide, existing in exoskeleton of crustaceans. It is a polymer consisting of glucosamine and N-acetylglucosamine units linked by β-1-4-glycosidic bonds. Chitosan, like others polysaccharides, such as cellulose derivatives, alginates and carrageenan is widely used in food, medicine and cosmetic fields. Chitosan presents a variety of distinctive properties, such as biocompatibility, biodegradability, nontoxicity and nonantigenicity. Chitosan obtained by the deacetylation of chitin has, generally, a high molecular weight, which limits its solubility in aqueous solvents. The reduction of its molecular weight by degradation is usually used in order to improve its water solubility. Water-soluble chitosan exhibit some specific properties, such as antifungal activity, antimicrobial activity and plant growth promotion. Among the methods that have been tried to produce low molecular weight chitosan, radiation processing is the most promising one, since the process is simple, it is carried out at room temperature and no purification of the product is required after processing

  17. Obtaining and characterization of chitosan biocomposites / HAP for application as biomaterial

    International Nuclear Information System (INIS)

    Leal, R.C.A.; Nascimento, I.V.S.R.; Fook, M.V.L.; Furtado, G.T.F.S.

    2011-01-01

    The hydroxyapatite is one of the most biocompatible materials known by encouraging bone growth. However, the main drawback it is the poor mechanical strength. A method to overcome this problem is the addition of the biopolymer chitosan, suitable for applications as biomaterials. In this study was obtained a hydroxyapatite - chitosan biocomposites for application as a biomaterial. In the FTIR analysis it was identified characteristic bands of hydroxyapatite and a possible overlap of the amino group of chitosan by carbonate. XRD analysis showed that there was no change in the profile of HA after chitosan incorporation. In SEM analysis of the biocomposites HA / chitosan, it is observed that there wasn't a complete dispersion of HA particles in the chitosan. In the image of calcined biocomposite, it was found that after heat treatment at 900 ° C chitosan was eliminated, resulting in a porous material. The analysis has shown that the presence of chitosan did not cause significant changes in the phase of hydroxyapatite. (author)

  18. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    Science.gov (United States)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  19. Application of radiation degraded CM-chitosan for preservation of fresh fruits

    International Nuclear Information System (INIS)

    Quynh, Tran Minh; Hien, Nuguyen Quoc; Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    CM-chitosan was irradiated with various doses in powder state and solution using Co 60 gamma source. The changes of viscosity in solution as well as molecular weight were also measured. The molecular weight reduced with increasing of radiation dose. The antimicrobial activity of CM-chitosan and irradiated CM-chitosan in solution against E.coli was investigated. In this studies, the sensitivity of E.coli depended on the concentration of CM-chitosan supplemented into medium and the antimicrobial activity of irradiated CM-chitosan was found to increase with radiation dose and reached to maximum with dose of 100 kGy. The 2% aqueous solutions prepared from CM-chitosan and 100 kGy irradiated CM-chitosan as mentioned above were applied for apple preservation. All coating fruits have significantly reduced the weight loss, spoilage ratio compared with control. Chemical and sensory quality of coated fruits were evaluated and compared, the best results were achieved with fruit coated using irradiated CM-chitosan. (author)

  20. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  1. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Maznah; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid [Malaysian Nuclear Agency, Radiation Technology Division, Bangi, 43000 Kajang, Selangor (Malaysia); Naziri, Muhammad Ihsan [University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-02-12

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H{sub 2}O{sub 2}), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H{sub 2}O{sub 2} enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H{sub 2}O{sub 2}based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  2. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    Science.gov (United States)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  3. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Marc in het Panhuis

    2011-04-01

    Full Text Available The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

  4. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  5. {sup 166}Ho-chitosan as a radiation synovectomy agent - biocompatibility study of {sup 166}Ho-chitosan in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sug Jun; Lee, Soo Yong; Jeon, Dae Geun; Seok, Lee Jong [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-01-01

    Radiation synovectomy is a noninvasive therapy that has been investigated as an alternative to surgical synovectomy. It is been successfully employed in the treatment of synovitis in rheumatoid arthrits and other inflammatory arthropathies. We developed the {sup 166}Ho-chitosan complex for possible use as a radiation synovectomy agent. Holmium is the more practical isotope based on its higher radioactivity and logner half-life. And isotope based on its higher radioactivity and logner half-life. And chitosan is ideal and suitable particles based on its soluble and biodegradable characteristics. So we investigated the biocompatibility of the {sup 166}Ho-chitosan complex to evaluated the suitability as a radiation synovectomy agent. In this study, we performed in vivo and in vitro stability test and biodistribution test. Our results indicate that {sup 166}Ho-chitosan may be an effective radiopharmaceutical for radiation synovectomy. (author). 30 refs., 7 tabs.

  6. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Soumi Dey [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Farrugia, Brooke L.; Dargaville, Tim R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Groove, Queensland-4059 (Australia); Dhara, Santanu, E-mail: sdhara@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India)

    2013-04-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application.

  7. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    International Nuclear Information System (INIS)

    Sarkar, Soumi Dey; Farrugia, Brooke L.; Dargaville, Tim R.; Dhara, Santanu

    2013-01-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application

  8. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  9. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    Science.gov (United States)

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  10. Chitosan-coupled solid lipid nanoparticles: Tuning nanostructure and mucoadhesion.

    Science.gov (United States)

    Sandri, Giuseppina; Motta, Simona; Bonferoni, Maria Cristina; Brocca, Paola; Rossi, Silvia; Ferrari, Franca; Rondelli, Valeria; Cantù, Laura; Caramella, Carla; Del Favero, Elena

    2017-01-01

    Solid Lipid Nanoparticles (SLNs) composed of biodegradable physiological lipids have been widely proposed as efficient drug delivery systems, also for ophthalmic administration. Recently, chitosan-associated-SLNs have been developed to further improve the residence time of these colloidal systems in the precorneal area by means of mucoadhesive interaction. In the present study, a one-step preparation protocol was used aiming both at scale-up ease and at stronger coupling between chitosan and SLNs. The resulting particles were chitosan associated-SLNs (CS-SLNs). These nanoparticles were characterized, as compared to both the chitosan-free and the usual chitosan-coated ones, by applying a multi-technique approach: light, neutron and X-ray scattering, Zeta-potential, AFM, calorimetry. It was assessed that, while keeping the features of nano-size and surface-charge required for an efficient vector, these new nanoparticles display a strong and intimate interaction between chitosan and SLNs, far more settled than the usual simple coverage. Moreover, this one-step preparation method allows to obtain a strong and intimate interaction between chitosan and SLNs, firmer than the usual simple coating. This confers to the CS-SLNs an improved mucoadhesion, opening the way for a high-performing ophthalmic formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Experimental evaluation of new chitin-chitosan graft for duraplasty.

    Science.gov (United States)

    Pogorielov, M; Kravtsova, A; Reilly, G C; Deineka, V; Tetteh, G; Kalinkevich, O; Pogorielova, O; Moskalenko, R; Tkach, G

    2017-02-01

    Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.

  12. Synthesis and characterization of Cis-5-Norbornene-2, 3-dicarboxylic anhydride-chitosan

    International Nuclear Information System (INIS)

    Ku Marshilla Ku Ishak; Zulkifli Ahmad; Hazizan Mohd Akil

    2009-01-01

    Chitosan was chemically modified with bulky structure, cis-5-norbornene-2, 3-dicarboxylic anhydride and the characteristic of this modified chitosan was studied. The resulting material was analyzed by FTIR, TGA, DSC, XRD and SEM to study the effect of N-acylation to the polysaccharide structure. FTIR results show that the anhydride monomer was successfully bound to amine group of chitosan. Thermal analysis of the modified structure provides the chitosan fibers with thermal stability while XRD and SEM show the lost of crystallinity of modified chitosan. XRD of modified chitosan shows broader peak pattern and a considerable increase in a dimension while SEM of chitosan presented the single particle morphology while norbornene-chitosan shows aggromolarate behaviour due to the hydrophobic nature of norbornene pendant group which induced aggromolaration of the particles in modified structure.(author)

  13. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    Science.gov (United States)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  14. Evaluation of Chitosan-Microcrystalline Cellulose Blends as Direct Compression Excipients

    Directory of Open Access Journals (Sweden)

    Emmanuel O. Olorunsola

    2017-01-01

    Full Text Available This study was aimed at evaluating chitosan-microcrystalline cellulose blends as direct compression excipients. Crab shell chitosan, α-lactose monohydrate, and microcrystalline cellulose powders were characterized. Blends of the microcrystalline cellulose and chitosan in ratios 9 : 1, 4 : 1, 2 : 1, and 1 : 1 as direct compression excipients were made to constitute 60% of metronidazole tablets. Similar tablets containing blends of the microcrystalline cellulose and α-lactose monohydrate as well as those containing pure microcrystalline cellulose were also produced. The compact density, tensile strength, porosity, disintegration time, and dissolution rate of tablets were determined. Chitosan had higher moisture content (7.66% and higher moisture sorption capacity (1.33% compared to microcrystalline cellulose and lactose. It also showed better flow properties (Carr’s index of 18.9% and Hausner’s ratio of 1.23. Compact density of tablets increased but tensile strength decreased with increase in the proportion of chitosan in the binary mixtures. In contrast to lactose, the disintegration time increased and the dissolution rate decreased with increase in the proportion of chitosan. This study has shown that chitosan promotes flowability of powder mix and rapid disintegration of tablet. However, incorporation of equal proportions of microcrystalline cellulose and chitosan leads to production of extended-release tablet. Therefore, chitosan promotes tablet disintegration at low concentration and enables extended-release at higher concentration.

  15. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chitosan Microspheres as Radiolabeled Delivery Devices

    International Nuclear Information System (INIS)

    Permtermsin, Chalermsin; Ngamprayad, Tippanan; Phumkhem, Sudkanung; Srinuttrakul, Wannee; Kewsuwan, Prartana

    2007-08-01

    Full text: This study optimized conditions for preparing, characterizing, radiolabeled of chitosan microspheres and the biodistribution of 99mTc-Chitosan microspheres after intravenous administration. Particle size distribution of the microspheres was determined by light scattering. Zeta potential was studied by dynamic light scattering and electrophoresis technique. Biodistribution studies were performed by radiolabeling using 99mTc. The results shown that geometric mean diameter of the microspheres was found to be 77.26?1.96 ?m. Microsphere surface charge of chitosan microspheres was positive charge and zeta potential was 25.80 ? 0.46 mV. The labeling efficiency for this condition was more than 95% and under this condition was stable for at least 6 h. Radioactivity

  17. Isolation and characterization of chitin and chitosan from marine origin.

    Science.gov (United States)

    Nwe, Nitar; Furuike, Tetsuya; Tamura, Hiroshi

    2014-01-01

    Nowadays, chitin and chitosan are produced from the shells of crabs and shrimps, and bone plate of squid in laboratory to industrial scale. Production of chitosan involved deproteinization, demineralization, and deacetylation. The characteristics of chitin and chitosan mainly depend on production processes and conditions. The characteristics of these biopolymers such as appearance of polymer, turbidity of polymer solution, degree of deacetylation, and molecular weight are of major importance on applications of these polymers. This chapter addresses the production processes and conditions to produce chitin, chitosan, and chito-oligosaccharide and methods for characterization of chitin, chitosan, and chito-oligosaccharide. © 2014 Elsevier Inc. All rights reserved.

  18. Development of an injectable chitosan/marine collagen composite gel

    International Nuclear Information System (INIS)

    Wang Wei; Itoh, Soichiro; Aizawa, Tomoyasu; Demura, Makoto; Okawa, Atsushi; Sakai, Katsuyoshi; Ohkuma, Tsuneo

    2010-01-01

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-α) assay by ELISA. The inflammatory cell infiltration and release of TNF-α were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  19. A study of sorption of pertechnetate anion on chitosan

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Rajec, P.; Galambos, M.

    2015-01-01

    Chitosan is one of the natural materials of biological origin. The sorption of pertechnetate anions from aqueous solutions on chitosan was studied in a batch system. This work was aimed to study influence of the contact time, effect of pH and effect of different ions on sorption of pertechnetate anions on chitosan. This sorbent was characterized by BET-surface area and potentiometric titration. The point of zero charge (pH pzc ) was at pH=7.15. The highest percentage of technetium sorption on chitosan was near pH 3. The adsorption capacity of chitosan decreased with increase in pH value above 3. In the initial pH range of 4-10, final pHs are the same. The selectivity of chitosan for these cations with concentration above 1·10 -3 mol·dm -3 was in the order Na + > Ca 2+ > Fe 3+ > Fe 2+ . The competition effect of (SO 4 ) 2- towards TcO 4 - sorption was stronger than the competition effect (ClO 4 ) - of ions. (authors)

  20. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Science.gov (United States)

    Wang, Yongliang; Li, Baoqiang; Zhou, Yu; Jia, Dechang

    2009-09-01

    Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS-Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4 and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3 and hydroxyapatite.

  1. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Wang Yongliang

    2009-01-01

    Full Text Available Abstract Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS–Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3and hydroxyapatite.

  2. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  3. Receptor-mediated gene delivery using chemically modified chitosan

    International Nuclear Information System (INIS)

    Kim, T H; Jiang, H L; Nah, J W; Cho, M H; Akaike, T; Cho, C S

    2007-01-01

    Chitosan has been investigated as a non-viral vector because it has several advantages such as biocompatibility, biodegradability and low toxicity with high cationic potential. However, the low specificity and low transfection efficiency of chitosan need to be solved prior to clinical application. In this paper, we focused on the galactose or mannose ligand modification of chitosan for enhancement of cell specificity and transfection efficiency via receptor-mediated endocytosis in vitro and in vivo

  4. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering.

    Science.gov (United States)

    Shen, Renze; Xu, Weihong; Xue, Yanxiang; Chen, Luyuan; Ye, Haicheng; Zhong, Enyi; Ye, Zhanchao; Gao, Jie; Yan, Yurong

    2018-04-16

    In this study, nanofibrous scaffolds base on pure polylactic acid (PLA) and chitosan/PLA blends were fabricated by emulsion eletrospinning. By modulating their mechanical and biological properties, cell-compatible and biodegradable scaffolds were developed for periodontal bone regeneration. Pure PLA and different weight ratios of chitosan nano-particle/PLA nano-fibers were fabricated by emulsion eletrospinning. Scanning electron microscope (SEM) was performed to observe the morphology of nano-fibers. Mechanical properties of nano-fibers were tested by single fiber strength tester. Hydrophilic/hydrophobic nature of the nano-fibers was observed by stereomicroscope. In vitro degradation was also tested. Cells were seeded on nano-fibers scaffolds. Changes in cell adhesion, proliferation and osteogenic differentiation were tested by MTT assay and Alizarin Red S staining. Reverse transcription-polymerase chain reaction (RT-PCR) assay was used to evaluate the expression of (Toll-like receptor 4) TLR4, IL-6, IL-8, IL-1β, OPG, RUNX2 mRNA. It is shown that the mean diameter of nano-fibers is about 200 nm. The mean diameter of chitosan nano-particles is about 50 nm. The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers. By adding a certain amount of chitosan nano-particles, it promoted cell adhesion. It also promoted the osteogenic differentiation of bone marrow stem cells (BMSCs) by elevating the expression of osteogenic marker genes such as BSP, Ocn, collagen I, and OPN and enhanced ECM mineralization. Nonetheless, it caused higher expression of inflammatory mediators and TLR4 of human periodontal ligament cells (hPDLCs). The combination of chitosan nano-particles enhanced the mechanical properties of pure PLA nano-fibers and increased its hydrophilicity. Pure PLA nano-fibers scaffold facilitated BMSCs proliferation. Adding an appropriate amount of chitosan nano-particles may promote its properties of cell proliferation

  5. Preliminary Studies on Antifungal Properties of Radiation Processed Chitosan from Crab Shells

    International Nuclear Information System (INIS)

    Ocloo, Fidelis C.K.; Adu-Gyamfi, Abraham; Quarcoo, Emmanuel A.; Asare, Daniel; Yaw, Serfor-Armah

    2010-01-01

    Chitosan extracted from sea crab shells was used to determine antifungal properties against Aspergillus niger. Chitosan powder irradiated at 100 kGy and dissolved in 1% acetic acid (v/v) with pH adjusted to approximately 6.0 was used in preparing chitosan concentrations of 2%, 1.5%, 1% and 0.5%. The agar dilution method was used to test the antifungal activity of the various chitosan solutions at concentrations of 0.20%, 0.15%, 0.10% and 0.05%. Both media containing irradiated and unirradiated chitosan inhibited the mycelial growth of Aspergillus niger and the degree of inhibition was dependent on the concentration of the chitosan in the fungal growth medium. Results show that the media containing irradiated chitosan inhibited the mycelia growth of Aspergillus niger to a greater extent than the media containing unirradiated chitosan. (author)

  6. Formulation and Evaluation of Glutaraldehyde-Crosslinked Chitosan ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (Purpose: Toformulate glutaraldehyde-cross-linked chitosan-based microparticles and evaluate its suitability for the delivery of ibuprofen, a BCS class II drug. Methods: Ibuprofen-loaded chitosan microparticles were prepared by ...

  7. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  8. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    International Nuclear Information System (INIS)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-01-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  9. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    Science.gov (United States)

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in

  10. Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles

    DEFF Research Database (Denmark)

    Ragelle, Héloïse; Colombo, Stefano; Pourcelle, Vincent

    2015-01-01

    chitosan-poly(ethylene imine) hybrid nanoparticles. The amount of intracellular siRNA delivered by αvβ3-targeted versus non-targeted nanoparticles was quantified in the human non-small cell lung carcinoma cell line H1299 expressing enhanced green fluorescent protein (EGFP) using a stem-loop reverse...... that these nanoparticles might end up in late endosomes or lysosomes without releasing their cargo to the cell cytoplasm. Thus, the silencing efficiency of the chitosan-based nanoparticles is strongly dependent on the uptake and the intracellular trafficking in H1299 EGFP cells, which is critical information towards...

  11. Structural and antimicrobial properties of irradiated chitosan and its complexes with zinc

    International Nuclear Information System (INIS)

    Khan, Azam; Mehmood, Shaukat; Shafiq, Muhammad; Yasin, Tariq; Akhter, Zareen; Ahmad, Shabir

    2013-01-01

    The aim of this research was to evaluate the structural and antimicrobial properties of irradiated chitosan and its complexes with zinc. Chitosan having a molecular weight (M η ) of 220 kDa was exposed to gamma rays in dry, wet and solution forms. The chitosan-zinc complexes were prepared by varying the M η of chitosan and Zn content. Viscometeric analysis revealed a sharp decrease in the M η of chitosan irradiated in solution form even at lower doses compared with the dry and wet forms. X-ray diffraction patterns demonstrated variation in the crystallinity of chitosan upon exposure to gamma rays. The antibacterial response of the irradiated chitosan and its complexes against gram-positive and gram-negative bacteria demonstrated wide spectrum of effective antimicrobial activities, which increased with the dose. Additionally, the complexes exhibited excellent antifungal activity with no growth of Aspergallious fumigatus and Fusarium solani even after two weeks. These results suggested that the irradiated chitosan and its complexes with Zn can be used as antimicrobial additives for various applications. - Highlights: • Gamma radiation is used to lower the molecular weight of chitosan. • The effect of environment on radiation degradation of chitosan is studied. • Its complexes with different amount of zinc are prepared and characterized. • Radiation-degraded chitosan and complexes showed good antibacterial properties

  12. Tailoring Functional Chitosan-based Composites for Food Applications.

    Science.gov (United States)

    Nunes, Cláudia; Coimbra, Manuel A; Ferreira, Paula

    2018-03-08

    Chitosan-based functional materials are emerging for food applications. The covalent bonding of molecular entities demonstrates to enhance resistance to the typical acidity of food assigning mechanical and moisture/gas barrier properties. Moreover, the grafting to chitosan of some functional molecules, like phenolic compounds or essential oils, gives antioxidant, antimicrobial, among others properties to chitosan. The addition of nanofillers to chitosan and other biopolymers improves the already mentioned required properties for food applications and can attribute electrical conductivity and magnetic properties for active and intelligent packaging. Electrical conductivity is a required property for the processing of food at low temperature using electric fields or for sensors application. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    International Nuclear Information System (INIS)

    Podzus, P.E.; Daraio, M.E.; Jacobo, S.E.

    2009-01-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  14. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Science.gov (United States)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-05-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G" dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  15. Rheological and structural studies of carboxymethyl derivatives of chitosan

    International Nuclear Information System (INIS)

    Winstead, Cherese; Katagumpola, Pushpika

    2014-01-01

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1 H Nuclear Magnetic Resonance ( 1 H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method

  16. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  17. Impact of chitosan application technique on refrigerated catfish fillet quality

    Science.gov (United States)

    Chitosan has been reported to have functional properties such as antimicrobial activity, antioxidant activity, and binding action. Several studies reported an extension in the shelf life of various food products when chitosan was applied. However, there is limited study on the effect of chitosan ap...

  18. Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture

    International Nuclear Information System (INIS)

    Martien, Ronny; Loretz, Brigitta; Sandbichler, Adolf Michael; Schnuerch, Andreas Bernkop

    2008-01-01

    The aim of this study was to monitor the expression of secreted protein in differentiated Caco-2 cells after transfection with nanoparticles, in order to improve gene delivery. Based on unmodified chitosan and thiolated chitosan conjugates, nanoparticles with the gene reporter pSEAP (recombinant Secreted Alkaline Phosphatase) were generated at pH 4.0. Transfection studies of thiolated chitosan in Caco-2 cells during the exponential growth phase and differentiation growth phase of the cells led to a 5.0-fold and 2.0-fold increase in protein expression when compared to unmodified chitosan nanoparticles. The mean particle size for both unmodified chitosan and cross-linked thiolated chitosan nanoparticles is 212.2 ± 86 and 113.6 ± 40 nm, respectively. The zeta potential of nanoparticles was determined to be 7.9 ± 0.38 mV for unmodified chitosan nanoparticles and 4.3 ± 0.74 mV for cross-linked thiolated chitosan nanoparticles. Red blood cell lysis evaluation was used to evaluate the membrane damaging properties of unmodified and thiolated chitosan nanoparticles and led to 4.61 ± 0.36% and 2.29 ± 0.25% lysis, respectively. Additionally, cross-linked thiolated chitosan nanoparticles were found to exhibit higher stability toward degradation in gastric juices. Furthermore the reversible effect of thiolated chitosan on barrier properties was monitored by measuring the transepithelial electrical resistance (TEER) and is supported by immunohistochemical staining for the tight junction protein claudin. According to these results cross-linked thiolated chitosan nanoparticles have the potential to be used as a non-viral vector system for gene therapy

  19. Cell Adhesion and Proliferation on Sulfonated and Non-Modified Chitosan Films.

    Science.gov (United States)

    Martínez-Campos, Enrique; Civantos, Ana; Redondo, Juan Alfonso; Guzmán, Rodrigo; Pérez-Perrino, Mónica; Gallardo, Alberto; Ramos, Viviana; Aranaz, Inmaculada

    2017-05-01

    Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification. B16 cells have shown lower vinculin expression when cultured on sulfonated chitosan films. This study shows how the interaction among cells and material surface can be modulated by physicochemical characteristics of the biomaterial surface, altering tumoral cell adhesion and proliferation processes.

  20. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    Science.gov (United States)

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide).

    Science.gov (United States)

    Duan, Bin; Dong, Cunhai; Yuan, Xiaoyan; Yao, Kangde

    2004-01-01

    Electrospinning of chitosan solutions with poly(ethylene oxide) (PEO) in an aqueous solution of 2 wt% acetic acid was studied. The properties of the chitosan/PEO solutions, including conductivity, surface tension and viscosity, were measured. Morphology of the electrospun chitosan/PEO was observed by using scanning electron micrographs. Results showed that the ultrafine fibers could be generated after addition of PEO in 2:1 or 1:1 mass ratios of chitosan to PEO from 4-6 wt% chitosan/PEO solutions at 15 kV voltage, 20 cm capillary-collector distance and flow rate 0.1 ml/h. During electrospinning of the chitosan/PEO solutions, ultrafine fibers with diameters from 80 nm to 180 nm were obtained, while microfibers with visually thicker diameters could be formed as well. Results of X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and differential scanning calorimeter exhibited the larger electrospun microfibers were almost entirely made from PEO, while the electrospun ultrafine fibers mainly contained chitosan.

  2. Preparation and characterisation of chitosan from Penicillium ...

    African Journals Online (AJOL)

    This work investigated the removal efficiency of Congo red dye (CRD) from aqueous solution using chitosan prepared from the biomass of Penicillium chrysogenum Thom. CRD is a benzidine - based anionic diazo dye known to be carcinogenic at low concentration. Chitosan was prepared from the mycelium of P.

  3. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    Science.gov (United States)

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  4. Production of chitosan-based non-woven membranes using the electrospinning process

    Science.gov (United States)

    Pakravan Lonbani, Mehdi

    Chitosan is a modified natural polymer mainly produced from chitin, one of the most abundant organic materials in the world. Highly porous chitosan mats present the specific physicochemical properties of the base material and also benefit from the physical characteristics of nanoporous membranes. Electrospinning is a novel technique developed long time ago and revisited recently that can generate polymeric fibers with nanometric size. The ultimate purpose of this work is to fabricate microporous non-woven chitosan membranes for wound healing dressings and heavy metal ion removal from drinking water. In this dissertation, two approaches have been utilized to prepare chitosan-based nanofibers; blending and co-axial electrospinning of chitosan solution with a readily electrospinnable solution, i.e. an aqueous solution of polyethylene oxide (PEO). Consequently, understanding the phase behavior and miscibility of aqueous acidic solutions of chitosan and PEO and their blends is of crucial importance, as any phase separation occurring during the electrospinning process greatly changes the morphology and physico-mechanical properties of the final products. First we employed the rheological approach on a well-known aqueous PEO solution to develop the experimental protocol. By comparing these critical points with that obtained from other experimental techniques, we showed that rheological measurements can sensitively detect early stages of phase separation. Subsequently the method was applied to 50 wt% aqueous acetic acid solutions of PEO, chitosan and their blends at different ratios. These solutions showed a lower critical solution temperature (LCST) phase diagram that is attributed to the existence of hydrogen bonds between active groups on chitosan and PEO backbone and the solvent. Critical decomposition temperatures for binodal and spinodal points were estimated from isochronal temperature sweep experiments. The obtained binodal temperatures confirmed that chitosan

  5. Irradiation gamma on chitosan films

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter, E-mail: lumilopes@hotmail.com, E-mail: drilavras@yahoo.com.br, E-mail: arthur@cena.usp.br [Universidade Federal do Tocantins (UFT), Palmas,TO (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Universidade Federal de Goias (UFGO), Goiania (Brazil). Departmento de Ciencia e Tecnologia de Alimentos; Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-11-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  6. Irradiation gamma on chitosan films

    International Nuclear Information System (INIS)

    Mello, Luana Miranda Lopes de; Souza, Adriana Regia Marques de; Arthur, Valter

    2017-01-01

    Films are preformed structures, independent, that are used to wrap food after processing, increasing their shelf life and enhancing its bright and attractive appearance. They are prepared from biological materials as an alternative to the plastic synthetic containers to improve the quality of the environment. Chitosan is a biodegradable polymer composed of β-(1-4) linked D-glucosamine (deacetylated unit) and N-acetyl-D- glucosamine (acetylated unit). It is produced commercially by deacetylation of chitin, which is a structural component of the exoskeleton of crustaceans. She is able to form films and edible and/or biodegradable coatings. With the objective to evaluate the effect of different doses of gamma radiation (0, 5, 10 and 15 kGy) and chitosan concentrations (1 and 2%) in film properties, it was evaluated its optical, mechanical and morphological properties. The films were produced by casting. Irradiation did not affect the thickness of the films, but influenced its colors, increasing the tone of the film for a stronger yellowish color. This fact can be attributed to the increased concentration of C = O bonds of chitosan due to the breakdown of the chain reaction and the Maillard reaction. Irradiated films showed smoother surface and less rough, due to the degradation of the chitosan molecule and poor mechanical properties, not showing good flexibility and stretching. (author)

  7. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  8. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    International Nuclear Information System (INIS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Juárez, Josué; Valdez, Miguel A; Burboa, María G; Taboada, Pablo

    2015-01-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air–water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction. (paper)

  9. Drug delivery glucantime in PVP/chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: mariajhho@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Amato, Valdir S. [Universidade de Sao Paulo (DMIP/FM/USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Departamento de Molestias Infecciosas e Parasitarias

    2015-07-01

    The current study of polymer science considers the area of biomedical application very important to establish developments in new polymeric materials. Examples of that are hydrogels for controlled release of drugs. In this work, hydrogels of poly (N-2-vinil-pyrrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized to investigate chitosan influence on Glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by X Ray diffraction (DRX). Atomic Force Microscopy (AFM) and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed 'in vitro'. The system showed higher gel fraction for the matrix with 1.0% of clay and 0.5% of chitosan. In this case, besides the interactions of clay ions with PVP, there are interactions of chitosan amine group with PVP amide group. (author)

  10. Drug delivery glucantime in PVP/chitosan membranes

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Lugao, Ademar B.; Parra, Duclerc F.; Amato, Valdir S.

    2015-01-01

    The current study of polymer science considers the area of biomedical application very important to establish developments in new polymeric materials. Examples of that are hydrogels for controlled release of drugs. In this work, hydrogels of poly (N-2-vinil-pyrrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized to investigate chitosan influence on Glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by X Ray diffraction (DRX). Atomic Force Microscopy (AFM) and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed 'in vitro'. The system showed higher gel fraction for the matrix with 1.0% of clay and 0.5% of chitosan. In this case, besides the interactions of clay ions with PVP, there are interactions of chitosan amine group with PVP amide group. (author)

  11. Biodegradable plastics derived from micro-fibrillated cellulose fiber and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, M.; Hosokawa, J.; Yoshihara, K.; Kubo, T.; Kabeya, H.; Endo, T. [Shikoku National Industrial Research Inst., Kagawa (Japan)

    1995-12-25

    We have been carrying out studies to develop biodegradable plastics from natural polysaccharides. We have found that a combination of micro-fibrillated cellulose fiber and chitosan produces a useful material that can be used to form biodegradable film and moldings. Cellulose-chitosan composite film demonstrate higher strength than general purpose plastic films, and wet strength peaks when chitosan content is 10-20%. The relatively small amount of chitosan needed is economically convenient because chitosan is more expensive than cellulose. This film biodegrade well in soil, completely dissolving and disappearing in two months. Biodegradability is influenced by the temperature used in thermal treatment the film, the quantity of acid groups in the cellulose, and other factors. These characteristics will be used to control decomposition. Since cellulose-chitosan-plastics are not thermoplastics, we have been working on joint research with companies to produce films, nonwoven fabrics and foams. We discuss here the properties and application of these composite moldings. 4 refs., 3 figs., 3 tabs.

  12. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering

    International Nuclear Information System (INIS)

    Zhang Yufeng; Cheng Xiangrong; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-01-01

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-β1 (TGF-β1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-β1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-β1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-β1 as a good substrate candidate in periodontal tissue engineering

  13. Physicochemical and functional characteristics of radiation-processed shrimp chitosan

    International Nuclear Information System (INIS)

    Ocloo, F.C.K.; Quayson, E.T.; Adu-Gyamfi, A.; Quarcoo, E.A.; Asare, D.; Serfor-Armah, Y.; Woode, B.K.

    2011-01-01

    The effects of gamma irradiation on chitosan samples were determined in terms of physicochemical and functional properties. Shrimp chitosan was extracted from shell using a chemical process involving demineralization, deproteinization, decolorization and deacetylation. Commercial snow chitosan was also used. Samples (in a solid state) were given irradiation dose of 25 kGy at a dose rate of 1.1013 kGy/h in air and 0 kGy samples were used as controls. Results showed that moisture contents were between 8.690% and 13.645%. There were no significant differences (P>0.05) in the degree of deacetylation of the chitosan samples. Significant differences (P<0.05) were observed in the viscosity and viscosity-average molecular weight of the chistosan samples. Viscosity and molecular weight decreased when the samples were given the irradiation dose of 25 kGy. Chitosan samples had low antioxidant activity compared with BHT. Water binding capacity ranged from 582.40% to 656.75% and fat binding capacity was between 431.00% and 560.55%. Irradiation had a major effect on the viscosity and the viscosity-average molecular weight of the chitosan samples.

  14. Physicochemical and functional characteristics of radiation-processed shrimp chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Ocloo, F.C.K., E-mail: fidelis_ocloo@yahoo.co [Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon (Ghana); Quayson, E.T. [Department of Biochemistry, University of Cape Coast, Cape Coast (Ghana); Adu-Gyamfi, A.; Quarcoo, E.A.; Asare, D. [Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon (Ghana); Serfor-Armah, Y. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon (Ghana); Woode, B.K. [Department of Biochemistry, University of Cape Coast, Cape Coast (Ghana)

    2011-07-15

    The effects of gamma irradiation on chitosan samples were determined in terms of physicochemical and functional properties. Shrimp chitosan was extracted from shell using a chemical process involving demineralization, deproteinization, decolorization and deacetylation. Commercial snow chitosan was also used. Samples (in a solid state) were given irradiation dose of 25 kGy at a dose rate of 1.1013 kGy/h in air and 0 kGy samples were used as controls. Results showed that moisture contents were between 8.690% and 13.645%. There were no significant differences (P>0.05) in the degree of deacetylation of the chitosan samples. Significant differences (P<0.05) were observed in the viscosity and viscosity-average molecular weight of the chistosan samples. Viscosity and molecular weight decreased when the samples were given the irradiation dose of 25 kGy. Chitosan samples had low antioxidant activity compared with BHT. Water binding capacity ranged from 582.40% to 656.75% and fat binding capacity was between 431.00% and 560.55%. Irradiation had a major effect on the viscosity and the viscosity-average molecular weight of the chitosan samples.

  15. Study on chitosan film properties as a green dielectric

    Science.gov (United States)

    Nainggolan, I.; Nasution, T. I.; Putri, S. R. E.; Azdena, D.; Balyan, M.; Agusnar, H.

    2018-02-01

    Chitosan film dielectrics to produce an electrostatic capacitor were prepared by the solution cast technique. The charging and discharging of the capacitor were done using RC series circuit with DC voltage supply because chitosan has bipolar properties. First testing was by varying supply voltage of 1, 3, 5, 10 and 15 V, respectively, and could be determined that the most effective voltage for chitosan film can be well polarised is 5 V. The results of second testing for the use of 5 V supply showed that the capacitance of a chitosan film capacitor decreased with the increase in load value. For loads of 100, 1K, 10K, 100K and 1M Ω, the capacitance values of the chitosan film capacitor were 3.1725, 0.4136, 0.05379, 0.007917 and 0.001522 F, respectively. It was also found that the increase in voltage of the capacitor at charging process was faster for the lower load. Therefore, the research result has corresponded to the general formula that used to calculate the capacitance value and thus, the biopolymer chitosan has potential as a sustainable green dielectric.

  16. Chitosan as flocculant agent for clarification of stevia extract

    Directory of Open Access Journals (Sweden)

    Silvia P. D. de Oliveira

    2012-01-01

    Full Text Available Stevia is used as a sweetener due to its low calorific value and its taste, which is very similar to that of sucrose. After extraction from dried leaves, stevia extract is dark in colour, and therefore needs to be whitened to increase acceptance by consumers. In this study we tested chitosan, a cationic polyelectrolyte, as flocculant agent for the whitening of the Stevia extract. Positive charges of chitosan can interact electrostatically with a counter-ion, sodium tripolyphosphate (TPP, and then chitosan precipitates. A factorial design was used to study the whitening process, in which Glycosides Removal, Colour Removal, Turbidity Removal and Soluble Solids Removal were evaluated. The studied factors were Chitosan Mass and pH of the TPP solution. The results showed that chitosan is a good flocculant agent, being able to flocculate both the glycosides and the pigments that make the extract coloured.

  17. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chitosan nanofibers for transbuccal insulin delivery.

    Science.gov (United States)

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  19. Hexavalent chromium removal by chitosan modified-bioreduced nontronite

    Science.gov (United States)

    Singh, Rajesh; Dong, Hailiang; Zeng, Qiang; Zhang, Li; Rengasamy, Karthikeyan

    2017-08-01

    Recent efforts have focused on structural Fe(II) in chemically or biologically reduced clay minerals to immobilize Cr(VI) from aqueous solution, but the coulombic repulsion between the negatively charged clay surface and the polyanionic form of Cr(VI), e.g., dichromate, can hinder the effectiveness of this process. The purpose of this study was to investigate the efficiency and mechanism of Cr(VI) removal by a charge-reversed nontronite (NAu-2), an Fe-rich smectite. Chitosan, a linear polysaccharide derived from chitin found in soil and groundwater, was used to reverse the charge of NAu-2. Intercalation of chitosan into NAu-2 interlayer increased the basal d-spacing of NAu-2 from 1.23 nm to 1.83 nm and zeta potential from -27.17 to +34.13 mV, with the amount of increase depending on chitosan/NAu-2 ratio. Structural Fe(III) in chitosan-exchanged NAu-2 was then biologically reduced by an iron-reducing bacterium Shewanella putrefaciens CN32 in bicarbonate buffer with lactate as the sole electron donor, with and without electron shuttle, AQDS. Without AQDS, the extent of Fe(III) reduction increased from the lowest (∼9%) for the chitosan-free NAu-2 to the highest (∼12%) for the highest chitosan loaded NAu-2 (3:1 ratio). This enhancement of Fe(III) reduction was likely due to the attachment of negatively charged bacterial cells to charge-reversed (e.g., positively charged) NAu-2 surfaces, facilitating the electron transfer between cells and structural Fe(III). With AQDS, Fe(III) reduction extent doubled relative to those without AQDS, but the enhancement effect was similar across all chitosan loadings, suggesting that AQDS was more important than chitosan in enhancing Fe(III) bioreduction. Chitosan-exchanged, biologically reduced NAu-2 was then utilized for removing Cr(VI) in batch experiments with three consecutive spikes of 50 μM Cr. With the first Cr spike, the rate of Cr(VI) removal by charged-reversed NAu-2 that was bioreduced without and with AQDS was ∼1

  20. Investigation of Chitosan for Decorporation of 60Co in the Rat

    International Nuclear Information System (INIS)

    Levitskaia, Tatiana G.; Creim, Jeffrey A.; Curry, Terry L.; Luders, Teresa; Morris, James E.; Sinkov, Sergey I.; Woodstock, Angela D.; Thrall, Karla D.

    2009-01-01

    Purpose: The reported investigation is a part of our on-going research aimed at identifying effective in vivo non-toxic decorporation agents and developing new therapies to treat internal contamination with radionuclides. The non-toxic nature of chitosan makes it an especially attractive candidate for unsupervised treatment of the general population in case of radiological/nuclear emergency. In this study, chemically unmodified water-soluble chitosan oligosaccharide of low molecular weight was tested for decorporation of cobalt-60 (Co-60) using a rodent model. Methods: Affinity of chitosan oligosaccharide for Co(II) was tested in vitro under conditions of physiological pH range and ionic strength using combined spectrophotometric and potentiometric titration techniques. Fisher F344 rat model was used for in vivo studies. To evaluate effect of chitosan on ingested Co-60, animals received single oral dose of Co-60 chloride (7-13.2 kBq per animal) followed by oral administration of chitosan material (288-366 mg per kg body weight); chitosan dosing was repeated in 24 hours. Chitosan was also tested for removal of internalized Co-60. In this study, Co-60 single intravenous injection (7-8 kBq per animal) was followed by repetitive oral (300 mg per kg body weight) or intravenous (195 mg per kg body weight) administration of the chitosan material once daily for 5 days. Control animal groups received a single dose of Co-60 without chelator treatment. Excreta was collected daily. Tissues were collected postmortem and analyzed for radioactivity by gamma counting technique. Results: In vitro experiments confirmed binding of Co(II) by chitosan oligosaccharide, formation of mixed cobalt-chitosan-hydroxide complex species was proposed, and stability constants was calculated. Control in vivo studies indicated that about 71% of ingested Co-60 was excreted in two days predominantly through the gastrointestinal tract. For intravenously administered Co-60, urinal excretion was

  1. Preparation and characterization of blends containing silk fibroin and chitosan

    International Nuclear Information System (INIS)

    Moraes, Mariana A. de; Nogueira, Grinia M.; Weska, Raquel F.; Beppu, Marisa M.

    2009-01-01

    The aim of this study was to prepare and characterize blend membranes of silk fibroin and chitosan. Moreover, a conformation of fibroin to a more stable form induced by the addition of chitosan was verified. Blend membranes of fibroin/chitosan were prepared in different proportions and had their crystallinity, structural conformation and thermal stability characterized. The results of crystallographic analysis (XRD) indicated the tendency to higher structural organization caused by the addition of chitosan. FTIR showed that, mainly in a content of chitosan of only 25%, fibroin is present in a more stable form. Thermal analyzes indicate that fibroin is thermally stable and that when its proportion in the blend increases, the temperature in which the degradation is initiated also does so. (author)

  2. Fungal chitosan production from potato processing wastewater and its characterization

    International Nuclear Information System (INIS)

    Khalaf, S.A.; Khalaf, M.A.

    2005-01-01

    Potato processing wastewater (PPW) was collected and analyzed for biological oxygen demand BOD, chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen and starch content. A fungal strain of Aspergillus niger treated with ultraviolet (UV) radiation was evaluated for its ability to produce chitosan from PPW. Active UV-irradiated isolate, coded A. niger UV-2, was able to reduce COD by about 86.15% with over productivity of chitosan of 1630 mgl -1 after 5 days of its cultivation in PPW. Extractable chitosan from this isolate had a degree of deacetylation of 88.4% and a molecular weight l.lxlo 5 Da. Also, the extractable chitosan at concentration 600 mgl -1 exhibited the maximum antibacterial activity compared with crab shell chitosan

  3. Obtain and characterization of chitosan / propranolol microparticles by spray drying

    International Nuclear Information System (INIS)

    Nascimento, Ednaldo G. do; Silva Junior, Arnobio A. da; Santos, Katia S.C.R. dos

    2015-01-01

    The study investigated the application of chitosan microparticles as carriers into hard gelatin capsule containing propranolol, evaluating the variability of the molecular weight and the chitosan particles by spray drying. The formulations were characterized by average weight, dosing unit dose uniformity and dissolution profile according to the pharmacopoeia. While the microparticles were characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The results showed that chitosan microparticles obtained without the drug and then physically mixed with propranolol promoted a modified release 85% of the drug after 5 hours. While, chitosan microparticles sprayed with propranolol released only 55% at 5 hours is presented both as a modified release system. Samples of dried chitosan showed up amorphous and homogeneous and spherical morphology. (author)

  4. The distribution of 14C-chitosan by different molecular weight in mice

    International Nuclear Information System (INIS)

    Kim, Kwang Yoon; Kim, Young Ho; Bom, Hee Seung; Kim, Ji Yeul; Kim, Hee Kyung; Roh, Young Bok; Nishimura, Yoshikazu

    1998-01-01

    Chitosan is a nontoxic natural chealtor which was made by chitin, and reduced a contamination of radiostrontium in animals. In this experiment, a different molecular weight of C-14 chitosan was intravenously administered to mice, and then the distribution of C-14 chitosan in the body was observed. Male mice (8 to 10 weeks, body weight of 30 to 35g) of ICR strain were used. C-14 chitosan, mice was sacrificed at the 6th hour, 1st, 3rd, 5th, and 7th day. Beta radioactivities in the blood, liver, kidney, liver, muscle, testis, and urine was measured using a liquid scintillation analyzer. Most of the C-14 chitosan was excreted through urine within 6 hours. Biodistribution of C-14 chitosan was similar despite the difference of molecular weight. Higher distributions of radioactivities were found in the liver, kidney, spleen. The relative concentration in tissue increased for the 6 hours and then decreased. In conclusion, most of C-14 chitosan was excreted through urine despite the difference of molecular weight. and, low molecular weight of C-14 chitosan showed higher distribution than high molecular weight of C-14 chitosan in tissues

  5. Advances in preparation and characterization of chitosan nanoparticles for therapeutics.

    Science.gov (United States)

    Chandra Hembram, Krushna; Prabha, Shashi; Chandra, Ramesh; Ahmed, Bahar; Nimesh, Surendra

    2016-01-01

    Polymers have been largely explored for the preparation of nanoparticles due to ease of preparation and modification, large gene/drug loading capacity, and biocompatibility. Various methods have been adapted for the preparation and characterization of chitosan nanoparticles. Focus on the different methods of preparation and characterization of chitosan nanoparticles. Detailed literature survey has been done for the studies reporting various methods of preparation and characterization of chitosan nanoparticles. Published database suggests of several methods which have been developed for the preparation and characterization of chitosan nanoparticles as per the application.

  6. Analysis of the shelf life of chitosan stored in different types of packaging, using colorimetry and dentin microhardness.

    Science.gov (United States)

    da Cruz-Filho, Antonio Miranda; Bordin, Angelo Rafael de Vito; Souza-Flamini, Luis Eduardo; Guedes, Débora Fernandes da Costa; Saquy, Paulo César; Silva, Ricardo Gariba; Pécora, Jesus Djalma

    2017-05-01

    Chitosan has been widely investigated and used. However, the literature does not refer to the shelf life of this solution. This study evaluated, through the colorimetric titration technique and an analysis of dentin micro-hardness, the shelf life of 0.2% chitosan solution. Thirty human canines were sectioned, and specimens were obtained from the second and third slices, from cemento-enamel junction to the apex. A 0.2% chitosan solution was prepared and distributed in 3 identical glass bottles (v1, v2, and v3) and 3 plastic bottles (p1, p2, and p3). At 0, 7, 15, 30, 45, 60, 90, 120, 150, and 180 days, the specimens were immersed in each solution for 5 minutes ( n = 3 each). The chelating effect of the solution was assessed by micro-hardness and colorimetric analysis of the dentin specimens. 17% EDTA and distilled water were used as controls. Data were analyzed statistically by two-way and Tukey-Kramer multiple comparison ( α = 0.05). There was no statistically significant difference among the solutions with respect to the study time ( p = 0.113) and micro-hardness/time interaction ( p = 0.329). Chitosan solutions and EDTA reduced the micro-hardness in a similar manner and differed significantly from the control group ( p < 0.001). Chitosan solutions chelated calcium ions throughout the entire experiment. Regardless of the storage form, chitosan demonstrates a chelating property for a minimum period of 6 months.

  7. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  8. Probing neural cell behaviors through micro-/nano-patterned chitosan substrates

    International Nuclear Information System (INIS)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Chen, Wen-Shiang; Wang, Yang-Kao; Cheng, Chao-Min

    2015-01-01

    In this study, we describe the development of surface-modified chitosan substrates to examine topographically related Neuro-2a cell behaviors. Different functional groups can be modified on chitosan surfaces to probe Neuro-2a cell morphology. To prepare chitosan substrates with micro/nano-scaled features, we demonstrated an easy-to-handle method that combined photolithography, inductively coupled plasma reactive ion etching, Ag nanoparticle-assisted etching, and solution casting. The results show that Neuro-2a cells preferred to adhere to a flat chitosan surface rather than a nanotextured chitosan surface as evidenced by greater immobilization and differentiation, suggesting that surface topography is crucial for neural patterning. In addition, we developed chitosan substrates with different geometric patterns and flat region depth; this allowed us to re-arrange or re-pattern Neuro-2a cell colonies at desired locations. We found that a polarity-induced micropattern provided the most suitable surface pattern for promoting neural network formation on a chitosan substrate. The cellular polarity of single Neuro-2a cell spreading correlated to a diamond-like geometry and neurite outgrowth was induced from the corners toward the grooves of the structures. This study provide greater insight into neurobiology, including neurotransmitter screening, electrophysiological stimulation platforms, and biomedical engineering. (paper)

  9. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel

    International Nuclear Information System (INIS)

    Zhou Ying; Zhao Yinghui; Wang Lu; Xu Ling; Zhai Maolin; Wei Shicheng

    2012-01-01

    A series of antibacterial hydrogels were fabricated from an aqueous solution of AgNO 3 , gelatin and carboxymethyl chitosan (CM-chitosan) by radiation-induced reduction and crosslinking at ambient temperature. The nanosilver particles were in situ synthesized accompanying with the formation of gelatin/CM-chitosan hydrogel. Transmission Electron Microscope and UV–vis analysis have verified the formation and homogeneous distribution of nanosilver particles in the hydrogel matrix. The nanosilver/gelatin/CM-chitosan hydrogels possessed interconnected porous structure, had a compressive modulus of 44 to 56 kPa, and could absorb 62 to 108 times of deionized water to its dry weight. Furthermore, the hydrogels were found to have sound antibacterial effect on Escherichia coli (E. coli), and their antibacterial ability could be significantly enhanced by the increasing of AgNO 3 content. The comprehensive results of this study suggest that nanosilver/gelatin/CM-chitosan hydrogels have potential as an antibacterial wound dressing. - Highlights: ► Nanosilver/gelatin/CM-chitosan hydrogel was synthesized by radiation crosslinking. ► Nanosilver particles distributed homogeneously in the hydrogel. ► The size of nanosilver increased with the increase of AgNO 3 concentration. ► The nanosilver/gelatin/CM-chitosan hydrogel has antibacterial ability.

  10. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Science.gov (United States)

    Hu, Yu-Lan; Qi, Wang; Han, Feng; Shao, Jian-Zhong; Gao, Jian-Qing

    2011-01-01

    Background Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier. Methods Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control. Results Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles. Conclusion Our results add new insights into the potential toxicity of nanoparticles produced by biodegradable materials, and may help us to understand better the nanotoxicity of drug delivery carriers. PMID:22267920

  11. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties...... of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  12. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    Science.gov (United States)

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity.

    Science.gov (United States)

    Qin, Yukun; Liu, Song; Xing, Ronge; Yu, Huahua; Li, Kecheng; Meng, Xiangtao; Li, Rongfeng; Li, Pengcheng

    2012-06-20

    In this study, ammonium dithiocarbamate chitosan (ADTCCS) and triethylene diamine dithiocarbamate chitosan (TEDADTCCS) derivatives were obtained respectively by mixing chitosan with carbon disulfide and ammonia (triethylenediamine). Their structures were confirmed by FT-IR, 1H NMR, XRD, DSC, SEM, and elemental analysis. Antifungal properties of them against the plant pathogenic fungi Fusarium oxysporum and Alternaria porri were investigated at concentrations ranged from 31.25 to 500 mg/L. The dithiocarbamate chitosan derivatives had enhanced antifungal activity compared with chitosan. Particularly, they showed obvious inhibitory effect on Fusarium oxysporum. At 500 mg/L, TEDADTCCS inhibited growth of F. oxysporum at 60.4%, stronger than polyoxin and triadimefon whose antifungal indexes were found to be 25.3% and 37.7%. The chitosan derivatives described here deserve further study for use in crop protection. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Application of Irradiated Chitosan on Thai Chili s Growth and Productivity

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Tangthong, Theeranan; Hemvichian, Kasinee; Pongpat, Suchada; Charoen, Saovapong

    2011-06-01

    Full text: Effects of oligo chitosan on growth and productivity of Thai chili plants were investigated. The foliar spraying of oligo chitosan was applied. The growth and productivity of these oligo chitosan-treated chili plants were compared with those of untreated chili plants. The results showed that the application of oligo chitosan, at the concentration of 80 ppm, displayed significant effects, statistically, on chili plant height, total weight of chili, total number of chilies, total number of green chilies, total number of red chilies and weight per chili. The results also showed that productivity increased up to 34%. The oligo chitosan exhibited not only the ability to protect aphid infection but also the ability to shorten the harvest time of chili plants. The treatment of chili plants by oligo chitosan clearly displayed positive effects on chili s growth and productivity

  15. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus.

    Science.gov (United States)

    Qiu, Miao; Wu, Chu; Ren, Gerui; Liang, Xinle; Wang, Xiangyang; Huang, Jianying

    2014-07-15

    The antifungal activity and effect of high-molecular weight chitosan (H-chitosan), low-molecular weight chitosan (L-chitosan) and carboxymethyl chitosan (C-chitosan) coatings on postharvest green asparagus were evaluated. L-chitosan and H-chitosan efficiently inhibited the radial growth of Fusarium concentricum separated from postharvest green asparagus at 4 mg/ml, which appeared to be more effective in inhibiting spore germination and germ tube elongation than that of C-chitosan. Notably, spore germination was totally inhibited by L-chitosan and H-chitosan at 0.05 mg/ml. Coated asparagus did not show any apparent sign of phytotoxicity and maintained good quality over 28 days of cold storage, according to the weight loss and general quality aspects. Present results inferred that chitosan could act as an attractive preservative agent for postharvest green asparagus owing to its antifungal activity and its ability to stimulate some defense responses during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  17. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  18. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  19. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang J

    2017-12-01

    Full Text Available Jiayu Zhang,1 Shiqing Ma,1 Zihao Liu,1 Hongjuan Geng,1 Xin Lu,1 Xi Zhang,1 Hongjie Li,1 Chenyuan Gao,2 Xu Zhang,1 Ping Gao1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, 2Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People’s Republic of China Introduction: Membranes allowing the sustained release of drugs that can achieve cell adhesion are very promising for guided bone regeneration. Previous studies have suggested that aspirin has the potential to promote bone regeneration. The purpose of this study was to prepare a local drug delivery system with aspirin-loaded chitosan nanoparticles (ACS contained in an asymmetric collagen-chitosan membrane (CCM. Methods: In this study, the ACS were fabricated using different concentrations of aspirin (5 mg, 25 mg, 50 mg, and 75 mg. The drug release behavior of ACS was studied. Transmission electron microscopy (TEM and scanning electron microscopy (SEM were used to examine the micromorphology of ACS and aspirin-loaded chitosan nanoparticles contained in chitosan-collagen membranes (ACS-CCM. In vitro bone mesenchymal stem cells (BMSCs were cultured and critical-sized cranial defects on Sprague-Dawley rats were made to evaluate the effect of the ACS-CCM on bone regeneration.Results: Drug release behavior results of ACS showed that the nanoparticles fabricated in this study could successfully sustain the release of the drug. TEM showed the morphology of the nanoparticles. SEM images indicated that the asymmetric membrane comprised a loose collagen layer and a dense chitosan layer. In vitro studies showed that ACS-CCM could promote the proliferation of BMSCs, and that the degree of differentiated BMSCs seeded on CCMs containing 50 mg of ACS was higher than that of other membranes. Micro-computed tomography showed that 50 mg of ACS-CCM resulted in enhanced bone regeneration compared with the control group.Conclusion: This

  20. Study on preparation the egg yolk puff with chitosan

    Directory of Open Access Journals (Sweden)

    LI Hui

    2014-12-01

    Full Text Available This paper was studied chitosans with different degrees of deacetylation (70%,80%,90%,95% and different usages of chitosan that were added to research the effect of functional indexs in the egg yolk puff,such as calcium content and cholesterol content.Preliminarily chitosan was explored in the application of the Egg yolk puff.Text results showed that when the deacetylation degree of chitosan and its usage were 90% and 1% separately,the functional indexs and sensory quality of the Egg yolk puff can reach the equilibrium.Its calcium content was 76.2 mg/100 g,increased by 44.3 percent.Its cholesterol content was 290 mg/100 g,decreased by 35.1%.

  1. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  2. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  3. Effect of strontium addition and chitosan concentration variation on cytotoxicity of chitosan-alginate-carbonate apatite based bone scaffold

    Science.gov (United States)

    Perkasa, Rilis Eka; Umniati, B. Sri; Sunendar, Bambang

    2017-09-01

    Bone scaffold is one of the most important component in bone tissue engineering. Basically, bone scaffold is a biocompatible structure designed to replace broken bone tissue temporarily. Unlike conventional bone replacements, an advanced bone scaffold should be bioactive (e.g: supporting bone growth) and biodegradable as new bone tissue grow, while retain its mechanical properties similarity with bone. It is also possible to add more bioactive substrates to bone scaffold to further support its performance. One of the substrate is strontium, an element that could improve the ability of the bone to repair itself. However, it must be noted that excessive consumption of strontium could lead to toxicity and diseases, such as osteomalacia and hypocalcemia. This research aimed to investigate the effect of strontium addition to the cytotoxic property of chitosan-alginate-carbonate apatite bone scaffold. The amount of strontium added to the bone scaffold was 5% molar of the carbonate apatite content. As a control, bone scaffold without stronsium (0% molar) were also made. The effect of chitosan concentration variation on the cytotoxicity were also observed, where the concentration varies on 1% and 3% w/v of chitosan solution. The results showed an optimum result on bone scaffold sample with 5% molar of strontium and 3% chitosan, where 87.67% cells in the performed MTS-Assay cytotoxicity testing survived. This showed that the use of up to 5% molar addition of strontium and 3% chitosan could enhance the survivability of the cell.

  4. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.X.; Zheng, W.; Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China)

    2011-02-15

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: {yields} The average diameter increased with the increase of chitosan content and then decreased. {yields} The release rate of fenbufen increased with the increase of chitosan. {yields} The aligned nanofibrous scaffold exhibits lower drug release rate. {yields} The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which

  5. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold

    International Nuclear Information System (INIS)

    Meng, Z.X.; Zheng, W.; Li, L.; Zheng, Y.F.

    2011-01-01

    Graphical abstract: The fenbufen loaded PLGA/chitosan nanofibrous scaffolds were fabricated by electrospinning. The hydrophilicity of nanofibrous scaffold was enhanced with the increase of chitosan content. The drug release also is accelerated with chitosan increasing because the higher hydrophilicity makes drug diffusing from scaffold more easily. Research highlights: → The average diameter increased with the increase of chitosan content and then decreased. → The release rate of fenbufen increased with the increase of chitosan. → The aligned nanofibrous scaffold exhibits lower drug release rate. → The drug release could be controlled by crosslinking in glutaraldehyde vapor. - Abstract: In this study both aligned and randomly oriented poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold have been prepared by electrospinning. The ratio of PLGA to chitosan was adjusted to get smooth nanofiber surface. Morphological characterization using scanning electron microscopy showed that the aligned nanofiber diameter distribution obtained by electrospinning of polymer blend increased with the increase of chitosan content which was similar to that of randomly oriented nanofibers. The release characteristic of model drug fenbufen (FBF) from the FBF-loaded aligned and randomly oriented PLGA and PLGA/chitosan nanofibrous scaffolds was investigated. The drug release rate increased with the increase of chitosan content because the addition of chitosan enhanced the hydrophilicity of the PLGA/chitosan composite scaffold. Moreover, for the aligned PLGA/chitosan nanofibrous scaffold the release rate was lower than that of randomly oriented PLGA/chitosan nanofibrous scaffold, which indicated that the nanofiber arrangement would influence the release behavior. In addition, crosslinking in glutaraldehyde vapor would decrease the burst release of FBF from FBF-loaded PLGA/chitosan nanofibrous scaffold with a PLGA/chitosan ratio less than 9/1, which would be beneficial

  6. The effect of chitosan molecular weight on the properties of alginate ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to investigate the effect of chitosan molecular weight on size, size distribution, release rate, mucoadhesive properties and electrostatic bonding of alginate/chitosan microparticles containing prednisolone. Methods: Three mucoadhesive alginate/chitosan microparticle formulations, ...

  7. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Visible and UV-curable chitosan derivatives for immobilization of biomolecules.

    Science.gov (United States)

    Kim, Eun-Hye; Han, Ga-Dug; Kim, Jae-Won; Noh, Seung-Hyun; Lee, Jae-Gwan; Ito, Yoshihiro; Son, Tae-Il

    2017-11-01

    Chitosan, which has many biocompatible properties, is used widely in medical field like wound healing, drug delivery and so on. Chitosan could be used as a biomaterial to immobilize protein-drug. There are many methods to immobilize protein-drug, but they have some drawbacks such as low efficiency and denaturation of protein. Therefore, photo-immobilization method is suggested to immobilize protein-drug. Photo-immobilization method is simple-reaction and also needs no additional crosslinking reagent. There has been some effort to modify chitosan to have an ability of photo-immobilization. Generally, visible and UV light reactive chitosan derivatives were prepared. Various types of photo-curable chitosan derivatives showed possibility for application to medical field. For example, they showed ability for protein-immobilization and some of them showed wound-healing effect, anti-adhesive effect, or property to interact directly with titanium surface. In this study, we introduce many types of photo-curable chitosan derivative and their possibility of medical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Improved postharvest quality in patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, Maria Alicia; Goitia, Maria Teresa [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Yossen, Mariana [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC), CONICET-Universidad Nacional del Litoral, Ruta Nacional 168-Paraje ' El Pozo' , 3000 Santa Fe (Argentina); Cifone, Norma; Agullo, Enrique [Laboratorio de Investigaciones Basicas Aplicadas en Quitina, Departamento de Quimica, Universidad Nacional del Sur. Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina); Andreucetti, Noemi, E-mail: andreuce@criba.edu.ar [Laboratorio de Radioisotopos, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB Bahia Blanca (Argentina)

    2011-12-15

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan. - Highlights: > Original Chitosan was radiation depolymerized producing chitosans with lower molecular weights. > Gamma-irradiated chitosans only exhibit chain scission. > SEC-MALLS-RI chromatography is a useful tool in molecular weight analysis. > Depolymerized chitosans were the best in maintaining the quality and the storage life of coated squashes.

  10. Improved postharvest quality in patagonian squash (Cucurbita moschata) coated with radiation depolymerized chitosan

    International Nuclear Information System (INIS)

    Pugliese, Maria Alicia; Goitia, Maria Teresa; Yossen, Mariana; Cifone, Norma; Agullo, Enrique; Andreucetti, Noemi

    2011-01-01

    Different molecular weight chitosans were evaluated on the decay of coated Anquito squashes (Cucurbita moschata) as well as the maintenance of the fruit quality along five storage months. The original chitosan (Mw=391 kDa, 83% DD), was depolymerized by gamma radiation. Apart from chain scission, other chemical changes were not detected by FTIR or UV-vis analyses. The molecular weight characterization of chitosans was done by size exclusion chromatography with dual light scattering and concentration detection (SEC-MALLS-RI). The coating effectiveness was evaluated on the following parameters: fungal decay incidence, weight loss, firmness, total reducing sugar, soluble solid, flesh color, carotene content, pH and titratable acidity. No sign of fungal decay was observed in squashes coated with 122 and 56 kDa chitosans, which were also the most effective treatments in reducing the weight loss. The chitosan with Mw=122 kDa was also the best treatment considering firmness, internal aspect, sugar and carotene content. Then, radiation degraded chitosan was better in C. moschata preservation than the original chitosan. - Highlights: → Original Chitosan was radiation depolymerized producing chitosans with lower molecular weights. → Gamma-irradiated chitosans only exhibit chain scission. → SEC-MALLS-RI chromatography is a useful tool in molecular weight analysis. → Depolymerized chitosans were the best in maintaining the quality and the storage life of coated squashes.

  11. Chitosan-Coated Collagen Membranes Promote Chondrocyte Adhesion, Growth, and Interleukin-6 Secretion

    Directory of Open Access Journals (Sweden)

    Nabila Mighri

    2015-11-01

    Full Text Available Designing scaffolds made from natural polymers may be highly attractive for tissue engineering strategies. We sought to produce and characterize chitosan-coated collagen membranes and to assess their efficacy in promoting chondrocyte adhesion, growth, and cytokine secretion. Porous collagen membranes were placed in chitosan solutions then crosslinked with glutaraldehyde vapor. Fourier transform infrared (FTIR analyses showed elevated absorption at 1655 cm-1 of the carbon–nitrogen (N=C bonds formed by the reaction between the (NH2 of the chitosan and the (C=O of the glutaraldehyde. A significant peak in the amide II region revealed a significant deacetylation of the chitosan. Scanning electron microscopy (SEM images of the chitosan-coated membranes exhibited surface variations, with pore size ranging from 20 to 50 µm. X-ray photoelectron spectroscopy (XPS revealed a decreased C–C groups and an increased C–N/C–O groups due to the reaction between the carbon from the collagen and the NH2 from the chitosan. Increased rigidity of these membranes was also observed when comparing the chitosan-coated and uncoated membranes at dried conditions. However, under wet conditions, the chitosan coated collagen membranes showed lower rigidity as compared to dried conditions. Of great interest, the glutaraldehyde-crosslinked chitosan-coated collagen membranes promoted chondrocyte adhesion, growth, and interleukin (IL-6 secretion. Overall results confirm the feasibility of using designed chitosan-coated collagen membranes in future applications, such as cartilage repair.

  12. Chitosan nanoparticles as a modified diclofenac drug release system

    Science.gov (United States)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  13. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts

    OpenAIRE

    Cervera, Mirna Fernández; Heinämäki, Jyrki; de la Paz, Nilia; López, Orestes; Maunu, Sirkka Liisa; Virtanen, Tommi; Hatanpää, Timo; Antikainen, Osmo; Nogueira, Antonio; Fundora, Jorge; Yliruusi, Jouko

    2011-01-01

    The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP...

  14. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract.

    Science.gov (United States)

    Kalaycıoğlu, Zeynep; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; Erim, F Bedia

    2017-08-01

    In this study, the effects of turmeric extract incorporation on the antibacterial and physical properties of the chitosan films were evaluated. Turmeric containing chitosan-based film was produced with casting procedure and cross-linked with sodium sulfate. Mechanical, optical, thermal properties, and water vapor permeability of the films were studied. The addition of turmeric to chitosan film significantly increased the tensile strength of the film and improved the ultraviolet-visible light barrier of the film. Infrared spectroscopy analysis suggested an interaction between the phenolic compounds of the extract and amin group of chitosan. Antimicrobial activity of the chitosan films was studied against Salmonella and Staphylococcus aureus by plate count agar technique and a better antimicrobial activity was observed with turmeric incorporation. Turmeric incorporated chitosan films with enhanced antimicrobial activity and film stiffness can be suggested as a promising application for food packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model

    Directory of Open Access Journals (Sweden)

    Hu YL

    2011-12-01

    Full Text Available Yu-Lan Hu1, Wang Qi1, Feng Han2, Jian-Zhong Shao3, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, 3College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, People's Republic of ChinaBackground: Although there are a number of reports regarding the toxicity evaluation of inorganic nanoparticles, knowledge on biodegradable nanomaterials, which have always been considered safe, is still limited. For example, the toxicity of chitosan nanoparticles, one of the most widely used drug/gene delivery vehicles, is largely unknown. In the present study, the zebrafish model was used for a safety evaluation of this nanocarrier.Methods: Chitosan nanoparticles with two particle sizes were prepared by ionic cross-linking of chitosan with sodium tripolyphosphate. Chitosan nanoparticles of different concentrations were incubated with zebrafish embryos, and ZnO nanoparticles were used as the positive control.Results: Embryo exposure to chitosan nanoparticles and ZnO nanoparticles resulted in a decreased hatching rate and increased mortality, which was concentration-dependent. Chitosan nanoparticles at a size of 200 nm caused malformations, including a bent spine, pericardial edema, and an opaque yolk in zebrafish embryos. Furthermore, embryos exposed to chitosan nanoparticles showed an increased rate of cell death, high expression of reactive oxygen species, as well as overexpression of heat shock protein 70, indicating that chitosan nanoparticles can cause physiological stress in zebrafish. The results also suggest that the toxicity of biodegradable nanocarriers such as chitosan nanoparticles must be addressed, especially considering the in vivo distribution of these nanoscaled particles.Conclusion: Our results add new insights into the potential toxicity of nanoparticles produced by

  16. Nerve transection repair using laser-activated chitosan in a rat model.

    Science.gov (United States)

    Bhatt, Neel K; Khan, Taleef R; Mejias, Christopher; Paniello, Randal C

    2017-08-01

    Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study. Animal study. Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks. At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups-KTP alone, KTP + chitosan, and microsuture + chitosan-were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively. In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery. NA Laryngoscope, 127:E253-E257, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  17. TRACTION RESISTANCE IN CHITOSAN TREATED COTTON

    Directory of Open Access Journals (Sweden)

    LOX Wouter

    2015-05-01

    Full Text Available Nowadays natural products interest has increased. However, when some products are included on textile fibers, they have no affinity and need some binders or other kind of auxiliaries to improve the yeld of the process, and some of them are not so natural as the product which are binding and consequently the “bio” definition is missed as some of them can be considered as highly pollutant. Chitosan is a common used bonding agent for cotton. It improves the antimicrobial and antifungal activity, improves wound healing and is a non-toxic bonding agent. The biopolymer used in this work is chitosan, which is a deacetylated derivative of chitin. These properties depend on the amount of deacetylation (DD and the Molecular weight (MW. Along with these improving properties, as it requires some acid pH to ve solved the treatment with chitosan can have some decreasing mechanical properties. The aim of that paper is to evaluate the change in breaking force of the treated samples and a change in elongation of those samples. It compared different amounts of concentration of chitosan with non treated cotton. The traction resistance test were performed on a dynamometer. The test was conducted according to the UNE EN ISO 13934-1 standard.

  18. Electrospinning and stabilization of chitosan nanofiber mats

    Science.gov (United States)

    Grimmelsmann, N.; Grothe, T.; Homburg, S. V.; Ehrmann, A.

    2017-10-01

    Chitosan is of special interest for biotechnological and medical applications due to its antibacterial, antifungal and other intrinsic physical and chemical properties. The biopolymer can, e.g., be used for biotechnological purposes, as a filter medium, in medical products, etc. In all these applications, the inner surface should be maximized to increase the contact area with the filtered medium etc. and thus the chitosan’s efficacy. Chitosan dissolves in acidic solutions, opposite to neutral water. Electrospinning is possible, e.g., by co-spinning with PEO (poly(ethylene oxide)). Tests with different chitosan:PEO ratios revealed that higher PEO fractions resulted in better spinnability and more regular fibre mats, but make stabilization of the fibre structure more challenging.

  19. Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention.

    Science.gov (United States)

    Samprasit, Wipada; Kaomongkolgit, Ruchadaporn; Sukma, Monrudee; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2015-03-06

    The mucoadhesive electrospun nanofibre mats were developed using chitosan (CS) and thiolated chitosan (CS-SH) as mucoadhesive polymers. Garcinia mangostana (GM) extract was incorporated into nanofibre mats. The antibacterial activity in the single and combined agents was evaluated against dental caries pathogens. The morphology of mats was observed using SEM. The mats were evaluated for GM extract amount, mucoadhesion, in vitro release, antibacterial activity and cytotoxicity. The mucoadhesion and antibacterial activity were determined in healthy human volunteers. The prepared mats were in nanoscale with good physical and mucoadhesive properties. The CS-SH caused the higher mucoadhesion. All mats rapidly released active substances, which had the synergistic antibacterial activity. In addition, the reduction of bacteria and good mucoadhesion in the oral cavity occurred without cytotoxicity. The results suggest that mats have the potential to be mucoadhesive dosage forms to maintain oral hygiene by reducing the bacterial growth that causes the dental caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  1. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    Science.gov (United States)

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  2. Binding Cellulose and Chitosan via Intermolecular Inclusion Interaction: Synthesis and Characterisation of Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2015-01-01

    Full Text Available A novel cellulose-chitosan gel was successfully prepared in three steps: (1 ferrocene- (Fc- cellulose with degrees of substitution (DS of 0.5 wt% was synthesised by ferrocenecarboxylic acid and cellulose within dimethylacetamide/lithium chloride (DMAc/LiCl; (2 the β-cyclodextrin (β-CD groups were introduced onto the chitosan chains by reacting chitosan with epichlorohydrin in dimethyl sulphoxide and a DS of 0.35 wt%; (3 thus, the cellulose-chitosan gel was obtained via an intermolecular inclusion interaction of Fc-cellulose and β-CD-chitosan in DMA/LiCl, that is, by an intermolecular inclusion interaction, between the Fc groups of cellulose and the β-CD groups on the chitosan backbone at room temperature. The successful synthesis of Fc-cellulose and β-CD-chitosan was characterised by 13C-NMR spectroscopy. The gel based on β-CD-chitosan and Fc-cellulose was formed under mild conditions which can engender autonomous healing between cut surfaces after 24 hours: the gel cannot self-heal while the cut surfaces were coated with a solution of a competitive guest (adamantane acid. The cellulose-chitosan complex made by this method underwent self-healing. Therefore, this study provided a novel method of expanding the application of chitosan by binding it with another polymer.

  3. Copper nanoparticles synthesis by gamma irradiation in chitosan aqueous system

    International Nuclear Information System (INIS)

    Shahrul Izwan Ahmad; Md Soot Ahmad; Shahidan Radiman

    2009-01-01

    A study on effect of chitosan concentration on the copper nanoparticles synthesis using gamma irradiation as source of reducing agent has been done at total absorbed dose of 50 kGy. The addition of ethanol is vital as scavenger of oxidation radical that eliminate the function of reducing agent produced by radiolysis process of gamma ray in water system. Transmission electron microscopy observations show the formation of copper nanoparticles embedded in chitosan matrix. As the concentration of chitosan increase the solution become darker and nanoparticles produced are densely, in order form with polydisperse size. While at the low concentration of chitosan, the color of solution become more reddish and the particles produced are monodisperse in size with regular shape and more orderly. The phase of pure copper nanoparticles embedded in the chitosan matrix was confirmed by X-ray diffraction. (Author)

  4. Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid

    Directory of Open Access Journals (Sweden)

    Chao-Lin Liu

    2011-11-01

    Full Text Available Chitosan is prepared by the deacetylation of chitin, the second-most abundant biopolymer in nature, and has applicability in the removal of dyes, heavy metals and radioactive waste for pollution control. In weight-reduction remedies, chitosan is used to form hydrogels with lipids and to depress the intestinal absorption of lipids. In this study, an experimental method was implemented to simulate the effect of chitosan on the adsorption of humic acid in the gastrointestinal tract. The adsorption capacity of chitosan was measured by its adsorption isotherm and analyzed using the Langmuir equation. The results showed that 3.3 grams of humic acid was absorbed by 1 gram of chitosan. The adsorption capacity of chitosan was much greater than that of chitin, diethylaminoethyl-cellulose or activated charcoal. Cellulose and carboxymethyl-cellulose, a cellulose derivative with a negative charge, could not adsorb humic acid in the gastrointestinal tract. This result suggests that chitosan entraps humic acid because of its positive charge.

  5. Utilizing two-photon fluorescence and second harmonic generation microscopy to study human bone marrow mesenchymal stem cell morphogenesis in chitosan scaffold

    Science.gov (United States)

    Su, Ping-Jung; Huang, Chi-Hsiu; Huang, Yi-You; Lee, Hsuan-Sue; Dong, Chen-Yuan

    2008-02-01

    A major goal of tissue engineering is to cultivate the cartilage in vitro. One approach is to implant the human bone marrow mesenchymal stem cells into the three dimensional biocompatible and biodegradable material. Through the action of the chondrogenic factor TGF-β3, the stem cells can be induced to secrete collagen. In this study, mesenchymal stem cells are implanted on the chitosan scaffold and TGF-β3 was added to produce the cartilage tissue and TP autofluorescence and SHG microscopy was used to image the process of chondrogenesis. With additional development, multiphoton microscopy can be developed into an effective tool for evaluating the quality of tissue engineering products.

  6. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Millotti, Gioconda; Ponchel, Gilles, E-mail: gilles.ponchel@u-psud.f [UMR CNRS 8612, Universite Paris Sud, Laboratoire de Physicochimie, Faculte de Pharmacie, Pharmacotechnie et Biopharmacie (France)

    2008-12-15

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  7. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    Science.gov (United States)

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Physical Evaluation of PVA/Chitosan Film Blends with Glycerine and Calcium Chloride

    Science.gov (United States)

    Nugraheni, A. D.; Purnawati, D.; Kusumaatmaja, A.

    2018-04-01

    PVA/chitosan film has been fabricated by using drop casting method. PVA/chitosan film is produced by dissolving 2% (w/v) PVA solution and 2% (w/v) chitosan solution. PVA/chitosan film is produced with weight ratio variation (w/w) 100/0, 75/25, 50/50 and 0/100. The film is fabricated using drop casting method in Petry dish with diameter 11 cm at room temperature and RH 50%–60% during seven days. The mechanical properties were characterized by using Universal Technical Machine (UTM) and UV-Vis to understand the physical properties of weight ratio (w/w) of PVA/Chitosan film by addition of plasticizer and calcium chloride. The film thickness tends to decrease with PVA content. The addition of chitosan will increase film thickness, and it will decrease swelling index, elongation (%), and transmittance of UV rays. The additions of plasticizer to PVA/Chitosan film will increase film thickness and elongation (%), and it will decrease swelling index, tensile strength and transmittance of UV rays. The crosslink of PVA/Chitosan film with calcium chloride will decrease film thickness, swelling index, elongation (%) and transmittance of UV rays, and increase tensile strength.

  9. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  10. Microwave Irradiation Assisted Preparation of Chitosan Composite Microsphere for Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Xiaoyu Chen

    2017-01-01

    Full Text Available Chitosan-activated carbon composite microspheres were prepared by emulsion cross-linking method and its adsorption properties for methyl orange were studied. Chitosan solution was mixed with activated carbon powder and then chitosan was cross-linked by epichlorohydrin under microwave irradiation. SEM photos show that the composite microspheres have diameters of 200–400 μm and activated carbon powder dispersed on the surface of composite microsphere. FTIR spectrum indicates chitosan is successfully cross-linked. Microwave irradiation can effectively shorten the cross-linking time. Composite microspheres have enhanced dye adsorption capacity for methyl orange compared to chitosan microspheres. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Isotherm studies show that the isotherm adsorption equilibrium is better described by Freundlich isotherm. Regeneration results show that adsorption capacity of composite microsphere decreased about 5.51% after being reused for three times. These results indicated that chitosan-activated carbon composite microsphere has potential application in the removal of dye from wastewaters.

  11. Radioprotective effect of chitosan in sub-lethally X-ray irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yoshikazu; Ikota, Nobuo; Arima, Hiromi; Watanabe, Yoshito; Yukawa, Masae; Ozawa, Toshihiko [National Inst. of Radiological Sciences, Chiba (Japan); Kim, Hee-Sun [Korea Hydro and Nuclear Power Corp., Seoul (Korea, Republic of). Radiation Health Research Inst.; Bom, Hee-Seung; Kim, Young-Ho [Chonnam Univ., Kwangju (Korea, Republic of). Hospital

    2003-03-01

    The radioprotective effect of chitosan was studied in mice following whole-body X-ray irradiation. C3H/He mice were exposed to 7 Gy, and their survival rates were examined. The survival rates of chitosan-diet mice were about 20% higher than those of mice on a standard diet, and the rates dropped sharply to a plateau at day 10 after X-ray irradiation. The chitosan-diet mice had an increased weight ratio of spleen to body within the experimental period. The leukocyte, thrombocyte, and erythrocyte counts as well as the hematocrit and hemoglobin levels were recovered significantly and more rapidly in the chitosan-diet mice than the standard-diet mice at day 14 after irradiation. The scavenging abilities of chitosan were evaluated by the electron spin resonance (ESR) spin-trapping method. These observations suggested that chitosan led to hematopoetic activation and leuko-cytogenesis in mice after sub-lethal dose irradiation, and that the biological response might be caused by radical trapping or scavenging. (author)

  12. Effect of molecular weight reduction by gamma irradiation on chitosan film properties

    Energy Technology Data Exchange (ETDEWEB)

    García, Mario A., E-mail: marioifal@gmail.com [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Pérez, Liliam [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba); Paz, Nilia de la [Drugs Research and Development Center, Ave. 26 No. 1605, Havana (Cuba); González, Juan [Food Industry Research Institute, Carretera al Guatao km 3 1/2, Havana, CP 19200 (Cuba); Rapado, Manuel [Radiobiology Department, Center for Technological Applications and Nuclear Development, St. 30 No. 502, Playa, Havana (Cuba); Casariego, Alicia [Pharmacy and Food Institute, University of Havana, St. 222 No. 2317, ZC 13600 Havana (Cuba)

    2015-10-01

    The present work aimed the influence of molecular weight (MW) reduction by irradiation with {sup 60}Co and polymer concentration on some physical properties of chitosan films. Irradiation of chitosan with a MW of 275.221 kDa and 74.74% of deacetylation degree was performed using a {sup 60}Co source to provide doses of 5, 10, 20 and 50 kGy to obtain chitosans with molecular weights of 247.847, 221.563, 126.469 and 77.063 kDa, respectively. Films were prepared via the solution casting method. Film-forming solutions (FFS) of chitosan irradiated or not, were prepared at 1.5 and 2% (w/v) in a solution of lactic acid at 1% (v/v) and 0.1% (v/v) of Tween 80. The FFS were poured into glass plates of 400 cm{sup 2} and dried at 60 °C during 10 h without airflow. The decrease of MW and increase of chitosan concentration increased the tensil strength and water vapor permeability while decreased the elongation at break of the films. The chitosan MW did not significantly influence (p > 0.05) the water solubility of films within a same polymer concentration. There was a decrease in the films' brightness with the increase of concentration and a decrease of the MW of irradiated chitosan, while the b* values of films increased and there was an increasing tendency of their apparent opacity. - Highlights: • MW reduction by {sup 60}Co irradiation increased the tensil strength of chitosan films. • MW reduction increased the water vapor permeability of chitosan films. • MW did not affect the films' water solubility within a same chitosan concentration. • Films' brightness decreased with the chitosan molecular weight reduction.

  13. Effect of molecular weight reduction by gamma irradiation on chitosan film properties

    International Nuclear Information System (INIS)

    García, Mario A.; Pérez, Liliam; Paz, Nilia de la; González, Juan; Rapado, Manuel; Casariego, Alicia

    2015-01-01

    The present work aimed the influence of molecular weight (MW) reduction by irradiation with 60 Co and polymer concentration on some physical properties of chitosan films. Irradiation of chitosan with a MW of 275.221 kDa and 74.74% of deacetylation degree was performed using a 60 Co source to provide doses of 5, 10, 20 and 50 kGy to obtain chitosans with molecular weights of 247.847, 221.563, 126.469 and 77.063 kDa, respectively. Films were prepared via the solution casting method. Film-forming solutions (FFS) of chitosan irradiated or not, were prepared at 1.5 and 2% (w/v) in a solution of lactic acid at 1% (v/v) and 0.1% (v/v) of Tween 80. The FFS were poured into glass plates of 400 cm 2 and dried at 60 °C during 10 h without airflow. The decrease of MW and increase of chitosan concentration increased the tensil strength and water vapor permeability while decreased the elongation at break of the films. The chitosan MW did not significantly influence (p > 0.05) the water solubility of films within a same polymer concentration. There was a decrease in the films' brightness with the increase of concentration and a decrease of the MW of irradiated chitosan, while the b* values of films increased and there was an increasing tendency of their apparent opacity. - Highlights: • MW reduction by 60 Co irradiation increased the tensil strength of chitosan films. • MW reduction increased the water vapor permeability of chitosan films. • MW did not affect the films' water solubility within a same chitosan concentration. • Films' brightness decreased with the chitosan molecular weight reduction

  14. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    Science.gov (United States)

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup [Dept. of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu{sup 2+} ion-binding capability and its binding constant 8.7 μM.

  16. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    International Nuclear Information System (INIS)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup

    2015-01-01

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu"2"+ ion-binding capability and its binding constant 8.7 μM.

  17. Spectroscopic analysis of the powdery complex chitosan-iodine

    Science.gov (United States)

    Gegel, Natalia O.; Babicheva, Tatyana S.; Belyakova, Olga A.; Lugovitskaya, Tatyana N.; Shipovskaya, Anna B.

    2018-04-01

    A chitosan-iodine complex was obtained by modification of polymer powder in the vapor of an iodine-containing sorbate and studied by electron and IR spectroscopy, optical rotation dispersion. It was found that the electronic spectra of an aqueous solution of the modified chitosan (the source one and that stored for a year) showed intense absorption bands of triiodide and iodate ions, and also polyiodide ions, bound to the macromolecule by exciton bonding with charge transfer. Analysis of the IR spectra shows destruction of the network of intramolecular and intermolecular hydrogen bonds in the iodinated chitosan powder in comparison with the source polymer and the formation of a new chemical substance. E.g., the absorption band of deformation vibrations of the hydroxyl group disappears in the modified sample, and that of the protonated amino group shifts toward shorter wavelengths. The intensity of the stretching vibration band of the glucopyranose ring atoms significantly reduces. Heating of the modified sample at a temperature below the thermal degradation point of the polymer leads to stabilization of the chitosan-iodine complex. Based on our studies, the hydroxyl and amino groups of the aminopolysaccharide have been recognized as the centers of retention of polyiodide chains in the chitosan matrix.

  18. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    International Nuclear Information System (INIS)

    Escobar Zapata, Edna V.; Martínez Pérez, Carlos A.; Rodríguez González, Claudia A.; Castro Carmona, Javier S.; Quevedo Lopez, Manuel A.; García-Casillas, Perla E.

    2012-01-01

    Highlights: ► Chitosan silica magnetite adsorbs antineoplastic drug. ► Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV–Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  19. Degradation Of α-Chitosan By Combined Treatment With Hydroperoxide And Gamma 60Co Radiation

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Dang Van Phu; Bui Phuoc Phuc; Ha Thuc Huy

    2008-01-01

    Chitosan samples prepared from shrimp shell (α-chitosan) with degree of deacetylation (DD) of 70, 84 and 94% were treated with H 2 O 2 1.5% at room temperature for degradation. The oxidative chitosan was irradiated by gamma 60 Co radiation for further reduction of molecular weight. Viscosity-average molecular weight of chitosan was measured by capillary viscometer. Results showed that H 2 O 2 was an effective reagent for chitosan degradation. Radiation degradation yield (G s ) increased for chitosan with higher DD. Interestingly Gs-values for oxidative degraded chitosan were found out of 0.96, 5.73 and 7.80 scissions/100 eV that were remarkably higher compared to 0.20, 1.05 and 1.69 scissions/100 eV for initial chitosan with DD 70, 84 and 94%, respectively. Based on results obtained it can be concluded that combined treatment with hydroperoxide and gamma 60 Co radiation was remarkably effective for degradation of chitosan. (author)

  20. The effect of calcium and chitosan metabolism to the excretion of radiostrontium in mice

    International Nuclear Information System (INIS)

    Kim, Y. H.; Bom, H. S.; Kim, J. Y.; Roh, Y. B.

    1997-01-01

    Chitosan, a natural nontoxic chelator, was reported to reduce whole body retention of radiostrontium in mice. As calcium has a similar chemical properties to strontium both of which be easily bound with hydroxyapatite structure, calcium can be either a competitor or enhancer to chitosan on the removal of radiostrontium. We compared the effect of chitosan and calcium on the excretion of ingested radiostrontium ( 85 Sr). Chitosan or calcium(CaCl 2 ) and usual food was mixed as 1:99 by weight. The mixed food to chitosan(group 1) or calcium(group 2) were given orally for 30 days before 85 Sr administration. In other groups, mixed calcium and chitosan solution (group 3), 1% calcium (group 4), or 1% chitosan solution (group 5) was given for 7 days immediately after oral administration of 85 SrCl 2 (0.25μCi). In control group, no chitosan or calcium were given. Either chitosan or calcium was effective on the removal of 85 Sr from mouse body (Table 1). Addition of calcium on chitosan did not improve or deteriorate the effect of chitosan on the removal of 85 Sr from mouse body. In conclusion, calcium was similarly effective on the removal of 85 Sr from mouse body. (author)

  1. in vivo evaluation of chitosan as an adjuvant in subcutaneous vaccine formulations

    DEFF Research Database (Denmark)

    Scherließ, Regina; Buske, Simon; Young, Katherine

    2013-01-01

    Vaccines utilising pure antigens instead of whole pathogens and alternative administration routes require the use of potent adjuvants and effective antigen delivery systems. Chitosan has been reported to act as both an adjuvant as well as a matrix for delivery systems. Chitosan is a natural product...... produced predominantly from crab shell and commercially available preparations vary in molecular weight, degree of deacetylation and purity. In this study, the impact of chitosan characteristics (molecular weight, degree of deacetylation, particle size, viscosity and impurities) on adjuvant activity were...... examined. It could be shown that the degree of immune response differed if different chitosan qualities were used and this could be attributed to different characteristics of the chitosan qualities: the immunoadjuvant effect of chitosan probably is a result of an interplay between chemical properties...

  2. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan

    DEFF Research Database (Denmark)

    Meng-Lund, Emil; Muff-Westergaard, Christian; Sander, Camilla

    2014-01-01

    Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving the muco......Mucoadhesive buccal drug delivery systems can enhance rapid drug absorption by providing an increased retention time at the site of absorption and a steep concentration gradient. An understanding of the mechanisms behind mucoadhesion of polymers, e.g. chitosan, is necessary for improving...... the mucoadhesiveness of buccal formulations. The interaction between chitosan of different chain lengths and porcine gastric mucin (PGM) was studied using a complex coacervation model (CCM), isothermal titration calorimetry (ITC) and a tensile detachment model (TDM). The effect of pH was assessed in all three models...... and the approach to add a buffer to chitosan based drug delivery systems is a means to optimize and enhance buccal drug absorption. The CCM demonstrated optimal interactions between chitosan and PGM at pH 5.2. The ITC experiments showed a significantly increase in affinity between chitosan and PGM at pH 5...

  3. The Multifunctional Role of Chitosan in Horticultural Crops; A Review

    Directory of Open Access Journals (Sweden)

    Rahat Sharif

    2018-04-01

    Full Text Available Chitosan is a naturally occurring compound and is commercially produced from seafood shells. It has been utilized in the induction of the defense system in both pre and post-harvest fruits and vegetables against fungi, bacteria, viruses, and other abiotic stresses. In addition to that, chitosan effectively improves the physiological properties of plants and also enhances the shelf life of post-harvest produces. Moreover, chitosan treatment regulates several genes in plants, particularly the activation of plant defense signaling pathways. That includes the elicitation of phytoalexins and pathogenesis-related (PR protein. Besides that, chitosan has been employed in soil as a plant nutrient and has shown great efficacy in combination with other industrial fertilizers without affecting the soil’s beneficial microbes. Furthermore, it is helpful in reducing the fertilizer losses due to its coating ability, which is important in keeping the environmental pollution under check. Based on exhibiting such excellent properties, there is a striking interest in using chitosan biopolymers in agriculture systems. Therefore, our current review has been centered upon the multiple roles of chitosan in horticultural crops that could be useful in future crop improvement programs.

  4. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan

    International Nuclear Information System (INIS)

    Hattori, Hidemi; Ishihara, Masayuki

    2015-01-01

    Because the molecular weight (Mw) and degree of deacetylation (DDA) of chitosan can vary depending on the purification method, the identification of appropriate chitosan structures is important for developing more effective hemostatic agents. In this study, the influence of varying Mw and DDA of chitosan on blood aggregation was characterized by 10 types of chitosan with different Mw and DDA, including oligomers. The highest aggregation of whole blood, washed erythrocytes and platelets in platelet-rich plasma (PRP) were observed in chitosan with Mw of 8.6 kDa or more and with DDA of 75 to 88%. However, chitosan with too high Mw (247 kDa) inhibited the aggregation of whole blood, washed erythrocytes and PRP at high chitosan concentration. At certain concentrations, chitosan with 75–85% DDA and 50–190 kDa and chitosan with 87.6% DDA and 247 kDa both aggregated proteins in PRP. Chitosan oligomer did not affect blood aggregation. The results suggested that the aggregation by chitosan depended on the interaction of positively charged chitosan with negatively charged erythrocytes, platelets and plasma protein. It seemed that a suitable balance of positive charge in chitosan and negative charge in hemocytes and some kinds of proteins was important. To develop a hemostatic with effective blood aggregation, the chitosan should not be limited to a single Mw and a single DDA but may be a mixed chitosan with wide range of Mw (8.6–247 kDa) and DDA of 75 to 88%. (paper)

  5. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular.

    Science.gov (United States)

    Li, Jinyu; Tan, Guoxin; Cheng, Bingchao; Liu, Dandan; Pan, Weisan

    2017-11-01

    To facilitate the hydrophobic drugs modeled by coumarin-6 (Cou-6) acrossing the cornea to the anterior chamber of the rabbit eye, chitosan (CS) derivatives including chitosan-N-acetyl-l-cysteine (CS-NAC), chitosan oligosaccharides (COS) and carboxymethyl chitosan (CMCS) modified nanostructured lipid carriers (NLCs) were designed and characterized. We found that, with similar size distribution and positivecharges, different CS derivatives based on NLCs led to distinctive delivery performance. In vivo precorneal retention study on rabbits revealed that these CS derivatives coating exhibited a stronger resistant effect than Cou-6 eye drops and Cou-6-NLC (P<0.05), moreover, the AUC (0-∞) , C max and MRT (0-∞) of them followed the sequence of CMCS-Cou-6-NLC

  6. Adsorption of chitosan onto carbonaceous surfaces and its application: atomic force microscopy study

    International Nuclear Information System (INIS)

    Tan Shengnan; Liu Zhiguo; Zu Yuangang; Fu Yujie; Xing Zhimin; Zhao Lin; Sun Tongze; Zhou Zhen

    2011-01-01

    The adsorption of chitosan onto highly ordered pyrolytic graphite(HOPG) surfaces and its applications have been studied by atomic force microscopy (AFM). The results indicated that chitosan topography formed on the HOPG surface significantly depends on the pH conditions and its concentration for the incubation. Under strongly acidic conditions (pH -1 , chitosan formed into uniform network structures composed of fine chains. When the solution pH was changed from 3.5 to 6.5, chitosan tends to form a thicker film. Under neutral and basic conditions, chitosan changed into spherical nanoparticles, and their sizes were increased with increasing pH. Dendritic structures have been observed when the chitosan concentration was increased up to 5 mg ml -1 . In addition, the chitosan topography can also be influenced by ionic strength and the addition of different metal ions. When 0.1 M metal ions Na + , Mg 2+ , Ca 2+ and Cu 2+ were added into the chitosan solution at pH 3.0 for the incubation, network structures, branched chains, block structures and dense networks attached with many small particles were observed, respectively. The potential applications of these chitosan structures on HOPG have been explored. Preliminary results characterized by AFM and XPS indicated that the chitosan network formed on the HOPG surface can be used for AFM lithography, selective adsorption of gold nanoparticles and DNA molecules.

  7. A healing method of tympanic membrane perforations using three-dimensional porous chitosan scaffolds.

    Science.gov (United States)

    Kim, Jangho; Kim, Seung Won; Choi, Seong Jun; Lim, Ki Taek; Lee, Jong Bin; Seonwoo, Hoon; Choung, Pill-Hoon; Park, Keehyun; Cho, Chong-Su; Choung, Yun-Hoon; Chung, Jong Hoon

    2011-11-01

    Both surgical tympanoplasty and paper patch grafts are frequently procedured to heal tympanic membrane (TM) perforation or chronic otitis media, despite their many disadvantages. In this study, we report a new healing method of TM perforation by using three-dimensional (3D) porous chitosan scaffolds (3D chitosan scaffolds) as an alternative method to surgical treatment or paper patch graft. Various 3D chitosan scaffolds were prepared; and the structural characteristics, mechanical property, in vitro biocompatibility, and healing effects of the 3D chitosan scaffolds as an artificial TM in in vivo animal studies were investigated. A 3D chitosan scaffold of 5 wt.% chitosan concentration showed good proliferation of TM cells in an in vitro study, as well as suitable structural characteristics and mechanical property, as compared with either 1% or 3% chitosan. In in vivo animal studies, 3D chitosan scaffold were able to migrate through the pores and surfaces of TM cells, thus leading to more effective TM regeneration than paper patch technique. Histological observations demonstrated that the regenerated TM with the 3D chitosan scaffold consisted of three (epidermal, connective tissue, and mucosal) layers and were thicker than normal TMs. The 3D chitosan scaffold technique may be an optimal healing method used in lieu of surgical tympanoplasty in certain cases to heal perforated TMs.

  8. Effect of γ-irradiation on the thermomechanical and morphological properties of chitosan obtained from prawn shell: Evaluation of potential for irradiated chitosan as plant growth stimulator for Malabar spinach

    International Nuclear Information System (INIS)

    Rahman, Mohammed Mizanur; Kabir, Shahriar; Rashid, Taslim Ur; Nesa, Bodrun; Nasrin, Romana; Haque, Papia; Khan, Mubarak A.

    2013-01-01

    In the present study we have synthesized chitosan from waste prawn shell via γ-irradiation of chitin and subsequent alkaline treatment. The detailed experimental studies demonstrated that nonirradiated chitin deacetylated by 40% NaOH solution showed 72% degree of deacetylation (DD), however 50 kGy irradiated chitin, deacetylated by 20% NaOH demonstrated 81.5% DD. Chitosan in solid state as obtained from γ-irradiation of chitin was further irradiated by different doses (2–100 kGy) of gamma irradiation and the effects of irradiation on the molecular weight, thermo-mechanical by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and antimicrobial properties were evaluated with respect to nonirradiated chitosan sample. Gamma irradiation of chitosan with a dose of 100 kGy caused a decrease in average molecular weight from 1.9×10 5 to 6.5×10 4 Da and thus increased its solubility in water. Nonirradiated and γ-irradiated chitosan at concentration 1% (w/w) in water were prepared and used to evaluate of its potentiality for growth stimulation of Malabar spinach. The chitosan solution was sprayed on the specimen plants and neighboring soil where germinations were taken place and various plant growth parameters such as plant height, number of leaves, leaf areas, dry and wet weight of the plants and roots were investigated. The details study revealed that application of 30 kGy irradiated chitosan yielded 60% higher growth of the Malabar spinach than that obtained from nonirradiated chitosan. The data are consistent with preliminary results from field experiments and unambiguously confirms that a minor amount of chitosan has a profound effect on the growth and development of Malabar spinach. - Highlight: ► A new approach for chitosan synthesis by γ-irradiation of chitin was described. ► Effect of irradiation on the various properties of chitosan was investigated. ► Irradiation causes scission of glycosidic linkage thus decrease of mw of

  9. Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries.

    Science.gov (United States)

    Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh

    2018-01-01

    Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In vitro assessment of three dimensional dense chitosan-based structures to be used as bioabsorbable implants.

    Science.gov (United States)

    Guitian Oliveira, Nuno; Sirgado, Tatiana; Reis, Luís; Pinto, Luís F V; da Silva, Cláudia Lobato; Ferreira, Frederico Castelo; Rodrigues, Alexandra

    2014-12-01

    Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chitosan oligosaccharides with degree of polymerization 2-6 induces apoptosis in human colon carcinoma HCT116 cells.

    Science.gov (United States)

    Zou, Pan; Yuan, Shoujun; Yang, Xin; Zhai, Xingchen; Wang, Jing

    2018-01-05

    Colon cancer is the third most common cancer, and yet there is a lack of effective therapeutic method with low side effects. Chitosan oligosaccharides (COS) is derived from chitosan after chitin deacetylation, and attracts more interests due to smaller molecular weight and soluble property. Previously, COS, mainly absorbed through intestinal epithelia, has been reported to exhibit many bioactivities, especially its anti-tumor effect. Recent references pay little attention to molecular weight distribution which is crucial for understanding its biological behavior. Here, we studied reducing sugar content and degree of polymerization (DP) of COS. 86.73% reducing sugar exists in COS sample and the content of chitosan fractions with 2-6 is 85.8%. COS suppressed the growth of HCT116 cells in vitro and in vivo, and the inhibition rate of tumor weight in vivo was high up to 58.6%. Moreover, the morphology observation, flow cytometry analysis and mRNA expression were applied to study the apoptosis related mechanism. COS treatment promoted mitosis, late stage apoptosis and S cell cycle arrest in HCT116 cells, and enhanced the mRNA expression of BAK and reduce BCL-2 and BCL-x L . These findings may provide an important clue for clinical applications of COS as anti-tumor drug or pharmaceutic adjuvant in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Surface modification on silicon with chitosan and biological research

    International Nuclear Information System (INIS)

    Lue Xiaoying; Cui Wei; Huang Yan; Zhao Yi; Wang Zhigong

    2009-01-01

    The aim of the present study was to investigate the effect of chitosan modification of silicon (Si) on protein adsorption, cell adhesion and cell proliferation. Chitosan was first immobilized on the Si surface through a (3-aminopropyl)triethoxysilane (APTES) bridge. The surface was then characterized by contact angle measurement, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). The amount of protein adsorbed on the native Si and chitosan-modified Si surface was evaluated by a modified Coomassie brilliant blue (CBB) protein assay. The adhesion and proliferation behavior of L-929 and pc12 cells were then assessed by microscopy and methylthiazoltetrazolium (MTT) tests. The results showed that the chitosan modification could resist protein adsorption and inhibit the adhesion and proliferation of two kinds of cells on Si.

  13. Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

    Science.gov (United States)

    Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang

    2017-11-01

    The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.

  14. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    Science.gov (United States)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  15. Chitosan and Nanohydroxyapatite Roles in Physical and Chemical Characteristics of Gelatin/Chitosan/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2010-12-01

    Full Text Available The effects of chitosan/biopolymer (C/P and nanohydroxyapatite/ biopolymer (nHA/P weight ratios on particle size and its uniformity, cross-linking density and NH2 content of nano-hydroxyapatite/chitosan/gelatin (nHA/C/G microspheres were investigated. Microspheres were fabricated using water-in-oil emulsion. Cross-linking of microspheres was performed using water soluble carbodiimide. Particle size and its uniformity were evaluated using an optical microscope. The morphology of microspheres was studied by scanning electron microscopy. The obtained data from particle size measurements revealed that increments in C/P ratio increased the particle size while reducing its uniformity, and increased the NH2 content and cross linking density of the microspheres. It was shown that incremental increase in nHA/P ratio increased the particle size and its uniformity and reduced the NH2 content and cross-linking density of the microspheres.Morphological studies showed that the fabricated microspheres had spherical shape in medium level of C/P ratio and nHA/P ratio. However, increasing in chitosan/biopolymer ratio induced some micro-cracks into the structure of microspheres.

  16. Preparation and Comparison of Chitosan Nanoparticles with Different Degrees of Glutathione Thiolation

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2011-12-01

    Full Text Available Background: Chitosan has gained considerable attentions as a biocompatible carrier to improve delivery of active agents. Application of this vehicle in the form of nanoparticle could profit advantages of nanotechnology to increase efficacy of active agents. The purpose of this study was to provide detailed information about chitosan-glutathione (Cht-GSHnanoparticles which are gaining popularity because of their high mucoadhesive and extended drug release properties. Methods: Depolymerization of chitosan was carried out using sodium nitrite method.Glutathione was covalently attached to chitosan and the solubility of the resulting conjugates was evaluated. Nanoparticles were prepared by ionic gelation method and then the effect of glutathione immobilization on properties of nanoparticles was investigated. Results: Thiolation efficiency was higher in lower molecular weight chitosan polymers compared to unmodified chitosan nanoparticles. Cht-GSH conjugates of the same molecular weight but with different degrees of thiolation had the same hydrodynamic diameter (995± nm and surface charge (102± mV as unmodified chitosan, but comprised of a denser network structure and lower concentration. Cht-GSH nanoparticles also exhibited greater mucoadhesive strength which was less affected by ionic strength and pH of the environment. Conclusion:Thiolation improves the solubility of chitosan without any significant changes in size and charge of nanoparticles, but affects the nanogel structure.

  17. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features

    Directory of Open Access Journals (Sweden)

    Simona Dimida

    2017-01-01

    Full Text Available Genipin (GN is a natural molecule extracted from the fruit of Gardenia jasminoides Ellis according to modern microbiological processes. Genipin is considered as a favorable cross-linking agent due to its low cytotoxicity compared to widely used cross-linkers; it cross-links compounds with primary amine groups such as proteins, collagen, and chitosan. Chitosan is a biocompatible polymer that is currently studied in bone tissue engineering for its capacity to promote growth and mineral-rich matrix deposition by osteoblasts in culture. In this work, two genipin cross-linked chitosan scaffolds for bone repair and regeneration were prepared with different GN concentrations, and their chemical, physical, and biological properties were explored. Scanning electron microscopy and mechanical tests revealed that nonremarkable changes in morphology, porosity, and mechanical strength of scaffolds are induced by increasing the cross-linking degree. Also, the degradation rate was shown to decrease while increasing the cross-linking degree, with the high cross-linking density of the scaffold disabling the hydrolysis activity. Finally, basic biocompatibility was investigated in vitro, by evaluating proliferation of two human-derived cell lines, namely, the MG63 (human immortalized osteosarcoma and the hMSCs (human mesenchymal stem cells, as suitable cell models for bone tissue engineering applications of biomaterials.

  18. Synthesis, physiochemical and optical properties of chitosan based dye containing naphthalimide group.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2013-04-15

    A new biopolymer dye containing naphthalimide moiety was synthesized by reaction of N-naphthaloyl chitosan with 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazino-3-quinolinecarboxylic acid. N-naphthaloyl chitosan was synthesized by reaction of chitosan with 4-bromo-1,8-naphthalic anhydride in aqueous media by greener approach. The degree of substitution of chitosan biopolymer dye is 0.55 with a yield of 70%. The synthesized materials were characterized by using UV-vis, (1)H NMR, FTIR, and FT-Raman spectroscopy. Some physical properties and surface morphology were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Optical properties of chitosan biopolymer dye were evaluated by photoluminescence (PL) spectroscopy that showed red shift (λ(em)) peak at 442 nm and 551 nm at excitation wavelength 325 nm in comparison to chitosan. The solubility of chitosan biopolymer dye increased in most of the organic solvents. These results may provide new perspectives in biomedical applications as an optical and sensitive biosensor material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. On human health.

    Science.gov (United States)

    van Spijk, Piet

    2015-05-01

    If it is true that health is a priority objective of medicine, then medical practice can only be successful if the meaning of the term "health" is known. Various attempts have been made over the years to define health. This paper proposes a new definition. In addition to current health concepts, it also takes into account the distinction between specifically human (great) health and health as the absence of disease and illness-i.e. small health. The feeling of leading a life that makes sense plays a key role in determining specifically human great health.

  20. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  1. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite.

    Science.gov (United States)

    Kumar, Santosh; Koh, Joonseok

    2014-09-01

    In the present investigation an ecofriendly approach and a simple homogeneous solution casting method led to the development of biodegradable chitosan/graphene oxide bionanocomposites. The formation of bionanocomposite was confirmed by UV-vis, FT-IR, Raman spectroscopy, XRD, and further evaluated by thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The circular dichroism (CD) study of chitosan/graphene oxide revealed that the intensity of the negative transition band at wavelength of 200-222 nm decreased with the different pH of chitosan/graphene oxide solutions. It was also found that the pH conditions affect the interaction between chitosan and graphene oxide. Optical properties of chitosan/graphene oxide are evaluated by photoluminescence (PL) spectroscopy which showed blue shift at excitation wavelength of 255 nm compared to graphene oxide. These results strongly suggest that the bionanocomposite materials may open new vistas in biotechnological, biosensor and biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. tRNA conjugation with chitosan nanoparticles: An AFM imaging study.

    Science.gov (United States)

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-04-01

    The conjugation of tRNA with chitosan nanoparticles of different sizes 15,100 and 200 kDa was investigated in aqueous solution using multiple spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed that chitosan binds tRNA via G-C and A-U base pairs as well as backbone PO2 group, through electrostatic, hydrophilic and H-bonding contacts with overall binding constants of KCh-15-tRNA=4.1 (±0.60)×10(3)M(-1), KCh-100-tRNA=5.7 (±0.8)×10(3)M(-1) and KCh-200-tRNA=1.2 (±0.3)×10(4)M(-1). As chitosan size increases more stable polymer-tRNA conjugate is formed. AFM images showed major tRNA aggregation and particle formation occurred as chitosan concentration increased. Even though chitosan induced major biopolymer structural changes, tRNA remains in A-family structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Sorption characteristics of technetium on crosslinked chitosan from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    Sorption of technetium on crosslinked chitosan was studied using batch techniques in static arrangement of experiment under aerobic conditions at laboratory temperature. The adsorption of technetium was rapid and the percentage of the technetium sorption was > 98 %. In the pH range of 3-11 adsorption of technetium on crosslinked chitosan was > 98 %. The competition effect of Fe 3+ towards TcO 4 - sorption on crosslinked chitosan was stronger than the competition effect of other observed cations. The selectivity of crosslinked chitosan for these cations in solution with the concentration above 1·10 -3 mol·dm -3 was in the order Fe 3+ > Ca 2+ > Na + > Fe 2+ . The competition effect of (ClO 4 ) - towards TcO 4 - sorption was stronger than the competition effect of (SO 4 ) 2 - ions. From these results it can be expected that crosslinked chitosan could be a suitable sorbent for the immobilization of technetium in the liquid radioactive waste. (authors)

  4. Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone).

    Science.gov (United States)

    de Queiroz Antonino, Rayane Santa Cruz Martins; Lia Fook, Bianca Rosa Paschoal; de Oliveira Lima, Vítor Alexandre; de Farias Rached, Raid Ícaro; Lima, Eunice Paloma Nascimento; da Silva Lima, Rodrigo José; Peniche Covas, Carlos Andrés; Lia Fook, Marcus Vinícius

    2017-05-15

    The main source of commercial chitosan is the extensive deacetylation of its parent polymer chitin. It is present in green algae, the cell walls or fungi and in the exoskeleton of crustaceans. A novel procedure for preparing chitosan from shrimp shells was developed. The procedure involves two 10-minutes bleaching steps with ethanol after the usual demineralization and deproteinization processes. Before deacetylation, chitin was immersed in 12.5 M NaOH, cooled down and kept frozen for 24 h. The obtained chitosan was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV, X-ray diffraction (XRD) and viscosimetry. Samples of white chitosan with acetylation degrees below 9 % were obtained, as determined by FTIR and UV-first derivative spectroscopy. The change in the morphology of samples was followed by SEM. The ash content of chitosan samples were all below 0.063 % . Chitosan was soluble in 1 % acetic acid with insoluble contents of 0.62 % or less. XRD patterns exhibited the characteristic peaks of chitosan centered at 10 and 20 degrees in 2 θ . The molecular weight of chitosan was between 2.3 and 2.8 × 10 5 g/mol. It is concluded that the procedure developed in the present work allowed obtaining chitosans with physical and chemical properties suitable for pharmaceutical applications.

  5. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.

    Science.gov (United States)

    Alnoman, Maryam; Udompijitkul, Pathima; Sarker, Mahfuzur R

    2017-06-01

    Clostridium perfringens is a spore-forming bacterium and a major cause of bacterial food-borne illness. In this study, we evaluated the inhibitory effects of chitosan against spore germination, spore outgrowth and vegetative growth of C. perfringens food poisoning (FP) isolates. Chitosan of differing molecular weights inhibited germination of spores of all tested FP isolates in a KCl germinant solution containing 0.1 mg/ml chitosan at pH 4.5. However, higher level (0.25 mg/ml) of chitosan was required to effectively arrest outgrowth of the germinated C. perfringens spores in Tripticase-yeast extract-glucose (TGY) medium. Furthermore, chitosan (1.0 mg/ml) was bacteriostatic against vegetative cells of C. perfringens in TGY medium. Although chitosan showed strong inhibitory activities against C. perfringens in laboratory medium, higher levels (2.0 mg/g) were required to achieve similar inhibition of spores inoculated into chicken meat. In summary, the inhibitory effects of chitosan against C. perfringens FP isolates was concentration dependent, and no major difference was observed when using different molecule weight chitosan as an inhibitor. Our results contribute to a better understanding on the potential application of chitosan in cooked meat products to control C. perfringens-associated disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Influences of gamma irradiation treatment on the molecular weight of chitosan

    International Nuclear Information System (INIS)

    Luu Thi Tho; Nguyen Viet Thong; Tran Minh Quynh; Vu Thi Hong Khanh

    2013-01-01

    Effects of gamma radiation on molecular properties of shrimp and squid chitosan (MTV, Vietnam) have been studied with three kind chitosan that having degree of deacetylation 75% and different molecular molecular weight of 69, 187 and 345 kDa, Chitosan samples were irradiated at the same dose rate of 4.3 kGy per hour with various radiation dose of 25, 50, 75, 100, 200 and 500 kGy. The viscosity average molecular weight and degree of deacetylation (DD) of chitosan before and after irradiation have been investigated via their intrinsic viscosity and Furrier transform infra-red (FT-IR). The data revealed the chitosan backbone chains has been degraded by gamma radiation, resulting in the smaller fragments with reduced molecular weight to 3000 Da, whereas their DD have not much changed. (author)

  7. One-Step Method for Preparation of Magnetic Nanoparticles Coated with Chitosan

    Directory of Open Access Journals (Sweden)

    Karla M. Gregorio-Jauregui

    2012-01-01

    Full Text Available Preparation of magnetic nanoparticles coated with chitosan in one step by the coprecipitation method in the presence of different chitosan concentrations is reported here. Obtaining of magnetic superparamagnetic nanoparticles was confirmed by X-ray diffraction and magnetic measurements. Scanning transmission electron microscopy allowed to identify spheroidal nanoparticles with around 10-11 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy demonstrated that composite chitosan-magnetic nanoparticles were obtained. Chitosan content in obtained nanocomposites was estimated by thermogravimetric analysis. The nanocomposites were tested in Pb2+ removal from a PbCl2 aqueous solution, showing a removal efficacy up to 53.6%. This work provides a simple method for chitosan-coated nanoparticles obtaining, which could be useful for heavy metal ions removal from water.

  8. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  9. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    OpenAIRE

    Yavuz, Gonul; Zille, Andrea; Seventekin, N.; Souto, A. Pedro

    2017-01-01

    Abstract. In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fab...

  10. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi.

    Science.gov (United States)

    Xing, Ke; Shen, Xiaoqiang; Zhu, Xiao; Ju, Xiuyun; Miao, Xiangmin; Tian, Jun; Feng, Zhaozhong; Peng, Xue; Jiang, Jihong; Qin, Sheng

    2016-01-01

    An antifungal dispersion system was prepared by oleoyl-chitosan (O-chitosan) nanoparticles, and the antifungal activity against several plant pathogenic fungi was investigated. Under scanning electron microscopy, the nanoparticles formulation appeared to be uniform with almost spherical shape. The particle size of nanoparticles was around 296.962 nm. Transmission electron microscopy observation showed that nanoparticles could be well distributed in potato dextrose agar medium. Mycelium growth experiment demonstrated that Nigrospora sphaerica, Botryosphaeria dothidea, Nigrospora oryzae and Alternaria tenuissima were chitosan-sensitive, while Gibberella zeae and Fusarium culmorum were chitosan-resistant. The antifungal index was increased as the concentration of nanoparticles increased for chitosan-sensitive fungi. Fatty acid analyses revealed that plasma membranes of chitosan-sensitive fungi were shown to have lower levels of unsaturated fatty acid than chitosan-resistant fungi. Phylogenetic analysis based on ITS gene sequences indicated that two chitosan-resistant fungi had a near phylogenetic relationship. Results showed that O-chitosan nanoparticles could be a useful alternative for controlling pathogenic fungi in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Endochitinase 1 (Tv-ECH1) from Trichoderma virens has high subsite specificities for acetylated units when acting on chitosans.

    Science.gov (United States)

    Bußwinkel, Franziska; Goñi, Oscar; Cord-Landwehr, Stefan; O'Connell, Shane; Moerschbacher, Bruno M

    2018-03-15

    Chitosans with defined characteristics have been shown to possess reproducible bioactivities for numerous applications. A promising approach for producing chitosans with defined degrees of polymerization (DP), degrees of acetylation (DA), and patterns of acetylation (PA) involves using chitin-modifying enzymes. One such enzyme, the chitinase Tv-ECH1 belonging to the glycoside hydrolase (GH) family 18, seems to have an important role in the biocontrol properties of the fungus Trichoderma virens, suggesting its potential in generating novel chitosans for plant health applications. In this study, the Tv-ECH1 enzyme was overexpressed in the methylotrophic yeast Pichia pastoris, yielding large amounts (up to 2mgmL -1 ) of purified recombinant enzyme of high activity, high purity, and high stability, making the system promising for industrial production of Tv-ECH1. The purified Tv-ECH1 chitinase displayed a wide optimal pH range from 4.5 to 6 and an optimal temperature of 37°C. Detailed subsite specificity analyses revealed high preference for acetylated residues at all four subsites analyzed (-2, -1, +1, +2), making Tv-ECH1 a promising candidate for the biotechnological production of specific chitosan oligomers and for the characterization of chitosan polymers via enzymatic fingerprinting. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    Science.gov (United States)

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  13. Obtention and characterization of chitin and chitosan from M. rosenbergii

    International Nuclear Information System (INIS)

    Battisti, Marcos V.; Campana Filho, Sergio P.

    2001-01-01

    Chitin was extracted from previously ground shells of Macrobrachium rosenbergii by applying acid and alkaline treatments, aiming at its demineralization and deprotenization, respectively. Its characteristics and properties were compared with those exhibited by commercial samples of chitin. Commercial chitosan and samples produced by the deacetylation of chitin obtained from M. rosenbergii shells were also compared. Average degrees of acetylation and intrinsic viscosities of the chitosan were determined by 1 H NMR spectroscopy and by capillary viscosimetry, respectively. The results show that the chitin extracted from Macrobrachium rosenbergii has a lower content of inorganic materials as compared to commercial samples but the chitosan obtained from the former chitin sample is very similar to commercial chitosan. (author)

  14. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjian; BAI Shu; SUN Yan

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin. Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization. Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads. The effects of reaction conditions, such as crosslinking time, the amount of crosslinking agent and the NaOtt concentration,on the physical properties of the chitosan beads were investigated. The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde. The capacity for copper ions is as high as 40mg/g. The beads have good mechanical strength and can be reused.

  15. A NOVEL APPROACH TO SYNTHESIZE CHITOSAN BEADS CROSSLINKED BY EPICHLOROHYDRIN

    Institute of Scientific and Technical Information of China (English)

    WANGYongjina; BAIShu; 等

    2001-01-01

    The present investigation describes a novel method for preparing spherical chitosan particles based on crosslinking with epichlorohydrin.Certain amount of pre-crosslinking agent was added to form chitosan gels by traditional inverse phase suspension polymerization.Then the gels were crosslinked by epichlorohydrin at basic condition to obtain chitosan beads.The effects of reaction conditions,such as crosslinking time,the amount of crosslinking agent and the NaOH concentration,on the physical properties of the chitosan beads were investigated.The beads were found to have more amino groups in the polymer chains than the beads crosslinked by glutaraldehyde.The capacity for copper ions in as high as 40mg/g,The beads have good mechanical strength and can be reused.

  16. Non-monotonic wetting behavior of chitosan films induced by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Praxedes, A.P.P.; Webler, G.D.; Souza, S.T. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Ribeiro, A.S. [Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Fonseca, E.J.S. [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil); Oliveira, I.N. de, E-mail: italo@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, AL (Brazil)

    2016-05-01

    Highlights: • The addition of silver nanoparticles modifies the morphology of chitosan films. • Metallic nanoparticles can be used to control wetting properties of chitosan films. • The contact angle shows a non-monotonic dependence on the silver concentration. - Abstract: The present work is devoted to the study of structural and wetting properties of chitosan-based films containing silver nanoparticles. In particular, the effects of silver concentration on the morphology of chitosan films are characterized by different techniques, such as atomic force microscopy (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). By means of dynamic contact angle measurements, we study the modification on surface properties of chitosan-based films due to the addition of silver nanoparticles. The results are analyzed in the light of molecular-kinetic theory which describes the wetting phenomena in terms of statistical dynamics for the displacement of liquid molecules in a solid substrate. Our results show that the wetting properties of chitosan-based films are high sensitive to the fraction of silver nanoparticles, with the equilibrium contact angle exhibiting a non-monotonic behavior.

  17. Inhibitory Effect of Gamma-Irradiated Chitosan on the Growth of Denitrifiers

    Directory of Open Access Journals (Sweden)

    Javier Vilcáez

    2009-01-01

    Full Text Available In order to find an environmentally benign substitute to hazardous inhibitory agents, the inhibitory effect of -irradiated chitosans against a mixed culture of denitrifying bacteria was experimentally evaluated. Unlike other studies using pure aerobic cultures, the observed effect was not a complete inhibition but a transient inhibition reflected by prolonged lag phases and reduced growth rates. Raw chitosan under acid conditions (pH 6.3 exerted the strongest inhibition followed by the 100 kGy and 500 kGy irradiated chitosans, respectively. Therefore, because the molecular weight of chitosan decreases with the degree of -irradiation, the inhibitory properties of chitosan due to its high molecular weight were more relevant than the inhibitory properties gained due to the modification of the surface charge and/or chemical structure by -irradiation. High dosage of -irradiated appeared to increase the growth of mixed denitrifying bacteria in acid pH media. However, in neutral pH media, high dosage of -irradiation appeared to enhance the inhibitory effect of chitosan.

  18. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  19. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds.

    Science.gov (United States)

    Sellgren, Katelyn L; Ma, Teng

    2015-08-01

    Perfusion bioreactor plays important role in supporting 3D bone construct development. Scaffolds of chitosan composites have been studied to support bone tissue regeneration from osteogenic progenitor cells including human mesenchymal stem cells (hMSC). In this study, porous scaffolds of hydroxyapatite (H), chitosan (C), and gelatin (G) were fabricated by phase-separation and press-fitted in the perfusion bioreactor system where media flow is configured either parallel or transverse with respect to the scaffolds to investigate the impact of flow configuration on hMSC proliferation and osteogenic differentiation. The in vitro results showed that the interstitial flow in the transverse flow (TF) constructs reduced cell growth during the first week of culture but improved spatial cell distribution and early onset of osteogenic differentiation measured by alkaline phosphatase and expression of osteogenic genes. After 14 days of bioreactor culture, the TF constructs have comparable cell number but higher expression of bone markers genes and proteins compared to the parallel flow constructs. To evaluate ectopic bone formation, the HCG constructs seeded with hMSCs pre-cultured under two flow configurations for 7 days were implanted in CD-1 nude mice. While Masson's Trichrom staining revealed bone formation in both constructs, the TF constructs have improved spatial cell and osteoid distribution throughout the 2.0 mm constructs. The results highlight the divergent effects of media flow over the course of construct development and suggest that the flow configuration is an important parameter regulating the cellular events leading to bone construct formation in the HCG scaffolds. © 2014 Wiley Periodicals, Inc.

  20. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  1. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  2. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications.

    Science.gov (United States)

    Ono, K; Ishihara, M; Ozeki, Y; Deguchi, H; Sato, M; Saito, Y; Yura, H; Sato, M; Kikuchi, M; Kurita, A; Maehara, T

    2001-11-01

    In various surgical cases, effective tissue adhesives are required for both hemostasis (eg, intraoperative bleeding) and air sealing (eg, thoracic surgery). We have designed a chitosan molecule (Az-CH-LA) that can be photocrosslinked by ultraviolet (UV) light irradiation, thereby forming a hydrogel. The purpose of this work was to evaluate the effectiveness and safety of the photocrosslinkable chitosan hydrogel as an adhesive with surgical applications. The sealing ability of the chitosan hydrogel, determined as a bursting pressure, was assessed with removed thoracic aorta, trachea, and lung of farm pigs and in a rabbit model. The carotid artery and lung of rabbits were punctured with a needle, and the chitosan hydrogel was applied to, respectively, stop the bleeding and the air leakage. In vivo chitosan degradability and biologic responses were histologically assessed in animal models. The bursting pressure of chitosan hydrogel (30 mg/mL) and fibrin glue, respectively, was 225 +/- 25 mm Hg (mean +/- SD) and 80 +/- 20 mm Hg in the thoracic aorta; 77 +/- 29 mm Hg and 48 +/- 21 mm Hg in the trachea; and in the lung, 51 +/- 11 mm Hg (chitosan hydrogel), 62 +/- 4 mm Hg (fibrin glue, rubbing method), and 12 +/- 2 mm Hg (fibrin glue, layer method). The sealing ability of the chitosan hydrogel was stronger than that of fibrin glue. All rabbits with a carotid artery (n = 8) or lung (n = 8) that was punctured with a needle and then sealed with chitosan hydrogel survived the 1-month observation period without any bleeding or air leakage from the puncture sites. Histologic examinations demonstrated that 30 days after application, a fraction of the chitosan hydrogel was phagocytosed by macrophages, had partially degraded, and had induced the formation of fibrous tissues around the hydrogel. A newly developed photocrosslinkable chitosan has demonstrated strong sealing ability and a great potential for use as an adhesive in surgical operations.

  3. Model for the mechanism and regulation of chitosan synthesis in Mucor rouxii

    International Nuclear Information System (INIS)

    Davis, L.L.; Bartnicki-Garcia, S.

    1984-01-01

    The cell walls of mucoraceous fungi are characterized by the joint occurrence of chitosan and chitin, the β-1,4-linked polysaccharides of G1cN and G1cNAc, respectively. It has been proposed that chitosan is made from chitin by enzymatic deacetylation, but the evidence is inconclusive since the deacetylase isolated from Mucor rouxii is effective against glycol chitin, but not against genuine chitin; consequently, chitosan synthesis in vitro was not achieved. The authors discovered that the same deacetylase can deacetylate chitin efficiently if it is allowed to act on chitin chains as they are being formed; i.e. the simultaneous presence and operation of chitin synthetase and chitin deacetylase is required for chitosan synthesis. Subsequent studies on the effect of digitonin on chitosan synthesis were the basis for a model the authors have developed for the regulation of chitosan and chitin syntheses in vivo

  4. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    Science.gov (United States)

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    Science.gov (United States)

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Preparation and protection of silver nanoparticles with chitosan derivative

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Cuc; Cao Van Du; Nguyen Cuu Khoa; Tran Ngoc Quyen

    2013-01-01

    In this paper, nano silver solution is prepared and stabilized by chitosan dihydroxyphenyl acetamide (CDHPA). Chitosan is a natural carbohydrate polymer deriving from chitin that has biodegradable, biocompatible, antibacterial and antifungal properties, so when conjugation of the polymer and silver nanoparticles could be expected to increase bactericidal features of the obtained product. The chemical and physical methods were used to characterize the chitosan derivative such as transmission spectrum (UV-Vis), IR spectrum, nuclear magnetic resonance (1H-NMR). Morphology of the obtained nano silver particles were observed by transmission electron microscopy (TEM). (author)

  7. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  8. Layer-by-Layer Alginate and Fungal Chitosan Based Edible Coatings Applied to Fruit Bars.

    Science.gov (United States)

    Bilbao-Sainz, Cristina; Chiou, Bor-Sen; Punotai, Kaylin; Olson, Donald; Williams, Tina; Wood, Delilah; Rodov, Victor; Poverenov, Elena; McHugh, Tara

    2018-05-30

    Food waste is currently being generated at an increasing rate. One proposed solution would be to convert it to biopolymers for industrial applications. We recovered chitin from mushroom waste and converted it to chitosan to produce edible coatings. We then used layer-by-layer (LbL) electrostatic deposition of the polycation chitosan and the polyanion alginate to coat fruit bars enriched with ascorbic acid. The performance of the LbL coatings was compared with those containing single layers of fungal chitosan, animal origin chitosan and alginate. Bars containing alginate-chitosan LbL coatings showed increased ascorbic acid content, antioxidant capacity, firmness and fungal growth prevention during storage. Also, the origin of the chitosan did not affect the properties of the coatings. Mushroom stalk bases could be an alternative source for isolating chitosan with similar properties to animal-based chitosan. Also, layer-by-layer assembly is a cheap, simple method that can improve the quality and safety of fruit bars. © 2018 Institute of Food Technologists®.

  9. Chitosan-Based Nano-Embedded Microparticles: Impact of Nanogel Composition on Physicochemical Properties

    DEFF Research Database (Denmark)

    Islam, Paromita; Water, Jorrit Jeroen; Bohr, Adam

    2016-01-01

    Chitosan-based nanogels have been widely applied as drug delivery vehicles. Spray-drying of said nanogels allows for the preparation of dry powder nano-embedded microparticles. In this work, chitosan-based nanogels composed of chitosan, alginate, and/or sodium tri-penta phosphate were investigated...

  10. Interactions of cross-linked and uncross-linked chitosan hydrogels ...

    African Journals Online (AJOL)

    The swelling equilibrium of Chitosan and sodium tripolyphosphate (NaTPP) cross-linked chitosan hydrogels in aqueous solutions of surfactants differing in structure and hydrophobicity at 250C is reported. Anionic surfactant sodium dodecylsulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide (HTAB) ...

  11. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    Science.gov (United States)

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.

    Science.gov (United States)

    Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei

    2017-12-01

    C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of Chitosan Binder on Water Absorption of Empty Fruit Bunches Filter Media

    International Nuclear Information System (INIS)

    Aziatul Niza Sadikin; Mohd Ghazali Mohd Nawawi; Norasikin Othman

    2015-01-01

    The potential of chitosan as filter media binder was investigated in this study. Chitosan solution with different concentrations were applied to the empty fruit bunches using two different deposition techniques, namely, spray method and addition method. In this study, a water absorption test was used to study the sorption behaviour of empty fruit bunches filter media. The water absorption study showed that the water uptake for empty fruit bunches filter media without the chitosan binder increases with time, until the water sorption reaches the equilibrium state. It was observed that the water uptake decreased from 23 % to 14 % for the chitosan-filled filter media as compared to binder-less filter media, over the duration of 24 hours. For 1 % chitosan concentration, the water uptake is higher compared to 3 % chitosan-filled filter media. The water absorption is relatively lower for filter media with a higher concentration of chitosan due to the high compatibility achieved at this interfacial region between empty fruit bunches fibres and chitosan. Alkali-treated filter media showed the lowest water uptake compared to diethyl ether, ethanol and hot water pretreatment methods. (author)

  14. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their

  15. Studies for improving and formulating of chitosan-based coatings by radiation treatment for fruit preservation

    International Nuclear Information System (INIS)

    Nguyen Duy Lam; Tran Bang Diep; Tran Minh Quynh; Le Thi Dinh; Nguyen Van Binh; Ho Minh Duc; Vo Van Thuan

    2003-01-01

    Presented are the investigations: effect of chitosan on fruit - spoiling microorganism and enhancement of antifungal activity by radiation treatment; improvement of antimicrobial activity of chitosan by its derivatives synthesis in combination with radiation treatment; dependence of chitosan antimicrobial activity on molecular weight and distribution of molecular weight; comparative study on the antifungal activity of chitosan of various origins tested in different conditions of radiation treatment and culture mediums; formulation of chitosan membranes and for their properties in mango coating; effectiveness of chitosan-based coatings on fresh fruit appearance and quality during storage; influence of irradiated chitosan on rice plant growing in media contaminated with salt and heavy metals; effect of chitosan solution varied in concentration and molecular weight on seed germination and seedling growth of groundnut, soybean and cabbage. (NHA)

  16. Zwitterionic phosphorylcholine grafted chitosan nanofiber: Preparation, characterization and in-vitro cell adhesion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Oktay, Burcu; Kayaman-Apohan, Nilhan, E-mail: napohan@marmara.edu.tr; Süleymanoğlu, Mediha; Erdem-Kuruca, Serap

    2017-04-01

    In this study, zwitterionic phosphorylcholine grafted electrospun chitosan fiber was accomplished in three steps: (1) Azide groups on the chitosan were regioselectively replaced with hydroxyl side group and then the product was electrospun. (2) Chitosan based macroinitiator was prepared using an azide-alkyne click reaction from azide-functionalized electrospun chitosan fiber. (3) Poly(2-methacryloyloxyethyl phosphorylcholine) (MPC) was grafted onto the electrospun chitosan fiber by atom transfer radical polymerization (ATRP) in order to enhance cellular viability and proliferation of 3T3, ECV and Saos. The structure of surface modified chitosan was characterized by Fourier transform infrared spectrometer (FT-IR) and {sup 1}H nuclear magnetic resonance ({sup 1}H NMR). The surface morphology of the nanofibers was investigated by scanning electron microscope (SEM). In-vitro cellular attachment and spreading experiments of 3T3, ECV304 and Saos were performed on electrospun chitosan fibers in the presence and the absence of MPC grafting. Poly(MPC) grafted electrospun fiber showed an excellent performance due to phosphorylcholine groups mimicking the natural phospholipid. - Highlights: • Chitosan was functionalized in a controlled way. • Poly(MPC) grafted electrospun chitosan fiber was prepared by click and ATRP. • Controlled molecular architecture was achieved. • Cellular attachment and spreading efficiency of the nanofiber were investigated. • These nanofibers have potential applications in tissue engineering with tissue.

  17. Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone

    Directory of Open Access Journals (Sweden)

    Rayane Santa Cruz Martins de Queiroz Antonino

    2017-05-01

    Full Text Available The main source of commercial chitosan is the extensive deacetylation of its parent polymer chitin. It is present in green algae, the cell walls or fungi and in the exoskeleton of crustaceans. A novel procedure for preparing chitosan from shrimp shells was developed. The procedure involves two 10-minutes bleaching steps with ethanol after the usual demineralization and deproteinization processes. Before deacetylation, chitin was immersed in 12.5 M NaOH, cooled down and kept frozen for 24 h. The obtained chitosan was characterized using scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, UV, X-ray diffraction (XRD and viscosimetry. Samples of white chitosan with acetylation degrees below 9 % were obtained, as determined by FTIR and UV-first derivative spectroscopy. The change in the morphology of samples was followed by SEM. The ash content of chitosan samples were all below 0.063 % . Chitosan was soluble in 1 % acetic acid with insoluble contents of 0.62 % or less. XRD patterns exhibited the characteristic peaks of chitosan centered at 10 and 20 degrees in 2 θ . The molecular weight of chitosan was between 2.3 and 2.8 × 10 5 g/mol. It is concluded that the procedure developed in the present work allowed obtaining chitosans with physical and chemical properties suitable for pharmaceutical applications.

  18. Nano porous Adsorbent from Chitosan Interacted Montmorillonite for Dye-containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Siriphannon, P.; Monvisade, P.

    2011-01-01

    Chitosan intercalated montmorillonite (Chi-MMT) was prepared by mixing 2 wt% of chitosan solution with sodium mont-morillonite (Na + -MMT) suspension at 60 degree Celsius for 24 hours. The Na + ions in Na + -MMT were completely exchanged with -NH 3 + ions of chitosan, resulting in the intercalation of chitosan into the MMT layer. The chitosan intercalation brought about the expansion of d 001 of Na + -MMT from 1.23 nm to 1.42 - >2.21 nm of the Chi-MMT. The existence of the intercalated-chitosan and large pore size could significantly increase the adsorption capacity of Chi-MMT from those of the starting materials, for example Na + -MMT and chitosan. The adsorption capacity of Chi-MMT adsorbent was equal to 4.9 mg/ g for acid red 91 (AR91) with initial dye concentration of 50 mg/ L, 45.9 mg/ g for basic yellow 1 (BY1) and 15.0 mg/ g for reactive orange 16 (RO16) with initial dye concentration of 500 mg/ L. These results indicated the competency of Chi-MMT nano porous adsorbent for treatment of wastewater containing various kinds of dyestuffs. (author)

  19. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    Directory of Open Access Journals (Sweden)

    Oana Maria Dragostin

    2015-12-01

    Full Text Available The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6 showed the highest swelling ratio (197% and the highest biodegradation rate (63.04% in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5 which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity.

  20. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin.

    Science.gov (United States)

    Ridolfi, Daniela M; Marcato, Priscyla D; Justo, Giselle Z; Cordi, Lívia; Machado, Daisy; Durán, Nelson

    2012-05-01

    Tretinoin (TRE) or all-trans retinoic acid is employed in the topical treatment of various skin diseases including acne and psoriasis. However, its use is strongly limited by side effects and high chemical instability. TRE encapsulation in nanostructured systems reduces these problems. Chitosan is a biopolymer that exhibits a number of interesting properties such as bioadhesion and antibacterial activity. The aim of this work was to prepare and characterize solid lipid nanoparticles (SLN) containing TRE, with and without addition of chitosan, to assess their in vitro cytotoxicity in keratinocytes and to evaluate their antibacterial activity against bacteria related to acne. SLN without (SLN-TRE) and with (SLN-chitosan-TRE) chitosan were prepared by hot high pressure homogenization. The hydrodynamic mean diameter and zeta potential were 162.7±1.4 nm and -31.9±2.0 mV for SLN-TRE, and 284.8±15.0 nm and 55.9±3.1 mV for SLN-chitosan-TRE. The SLN-chitosan-TRE exhibited high encapsulation efficiency, high physical stability in the tested period (one year), were not cytotoxic to keratinocytes and showed high antibacterial activity against P. acnes and S. aureus. Therefore chitosan-SLN can be good candidates to encapsulate TRE and to increase its therapeutic efficacy in the topical treatment of acne. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Chitosan/sporopollenin microcapsules: preparation, characterisation and application in heavy metal removal.

    Science.gov (United States)

    Sargın, İdris; Arslan, Gulsin

    2015-04-01

    Use of natural polymers as biosorbents for heavy metal removal is advantageous. This paper reports a study aiming to design a novel biosorbent from two biomacromolecules; chitosan, a versatile derivative of chitin, and sporopollenin, a biopolymer with excellent mechanical properties and great resistance to chemical and biological attack. Chitosan/sporopollenin microcapsules were prepared via cross-linking and characterised by employing scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. Sorption performance of the microcapsules and the plain chitosan beads were tested for Cu(II), Cd(II), Cr(III), Ni(II) and Zn(II) ions at different metal ion concentration, pH, amount of sorbent, temperature and sorption time. The adsorption pattern followed Langmuir isotherm model and the sorption capacity of the chitosan/sporopollenin microcapsules was found to be Cu(II): 1.34, Cd(II): 0.77, Cr(III): 0.99, Ni(II): 0.58 and Zn(II): 0.71 mmol g(-1). Plain chitosan beads showed higher affinity for the ions; Cu(II): 1.46, Cr(III): 1.16 and Ni(II): 0.81 mmol g(-1) but lower for Cd(II): 0.15 and Zn(II): 0.25 mmol g(-1). Sporopollenin enhanced Cd(II) and Zn(II) ions sorption capacity of the chitosan microcapsules. Chitosan/sporopollenin microcapsules can be used in Cd(II) and Zn(II) metal removal. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Characterization and Cell Culture of a Grafted Chitosan Scaffold for Tissue Engineering

    OpenAIRE

    Hsieh, Wen-Chuan; Liau, Jiun-Jia; Li, Yi-Jhong

    2015-01-01

    Poly(vinyl alcohol) (PVA) was grafted to chitosan to form a porous scaffold. The PVA-g-chitosan 3D scaffold was then observed by Fourier transform infrared spectroscopy (FT-IR). The water absorbency of PVA-g-chitosan was increased 370% by grafting. Scanning electron microscope (SEM) observations of the material revealed that the 3D scaffold is highly porous when formed using a homogenizer at 300 rpm. Compression testing demonstrated that as the amount of chitosan increases, the strength of t...

  3. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    Science.gov (United States)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  4. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  5. Effect of sodium tripolyphosphate concentration and simulated gastrointestinal fluids on release profile of paracetamol from chitosan microsphere

    Science.gov (United States)

    Mulia, Kamarza; Andrie; Krisanti, Elsa A.

    2018-03-01

    The problem to overcome in oral drug administration is the significant pH changes present in the human digestive system. In this study, ionotropic gelation method employing 2-8% (w/v) tripolyphosphate solutions were used to crosslink chitosan microspheres for a controlled release of paracetamol as a model drug. The release profiles of paracetamol from chitosan microspheres were determined using simulated gastrointestinal fluids having pH values of 1.2, 6.8, and 7.4. The results showed that the paracetamol loading and the encapsulation efficiency values increased with increasing concentration of tripolyphosphate solutions used in the preparation step. Paracetamol released at pH 1.2 and 6.8 buffer solutions was significantly higher than that at pH 7.4; also, more paracetamol was released in the presence of α-amylase and β-glucosidase enzymes. The release profiles showed zero-order release behaviour up to 8 hours where the highest drug release was 39% of the paracetamol loaded in the chitosan microspheres, indicating a strong crosslinking between chitosan and TPP anions. The relatively low accumulated drug release could be compensated by employing suitable enzymes, lower TPP solution concentration, and addition of other biodegradable polymer to reduce the TPP crosslink.

  6. Synthesis of chitosan derivative with diethyldithiocarbamate and its antifungal activity.

    Science.gov (United States)

    Qin, Yukun; Xing, Ronge; Liu, Song; Li, Kecheng; Hu, Linfeng; Yu, Huahua; Chen, Xiaolin; Li, Pengcheng

    2014-04-01

    With an aim to discover novel chitosan derivatives with enhanced antifungal properties compared with chitosan. Diethyl dithiocarbamate chitosan (EtDTCCS) was investigated and its structure was well identified. The antifungal activity of EtDTCCS against Alternaria porri (A. porri), Gloeosporium theae sinensis Miyake (G. theae sinensis), and Stemphylium solani Weber (S. solani) was tested at 0.25, 0.5, and 1.0 mg/mL, respectively. Compared with plain chitosan, EtDTCCS shows better inhibitory effect with 93.2% inhibitory index on G. theae sinensis at 1.0 mg/mL, even stronger than for polyoxin (82.5%). It was inferred derivatives of this kind may find potential applications for the treatment of various crop-threatening diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Extraction and characterization of chitin and chitosan from Nigerian ...

    African Journals Online (AJOL)

    Chitin was synthesized from Nigerian brown shrimps by a chemical process involving demineralization and deproteinisation. Deacetylation of the chitin was conducted to obtain Chitosan. The chitin and chitosan were characterized using FTIR, XRD and SEM. Proximate and elemental analysis were also conducted.

  10. ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives

    Directory of Open Access Journals (Sweden)

    Adriana Isvoran

    2017-09-01

    Full Text Available Within this study we use a few computational tools for predicting absorption, distribution, metabolism, excretion and toxicity (ADME-Tox, pharmacokinetics profiles, toxic/adverse effects, carcinogenicity, cardiotoxicity and endocrine disruption of some of low molecular weight water soluble derivatives of chitosan that are used in wound healing. Investigated compounds do not possess drug-like properties, their pharmacokinetics profiles reveal poor gastrointestinal absorption and low skin penetration. Chitosan derivatives cannot pass the blood-brain barrier and they are not able to inhibit the enzymes of the cytochrome P450 that are involved in the metabolism of xenobiotics. They do not reflect carcinogenicity and cardiotoxicity and reveal only a low probability to be endocrine disruptors. The main side effects in humans of the investigated compounds are: weight loss, acidosis, gastrointestinal toxicity, respiratory failure. This information is especially important for professional exposure and accidental contamination with these compounds.

  11. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Science.gov (United States)

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  12. Preparation of metal adsorbents from chitin/chitosan by radiation technology

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Quoc Hien; Ngo Quang Huy; Thai My Phe; Dao Van Hoang; Nguyen Van Hung

    2004-01-01

    The methods of preparation of metal adsorbents basing on chitin/chitosan were developed. That include the adsorbent from chitin grafted with acrylic acid by different irradiation doses; the clinging chitosan gel beads; the coagulable solution and the chitosan composite filter. The process of metal adsorption for each adsorbent was studied as adsorption kinetic, isothermal adsorption. The results have been applied for removal of some elements as Hg, Pb, Cd, U, Cu, ect. in the wastewater. (NHA)

  13. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  14. The dispersion of fine chitosan particles by beads-milling

    Science.gov (United States)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  15. Chitosan Based Regenerated Cellulose Fibers Functionalized with Plasma and Ultrasound

    Directory of Open Access Journals (Sweden)

    Urška Vrabič Brodnjak

    2018-04-01

    Full Text Available The great potential of regenerated cellulose fibers, which offer excellent possibilities as a matrix for the design of bioactive materials, was the lead for our research. We focused on the surface modification of fibers to improve the sorption properties of regenerated cellulose and biocomposite regenerated cellulose/chitosan fibers, which are on the market. The purpose of our investigation was also the modification of regenerated cellulose fibers with the functionalization by chitosan as a means of obtaining similar properties to biocomposite regenerated cellulose/chitosan fibers on the market. Argon gas plasma was used for fiber surface activation and chitosan adsorption. Ultrasound was also used as a treatment procedure for the surface activation of regenerated cellulose fibers and treatment with chitosan. Analyses have shown that ultrasonic energy or plasma change the accessibility of free functional groups, structure and reactivity, especially in regenerated cellulose fibers. Changes that occurred in the morphology and in the structure of fibers were also reflected in their physical and chemical properties. Consequently, moisture content, sorption properties and water retention improved.

  16. In-Vitro Enzymatic Degradation of γ-irradiated Porous Chitosan Scaffold: Crystallinity and degree of deacetylation

    International Nuclear Information System (INIS)

    Ismail Zainol; Azreena Mastor; Suhaida Md Ghani; Ahmad Fuad Yahya; Hazizan Md Akil

    2009-01-01

    Full text: Enzymatic degradation behavior of porous chitosan membrane was carried out in vitro by using enzymatic hydrolysis of chitosan in lysozyme solution. Chitosan was first modified by reducing its molecular weight by gamma (γ) radiation in the solid state. The chitosan powder was irradiated with gamma Co 60 source with various doses of 10, 25, 50 and 100 kGy. The molecular weight of irradiated chitosan was measured using visco metric method. The modified chitosan was transform into a porous membrane by lyophilization method. Degree of deacetylation (DD) and crystallinity of samples were measured using FTIR and XRD respectively on both gamma irradiated and enzymatic degradation samples. The results suggested that the irradiated chitosan become less crystalline without changes in DD. The enzymatic degradation of chitosan however shows an increment in DD and crystallinity. (author)

  17. Preparation of chitosan-ferulic acid conjugate: Structure characterization and in the application of pharmaceuticals.

    Science.gov (United States)

    Li, Chen; Li, Jian-Bin

    2017-12-01

    A novel drug delivery system based on chitosan derivatives was prepared by introducting ferulic acid to chitosan adopting a free radical-induced grafting procedure. This paper used an ascorbic acid/hydrogen peroxide redox pair as radical initiator. The chitosan derivative was characterized by Fourier transformed infrared (FTIR), Ultraviolet-visible spectrum (UV), Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Electron microscopic scanning (SEM). What is more, preparing microcapsules with the chitosan conjugate as wall material, the drug release propertie of chitosan conjugates were compared with that of a blank chitosan, which treated in the same conditions but in the absence of ferulic acid. The study clearly demonstrates that free radical-induced grafting procedure was an effective reaction methods and chitosan-ferulic acid is a potential functionalized carrier material for drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Preparation and properties of hydrogels of PVA/PVP/chitosan by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Park, K. R.

    2001-01-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. The radiation crosslinking can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking which can restrict the application possibilities. In these studies, hydrogels from a mixture of chitosan and polyvinyl alcohol(PVA)/Poly-N-vinylpyrrolidone(PVP) were made by 'freezing and thawing', or gamma-ray irradiation or two steps of 'freezing and thawing', and gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The mechanical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. The composition of PVA:PVP was 60:40, PVA/PVP: chitosan ratio was in the range of 9:1 -7:3, and the solid concentration of PVA/PVP/chitosan solution was 15wt%. Gamma irradiation doses of 25, 35, 50, 60 and 70kGy, respectively were exposed to a mixture of PVA/PVP/chitosan to evaluate the effect of irradiation dose on the mechanical properties of hydrogels. Water-soluble chitosan was used to in this experiment. The mechanical properties of hydrogels such as gelation and gel strength was higher when two steps of 'freezing and thawing' and irradiation were used than only 'freezing and thawing' was utilized. Gel content was influenced slightly by PVA/PVP:chitosan composition and irradiation dose, but swelling was done greatly by them. Swelling percent was much increased as the composition of chitosan in PVA/PVP/chitosan increased

  19. Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate.

    Science.gov (United States)

    Zia, Khalid Mahmood; Anjum, Sohail; Zuber, Mohammad; Mujahid, Muhammad; Jamil, Tahir

    2014-05-01

    The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Thermal decomposition of natural polysaccharides: Chitin and chitosan

    Directory of Open Access Journals (Sweden)

    Kuchina Yu.A.

    2015-03-01

    Full Text Available The results of the thermal analysis of shrimp’s chitin and chitosan have been presented (samples of polysaccharide differed by the deacetylation degree have been studied. The thermal analysis has been carried out by differential thermogravimetry and differential scanning calorimetry. Activation energy of process of chitin and chitosan thermal destruction has been calculated