WorldWideScience

Sample records for human head movements

  1. Head movement, an important contributor to human cerebrospinal fluid circulation

    Science.gov (United States)

    Xu, Qiang; Yu, Sheng-Bo; Zheng, Nan; Yuan, Xiao-Ying; Chi, Yan-Yan; Liu, Cong; Wang, Xue-Mei; Lin, Xiang-Tao; Sui, Hong-Jin

    2016-01-01

    The suboccipital muscles are connected to the upper cervical spinal dura mater via the myodural bridges (MDBs). Recently, it was suggested that they might work as a pump to provide power for cerebrospinal fluid (CSF) circulation. The purpose of this study was to investigate effects of the suboccipital muscles contractions on the CSF flow. Forty healthy adult volunteers were subjected to cine phase-contrast MR imaging. Each volunteer was scanned twice, once before and once after one-minute-head-rotation period. CSF flow waveform parameters at craniocervical junction were analyzed. The results showed that, after the head rotations, the maximum and average CSF flow rates during ventricular diastole were significantly increased, and the CSF stroke volumes during diastole and during entire cardiac cycle were significantly increased. This suggested that the CSF flow was significantly promoted by head movements. Among the muscles related with head movements, only three suboccipital muscles are connected to the upper cervical spinal dura mater via MDBs. It was believed that MDBs might transform powers of the muscles to CSF. The present results suggested that the head movements served as an important contributor to CSF dynamics and the MDBs might be involved in this mechanism. PMID:27538827

  2. Modulation of head movement control in humans during treadmill walking

    Science.gov (United States)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.

    2002-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (Pphases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (Pphase while that about the flexion-extension axis was significantly decreased (Pgait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.

  3. Modulation of head movement control in humans during treadmill walking

    Science.gov (United States)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.

    2002-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/s (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2 m from their eyes. The net and relative angular motions of the head about the three axes of rotations, as well as the corresponding values for the moments acting on it relative to the trunk during the gait cycle were quantified and used as measures of coordination. The average net moment, as well as the average moments about the different axes were significantly different (Plow/no impact phases of the gait cycle. However, the average net angular displacement as well as the average angular displacement about the axial rotation axis of the head relative to the trunk was maintained uniform (P>0.01) throughout the gait cycle. The average angular displacement about the lateral bending axis was significantly increased (Phead relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixation of targets during walking.

  4. Human eye-head gaze shifts in a distractor task. II. Reduced threshold for initiation of early head movements.

    Science.gov (United States)

    Corneil, B D; Munoz, D P

    1999-09-01

    This study was motivated by the observation of early head movements (EHMs) occasionally generated before gaze shifts. Human subjects were presented with a visual or auditory target, along with an accompanying stimulus of the other modality, that either appeared at the same location as the target (enhancer condition) or at the diametrically opposite location (distractor condition). Gaze shifts generated to the target in the distractor condition sometimes were preceded by EHMs directed either to the side of the target (correct EHMs) or the side of the distractor (incorrect EHMs). During EHMs, the eyes performed compensatory eye movements to keep gaze stable. Incorrect EHMs were usually between 1 and 5 degrees in amplitude and reached peak velocities generally EHMs initially followed a trajectory typical of much larger head movements. These results suggest that incorrect EHMs are head movements that initially were planned to orient to the peripheral distractor. Furthermore gaze shifts preceded by incorrect EHMs had longer reaction latencies than gaze shifts not preceded by incorrect EHMs, suggesting that the processes leading to incorrect EHMs also serve to delay gaze-shift initiation. These results demonstrate a form of distraction analogous to the incorrect gaze shifts (IGSs) described in the previous paper and suggest that a motor program encoding a gaze shift to a distractor is capable of initiating either an IGS or an incorrect EHM. A neural program not strong enough to initiate an IGS nevertheless can initiate an incorrect EHM.

  5. EMG activities of two heads of the human lateral pterygoid muscle in relation to mandibular condyle movement and biting force.

    Science.gov (United States)

    Hiraba, K; Hibino, K; Hiranuma, K; Negoro, T

    2000-04-01

    Electromyographic (EMG) activities of the superior (SUP) and inferior heads (INF) of the lateral pterygoid muscle (LPT) were recorded in humans during voluntary stepwise changes in biting force and jaw position that were adopted to exclude the effects of acceleration and velocity of jaw movements on the muscle activity. The SUP behaved like a jaw-closing muscle and showed characteristic activity in relation to the biting force. It showed a considerable amount of background activity (5-32% of the maximum) even in the intercuspal position without teeth clenching and reached a nearly maximum activity at relatively lower biting-force levels than the jaw-closing muscles during increment of the biting force. Stretch reflexes were found in the SUP, the function of which could be to stabilize the condyle against the biting force that pulls the condyle posteriorly. This notion was verified by examining the biomechanics on the temporomandibular joint. The complex movements of the mandibular condyle in a sagittal plane were decomposed into displacement in the anteroposterior direction (Ac) and angle of rotation (RAc) around a kinesiological specific point on the condyle. In relation to Ac, each head of the LPT showed quite a similar behavior to each other in all types of jaw movements across all subjects. Working ranges of the muscle activities were almost constant (Ac 3 mm for the INF). The amount of EMG activity of the SUP changed in inverse proportion to Ac showing a hyperbola-like relation, whereas that of the INF changed rather linearly. The EMG amplitude of the SUP showed a quasilinear inverse relation with RAc in the hinge movement during which the condyle rotated with no movement in the anteroposterior direction. This finding suggests that the SUP controls the angular relationship between the articular disk and the condyle. On the other hand, the position of the disk in relation to the maxilla, not to the condyle, is controlled indirectly by the INF because the disk

  6. Robust human machine interface based on head movements applied to assistive robotics.

    Science.gov (United States)

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  7. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    Directory of Open Access Journals (Sweden)

    Elisa Perez

    2013-01-01

    Full Text Available This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user’s head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user’s head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair.

  8. Target position relative to the head is essential for predicting head movement during head-free gaze pursuit.

    Science.gov (United States)

    C Pallus, Adam; G Freedman, Edward

    2016-08-01

    Gaze pursuit is the coordinated movement of the eyes and head that allows humans and other foveate animals to track moving objects. The control of smooth pursuit eye movements when the head is restrained is relatively well understood, but how the eyes coordinate with concurrent head movements when the head is free remains unresolved. In this study, we describe behavioral tasks that dissociate head and gaze velocity during head-free pursuit in monkeys. Existing models of gaze pursuit propose that both eye and head movements are driven only by the perceived velocity of the visual target and are therefore unable to account for these data. We show that in addition to target velocity, the positions of the eyes in the orbits and the retinal position of the target are important factors for predicting head movement during pursuit. When the eyes are already near their limits, further pursuit in that direction will be accompanied by more head movement than when the eyes are centered in the orbits, even when target velocity is the same. The step-ramp paradigm, often used in pursuit tasks, produces larger or smaller head movements, depending on the direction of the position step, while gaze pursuit velocity is insensitive to this manipulation. Using these tasks, we can reliably evoke head movements with peak velocities much faster than the target's velocity. Under these circumstances, the compensatory eye movements, which are often called counterproductive since they rotate the eyes in the opposite direction, are essential to maintaining accurate gaze velocity.

  9. Head movement during walking in the cat.

    Science.gov (United States)

    Zubair, Humza N; Beloozerova, Irina N; Sun, Hai; Marlinski, Vladimir

    2016-09-22

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20-90°. Nose-up rotation followed head upward translation by another 40-90° delay. The peak-to-peak amplitude of vertical translation was ∼1.5cm and amplitude of pitch rotation was ∼3°. Amplitudes of lateral translation and roll rotation were ∼1cm and 1.5-3°, respectively. Overall, cats' heads were neutral in roll and 10-30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5-1m/s, maximal upward and downward linear velocities were ∼0.05 and ∼0.1m/s, respectively, and maximal lateral velocity was ∼0.05m/s. Maximal velocities of head pitch rotation were 20-50°/s. During walking in light, cats stood 0.3-0.5cm taller and held their head 0.5-2cm higher than in darkness. Forward acceleration was 25-100% higher and peak-to-peak amplitude of head pitch oscillations was ∼20°/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role.

  10. Bumblebee Homing: The Fine Structure of Head Turning Movements.

    Directory of Open Access Journals (Sweden)

    Norbert Boeddeker

    Full Text Available Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns ("saccades" are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees' head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.

  11. Analyzing Head and Eye Movement System with CORBA

    Directory of Open Access Journals (Sweden)

    Wang Changyuan

    2013-11-01

    Full Text Available In order to study the vestibular system in different organs of movement as well as their collaboration between working mechanism, this paper designs a model of the common object request broker architecture (CORBA for the head and eye movement system based on the vestibular function. By analyzing physiological characteristics of the head and eye movement model, and further introducing the structure features of CORBA. It focus on the component composition and the model design of CORBA components library. According to the physiology work model of head and eye movement, the CORBA model of head and eye movement is established. As well as the structure of the model is designed in real application of head and eye movement measurement system. This paper provides a new way to research the head and eye movement system through using mathematical modeling and application structure which is based on vestibular function.    

  12. Head movement as an artefact of optimal solutions to linearization ...

    African Journals Online (AJOL)

    IT

    or a child acquiring the language to infer the original syntactic information from the signal and ... explore it, will turn out to require head movement as an inalienable property. The effect of head movement will follow from a general linearization algorithm which, in turn, is motivated by ...... In colloquial usage the negative.

  13. Blowfly flight and optic flow II. Head movements during flight

    NARCIS (Netherlands)

    Van Hateren, JH; Schilstra, C

    The position and orientation of the thorax and head of flying blowflies (Calliphora vicina) were measured using small sensor coils mounted on the thorax and head. During flight, roll movements of the thorax are compensated by counter rolls of the head relative to the thorax, The yaw turns of the

  14. Blowfly flight and optic flow II. Head movements during flight

    NARCIS (Netherlands)

    Van Hateren, JH; Schilstra, C

    1999-01-01

    The position and orientation of the thorax and head of flying blowflies (Calliphora vicina) were measured using small sensor coils mounted on the thorax and head. During flight, roll movements of the thorax are compensated by counter rolls of the head relative to the thorax, The yaw turns of the tho

  15. Blowfly Flight and Optic Flow. II. Head Movements during Flight

    NARCIS (Netherlands)

    Hateren, J.H. van; Schilstra, C.

    1999-01-01

    The position and orientation of the thorax and head of flying blowflies (Calliphora vicina) were measured using small sensor coils mounted on the thorax and head. During flight, roll movements of the thorax are compensated by counter rolls of the head relative to the thorax. The yaw turns of the tho

  16. Analyzing Head and Eye Movement System with CORBA

    OpenAIRE

    Wang Changyuan; Zhang Jing; Chen YuLong

    2013-01-01

    In order to study the vestibular system in different organs of movement as well as their collaboration between working mechanism, this paper designs a model of the common object request broker architecture (CORBA) for the head and eye movement system based on the vestibular function. By analyzing physiological characteristics of the head and eye movement model, and further introducing the structure features of CORBA. It focus on the component composition and the model design of CORBA compon...

  17. Non-intrusive eye gaze tracking under natural head movements.

    Science.gov (United States)

    Kim, S; Sked, M; Ji, Q

    2004-01-01

    We propose an eye gaze tracking system under natural head movements. The system consists of one CCD camera and two mirrors. Based on geometric and linear algebra calculations, the mirrors rotate to follow head movements in order to keep the eyes within the view of the camera. Our system allows the subjects head to move 30 cm horizontally and 20 cm vertically, with spatial gaze resolutions about 6 degree and 7 degree, respectively and a frame rate about 10 Hz. We also introduce a hierarchical generalized regression neural networks (H-GRNN) scheme to map eye and mirror parameters to gaze, achieving a gaze estimation accuracy of 92% under head movements. The use of H-GRNN also eliminates the need for personal calibration for new subjects since H-GRNN can generalize. Preliminary experiments show our system is accurate and robust in gaze tracking under large head movements.

  18. Head movements while steering around bends

    NARCIS (Netherlands)

    Erp, J.B.F. van; Oving, A.B.

    2012-01-01

    In this study, the determinants of head motions (rotations) when driving around bends were investigated when drivers viewed the scene through a head-mounted display. The scene camera was either fixed or coupled to head motions along 2 or 3 axes of rotation. Eight participants drove around a

  19. Coordination of head movements and speech in first encounter dialogues

    DEFF Research Database (Denmark)

    Paggio, Patrizia

    2015-01-01

    slightly after, but also that there are delays in both directions in the range of -/+ 1s. Various factors that may influence delay duration are investigated. Correlations are found between delay length and the duration of the speech sequences associated with the head movements. Effects due to the different......This paper presents an analysis of the temporal alignment be- tween head movements and associated speech segments in the NOMCO corpus of first encounter dialogues [1]. Our results show that head movements tend to start slightly before the onset of the corresponding speech sequence and to end...

  20. Coordination of head movements and speech in first encounter dialogues

    DEFF Research Database (Denmark)

    Paggio, Patrizia

    2015-01-01

    slightly after, but also that there are delays in both directions in the range of -/+ 1s. Various factors that may influence delay duration are investigated. Correlations are found between delay length and the duration of the speech sequences associated with the head movements. Effects due to the different......This paper presents an analysis of the temporal alignment be- tween head movements and associated speech segments in the NOMCO corpus of first encounter dialogues [1]. Our results show that head movements tend to start slightly before the onset of the corresponding speech sequence and to end...

  1. Saccadic head and thorax movements in freely walking blowflies

    OpenAIRE

    Blaj, G.; van Hateren, J. H.

    2004-01-01

    Visual information processing is adapted to the statistics of natural visual stimuli, and these statistics depend to a large extent on the movements of an animal itself. To investigate such movements in freely walking blowflies, we measured the orientation and position of their head and thorax, with high spatial and temporal accuracy. Experiments were performed on Calliphora vicina, Lucilia cuprina and L. caesar. We found that thorax and head orientation of walking flies is typically differen...

  2. Paroxysmal eye-head movements in Glut1 deficiency syndrome.

    Science.gov (United States)

    Pearson, Toni S; Pons, Roser; Engelstad, Kristin; Kane, Steven A; Goldberg, Michael E; De Vivo, Darryl C

    2017-04-25

    To describe a characteristic paroxysmal eye-head movement disorder that occurs in infants with Glut1 deficiency syndrome (Glut1 DS). We retrospectively reviewed the medical charts of 101 patients with Glut1 DS to obtain clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye movement episodes from 10 patients. A documented history of paroxysmal abnormal eye movements was found in 32/101 patients (32%), and a detailed description was available in 18 patients, presented here. Episodes started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in 10/16 patients (63%) who experienced both types of episodes. Eye movement episodes resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-term course. Episodes were brief (usually <5 minutes). Video analysis revealed that the eye movements were rapid, multidirectional, and often accompanied by a head movement in the same direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200 to 800 ms. The movements were consistent with eye-head gaze saccades. These movements can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval and the association of a same-direction head movement. Paroxysmal eye-head movements, for which we suggest the term aberrant gaze saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate prompt diagnosis of this treatable neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  3. Saccadic head and thorax movements in freely walking blowflies

    NARCIS (Netherlands)

    Blaj, G.; Hateren, J.H. van

    2004-01-01

    Visual information processing is adapted to the statistics of natural visual stimuli, and these statistics depend to a large extent on the movements of an animal itself. To investigate such movements in freely walking blowflies, we measured the orientation and position of their head and thorax, with

  4. Saccadic head and thorax movements in freely walking blowflies

    NARCIS (Netherlands)

    Blaj, G.; Hateren, J.H. van

    2004-01-01

    Visual information processing is adapted to the statistics of natural visual stimuli, and these statistics depend to a large extent on the movements of an animal itself. To investigate such movements in freely walking blowflies, we measured the orientation and position of their head and thorax, with

  5. Modulation of Head Movement Control During Walking

    Science.gov (United States)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.; Paloski, William H. (Technical Monitor)

    1999-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/sec (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2m from their eyes. The relative motion of the head and the net torque acting on it relative to the trunk during the gait cycle were used as measures of coordination. It was found that the net torque applied to the head counteracts the destabilizing forces acting on the upper body during locomotion. The average net torque impulse was significantly different (p less than 0.05) between the heel strike and swing phases and were found to be symmetrical between the right and left leg events of the gait cycle. However, the average net displacement of the head relative to the trunk was maintained uniform (p greater than 0.05) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixing of targets during walking.

  6. Human preference for air movement

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.

    2002-01-01

    Human preference for air movement was studied at slightly cool, neutral, and slightly warm overall thermal sensations and at temperatures ranging from 18 deg.C to 28 deg.C. Air movement preference depended on both thermal sensation and temperature, but large inter-individual differences existed...... between subjects. Preference for less air movement was linearly correlated with draught discomfort, but the percentage of subjects who felt draught was lower than the percentage who preferred less air movement....

  7. Identifying Anxiety Through Tracked Head Movements in a Virtual Classroom.

    Science.gov (United States)

    Won, Andrea Stevenson; Perone, Brian; Friend, Michelle; Bailenson, Jeremy N

    2016-06-01

    Virtual reality allows the controlled simulation of complex social settings, such as classrooms, and thus provides an opportunity to test a range of theories in the social sciences in a way that is both naturalistic and controlled. Importantly, virtual environments also allow the body movements of participants in the virtual world to be tracked and recorded. In the following article, we discuss how tracked head movements were correlated with participants' reports of anxiety in a simulation of a classroom. Participants who reported a high sense of awareness of and concern about the other virtual people in the room showed different patterns of head movement (more lateral head movement, indicating scanning behavior) from those who reported a low level of concern. We discuss the implications of this research for understanding nonverbal behavior associated with anxiety and for the design of online educational systems.

  8. Covert anti-compensatory quick eye movements during head impulses.

    Directory of Open Access Journals (Sweden)

    Maria Heuberger

    Full Text Available BACKGROUND: Catch-up saccades during passive head movements, which compensate for a deficient vestibulo-ocular reflex (VOR, are a well-known phenomenon. These quick eye movements are directed toward the target in the opposite direction of the head movement. Recently, quick eye movements in the direction of the head movement (covert anti-compensatory quick eye movements, CAQEM were observed in older individuals. Here, we characterize these quick eye movements, their pathophysiology, and clinical relevance during head impulse testing (HIT. METHODS: Video head impulse test data from 266 patients of a tertiary vertigo center were retrospectively analyzed. Forty-three of these patients had been diagnosed with vestibular migraine, and 35 with Menière's disease. RESULTS: CAQEM occurred in 38% of the patients. The mean CAQEM occurrence rate (per HIT trial was 11±10% (mean±SD. Latency was 83±30 ms. CAQEM followed the saccade main sequence characteristics and were compensated by catch-up saccades in the opposite direction. Compensatory saccades did not lead to more false pathological clinical head impulse test assessments (specificity with CAQEM: 87%, and without: 85%. CAQEM on one side were associated with a lower VOR gain on the contralateral side (p<0.004 and helped distinguish Menière's disease from vestibular migraine (p = 0.01. CONCLUSION: CAQEM are a common phenomenon, most likely caused by a saccadic/quick phase mechanism due to gain asymmetries. They could help differentiate two of the most common causes of recurrent vertigo: vestibular migraine and Menière's disease.

  9. Application of virtual reality head mounted display for investigation of movement: a novel effect of orientation of attention

    Science.gov (United States)

    Quinlivan, Brendan; Butler, John S.; Beiser, Ines; Williams, Laura; McGovern, Eavan; O'Riordan, Sean; Hutchinson, Michael; Reilly, Richard B.

    2016-10-01

    Objective. To date human kinematics research has relied on video processing, motion capture and magnetic search coil data acquisition techniques. However, the use of head mounted display virtual reality systems, as a novel research tool, could facilitate novel studies into human movement and movement disorders. These systems have the unique ability of presenting immersive 3D stimulus while also allowing participants to make ecologically valid movement-based responses. Approach. We employed one such system (Oculus Rift DK2) in this study to present visual stimulus and acquire head-turn data from a cohort of 40 healthy adults. Participants were asked to complete head movements towards eccentrically located visual targets following valid and invalid cues. Such tasks are commonly employed for investigating the effects orientation of attention and are known as Posner cueing paradigms. Electrooculography was also recorded for a subset of 18 participants. Main results. A delay was observed in onset of head movement and saccade onset during invalid trials, both at the group and single participant level. We found that participants initiated head turns 57.4 ms earlier during valid trials. A strong relationship between saccade onset and head movement onset was also observed during valid trials. Significance. This work represents the first time that the Posner cueing effect has been observed in onset of head movement in humans. The results presented here highlight the role of head-mounted display systems as a novel and practical research tool for investigations of normal and abnormal movement patterns.

  10. Infrared Non-Contact Head Sensor for Control of Wheelchair Movements

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie; Garcia, Juan Carlos

    2005-01-01

    that the field of view is not limited. Tests on a wheelchair have shown that the system is functioning in real life, and that the vehicle can be driven at normal speeds in a simple and natural way. The behaviour of the sensor and the generated commands are fully programable, so it can be adapted easily to other......This paper presents a new human-machine interface for controlling a wheelchair by head movements. The position of the head is determined by use of infrared sensors, with no parts attached to the head of the user. The placement of the infrared sensors are behind the head of the user, so...

  11. Human preference for air movement

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.;

    2002-01-01

    Human preference for air movement was studied at slightly cool, neutral, and slightly warm overall thermal sensations and at temperatures ranging from 18 deg.C to 28 deg.C. Air movement preference depended on both thermal sensation and temperature, but large inter-individual differences existed...

  12. Head and eye movement as pointing modalities for eyewear computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbeigi, Diako; Pederson, Thomas

    2014-01-01

    While the new generation of eyewear computers have increased expectations of a wearable computer, providing input to these devices is still challenging. Hand-held devices, voice commands, and hand gestures have already been explored to provide input to the wearable devices. In this paper, we...... examined using head and eye movements to point on a graphical user interface of a wearable computer. The performance of users in head and eye pointing has been compared with mouse pointing as a baseline method. The result of our experiment showed that the eye pointing is significantly faster than head...

  13. Head and eye movement as pointing modalities for eyewear computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbeigi, Diako; Pederson, Thomas

    2014-01-01

    While the new generation of eyewear computers have increased expectations of a wearable computer, providing input to these devices is still challenging. Hand-held devices, voice commands, and hand gestures have already been explored to provide input to the wearable devices. In this paper, we...... examined using head and eye movements to point on a graphical user interface of a wearable computer. The performance of users in head and eye pointing has been compared with mouse pointing as a baseline method. The result of our experiment showed that the eye pointing is significantly faster than head...

  14. A signal analysis technique of vestibulo-ocular reflex stimulated with impulsive head movements.

    Science.gov (United States)

    Juhola, Martti; Aalto, Heikki; Hirvonen, Timo

    2006-07-01

    Eye movements have been investigated in several areas of medicine and also elsewhere, such as in psychology or even in the development of human-computer interfaces. In the last few years we have designed a technique to stimulate, measure and analyze vestibulo-ocular reflex eye movements. In the otoneurological literature these are seen as a novel and promising means of revealing certain disorders and diseases associated with vertigo. Vestibulo-ocular reflex is stimulated by impulsive head movements. We developed the present pattern recognition technique to detect the stimulus (impulsive head movements) and the vestibulo-ocular reflex (response eye movements) generated from signals and to compute the latency and the gain values between them. Using our technique to calculate these attributes, we obtained clearly different results for a group of 22 dizzy patients than for a group of 30 healthy subjects.

  15. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.

    Science.gov (United States)

    Larsson, Linnéa; Schwaller, Andrea; Nyström, Marcus; Stridh, Martin

    2016-12-01

    The complexity of analyzing eye-tracking signals increases as eye-trackers become more mobile. The signals from a mobile eye-tracker are recorded in relation to the head coordinate system and when the head and body move, the recorded eye-tracking signal is influenced by these movements, which render the subsequent event detection difficult. The purpose of the present paper is to develop a method that performs robust event detection in signals recorded using a mobile eye-tracker. The proposed method performs compensation of head movements recorded using an inertial measurement unit and employs a multi-modal event detection algorithm. The event detection algorithm is based on the head compensated eye-tracking signal combined with information about detected objects extracted from the scene camera of the mobile eye-tracker. The method is evaluated when participants are seated 2.6m in front of a big screen, and is therefore only valid for distant targets. The proposed method for head compensation decreases the standard deviation during intervals of fixations from 8° to 3.3° for eye-tracking signals recorded during large head movements. The multi-modal event detection algorithm outperforms both an existing algorithm (I-VDT) and the built-in-algorithm of the mobile eye-tracker with an average balanced accuracy, calculated over all types of eye movements, of 0.90, compared to 0.85 and 0.75, respectively for the compared algorithms. The proposed event detector that combines head movement compensation and information regarding detected objects in the scene video enables for improved classification of events in mobile eye-tracking data. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Human Purposive Movement Theory

    Science.gov (United States)

    2012-03-01

    movement patterns; for example, horses , deer, and javelina exhibit grazing behaviors that are similar to, but not quite the same as, cattle. Individual...conveyance would be modeled. This might be as simple as a person riding a horse , mule, camel, or burro, or as complex as a multiwheeled truck, train...or tracked vehicle. The assumption presented is that each system of conveyance reflects the will of its operator/ rider , whether that system is a

  17. Non-Instrumental Movement Inhibition (NIMI differentially suppresses head and thigh movements during screenic engagement: dependence on interaction

    Directory of Open Access Journals (Sweden)

    Harry J Witchel

    2016-02-01

    Full Text Available Background: Estimating engagement levels from postural micromovements has been summarized by some researchers as: increased proximity to the screen is a marker for engagement, while increased postural movement is a signal for disengagement or negative affect. However, these findings are inconclusive: the movement hypothesis challenges other findings of dyadic interaction in humans, and experiments on the positional hypothesis diverge from it.Hypotheses: 1 Under controlled conditions, adding a relevant visual stimulus to an auditory stimulus will preferentially result in Non-Instrumental Movement Inhibition (NIMI of the head. 2 When instrumental movements are eliminated and computer-interaction rate is held constant, for two identically-structured stimuli, cognitive engagement (i.e. interest will result in measurable NIMI of the body generally. Methods: Twenty-seven healthy participants were seated in front of a computer monitor and speakers. Discrete three-minute stimuli were presented with interactions mediated via a handheld trackball without any keyboard, to minimize instrumental movements of the participant's body. Music videos and audio-only music were used to test hypothesis 1. Time-sensitive, highly interactive stimuli were used to test hypothesis 2. Subjective responses were assessed via visual analogue scales. The computer users' movements were quantified using video motion tracking from the lateral aspect. Repeated measures ANOVAs with Tukey post hoc comparisons were performed.Results: For two equivalently-engaging music videos, eliminating the visual content elicited significantly increased non-instrumental movements of the head (while also decreasing subjective engagement; a highly engaging user-selected piece of favorite music led to further increased non-instrumental movement. For two comparable reading tasks, the more engaging reading significantly inhibited (42% movement of the head and thigh; however, when a highly engaging

  18. Overt head movements and persuasion: a self-validation analysis.

    Science.gov (United States)

    Briñol, Pablo; Petty, Richard E

    2003-06-01

    The authors report 3 experiments that examine a new mechanism by which overt head movements can affect attitude change. In each experiment, participants were induced to either nod or to shake their heads while listening to a persuasive message. When the message arguments were strong, nodding produced more persuasion than shaking. When the arguments were weak, the reverse occurred. These effects were most pronounced when elaboration was high. These findings are consistent with the "self-validation" hypothesis that postulates that head movements either enhance (nodding) or undermine (shaking) confidence in one's thoughts about the message. In a 4th experiment, the authors extended this result to another overt behavior (writing with the dominant or nondominant hand) and a different attitude domain (self-esteem).

  19. Saccadic head and thorax movements in freely walking blowflies.

    Science.gov (United States)

    Blaj, G; van Hateren, J H

    2004-11-01

    Visual information processing is adapted to the statistics of natural visual stimuli, and these statistics depend to a large extent on the movements of an animal itself. To investigate such movements in freely walking blowflies, we measured the orientation and position of their head and thorax, with high spatial and temporal accuracy. Experiments were performed on Calliphora vicina, Lucilia cuprina and L. caesar. We found that thorax and head orientation of walking flies is typically different from the direction of walking, with differences of 45 degrees common. During walking, the head and the thorax turn abruptly, with a frequency of 5-10 Hz and angular velocities in the order of 1,000 degrees /s. These saccades are stereotyped: head and thorax start simultaneously, with the head turning faster, and finishing its turn before the thorax. The changes in position during walking are saccade-like as well, occurring synchronously, but on average slightly after the orientation saccades. Between orientation saccades the angular velocities are low and the head is held more stable than the thorax. We argue that the strategy of turning by saccades improves the performance of the visual system of blowflies.

  20. A machine-hearing system exploiting head movements for binaural sound localisation in reverberant conditions

    DEFF Research Database (Denmark)

    May, Tobias; Ma, Ning; Wierstorf, Hagen;

    2015-01-01

    This paper is concerned with machine localisation of multiple active speech sources in reverberant environments using two (binaural) microphones. Such conditions typically present a problem for ‘classical’ binaural models. Inspired by the human ability to utilise head movements, the current study...

  1. Proprioceptive Control of Human Movement. The Human Movement Series.

    Science.gov (United States)

    Dickinson, John

    Various research studies concerned with the feedback from proprioceptors which accompany movement and the way in which this information is relevant to the control of activity are brought together in this volume. It is intended for the use of those who have some basic knowledge of human anatomy and physiology as well as an acquaintance with…

  2. Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization.

    Directory of Open Access Journals (Sweden)

    Diana E Mitchell

    Full Text Available The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR play an essential role in stabilizing the visual axis (gaze, while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1 quantify vestibularly-driven head movements in primates, and 2 assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.

  3. Evaluation of head movement periodicity and irregularity during locomotion of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ryuzo eShingai

    2013-03-01

    Full Text Available Caenorhabditis elegans is suitable for studying the nervous system, which controls behavior. C. elegans shows sinusoidal locomotion on an agar plate. The head moves not only sinusoidally but also more complexly, which reflects regulation of the head muscles by the nervous system. The head movement becomes more irregular with senescence. To date, the head movement complexity has not been quantitatively analyzed. We propose two simple methods for evaluation of the head movement regularity on an agar plate using image analysis. The methods calculate metrics that are a measure of how the head end movement is correlated with body movement. In the first method, the length along the trace of the head end on the agar plate between adjacent intersecting points of the head trace and the quasi-midline of the head trace, which was made by sliding an averaging window of 1/2 the body wavelength, was obtained. Histograms of the lengths showed periodic movement of the head and deviation from it. In the second method, the intersections between the trace of the head end and the trace of the 5 (near the pharynx or 50% (the mid-body point from the head end in the centerline length of the worm image were marked. The length of the head trace between adjacent intersections was measured, and a histogram of the lengths was produced. The histogram for the 5% point showed deviation of the head end movement from the movement near the pharynx. The histogram for the 50% point showed deviation of the head movement from the sinusoidal movement of the body center. Application of these methods to wild type and several mutant strains enabled evaluation of their head movement periodicity and irregularity, and revealed a difference in the age-dependence of head movement irregularity between the strains. A set of five parameters obtained from the histograms reliably identifies differences in head movement between strains.

  4. Questions, Answers, Polarity and Head Movement in Germanic and Finnish

    Directory of Open Access Journals (Sweden)

    Anders Holmberg

    2004-01-01

    Full Text Available The paper investigates the consequences of combining the following two assumptions: (a The English negation n’t is an inflection, and (b suffixed forms are derived in the syntax by head movement with left-adjunction. An immediate consequence is that Neg must c-command T. This entails that inversion in negative yes/no-questions (YNQs is not T-to-C but Neg-to-C, or, if Neg is Pol(arity with negative value, Pol-to-C. This in turn makes possible viewing inversion in YNQs as a special case of wh-movement. It also makes possible analyzing inversion in Germanic as essentially the same as in Finnish, where the negation overtly undergoes movement in negative YNQs. It also provides the basis for a theory of the syntax of replies toYNQs, including negative questions.

  5. Dynamic and kinematic strategies for head movement control

    Science.gov (United States)

    Peterson, B. W.; Choi, H.; Hain, T.; Keshner, E.; Peng, G. C.

    2001-01-01

    This paper describes our analysis of the complex head-neck system using a combination of experimental and modeling approaches. Dynamical analysis of head movements and EMG activation elicited by perturbation of trunk position has examined functional contributions of biomechanically and neurally generated forces in lumped systems with greatly simplified kinematics. This has revealed that visual and voluntary control of neck muscles and the dynamic and static vestibulocollic and cervicocollic reflexes preferentially govern head-neck system state in different frequency domains. It also documents redundant control, which allows the system to compensate for lesions and creates a potential for substantial variability within and between subjects. Kinematic studies have indicated the existence of reciprocal and co-contraction strategies for voluntary force generation, of a vestibulocollic strategy for stabilizing the head during body perturbations and of at least two strategies for voluntary head tracking. Each strategy appears to be executed by a specific muscle synergy that is presumably optimized to efficiently meet the demands of the task.

  6. Bite frequency measured by head pitch movements in grazing experiment

    DEFF Research Database (Denmark)

    Oudshoorn, Frank W.; S. Nadimi, Esmaeil; Jørgensen, Rasmus Nyholm

    2010-01-01

    bite frequency variation related to grass length and grass quality (Pulido & Leaver 2001; Barrett et al. 2003). .   Head movements and bite frequency were registered in spring and autumn in 2009, with 2x10 cows grazing two weeks in two stocking densities.  Head movements were measured by activity...... and  grass offer and  grass growth during the trial by interval harvesting using a Haldrup grass harvester. Cows biting frequency for the same paddock, the same day were found to be cow specific and correlation with milk yield level and barn feed intake was investigated.   Barrett, P.D., McGilloway, D....... ECPLF      2007 Skiathos, Greece. p 111-116 Pulido, R.G. & Leaver, J.D., 2001. Quantifying the influence of sward height, concentrate level and initial      milk yield on the milk production and grazing behaviour of continuously stocked dairy cows. Grass      and Forage Science 56, 57-67.    ...

  7. Eye Tracking and Head Movement Detection: A State-of-Art Survey

    Science.gov (United States)

    2013-01-01

    Eye-gaze detection and tracking have been an active research field in the past years as it adds convenience to a variety of applications. It is considered a significant untraditional method of human computer interaction. Head movement detection has also received researchers' attention and interest as it has been found to be a simple and effective interaction method. Both technologies are considered the easiest alternative interface methods. They serve a wide range of severely disabled people who are left with minimal motor abilities. For both eye tracking and head movement detection, several different approaches have been proposed and used to implement different algorithms for these technologies. Despite the amount of research done on both technologies, researchers are still trying to find robust methods to use effectively in various applications. This paper presents a state-of-art survey for eye tracking and head movement detection methods proposed in the literature. Examples of different fields of applications for both technologies, such as human-computer interaction, driving assistance systems, and assistive technologies are also investigated. PMID:27170851

  8. Tracking of human head with particle filter

    Institute of Scientific and Technical Information of China (English)

    GUO Chao

    2009-01-01

    To cope with the problem of tracking a human head in a complicated scene, we propose a method that adopts human skin color and hair color integrated with a kind of particle filter named condensation algorithm. Firstly, a novel method is presented to set up human head color model using skin color and hair color separately based on region growing. Compared with traditional human face model, this method is more precise and works well when human turns around and the face disappears in the image. Then a novel method is presented to use color model in condensation algorithm more effectively. In this method, a combination of edge detection result, color segmentation result and color edge detection result in an Omega window is used to measure the scale and position of human head in condensation. Experiments show that this approach can track human head in complicated scene even when human turns around or the distance of tracking a human head changes quickly.

  9. Gravity and perceptual stability during translational head movement on earth and in microgravity.

    Science.gov (United States)

    Jaekl, P; Zikovitz, D C; Jenkin, M R; Jenkin, H L; Zacher, J E; Harris, L R

    2005-01-01

    We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move "with" or "against" their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity.

  10. Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches.

    Directory of Open Access Journals (Sweden)

    Colleen T O'Rourke

    Full Text Available BACKGROUND: Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds. This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats. On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction, which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. CONCLUSIONS: Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.

  11. Effects of walking velocity on vertical head and body movements during locomotion

    Science.gov (United States)

    Hirasaki, E.; Moore, S. T.; Raphan, T.; Cohen, B.

    1999-01-01

    Trunk and head movements were characterized over a wide range of walking speeds to determine the relationship between stride length, stepping frequency, vertical head translation, pitch rotation of the head, and pitch trunk rotation as a function of gait velocity. Subjects (26-44 years old) walked on a linear treadmill at velocities of 0.6-2.2 m/s. The head and trunk were modeled as rigid bodies, and rotation and translation were determined using a video-based motion analysis system. At walking speeds up to 1.2 m/s there was little head pitch movement in space, and the head pitch relative to the trunk was compensatory for trunk pitch. As walking velocity increased, trunk pitch remained approximately invariant, but a significant head translation developed. This head translation induced compensatory head pitch in space, which tended to point the head at a fixed point in front of the subject that remained approximately invariant with regard to walking speed. The predominant frequency of head translation and rotation was restricted to a narrow range from 1.4 Hz at 0.6 m/s to 2.5 Hz at 2.2 m/s. Within the range of 0.8-1.8 m/s, subjects tended to increase their stride length rather than step frequency to walk faster, maintaining the predominant frequency of head movement at close to 2.0 Hz. At walking speeds above 1.2 m/s, head pitch in space was highly coherent with, and compensatory for, vertical head translation. In the range 1.2-1.8 m/s, the power spectrum of vertical head translation was the most highly tuned, and the relationship between walking speed and head and trunk movements was the most linear. We define this as an optimal range of walking velocity with regard to head-trunk coordination. The coordination of head and trunk movement was less coherent at walking velocities below 1.2 m/s and above 1.8 m/s. These results suggest that two mechanisms are utilized to maintain a stable head fixation distance over the optimal range of walking velocities. The relative

  12. Effects of walking velocity on vertical head and body movements during locomotion

    Science.gov (United States)

    Hirasaki, E.; Moore, S. T.; Raphan, T.; Cohen, B.

    1999-01-01

    Trunk and head movements were characterized over a wide range of walking speeds to determine the relationship between stride length, stepping frequency, vertical head translation, pitch rotation of the head, and pitch trunk rotation as a function of gait velocity. Subjects (26-44 years old) walked on a linear treadmill at velocities of 0.6-2.2 m/s. The head and trunk were modeled as rigid bodies, and rotation and translation were determined using a video-based motion analysis system. At walking speeds up to 1.2 m/s there was little head pitch movement in space, and the head pitch relative to the trunk was compensatory for trunk pitch. As walking velocity increased, trunk pitch remained approximately invariant, but a significant head translation developed. This head translation induced compensatory head pitch in space, which tended to point the head at a fixed point in front of the subject that remained approximately invariant with regard to walking speed. The predominant frequency of head translation and rotation was restricted to a narrow range from 1.4 Hz at 0.6 m/s to 2.5 Hz at 2.2 m/s. Within the range of 0.8-1.8 m/s, subjects tended to increase their stride length rather than step frequency to walk faster, maintaining the predominant frequency of head movement at close to 2.0 Hz. At walking speeds above 1.2 m/s, head pitch in space was highly coherent with, and compensatory for, vertical head translation. In the range 1.2-1.8 m/s, the power spectrum of vertical head translation was the most highly tuned, and the relationship between walking speed and head and trunk movements was the most linear. We define this as an optimal range of walking velocity with regard to head-trunk coordination. The coordination of head and trunk movement was less coherent at walking velocities below 1.2 m/s and above 1.8 m/s. These results suggest that two mechanisms are utilized to maintain a stable head fixation distance over the optimal range of walking velocities. The relative

  13. Wireless Control of Vehicle Mirror System Using Head Movement and PIC Microcontroller

    Directory of Open Access Journals (Sweden)

    Nidal F. Shilbayeh

    2005-01-01

    Full Text Available A PIC controlled IR system for the control car mirror system movement is designed and implemented. The designed and built system allows the side view mirrors to be adjusted based on the driver head movement. The infrared based head tracking system maps a predetermined coordinates for head movements and results in a triangularly computable geometry which is fed to the PIC based controlling system. This will cause the vehicle mirror movement via carefully selected miniature motors. The system takes blind spots and their angles into consideration

  14. Handheld cellular phones restrict head movements and range of visual regard.

    Science.gov (United States)

    Thumser, Zachary C; Stahl, John S

    2013-02-01

    Numerous studies have reported the ability of mobile phones to distract users and thereby degrade performance of concurrent tasks. Less is known about whether the phone-holding posture can itself influence concurrent motor activities. Horizontal eye movements are often coordinated with head movements, particularly when the amplitude of the gaze shift is large. Holding a phone to one ear has been shown to restrict the range of spontaneously generated head movements. In order to determine whether the phone-holding posture also influences gaze, we recorded eye and head movements as volunteers looked about themselves spontaneously. Holding the phone to the ear narrowed the range of gaze, principally in subjects who exhibit a strong propensity to move the head with the eyes. We argue that visual exploration may be influenced by the balance between costs and benefits of turning the head, with the phone-holding posture increasing the costs. The effects on gaze would be seen most clearly in subjects who have a higher predilection for coupling eye and head movements. Conversely, this effect would be minimal if tested in tasks that rarely elicit head movements in the specific subjects being tested. The results emphasize the close coordination between eye and head movements, and have implications for the design of ergonomic studies comparing the effects of handheld vs. hands-free mobile phones on performance of specific tasks, such as driving. Published by Elsevier B.V.

  15. Head movement during CT brain perfusion acquisition of patients with suspected acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Fahmi, F., E-mail: f.fahmi@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Beenen, L.F.M., E-mail: l.f.beenen@amc.uva.nl [Department of Radiology, AMC, Amsterdam (Netherlands); Streekstra, G.J., E-mail: g.j.streekstra@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Janssen, N.Y., E-mail: n.n.janssen@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Jong, H.W. de, E-mail: H.W.A.M.deJong@umcutrecht.nl [Department of Radiology, UMC Utrecht, 3584CX, Utrecht (Netherlands); Riordan, A., E-mail: alan.riordan@gmail.com [Department of Radiology, UMC Utrecht, 3584CX, Utrecht (Netherlands); Roos, Y.B., E-mail: y.b.roos@amc.uva.nl [Department of Neurology, AMC, Amsterdam (Netherlands); Majoie, C.B., E-mail: c.b.majoie@amc.uva.nl [Department of Radiology, AMC, Amsterdam (Netherlands); Bavel, E. van, E-mail: e.vanbavel@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Marquering, H.A., E-mail: h.a.marquering@amc.uva.nl [Department of Biomedical Engineering and Physics, AMC, Amsterdam (Netherlands); Department of Radiology, AMC, Amsterdam (Netherlands)

    2013-12-01

    Objective: Computed Tomography Perfusion (CTP) is a promising tool to support treatment decision for acute ischemic stroke patients. However, head movement during acquisition may limit its applicability. Information of the extent of head motion is currently lacking. Our purpose is to qualitatively and quantitatively assess the extent of head movement during acquisition. Methods: From 103 consecutive patients admitted with suspicion of acute ischemic stroke, head movement in 220 CTP datasets was qualitatively categorized by experts as none, minimal, moderate, or severe. The movement was quantified using 3D registration of CTP volume data with non-contrast CT of the same patient; yielding 6 movement parameters for each time frame. The movement categorization was correlated with National Institutes of Health Stroke Scale (NIHSS) score and baseline characteristic using multinomial logistic regression and student's t-test respectively. Results: Moderate and severe head movement occurred in almost 25% (25/103) of all patients with acute ischemic stroke. The registration technique quantified head movement with mean rotation angle up to 3.6° and 14°, and mean translation up to 9.1 mm and 22.6 mm for datasets classified as moderate and severe respectively. The rotation was predominantly in the axial plane (yaw) and the main translation was in the scan direction. There was no statistically significant association between movement classification and NIHSS score and baseline characteristics. Conclusions: Moderate or severe head movement during CTP acquisition of acute stroke patients is quite common. The presented registration technique can be used to automatically quantify the movement during acquisition, which can assist identification of CTP datasets with excessive head movement.

  16. Endotracheal tube displacement during head and neck movements. Observational clinical trial.

    Science.gov (United States)

    Tailleur, Robert; Bathory, Istvan; Dolci, Mirko; Frascarolo, Philippe; Kern, Christian; Schoettker, Patrick

    2016-08-01

    Measure the displacements of endotracheal tube (ETT) tip displacement during head and neck movements. Observational study. Ear-nose-throat (ENT) and neurosurgery operating room. We performed a maximal head-neck movement trial on 50 adult patients, American Society of Anaesthesiologists 1 or 2. Patients with body mass index >35 kg · m(-2), height intubation, a wide disparity of tube tip distance to the carina in the neutral position was noted with a median of 5.0 (3.5-7.0) cm. Cephalad tube movement was documented following maximal head and neck extension in 34 (68%) patients and right head rotation in 25 patients (50%). Caudal tube displacement was due to maximal head and neck flexion in 38 patients (76%) and left head rotation in 25 patients (50%). Selective right main bronchus intubation was noted in 2 (4%) patients after maximal head extension. Maximal head and neck movements led to unpredictable tube displacements. Proper reassessment of tube positioning after head and neck movement of intubated patients is therefore mandatory. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Dance/movement therapy in head injury rehabilitation.

    Science.gov (United States)

    Berrol, C

    1990-01-01

    A case study is presented to illustrate the use of dance/movement therapy in the treatment of an individual with severe brain damage. Theoretical and practical perspectives, as well as selected principles of dance/movement therapy are delineated. A rationale for use of intentional/volitional movement as a treatment strategy is posited on the basis of neuroanatomical and neurophysiological constructs.

  18. A functional magnetic resonance imaging study of head movements in cervical dystonia

    Directory of Open Access Journals (Sweden)

    Cecília N. Prudente

    2016-11-01

    Full Text Available Cervical dystonia (CD is a neurological disorder characterized by abnormal movements and postures of the head. The brain regions responsible for these abnormal movements are not well understood, because most imaging techniques for assessing regional brain activity cannot be used when the head is moving. Recently, we mapped brain activation in healthy individuals using functional magnetic resonance imaging (fMRI during isometric head rotation, when muscle contractions occur without actual head movements. In the current study, we used the same methods to explore the neural substrates for head movements in subjects with CD who had predominantly rotational abnormalities (torticollis. Isometric wrist extension was examined for comparison. Electromyography of neck and hand muscles ensured compliance with tasks during scanning, and any head motion was measured and corrected. Data were analyzed in three steps. First, we conducted within-group analyses to examine task-related activation patterns separately in subjects with CD and in healthy controls. Next, we directly compared task-related activation patterns between participants with CD and controls. Finally, considering that the abnormal head movements in CD occur in a consistently patterned direction for each individual, we conducted exploratory analyses that involved normalizing data according to the direction of rotational CD. The between-group comparisons failed to reveal any significant differences, but the normalization procedure in subjects with CD revealed that isometric head rotation in the direction of dystonic head rotation was associated with more activation in the ipsilateral anterior cerebellum, whereas isometric head rotation in the opposite direction was associated with more activity in sensorimotor cortex. These findings suggest that the cerebellum contributes to abnormal head rotation in CD, whereas regions in the cerebral cortex are involved in opposing the involuntary movements.

  19. Women's Movements and Human Futures

    Science.gov (United States)

    Reardon, Betty

    1975-01-01

    Two strands of futurism share values of equality, development, and peace, and can catalyze each other into potentially transformational forces. The path is re-education: World order thinking provides an appropriate content for adult learning, and women's movements provide the energy of commitment and a worldwide network for communicating policies.…

  20. Corticospinal excitability in human voluntary movement

    NARCIS (Netherlands)

    Elswijk, G.A.F. van

    2008-01-01

    The research described in this thesis addressed the neurophysiologic changes in the human corticospinal system during preparation and execution of voluntary hand movements. The experiments involved transcranial magnetic stimulation (TMS) of the motor cortex combined with electromyography (EMG) and e

  1. Automatic detection of EEG artefacts arising from head movements using EEG and gyroscope signals.

    Science.gov (United States)

    O'Regan, Simon; Faul, Stephen; Marnane, William

    2013-07-01

    Contamination of EEG signals by artefacts arising from head movements has been a serious obstacle in the deployment of automatic neurological event detection systems in ambulatory EEG. In this paper, we present work on categorizing these head-movement artefacts as one distinct class and on using support vector machines to automatically detect their presence. The use of additional physical signals in detecting head-movement artefacts is also investigated by means of support vector machines classifiers implemented with gyroscope waveforms. Finally, the combination of features extracted from EEG and gyroscope signals is explored in order to design an algorithm which incorporates both physical and physiological signals in accurately detecting artefacts arising from head-movements.

  2. Ethical Considerations in Human Movement Research.

    Science.gov (United States)

    Olivier, Steve

    1995-01-01

    Highlights ethical issues for human subject research, identifying principles that form the construct of a code of research ethics and evaluating against this construct past human experimentation and current research in human movement studies. The efficacy of legislation and self-regulation is examined. Particular attention is given to the context…

  3. The Struggle Begins Early: Head Start and the Mississippi Freedom Movement

    Science.gov (United States)

    Hale, Jon N.

    2012-01-01

    This article examines the history of Head Start, a federally funded program, whose conceptualization emerged in earlier phases of the Civil Rights Movement in order to provide education, nourishing meals, medical services, and a positive social environment for children about to enter the first grade. While Head Start was implemented in states…

  4. Biomimetics of human movement: functional or aesthetic?

    Science.gov (United States)

    Harris, Christopher M

    2009-09-01

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  5. Music and Movement in Head Start Classrooms: Implications and Applications

    Science.gov (United States)

    Yazejian, Noreen; Peisner-Feinberg, Ellen S.; Heyge, Lorna Lutz

    2009-01-01

    This article describes a music and movement intervention for children in preschool classrooms. The intervention, consisting of sequenced music and movement activities, has been studied as a curriculum conducted by outside interventionists (Yazejian & Peisner-Feinberg, 2009/this issue) with results providing some support for the beneficial effects…

  6. Introduction to Physical Education: Concepts of Human Movement.

    Science.gov (United States)

    Cheffers, John; Evaul, Tom

    This book is written for physical educators and others interested in the performance of the human body in motion. It is divided into four major catagories: (1) The discipline of human movement and its applications; (2) human beings and function through movement; (3) human movement; applied; and (4) human movement: generative and integrated. Six…

  7. Mechanism of endotracheal tube movement with change of head position in the neonate

    Energy Technology Data Exchange (ETDEWEB)

    Donn, S.M.; Kuhns, L.R.

    1980-01-01

    The mechanism of alteration of endotracheal tube position with movement of the head and neck in the neonate was studied in a term new-born cadaver. The infant was intubated and serial radiographs were obtained with the head and neck in different positions. We propose that the skull acts as a lever arm from the anterior end of the maxilla to the first cervical vertebra. The fulcrum for movement of this lever arm is the upper cervical spine. Movement of the endotracheal tube in the trachea is directed by the maxillocervical lever arm when the skull and upper cervical spine are flexed, extended, or rotated.

  8. Human movement is both diffusive and directed.

    Directory of Open Access Journals (Sweden)

    Mark Padgham

    Full Text Available Understanding the influence of the built environment on human movement requires quantifying spatial structure in a general sense. Because of the difficulty of this task, studies of movement dynamics often ignore spatial heterogeneity and treat movement through journey lengths or distances alone. This study analyses public bicycle data from central London to reveal that, although journey distances, directions, and frequencies of occurrence are spatially variable, their relative spatial patterns remain largely constant, suggesting the influence of a fixed spatial template. A method is presented to describe this underlying space in terms of the relative orientation of movements toward, away from, and around locations of geographical or cultural significance. This produces two fields: one of convergence and one of divergence, which are able to accurately reconstruct the observed spatial variations in movement. These two fields also reveal categorical distinctions between shorter journeys merely serving diffusion away from significant locations, and longer journeys intentionally serving transport between spatially distinct centres of collective importance. Collective patterns of human movement are thus revealed to arise from a combination of both diffusive and directed movement, with aggregate statistics such as mean travel distances primarily determined by relative numbers of these two kinds of journeys.

  9. The contribution of head movement to the externalization and internalization of sounds.

    Directory of Open Access Journals (Sweden)

    W Owen Brimijoin

    Full Text Available BACKGROUND: When stimuli are presented over headphones, they are typically perceived as internalized; i.e., they appear to emanate from inside the head. Sounds presented in the free-field tend to be externalized, i.e., perceived to be emanating from a source in the world. This phenomenon is frequently attributed to reverberation and to the spectral characteristics of the sounds: those sounds whose spectrum and reverberation matches that of free-field signals arriving at the ear canal tend to be more frequently externalized. Another factor, however, is that the virtual location of signals presented over headphones moves in perfect concert with any movements of the head, whereas the location of free-field signals moves in opposition to head movements. The effects of head movement have not been systematically disentangled from reverberation and/or spectral cues, so we measured the degree to which movements contribute to externalization. METHODOLOGY/PRINCIPAL FINDINGS: We performed two experiments: 1 Using motion tracking and free-field loudspeaker presentation, we presented signals that moved in their spatial location to match listeners' head movements. 2 Using motion tracking and binaural room impulse responses, we presented filtered signals over headphones that appeared to remain static relative to the world. The results from experiment 1 showed that free-field signals from the front that move with the head are less likely to be externalized (23% than those that remain fixed (63%. Experiment 2 showed that virtual signals whose position was fixed relative to the world are more likely to be externalized (65% than those fixed relative to the head (20%, regardless of the fidelity of the individual impulse responses. CONCLUSIONS/SIGNIFICANCE: Head movements play a significant role in the externalization of sound sources. These findings imply tight integration between binaural cues and self motion cues and underscore the importance of self motion for

  10. The contribution of head movement to the externalization and internalization of sounds.

    Science.gov (United States)

    Brimijoin, W Owen; Boyd, Alan W; Akeroyd, Michael A

    2013-01-01

    When stimuli are presented over headphones, they are typically perceived as internalized; i.e., they appear to emanate from inside the head. Sounds presented in the free-field tend to be externalized, i.e., perceived to be emanating from a source in the world. This phenomenon is frequently attributed to reverberation and to the spectral characteristics of the sounds: those sounds whose spectrum and reverberation matches that of free-field signals arriving at the ear canal tend to be more frequently externalized. Another factor, however, is that the virtual location of signals presented over headphones moves in perfect concert with any movements of the head, whereas the location of free-field signals moves in opposition to head movements. The effects of head movement have not been systematically disentangled from reverberation and/or spectral cues, so we measured the degree to which movements contribute to externalization. We performed two experiments: 1) Using motion tracking and free-field loudspeaker presentation, we presented signals that moved in their spatial location to match listeners' head movements. 2) Using motion tracking and binaural room impulse responses, we presented filtered signals over headphones that appeared to remain static relative to the world. The results from experiment 1 showed that free-field signals from the front that move with the head are less likely to be externalized (23%) than those that remain fixed (63%). Experiment 2 showed that virtual signals whose position was fixed relative to the world are more likely to be externalized (65%) than those fixed relative to the head (20%), regardless of the fidelity of the individual impulse responses. Head movements play a significant role in the externalization of sound sources. These findings imply tight integration between binaural cues and self motion cues and underscore the importance of self motion for spatial auditory perception.

  11. Human Extensive Head Skin Myiasis

    Directory of Open Access Journals (Sweden)

    M Soleimani Ahmadi

    2009-03-01

    Full Text Available "nChrysomya bezziana Villeneuve is the most important fly, which produces myiasis, exists as an obligate ectoparasite in the ani­mals, and afflicts human. Poor hygiene and working in contaminated areas particularly during warm seasons provide a situa­tion to infest by this parasite. Infestation in human and livestock are often observed in wounds, normal body orifices such as eyes, ears, nose, and mouth. The manifestations include pruritus, pain, inflammation, redness, eosinophilia, and secon­dary bacterial infections and rarely death. A 5-year-old boy with severe headache and agitation symptoms was fol­lowed up. After physical examination and endoscopy, larvae of third instar fly were obtained from his scalp. Our precise identifica­tion indicated that the flies were the C. bezziana. This is the second report of the human scalp myiasis caused by C. bezziana in Iran. This study confirmed that the old world screwworm fly was distributed in the southern of Iran and proba­bly could be one of the most important agents of myiasis in this area.

  12. Auditory coding of human movement kinematics.

    Science.gov (United States)

    Vinken, Pia M; Kröger, Daniela; Fehse, Ursula; Schmitz, Gerd; Brock, Heike; Effenberg, Alfred O

    2013-01-01

    Although visual perception is dominant on motor perception, control and learning, auditory information can enhance and modulate perceptual as well as motor processes in a multifaceted manner. During last decades new methods of auditory augmentation had been developed with movement sonification as one of the most recent approaches expanding auditory movement information also to usually mute phases of movement. Despite general evidence on the effectiveness of movement sonification in different fields of applied research there is nearly no empirical proof on how sonification of gross motor human movement should be configured to achieve information rich sound sequences. Such lack of empirical proof is given for (a) the selection of suitable movement features as well as for (b) effective kinetic-acoustical mapping patterns and for (c) the number of regarded dimensions of sonification. In this study we explore the informational content of artificial acoustical kinematics in terms of a kinematic movement sonification using an intermodal discrimination paradigm. In a repeated measure design we analysed discrimination rates of six everyday upper limb actions to evaluate the effectiveness of seven different kinds of kinematic-acoustical mappings as well as short-term learning effects. The kinematics of the upper limb actions were calculated based on inertial motion sensor data and transformed into seven different sonifications. Sound sequences were randomly presented to participants and discrimination rates as well as confidence of choice were analysed. Data indicate an instantaneous comprehensibility of the artificial movement acoustics as well as short-term learning effects. No differences between different dimensional encodings became evident thus indicating a high efficiency for intermodal pattern discrimination for the acoustically coded velocity distribution of the actions. Taken together movement information related to continuous kinematic parameters can be

  13. Sound localization with head movement: implications for 3-d audio displays.

    Directory of Open Access Journals (Sweden)

    Ken Ian McAnally

    2014-08-01

    Full Text Available Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants’ heads had rotated through windows ranging in width of 2°, 4°, 8°, 16°, 32°, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: The utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth may be required to ensure that spatial information is conveyed with high accuracy.

  14. Capturing human movement patterns in public spaces

    DEFF Research Database (Denmark)

    Nielsen, Søren Zebitz; Gade, Rikke

    2014-01-01

    Non-intrusive and non-privacy violating tracking of people by the use of thermal cameras and Computer Vision The video shows examples of data collection of pedestrian tracks in an urban plaza using a thermal camera. The data is used in my PhD project on Human Movement Patterns in Smart Cities...

  15. Effect of Putting Grip on Eye and Head Movements During the Golf Putting Stroke

    Directory of Open Access Journals (Sweden)

    George K. Hung

    2003-01-01

    Full Text Available The objective of this article is to determine the effect of three different putting grips (conventional, cross-hand, and one-handed on variations in eye and head movements during the putting stroke. Seven volunteer novice players, ranging in age from 21 to 22 years, participated in the study. During each experimental session, the subject stood on a specially designed platform covered with artificial turf and putted golf balls towards a standard golf hole. The three different types of grips were tested at two distances: 3 and 9 ft. For each condition, 20 putts were attempted. For each putt, data were recorded over a 3-s interval at a sampling rate of 100 Hz. Eye movements were recorded using a helmet-mounted eye movement monitor. Head rotation about an imaginary axis through the top of the head and its center-of-rotation was measured by means of a potentiometer mounted on a fixed frame and coupled to the helmet. Putter-head motion was measured using a linear array of infrared phototransistors embedded in the platform. The standard deviation (STD, relative to the initial level was calculated for eye and head movements over the duration of the putt (i.e., from the beginning of the backstroke, through the forward stroke, to impact. The averaged STD for the attempted putts was calculated for each subject. Then, the averaged STDs and other data for the seven subjects were statistically compared across the three grip conditions. The STD of eye movements were greater (p < 0.1 for conventional than cross-hand (9 ft and one-handed (3 and 9 ft grips. Also, the STD of head movements were greater (p < 0.1; 3 ft for conventional than cross-hand and one-handed grips. Vestibulo-ocular responses associated with head rotations could be observed in many 9 ft and some 3 ft putts. The duration of the putt was significantly longer (p < 0.05; 3 and 9 ft for the one-handed than conventional and cross-hand grips. Finally, performance, or percentage putts made, was

  16. Real-time head movement system and embedded Linux implementation for the control of power wheelchairs.

    Science.gov (United States)

    Nguyen, H T; King, L M; Knight, G

    2004-01-01

    Mobility has become very important for our quality of life. A loss of mobility due to an injury is usually accompanied by a loss of self-confidence. For many individuals, independent mobility is an important aspect of self-esteem. Head movement is a natural form of pointing and can be used to directly replace the joystick whilst still allowing for similar control. Through the use of embedded LINUX and artificial intelligence, a hands-free head movement wheelchair controller has been designed and implemented successfully. This system provides for severely disabled users an effective power wheelchair control method with improved posture, ease of use and attractiveness.

  17. Exploiting deep neural networks and head movements for binaural localisation of multiple speakers in reverberant conditions

    DEFF Research Database (Denmark)

    Ma, Ning; Brown, Guy J.; May, Tobias

    2015-01-01

    This paper presents a novel machine-hearing system that exploits deep neural networks (DNNs) and head movements for binaural localisation of multiple speakers in reverberant conditions. DNNs are used to map binaural features, consisting of the complete crosscorrelation function (CCF) and interaural...... acoustic scenarios in which multiple speakers and room reverberation are present....

  18. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    Science.gov (United States)

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  19. Capturing human movement patterns in public spaces

    DEFF Research Database (Denmark)

    Nielsen, Søren Zebitz; Gade, Rikke

    2014-01-01

    Non-intrusive and non-privacy violating tracking of people by the use of thermal cameras and Computer Vision The video shows examples of data collection of pedestrian tracks in an urban plaza using a thermal camera. The data is used in my PhD project on Human Movement Patterns in Smart Cities. Th....... The recording and analysis of the thermal videos has been made in collaboration with Rikke Gade from the Visual Analytics of People Lab at Aalborg University....

  20. The Global Movement for Human Rights Education

    Directory of Open Access Journals (Sweden)

    Nancy Flowers

    2015-10-01

    Full Text Available An overview of the global movement for human rights education (HRE, its impetus, challenges, and contrasting developments in different regions of the world, focusing especially on Latin America, the Philippines, South Africa, the Middle East, and Europe. Seeks to put HRE in the USA into an international perspective, as well as to show the variety of goals that inspire HRE and how methodologies have evolved to meet specific regional and political cultures and needs.

  1. Rethinking optimal control of human movements

    OpenAIRE

    Huh, Dongsung

    2012-01-01

    The complex bio-mechanics of human body is capable of generating an unlimited repertoire of movements, which on one hand yields highly versatile motor behavior but on the other hand presents a formidable control problem for the brain. Understanding the computational process that allows us to easily perform various motor tasks with a high degree of coordination is of central interest to both neuroscience and robotics control. In recent decades, it became widely accepted that the observed movem...

  2. A Prototype System for Controlling a Computer by Head Movements and Voice Commands

    CERN Document Server

    Ismail, Anis; Hajjar, Mohammad

    2011-01-01

    This paper introduces a new prototype system for controlling a PC by head movements and also with voice commands. Our system is a multimodal interface concerned with controlling the computer. The selected modes of interaction are speech and gestures. We are seeing the revolutionary of computers and information technologies into daily practice. Healthy people use keyboard, mouse, trackball, or touchpad for controlling the PC. However these peripheries are usually not suitable for handicapped people. They may have problems using these standard peripheries, for example when they suffer from myopathy, or cannot move their hands after an injury. Our system has been developed to provide computer access for people with severe disabilities. This system tracks the computer user's Head movements with a video camera and translates them into the movements of the mouse pointer on the screen and the voice as button presses. Therefore we are coming with a proposal system that can be used with handicapped people to control t...

  3. Epiglottic movements during breathing in humans

    Science.gov (United States)

    Amis, T C; O'Neill, N; Di Somma, E; Wheatley, J R

    1998-01-01

    Using X-ray fluoroscopy we measured antero-posterior (A–P) and cranio-caudal (C–C) displacements of the epiglottic tip (ET), corniculate cartilage and hyoid bone in seven seated, normal human subjects (age 34 ± 3 years; mean ±s.e.m.; 4 males, 3 females) breathing via a nasal mask or mouthpiece with (RL) and without (UB) a fixed resistive load.During UB, via either mouth or nose, there were no significant A-P ET movements. During RL via the nose the ET at peak expiratory flow was 2.6 ± 1.3 mm cranial to its position at peak inspiratory flow (P <0.05, ANOVA). C–C movements of the ET correlated strongly with C-C movements of the corniculate cartilage and hyoid bone.The ET, corniculate cartilage and hyoid bone (at zero airflow) were situated more caudally during oral UB than for any other condition.When present, epiglottic movements during breathing do not appear to be independent of those of the larynx and hyoid. Furthermore, epiglottic position may be related to the level of upper airway resistance. PMID:9729637

  4. Spontaneous cyclic embryonic movements in humans and guinea pigs.

    Science.gov (United States)

    Felt, Renée H M; Mulder, Eduard J H; Lüchinger, Annemarie B; van Kan, Colette M; Taverne, Marcel A M; de Vries, Johanna I P

    2012-08-01

    Motility assessment before birth can be used to evaluate the integrity of the nervous system. Sideways bending (SB) of head and/or rump, the earliest embryonic motility in both humans and guinea pigs, can be visualized sonographically. We know from other species that early embryonic motility is cyclic. This study explores the distribution of SB-to-SB intervals in human and guinea pig embryos before the appearance of more complex movements such as general movements. We hypothesized that the activity in both species is cyclic. We made 15-min sonographic recordings of SBs between 5 weeks and 0 days (5wk0d) and 7wk0d conceptional age (CA) in 18 human embryos of uncomplicated IVF pregnancies (term 38 weeks) and in 20 guinea pig embryos between 3wk4d and 4wk0d CA (term 9 weeks). SB-to-SB interval durations were categorized as long (≥10 s) or short (guinea pigs 38 s (range, 10-288 s) and 5 s (range, 1-9 s), respectively. During development, the duration of long intervals decreased while the number of short intervals increased for both species. The earliest embryonic motility in the human and guinea pig is performed cyclically with distinct developmental milestones. The resemblance of their interval development offers promising possibilities to use the guinea pig as a noninvasive animal model of external influences on motor and neural development.

  5. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    Science.gov (United States)

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  6. Flexible Coupling of Respiration and Vocalizations with Locomotion and Head Movements in the Freely Behaving Rat.

    Science.gov (United States)

    Alves, Joseph Andrews; Boerner, Barbara Ciralli; Laplagne, Diego Andrés

    2016-01-01

    Quadrupedal mammals typically synchronize their respiration with body movements during rhythmic locomotion. In the rat, fast respiration is coupled to head movements during sniffing behavior, but whether respiration is entrained by stride dynamics is not known. We recorded intranasal pressure, head acceleration, instantaneous speed, and ultrasonic vocalizations from male and female adult rats while freely behaving in a social environment. We used high-speed video recordings of stride to understand how head acceleration signals relate to locomotion and developed techniques to identify episodes of sniffing, walking, trotting, and galloping from the recorded variables. Quantitative analysis of synchrony between respiration and head acceleration rhythms revealed that respiration and locomotion movements were coordinated but with a weaker coupling than expected from previous work in other mammals. We have recently shown that rats behaving in social settings produce high rates of ultrasonic vocalizations during locomotion bouts. Accordingly, rats emitted vocalizations in over half of the respiratory cycles during fast displacements. We present evidence suggesting that emission of these calls disrupts the entrainment of respiration by stride. The coupling between these two variables is thus flexible, such that it can be overridden by other behavioral demands.

  7. Motion sickness adaptation to Coriolis-inducing head movements in a sustained G flight simulator.

    Science.gov (United States)

    Newman, Michael C; McCarthy, Geoffrey W; Glaser, Scott T; Bonato, Frederick; Bubka, Andrea

    2013-02-01

    Technological advances have allowed centrifuges to become more than physiological testing and training devices; sustained G, fully interactive flight simulation is now possible. However, head movements under G can result in vestibular stimulation that can lead to motion sickness (MS) symptoms that are potentially distracting, nauseogenic, and unpleasant. In the current study an MS adaptation protocol was tested for head movements under +Gz. Experienced pilots made 14 predetermined head movements in a sustained G flight simulator (at 3 +Gz) on 5 consecutive days and 17 d after training. Symptoms were measured after each head turn using a subjective 0-10 MS scale. The Simulator Sickness Questionnaire (SSQ) was also administered before and after each daily training session. After five daily training sessions, normalized mean MS scores were 58% lower than on Day 1. Mean total, nausea, and disorientation SSQ scores were 55%, 52%, and 78% lower, respectively. During retesting 17 d after training, nearly all scores indicated 90-100% retention of training benefits. The reduction of unpleasant effects associated with sustained G flight simulation using an adaptation training protocol may enhance the effectiveness of simulation. Practical use of sustained G simulators is also likely to be interspersed with other types of ground and in-flight training. Hence, it would be undesirable and unpleasant for trainees to lose adaptation benefits after a short gap in centrifuge use. However, current results suggest that training gaps in excess of 2 wk may be permissible with almost no loss of adaptation training benefits.

  8. Flexible Coupling of Respiration and Vocalizations with Locomotion and Head Movements in the Freely Behaving Rat

    Directory of Open Access Journals (Sweden)

    Joseph Andrews Alves

    2016-01-01

    Full Text Available Quadrupedal mammals typically synchronize their respiration with body movements during rhythmic locomotion. In the rat, fast respiration is coupled to head movements during sniffing behavior, but whether respiration is entrained by stride dynamics is not known. We recorded intranasal pressure, head acceleration, instantaneous speed, and ultrasonic vocalizations from male and female adult rats while freely behaving in a social environment. We used high-speed video recordings of stride to understand how head acceleration signals relate to locomotion and developed techniques to identify episodes of sniffing, walking, trotting, and galloping from the recorded variables. Quantitative analysis of synchrony between respiration and head acceleration rhythms revealed that respiration and locomotion movements were coordinated but with a weaker coupling than expected from previous work in other mammals. We have recently shown that rats behaving in social settings produce high rates of ultrasonic vocalizations during locomotion bouts. Accordingly, rats emitted vocalizations in over half of the respiratory cycles during fast displacements. We present evidence suggesting that emission of these calls disrupts the entrainment of respiration by stride. The coupling between these two variables is thus flexible, such that it can be overridden by other behavioral demands.

  9. The Phonetics of Head and Body Movement in the Realization of American Sign Language Signs.

    Science.gov (United States)

    Tyrone, Martha E; Mauk, Claude E

    2016-01-01

    Because the primary articulators for sign languages are the hands, sign phonology and phonetics have focused mainly on them and treated other articulators as passive targets. However, there is abundant research on the role of nonmanual articulators in sign language grammar and prosody. The current study examines how hand and head/body movements are coordinated to realize phonetic targets. Kinematic data were collected from 5 deaf American Sign Language (ASL) signers to allow the analysis of movements of the hands, head and body during signing. In particular, we examine how the chin, forehead and torso move during the production of ASL signs at those three phonological locations. Our findings suggest that for signs with a lexical movement toward the head, the forehead and chin move to facilitate convergence with the hand. By comparison, the torso does not move to facilitate convergence with the hand for signs located at the torso. These results imply that the nonmanual articulators serve a phonetic as well as a grammatical or prosodic role in sign languages. Future models of sign phonetics and phonology should take into consideration the movements of the nonmanual articulators in the realization of signs. © 2016 S. Karger AG, Basel.

  10. Isolating gait-related movement artifacts in electroencephalography during human walking

    Science.gov (United States)

    Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.

    2015-08-01

    Objective. High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s-1. We then tested artifact removal methods including moving average and wavelet-based techniques. Main results. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG

  11. Apparent motion of monocular stimuli in different depth planes with lateral head movements.

    Science.gov (United States)

    Shimono, K; Tam, W J; Ono, H

    2007-04-01

    A stationary monocular stimulus appears to move concomitantly with lateral head movements when it is embedded in a stereogram representing two front-facing rectangular areas, one above the other at two different distances. In Experiment 1, we found that the extent of perceived motion of the monocular stimulus covaried with the amplitude of head movement and the disparity between the two rectangular areas (composed of random dots). In Experiment 2, we found that the extent of perceived motion of the monocular stimulus was reduced compared to that in Experiment 1 when the rectangular areas were defined only by an outline rather than by random dots. These results are discussed using the hypothesis that a monocular stimulus takes on features of the binocular surface area in which it is embedded and is perceived as though it were treated as a binocular stimulus with regards to its visual direction and visual depth.

  12. Separating timing, movement conditions and individual differences in the analysis of human movement

    DEFF Research Database (Denmark)

    Raket, Lars Lau; Grimme, Britta; Schöner, Gregor;

    2016-01-01

    mixed-effects models as viable alternatives to conventional analysis frameworks. The model is then combined with a novel factor-analysis model that estimates the low-dimensional subspace within which movements vary when the task demands vary. Our framework enables us to visualize different dimensions......A central task in the analysis of human movement behavior is to determine systematic patterns and differences across experimental conditions, participants and repetitions. This is possible because human movement is highly regular, being constrained by invariance principles. Movement timing...... of movement variation and to test hypotheses about the effect of obstacle placement and height on the movement path. We demonstrate that the approach can be used to uncover new properties of human movement....

  13. Compensation Method of Natural Head Movement for Gaze Tracking System Using an Ultrasonic Sensor for Distance Measurement.

    Science.gov (United States)

    Jung, Dongwook; Lee, Jong Man; Gwon, Su Yeong; Pan, Weiyuan; Lee, Hyeon Chang; Park, Kang Ryoung; Kim, Hyun-Cheol

    2016-01-16

    Most gaze tracking systems are based on the pupil center corneal reflection (PCCR) method using near infrared (NIR) illuminators. One advantage of the PCCR method is the high accuracy it achieves in gaze tracking because it compensates for the pupil center position based on the relative position of corneal specular reflection (SR). However, the PCCR method only works for user head movements within a limited range, and its performance is degraded by the natural movement of the user's head. To overcome this problem, we propose a gaze tracking method using an ultrasonic sensor that is robust to the natural head movement of users. Experimental results demonstrate that with our compensation method the gaze tracking system is more robust to natural head movements compared to other systems without our method and commercial systems.

  14. Human Movement Potential: Its Ideokinetic Facilitation.

    Science.gov (United States)

    Sweigard, Lulu E.

    This book focuses on the interdependence of postural alignment and the performance of movement. It provides an educational method (ideokinesis), which stresses the inherent capacity of the nervous system to determine the most efficient neuromuscular coordination for each movement. This method of teaching body balance and efficient movement has…

  15. Unspoken Knowledge: Implicit Learning of Structured Human Dance Movement

    Science.gov (United States)

    Opacic, Tajana; Stevens, Catherine; Tillmann, Barbara

    2009-01-01

    The sequencing of dance movements may be thought of as a grammar. We investigate implicit learning of regularities that govern sequences of unfamiliar, discrete dance movements. It was hypothesized that observers without prior experience with contemporary dance would be able to learn regularities that underpin structured human movement. Thirty-one…

  16. Unspoken Knowledge: Implicit Learning of Structured Human Dance Movement

    Science.gov (United States)

    Opacic, Tajana; Stevens, Catherine; Tillmann, Barbara

    2009-01-01

    The sequencing of dance movements may be thought of as a grammar. We investigate implicit learning of regularities that govern sequences of unfamiliar, discrete dance movements. It was hypothesized that observers without prior experience with contemporary dance would be able to learn regularities that underpin structured human movement. Thirty-one…

  17. ROBUST LOCALISATION OF MULTIPLE SPEAKERS EXPLOITING HEAD MOVEMENTS AND MULTI-CONDITIONAL TRAINING OF BINAURAL CUES

    DEFF Research Database (Denmark)

    May, Tobias; Ma, Ning; Brown, Guy

    2015-01-01

    This paper addresses the problem of localising multiple competing speakers in the presence of room reverberation, where sound sources can be positioned at any azimuth on the horizontal plane. To reduce the amount of front-back confusions which can occur due to the sim- ilarity of interaural time...... differences (ITDs) and interaural level dif- ferences (ILDs) in the front and rear hemifield, a machine hearing system is presented which combines supervised learning of binaural cues using multi-conditional training (MCT) with a head movement strategy. A systematic evaluation showed that this approach...

  18. Infant eye and head movements toward the side opposite the cue in the anti-saccade paradigm

    Directory of Open Access Journals (Sweden)

    Sukigara Masune

    2007-01-01

    Full Text Available Abstract Background The anti-saccade task, when people must respond in the direction opposite to a visual stimulus, has been used as a marker of operation of the frontal cortical oculomotor area. However, early development of oculomotor control has been little studied with the infant anti-saccade paradigm, and a few studies did not recognize anti-saccades in infants in light of the results of adult anti-saccade. Since the characteristics of infant eye movements are little known, applying the criteria used in adult study is by no means the best way to study infant anti-saccade. As it is indicated that coordinated eye and head movements often enable infants to control the direction of their gaze, head movements should be examined as an infant orienting response. The aim of this study was to address how infants used eye and head movements during the anti-saccade paradigm. To distinguish infants' responses, we also investigated eye and head movements during a task for an inhibition of return. Inhibition of return, in which delayed responses occur in the direction to which attention had previously been oriented, has been thought to mark activity of the superior colliculus. Since the superior colliculus is thought to develop much earlier in life than the frontal lobes, we thought it useful to compare these task performances during infancy. Methods Infants were divided into three groups according to age. Anti-saccade and inhibition-of-return tasks were given. Their eye and head movements during tasks were independently recorded by the corneal reflection method in the head-free condition. Results Younger infants tended to initiate eye movement less than older ones in both tasks. In the anti-saccade task, responses opposite to the cue tended to show longer latency than responses to the cue. Infants made faster responses toward the side opposite the cue when it was to the right than when it was left of fixation. Regarding the comparison of responses

  19. Head and cervical spine posture in behaving rats: implications for modeling human conditions involving the head and cervical spine.

    Science.gov (United States)

    Griffin, C; Choong, W Y; Teh, W; Buxton, A J; Bolton, P S

    2015-02-01

    The aim of this study was to define the temporal and spatial (postural) characteristics of the head and cervical vertebral column (spine) of behaving rats in order to better understand their suitability as a model to study human conditions involving the head and neck. Time spent in each of four behavioral postures was determined from video tape recordings of rats (n = 10) in the absence and presence of an intruder rat. Plain film radiographic examination of a subset of these rats (n = 5) in each of these postures allowed measurement of head and cervical vertebral column positions adopted by the rats. When single they were quadruped or crouched most (∼80%) of the time and bipedal either supported or free standing for only ∼10% of the time. The introduction of an intruder significantly (P cervical spine was orientated (median, 25-75 percentile) near vertical (18.8°, 4.2°-30.9°) when quadruped, crouched (15.4°, 7.6°-69.3°) and bipedal supported (10.5°, 4.8°-22.6°) but tended to be less vertical oriented when bipedal free standing (25.9°, 7.7°-39.3°). The range of head positions relative to the cervical spine was largest when crouched (73.4°) and smallest when erect free standing (17.7°). This study indicates that, like humans, rats have near vertical orientated cervical vertebral columns but, in contrast to humans, they displace their head in space by movements at both the cervico-thoracic junction and the cranio-cervical regions. © 2014 Wiley Periodicals, Inc.

  20. Dynamic biomechanics of the human head in lateral impacts

    OpenAIRE

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A.

    2009-01-01

    The biomechanical responses of human head (translational head CG accelerations, rotational head accelerations, and HIC) under lateral impact to the parietal-temporal region were investigated in the current study. Free drop tests were conducted at impact velocities ranging from 2.44 to 7.70 m/s with a 40 durometer, a 90 durometer flat padding, and a 90 durometer cylinder. Specimens were isolated from PMHS subjects at the level of occipital condyles, and the intracranial substance was replaced ...

  1. Overview of the Method and Progress in Eye-Head Movement Research%头眼运动研究方法及进展

    Institute of Scientific and Technical Information of China (English)

    王长元; 李京京; 贾宏博; 张璟; 毕红哲; 薛鹏翔

    2012-01-01

    眼睛是外界信息进入人脑的主要通道,眼睛的运动通常受头部运动的影响,头部运动会带动眼部运动.文中介绍了国际上流行的头眼运动设备,并简要概述了一种基于头眼一体化的测量系统;总结了国内外对眼部运动、头部运动研究的发展和方向,对头眼协调运动进行了阐述.详细分析并对比了头部运动的两种研究方法基于统计的头部姿态检测方法和基于注册跟踪的头部姿态检测方法;着重分析了近年来眼部运动在各个领域的应用及方法,证明了基于点Hough变换的瞳孔中心快速定位方法的可行性;并阐述了头眼协调运动的概念和方法,最后对头眼运动研究进行总结与展望.%Eyes are important entrances for outside imformation to human brains. Eye movement and head movement are interactive. Firstly, the paper introduces some popular eye - head movement equipments,and describes an integrated eye-head measurement system. Secondly, the paper summarizes the developments and fields of its research at home and abroad,and elaborates the eye-head coordinating movement. Thirdly, two methods for studying head movement are compared, and methods of head modeling are contrasted. Fourthly, the paper analyzes its recent applications and methods, which proves that the pupil center location based on dot-Hough transform is feasible. Finally,the concept and method of eye-head coordinating movement are explained.

  2. Eye movement-invariant representations in the human visual system.

    Science.gov (United States)

    Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L

    2017-01-01

    During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.

  3. Neural decoding of expressive human movement from scalp electroencephalography (EEG

    Directory of Open Access Journals (Sweden)

    Zachery Ryan Hernandez

    2014-04-01

    Full Text Available Although efforts to characterize human movement through EEG have revealed neural activities unique to limb control that can be used to infer movement kinematics, it is still unknown the extent to which EEG can be used to discern the expressive qualities that influence such movements. In this study we used EEG and inertial sensors to record brain activity and movement of five skilled and certified Laban Movement Analysis (LMA dancers. Each dancer performed whole body functional movements of three Action types: movements devoid of expressive qualities ('Neutral', non-expressive movements while thinking about specific expressive qualities ('Think’, and enacted expressive movements ('Do'. The expressive movement qualities that were used in the 'Think' and 'Do' actions consisted of a sequence of eight Laban Efforts as defined by LMA - a notation system and language for describing, visualizing, interpreting and documenting all varieties of human movement. We used delta band (0.2 – 4 Hz EEG as input to a machine learning algorithm that computed locality-preserving Fisher’s discriminant analysis (LFDA for dimensionality reduction followed by Gaussian mixture models (GMMs to decode the type of Action. We also trained our LFDA-GMM models to classify all the possible combinations of Action Type and Laban Effort (giving a total of 17 classes. Classification accuracy rates were 59.4 ± 0.6% for Action Type and 88.2 ± 0.7% for Laban Effort Type. Ancillary analyses of the potential relations between the EEG and movement kinematics of the dancer's body, indicated that motion-related artifacts did not significantly influence our classification results. In summary, this research demonstrates that EEG has valuable information about the expressive qualities of movement. These results may have applications for advancing the understanding of the neural basis of expressive movements and for the development of neuroprosthetics to restore movements.

  4. Neural decoding of expressive human movement from scalp electroencephalography (EEG)

    Science.gov (United States)

    Cruz-Garza, Jesus G.; Hernandez, Zachery R.; Nepaul, Sargoon; Bradley, Karen K.; Contreras-Vidal, Jose L.

    2014-01-01

    Although efforts to characterize human movement through electroencephalography (EEG) have revealed neural activities unique to limb control that can be used to infer movement kinematics, it is still unknown the extent to which EEG can be used to discern the expressive qualities that influence such movements. In this study we used EEG and inertial sensors to record brain activity and movement of five skilled and certified Laban Movement Analysis (LMA) dancers. Each dancer performed whole body movements of three Action types: movements devoid of expressive qualities (“Neutral”), non-expressive movements while thinking about specific expressive qualities (“Think”), and enacted expressive movements (“Do”). The expressive movement qualities that were used in the “Think” and “Do” actions consisted of a sequence of eight Laban Effort qualities as defined by LMA—a notation system and language for describing, visualizing, interpreting and documenting all varieties of human movement. We used delta band (0.2–4 Hz) EEG as input to a machine learning algorithm that computed locality-preserving Fisher's discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models to classify all the possible combinations of Action Type and Laban Effort quality (giving a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential relations between the EEG and movement kinematics of the dancer's body, indicated that motion-related artifacts did not significantly influence our classification results. In summary, this research demonstrates that EEG has valuable information about the expressive qualities of movement. These results may have applications for advancing the understanding of the neural basis of expressive movements and for the development of

  5. Neural decoding of expressive human movement from scalp electroencephalography (EEG).

    Science.gov (United States)

    Cruz-Garza, Jesus G; Hernandez, Zachery R; Nepaul, Sargoon; Bradley, Karen K; Contreras-Vidal, Jose L

    2014-01-01

    Although efforts to characterize human movement through electroencephalography (EEG) have revealed neural activities unique to limb control that can be used to infer movement kinematics, it is still unknown the extent to which EEG can be used to discern the expressive qualities that influence such movements. In this study we used EEG and inertial sensors to record brain activity and movement of five skilled and certified Laban Movement Analysis (LMA) dancers. Each dancer performed whole body movements of three Action types: movements devoid of expressive qualities ("Neutral"), non-expressive movements while thinking about specific expressive qualities ("Think"), and enacted expressive movements ("Do"). The expressive movement qualities that were used in the "Think" and "Do" actions consisted of a sequence of eight Laban Effort qualities as defined by LMA-a notation system and language for describing, visualizing, interpreting and documenting all varieties of human movement. We used delta band (0.2-4 Hz) EEG as input to a machine learning algorithm that computed locality-preserving Fisher's discriminant analysis (LFDA) for dimensionality reduction followed by Gaussian mixture models (GMMs) to decode the type of Action. We also trained our LFDA-GMM models to classify all the possible combinations of Action Type and Laban Effort quality (giving a total of 17 classes). Classification accuracy rates were 59.4 ± 0.6% for Action Type and 88.2 ± 0.7% for Laban Effort quality Type. Ancillary analyses of the potential relations between the EEG and movement kinematics of the dancer's body, indicated that motion-related artifacts did not significantly influence our classification results. In summary, this research demonstrates that EEG has valuable information about the expressive qualities of movement. These results may have applications for advancing the understanding of the neural basis of expressive movements and for the development of neuroprosthetics to restore

  6. Children's head movements and postural stability as a function of task.

    Science.gov (United States)

    Flatters, Ian; Mushtaq, Faisal; Hill, Liam J B; Rossiter, Anna; Jarrett-Peet, Kate; Culmer, Pete; Holt, Ray; Wilkie, Richard M; Mon-Williams, Mark

    2014-06-01

    Manual dexterity and postural control develop throughout childhood, leading to changes in the synergistic relationships between head, hand and posture. But the postural developments that support complex manual task performance (i.e. beyond pointing and grasping) have not been examined in depth. We report two experiments in which we recorded head and posture data whilst participants simultaneously performed a visuomotor task. In Experiment 1, we explored the extent to which postural stability is affected by concurrently performing a visual and manual task whilst standing (a visual vs. manual-tracking task) in four age groups: 5-6 years (n = 8), 8-9 years (n = 10), 10-11 years (n = 7) and 19-21 years (n = 9). For visual tracking, the children's but not adult's postural movement increased relative to baseline with a larger effect for faster moving targets. In manual tracking, we found greater postural movement in children compared to adults. These data suggest predictive postural compensation mechanisms develop during childhood to improve stability whilst performing visuomotor tasks. Experiment 2 examined the extent to which posture is influenced by manual activity in three age groups of children [5-6 years (n = 14), 7-8 years (n = 25), and 9-10 years (n = 24)] when they were seated, given that many important tasks (e.g. handwriting) are learned and performed whilst seated. We found that postural stability varied in a principled manner as a function of task demands. Children exhibited increased stability when tracing a complex shape (which required less predictive postural adjustment) and decreased stability in an aiming task (which required movements that were more likely to perturb posture). These experiments shed light on the task-dependant relationships that exist between postural control mechanisms and the development of specific types of manual control.

  7. MovementXML: A representation of semantics of human movement based on Labanotation

    OpenAIRE

    Hatol, Jonathan

    2006-01-01

    Most of us are familiar with music notations. Dance notations, on the other hand, have not gained widespread acceptance. This can be attributed to the fact that dance notations, and human movement notations in general, are inherently complex. This complexity has also hindered researches in the field. Up to now, there is no de facto standard for dance score interchange. Labanotation is the most prevalent among the different human movement notations. Most technological advances so far have revo...

  8. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice.

    Science.gov (United States)

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-06-08

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input.

  9. Separating timing, movement conditions and individual differences in the analysis of human movement

    DEFF Research Database (Denmark)

    Raket, Lars Lau; Grimme, Britta; Schöner, Gregor

    2016-01-01

    A central task in the analysis of human movement behavior is to determine systematic patterns and differences across experimental conditions, participants and repetitions. This is possible because human movement is highly regular, being constrained by invariance principles. Movement timing......-effects model for analyzing temporally continuous signals that contain systematic effects in both timing and path. Identifiability issues of path relative to timing are overcome by using maximum likelihood estimation in which the most likely separation of space and time is chosen given the variation found...

  10. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  11. Anne-Sylvie Catherin, Head of the Human Resources Department

    CERN Multimedia

    2009-01-01

    Anne-Sylvie Catherin has been appointed Head of the Human Resources Department with effect from 1 August 2009. Mrs Catherin is a lawyer specialized in International Administration and joined CERN in 1996 as legal advisor within the Office of the HR Department Head. After having been promoted to the position of Group Leader responsible for social and statutory conditions in 2000, Mrs Catherin was appointed Deputy of the Head of the Human Resources Department and Group Leader responsible for Strategy, Management and Development from 2005 to date. Since 2005, she has also served as a member of CCP and TREF. In the execution of her mandate as Deputy HR Department Head, Mrs Catherin closely assisted the HR Department Head in the organization of the Department and in devising new HR policies and strategies. She played an instrumental role in the last five-yearly review and in the revision of the Staff Rules and Regulations.

  12. Human-Like Movement of an Anthropomorphic Robot: Problem Revisited

    Science.gov (United States)

    e Silva, E. Costa; Costa, M. F.; Bicho, E.; Erlhagen, W.

    2011-09-01

    Human-like movement is fundamental for natural human-robot interaction and collaboration. We have developed in a model for generating arm and hand movements an anthropomorphic robot. This model was inspired by the Posture-Based Motion-Planning Model of human reaching and grasping movements. In this paper we present some changes to the model we have proposed in [4] and test and compare different nonlinear constrained optimization techniques for solving the large-scale nonlinear constrained optimization problem that rises from the discretization of our time-continuous model. Furthermore, we test different time discretization steps.

  13. Recognition and Synthesis of Human Movements by Parametric HMMs

    DEFF Research Database (Denmark)

    Herzog, Dennis; Krüger, Volker

    2009-01-01

    on the recognition and synthesis of human arm movements. Furthermore, we will show in various experiments the use of PHMMs for the control of a humanoid robot by synthesizing movements for relocating objects at arbitrary positions. In vision-based interaction experiments, PHMM are used for the recognition...... of pointing movements, where the recognized parameterization conveys to a robot the important information which object to relocate and where to put it. Finally, we evaluate the accuracy of recognition and synthesis for pointing and grasping arm movements and discuss that the precision of the synthesis......The representation of human movements for recognition and synthesis is important in many application fields such as: surveillance, human-computer interaction, motion capture, and humanoid robots. Hidden Markov models (HMMs) are a common statistical framework in this context, since...

  14. Activity of superior head of human lateral pterygoid increases with increases in contralateral and protrusive jaw displacement.

    Science.gov (United States)

    Bhutada, Manish K; Phanachet, Intira; Whittle, Terry; Peck, Chris C; Murray, Greg M

    2007-08-01

    The hypothesis was that the superior head of human lateral pterygoid muscle (SHLP) plays a similar role in jaw movement as the inferior head of human lateral pterygoid muscle (IHLP). The aims were to determine the functional properties of SHLP single motor units (SMUs) and root mean square activity (RMS) of the SHLP during contralateral and protrusive jaw movement tasks and to compare these features with those identified previously for the IHLP. In 22 human subjects, SMUs were recorded intramuscularly from computer tomography-verified sites within the SHLP during standardized contralateral and protrusive jaw movement tasks recorded by a jaw-tracking device. Of the 50 SMUs discriminated, 39 were active during contralateral and 29 during protrusive jaw movements. The firing rates and RMS of the SHLP motor units increased with an increase in jaw displacement. The RMS activity across the entire trial during contralateral jaw movement was significantly greater than that during protrusion. Similarly to conclusions previously identified for the IHLP, the data are consistent with an important role for the SHLP in the control of contralateral and protrusive jaw movements. The similarities in SHLP and IHLP functional properties support the proposal that both heads should be regarded as a system of fibers acting as one muscle.

  15. Artificial gravity—head movements during short-radius centrifugation: Influence of cognitive effects

    Science.gov (United States)

    Meliga, Philippe; Hecht, Heiko; Young, Laurence R.; Mast, Fred W.

    2005-05-01

    Short-radius centrifugation is a potential countermeasure against the effects of prolonged weightlessness. Head movements in a rotating environment, however, induce serious side effects: inappropriate vestibular ocular reflexes (VOR), body-tilt illusions and motion sickness induced by cross-coupled accelerations on a rotating platform. These are well predicted by a semicircular canal model. The present study investigates cognitive effects on the inappropriate VOR and the illusory sensations experienced by subjects rotating on a short-radius centrifuge (SRC). Subjects (N=19) were placed supine on a rotating horizontal bed with their head at the center of rotation. To investigate the extent to which they could control their sensations voluntarily, subjects were asked alternatively to "fight" (i.e. to try to resist and suppress) those sensations, or to "go" with (i.e. try to enhance or, at least, acquiesce in) them. The only significant effect on the VOR of this cognitive intervention was to diminish the time constant characterizing the decay of the nystagmus in subjects who had performed the "go" (rather than the "fight") trials. However, illusory sensations, as measured by reported subjective intensities, were significantly less intense during the "fight" than during the "go" trials. These measurements also verified an asymmetry in illusory sensation known from earlier experiments: the illusory sensations are greater when the head is rotated from right ear down (RED) to nose up (NU) posture than from NU to RED. The subjects habituated, modestly, to the rotation between their first and second sequences of trials, but showed no better (or worse) suppression of illusory sensations thereafter. No significant difference in habituation was observed between the "fight" and "go" trials.

  16. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    Science.gov (United States)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  17. A non-Markov ratchet model of molecular motors: processive movement of single-headed kinesin KIF1A

    Institute of Scientific and Technical Information of China (English)

    Xie Ping; Dou Shuo-Xing; Wang Peng-Ye

    2006-01-01

    A fluctuating ratchet model of non-Markov process is presented to describe the processive movement of molecular motors of single-headed kinesin KIF1A, where the fluctuation perturbation to the local potential is introduced and the detailed ATPase pathway of the motor is included. The theoretical results show good quantitative agreement with the previous experimental ones.

  18. Social movements and human rights rhetoric in tobacco control.

    Science.gov (United States)

    Jacobson, P D; Banerjee, A

    2005-08-01

    After achieving breathtaking successes in securing state and local restrictions on smoking in public places and restricting youth access to tobacco products, the tobacco movement faces difficult decisions on its future strategic directions. The thesis of this article is that the tobacco control movement is at a point of needing to secure its recent successes and avoiding any public retrenchment. To do so requires rethinking the movement's strategic direction. We use the familiar trans-theoretical model of change to describe where the movement is currently and the threats it faces. The new tobacco control strategy should encompass a focus on voluntary non-smoking strategies, use human rights rhetoric to its advantage, and strengthen the public health voice to be more effective in political battles. In developing a new strategy, tobacco control advocates need to build a social movement based on a more forceful public health voice, along with the strategic use of human rights rhetoric, to focus on the power of voluntary non-smoking efforts. Using human rights rhetoric can help frame the movement in ways that have traditionally appealed to the American public. Perhaps more importantly, doing so can help infuse the tobacco control movement with a broader sense of purpose and mission.

  19. Accelerometer Measurement of Head Movement During Laparoscopic Surgery as a Tool to Evaluate Skill Development of Surgeons.

    Science.gov (United States)

    Viriyasiripong, Sarayuth; Lopez, Asis; Mandava, Sree Harsha; Lai, Weil R; Mitchell, Gregory C; Boonjindasup, Aaron; Powers, Mary K; Silberstein, Jonathan L; Lee, Benjamin R

    2016-01-01

    To detect and measure surgeons' head movement during laparoscopic simulator performance to determine whether expert surgeons have economy of motion in their head movement, including change of direction, compared with intermediate and novice surgeons. We investigated head movement as an objective tool for assessment of laparoscopic surgical skill and its potential use for assessing novice surgeons' progress on the learning curve. After obtaining institutional review board approval, medical students, urology residents, and attending staff surgeons from an academic institution were recruited. Participants were grouped by level of experience and performed tasks on the Electronic Data Generation for Evaluation laparoscopic simulator. Surgeons wore a commercially available wireless electroencephalogram monitor as a flexible, adjustable, and lightweight headband with 7 sensors-2 forehead sensors, 2 ear sensors, and 3 reference sensors. The headband incorporates a 3-axis accelerometer enabling head movement quantification. A variance analysis was used to compare the average head movement acceleration data between each group. Tulane University Medical Center, New Orleans, LA, an academic medical center and the principal teaching hospital for Tulane University School of Medicine. A total of following 19 participants were recruited for the study and stratified by surgical experience into novice (n = 6), intermediate (n = 9), and expert (n = 4) laparoscopy groups: 6 medical students, 9 urology residents (postgraduate years 1 to5), and 4 attending urologists, respectively. Analysis of the average acceleration rate of head movement showed statistically significant differences among groups on both the vertical axis (p = 0.006) and horizontal axis (p = 0.018) in the laparoscopic suturing task. This demonstrated the ability to distinguish between experts and novice laparoscopic surgeons. The average acceleration among groups did not demonstrate statistical significance on the

  20. Dynamic biomechanics of the human head in lateral impacts.

    Science.gov (United States)

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A

    2009-10-01

    The biomechanical responses of human head (translational head CG accelerations, rotational head accelerations, and HIC) under lateral impact to the parietal-temporal region were investigated in the current study. Free drop tests were conducted at impact velocities ranging from 2.44 to 7.70 m/s with a 40 durometer, a 90 durometer flat padding, and a 90 durometer cylinder. Specimens were isolated from PMHS subjects at the level of occipital condyles, and the intracranial substance was replaced with brain simulant (Sylgard 527). Three tri-axial accelerometers were instrumented at the anterior, posterior, and vertex of the specimen, and a pyramid nine accelerometer package (pNAP) was used at the contra-lateral site. Biomechanical responses were computed by transforming accelerations measured at each location to the head CG. The results indicated significant "hoop effect" from skull deformation. Translational head CG accelerations were accurately measured by transforming the pNAP, the vertex accelerations, or the average of anterior/posterior acceleration to the CG. The material stiffness and structural rigidity of the padding changed the biomechanical responses of the head with stiffer padding resulting in higher head accelerations. At the skull fracture, HIC values were more than 2-3x higher than the frontal skull fracture threshold (HIC=1000), emphasizing the differences between frontal and lateral impact. Rotational head accelerations up to 42.1 krad/s(2) were observed before skull fracture, indicating possible severe brain injury without skull fracture in lateral head impact. These data will help to establish injury criteria and threshold in lateral impacts for improved automotive protection and help clinicians understand the biomechanics of lateral head impact from improved diagnosis.

  1. Effect of eye movements and proprioceptive neuromuscular facilitation on balance and head alignment in stroke patients with neglect syndrome.

    Science.gov (United States)

    Park, Si-Eun; Min, Kyung-Ok; Lee, Sang-Bin; Choi, Wan-Suk; Kim, Soon-Hee

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of eye movements and proprioceptive neuromuscular facilitation (PNF) on patients with neglect syndrome. [Subjects and Methods] The subjects were randomly allocated to 2 groups: the eye movements (EM) group; and the PNF with eye movements (PEM) group. The program was conducted five times each week for 6 weeks. Balance (both static and dynamic) and head alignment (craniovertebral angle and cranial rotation angle) were measured before and after testing. [Results] In measurements of static balance, the EM group showed significant improvement in sway length and sway area when examined in the eyes-open condition, but not when examined in the eyes-closed condition. The PEM group showed significant improvement when examined under both conditions. In the assessment of dynamic balance, both groups showed significant improvement in measurements of sway areas. With respect to head alignment, there were no significant differences pre- and post-testing in either the craniovertebral angle or the cranial rotation angle in the EM group, but the PEM group showed significant differences in both measurements. [Conclusion] These results suggest that in stroke patients with neglect syndrome, PNF with eye movements, rather than eye movements alone, has a greater positive effect on balance and head alignment.

  2. The impact of head movements on EEG and contact impedance: an adaptive filtering solution for motion artifact reduction.

    Science.gov (United States)

    Mihajlovic, Vojkan; Patki, Shrishail; Grundlehner, Bernard

    2014-01-01

    Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements.

  3. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    Science.gov (United States)

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  4. Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning.

    Science.gov (United States)

    Kaplan, Raphael; Doeller, Christian F; Barnes, Gareth R; Litvak, Vladimir; Düzel, Emrah; Bandettini, Peter A; Burgess, Neil

    2012-01-01

    The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory

  5. Professionalizing a Global Social Movement: Universities and Human Rights

    Science.gov (United States)

    Suarez, David; Bromley, Patricia

    2012-01-01

    Research on the human rights movement emphasizes direct changes in nation-states, focusing on the efficacy of treaties and the role of advocacy in mitigating immediate violations. However, more than 140 universities in 59 countries established academic chairs, research centers, and programs for human rights from 1968-2000, a development that…

  6. Professionalizing a Global Social Movement: Universities and Human Rights

    Science.gov (United States)

    Suarez, David; Bromley, Patricia

    2012-01-01

    Research on the human rights movement emphasizes direct changes in nation-states, focusing on the efficacy of treaties and the role of advocacy in mitigating immediate violations. However, more than 140 universities in 59 countries established academic chairs, research centers, and programs for human rights from 1968-2000, a development that…

  7. Nonverbal synchrony of head- and body-movement in psychotherapy: different signals have different associations with outcome

    Directory of Open Access Journals (Sweden)

    Fabian eRamseyer

    2014-09-01

    Full Text Available Objective: The coordination of patient’s and therapist’s bodily movement – nonverbal synchrony – has been empirically shown to be associated with psychotherapy outcome. This finding was based on dynamic movement patterns of the whole body. The present paper is a new analysis of an existing dataset (Ramseyer & Tschacher, 2011, which extends previous findings by differentiating movements pertaining to head and upper-body regions. Method: In a sample of 70 patients (37 female, 33 male treated at an outpatient psychotherapy clinic, we quantified nonverbal synchrony with an automated objective video-analysis algorithm (Motion Energy Analysis, MEA. Head- and body-synchrony was quantified during the initial 15 minutes of video-recorded therapy sessions. Micro-outcome was assessed with self-report post-session questionnaires provided by patients and their therapists. Macro-outcome was measured with questionnaires that quantified attainment of treatment goals and changes in experiencing and behavior at the end of therapy. Results: The differentiation of head- and body-synchrony showed that these two facets of motor coordination were differentially associated with outcome. Head-synchrony predicted global outcome of therapy, while body-synchrony did not, and body-synchrony predicted session outcome, while head-synchrony did not. Conclusions: The results pose an important amendment to previous findings, which showed that nonverbal synchrony embodied both outcome and interpersonal variables of psychotherapy dyads. The separation of head- and body-synchrony suggested that distinct mechanisms may operate in these two regions: Head-synchrony embodied phenomena with a long temporal extension (overall therapy success, while body-synchrony embodied phenomena of a more immediate nature (session-level success. More explorations with fine-grained analyses of synchronized phenomena in nonverbal behavior may shed additional light on the embodiment of

  8. Neural coding of movement direction in the healthy human brain.

    Directory of Open Access Journals (Sweden)

    Christopher D Cowper-Smith

    Full Text Available Neurophysiological studies in monkeys show that activity of neurons in primary cortex (M1, pre-motor cortex (PMC, and cerebellum varies systematically with the direction of reaching movements. These neurons exhibit preferred direction tuning, where the level of neural activity is highest when movements are made in the preferred direction (PD, and gets progressively lower as movements are made at increasing degrees of offset from the PD. Using a functional magnetic resonance imaging adaptation (fMRI-A paradigm, we show that PD coding does exist in regions of the human motor system that are homologous to those observed in non-human primates. Consistent with predictions of the PD model, we show adaptation (i.e., a lower level of the blood oxygen level dependent (BOLD time-course signal in M1, PMC, SMA, and cerebellum when consecutive wrist movements were made in the same direction (0° offset relative to movements offset by 90° or 180°. The BOLD signal in dorsolateral prefrontal cortex adapted equally in all movement offset conditions, mitigating against the possibility that the present results are the consequence of differential task complexity or attention to action in each movement offset condition.

  9. Segmentation of human upper body movement using multiple IMU sensors.

    Science.gov (United States)

    Aoki, Takashi; Lin, Jonathan Feng-Shun; Kulic, Dana; Venture, Gentiane

    2016-08-01

    This paper proposes an approach for the segmentation of human body movements measured by inertial measurement unit sensors. Using the angular velocity and linear acceleration measurements directly, without converting to joint angles, we perform segmentation by formulating the problem as a classification problem, and training a classifier to differentiate between motion end-point and within-motion points. The proposed approach is validated with experiments measuring the upper body movement during reaching tasks, demonstrating classification accuracy of over 85.8%.

  10. Head and Eye Movements Affect Object Processing in 4-Month-Old Infants More than an Artificial Orientation Cue

    Science.gov (United States)

    Wahl, Sebastian; Michel, Christine; Pauen, Sabina; Hoehl, Stefanie

    2013-01-01

    This study investigates the effects of attention-guiding stimuli on 4-month-old infants' object processing. In the human head condition, infants saw a person turning her head and eye gaze towards or away from objects. When presented with the objects again, infants showed increased attention in terms of longer looking time measured by eye…

  11. The Role of Human Body Movements in Mate Selection

    Directory of Open Access Journals (Sweden)

    Nadine Hugill

    2010-01-01

    Full Text Available It is common scientific knowledge, that most of what we say within a conversation is not only expressed by the words' meaning alone, but also through our gestures, postures, and body movements. This non-verbal mode is possibly rooted firmly in our human evolutionary heritage, and as such, some scientists argue that it serves as a fundamental assessment and expression tool for our inner qualities. Studies of nonverbal communication have established that a universal, culture-free, non-verbal sign system exists, that is available to all individuals for negotiating social encounters. Thus, it is not only the kind of gestures and expressions humans use in social communication, but also the way these movements are performed, as this seems to convey key information about an individual's quality. Dance, for example, is a special form of movement, which can be observed in human courtship displays. Recent research suggests that people are sensitive to the variation in dance movements, and that dance performance provides information about an individual's mate quality in terms of health and strength. This article reviews the role of body movement in human non-verbal communication, and highlights its significance in human mate preferences in order to promote future work in this research area within the evolutionary psychology framework.

  12. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  13. HEADING RECOVERY FROM OPTIC FLOW: COMPARING PERFORMANCE OF HUMANS AND COMPUTATIONAL MODELS

    Directory of Open Access Journals (Sweden)

    Andrew John Foulkes

    2013-06-01

    Full Text Available Human observers can perceive their direction of heading with a precision of about a degree. Several computational models of the processes underpinning the perception of heading have been proposed. In the present study we set out to assess which of four candidate models best captured human performance; the four models we selected reflected key differences in terms of approach and methods to modelling optic flow processing to recover movement parameters. We first generated a performance profile for human observers by measuring how performance changed as we systematically manipulated both the quantity (number of dots in the stimulus per frame and quality (amount of 2D directional noise of the flow field information. We then generated comparable performance profiles for the four candidate models. Models varied markedly in terms of both their performance and similarity to human data. To formally assess the match between the models and human performance we regressed the output of each of the four models against human performance data. We were able to rule out two models that produced very different performance profiles to human observers. The remaining two shared some similarities with human performance profiles in terms of the magnitude and pattern of thresholds. However none of the models tested could capture all aspect of the human data.

  14. Empirical Study on Designing of Gaze Tracking Camera Based on the Information of User's Head Movement.

    Science.gov (United States)

    Pan, Weiyuan; Jung, Dongwook; Yoon, Hyo Sik; Lee, Dong Eun; Naqvi, Rizwan Ali; Lee, Kwan Woo; Park, Kang Ryoung

    2016-08-31

    Gaze tracking is the technology that identifies a region in space that a user is looking at. Most previous non-wearable gaze tracking systems use a near-infrared (NIR) light camera with an NIR illuminator. Based on the kind of camera lens used, the viewing angle and depth-of-field (DOF) of a gaze tracking camera can be different, which affects the performance of the gaze tracking system. Nevertheless, to our best knowledge, most previous researches implemented gaze tracking cameras without ground truth information for determining the optimal viewing angle and DOF of the camera lens. Eye-tracker manufacturers might also use ground truth information, but they do not provide this in public. Therefore, researchers and developers of gaze tracking systems cannot refer to such information for implementing gaze tracking system. We address this problem providing an empirical study in which we design an optimal gaze tracking camera based on experimental measurements of the amount and velocity of user's head movements. Based on our results and analyses, researchers and developers might be able to more easily implement an optimal gaze tracking system. Experimental results show that our gaze tracking system shows high performance in terms of accuracy, user convenience and interest.

  15. Spontaneous cyclic embryonic movements in humans and guinea pigs

    NARCIS (Netherlands)

    Felt, Renee H. M.; Mulder, Eduard J. H.; Luchinger, Annemarie B.; van Kan, Colette M.; Taverne, Marcel A. M.; de Vries, J. I. P.

    2012-01-01

    Motility assessment before birth can be used to evaluate the integrity of the nervous system. Sideways bending (SB) of head and/or rump, the earliest embryonic motility in both humans and guinea pigs, can be visualized sonographically. We know from other species that early embryonic motility is cycl

  16. Human Papillomavirus in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Anna Rosa Garbuglia

    2014-08-01

    Full Text Available Human papillomavirus (HPV is currently considered to be a major etiologic factor, in addition to tobacco and alcohol, for oropharyngeal cancer (OPC development. HPV positive OPCs are epidemiologically distinct from HPV negative ones, and are characterized by younger age at onset, male predominance, and strong association with sexual behaviors. HPV16 is the most prevalent types in oral cavity cancer (OCC, moreover the prevalence of beta, and gamma HPV types is higher than that of alpha HPV in oral cavity.

  17. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Directory of Open Access Journals (Sweden)

    Peter Stratton

    Full Text Available The head direction (HD system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology, and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  18. Using strategic movement to calibrate a neural compass: a spiking network for tracking head direction in rats and robots.

    Science.gov (United States)

    Stratton, Peter; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2011-01-01

    The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that 'grounding' of modelled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

  19. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET are not eas......The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...... accessible; however, animal movement can be potentially used to generate energy. In this study, the head movements of individual sheep in a flock during grazing were monitored in order to investigate the amount of energy that can be generated by these movements. By applying the Lagrange–d’Alembert Principle...... to this problem, the equations of motion from each neck-mounted sensor as well as the amount of mechanical energy generated per time instant (each second) during upward and downward head movements were calculated. This resulted in the production of 857 mW and 1660 mW during the downward and upward movements...

  20. Enrico Chiaveri, new Head of the Human Resources Department

    CERN Document Server

    2005-01-01

    Enrico Chiaveri has been appointed Head of the Human Resources Department of with effect from 1st April 2005. A senior physicist, Dr Chiaveri joined CERN in 1973. During his career, he has performed various management roles, including that of Deputy Leader of the SPS/LEP Division, and has acquired extensive experience in human resources matters. Over the transition period up to 1st August 2005 he will gradually relinquish his current functions as Group Leader within the AB Department.

  1. The virtual morphology and the main movements of the human neck simulations used for car crash studies

    Science.gov (United States)

    Ciunel, St.; Tica, B.

    2016-08-01

    The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.

  2. Quantification of Human Movement for Assessment in Automated Exercise Coaching

    CERN Document Server

    Hagler, Stuart; Bajczy, Ruzena; Pavel, Misha

    2016-01-01

    Quantification of human movement is a challenge in many areas, ranging from physical therapy to robotics. We quantify of human movement for the purpose of providing automated exercise coaching in the home. We developed a model-based assessment and inference process that combines biomechanical constraints with movement assessment based on the Microsoft Kinect camera. To illustrate the approach, we quantify the performance of a simple squatting exercise using two model-based metrics that are related to strength and endurance, and provide an estimate of the strength and energy-expenditure of each exercise session. We look at data for 5 subjects, and show that for some subjects the metrics indicate a trend consistent with improved exercise performance.

  3. Measuring Human Movement Patterns and Behaviors in Public Spaces

    DEFF Research Database (Denmark)

    Nielsen, Søren Zebitz; Gade, Rikke; Moeslund, Thomas B.;

    In order to assess human movement patterns and behaviors in public spaces we present a method using thermal cameras and Computer Vision (CV) technology, combined with the analytical virtues of Geographical Information Systems (GIS), to track people in urban streets and plazas. The method enables...

  4. Ocular Reflex Phase During Off-Vertical Axis Rotation In Humans Is Modified By Head-On-Trunk Position

    Science.gov (United States)

    Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard

    2005-01-01

    Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.

  5. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement.

    Science.gov (United States)

    del Rosario, Michael B; Redmond, Stephen J; Lovell, Nigel H

    2015-07-31

    Advances in mobile technology have led to the emergence of the "smartphone", a new class of device with more advanced connectivity features that have quickly made it a constant presence in our lives. Smartphones are equipped with comparatively advanced computing capabilities, a global positioning system (GPS) receivers, and sensing capabilities (i.e., an inertial measurement unit (IMU) and more recently magnetometer and barometer) which can be found in wearable ambulatory monitors (WAMs). As a result, algorithms initially developed for WAMs that "count" steps (i.e., pedometers); gauge physical activity levels; indirectly estimate energy expenditure and monitor human movement can be utilised on the smartphone. These algorithms may enable clinicians to "close the loop" by prescribing timely interventions to improve or maintain wellbeing in populations who are at risk of falling or suffer from a chronic disease whose progression is linked to a reduction in movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal platform from which human movement can be remotely monitored without the expense of purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the sensors that can be found in the smartphone are presented, followed by a summary of the developments in this field with an emphasis on the evolution of algorithms used to classify human movement. The limitations identified in the literature will be discussed, as well as suggestions about future research directions.

  6. Tracking the Evolution of Smartphone Sensing for Monitoring Human Movement

    Directory of Open Access Journals (Sweden)

    Michael B. del Rosario

    2015-07-01

    Full Text Available Advances in mobile technology have led to the emergence of the “smartphone”, a new class of device with more advanced connectivity features that have quickly made it a constant presence in our lives. Smartphones are equipped with comparatively advanced computing capabilities, a global positioning system (GPS receivers, and sensing capabilities (i.e., an inertial measurement unit (IMU and more recently magnetometer and barometer which can be found in wearable ambulatory monitors (WAMs. As a result, algorithms initially developed for WAMs that “count” steps (i.e., pedometers; gauge physical activity levels; indirectly estimate energy expenditure and monitor human movement can be utilised on the smartphone. These algorithms may enable clinicians to “close the loop” by prescribing timely interventions to improve or maintain wellbeing in populations who are at risk of falling or suffer from a chronic disease whose progression is linked to a reduction in movement and mobility. The ubiquitous nature of smartphone technology makes it the ideal platform from which human movement can be remotely monitored without the expense of purchasing, and inconvenience of using, a dedicated WAM. In this paper, an overview of the sensors that can be found in the smartphone are presented, followed by a summary of the developments in this field with an emphasis on the evolution of algorithms used to classify human movement. The limitations identified in the literature will be discussed, as well as suggestions about future research directions.

  7. Detection of Human Head Direction Based on Facial Normal Algorithm

    Directory of Open Access Journals (Sweden)

    Lam Thanh Hien

    2015-01-01

    Full Text Available Many scholars worldwide have paid special efforts in searching for advance approaches to efficiently estimate human head direction which has been successfully applied in numerous applications such as human-computer interaction, teleconferencing, virtual reality, and 3D audio rendering. However, one of the existing shortcomings in the current literature is the violation of some ideal assumptions in practice. Hence, this paper aims at proposing a novel algorithm based on the normal of human face to recognize human head direction by optimizing a 3D face model combined with the facial normal model. In our experiments, a computational program was also developed based on the proposed algorithm and integrated with the surveillance system to alert the driver drowsiness. The program intakes data from either video or webcam, and then automatically identify the critical points of facial features based on the analysis of major components on the faces; and it keeps monitoring the slant angle of the head closely and makes alarming signal whenever the driver dozes off. From our empirical experiments, we found that our proposed algorithm effectively works in real-time basis and provides highly accurate results

  8. Human Posture and Movement Prediction based on Musculoskeletal Modeling

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi

    2014-01-01

    Abstract This thesis explores an optimization-based formulation, so-called inverse-inverse dynamics, for the prediction of human posture and motion dynamics performing various tasks. It is explained how this technique enables us to predict natural kinematic and kinetic patterns for human posture...... and motion using AnyBody Modeling System (AMS). AMS uses inverse dynamics to analyze musculoskeletal systems and is, therefore, limited by its dependency on input kinematics. We propose to alleviate this dependency by assuming that voluntary postures and movement strategies in humans are guided by a desire...... investigated, a scaling to the mean height and body mass may be sufficient, while other questions require subject-specific models. The movement is parameterized by means of time functions controlling selected degrees-of-freedom (DOF). Subsequently, the parameters of these functions, usually referred...

  9. Human movement analysis with image processing in real time

    Science.gov (United States)

    Fauvet, Eric; Paindavoine, Michel; Cannard, F.

    1991-04-01

    In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.

  10. Mu suppression and human movement responses to the Rorschach test.

    Science.gov (United States)

    Pineda, Jaime A; Giromini, Luciano; Porcelli, Piero; Parolin, Laura; Viglione, Donald J

    2011-03-30

    Electroencephalographic μ wave suppression was investigated using all 10 static, ambiguous Rorschach stimuli. In an earlier study using four Rorschach stimuli, the two stimuli that elicited feelings of movement were associated with μ suppression. In this study, we replicated this relationship using all 10 Rorschach stimuli while overcoming a number of other earlier limitations. The results strongly support the hypothesis that internal representation of the feeling of movement is sufficient to suppress the μ rhythm even when minimal external cues are present. This outcome increases the generalizability and ecological validity of this approach and gives support to the traditional interpretation of the Rorschach human movement responses as being associated with cognitive functioning, empathy, and social cognition.

  11. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  12. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  13. Dopamine function and the efficiency of human movement.

    Science.gov (United States)

    Gepshtein, Sergei; Li, Xiaoyan; Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2014-03-01

    To sustain successful behavior in dynamic environments, active organisms must be able to learn from the consequences of their actions and predict action outcomes. One of the most important discoveries in systems neuroscience over the last 15 years has been about the key role of the neurotransmitter dopamine in mediating such active behavior. Dopamine cell firing was found to encode differences between the expected and obtained outcomes of actions. Although activity of dopamine cells does not specify movements themselves, a recent study in humans has suggested that tonic levels of dopamine in the dorsal striatum may in part enable normal movement by encoding sensitivity to the energy cost of a movement, providing an implicit "motor motivational" signal for movement. We investigated the motivational hypothesis of dopamine by studying motor performance of patients with Parkinson disease who have marked dopamine depletion in the dorsal striatum and compared their performance with that of elderly healthy adults. All participants performed rapid sequential movements to visual targets associated with different risk and different energy costs, countered or assisted by gravity. In conditions of low energy cost, patients performed surprisingly well, similar to prescriptions of an ideal planner and healthy participants. As energy costs increased, however, performance of patients with Parkinson disease dropped markedly below the prescriptions for action by an ideal planner and below performance of healthy elderly participants. The results indicate that the ability for efficient planning depends on the energy cost of action and that the effect of energy cost on action is mediated by dopamine.

  14. Unspoken knowledge: implicit learning of structured human dance movement.

    Science.gov (United States)

    Opacic, Tajana; Stevens, Catherine; Tillmann, Barbara

    2009-11-01

    The sequencing of dance movements may be thought of as a grammar. We investigate implicit learning of regularities that govern sequences of unfamiliar, discrete dance movements. It was hypothesized that observers without prior experience with contemporary dance would be able to learn regularities that underpin structured human movement. Thirty-one adults were assigned to either an exposure or a control group. Exposure consisted of 22 grammatical 3-, 4-, and 5-movement sequences presented twice in random order; sequence duration ranged from 9 to 19 s. In a test phase, exposure and control groups identified previously unseen sequences as grammatical or ungrammatical, and rated confidence of judgment. The exposure group selected significantly more new grammatical sequences in the test phase than the control group. In addition, for the exposure group, the zero correlation criterion, wherein no relation between confidence and accuracy indicates unconscious knowledge, was satisfied. Through exposure, novice observers can learn a grammar that governs the sequencing of dance movements. This has implications for implicit learning of long sequences, working memory, and the development of expectations through exposure to contemporary dance.

  15. Movement patterns of Bar-headed Geese Anser indicus during breeding and post-breeding periods at Qinghai Lake, China

    Science.gov (United States)

    Cui, Peng; Hou, Yuansheng; Tang, Mingjie; Zhang, Haiting; Zuohua, Yuanchun; Yin, Zuohua; Li, Tianxian; Guo, Shan; Xing, Zhi; He, Yubang; Prosser, Diann J.; Newman, Scott H.; Takekawa, John Y.; Yan, Baoping; Lei, Fumin

    2011-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 outbreak at Qinghai Lake, China, in 2005 caused the death of over 6,000 migratory birds, half of which were Bar-headed Geese Anser indicus. Understanding the movements of this species may inform monitoring of outbreak risks for HPAI viruses; thus, we investigated the movement patterns of 29 Bar-headed Geese at Qinghai Lake, China during 2007 and 2008 by using high resolution GPS satellite telemetry. We described the movements and distribution of marked Bar-headed Geese during the pre-nesting, nesting, and moulting periods. Of 21 Bar-headed Geese with complete transmission records, 3 moved to other areas during the nesting period: 2 to Jianghe wetland (50 km northwest of Qinghai Lake) and 1 to Cuolongka Lake (220 km northwest of Qinghai Lake) during the nesting period. We identified nesting attempts of 7 of the marked geese at Qinghai Lake. Four completed successful nesting attempts according to our rules of judgment for the breeding status, and 2 geese lost broods soon after hatching (hereafter referred to as unsuccessful breeders). Of 18 geese present at Qinghai Lake during the nesting period, 9 (6 non-breeders, 2 successful breeders and 1 unsuccessful breeder) remained at Qinghai Lake during the moulting period; and 9 (5 non-breeders, 4 unsuccessful breeders) left Qinghai Lake for moulting. Kuhai Lake, Donggeicuona Lake, Alake Lake, Zhaling-Eling Lake area and Huangheyuan wetland area were used as moulting sites. Geese that moulted at Qinghai Lake, Cuolongka Lake, Kuhai Lake, Donggeicuona Lake and Alake Lake also moved to Zhaling-Eling Lake area or Huangheyuan wetland area and stayed there for several days prior to autumn migration. Mean home range and core area estimates did not differ significantly by sex, year and between breeders and non-breeders.

  16. Can human movement analysis contribute to usability understanding?

    Science.gov (United States)

    Belda-Lois, Juan-Manuel; de-Rosario, Helios; Pons, Romà; Poveda, Rakel; Morón, Ana; Porcar, Rosa; García, Ana-Cruz; Gómez, Amelia

    2010-08-01

    Nowadays human-machine interfaces are evaluated using different methodologies. These methodologies rarely consider the human movements involved in the interaction, and if so, the movements are considered in a simplistic manner. Another often neglected aspect is the relationship between the learning process and the use of the interface. Traditional approaches of cognitive modeling consider learning as just one continuous process. However there is some current evidence of concurrent processes on different time scales. This paper aims to answer, with experimental measurements, if learning actually implies a set of concurrent processes, if those processes are related to the coordinative aspects of hand movement, and how this can vary between young adult and elderly users. Two different interfaces, a washing machine and a domotic system, were analyzed with 23 and 20 people, respectively, classified as men or women and elderly (over 55) or adult (between 40 and 50). The results of the study provide support for the existence of different concurrent processes in learning, previously demonstrated for motor tasks. Moreover, the learning process is actually associated with changes in movement patterns. Finally, the results show that the progression of the learning process depends on age, although elderly people are equally capable of learning to use technological systems as young adults.

  17. Something in the Way We Move: Motion Dynamics, Not Perceived Sex, Influence Head Movements in Conversation

    Science.gov (United States)

    Boker, Steven M.; Cohn, Jeffrey F.; Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Ambadar, Zara; Brick, Timothy R.

    2011-01-01

    During conversation, women tend to nod their heads more frequently and more vigorously than men. An individual speaking with a woman tends to nod his or her head more than when speaking with a man. Is this due to social expectation or due to coupled motion dynamics between the speakers? We present a novel methodology that allows us to randomly…

  18. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  19. Blood flow and microdialysis in the human femoral head

    DEFF Research Database (Denmark)

    Bøgehøj, Morten; Emmeluth, Claus; Overgaard, Søren

    2007-01-01

    BACKGROUND: If it would be possible to detect lack of flow and/or the development of ischemia in bone, we might have a way of predicting whether a broken bone will heal. We established microdialysis (MD) and laser Doppler (LD) flow measurement in the human femoral head in order to be able to detect...... ischemia and measure changes in blood flow. MATERIAL AND METHODS: In 9 patients undergoing total hip arthroplasty for primary osteoarthrosis, two MD catheters were inserted into the femoral head through two drill holes after the blood flow had been visualized by LD. Then primary samples were collected...... detected within 2 h of cessation of blood flow in most patients....

  20. Increased Brain Activation for Foot Movement During 70-Day 6 Deg Head-Down Bed Rest (HDBR): Evidence from Functional Magnetic Resonance Imaging (fMRI)

    Science.gov (United States)

    Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.; hide

    2015-01-01

    Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12

  1. Optimal swimming speed in head currents and effects on distance movement of winter-migrating fish

    DEFF Research Database (Denmark)

    Brodersen, J.; Nilsson, P.A.; Ammitzbøl, J.

    2008-01-01

    ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head...... currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees...... with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during...

  2. Effect of awareness through movement on the head posture of bruxist children.

    Science.gov (United States)

    Quintero, Y; Restrepo, C C; Tamayo, V; Tamayo, M; Vélez, A L; Gallego, G; Peláez-Vargas, A

    2009-01-01

    The aim of this study was to evaluate the effectiveness of physiotherapy to improve the head posture and reduce the signs of bruxism in a group of bruxist children. A single-blind randomized clinical trial was performed. All the subjects were 3- to 6-year old, had complete primary dentition, dental and skeletal class I occlusion and were classified as bruxist according to the minimal criteria of the ICSD for bruxism. For each child, a clinical, photographic and radiographic evaluation of the head and cervical posture were realized with standardized techniques. The children were randomized in an experimental (n = 13) and a control (n = 13) group. A physiotherapeutic intervention was applied to the children of the experimental group once a week, until 10 sessions were completed. Afterwards, the cephalogram and the clinical and photographic evaluation of the head posture were measured again. The data were analysed with the t-test and Mann-Whitney test. The subjects of the experimental group showed statistically significant improvement in the natural head posture. The physiotherapeutic intervention showed to be efficient to improve the head posture at the moment of measurement in the studied children. The relationship between bruxism and head posture, if exists, seems to be worthwhile to examine.

  3. The phenomenological movement and research in the human sciences.

    Science.gov (United States)

    Giorgi, Amedeo

    2005-01-01

    Phenomenology, as a modern movement in philosophy, has focused discussion upon human subjectivity in new and critically important ways. Because human participants can relate intentionally to objects of the world consciousness manifests relationships to things and others that are other than cause-effect relationships. Consequently, the concepts and practices of the natural sciences are not the best model for the human sciences to follow. Husserl in his philosophy introduced a method for a more adequate approach to the achievements of consciousness and when properly modified the phenomenological method can serve as the basis for the human sciences, including nursing. The use of such a method can make the qualitative analysis of phenomena rigorous and scientific.

  4. The perception of humanness from the movements of synthetic agents.

    Science.gov (United States)

    Thompson, James C; Trafton, J Gregory; McKnight, Patrick

    2011-01-01

    As technology develops, social robots and synthetic avatars might begin to play more of a role in our lives. An influential theory of the perception of synthetic agents states that as they begin to look and move in a more human-like way, they elicit profound discomfort in the observer--an effect known as the Uncanny Valley. Previous attempts to examine the existence of the Uncanny Valley have not adequately manipulated movement parameters that contribute to perceptions of the humanness or eeriness. Here we parametrically manipulated three different kinematic features of two walking avatars and found that, contrary to the Uncanny Valley hypothesis, ratings of the humanness, familiarity, and eeriness of these avatars changed monotonically. Our results indicate that, when a full gradient of motion parameter changes is examined, ratings of synthetic agents by human observers do not show an Uncanny Valley.

  5. Hands-free Head-movement Gesture Recognition using Artificial Neural Networks and the Magnified Gradient Function.

    Science.gov (United States)

    King, L M; Nguyen, H T; Taylor, P B

    2005-01-01

    This paper presents a hands-free head-movement gesture classification system using a Neural Network employing the Magnified Gradient Function (MGF) algorithm. The MGF increases the rate of convergence by magnifying the first order derivative of the activation function, whilst guaranteeing convergence. The MGF is tested on able-bodied and disabled users to measure its accuracy and performance. It is shown that for able-bodied users, a classification improvement from 98.25% to 99.85% is made, and 92.08% to 97.50% for disabled users.

  6. Does your profile say it all? Using demographics to predict expressive head movement during gameplay

    DEFF Research Database (Denmark)

    Asteriadis, Stylianos; Karpouzis, Kostas; Shaker, Noor;

    2012-01-01

    In this work, we explore the relation between expressive head movement and user pro¯le information in game play settings. Facial ges- ture analysis cues are statistically correlated with players' demographic characteristics in two di®erent settings, during game-play and at events of special inter...... (other than typical/universal facial ex- pressions) was analyzed. The proposed analysis aims at exploring the option of utilizing demographic characteristics as part of users' pro¯l- ing scheme and interpreting visual behavior in a manner that takes into account those features....

  7. Towards Human Capture Movement: Estimation of Anatomical Movements of the Shoulder

    Directory of Open Access Journals (Sweden)

    B. B. Salmerón-Quiroz

    2013-01-01

    Full Text Available In this paper we focus on the human arm motion capture, which is motivated by the requirements in physical rehabilitation and training of stroke patients in the same way as monitoring of elderly person activities. The proposed methodology uses a data fusion of low-cost and low-weight MEMS sensors jointly to an a priori knowledge of the arm anatomy. The main goal is to estimate the arm position, the anatomical movements of the shoulder and its accelerations. We propose a discrete optimization based-approach which aims to search the optimal attitude ambiguity directly without decorrelation of ambiguity, and to computing the baseline vector consequently. The originality of this paper is to apply the discrete optimization to track the desired trajectory of a nonlinear system such as the Human Movement in the presence of uncertainties. The global asymptotic convergence of the nonlinear observer is guaranteed. Extensive tests of the presented methodology with real world data illustrate the effectiveness of the proposed procedure.

  8. Ipsilateral directional encoding of joystick movements in human cortex.

    Science.gov (United States)

    Sharma, Mohit; Gaona, Charles; Roland, Jarod; Anderson, Nick; Freudenberg, Zachary; Leuthardt, Eric C

    2009-01-01

    The majority of Brain Computer Interfaces have relied on signals related to primary motor cortex and the operation of the contralateral limb. Recently, the physiology associated with same-sided (ipsilateral) motor movements has been found to have a unique cortical physiology. This study sets out to assess whether more complex motor movements can be discerned utilizing ipsilateral cortical signals. In this study, three invasively monitored human subjects were recorded while performing a center out joystick task with the hand ipsilateral to the hemispheric subdural grid array. It was found that directional tuning was present in ipsilateral cortex. This information was encoded in both distinct anatomic populations and spectral distributions. These findings support the notion that ipsilateral signals may provide added information for BCI operation in the future.

  9. Human movement data for malaria control and elimination strategic planning.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  10. Three-dimensional head and trunk movement characteristics during gait in children with spastic diplegia.

    Science.gov (United States)

    Heyrman, L; Feys, H; Molenaers, G; Jaspers, E; Monari, D; Meyns, P; Desloovere, K

    2013-09-01

    This study uses a recently developed trunk model to determine which head and trunk kinematic parameters differentiate children with spastic diplegia from typically developing (TD) children while walking. Differences in head and trunk parameters in relation to the severity of the motor involvement (GMFCS levels) were additionally examined. The trunk model consisted of five segments (pelvis, thorax, head, shoulder line, spine). Discrete kinematic parameters (ROM, mean position) and angular waveforms were compared between 20 children with spastic diplegia (age 9.8 years±2.9 years; GMFCS I: n=10, GMFCS II: n=10) and 20 individually age-matched TD children (9.7 years±3 years). A new measure for overall trunk pathology, the trunk profile score (TPS), was proposed and included in the comparative analysis. Compared to TD children, children with GMFCS II showed a significantly higher TPS and increased ROM for pelvis tilt, for thorax and head in nearly all planes, and the angle of kyphosis. In children with GMFCS I, only ROM of thorax lateral bending was significantly increased. Sagittal ROM differentiated best between GMFCS levels, with higher ROM found in children with GMFCS II. Current results provide new insights into head and trunk kinematics during gait in children with spastic diplegia.

  11. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    OpenAIRE

    Felipe Cid; Jose Moreno; Pablo Bustos; Pedro Núñez

    2014-01-01

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, inclu...

  12. Automatic Detection of CT Perfusion Datasets Unsuitable for Analysis due to Head Movement of Acute Ischemic Stroke Patients

    Directory of Open Access Journals (Sweden)

    Fahmi Fahmi

    2014-01-01

    Full Text Available Head movement during brain Computed Tomography Perfusion (CTP can deteriorate perfusion analysis quality in acute ischemic stroke patients. We developed a method for automatic detection of CTP datasets with excessive head movement, based on 3D image-registration of CTP, with non-contrast CT providing transformation parameters. For parameter values exceeding predefined thresholds, the dataset was classified as ‘severely moved’. Threshold values were determined by digital CTP phantom experiments. The automated selection was compared to manual screening by 2 experienced radiologists for 114 brain CTP datasets. Based on receiver operator characteristics, optimal thresholds were found of respectively 1.0°, 2.8° and 6.9° for pitch, roll and yaw, and 2.8 mm for z-axis translation. The proposed method had a sensitivity of 91.4% and a specificity of 82.3%. This method allows accurate automated detection of brain CTP datasets that are unsuitable for perfusion analysis.

  13. Eye movements reveal epistemic curiosity in human observers.

    Science.gov (United States)

    Baranes, Adrien; Oudeyer, Pierre-Yves; Gottlieb, Jacqueline

    2015-12-01

    Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample visual information. However, while saccadic decisions are intensively investigated in instrumental contexts where saccades guide subsequent actions, it is largely unknown how they may be influenced by curiosity - the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise, no study has examined their relation to epistemic curiosity - interest in symbolic, semantic information. To investigate this question, we tracked the eye movements of human observers while they read trivia questions and, after a brief delay, were visually given the answer. We show that higher curiosity was associated with earlier anticipatory orienting of gaze toward the answer location without changes in other metrics of saccades or fixations, and that these influences were distinct from those produced by variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of the gaze position before the answer onset and independently of covariations in confidence or surprise, suggesting potential practical applications for educational technologies, recommender systems and research in cognitive sciences. With this article, we provide full access to the annotated database allowing readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation that can be used to read out curiosity states.

  14. Coupling of Head and Body Movement with Motion of the Audible Environment

    Science.gov (United States)

    Stoffregen, Thomas A.; Villard, Sebastien; Kim, ChungGon; Ito, Kiyohide; Bardy, Benoit G.

    2009-01-01

    The authors asked whether standing posture could be controlled relative to audible oscillation of the environment. Blindfolded sighted adults were exposed to acoustic flow in a moving room, and were asked to move so as to maintain a constant distance between their head and the room. Acoustic flow had direct (source) and indirect (reflected)…

  15. Evaluation of cervical posture improvement of children with cerebral palsy after physical therapy based on head movements and serious games.

    Science.gov (United States)

    Velasco, Miguel A; Raya, Rafael; Muzzioli, Luca; Morelli, Daniela; Otero, Abraham; Iosa, Marco; Cincotti, Febo; Rocon, Eduardo

    2017-08-18

    This paper presents the preliminary results of a novel rehabilitation therapy for cervical and trunk control of children with cerebral palsy (CP) based on serious videogames and physical exercise. The therapy is based on the use of the ENLAZA Interface, a head mouse based on inertial technology that will be used to control a set of serious videogames with movements of the head. Ten users with CP participated in the study. Whereas the control group (n = 5) followed traditional therapies, the experimental group (n = 5) complemented these therapies with a series of ten sessions of gaming with ENLAZA to exercise cervical flexion-extensions, rotations and inclinations in a controlled, engaging environment. The ten work sessions yielded improvements in head and trunk control that were higher in the experimental group for Visual Analogue Scale, Goal Attainment Scaling and Trunk Control Measurement Scale (TCMS). Significant differences (27% vs. 2% of percentage improvement) were found between the experimental and control groups for TCMS (p serious games with traditional rehabilitation could allow children with CP to achieve larger function improvements in the trunk and cervical regions. However, given the limited scope of this trial (n = 10) additional studies are needed to corroborate this hypothesis.

  16. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures.

    Science.gov (United States)

    Lours-Calet, Corinne; Alvares, Lucia E; El-Hanfy, Amira S; Gandesha, Saniel; Walters, Esther H; Sobreira, Débora Rodrigues; Wotton, Karl R; Jorge, Erika C; Lawson, Jennifer A; Kelsey Lewis, A; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne

    2014-06-15

    The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of heading performance with vibrotactile guidance: the benefits of information-movement coupling compared with spatial language.

    Science.gov (United States)

    Faugloire, Elise; Lejeune, Laure

    2014-12-01

    This study quantified the effectiveness of tactile guidance in indicating a direction to turn to and measured its benefits compared to spatial language. The device (CAYLAR), which was composed of 8 vibrators, specified the requested direction by a vibration at the corresponding location around the waist. Twelve participants were tested in normal light and in total darkness with 3 guidance conditions: spatial language, a long tactile rhythm (1 s on/4 s off vibrations) providing a single stimulation before movement, and a short rhythm (200 ms on/200 ms off vibrations) allowing information-movement coupling during body rotation. We measured response time, heading error, and asked participants to rate task easiness, intuitiveness and perceived accuracy for each guidance mode. Accuracy was higher and participants' ratings were more positive with the short tactile mode than with the 2 other modes. Compared to spatial language, tactile guidance, regardless of the vibration rhythm, also allowed faster responses and did not impair accuracy in the absence of vision. These findings quantitatively demonstrate that tactile guidance is particularly effective when it is reciprocally related to movement. We discuss implications of the benefits of perception-action coupling for the design of tactile navigation devices.

  18. Head Position and Internally Headed Relative Clauses.

    Science.gov (United States)

    Basilico, David

    1996-01-01

    Examines "Head Movement" in internally headed relative clauses (IHRCs). The article shows that in some cases, head movement to an external position need not take place and demonstrates that this movement of the head to a sentence-internal position results from the quantificational nature of IHRCs and Diesing's mapping hypothesis (1990, 1992). (56…

  19. Modelling and monitoring of passive control structures in human movement

    Science.gov (United States)

    Hemami, Hooshang; Hemami, Mahmoud

    2014-09-01

    Passive tissues, ligaments and cartilage are vital to human movement. Their contribution to stability, joint function and joint integrity is essential. The articulation of their functions and quantitative assessment of what they do in a healthy or injured state are important in athletics, orthopaedics, medicine and health. In this paper, the role of cartilage and ligaments in stability of natural contacts, connections and joints is articulated by including them in two very simple skeletal systems: one- and three-link rigid body systems. Based on the Newton-Euler equations, a state space presentation of the dynamics is discussed that allows inclusion of ligament and cartilage structures in the model, and allows for Lyapunov stability studies for the original and reduced systems. The connection constraints may be holonomic and non-holonomic depending on the structure of the passive elements. The development is pertinent to the eventual design of a computational framework for the study of human movement that involves computer models of all the relevant skeletal, neural and physiological elements of the central nervous system (CNS). Such a structure also permits testing of different hypotheses about the functional neuroanatomy of the CNS, and the study of the effects and dynamics of disease, deterioration, aging and injuries. The formulation here is applied to one- and three-link systems. Digital computer simulations of a two rigid body system are presented to demonstrate the feasibility and effectiveness of the approach and the methods.

  20. Radiation-induced camptocormia and dropped head syndrome. Review and case report of radiation-induced movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Clemens; Kuhnt, Thomas; Kortmann, Rolf-Dieter; Hering, Kathrin [Leipzig University, Department of Radiotherapy and Radiation Oncology, Leipzig (Germany)

    2015-10-15

    In recent years, camptocormia and dropped head syndrome (DHS) have gained attention as particular forms of movement disorders. Camptocormia presents with involuntary forward flexion of the thoracolumbar spine that typically increases during walking or standing and may severely impede walking ability. DHS is characterized by weakness of the neck extensors and a consecutive inability to extend the neck; in severe cases the head is fixed in a ''chin to chest position.'' Many diseases may underlie these conditions, and there have been some reports about radiation-induced camptocormia and DHS. A PubMed search with the keywords ''camptocormia,'' ''dropped head syndrome,'' ''radiation-induced myopathy,'' ''radiation-induced neuropathy,'' and ''radiation-induced movement disorder'' was carried out to better characterize radiation-induced movement disorders and the radiation techniques involved. In addition, the case of a patient developing camptocormia 23 years after radiation therapy of a non-Hodgkin's lymphoma of the abdomen is described. In total, nine case series of radiation-induced DHS (n = 45 patients) and - including our case - three case reports (n = 3 patients) about radiogenic camptocormia were retrieved. Most cases (40/45 patients) occurred less than 15 years after radiotherapy involving extended fields for Hodgkin's disease. The use of wide radiation fields including many spinal segments with paraspinal muscles may lead to radiation-induced movement disorders. If paraspinal muscles and the thoracolumbar spine are involved, the clinical presentation can be that of camptocormia. DHS may result if there is involvement of the cervical spine. To prevent these disorders, sparing of the spine and paraspinal muscles is desirable. (orig.) [German] In den letzten Jahren haben Bewegungsstoerungen von Wirbelsaeule und paraspinaler Muskulatur in

  1. The validation and application of a finite element human head model for frontal skull fracture analysis.

    Science.gov (United States)

    Asgharpour, Z; Baumgartner, D; Willinger, R; Graw, M; Peldschus, S

    2014-05-01

    Traumatic head injuries can result from vehicular accidents, sports, falls or assaults. The current advances in computational methods and the detailed finite element models of the human head provide a significant opportunity for biomechanical study of human head injuries. The biomechanical characteristics of the human head through head impact scenarios can be studied in detail by using the finite element models. Skull fracture is one of the most frequent occurring types of head injuries. The purpose of this study is to analyse the experimental head impacts on cadavers by means of the Strasbourg University Finite Element Head Model (SUFEHM). The results of the numerical model and experimental data are compared for validation purpose. The finite element model has also been applied to predict the skull bone fracture in frontal impacts. The head model includes the scalp, the facial bone, the skull, the cerebral spinal fluid, the meninges, the cerebrum and the cerebellum. The model is used to simulate the experimental frontal head impact tests using a cylindrical padded impactor. Results of the computational simulation shows that the model correlated well with a number of experimental data and a global fracture pattern has been predicted well by the model. Therefore the presented numerical model could be used for reconstruction of head impacts in different impact conditions also the forensic application of the head model would provide a tool for investigation of the causes and mechanism of head injuries.

  2. Growth trajectories of the human embryonic head and periconceptional maternal conditions

    NARCIS (Netherlands)

    Koning, I V; Baken, L; Groenenberg, I A L; Husen, S C; Dudink, J; Willemsen, S P; Gijtenbeek, M; Koning, A H J; Reiss, I K M; Steegers, E A P; Steegers-Theunissen, R P M

    2016-01-01

    STUDY QUESTION: Can growth trajectories of the human embryonic head be created using 3D ultrasound (3D-US) and virtual reality (VR) technology, and be associated with second trimester fetal head size and periconceptional maternal conditions? SUMMARY ANSWER: Serial first trimester head circumference

  3. Biomechanics of foetal movement

    Directory of Open Access Journals (Sweden)

    N.C. Nowlan

    2015-01-01

    Full Text Available Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering.

  4. Biomechanics of foetal movement.

    Science.gov (United States)

    Nowlan, N C

    2015-01-02

    Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing) and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering.

  5. Human Movement Detection and Identification Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Jaeseok Yun

    2014-05-01

    Full Text Available Pyroelectric infrared (PIR sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth, three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor and three speed levels (slow, moderate, fast. We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.

  6. Does your profile say it all? Using demographics to predict expressive head movement during gameplay

    DEFF Research Database (Denmark)

    Asteriadis, Stylianos; Karpouzis, Kostas; Shaker, Noor

    2012-01-01

    In this work, we explore the relation between expressive head movement and user pro¯le information in game play settings. Facial ges- ture analysis cues are statistically correlated with players' demographic characteristics in two di®erent settings, during game-play and at events of special...... interest (when the player loses during game play). Experi- ments were conducted on the Siren database, which consists of 58 par- ticipants, playing a modi¯ed version of the Super Mario. Here, as player demographics are considered the gender and age, while the statistical importance of certain facial cues...... (other than typical/universal facial ex- pressions) was analyzed. The proposed analysis aims at exploring the option of utilizing demographic characteristics as part of users' pro¯l- ing scheme and interpreting visual behavior in a manner that takes into account those features....

  7. Effects of neurofeedback training on the cervical movement of adults with forward head posture

    Science.gov (United States)

    Oh, Hyun-Ju; Song, Gui-Bin

    2016-01-01

    [Purpose] The purpose of the present study was to examine the effects of neurofeedback training on postural changes in the cervical spine and changes in the range of motion of the neck and in the Neck Disability Index in adults with forward head posture. [Subjects and Methods] The subjects of the study were 40 college students with forward head posture, randomly divided into a neurofeedback training group (NFTG, n=20) and a control group (CG, n=20). The neurofeedback training group received six sessions of pottery and archery games, each for two minutes, three times per week for four weeks, using the neurofeedback system. [Results] There were no significant effects within and between groups in terms of the absolute rotation angle, anterior weight bearing, and range of extension and flexion by x-ray imaging. There were significant effects in the neurofeedback training group pre- intervention and post-intervention in Neck Disability Index. There were significant effects between groups in Neck Disability Index. [Conclusion] It is thought that neurofeedback training, a training approach to self-regulate brain waves, enhances concentration and is therefore an effective intervention method to improve neck pain and daily activities. PMID:27821957

  8. Effects of neurofeedback training on the cervical movement of adults with forward head posture.

    Science.gov (United States)

    Oh, Hyun-Ju; Song, Gui-Bin

    2016-10-01

    [Purpose] The purpose of the present study was to examine the effects of neurofeedback training on postural changes in the cervical spine and changes in the range of motion of the neck and in the Neck Disability Index in adults with forward head posture. [Subjects and Methods] The subjects of the study were 40 college students with forward head posture, randomly divided into a neurofeedback training group (NFTG, n=20) and a control group (CG, n=20). The neurofeedback training group received six sessions of pottery and archery games, each for two minutes, three times per week for four weeks, using the neurofeedback system. [Results] There were no significant effects within and between groups in terms of the absolute rotation angle, anterior weight bearing, and range of extension and flexion by x-ray imaging. There were significant effects in the neurofeedback training group pre- intervention and post-intervention in Neck Disability Index. There were significant effects between groups in Neck Disability Index. [Conclusion] It is thought that neurofeedback training, a training approach to self-regulate brain waves, enhances concentration and is therefore an effective intervention method to improve neck pain and daily activities.

  9. The "Feeling of Movement": Notes on the Rorschach Human Movement Response.

    Science.gov (United States)

    Porcelli, Piero; Kleiger, James H

    2016-01-01

    Human movement responses (M) on the Rorschach have been traditionally viewed as lying neither completely in the inkblot (external reality) nor within the subject's mind (inner world). The authors contend that M is not reducible to the "body that I have" but to the "body that I am," which is a higher level organization of bottom-up and top-down brain networks, integrating body implicit awareness, psychological functioning, and social cognition. Two sources of evidence suggest the close relationship among M, psychological functions, and brain mechanisms. One comes from meta-analytical evidence supporting the close association between M and higher level cognitive functioning or empathy. The second comes from some preliminary studies showing that M activates brain circuits included in the mirror neuron system (MNS). Two conclusions can be drawn: (a) M is related to the effective use of the mentalization function; and (b) future neuroscientific investigations could lead to an understanding of the neuropsychological mechanisms underlying Rorschach responses and variables.

  10. Human movement training with a cable driven ARm EXoskeleton (CAREX).

    Science.gov (United States)

    Mao, Ying; Jin, Xin; Gera Dutta, Geetanjali; Scholz, John P; Agrawal, Sunil K

    2015-01-01

    In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.

  11. Patterns of Selection of Human Movements IV: Energy Efficiency, Mechanical Advantage, and Asynchronous Arm-Cranking

    OpenAIRE

    Hagler, Stuart

    2017-01-01

    Human movements are physical processes combining the classical mechanics of the human body moving in space and the biomechanics of the muscles generating the forces acting on the body under sophisticated sensory-motor control. The characterization of the performance of human movements is a problem with important applications in clinical and sports research. One way to characterize movement performance is through measures of energy efficiency that relate the mechanical energy of the body and m...

  12. Prospective navigator-echo-based real-time triggering of fetal head movement for the reduction of artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, H. [University Hospital Berne-Inselspital, Freiburgstrasse, Institute of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Frei, K.A.; Raio, L.; Meyer-Wittkopf, M. [University of Berne, Women' s' Hospital, Bern (Switzerland); Remonda, L.; Wiest, R. [University of Berne, Institute of Diagnostic and Interventional Neuroradiology (DIN), Inselspital, Bern (Switzerland)

    2008-04-15

    The purpose of this study was to evaluate the neuroimaging quality and accuracy of prospective real-time navigator-echo acquisition correction versus untriggered intrauterine magnetic resonance imaging (MRI) techniques. Twenty women in whom fetal motion artifacts compromised the neuroimaging quality of fetal MRI taken during the 28.7 {+-} 4 week of pregnancy below diagnostic levels were additionally investigated using a navigator-triggered half-Fourier acquired single-shot turbo-spin echo (HASTE) sequence. Imaging quality was evaluated by two blinded readers applying a rating scale from 1 (not diagnostic) to 5 (excellent). Diagnostic criteria included depiction of the germinal matrix, grey and white matter, CSF, brain stem and cerebellum. Signal-difference-to-noise ratios (SDNRs) in the white matter and germinal zone were quantitatively evaluated. Imaging quality improved in 18/20 patients using the navigator echo technique (2.4 {+-} 0.58 vs. 3.65 {+-} 0.73 SD, p < 0.01 for all evaluation criteria). In 2/20 patients fetal movement severely impaired image quality in conventional and navigated HASTE. Navigator-echo imaging revealed additional structural brain abnormalities and confirmed diagnosis in 8/20 patients. The accuracy improved from 50% to 90%. Average SDNR increased from 0.7 {+-} 7.27 to 19.83 {+-} 15.71 (p < 0.01). Navigator-echo-based real-time triggering of fetal head movement is a reliable technique that can deliver diagnostic fetal MR image quality despite vigorous fetal movement. (orig.)

  13. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    Science.gov (United States)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  14. COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA

    Directory of Open Access Journals (Sweden)

    R. Cao

    2016-06-01

    Full Text Available The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  15. The role of human movement in the transmission of vector-borne pathogens.

    Directory of Open Access Journals (Sweden)

    Steven T Stoddard

    Full Text Available BACKGROUND: Human movement is a key behavioral factor in many vector-borne disease systems because it influences exposure to vectors and thus the transmission of pathogens. Human movement transcends spatial and temporal scales with different influences on disease dynamics. Here we develop a conceptual model to evaluate the importance of variation in exposure due to individual human movements for pathogen transmission, focusing on mosquito-borne dengue virus. METHODOLOGY AND PRINCIPAL FINDINGS: We develop a model showing that the relevance of human movement at a particular scale depends on vector behavior. Focusing on the day-biting Aedes aegypti, we illustrate how vector biting behavior combined with fine-scale movements of individual humans engaged in their regular daily routine can influence transmission. Using a simple example, we estimate a transmission rate (R(0 of 1.3 when exposure is assumed to occur only in the home versus 3.75 when exposure at multiple locations--e.g., market, friend's--due to movement is considered. Movement also influences for which sites and individuals risk is greatest. For the example considered, intriguingly, our model predicts little correspondence between vector abundance in a site and estimated R(0 for that site when movement is considered. This illustrates the importance of human movement for understanding and predicting the dynamics of a disease like dengue. To encourage investigation of human movement and disease, we review methods currently available to study human movement and, based on our experience studying dengue in Peru, discuss several important questions to address when designing a study. CONCLUSIONS/SIGNIFICANCE: Human movement is a critical, understudied behavioral component underlying the transmission dynamics of many vector-borne pathogens. Understanding movement will facilitate identification of key individuals and sites in the transmission of pathogens such as dengue, which then may provide

  16. Believe it or not: Moving non-biological stimuli believed to have human origin can be represented as human movement.

    Science.gov (United States)

    Gowen, E; Bolton, E; Poliakoff, E

    2016-01-01

    Does our brain treat non-biological movements (e.g. moving abstract shapes or robots) in the same way as human movements? The current work tested whether the movement of a non-biological rectangular object, believed to be based on a human action is represented within the observer's motor system. A novel visuomotor priming task was designed to pit true imitative compatibility, due to human action representation against more general stimulus response compatibility that has confounded previous belief experiments. Stimulus response compatibility effects were found for the object. However, imitative compatibility was found when participants repeated the object task with the belief that the object was based on a human finger movement, and when they performed the task viewing a real human hand. These results provide the first demonstration that non-biological stimuli can be represented as a human movement if they are believed to have human agency and have implications for interactions with technology and robots.

  17. Translational head movements of pigeons in response to a rotating pattern: characteristics and tool to analyse mechanisms underlying detection of rotational and translational optical flow.

    Science.gov (United States)

    Nalbach, H O

    1992-01-01

    Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.

  18. Head Position Preference in the Human Newborn: A New Look.

    Science.gov (United States)

    Ronnqvist, Louise; Hopkins, Brian

    1998-01-01

    Studied head position preference in 20 newborns differing by Cesarean or vaginal delivery and sex. Found that neither factor accounted for differences. The head turned right more often and was maintained longer in this position during quiet wakefulness, regardless of scoring method. When using global scoring, duration of midline position was…

  19. COMPARING PUMA ROBOT ARM WITH THE HUMAN ARM MOVEMENTS; AN ALTERNATIVE ROBOTIC ARM SHOULDER DESIGN

    OpenAIRE

    Mustafa BOZDEMİR; ADIGÜZEL, Esat

    1999-01-01

    Using the robotic arms instead of human power becomes increasingly widespread nowadays. Widening of the robotic arms usage field is parallel to improvement of movement capability of it. In this study PUMA Robotic Arm System that is a developed system of the robotic arms was compared with a human arm due to movement. A new joint was added to PUMA Robotic Arm System to have the movements similar to the human shoulder joint. Thus, a shoulder was designed that can make movements through the sides...

  20. Generating human-like movements on an anthropomorphic robot using an interior point method

    Science.gov (United States)

    Costa e Silva, E.; Araújo, J. P.; Machado, D.; Costa, M. F.; Erlhagen, W.; Bicho, E.

    2013-10-01

    In previous work we have presented a model for generating human-like arm and hand movements on an anthropomorphic robot involved in human-robot collaboration tasks. This model was inspired by the Posture-Based Motion-Planning Model of human movements. Numerical results and simulations for reach-to-grasp movements with two different grip types have been presented previously. In this paper we extend our model in order to address the generation of more complex movement sequences which are challenged by scenarios cluttered with obstacles. The numerical results were obtained using the IPOPT solver, which was integrated in our MATLAB simulator of an anthropomorphic robot.

  1. Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet.

    Science.gov (United States)

    de Vocht, F; Stevens, T; Glover, P; Sunderland, A; Gowland, P; Kromhout, H

    2007-05-01

    The study investigates the impact of exposure to the stray magnetic field of a whole-body 7 T MRI scanner on neurobehavioral performance and cognition. Twenty seven volunteers completed four sessions, which exposed them to approximately 1600 mT (twice), 800 mT and negligible static field exposure. The order of exposure was assigned at random and was masked by placing volunteers in a tent to hide their position relative to the magnet bore. Volunteers completed a test battery assessing auditory working memory, eye-hand co-ordination, and visual perception. During three sessions the volunteers were instructed to complete a series of standardized head movements to generate additional time-varying fields ( approximately 300 and approximately 150 mT.s(-1) r.m.s.). In one session, volunteers were instructed to keep their heads as stable as possible. Performance on a visual tracking task was negatively influenced (Pmotor tests to be decreased (P<.10). No effects were observed on working memory. Taken together with results of earlier studies, these results suggest that there are effects on visual perception and hand-eye co-ordination, but these are weak and variable between studies. The magnitude of these effects may depend on the magnitude of time-varying fields and not so much on the static field. While this study did not include exposure above 1.6 T, it suggests that use of strong magnetic fields is not a significant confounder in fMRI studies of cognitive function. Future work should further assess whether ultra-high field may impair performance of employees working in the vicinity of these magnets. (c) 2007 Wiley-Liss, Inc.

  2. Dynamic properties of the human vestibulo-ocular reflex during head rotations in roll

    Science.gov (United States)

    Seidman, S. H.; Leigh, R. J.; Tomsak, R. L.; Grant, M. P.; Dell'Osso, L. F.

    1995-01-01

    We investigated the dynamic properties of the human vestibulo-ocular reflex (VOR) during roll head rotations in three human subjects using the magnetic search coil technique. In the first of two experiments, we quantify the behavior of the ocular motor plant in the torsional plane. The subject's eye was mechanically displaced into intorsion, extorsion or abduction, and the dynamic course of return of the eye to its resting position was measured. The mean predominant time constants of return were 210 msec from intorsion, 83 msec from extorsion, and 217 msec from abduction, although there was considerable variability of results from different trials and subjects. In the second experiment, we quantify the efficacy of velocity-to-position integration of the vestibular signal. Position-step stimuli were used to test the torsional or horizontal VOR, being applied with subjects heads erect or supine. After a torsional position-step, the eye drifted back to its resting position, but after a horizontal position-step the eye held its new horizontal position. To interpret these responses we used a simple model of the VOR with parameters of the ocular motor plant set to values determined during Exp 1. The time constant of the velocity-to-position neural integrator was smaller (typically 2 sec) in the torsional plane than in the horizontal plane (> 20 sec). No disconjugacy of torsional eye movements was observed. Thus, the dynamic properties of the VOR in roll differ significantly from those of the VOR in yaw, reflecting different visual demands placed on this reflex in these two planes.

  3. Stuck in Traffic: Sexual Politics and Criminal Injustice in Social Movements Against Human Trafficking

    OpenAIRE

    Kinney, Edith Celine Marie

    2011-01-01

    Stuck in Traffic: Sexual Politics and Criminal Injustice in Social Movements Against Human TraffickingThis dissertation analyzes the sexual politics of transnational movements against human trafficking. I track the periodic securitization of women's migration and commercial sexual exploitation in international affairs from the Victorian-era movement against "White Slavery" to the contemporary campaign against "modern day slavery" and sex trafficking, using the case of Thailand to investigate ...

  4. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Jessica Lüsebrink

    Full Text Available Parvoviruses are single stranded DNA viruses that replicate in a so called "rolling-hairpin" mechanism, a variant of the rolling circle replication known for bacteriophages like φX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus.

  5. The bereitschaftspotential paradigm in investigating voluntary movement organization in humans using magnetoencephalography (MEG).

    Science.gov (United States)

    Kristeva-Feige, R; Rossi, S; Feige, B; Mergner, T; Lücking, C H; Rossini, P M

    1997-02-01

    In 1965, Kornhuber and Deecke first described the bereitschaftspotential (BP), a paradigm for investigating the organization of voluntary movement in humans, using electroencephalography (EEG). This paradigm has since been used in many studies for investigating motor control in healthy humans and patients. Over the last years, the advantages of magnetoencephalography (MEG) have been applied to the BP paradigm by a number of researchers. The main advantage of magnetoencephalography over electroencephalography is that MEG has a higher localization accuracy. This is due to the fact that the different structures of the head (brain, liquor cerebrospinalis, skull and scalp) influence the magnetic fields less than the volume current flow that causes the EEG. Additionally, the MEG is reference free, so that the localization of sources with a given precision is easier for MEG than it is for EEG. The present protocol shows in detail how the bereitschaftspotential paradigm can be applied using MEG. Some additional paradigms for investigating motor plasticity, somatosensory gating, Parkinson disease, and the efference copy theory are suggested as well.

  6. Evaluation of a laboratory model of human head impact biomechanics.

    Science.gov (United States)

    Hernandez, Fidel; Shull, Peter B; Camarillo, David B

    2015-09-18

    This work describes methodology for evaluating laboratory models of head impact biomechanics. Using this methodology, we investigated: how closely does twin-wire drop testing model head rotation in American football impacts? Head rotation is believed to cause mild traumatic brain injury (mTBI) but helmet safety standards only model head translations believed to cause severe TBI. It is unknown whether laboratory head impact models in safety standards, like twin-wire drop testing, reproduce six degree-of-freedom (6DOF) head impact biomechanics that may cause mTBI. We compared 6DOF measurements of 421 American football head impacts to twin-wire drop tests at impact sites and velocities weighted to represent typical field exposure. The highest rotational velocities produced by drop testing were the 74th percentile of non-injury field impacts. For a given translational acceleration level, drop testing underestimated field rotational acceleration by 46% and rotational velocity by 72%. Primary rotational acceleration frequencies were much larger in drop tests (~100 Hz) than field impacts (~10 Hz). Drop testing was physically unable to produce acceleration directions common in field impacts. Initial conditions of a single field impact were highly resolved in stereo high-speed video and reconstructed in a drop test. Reconstruction results reflected aggregate trends of lower amplitude rotational velocity and higher frequency rotational acceleration in drop testing, apparently due to twin-wire constraints and the absence of a neck. These results suggest twin-wire drop testing is limited in modeling head rotation during impact, and motivate continued evaluation of head impact models to ensure helmets are tested under conditions that may cause mTBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The European Romani Women's Movement: The struggle for human rights

    OpenAIRE

    Rita Izsák

    2009-01-01

    Rita Izsák discusses the International Romani Women's Network (IRWN), the first registered international umbrella organization representing Romani women of all European Romani groups. She examines how IRWN is promoting women's rights, and the connection between mainstream feminist movements and the Romani movement. Development (2009) 52, 200–207. doi:10.1057/dev.2009.9

  8. A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer

    OpenAIRE

    Schlecht, Nicolas F.; Brandwein-Gensler, Margaret; Gerard J Nuovo; Li, Maomi; Dunne, Anne; Kawachi, Nicole; Smith, Richard V.; Burk, Robert D.; Prystowsky, Michael B.

    2011-01-01

    Detection of human papillomavirus in head and neck cancer has therapeutic implications. In-situ hybridization and immuno-histochemistry for p16 are used by surgical pathologists. We compared the sensitivity and specificity of three popular commercial tests for human papillomavirus detection in head and neck squamous cell carcinomas to a “gold standard” human papillomavirus PCR assay. One hundred-and-ten prospectively collected, formalin fixed tumor specimens were compiled onto tissue microarr...

  9. Signs of muscle thixotropy during human ballistic wrist joint movements.

    Science.gov (United States)

    Axelson, H W

    2005-11-01

    A study was conducted on healthy subjects to determine whether voluntary ballistic wrist flexion movements are influenced by immediately preceding conditioning of the forearm muscles. Single rapid wrist flexion movements were made in response to an auditory "Go" signal. Rectified surface EMG was recorded from wrist flexors and extensors, and joint position was measured by a goniometer. The movements were preceded (2-3 s) by four different conditioning routines: 40-s rest (Rest), 10-s voluntary alternating wrist joint flexion and extension movements (Osc), and 10 s of 25 degrees weak isometric wrist extensor (Ext) or flexor contractions (Flex). When subjects made ballistic movements after Osc compared with Rest, peak velocity was higher (P = 0.02) and movement time shorter (P = 0.06), but there was no difference (P = 0.83) in motor reaction time (time between the onset of the first agonist burst and movement onset). If the movements were preceded by Ext compared with Flex, motor reaction time was longer (P = 0.01), indicating a longer electromechanical delay. There were no indications that postconditioning differences in agonist or antagonist muscle activity could explain the results. It was also demonstrated that, after Rest, peak velocity was lower (P < 0.01) for the first than for the second of a series of repetitive ballistic movements. The observations corresponded to results from passive experiments in which the median nerve was electrically stimulated. In conclusion, history-dependent (thixotropic) changes in skeletal muscle resistance seem to have implications for voluntary ballistic wrist movements. The study also provided evidence that muscle conditioning influences the central nervous reaction time preceding ballistic contractions.

  10. Evaluation of oral-motor movements and facial mimic in patients with head and neck burns by a public service in Brazil

    Directory of Open Access Journals (Sweden)

    Dicarla Motta Magnani

    2015-05-01

    Full Text Available OBJECTIVES: The purpose of this study was to analyze the characteristics of oral-motor movements and facial mimic in patients with head and neck burns. METHODS: An observational descriptive cross-sectional study was conducted with patients who suffered burns to the head and neck and who were referred to the Division of Orofacial Myology of a public hospital for assessment and rehabilitation. Only patients presenting deep partial-thickness and full-thickness burns to areas of the face and neck were included in the study. Patients underwent clinical assessment that involved an oral-motor evaluation, mandibular range of movement assessment, and facial mimic assessment. Patients were divided into two groups: G1 - patients with deep partial-thickness burns; G2 - patients with full-thickness burns. RESULTS: Our final study sample comprised 40 patients: G1 with 19 individuals and G2 with 21 individuals. The overall scores obtained in the clinical assessment of oral-motor organs indicated that patients with both second- and third-degree burns presented deficits related to posture, position and mobility of the oral-motor organs. Considering facial mimic, groups significantly differed when performing voluntary facial movements. Patients also presented limited maximal incisor opening. Deficits were greater for individuals in G2 in all assessments. CONCLUSION: Patients with head and neck burns present significant deficits related to posture, position and mobility of the oral myofunctional structures, including facial movements.

  11. Head excursion of restrained human volunteers and hybrid III dummies in steady state rollover tests.

    Science.gov (United States)

    Moffatt, Edward; Hare, Barry; Hughes, Raymond; Lewis, Lance; Iiyama, Hiroshi; Curzon, Anne; Cooper, Eddie

    2003-01-01

    Seatbelts provide substantial benefits in rollover crashes, yet occupants still receive head and neck injuries from contacting the vehicle roof interior when the roof exterior strikes the ground. Prior research has evaluated rollover restraint performance utilizing anthropomorphic test devices (dummies), but little dynamic testing has been done with human volunteers to learn how they move during rollovers. In this study, the vertical excursion of the head of restrained dummies and human subjects was measured in a vehicle being rotated about its longitudinal roll axis at roll rates from 180-to-360 deg/sec and under static inversion conditions. The vehicle's restraint design was the commonly used 3-point seatbelt with continuous loop webbing and a sliding latch plate. This paper presents an analysis of the observed occupant motion and provides a comparison of dummy and human motion under similar test conditions. Thirty-five tests (eighteen static and seventeen dynamic) were completed using two different sizes of dummies and human subjects in both near and far-side roll directions. The research indicates that far-side rollovers cause the restrained test subjects to have greater head excursion than near-side rollovers, and that static inversion testing underestimates head excursion for far-side occupants. Human vertical head excursion of up to 200 mm was found at a roll rate of 220 deg/sec. Humans exhibit greater variability in head excursion in comparison to dummies. Transfer of seatbelt webbing through the latch plate did not correlate directly with differences in head excursion.

  12. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    Science.gov (United States)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  13. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    Science.gov (United States)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  14. Early influence of auditory stimuli on upper-limb movements in young human infants: an overview

    Directory of Open Access Journals (Sweden)

    Priscilla Augusta Monteiro Ferronato

    2014-09-01

    Full Text Available Given that the auditory system is rather well developed at the end of the third trimester of pregnancy, it is likely that couplings between acoustics and motor activity can be integrated as early as at the beginning of postnatal life. The aim of the present mini-review was to summarize and discuss studies on early auditory-motor integration, focusing particularly on upper-limb movements (one of the most crucial means to interact with the environment in association with auditory stimuli, to develop further understanding of their significance with regard to early infant development. Many studies have investigated the relationship between various infant behaviors (e.g., sucking, visual fixation, head turning and auditory stimuli, and established that human infants can be observed displaying couplings between action and environmental sensory stimulation already from just after birth, clearly indicating a propensity for intentional behavior. Surprisingly few studies, however, have investigated the associations between upper-limb movements and different auditory stimuli in newborns and young infants, infants born at risk for developmental disorders/delays in particular. Findings from studies of early auditory-motor interaction support that the developing integration of sensory and motor systems is a fundamental part of the process guiding the development of goal-directed action in infancy, of great importance for continued motor, perceptual and cognitive development. At-risk infants (e.g., those born preterm may display increasing central auditory processing disorders, negatively affecting early sensory-motor integration, and resulting in long-term consequences on gesturing, language development and social communication. Consequently, there is a need for more studies on such implications

  15. Human body and head characteristics as a communication medium for Body Area Network.

    Science.gov (United States)

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  16. Patterns of Selection of Human Movements III: Energy Efficiency, Mechanical Advantage, and Walking Gait

    OpenAIRE

    Hagler, Stuart

    2016-01-01

    Human movements are physical processes combining the classical mechanics of the human body moving in space and the biomechanics of the muscles generating the forces acting on the body under sophisticated sensory-motor control. One way to characterize movement performance is through measures of energy efficiency that relate the mechanical energy of the body and metabolic energy expended by the muscles. We expect the practical utility of such measures to be greater when human subjects execute m...

  17. Oncogenic impact of human papilloma virus in head and neck cancer.

    LENUS (Irish Health Repository)

    Heffernan, C B

    2012-02-01

    There is considerable debate within the literature about the significance of human papilloma virus in head and neck squamous cell carcinoma, and its potential influence on the prevention, diagnosis, grading, treatment and prognosis of these cancers. Cigarette smoking and alcohol consumption have traditionally been cited as the main risk factors for head and neck cancers. However, human papilloma virus, normally associated with cervical and other genital carcinomas, has emerged as a possible key aetiological factor in head and neck squamous cell carcinoma, especially oropharyngeal cancers. These cancers pose a significant financial burden on health resources and are increasing in incidence. The recent introduction of vaccines targeted against human papilloma virus types 16 and 18, to prevent cervical cancer, has highlighted the need for ongoing research into the importance of human papilloma virus in head and neck squamous cell carcinoma.

  18. Human hyolaryngeal movements show adaptive motor learning during swallowing.

    Science.gov (United States)

    Humbert, Ianessa A; Christopherson, Heather; Lokhande, Akshay; German, Rebecca; Gonzalez-Fernandez, Marlis; Celnik, Pablo

    2013-06-01

    The hyoid bone and larynx elevate to protect the airway during swallowing. However, it is unknown whether hyolaryngeal movements during swallowing can adjust and adapt to predict the presence of a persistent perturbation in a feed-forward manner (adaptive motor learning). We investigated adaptive motor learning in nine healthy adults. Electrical stimulation was administered to the anterior neck to reduce hyolaryngeal elevation, requiring more strength to swallow during the perturbation period of this study. We assessed peak hyoid bone and laryngeal movements using videofluoroscopy across thirty-five 5-ml water swallows. Evidence of adaptive motor learning of hyolaryngeal movements was found when (1) participants showed systematic gradual increases in elevation against the force of electrical stimulation and (2) hyolaryngeal elevation overshot the baseline (preperturbation) range of motion, showing behavioral aftereffects, when the perturbation was unexpectedly removed. Hyolaryngeal kinematics demonstrates adaptive, error-reducing movements in the presence of changing and unexpected demands. This is significant because individuals with dysphagia often aspirate due to disordered hyolaryngeal movements. Thus, if rapid motor learning is accessible during swallowing in healthy adults, patients may be taught to predict the presence of perturbations and reduce errors in swallowing before they occur.

  19. THREE DIMENSIONAL DIGITIZATION OF HUMAN HEAD BY FUSING STRUCTURED LIGHT AND CONTOURS

    Institute of Scientific and Technical Information of China (English)

    Jin Gang; Li Dehua; Hu Hanping; Hu Bing

    2002-01-01

    Three dimensional digitization of human head is desired in many applications. In this paper, an information fusion based scheme is presented to obtain 3-D information of human head. Structured light technology is employed to measure depth. For the special reflection areas,in which the structured light stripe can not be detected directly, the shape of the structured light stripe can be calculated from the corresponding contour. By fusing the information of structured light and the contours, the problem of reflectance influence is solved, and the whole shape of head,including hair area, can be obtained. Some good results are obtained.

  20. THREE DIMENSIONAL DIGITIZATION OF HUMAN HEAD BY FUSING STRUCTURED LIGHT AND CONTOURS

    Institute of Scientific and Technical Information of China (English)

    JinGang; LiDehua; 等

    2002-01-01

    Three dimensional digitization of human head is desired in many applications.In this paper, an information fusion based scheme is presented to obtain 3-D information of human head, Structured light technology is employed to measure depth.For the special reflection areas, in which the structured light stripe can not be detected directly, the shape of the structured light stripe can be calculated from the corresponding contour.By fusing the information of structured light and the contours, the problem of reflectance influence is solved, and the whole shape of head ,including hair area, can be obtained.Some good results are obtained.

  1. Efficient Avoidance of the Penalty Zone in Human Eye Movements

    Science.gov (United States)

    Theeuwes, Jan

    2016-01-01

    People use eye movements extremely effectively to find objects of interest in a cluttered visual scene. Distracting, task-irrelevant attention capturing regions in the visual field should be avoided as they jeopardize the efficiency of search. In the current study, we used eye tracking to determine whether people are able to avoid making saccades to a predetermined visual area associated with a financial penalty, while making fast and accurate saccades towards stimuli placed near the penalty area. We found that in comparison to the same task without a penalty area, the introduction of a penalty area immediately affected eye movement behaviour: the proportion of saccades to the penalty area was immediately reduced. Also, saccadic latencies increased, but quite modestly, and mainly for saccades towards stimuli near the penalty area. We conclude that eye movement behaviour is under efficient cognitive control and thus quite flexible: it can immediately be adapted to changing environmental conditions to improve reward outcome. PMID:27930724

  2. Democratising Democracy, Humanising Human Rights. European Decolonial Movements and the “Alternative Thinking of Alternatives"

    DEFF Research Database (Denmark)

    Suárez-Krabbe, Julia

    2013-01-01

    des Indigènes de la République (PIR) in France, the Dutch Black Movement, the Islamic Human Rights Commission in the UK, and the Studies Group of the Andalusian Workers' Union (Grupo de Estudios - Sindicato Andaluz de Trabajadores; GE-SAT). These movements all point to two fundamental crises of longue...

  3. Diagram of Calcium Movement in the Human Body

    Science.gov (United States)

    2002-01-01

    This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.

  4. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Guul, Martin Kjær; Nielsen, A. N.

    2017-01-01

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre...... healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior...

  5. Cerebral reorganisation of human hand movement following dynamic immobilisation

    NARCIS (Netherlands)

    de Jong, BM; Coert, JH; Stenekes, MW; Leenders, KL; Paans, AMJ; Nicolai, JRA

    2003-01-01

    Surgical treatment of a flexor tendon lesion of the hand is followed by a 6-week period of dynamic immobilisation. This is achieved by the elastic strings of a Kleinert splint, enabling only passive and no active flexor movements. After such immobilisation, the appearance of a temporary clumsy hand

  6. Demonstration of Motor Imagery- and Phantom-Movement Related Neuronal Activity in Human Thalamus

    OpenAIRE

    Anderson, William S.; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A.

    2011-01-01

    Functional imaging studies demonstrate that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact subjects elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal – Vc), and the motor nuclei receiving input from the cerebellum (ventral intermediate -Vim) and the basal ganglia (ventral oral posterior...

  7. J.-M. G. Itard's 1825 study: movement and the science of the human mind.

    Science.gov (United States)

    Newman, Sara

    2010-03-01

    Jean-Marc Gaspard Itard's 1825'Study of several involuntary functions of the apparatus of movement,gripping, and voice' discusses 10 individuals with uncontrolled movements but no other significant impairments.Thus, otherwise normal people move in inappropriate ways against their better judgement. Although the study contains the first clinical description of Tourette Syndrome, it has received little attention beyond that notice. Examined in its entirety and in its cultural context, Itard's study characterizes patients' movements in terms of the will, propriety, animals and gender. Lacking control over their movements, the individuals are underdeveloped humans. Accordingly, sufferers' facial expression, bodily movements and unplanned vocalizations render them more animal than human and more deviant than normal, although they are neither insane nor evil.

  8. Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing.

    Science.gov (United States)

    Filimon, Flavia

    2010-08-01

    In primates, control of the limb depends on many cortical areas. Whereas specialized parietofrontal circuits have been proposed for different movements in macaques, functional neuroimaging in humans has revealed widespread, overlapping activations for hand and eye movements and for movements such as reaching and grasping. This review examines the involvement of frontal and parietal areas in hand and arm movements in humans as revealed with functional neuroimaging. The degree of functional specialization, possible homologies with macaque cortical regions, and differences between frontal and posterior parietal areas are discussed, as well as a possible organization of hand movements with respect to different spatial reference frames. The available evidence supports a cortical organization along gradients of sensory (visual to somatosensory) and effector (eye to hand) preferences.

  9. Artificial and Natural Sensors in FES-assisted Human Movement Control

    NARCIS (Netherlands)

    Veltink, Petrus H.; Sinkjaer, Thomas; Baten, Christian T.M.; Bergveld, Piet; van der Spek, J.H.; Haugland, Morten

    1998-01-01

    The availability of small and light micromachined sensors for human use and the demonstration that useful signals can be derived from the natural sensors of the human body have enabled new developments in the area of feedback controlled FES assistance of human movements. This paper presents the need

  10. Artificial and Natural Sensors in FES-assisted Human Movement Control

    NARCIS (Netherlands)

    Veltink, Peter H.; Sinkjaer, Thomas; Baten, Chris T.M.; Bergveld, Piet; Spek, van der Jaap; Haugland, Morten

    1998-01-01

    The availability of small and light micromachined sensors for human use and the demonstration that useful signals can be derived from the natural sensors of the human body have enabled new developments in the area of feedback controlled FES assistance of human movements. This paper presents the need

  11. A detailed study of the effect of videoframe rates of 25, 30 and 60 Hertz on human sperm movement characteristics.

    Science.gov (United States)

    Morris, A R; Coutts, J R; Robertson, L

    1996-02-01

    A comparison was made of the movement characteristics of human spermatozoa analysed at three videoframe rates (25, 30 and 60 Hz) using two computerized motility analysers from Hamilton-Thorn Research (the HTM-2030 and the IVOS) operating at 25 and 30 Hz respectively. Analysis at 30 and 60 Hz was performed on the IVOS. The use of uncapacitated, capacitated and pentoxifylline-stimulated spermatozoa ensured a full range of movement characteristics was analysed. The velocity parameters curvilinear velocity and average path velocity were highly frame-rate dependent, and mean values increased with videoframe rate. An interaction of framing rate and time of data collection resulted in an increase in straight-line velocity with framing rate. Mean lateral head displacement and linearity were similar at 25 or 30 Hz but significantly depressed at 60 Hz. Beat-cross frequency increased by 74% when analysed at 60 rather than 30 Hz. The following criteria: curvilinear velocity > 100 microns/s, linearity 7.5 microns, were used to define hyperactivated spermatozoa. Significantly more hyperactivated cells were identified at 30 Hz than 25 Hz (1-10%) but not at 60 Hz. A different population of cells is likely to have been identified as hyperactivated at 60 Hz due to alterations in component movement parameters from which the definition of hyperactivation was derived. In conclusion, direct comparisons should not be drawn between data analysed at 25 and 30 Hz. Analysis at 60 Hz introduced complex alterations which made simple comparisons with 30 Hz data invalid.

  12. Deterministic and stochastic features of rhythmic human movement.

    Science.gov (United States)

    van Mourik, Anke M; Daffertshofer, Andreas; Beek, Peter J

    2006-03-01

    The dynamics of rhythmic movement has both deterministic and stochastic features. We advocate a recently established analysis method that allows for an unbiased identification of both types of system components. The deterministic components are revealed in terms of drift coefficients and vector fields, while the stochastic components are assessed in terms of diffusion coefficients and ellipse fields. The general principles of the procedure and its application are explained and illustrated using simulated data from known dynamical systems. Subsequently, we exemplify the method's merits in extracting deterministic and stochastic aspects of various instances of rhythmic movement, including tapping, wrist cycling and forearm oscillations. In particular, it is shown how the extracted numerical forms can be analysed to gain insight into the dependence of dynamical properties on experimental conditions.

  13. Rotated balance in humans due to repetitive rotational movement.

    Science.gov (United States)

    Zakynthinaki, M S; Milla, J Madera; De Durana, A López Diaz; Martínez, C A Cordente; Romo, G Rodríguez; Quintana, M Sillero; Molinuevo, J Sampedro

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  14. [Human traveling wave EEG during voluntary movement of the hand].

    Science.gov (United States)

    Belov, D R; Stepanova, P A; Kolodiazhnyĭ, S F

    2014-01-01

    The traveling wave trajectories connected with the movements of the right hand were revealed. Above sensomotor cortex 28 electrodes were set as a rectangle--4 rows with 7 electrodes in each one. 2D center-out reaching task was used. The target appeared on the screen edge through the random intervals 0.5-2.5 s equiprobably at the left, on the right, from above or from below. The task was to touch the target with the joystick-operated cursor displacing the cursor in one of the sides from the center to edge. EEG from the target occurrence till cursor contact with it was analyzed. Leading on phase of spontaneous EEG waves in the local area of the left sensomotor cortex and in the centre of back-parietal cortex during cursor movement downwards (the hand with joystick moves to oneself) comparing to rest state and movements in three other directions is revealed. The over time smoothing of data concerning phase alignment reveals hidden constant components in EEG resembling evoked potentials.

  15. Stochastic Signatures of Involuntary Head Micro-movements Can Be Used to Classify Females of ABIDE into Different Subtypes of Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Elizabeth B. Torres

    2017-06-01

    Full Text Available Background: The approximate 5:1 male to female ratio in clinical detection of Autism Spectrum Disorder (ASD prevents research from characterizing the female phenotype. Current open access repositories [such as those in the Autism Brain Imaging Data Exchange (ABIDE I-II] contain large numbers of females to help begin providing a new characterization of females on the autistic spectrum. Here we introduce new methods to integrate data in a scale-free manner from continuous biophysical rhythms of the nervous systems and discrete (ordinal observational scores.Methods: New data-types derived from image-based involuntary head motions and personalized statistical platform were combined with a data-driven approach to unveil sub-groups within the female cohort. Further, to help refine the clinical DSM-based ASD vs. Asperger's Syndrome (AS criteria, distributional analyses of ordinal score data from Autism Diagnostic Observation Schedule (ADOS-based criteria were used on both the female and male phenotypes.Results: Separate clusters were automatically uncovered in the female cohort corresponding to differential levels of severity. Specifically, the AS-subgroup emerged as the most severely affected with an excess level of noise and randomness in the involuntary head micro-movements. Extending the methods to characterize males of ABIDE revealed ASD-males to be more affected than AS-males. A thorough study of ADOS-2 and ADOS-G scores provided confounding results regarding the ASD vs. AS male comparison, whereby the ADOS-2 rendered the AS-phenotype worse off than the ASD-phenotype, while ADOS-G flipped the results. Females with AS scored higher on severity than ASD-females in all ADOS test versions and their scores provided evidence for significantly higher severity than males. However, the statistical landscapes underlying female and male scores appeared disparate. As such, further interpretation of the ADOS data seems problematic, rather suggesting the

  16. Comparison of SAR Analysis on Self Developed Human Head Model with Three Different Antennas

    Directory of Open Access Journals (Sweden)

    Asadullah

    2013-03-01

    Full Text Available Human brain is the most sensitive part of Human body and SAR analysis is required for every type of antenna close to human body especially near head. Modeling human brain for SAR analysis is dealt in this research work. Various antennas for different frequencies are designed and then SAR is analyzed for each antenna. SAR analysis is compared for FCC standard and ICNIRP Standard for each of the antenna.

  17. Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements

    NARCIS (Netherlands)

    Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    2006-01-01

    Flying blowflies shift their gaze by saccadic turns of body and head, keeping their gaze basically fixed between saccades. For the head, this results in almost pure translational optic flow between saccades, enabling visual interneurons in the fly motion pathway to extract information about translat

  18. Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements

    NARCIS (Netherlands)

    Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    2006-01-01

    Flying blowflies shift their gaze by saccadic turns of body and head, keeping their gaze basically fixed between saccades. For the head, this results in almost pure translational optic flow between saccades, enabling visual interneurons in the fly motion pathway to extract information about

  19. Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans.

    Science.gov (United States)

    Heed, Tobias; Möller, Johanna; Röder, Brigitte

    2015-01-01

    To localize touch, the brain integrates spatial information coded in anatomically based and external spatial reference frames. Sighted humans, by default, use both reference frames in tactile localization. In contrast, congenitally blind individuals have been reported to rely exclusively on anatomical coordinates, suggesting a crucial role of the visual system for tactile spatial processing. We tested whether the use of external spatial information in touch can, alternatively, be induced by a movement context. Sighted and congenitally blind humans performed a tactile temporal order judgment task that indexes the use of external coordinates for tactile localization, while they executed bimanual arm movements with uncrossed and crossed start and end postures. In the sighted, start posture and planned end posture of the arm movement modulated tactile localization for stimuli presented before and during movement, indicating automatic, external recoding of touch. Contrary to previous findings, tactile localization of congenitally blind participants, too, was affected by external coordinates, though only for stimuli presented before movement start. Furthermore, only the movement's start posture, but not the planned end posture affected blind individuals' tactile performance. Thus, integration of external coordinates in touch is established without vision, though more selectively than when vision has developed normally, and possibly restricted to movement contexts. The lack of modulation by the planned posture in congenitally blind participants suggests that external coordinates in this group are not mediated by motor efference copy. Instead the task-related frequent posture changes, that is, movement consequences rather than planning, appear to have induced their use of external coordinates.

  20. Islamic movement and human rights: Pertubuhan Jamaah Islah Malaysia’s involvement in the “Abolish Internal Security Act Movement,” 2000-2012

    OpenAIRE

    Maszlee Malik

    2014-01-01

    Human rights has been acknowledged as one of the essential characteristics of good governance. Abuse of human rights is strongly associated with bad governance, which is believed by many to be a serious impediment to development and sustainable growth. Despite the active participations of Islamic movements in many parts of the political world, very little is known of their involvement in advocating human rights issues as part of their struggle for power. Nevertheless, as an Islamic movement a...

  1. Artificial and Natural Sensors in FES-assisted Human Movement Control

    OpenAIRE

    Veltink, Peter H.; Sinkjaer, Thomas; Baten, Chris T.M.; Bergveld, Piet; Spek, van der, R.J.; Haugland, Morten

    1998-01-01

    The availability of small and light micromachined sensors for human use and the demonstration that useful signals can be derived from the natural sensors of the human body have enabled new developments in the area of feedback controlled FES assistance of human movements. This paper presents the need for sensory feedback in FES control systems and gives an overview of available artificial sensors for human use and progress in the derivation and application of signals from natural sensors

  2. Specific eye-head coordination enhances vision in progressive lens wearers.

    Science.gov (United States)

    Rifai, Katharina; Wahl, Siegfried

    2016-09-01

    In uncorrected vision all combinations of eye and head positions are visually equivalent; thus, there is no need for a specific modification of eye-head coordination in young healthy observers. In contrast, the quality of visual input indeed strongly depends on eye position in the majority of healthy elderly drivers, namely in progressive additional lens (PALs) wearers. For a given distance, only specific combinations of eye and head position provide clear vision in a progressive lens wearer. However, although head movements are an integral part of gaze behavior, it is not known if eye-head coordination takes part in the enhancement of visual input in healthy individuals. In the current study we determined changes in eye-head coordination in progressive lens wearers in challenging tasks with high cognitive load, in the situation of driving. During a real-world drive on an urban round track in Stuttgart, gaze movements and head movements were measured in 17 PAL wearers and eye-head coordination was compared to 27 controls with unrestricted vision. Head movement behavior, specific to progressive lens wearers, was determined in head gain and temporal properties of head movements. Furthermore, vertical eye-head coordination was consistent only among PAL wearers. The observed differences in eye-head coordination clearly demonstrate a contribution of head movements in the enhancement of visual input in the healthy human visual system.

  3. The role of human papillomavirus in head and neck cancer

    DEFF Research Database (Denmark)

    Lajer, Christel Braemer; Buchwald, Christian von

    2010-01-01

    of tobacco and alcohol. Distinct molecular profiles separate them from HPV-negative cancers and show similarities with HPV-positive cervical SCC. There is evidence that HPV-positive HNSCC is a sexually transmitted disease. Patients with HPV-positive HNSCC are often diagnosed at a late stage with large cystic......-negative HNSCC, and this seems to be related to the immune system. Whether the new vaccines for HPV will protect not only against cervical cancer but also against HPV-positive HNSCC remains unknown.......Over the last 20 years, there has been increasing awareness of a subset of squamous cell carcinomas of the head and neck (HNSCC), i.e. HPV-positive HNSCC. These cancers seem to differ somewhat from HPV-negative HNSCC. Patients with HPV-positive HNSCC tend to be younger and have a lower intake...

  4. The nature of human sperm head vacuoles: a systematic literature review.

    Science.gov (United States)

    Boitrelle, Florence; Guthauser, Bruno; Alter, Laura; Bailly, Marc; Wainer, Robert; Vialard, François; Albert, Martine; Selva, Jacqueline

    2013-01-01

    Motile sperm organelle morphology examination (MSOME) involves the use of differential interference contrast microscopy (also called Nomarski contrast) at high magnification (at least 6300x) to improve the observation of live human spermatozoa. In fact, this technique evidences sperm head vacuoles that are not necessarily seen at lower magnifications - particularly if the vacuoles are small (i.e. occupying nature. In an attempt to clarify this debate, we performed a systematic literature review in accordance with the PRISMA guidelines. The PubMed database was searched from 2001 onwards with the terms "MSOME", "human sperm vacuoles", "high-magnification, sperm". Out of 180 search results, 21 relevant English-language publications on the nature of human sperm head vacuoles were finally selected and reviewed. Our review of the literature prompted us to conclude that sperm-head vacuoles are nuclear in nature and are related to chromatin condensation failure and (in some cases) sperm DNA damage.

  5. Human head orientation and eye visibility as indicators of attention for goats (Capra hircus).

    Science.gov (United States)

    Nawroth, Christian; McElligott, Alan G

    2017-01-01

    Animals domesticated for working closely with humans (e.g. dogs) have been shown to be remarkable in adjusting their behaviour to human attentional stance. However, there is little evidence for this form of information perception in species domesticated for production rather than companionship. We tested domestic ungulates (goats) for their ability to differentiate attentional states of humans. In the first experiment, we investigated the effect of body and head orientation of one human experimenter on approach behaviour by goats. Test subjects (N = 24) significantly changed their behaviour when the experimenter turned its back to the subjects, but did not take into account head orientation alone. In the second experiment, goats (N = 24) could choose to approach one of two experimenters, while only one was paying attention to them. Goats preferred to approach humans that oriented their body and head towards the subject, whereas head orientation alone had no effect on choice behaviour. In the third experiment, goats (N = 32) were transferred to a separate test arena and were rewarded for approaching two experimenters providing a food reward during training trials. In subsequent probe test trials, goats had to choose between the two experimenters differing in their attentional states. Like in Experiments 1 and 2, goats did not show a preference for the attentive person when the inattentive person turned her head away from the subject. In this last experiment, goats preferred to approach the attentive person compared to a person who closed their eyes or covered the whole face with a blind. However, goats showed no preference when one person covered only the eyes. Our results show that animals bred for production rather than companionship show differences in their approach and choice behaviour depending on human attentive state. However, our results contrast with previous findings regarding the use of the head orientation to attribute attention and show the importance

  6. Movement prediction using accelerometers in a human population

    DEFF Research Database (Denmark)

    Xiao, L.; He, Bing; Koster, A

    2016-01-01

    the data across subjects by matching the standing up and lying down portions of triaxial accelerometry data. This is necessary to account for differences between the variability in the position of the device relative to gravity, which are induced by body shape and size as well as by the ambiguous...... definition of device placement. We also normalize the data at the device level to ensure that the magnitude of the signal at rest is similar across devices. After normalization we use overlapping movelets (segments of triaxial accelerometry time series) extracted from some of the subjects to predict...... the movement type of the other subjects. The problem was motivated by and is applied to a laboratory study of 20 older participants who performed different activities while wearing accelerometers at the hip. Prediction results based on other people's labeled dictionaries of activity performed almost as well...

  7. Post-mortem cooling of the human head: an infrared thermology study.

    Science.gov (United States)

    Khallaf, A; Williams, R W

    1991-01-01

    The post-mortem cooling of the human head, over the first fifteen hours after death, was measured by infrared thermology. A detailed temperature map of the head and face was obtained by the use of image processing techniques and the cooling behaviour of twelve preselected facial features was observed. The two main findings of the study were a difference in cooling pattern between the upper and the lower part of the head, and a consistency in the cooling pattern of the lower part of the head in all the cases studied. A comparison of various model fits to the raw data was undertaken and the "best" bodies, models and features were determined on a statistical basis. The formula that best fitted the raw data was a novel double application of Newton's law. The features with the least error in data fitting were the chin and zygoma; that with the most error was the mouth.

  8. Sensor and Display Human Factors Based Design Constraints for Head Mounted and Tele-Operation Systems

    Directory of Open Access Journals (Sweden)

    Ralph Etienne-Cummings

    2011-01-01

    Full Text Available For mobile imaging systems in head mounted displays and tele-operation systems it is important to maximize the amount of visual information transmitted to the human visual system without exceeding its input capacity. This paper aims to describe the design constraints on the imager and display systems of head mounted devices and tele-operated systems based upon the capabilities of the human visual system. We also present the experimental results of methods to improve the amount of visual information conveyed to a user when trying to display a high dynamic range image on a low dynamic range display.

  9. SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones

    Science.gov (United States)

    Torres-Silva, H.

    2008-09-01

    A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.

  10. Where Is Human Evolution Heading?(节选)

    Institute of Scientific and Technical Information of China (English)

    Nancy Shute

    2008-01-01

    @@ If you judge the progress of humanity by Homer Simpson, Paris Hilton, and Girls Gone Wild videos, you might conclude that our evolution has stalled-or even shifted into reverse. Not so, scientists say.

  11. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma.

    Science.gov (United States)

    Fischer, Barbara; Mitteroecker, Philipp

    2015-05-05

    Compared with other primates, childbirth is remarkably difficult in humans because the head of a human neonate is large relative to the birth-relevant dimensions of the maternal pelvis. It seems puzzling that females have not evolved wider pelvises despite the high maternal mortality and morbidity risk connected to childbirth. Despite this seeming lack of change in average pelvic morphology, we show that humans have evolved a complex link between pelvis shape, stature, and head circumference that was not recognized before. The identified covariance patterns contribute to ameliorate the "obstetric dilemma." Females with a large head, who are likely to give birth to neonates with a large head, possess birth canals that are shaped to better accommodate large-headed neonates. Short females with an increased risk of cephalopelvic mismatch possess a rounder inlet, which is beneficial for obstetrics. We suggest that these covariances have evolved by the strong correlational selection resulting from childbirth. Although males are not subject to obstetric selection, they also show part of these association patterns, indicating a genetic-developmental origin of integration.

  12. Gastrointestinal Physiology During Head Down Tilt Bedrest in Human Subjects

    Science.gov (United States)

    Vaksman, Z.; Guthienz, J.; Putcha, L.

    2008-01-01

    Introduction: Gastrointestinal (GI) motility plays a key role in the physiology and function of the GI tract. It directly affects absorption of medications and nutrients taken by mouth, in addition to indirectly altering GI physiology by way of changes in the microfloral composition and biochemistry of the GI tract. Astronauts have reported nausea, loss of appetite and constipation during space flight all of which indicate a reduction in GI motility and function similar to the one seen in chronic bed rest patients. The purpose of this study is to determine GI motility and bacterial proliferation during -6 degree head down tilt bed rest (HTD). Methods: Healthy male and female subjects between the ages of 25-40 participated in a 60 day HTD study protocol. GI transit time (GITT) was determined using lactulose breath hydrogen test and bacterial overgrowth was measured using glucose breath hydrogen test. H. Pylori colonization was determined using C13-urea breath test (UBIT#). All three tests were conducted on 9 days before HDT, and repeated on HDT days 2, 28, 58, and again on day 7 after HDT. Results: GITT increased during HTD compared to the respective ambulatory control values; GITT was significantly lower on day 7 after HTD. A concomitant increase in bacterial colonization was also noticed during HDT starting after approximately 28 days of HDT. However, H. Pylori proliferation was not recorded during HDT as indicated by UBIT#. Conclusion: GITT significantly decreased during HDT with a concomitant increase in the proliferation of GI bacterial flora but not H. pylori.

  13. Network analysis of human glaucomatous optic nerve head astrocytes

    Directory of Open Access Journals (Sweden)

    Bhattacharya Sanjoy K

    2009-05-01

    Full Text Available Abstract Background Astrocyte activation is a characteristic response to injury in the central nervous system, and can be either neurotoxic or neuroprotective, while the regulation of both roles remains elusive. Methods To decipher the regulatory elements controlling astrocyte-mediated neurotoxicity in glaucoma, we conducted a systems-level functional analysis of gene expression, proteomic and genetic data associated with reactive optic nerve head astrocytes (ONHAs. Results Our reconstruction of the molecular interactions affected by glaucoma revealed multi-domain biological networks controlling activation of ONHAs at the level of intercellular stimuli, intracellular signaling and core effectors. The analysis revealed that synergistic action of the transcription factors AP-1, vitamin D receptor and Nuclear Factor-kappaB in cross-activation of multiple pathways, including inflammatory cytokines, complement, clusterin, ephrins, and multiple metabolic pathways. We found that the products of over two thirds of genes linked to glaucoma by genetic analysis can be functionally interconnected into one epistatic network via experimentally-validated interactions. Finally, we built and analyzed an integrative disease pathology network from a combined set of genes revealed in genetic studies, genes differentially expressed in glaucoma and closely connected genes/proteins in the interactome. Conclusion Our results suggest several key biological network modules that are involved in regulating neurotoxicity of reactive astrocytes in glaucoma, and comprise potential targets for cell-based therapy.

  14. Identification of the Upward Movement of Human CSF In Vivo and its Relation to the Brain Venous System.

    Science.gov (United States)

    Dreha-Kulaczewski, Steffi; Joseph, Arun A; Merboldt, Klaus-Dietmar; Ludwig, Hans-Christoph; Gärtner, Jutta; Frahm, Jens

    2017-03-01

    CSF flux is involved in the pathophysiology of neurodegenerative diseases and cognitive impairment after traumatic brain injury, all hallmarked by the accumulation of cellular metabolic waste. Its effective disposal via various CSF routes has been demonstrated in animal models. In contrast, the CSF dynamics in humans are still poorly understood. Using novel real-time MRI, forced inspiration has been identified recently as a main driving force of CSF flow in the human brain. Exploiting technical advances toward real-time phase-contrast MRI, the current work analyzed directions, velocities, and volumes of human CSF flow within the brain aqueduct as part of the internal ventricular system and in the spinal canal during respiratory cycles. A consistent upward CSF movement toward the brain in response to forced inspiration was seen in all subjects at the aqueduct, in 11/12 subjects at thoracic level 2, and in 4/12 subjects at thoracic level 5. Concomitant analyses of CSF dynamics and cerebral venous blood flow, that is, in epidural veins at cervical level 3, uniquely demonstrated CSF and venous flow to be closely communicating cerebral fluid systems in which inspiration-induced downward flow of venous blood due to reduced intrathoracic pressure is counterbalanced by an upward movement of CSF. The results extend our understanding of human CSF flux and open important clinical implications, including concepts for drug delivery and new classifications and therapeutic options for various forms of hydrocephalus and idiopathic intracranial hypertension.SIGNIFICANCE STATEMENT Effective disposal of brain cellular waste products via CSF has been demonstrated repeatedly in animal models. However, CSF dynamics in humans are still poorly understood. A novel quantitative real-time MRI technique yielded in vivo CSF flow directions, velocities, and volumes in the human brain and upper spinal canal. CSF moved upward toward the head in response to forced inspiration. Concomitant analysis

  15. Linking the Heart and the Head: Humanism and Professionalism in Medical Education and Practice.

    Science.gov (United States)

    Montgomery, Lynda; Loue, Sana; Stange, Kurt C

    2017-05-01

    This paper articulates a practical interpretive framework for understanding humanism in medicine through the lens of how it is taught and learned. Beginning with a search for key tensions and relevant insights in the literature on humanism in health professions education, we synthesized a conceptual model designed to foster reflection and action to realize humanistic principles in medical education and practice. The resulting model centers on the interaction between the heart and the head. The heart represents the emotive domains of empathy, compassion, and connectedness. The head represents the cognitive domains of knowledge, attitudes, and beliefs. The cognitive domains often are associated with professionalism, and the emotive domains with humanism, but it is the connection between the two that is vital to humanistic education and practice. The connection between the heart and the head is nurtured by critical reflection and conscious awareness. Four provinces of experience nurture humanism: (1) personal reflection, (2) action, (3) system support, and (4) collective reflection. These domains represent potential levers for developing humanism. Critical reflection and conscious awareness between the heart and head through personal reflection, individual and collective behavior, and supportive systems has potential to foster humanistic development toward healing and health.

  16. The demographics of human and malaria movement and migration patterns in East Africa

    Science.gov (United States)

    2013-01-01

    Introduction The quantification of parasite movements can provide valuable information for control strategy planning across all transmission intensities. Mobile parasite carrying individuals can instigate transmission in receptive areas, spread drug resistant strains and reduce the effectiveness of control strategies. The identification of mobile demographic groups, their routes of travel and how these movements connect differing transmission zones, potentially enables limited resources for interventions to be efficiently targeted over space, time and populations. Methods National population censuses and household surveys provide individual-level migration, travel, and other data relevant for understanding malaria movement patterns. Together with existing spatially referenced malaria data and mathematical models, network analysis techniques were used to quantify the demographics of human and malaria movement patterns in Kenya, Uganda and Tanzania. Movement networks were developed based on connectivity and magnitudes of flow within each country and compared to assess relative differences between regions and demographic groups. Additional malaria-relevant characteristics, such as short-term travel and bed net use, were also examined. Results Patterns of human and malaria movements varied between demographic groups, within country regions and between countries. Migration rates were highest in 20–30 year olds in all three countries, but when accounting for malaria prevalence, movements in the 10–20 year age group became more important. Different age and sex groups also exhibited substantial variations in terms of the most likely sources, sinks and routes of migration and malaria movement, as well as risk factors for infection, such as short-term travel and bed net use. Conclusion Census and survey data, together with spatially referenced malaria data, GIS and network analysis tools, can be valuable for identifying, mapping and quantifying regional connectivities

  17. Contributions of skin and muscle afferent input to movement sense in the human hand.

    Science.gov (United States)

    Cordo, Paul J; Horn, Jean-Louis; Künster, Daniela; Cherry, Anne; Bratt, Alex; Gurfinkel, Victor

    2011-04-01

    In the stationary hand, static joint-position sense originates from multimodal somatosensory input (e.g., joint, skin, and muscle). In the moving hand, however, it is uncertain how movement sense arises from these different submodalities of proprioceptors. In contrast to static-position sense, movement sense includes multiple parameters such as motion detection, direction, joint angle, and velocity. Because movement sense is both multimodal and multiparametric, it is not known how different movement parameters are represented by different afferent submodalities. In theory, each submodality could redundantly represent all movement parameters, or, alternatively, different afferent submodalities could be tuned to distinctly different movement parameters. The study described in this paper investigated how skin input and muscle input each contributes to movement sense of the hand, in particular, to the movement parameters dynamic position and velocity. Healthy adult subjects were instructed to indicate with the left hand when they sensed the unseen fingers of the right hand being passively flexed at the metacarpophalangeal (MCP) joint through a previously learned target angle. The experimental approach was to suppress input from skin and/or muscle: skin input by anesthetizing the hand, and muscle input by unexpectedly extending the wrist to prevent MCP flexion from stretching the finger extensor muscle. Input from joint afferents was assumed not to play a significant role because the task was carried out with the MCP joints near their neutral positions. We found that, during passive finger movement near the neutral position in healthy adult humans, both skin and muscle receptors contribute to movement sense but qualitatively differently. Whereas skin input contributes to both dynamic position and velocity sense, muscle input may contribute only to velocity sense.

  18. Scaling and correlation of human movements in cyberspace and physical space

    Science.gov (United States)

    Zhao, Zhi-Dan; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2014-11-01

    Understanding the dynamics of human movements is key to issues of significant current interest such as behavioral prediction, recommendation, and control of epidemic spreading. We collect and analyze big data sets of human movements in both cyberspace (through browsing of websites) and physical space (through mobile towers) and find a superlinear scaling relation between the mean frequency of visit and its fluctuation σ :σ ˜β with β ≈1.2 . The probability distribution of the visiting frequency is found to be a stretched exponential function. We develop a model incorporating two essential ingredients, preferential return and exploration, and show that these are necessary for generating the scaling relation extracted from real data. A striking finding is that human movements in cyberspace and physical space are strongly correlated, indicating a distinctive behavioral identifying characteristic and implying that the behaviors in one space can be used to predict those in the other.

  19. Cervical helical axis characteristics and its center of rotation during active head and upper arm movements-comparisons of whiplash-associated disorders, non-specific neck pain and asymptomatic individuals.

    Science.gov (United States)

    Grip, Helena; Sundelin, Gunnevi; Gerdle, Björn; Stefan Karlsson, J

    2008-09-18

    The helical axis model can be used to describe translation and rotation of spine segments. The aim of this study was to investigate the cervical helical axis and its center of rotation during fast head movements (side rotation and flexion/extension) and ball catching in patients with non-specific neck pain or pain due to whiplash injury as compared with matched controls. The aim was also to investigate correlations with neck pain intensity. A finite helical axis model with a time-varying window was used. The intersection point of the axis during different movement conditions was calculated. A repeated-measures ANOVA model was used to investigate the cervical helical axis and its rotation center for consecutive levels of 15 degrees during head movement. Irregularities in axis movement were derived using a zero-crossing approach. In addition, head, arm and upper body range of motion and velocity were observed. A general increase of axis irregularity that correlated to pain intensity was observed in the whiplash group. The rotation center was superiorly displaced in the non-specific neck pain group during side rotation, with the same tendency for the whiplash group. During ball catching, an anterior displacement (and a tendency to an inferior displacement) of the center of rotation and slower and more restricted upper body movements implied a changed movement strategy in neck pain patients, possibly as an attempt to stabilize the cervical spine during head movement.

  20. Context compensation in the vestibulo-ocular reflex during active head rotations

    NARCIS (Netherlands)

    Medendorp, W.P.; Gisbergen, J.A.M. van; Pelt, S. van; Gielen, C.C.A.M.

    2000-01-01

    The vestibuloocular reflex (VOR) needs to modulate its gain depending on target distance to prevent retinal slip during head movements. We investigated gain modulation (context compensation) for binocular gaze stabilization in human subjects during voluntary yaw and pitch head rotations. Movements o

  1. Referee comment on Velocity-Based Terrain Coefficients for Time-Based Models of Human Movement

    Directory of Open Access Journals (Sweden)

    Irmela Herzog

    2017-06-01

    Full Text Available In many archaeological studies assessing the impact of topography on past human movement, only weak arguments without validation for the weights assigned to different terrain features are given. Therefore a study presenting terrain coefficients relying on sound tests is most welcome though the range of applications in archaeological modelling is limited. This article is a referee comment for de Gruchy, M., Caswell, E and Edwards, J. 2017 Velocity-Based Terrain Coefficients for Time-Based Models of Human Movement, Internet Archaeology.

  2. Malaria drug resistance: the impact of human movement and spatial heterogeneity.

    Science.gov (United States)

    Agusto, F B

    2014-07-01

    Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an [Formula: see text] patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain.

  3. Effects of spatial response coding on distractor processing: evidence from auditory spatial negative priming tasks with keypress, joystick, and head movement responses.

    Science.gov (United States)

    Möller, Malte; Mayr, Susanne; Buchner, Axel

    2015-01-01

    Prior studies of spatial negative priming indicate that distractor-assigned keypress responses are inhibited as part of visual, but not auditory, processing. However, recent evidence suggests that static keypress responses are not directly activated by spatially presented sounds and, therefore, might not call for an inhibitory process. In order to investigate the role of response inhibition in auditory processing, we used spatially directed responses that have been shown to result in direct response activation to irrelevant sounds. Participants localized a target sound by performing manual joystick responses (Experiment 1) or head movements (Experiment 2B) while ignoring a concurrent distractor sound. Relations between prime distractor and probe target were systematically manipulated (repeated vs. changed) with respect to identity and location. Experiment 2A investigated the influence of distractor sounds on spatial parameters of head movements toward target locations and showed that distractor-assigned responses are immediately inhibited to prevent false responding in the ongoing trial. Interestingly, performance in Experiments 1 and 2B was not generally impaired when the probe target appeared at the location of the former prime distractor and required a previously withheld and presumably inhibited response. Instead, performance was impaired only when prime distractor and probe target mismatched in terms of location or identity, which fully conforms to the feature-mismatching hypothesis. Together, the results suggest that response inhibition operates in auditory processing when response activation is provided but is presumably too short-lived to affect responding on the subsequent trial.

  4. Human movement variability, nonlinear dynamics, and pathology: is there a connection?

    Science.gov (United States)

    Stergiou, Nicholas; Decker, Leslie M

    2011-10-01

    Fields studying movement generation, including robotics, psychology, cognitive science, and neuroscience utilize concepts and tools related to the pervasiveness of variability in biological systems. The concept of variability and the measures for nonlinear dynamics used to evaluate this concept open new vistas for research in movement dysfunction of many types. This review describes innovations in the exploration of variability and their potential importance in understanding human movement. Far from being a source of error, evidence supports the presence of an optimal state of variability for healthy and functional movement. This variability has a particular organization and is characterized by a chaotic structure. Deviations from this state can lead to biological systems that are either overly rigid and robotic or noisy and unstable. Both situations result in systems that are less adaptable to perturbations, such as those associated with unhealthy pathological states or absence of skillfulness.

  5. Determination of the spatial movement of the temporomandibular joints (tmj joint heads in patients with muscle and joint dysfunction according to computed tomography (ct

    Directory of Open Access Journals (Sweden)

    Аркадий Максимович Боян

    2015-11-01

    Full Text Available Computed tomography (CT is the one of most objective diagnostic methods of TMJ MJD it allows define amplitudes of joint heads movement in sagittal projections to detect an asymmetry of TMJ elements location.Aim of research. Assessment of location of mandibular joint heads and determination of its spatial position in patients with TMJ MJD before treatment and after it using CT.Materials and methods. 50 patients 28-62 years old, 37 women and 13 men who underwent computed tomography (CT of TMJ were under observation.The results of observation were analyzed in details.The studies were carried out using cone-radial computed tomographic scanner «Vatech Pax uni 3d». CT of TMJ was carried out in habitual occlusion before the start of treatment and after removal of TMJ MJD symptoms and complaints. At the study there were measured the width of joint fissure in front, upper and back segments according to N.A. Rabuhina methodology in N.E. Androsova and so-authors modification. Statistical analysis of the data received was carried out using «Statistics» (Statsoft, Inc program.Results. The results of TMJ CT in patients before the start of treatment demonstrated that the sizes of TMJ joint fissure were different. The width of the upper segment of TMJ joint fissure in patients before the start of treatment was reliably less (≤0,001 comparing with an analogous parameter in the group of patients after treatment that indicates the upper location of mandibular head in TMJ with reducing the height of the lower segment of face.So the data of study of the joint fissure width received using TMJ CT demonstrate formation of specific outlines of joint fissure at displacement of mandible and consequently joint head. Information about the joint fissure parameters allows rationally plan and realize orthopedic treatment and the necessary rehabilitation measures in patients with TMJ MJD.Conclusions. The studies demonstrated that the displacements of mandibular joint

  6. An assessment of six muscle spindle models for predicting sensory information during human wrist movements.

    Directory of Open Access Journals (Sweden)

    Puja eMalik

    2016-01-01

    Full Text Available Background: The muscle spindle is an important sensory organ for proprioceptive information, yet there have been few attempts to use Shannon information theory to quantify the capacity of human muscle spindles to encode sensory input.Methods: Computer simulations linked kinematics, to biomechanics, to six muscle spindle models that generated predictions of firing rate. The predicted firing rates were compared to firing rates of human muscle spindles recorded during a step-tracking (center-out task to validate their use. The models were then used to predict firing rates during random movements with statistical properties matched to the ergonomics of human wrist movements. The data were analyzed for entropy and mutual information.Results: Three of the six models produced predictions that approximated the firing rate of human spindles during the step-tracking task. For simulated random movements these models predicted mean rates of 16.0±4.1 imp/s (mean±sd, peak firing rates <50 imp/s and zero firing rate during an average of 25% of the movement. The average entropy of the neural response was 4.1±0.3 bits and is an estimate of the maximum information that could be carried by muscles spindles during ecologically valid movements. The information about tendon displacement preserved in the neural response was 0.10±0.05 bits per symbol; whereas 1.25±0.30 bits per symbol of velocity input were preserved in the neural response of the spindle models.Conclusions: Muscle spindle models, originally based on cat experiments, have predictive value for modeling responses of human muscle spindles with minimal parameter optimization. These models predict more than 10-fold more velocity over length information encoding during ecologically valid movements. These results establish theoretical parameters for developing neuroprostheses for proprioceptive function.

  7. Human sperm pattern of movement during chemotactic re-orientation towards a progesterone source

    Institute of Scientific and Technical Information of China (English)

    Cecilia Soledad Blengini; Maria Eugenia Teves; Diego Rafael Unates; Hector Alejandro Guidobaldi; Laura Virginia Gatica; Laura Cecilia Giojalas

    2011-01-01

    @@ Human spermatozoa may chemotactically find out the egg by following an increasing gradient of attractant molecules.Although human spermatozoa have been observed to show several of the physiological characteristics of chemotaxis,the chemotactic pattern of movement has not been easy to describe.However,it is apparent that chemotactic cells may be identified while returning to the attractant source.This study characterizes the pattern of movement of human spermatozoa during chemotactic re-orientation towards a progesterone source,which is a physiological attractant candidate.By means of videomicroscopy and image analysis,a chemotactic pattern of movement was identified as the spermatozoon returned towards the source of a chemotactic concentration of progesterone (10 pmol l-1).First,as a continuation of its original path,the spermatozoon swims away from the progesterone source with linear movement and then turns back with a transitional movement that can be characterized by an increased velocity and decreased linearity.This sperm behaviour may help the spermatozoon to re-orient itself towards a progesterone source and may be used to identify the few cells that are undergoing chemotaxis at a given time.

  8. Muecas: a multi-sensor robotic head for affective human robot interaction and imitation.

    Science.gov (United States)

    Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro

    2014-04-28

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  9. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    Directory of Open Access Journals (Sweden)

    Felipe Cid

    2014-04-01

    Full Text Available This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System, the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  10. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    Science.gov (United States)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  11. Nerve growth factor promotes human sperm motility in vitro by increasing the movement distance and the number of A grade spermatozoa.

    Science.gov (United States)

    Lin, Kai; Ding, Xue-Feng; Shi, Cui-Ge; Zeng, Dan; QuZong, SuoLang; Liu, Shu-Hong; Wu, Yan; LuoBu, GeSang; Fan, Ming; Zhao, Y-Q

    2015-11-01

    Nerve growth factor (NGF) was first found in the central nervous system and is now well known for its multiple pivotal roles in the nervous system and immune system. However, more and more evidences showed that NGF and its receptors TrkA and p75 were also found in the head and tail of spermatozoa, which indicate the possible effect of NGF on the sperm motility. Nevertheless, the exact role of NGF in the human sperm motility remains unclear until now. In this study, we investigated the effect of NGF on human sperm motility, and the results showed that NGF could promote human sperm motility in vitro by increasing the movement distance and the number of A grade spermatozoa. Further analysis demonstrated that NGF promoted the sperm motility in a dose-dependent manner in vitro. These results may facilitate the further studies on human fertility and assisted reproduction techniques.

  12. Estimating Human Movement Parameters Using a Software Radio-based Radar

    NARCIS (Netherlands)

    Godana, B.; Barroso, A.; Leus, G.J.T.

    2011-01-01

    Radar is an attractive technology for long term monitoring of human movement as it operates remotely, can be placed behind walls and is able to monitor a large area depending on its operating parameters. A radar signal reflected off a moving person carries rich information on his or her activity pat

  13. Humans use visual and remembered information about object location to plan pointing movements

    NARCIS (Netherlands)

    Brouwer, A.-M.; Knill, D.C.

    2009-01-01

    We investigated whether humans use a target's remembered location to plan reaching movements to targets according to the relative reliabilities of visual and remembered information. Using their index finger, subjects moved a virtual object from one side of a table to the other, and then went back to

  14. Coming to Know about the Body in Human Movement Studies Programmes

    Science.gov (United States)

    Varea, Valeria; Tinning, Richard

    2016-01-01

    This paper explores how a group of undergraduate Human Movement Studies (HMS) students learnt to know about the body during their four-year academic programme at an Australian university. When students begin an undergraduate programme in HMS they bring with them particular constructions, ideas and beliefs about their own bodies and about the body…

  15. On the relevance of residual force enhancement for everyday human movement.

    Science.gov (United States)

    Seiberl, Wolfgang; Paternoster, Florian; Achatz, Florian; Schwirtz, Ansgar; Hahn, Daniel

    2013-08-09

    Although residual force enhancement (RFE), i.e. enhanced force after active muscle stretch, is shown to be present in voluntarily activated human muscles, its relevance for everyday human movement is still elusive. Natural human motion is mainly composed of voluntarily submaximally activated muscle contractions driving coordinated multi-joint movements. Up to now there has been no study that directly investigated the presence of RFE following stretch when performing a submaximal multi-joint movement. For this purpose, n=13 subjects performed feedback controlled bilateral leg extensions at the level of 30% maximum voluntary activation in a motor-driven leg press dynamometer. Isometric-eccentric-isometric and purely isometric contractions were arranged in a randomized experimental protocol. Kinematics, forces and muscular activity were measured using optical motion tracking, 3d force plates and EMG of 9 lower extremity muscles. ANOVA identified significant RFE of external reaction force, and knee extension and plantar flexion torque (calculated by inverse dynamics). Enhanced force and torque ranged between 3% and 22% and was present for up to 22s post-stretch. In spite of motor redundancy for solving a given task, no differences between contraction conditions were observed for any of the analyzed muscles, except for tibialis anterior. On the basis of our results, RFE is present in everyday alike human movement and might be an evolutionary optimization mechanism to enhance muscular performance at a given amount of energetic effort.

  16. Active controlled muscles in numerical model of human arm for movement in two degrees of freedom

    NARCIS (Netherlands)

    Budziszewski, P.; Nunen, E. van; Mordaka, J.K.; Kȩdzior, K.

    2008-01-01

    This paper describes the development of numerical model of human upper extremity able to perform movements and stabilization tasks in two degrees of freedom as a result of muscle activation controlled by a PID-based controller. These tasks are defined by functions of specified angle for every degree

  17. Fatigue of intermittently stimulated human quadriceps during imposed cyclical lower leg movements

    NARCIS (Netherlands)

    Franken, Henry M.; Veltink, Peter H.; Fidder, Marc; Boom, Herman B.K.

    1993-01-01

    In this study the torque output of intermittently stimulated paralyzed human knee extensor muscles during imposed isokinetic cyclical lower leg movements was investigated in four paraplegic subjects. During prolonged (10 min) experiments the influence of knee angular velocity and stimulation paramet

  18. The effect of handedness on electromyographic activity of human shoulder muscles during movement

    DEFF Research Database (Denmark)

    Diederichsen, Louise Pyndt; Nørregaard, Jesper; Dyhre-Poulsen, Poul

    2006-01-01

    The aim of the study was to investigate whether there was a difference in the electromyographic (EMG) activity of human shoulder muscles between the dominant and nondominant side during movement and to explore whether a possible side-difference depends on the specific task. We compared the EMG ac...

  19. Physical properties of the human head: mass, center of gravity and moment of inertia.

    Science.gov (United States)

    Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Baisden, Jamie L

    2009-06-19

    This paper presents a synthesis of biomedical investigations of the human head with specific reference to certain aspects of physical properties and development of anthropometry data, leading to the advancement of dummies used in crashworthiness research. As a significant majority of the studies have been summarized as reports, an effort has been made to chronologically review the literature with the above objectives. The first part is devoted to early studies wherein the mass, center of gravity (CG), and moment of inertia (MOI) properties are obtained from human cadaver experiments. Unembalmed and preserved whole-body and isolated head and head-neck experiments are discussed. Acknowledging that the current version of the Hybrid III dummy is the most widely used anthropomorphic test device in motor vehicle crashworthiness research for frontal impact applications for over 30 years, bases for the mass and MOI-related data used in the dummy are discussed. Since the development and federalization of the dummy in the United States, description of methods used to arrive at these properties form a part of the manuscript. Studies subsequent to the development of this dummy including those from the US Military are also discussed. As the head and neck are coupled in any impact, and increasing improvements in technology such as advanced airbags, and pre-tensioners and load limiters in manual seatbelts affect the kinetics of the head-neck complex, the manuscript underscores the need to pursue studies to precisely determine all the physical properties of the head. Because the most critical parameters (locations of CG and occipital condyles (OC), mass, and MOI) have not been determined on a specimen-by-specimen basis in any single study, it is important to gather these data in future experiments. These critical data will be of value for improving occupant safety, designing advanced restraint systems, developing second generation dummies, and assessing the injury mitigating

  20. Strategies for controlling non-transmissible infection outbreaks using a large human movement data set.

    Directory of Open Access Journals (Sweden)

    Penelope A Hancock

    2014-09-01

    Full Text Available Prediction and control of the spread of infectious disease in human populations benefits greatly from our growing capacity to quantify human movement behavior. Here we develop a mathematical model for non-transmissible infections contracted from a localized environmental source, informed by a detailed description of movement patterns of the population of Great Britain. The model is applied to outbreaks of Legionnaires' disease, a potentially life-threatening form of pneumonia caused by the bacteria Legionella pneumophilia. We use case-report data from three recent outbreaks that have occurred in Great Britain where the source has already been identified by public health agencies. We first demonstrate that the amount of individual-level heterogeneity incorporated in the movement data greatly influences our ability to predict the source location. The most accurate predictions were obtained using reported travel histories to describe movements of infected individuals, but using detailed simulation models to estimate movement patterns offers an effective fast alternative. Secondly, once the source is identified, we show that our model can be used to accurately determine the population likely to have been exposed to the pathogen, and hence predict the residential locations of infected individuals. The results give rise to an effective control strategy that can be implemented rapidly in response to an outbreak.

  1. Strategies for controlling non-transmissible infection outbreaks using a large human movement data set.

    Science.gov (United States)

    Hancock, Penelope A; Rehman, Yasmin; Hall, Ian M; Edeghere, Obaghe; Danon, Leon; House, Thomas A; Keeling, Matthew J

    2014-09-01

    Prediction and control of the spread of infectious disease in human populations benefits greatly from our growing capacity to quantify human movement behavior. Here we develop a mathematical model for non-transmissible infections contracted from a localized environmental source, informed by a detailed description of movement patterns of the population of Great Britain. The model is applied to outbreaks of Legionnaires' disease, a potentially life-threatening form of pneumonia caused by the bacteria Legionella pneumophilia. We use case-report data from three recent outbreaks that have occurred in Great Britain where the source has already been identified by public health agencies. We first demonstrate that the amount of individual-level heterogeneity incorporated in the movement data greatly influences our ability to predict the source location. The most accurate predictions were obtained using reported travel histories to describe movements of infected individuals, but using detailed simulation models to estimate movement patterns offers an effective fast alternative. Secondly, once the source is identified, we show that our model can be used to accurately determine the population likely to have been exposed to the pathogen, and hence predict the residential locations of infected individuals. The results give rise to an effective control strategy that can be implemented rapidly in response to an outbreak.

  2. Movement as a basic concept in physiotherapy--a human science approach.

    Science.gov (United States)

    Wikström-Grotell, Camilla; Eriksson, Katie

    2012-08-01

    The development of scientific knowledge of physiotherapy (PT) has advanced significantly. Research is mostly conducted within a biomedical paradigm and theory-building is underpinned by a positivist paradigm. The basic philosophical questions and concepts are not much reflected on, and PT lacks an established theoretical frame. The first step in theory development is to define the basic concepts. The aim of this professional theoretical paper was to reflect on and describe the concept of movement in PT based on earlier research as a standpoint for a broader and deeper understanding of the complex nature of PT reality inspired by a model for concept analysis developed in caring science [Eriksson K 2010 Concept determination as part of the development of knowledge in caring science. Scandinavian Journal of Caring Sciences 24: 2-11]. The concept of movement in PT is conceptualized as complex and multidimensional. The understanding of human movement in PT is based on five categories described in the paper. The conceptualization of movement includes acting in relation to the socio-cultural environment, inter-dynamic aspects, as well as personal, intradynamic aspects. This paper argues for the need to further develop the concept of movement in PT within a human science approach. A deeper understanding is needed as a basis for understanding complex clinical practice as well as in shaping the PT discipline.

  3. Human Papillomavirus Induced Transformation in Cervical and Head and Neck Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Allie K. [Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (United States); Wise-Draper, Trisha M. [Division of Hematology/Oncology, University of Cincinnati Medical Center, University of Cincinnati, Cincinnati, OH 45229 (United States); Wells, Susanne I., E-mail: Susanne.Wells@cchmc.org [Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 (United States)

    2014-09-15

    Human papillomavirus (HPV) is one of the most widely publicized and researched pathogenic DNA viruses. For decades, HPV research has focused on transforming viral activities in cervical cancer. During the past 15 years, however, HPV has also emerged as a major etiological agent in cancers of the head and neck, in particular squamous cell carcinoma. Even with significant strides achieved towards the screening and treatment of cervical cancer, and preventive vaccines, cervical cancer remains the leading cause of cancer-associated deaths for women in developing countries. Furthermore, routine screens are not available for those at risk of head and neck cancer. The current expectation is that HPV vaccination will prevent not only cervical, but also head and neck cancers. In order to determine if previous cervical cancer models for HPV infection and transformation are directly applicable to head and neck cancer, clinical and molecular disease aspects must be carefully compared. In this review, we briefly discuss the cervical and head and neck cancer literature to highlight clinical and genomic commonalities. Differences in prognosis, staging and treatment, as well as comparisons of mutational profiles, viral integration patterns, and alterations in gene expression will be addressed.

  4. Human Papillomavirus Induced Transformation in Cervical and Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Allie K. Adams

    2014-09-01

    Full Text Available Human papillomavirus (HPV is one of the most widely publicized and researched pathogenic DNA viruses. For decades, HPV research has focused on transforming viral activities in cervical cancer. During the past 15 years, however, HPV has also emerged as a major etiological agent in cancers of the head and neck, in particular squamous cell carcinoma. Even with significant strides achieved towards the screening and treatment of cervical cancer, and preventive vaccines, cervical cancer remains the leading cause of cancer-associated deaths for women in developing countries. Furthermore, routine screens are not available for those at risk of head and neck cancer. The current expectation is that HPV vaccination will prevent not only cervical, but also head and neck cancers. In order to determine if previous cervical cancer models for HPV infection and transformation are directly applicable to head and neck cancer, clinical and molecular disease aspects must be carefully compared. In this review, we briefly discuss the cervical and head and neck cancer literature to highlight clinical and genomic commonalities. Differences in prognosis, staging and treatment, as well as comparisons of mutational profiles, viral integration patterns, and alterations in gene expression will be addressed.

  5. Socially structured human movement shapes dengue transmission despite the diffusive effect of mosquito dispersal

    Directory of Open Access Journals (Sweden)

    Robert C. Reiner, Jr.

    2014-03-01

    Full Text Available For sexually and directly transmitted infectious diseases, social connections influence transmission because they determine contact between individuals. For pathogens that are indirectly transmitted by arthropod vectors, the movement of the vectors is thought to diminish the role of social connections. Results from a recent study of mosquito-borne dengue virus (DENV, however, indicate that human movement alone can explain significant spatial variation in urban transmission rates. Because movement patterns are structured by social ties, this result suggests that social proximity may be a good predictor of infection risk for DENV and other pathogens transmitted by the mosquito Aedes aegypti. Here we investigated the effect of socially structured movement on DENV transmission using a spatially explicit, agent-based transmission model. When individual movements overlap to a high degree within social groups we were able to recreate infection patterns similar to those detected in dengue-endemic, northeastern Peru. Our results are consistent with the hypothesis that social proximity drives fine-scale heterogeneity in DENV transmission rates, a result that was robust to the influence of mosquito dispersal. This heterogeneity in transmission caused by socially structured movements appeared to be hidden by the diffusive effect of mosquito dispersal in aggregated infection dynamics, which implies this heterogeneity could be present and active in real dengue systems without being easily noticed. Accounting for socially determined, overlapping human movements could substantially improve the efficiency and efficacy of dengue surveillance and disease prevention programs as well as result in more accurate estimates of important epidemiological quantities, such as R0.

  6. Decoding individual finger movements from one hand using human EEG signals.

    Directory of Open Access Journals (Sweden)

    Ke Liao

    Full Text Available Brain computer interface (BCI is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG signals, while it remains unclear whether noninvasive electroencephalography (EEG signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA. These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26% in all subjects (p<0.05. The present study suggests the similar movement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies.

  7. Human rights and the politics of risk and blame: lessons from the international reproductive health movement.

    Science.gov (United States)

    Freedman, L P

    1997-01-01

    Recent debates about the "politicization" of public health obscure the ways in which epidemiological concepts of risk are routinely used in the legal and political systems to apportion blame and responsibility for poor health. This article uses the example of reproductive health and rights to argue that new understandings of the connection between socioeconomic conditions and poor health will only generate change when they are reframed into political claims and pressed by social movements. In this connection, human rights language, principles, and practice hold great potential for the US reproductive rights movement, which has sometimes been constrained by the narrow scope of court rulings.

  8. Gaze and hand position effects on finger-movement-related human brain activation.

    Science.gov (United States)

    Bédard, Patrick; Sanes, Jerome N

    2009-02-01

    Humans commonly use their hands to move and to interact with their environment by processing visual and proprioceptive information to determine the location of a goal-object and the initial hand position. It remains elusive, however, how the human brain fully uses this sensory information to generate accurate movements. In monkeys, it appears that frontal and parietal areas use and combine gaze and hand signals to generate movements, whereas in humans, prior work has separately assessed how the brain uses these two signals. Here we investigated whether and how the human brain integrates gaze orientation and hand position during simple visually triggered finger tapping. We hypothesized that parietal, frontal, and subcortical regions involved in movement production would also exhibit modulation of movement-related activation as a function of gaze and hand positions. We used functional MRI to measure brain activation while healthy young adults performed a visually cued finger movement and fixed gaze at each of three locations and held the arm in two different configurations. We found several areas that exhibited activation related to a mixture of these hand and gaze positions; these included the sensory-motor cortex, supramarginal gyrus, superior parietal lobule, superior frontal gyrus, anterior cingulate, and left cerebellum. We also found regions within the left insula, left cuneus, left midcingulate gyrus, left putamen, and right tempo-occipital junction with activation driven only by gaze orientation. Finally, clusters with hand position effects were found in the cerebellum bilaterally. Our results indicate that these areas integrate at least two signals to perform visual-motor actions and that these could be used to subserve sensory-motor transformations.

  9. Quantifying Human Movement Using the Movn Smartphone App: Validation and Field Study.

    Science.gov (United States)

    Maddison, Ralph; Gemming, Luke; Monedero, Javier; Bolger, Linda; Belton, Sarahjane; Issartel, Johann; Marsh, Samantha; Direito, Artur; Solenhill, Madeleine; Zhao, Jinfeng; Exeter, Daniel John; Vathsangam, Harshvardhan; Rawstorn, Jonathan Charles

    2017-08-17

    The use of embedded smartphone sensors offers opportunities to measure physical activity (PA) and human movement. Big data-which includes billions of digital traces-offers scientists a new lens to examine PA in fine-grained detail and allows us to track people's geocoded movement patterns to determine their interaction with the environment. The objective of this study was to examine the validity of the Movn smartphone app (Moving Analytics) for collecting PA and human movement data. The criterion and convergent validity of the Movn smartphone app for estimating energy expenditure (EE) were assessed in both laboratory and free-living settings, compared with indirect calorimetry (criterion reference) and a stand-alone accelerometer that is commonly used in PA research (GT1m, ActiGraph Corp, convergent reference). A supporting cross-validation study assessed the consistency of activity data when collected across different smartphone devices. Global positioning system (GPS) and accelerometer data were integrated with geographical information software to demonstrate the feasibility of geospatial analysis of human movement. A total of 21 participants contributed to linear regression analysis to estimate EE from Movn activity counts (standard error of estimation [SEE]=1.94 kcal/min). The equation was cross-validated in an independent sample (N=42, SEE=1.10 kcal/min). During laboratory-based treadmill exercise, EE from Movn was comparable to calorimetry (bias=0.36 [-0.07 to 0.78] kcal/min, t82=1.66, P=.10) but overestimated as compared with the ActiGraph accelerometer (bias=0.93 [0.58-1.29] kcal/min, t89=5.27, Psmartphone app can provide valid passive measurement of EE and can enrich these data with contextualizing temporospatial information. Although enhanced understanding of geographic and temporal variation in human movement patterns could inform intervention development, it also presents challenges for data processing and analytics.

  10. Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction.

    Science.gov (United States)

    Sawers, Andrew; Bhattacharjee, Tapomayukh; McKay, J Lucas; Hackney, Madeleine E; Kemp, Charles C; Ting, Lena H

    2017-01-31

    Physical interactions between two people are ubiquitous in our daily lives, and an integral part of many forms of rehabilitation. However, few studies have investigated forces arising from physical interactions between humans during a cooperative motor task, particularly during overground movements. As such, the direction and magnitude of interaction forces between two human partners, how those forces are used to communicate movement goals, and whether they change with motor experience remains unknown. A better understanding of how cooperative physical interactions are achieved in healthy individuals of different skill levels is a first step toward understanding principles of physical interactions that could be applied to robotic devices for motor assistance and rehabilitation. Interaction forces between expert and novice partner dancers were recorded while performing a forward-backward partnered stepping task with assigned "leader" and "follower" roles. Their position was recorded using motion capture. The magnitude and direction of the interaction forces were analyzed and compared across groups (i.e. expert-expert, expert-novice, and novice-novice) and across movement phases (i.e. forward, backward, change of direction). All dyads were able to perform the partnered stepping task with some level of proficiency. Relatively small interaction forces (10-30N) were observed across all dyads, but were significantly larger among expert-expert dyads. Interaction forces were also found to be significantly different across movement phases. However, interaction force magnitude did not change as whole-body synchronization between partners improved across trials. Relatively small interaction forces may communicate movement goals (i.e. "what to do and when to do it") between human partners during cooperative physical interactions. Moreover, these small interactions forces vary with prior motor experience, and may act primarily as guiding cues that convey information about

  11. Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.

    Science.gov (United States)

    Biess, Armin; Flash, Tamar; Liebermann, Dario G

    2011-03-01

    We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.

  12. Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6-12 months.

    Science.gov (United States)

    Sacrey, Lori-Ann R; Karl, Jenni M; Whishaw, Ian Q

    2012-06-01

    The reach-to-eat movement, transport of a hand to grasp an object that is withdrawn and placed in the mouth, is amongst the earliest developing functional movements of human infants. The present longitudinal study is the first description of the maturation of hand-rotation, hand shaping, and accuracy associated with the advance and withdrawal phases of the movement. Eight infants, aged 6-12 months, and eight adults, were video recorded as they reached for familiar objects or food items. Hand, arm, and trunk movements were assessed frame-by-frame with the Skilled Reaching Rating Scale, previously developed for the assessment of adult reaching, and supplementary kinematic analysis. Reach-to-eat maturation was characterized by three changes. First, for advance, a simple open hand transport gradually matured to a movement associated with pronation and hand shaping of the digits for precision grasping. Second, for withdrawal to the mouth, a direct withdrawal movement gradually became associated with hand supination that oriented the target object to the mouth. Third, associated with the maturation of rotational movements, inaccurate and fragmented hand transport and withdrawal movements developed into precise targeting of the hand-to-object and object-to-mouth. Across the age range, there was a decrease in bimanual reaching and an increase in right handed reaching. The results are discussed in relation to the idea that the maturation of the reach-to-eat movement involves the development of rotational and shaping movements of the hand and visual and somatosensory guidance of a preferred hand.

  13. A Method for Head-shoulder Segmentation and Human Facial Feature Positioning

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    This paper proposes a method of head-shoulder segmentation and human facial feature allocation for videotelephone application. Utilizing the characteristic of multi-resolution processing of human eyes, analyzing the edge information of only a single frame in different frequency bands, this method can automatically perform head-shoulder segmentation and locate the facial feature regions (eyes, mouth, etc.) with rather high precision, simple and fast computation. Therefore, this method makes the 3-D model automatic adaptation and 3-D motion estimation possible. However, this method may fail while processing practical images with a complex background. Then it is preferable to use some pre-known information and multi-frame joint processing.

  14. A multi-tissue segmentation of the human head for detailed computational models.

    Science.gov (United States)

    Hannula, Markus; Narra, Nathaniel; Onnela, Niina; Dastidar, Prasun; Hyttinen, Jari

    2014-01-01

    This paper describes the creation of an anatomically detailed high resolution model of the human head based on the Visible Human Female data from the National Library of Medicine archives. Automatic and semi-automatic segmentation algorithms were applied over the 3 image volumes – CT, MRI and anatomical cryo-sections of the cadaver – to label a total of 23 tissues. The results were combined to create a labeled volume of the head with voxel dimensions of 0.33×0.33×0.33 mm. The individual label matrices and their corresponding surface meshes are made available to be used freely. The detailed blood vessel network and ocular tissues will be of interest in computational modelling and simulation studies.

  15. Eye-movement study and human performance using telepathology virtual slides: implications for medical education and differences with experience.

    Science.gov (United States)

    Krupinski, Elizabeth A; Tillack, Allison A; Richter, Lynne; Henderson, Jeffrey T; Bhattacharyya, Achyut K; Scott, Katherine M; Graham, Anna R; Descour, Michael R; Davis, John R; Weinstein, Ronald S

    2006-12-01

    A core skill in diagnostic pathology is light microscopy. Remarkably little is known about human factors that affect the proficiency of pathologists as light microscopists. The cognitive skills of pathologists have received relatively little attention in comparison with the large literature on human performance studies in radiology. One reason for this lack of formal visual search studies in pathology has been the physical restrictions imposed by the close positioning of a microscope operator's head to the microscope's eyepieces. This blocks access to the operator's eyes and precludes assessment of the microscopist's eye movements. Virtual slide microscopy now removes this barrier and opens the door for studies on human factors and visual search strategies in light microscopy. The aim of this study was to assess eye movements of medical students, pathology residents, and practicing pathologists examining virtual slides on a digital display monitor. Whole histopathology glass slide digital images, so-called virtual slides, of 20 consecutive breast core biopsy cases were used in a retrospective study. These high-quality virtual slides were produced with an array-microscope equipped DMetrix DX-40 ultrarapid virtual slide processor (DMetrix, Tucson, Ariz). Using an eye-tracking device, we demonstrated for the first time that when a virtual slide reader initially looks at a virtual slide his or her eyes are very quickly attracted to regions of interest (ROIs) within the slide and that these ROIs are likely to contain diagnostic information. In a matter of seconds, critical decisions are made on the selection of ROIs for further examination at higher magnification. We recorded: (1) the time virtual slide readers spent fixating on self-selected locations on the video monitor; (2) the characteristics of the ways the eyes jumped between fixation locations; and (3) x and y coordinates for each virtual slide marking the sites the virtual slide readers manually selected for

  16. Ovicidal Efficacy of Abametapir Against Eggs of Human Head and Body Lice (Anoplura: Pediculidae).

    Science.gov (United States)

    Bowles, Vernon M; Yoon, Kyong Sup; Barker, Stephen C; Tran, Christopher; Rhodes, Christopher; Clark, Marshall J

    2017-01-01

    Studies were undertaken to determine the ovicidal efficacy of 5,5'-dimethyl-2,2'-bipyridyl (abametapir) against eggs of both human head and body lice. Head lice eggs of different ages (0-2, 3-5, and 6-8-d-old eggs) were exposed to varying concentrations of abametapir in isopropanol and concentration-dependent response relationships established based on egg hatch. One hundred percent of all abametapir-treated eggs failed to hatch at the 0.74 and 0.55% concentrations, whereas 100% of 6-8-d-old head louse eggs failed to hatch only at the 0.74% concentration. The LC50 value for abametapir varied, depending on the age of the head lice eggs, from ∼0.10% recorded for 0-2-d-old eggs and increasing to ∼0.15% for 6-8-d-old eggs. Abametapir was also evaluated once formulated into a lotion referred to as Xeglyze (0.74% abametapir) and serial dilutions made. Ovicidal efficacies were determined against head lice eggs 0-8-d-old. Results indicated 100% ovicidal activity at the 0.74, 0.55, 0.37, and 0.18% concentrations. Additional studies undertaken using body lice eggs also demonstrated that abametapir was 100% ovicidal against eggs of all ages when evaluated at a concentration of 0.37 and 0.55%. Given that ovicidal activity is a critical component of any effective treatment regime for louse control, the data presented in this study clearly demonstrate the ability of abametapir to inhibit hatching of both head and body louse eggs as assessed in vitro.

  17. Postural adjustments for online corrections of arm movements in standing humans.

    Science.gov (United States)

    Leonard, Julia A; Gritsenko, Valeriya; Ouckama, Ryan; Stapley, Paul J

    2011-05-01

    The aim of this study was to investigate how humans correct ongoing arm movements while standing. Specifically, we sought to understand whether the postural adjustments in the legs required for online corrections of arm movements are predictive or rely on feedback from the moving limb. To answer this question we measured online corrections in arm and leg muscles during pointing movements while standing. Nine healthy right-handed subjects reached with their dominant arm to a visual target in front of them and aligned with their midline. In some trials, the position of the target would switch from the central target to one of the other targets located 15°, 30°, or 45° to the right of the central (midline) target. For each target correction, we measured the time at which arm kinematics, ground reaction forces, and arm and leg muscle electromyogram significantly changed in response to the target displacement. Results show that postural adjustments in the left leg preceded kinematic corrections in the limb. The corrective postural muscle activity in the left leg consistently preceded the corrective reaching muscle activity in the right arm. Our results demonstrate that corrections of arm movements in response to target displacement during stance are preceded by postural adjustments in the leg contralateral to the direction of target shift. Furthermore, postural adjustments preceded both the hand trajectory correction and the arm-muscle activity responsible for it, which suggests that the central nervous system does not depend on feedback from the moving arm to modify body posture during voluntary movement. Instead, postural adjustments lead the online correction in the arm the same way they lead the initiation of voluntary arm movements. This suggests that forward models for voluntary movements executed during stance incorporate commands for posture that are produced on the basis of the required task demands.

  18. Decoding individual finger movements from one hand using human EEG signals.

    Science.gov (United States)

    Liao, Ke; Xiao, Ran; Gonzalez, Jania; Ding, Lei

    2014-01-01

    Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (pmovement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies.

  19. Direction of movement is encoded in the human primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Carolien M Toxopeus

    Full Text Available The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1. Using functional magnetic resonance imaging (fMRI and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right was located most laterally/superficially, whereas directions 180° (left and 270° (down elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180° and vertical (90°+270° axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1.

  20. Decoding Onset and Direction of Movements Using Electrocorticographic (ECoG Signals in Humans

    Directory of Open Access Journals (Sweden)

    Zuoguan eWang

    2012-08-01

    Full Text Available Communication of intent usually requires motor function. This requirement can be limiting when a person is engaged in a task, or prohibitive for some people suffering from neuromuscular disorders. Determining a person's intent, e.g., where and when to move, from brain signals rather than from muscles would have important applications in clinical or other domains. For example, detection of the onset and direction of intended movements may provide the basis for restoration of simple grasping function in people with chronic stroke, or could be used to optimize a user's interaction with the surrounding environment. Detecting the onset and direction of actual movements are a first step in this direction. In this study, we demonstrate that we can detect the onset of intended movements and their direction using electrocorticographic (ECoG signals recorded from the surface of the cortex in humans. We also demonstrate in a simulation that the information encoded in ECoG about these movements may improve performance in a targeting task. In summary, the results in this paper suggest that detection of intended movement is possible, and may serve useful functions.

  1. Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.

    Science.gov (United States)

    Wu, Lihua; Leung, Henry; Jiang, Hao; Zheng, Hong; Ma, Li

    2016-01-01

    For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs) from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.

  2. Effect of Human Movement on Galvanic Intra-Body Communication during Single Gait Cycle

    Science.gov (United States)

    Ibrahim, I. W.; Razak, A. H. A.; Ahmad, A.; Salleh, M. K. M.

    2015-11-01

    Intra-body communication (IBC) is a communication system that uses human body as a signal transmission medium. From previous research, two coupling methods of IBC were concluded which are capacitive coupling and galvanic coupling. This paper investigates the effect of human movement on IBC using the galvanic coupling method. Because the human movement is control by the limb joint, the knee flexion angle during gait cycle was used to examine the influence of human movement on galvanic coupling IBC. The gait cycle is a cycle of people walking that start from one foot touch the ground till that foot touch the ground again. Frequency range from 300 kHz to 200MHz was swept in order to investigate the signal transmission loss and the result was focused on operating frequency 70MHz to 90MHz. Results show that the transmission loss varies when the knee flexion angle increased. The highest loss of signal at frequency range between 70MHz to 90 MHz was 69dB when the knee flexion angle is 50° and the minimum loss was 51dB during the flexion angle is 5°.

  3. Demography and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon along the open coast of southern California, USA

    Science.gov (United States)

    Nosal, D.C.; Cartamil, D.C.; Long, J.W.; Luhrmann, M.; Wegner, N.C.; Graham, J.B.

    2013-01-01

    The demography, spatial distribution, and movement patterns of leopard sharks (Triakis semifasciata) aggregating near the head of a submarine canyon in La Jolla, California, USA, were investigated to resolve the causal explanations for this and similar shark aggregations. All sharks sampled from the aggregation site (n=140) were sexually mature and 97.1 % were female. Aerial photographs taken during tethered balloon surveys revealed high densities of milling sharks of up to 5470 sharks ha-1. Eight sharks were each tagged with a continuous acoustic transmitter and manually tracked without interruption for up to 48 h. Sharks exhibited strong site-fidelity and were generally confined to a divergence (shadow) zone of low wave energy, which results from wave refraction over the steep bathymetric contours of the submarine canyon. Within this divergence zone, the movements of sharks were strongly localized over the seismically active Rose Canyon Fault. Tracked sharks spent most of their time in shallow water (≤2 m for 71.0 % and ≤10 m for 95.9 % of time), with some dispersing to deeper (max: 53.9 m) and cooler (min: 12.7 °C) water after sunset, subsequently returning by sunrise. These findings suggest multiple functions of this aggregation and that the mechanism controlling its formation, maintenance, and dissolution is complex and rooted in the sharks' variable response to numerous confounding environmental factors.

  4. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    Science.gov (United States)

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  5. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-01-01

    Full Text Available BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM or finite element model (FEM created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa. BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages.

  6. Retrieval and Clustering from a 3D Human Database based on Body and Head Shape

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper, we describe a framework for similarity based retrieval and clustering from a 3D human database. Our technique is based on both body and head shape representation and the retrieval is based on similarity of both of them. The 3D human database used in our study is the CAESAR anthropometric database which contains approximately 5000 bodies. We have developed a web-based interface for specifying the queries to interact with the retrieval system. Our approach performs the similarity based retrieval in a reasonable amount of time and is a practical approach.

  7. Evaluation of Head and Brain Injury Risk Functions Using Sub-Injurious Human Volunteer Data.

    Science.gov (United States)

    Sanchez, Erin J; Gabler, Lee F; McGhee, James S; Olszko, Ardyn V; Chancey, V Carol; Crandall, Jeff R; Panzer, Matthew B

    2017-08-15

    Risk assessment models are developed to estimate the probability of brain injury during head impact using mechanical response variables such as head kinematics and brain tissue deformation. Existing injury risk functions have been developed using different datasets based on human volunteer and scaled animal injury responses to impact. However, many of these functions have not been independently evaluated with respect to laboratory-controlled human response data. In this study, the specificity of 14 existing brain injury risk functions was assessed by evaluating their ability to correctly predict non-injurious response using previously conducted sled tests with well-instrumented human research volunteers. Six degrees-of-freedom head kinematics data were obtained for 335 sled tests involving subjects in frontal, lateral, and oblique sled conditions up to 16 Gs peak sled acceleration. A review of the medical reports associated with each individual test indicated no clinical diagnosis of mild or moderate brain injury in any of the cases evaluated. Kinematic-based head and brain injury risk probabilities were calculated directly from the kinematic data, while strain-based risks were determined through finite element model simulation of the 335 tests. Several injury risk functions substantially over predict the likelihood of concussion and diffuse axonal injury; proposed maximum principal strain-based injury risk functions predicted nearly 80 concussions and 14 cases of severe diffuse axonal injury out of the 335 non-injurious cases. This work is an important first step in assessing the efficacy of existing brain risk functions and highlights the need for more predictive injury assessment models.

  8. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics.

    Directory of Open Access Journals (Sweden)

    Ben Adams

    Full Text Available In metropolitan areas people travel frequently and extensively but often in highly structured commuting patterns. We investigate the role of this type of human movement in the epidemiology of vector-borne pathogens such as dengue. Analysis is based on a metapopulation model where mobile humans connect static mosquito subpopulations. We find that, due to frequency dependent biting, infection incidence in the human and mosquito populations is almost independent of the duration of contact. If the mosquito population is not uniformly distributed between patches the transmission potential of the pathogen at the metapopulation level, as summarized by the basic reproductive number, is determined by the size of the largest subpopulation and reduced by stronger connectivity. Global extinction of the pathogen is less likely when increased human movement enhances the rescue effect but, in contrast to classical theory, it is not minimized at an intermediate level of connectivity. We conclude that hubs and reservoirs of infection can be places people visit frequently but briefly and the relative importance of human and mosquito populations in maintaining the pathogen depends on the distribution of the mosquito population and the variability in human travel patterns. These results offer an insight in to the paradoxical observation of resurgent urban vector-borne disease despite increased investment in vector control and suggest that successful public health intervention may require a dual approach. Prospective studies can be used to identify areas with large mosquito populations that are also visited by a large fraction of the human population. Retrospective studies can be used to map recent movements of infected people, pinpointing the mosquito subpopulation from which they acquired the infection and others to which they may have transmitted it.

  9. Effects of transcranial magnetic stimulation during voluntary and non-voluntary stepping movements in humans.

    Science.gov (United States)

    Solopova, I A; Selionov, V A; Kazennikov, O V; Ivanenko, Y P

    2014-09-05

    Here, we compared motor evoked potentials (MEP) in response to transcranial magnetic stimulation of the motor cortex and the H-reflex during voluntary and vibration-induced air-stepping movements in humans. Both the MEPs (in mm biceps femoris, rectus femoris and tibialis anterior) and H-reflex (in m soleus) were significantly smaller during vibration-induced cyclic leg movements at matched amplitudes of angular motion and muscle activity. These findings highlight differences between voluntary and non-voluntary activation of the spinal pattern generator circuitry in humans, presumably due to an extra facilitatory effect of voluntary control/triggering of stepping on spinal motoneurons and interneurons. The results support the idea of active engagement of supraspinal motor areas in developing central pattern generator-modulating therapies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Apnea-Induced Rapid Eye Movement Sleep Disruption Impairs Human Spatial Navigational Memory

    OpenAIRE

    Varga, Andrew W.; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P.; Osorio, Ricardo S.; David M. Rapoport; Ayappa, Indu

    2014-01-01

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restric...

  11. A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer

    Science.gov (United States)

    Schlecht, Nicolas F.; Brandwein-Gensler, Margaret; Nuovo, Gerard J.; Li, Maomi; Dunne, Anne; Kawachi, Nicole; Smith, Richard V.; Burk, Robert D.; Prystowsky, Michael B.

    2011-01-01

    Detection of human papillomavirus in head and neck cancer has therapeutic implications. In-situ hybridization and immuno-histochemistry for p16 are used by surgical pathologists. We compared the sensitivity and specificity of three popular commercial tests for human papillomavirus detection in head and neck squamous cell carcinomas to a “gold standard” human papillomavirus PCR assay. One hundred-and-ten prospectively collected, formalin fixed tumor specimens were compiled onto tissue microarrays and tested for human papillomavirus DNA by in-situ hybridization with two probe sets: a biotinylated probe for high-risk human papillomavirus types 16/18 (Dako, CA), and a probe cocktail for 16/18 plus 10 additional high-risk types (Ventana, AZ). P16INK4 expression was also assessed using a Pharmingen immuno-histochemistry antibody (BD Biosciences, CA). Tissue microarrays were stained and scored at expert laboratories. Human papillomavirus DNA was detected by MY09/11-PCR using Gold AmpliTaq and dot-blot hybridization on matched fresh frozen specimens in a research laboratory. Human papillomavirus 16 E6 and E7-RNA expression was also measured using RT-PCR. Test performance was assessed by receiver operating characteristic analysis. High-risk human papillomavirus DNA types 16, 18 and 35 were detected by MY-PCR in 28% of tumors, with the majority (97%) testing positive for type 16. Compared to MY-PCR, the sensitivity and specificity for high-risk human papillomavirus DNA detection with Dako in-situ hybridization was 21% (95%CI:7–42) and 100% (95%CI:93–100), respectively. Corresponding test results by Ventana in-situ hybridization were 59% (95%CI:39–78) and 58% (95%CI:45–71), respectively. P16 immuno-histochemistry performed better overall than Dako (p=0.042) and Ventana (p=0.055), with a sensitivity of 52% (95%CI:32–71) and specificity of 93% (95%CI:84–98). Compared to a gold standard human papillomavirus PCR assays, HPV detection by in-situ hybridization was

  12. Human brain factor 1, a new member of the fork head gene family

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, D.B.; Wiese, S.; Burfeind, P. [Institut fuer Humangenetik, Goettingen (Germany)] [and others

    1994-06-01

    Analysis of cDNA clones that cross-hybridized with the fork head domain of the rat HNF-3 gene family revealed 10 cDNAs from human fetal brain and human testis cDNA libraries containing this highly conserved DNA-binding domain. Three of these cDNAs (HFK1, HFK2, and HFK3) were further analyzed. The cDNA HFK1 has a length of 2557 nucleotides and shows strong homology at the nucleotide level (91.2%) to brain factor 1 (BF-1) from rat. The HFK1 cDNA codes for a putative 476 amino acid protein. The homology to BF-1 from rat in the coding region at the amino acid level is 87.5%. The fork head homologous region includes 111 amino acids starting at amino acid 160 and has a 97.5% homology to BF-1. Southern hybridization revealed that HFK1 is highly conserved among mammalian species and possibly birds. Northern analysis with total RNA from human tissues and poly(A)-rich RNA from mouse revealed a 3.2-kb transcript that is present in human and mouse fetal brain and in adult mouse brain. In situ hybridization with sections of mouse embryo and human fetal brain reveals that HFK1 expression is restricted to the neuronal cells in the telencepthalon, with strong expression being observed in the developing dentate gyrus and hippocampus. HFK1 was chromosomally localized by in situ hybridization to 14q12. The cDNA clones HFK2 and HFK3 were analyzed by restriction analysis and sequencing. HFK2 and HFK3 were found to be closely related but different from HFK1. Therefore, it would appear that HFK1, HFK2, HFK3, and BF-1 form a new fork head related subfamily. 33 refs., 6 figs.

  13. Limited transfer of newly acquired movement patterns across walking and running in humans.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ogawa

    Full Text Available The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster. Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run and only partial in the opposite modes (walking after learning to run and running after learning to walk (thus transferred only limitedly across the modes. Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes.

  14. Summer movements, predation and habitat use of wolves in human modified boreal forests.

    Science.gov (United States)

    Gurarie, Eliezer; Suutarinen, Johanna; Kojola, Ilpo; Ovaskainen, Otso

    2011-04-01

    Grey wolves (Canis lupus), formerly extirpated in Finland, have recolonized a boreal forest environment that has been significantly altered by humans, becoming a patchwork of managed forests and clearcuts crisscrossed by roads, power lines, and railways. Little is known about how the wolves utilize this impacted ecosystem, especially during the pup-rearing summer months. We tracked two wolves instrumented with GPS collars transmitting at 30-min intervals during two summers in eastern Finland, visiting all locations in the field, identifying prey items and classifying movement behaviors. We analyzed preference and avoidance of habitat types, linear elements and habitat edges, and tested the generality of our results against lower resolution summer movements of 23 other collared wolves. Wolves tended to show a strong preference for transitional woodlands (mostly harvested clearcuts) and mixed forests over coniferous forests and to use forest roads and low use linear elements to facilitate movement. The high density of primary roads in one wolf's territory led to more constrained use of the home territory compared to the wolf with fewer roads, suggesting avoidance of humans; however, there did not appear to be large differences on the hunting success or the success of pup rearing for the two packs. In total, 90 kills were identified, almost entirely moose (Alces alces) and reindeer (Rangifer tarandus sspp.) calves of which a large proportion were killed in transitional woodlands. Generally, wolves displayed a high level of adaptability, successfully exploiting direct and indirect human-derived modifications to the boreal forest environment.

  15. Temporal discrimination of two passive movements in humans: a new psychophysical approach to assessing kinaesthesia.

    Science.gov (United States)

    Tinazzi, Michele; Stanzani, Clementina; Fiorio, Mirta; Smania, Nicola; Moretto, Giuseppe; Fiaschi, Antonio; Edwards, Mark J; Bhatia, Kailash P; Rothwell, John C

    2005-10-01

    Percutaneous electrical stimulation of the motor point of the first dorsal interosseous muscle (FDI) was used to produce a non-painful contraction of the FDI muscle that caused index finger abduction movement but no radiating cutaneous paraesthesias or sharp sensations localized to joints. Pairs of stimuli separated by different time intervals were given and subjects were asked to report whether they perceived a single or a double index finger abduction movement. The threshold value was the shortest interval for which the subjects reported two separate index finger abduction movements. Temporal discrimination movement thresholds (TDMT) were measured for both right and left hand. To assess the possible role of muscle and cutaneous afferents in temporal discrimination, we investigated the effects of high-frequency (20 Hz) electrical stimulation of the right ulnar and radial nerves on TDMT. In humans, muscle afferents from FDI are supplied by the ulnar nerve whereas the cutaneous territory overlying the muscle and joint is supplied by the radial and median nerves. Threshold values were not significantly different for right (75.1 ms) and left (75.6 ms) hands. During ulnar and to a lesser extent during radial nerve stimulation, TDMT values were significantly increased (119.2 and 93.5 ms, respectively) compared with baseline conditions (78.0 ms) whereas no changes were observed during median nerve stimulation (80.5 ms). These results suggest that muscle, and in part cutaneous, afferents contribute to temporal discrimination of a dual movement. The technique may provide a useful way of measuring temporal discrimination of kinaesthetic inputs in humans.

  16. Decoding three-dimensional reaching movements using electrocorticographic signals in humans

    Science.gov (United States)

    Bundy, David T.; Pahwa, Mrinal; Szrama, Nicholas; Leuthardt, Eric C.

    2016-04-01

    Objective. Electrocorticography (ECoG) signals have emerged as a potential control signal for brain-computer interface (BCI) applications due to balancing signal quality and implant invasiveness. While there have been numerous demonstrations in which ECoG signals were used to decode motor movements and to develop BCI systems, the extent of information that can be decoded has been uncertain. Therefore, we sought to determine if ECoG signals could be used to decode kinematics (speed, velocity, and position) of arm movements in 3D space. Approach. To investigate this, we designed a 3D center-out reaching task that was performed by five epileptic patients undergoing temporary placement of ECoG arrays. We used the ECoG signals within a hierarchical partial-least squares (PLS) regression model to perform offline prediction of hand speed, velocity, and position. Main Results. The hierarchical PLS regression model enabled us to predict hand speed, velocity, and position during 3D reaching movements from held-out test sets with accuracies above chance in each patient with mean correlation coefficients between 0.31 and 0.80 for speed, 0.27 and 0.54 for velocity, and 0.22 and 0.57 for position. While beta band power changes were the most significant features within the model used to classify movement and rest, the local motor potential and high gamma band power changes, were the most important features in the prediction of kinematic parameters. Significance. We believe that this study represents the first demonstration that truly three-dimensional movements can be predicted from ECoG recordings in human patients. Furthermore, this prediction underscores the potential to develop BCI systems with multiple degrees of freedom in human patients using ECoG.

  17. The influence of head and body tilt on human fore-aft translation perception

    Science.gov (United States)

    Crane, Benjamin T.

    2016-01-01

    The tilt-translation ambiguity occurs because acceleration due to translation cannot be differentiated from gravitational acceleration. Head tilt can occur independent of body tilt which further complicates the problem. The tilt-translation ambiguity is examined for fore-aft (surge) translation with head and/or body orientations that are tilted in pitch 10° forward or backward. Eleven human subjects (6 female), mean age 40 years participated. Conditions included no tilt (NT), head and body tilt (HBT), head only tilt (HOT), and body only tilt (BOT). The fore-aft stimulus consisted of a 2s (0.5 Hz) sine wave in acceleration which a maximum peak velocity of 10 cm/s. After each stimulus the subject reported the direction of motion as forward or backward. Subsequent stimuli were adjusted to determine the point at which subjects were equally likely to report motion in either direction. During the HBT responses were biased such that upward pitch caused a neutral stimulus to be more likely to be perceived as forward and downward pitch caused the stimulus to be more likely to be perceived as backward. The difference in the point of subjective equality based on the direction of tilt was 3.3 cm/s. During the BOT condition the bias with respect to the direction of body tilt was in a similar direction with a difference in PSE 1.6 cm/s. During HOT and NT there was no significant bias on fore-aft perception. These findings demonstrate that body tilt shifts the PSE of fore-aft direction discrimination while head tilt has no influence. PMID:25160866

  18. Impact of communicative head movements on the quality of functional near-infrared spectroscopy signals: negligible effects for affirmative and negative gestures and consistent artifacts related to raising eyebrows

    Science.gov (United States)

    Balardin, Joana Bisol; Morais, Guilherme Augusto Zimeo; Furucho, Rogério Akira; Trambaiolli, Lucas Romualdo; Sato, João Ricardo

    2017-04-01

    Functional near-infrared spectroscopy (fNIRS) is currently one of the most promising tools in the neuroscientific research to study brain hemodynamics during naturalistic social communication. The application of fNIRS by studies in this field of knowledge has been widely justified by its strong resilience to motion artifacts, including those that might be generated by communicative head and facial movements. Previous studies have focused on the identification and correction of these artifacts, but a quantification of the differential contribution of common communicative movements on the quality of fNIRS signals is still missing. We assessed the impact of four movements (nodding head up and down, reading aloud, nodding head sideways, and raising eyebrows) performed during rest and task conditions on two metrics of signal quality control: an estimative of signal-to-noise performance and the negative correlation between oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb). Channel-wise group analysis confirmed the robustness of the fNIRS technique to head nodding movements but showed a large effect of raising eyebrows in both signal quality control metrics, both during task and rest conditions. Reading aloud did not disrupt the expected anticorrelation between oxy-Hb and deoxy-Hb but had a relatively large effect on signal-to-noise performance. These findings may have implications to the interpretation of fNIRS studies examining communicative processes.

  19. Effects of experimental pain on jaw muscle activity during goal-directed jaw movements in humans.

    Science.gov (United States)

    Sae-Lee, Daraporn; Whittle, Terry; Forte, Anna R C; Peck, Christopher C; Byth, Karen; Sessle, Barry J; Murray, Greg M

    2008-08-01

    To study the effects of masseter muscle pain on jaw muscle electromyographic (EMG) activity during goal-directed tasks. Mandibular movement was tracked and EMG activity was recorded from bilateral masseter, and right posterior temporalis, anterior digastric, and inferior head of lateral pterygoid muscles in 22 asymptomatic subjects at postural jaw position, and during three tasks: (a) protrusion, (b) contralateral (left), (c) open jaw movement. Tasks were performed during three conditions: control (no infusion), test 1 [continuous infusion into right masseter of 4.5% hypertonic saline to achieve 30-60 mm pain intensity on 100-mm visual analog scale (VAS)], and test 2 (isotonic saline infusion; in 16 subjects only); the sequence of hypertonic and isotonic saline was randomized. The average EMG root-mean-square values at 0.5 mm increments of mid-incisor-point displacement were analysed using linear mixed effects model statistics (significance: P jaw displacement. Hypertonic saline infusion had no significant effect on postural EMG activity in any of the recorded jaw muscles. The data suggest that under constrained goal-directed tasks, the pattern of pain-induced changes in jaw muscle EMG activity is not clear cut, but can vary with the task performed, jaw displacement magnitude, and the subject being studied.

  20. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.

    Science.gov (United States)

    Suzuki, Naoki; Hattori, Asaki; Hashizume, Makoto

    2016-01-01

    We constructed a four dimensional human model that is able to visualize the structure of a whole human body, including the inner structures, in real-time to allow us to analyze human dynamic changes in the temporal, spatial and quantitative domains. To verify whether our model was generating changes according to real human body dynamics, we measured a participant's skin expansion and compared it to that of the model conducted under the same body movement. We also made a contribution to the field of orthopedics, as we were able to devise a display method that enables the observer to more easily observe the changes made in the complex skeletal muscle system during body movements, which in the past were difficult to visualize.

  1. Morphogenesis and three-dimensional movement of the stomach during the human embryonic period.

    Science.gov (United States)

    Kaigai, N; Nako, A; Yamada, S; Uwabe, C; Kose, K; Takakuwa, T

    2014-05-01

    The stomach develops as the local widening of the foregut after Carnegie stage (CS) 13 that moves in a dramatic and dynamic manner during the embryonic period. Using the magnetic resonance images of 377 human embryos, we present the morphology, morphometry, and three-dimensional movement of the stomach during CS16 and CS23. The stomach morphology revealed stage-specific features. The angular incisura and the cardia were formed at CS18. The change in the angular incisura angle was approximately 90° during CS19 and CS20, and was stomach revealed that the stomach gradually becomes "deflected" during development. The stomach may appear to move to the left laterally and caudally due to its deflection and differential growth. The track of the reference points in the stomach may reflect the visual three-dimensional movement. The movement of point M, representing the movement of the greater curvature, was different from that of points C (cardia) and P (pyloric antrum). The P and C were located just around the midsagittal plane in all the stages observed. Point M moved in the caudal-left lateral direction until CS22. Moreover, the vector CP does not rotate around the dorsoventral axis, as widely believed, but around the transverse axis. The plane CPM rotated mainly around the longitudinal axis. The data obtained will be useful for prenatal diagnosis in the near future.

  2. In vivo analysis of Cajal body movement, separation, and joining in live human cells.

    Science.gov (United States)

    Platani, M; Goldberg, I; Swedlow, J R; Lamond, A I

    2000-12-25

    Cajal bodies (also known as coiled bodies) are subnuclear organelles that contain specific nuclear antigens, including splicing small nuclear ribonucleoproteins (snRNPs) and a subset of nucleolar proteins. Cajal bodies are localized in the nucleoplasm and are often found at the nucleolar periphery. We have constructed a stable HeLa cell line, HeLa(GFP-coilin), that expresses the Cajal body marker protein, p80 coilin, fused to the green fluorescent protein (GFP-coilin). The localization pattern and biochemical properties of the GFP-coilin fusion protein are identical to the endogenous p80 coilin. Time-lapse recordings on 63 nuclei of HeLa(GFP-coilin) cells showed that all Cajal bodies move within the nucleoplasm. Movements included translocations through the nucleoplasm, joining of bodies to form larger structures, and separation of smaller bodies from larger Cajal bodies. Also, we observed Cajal bodies moving to and from nucleoli. The data suggest that there may be at least two classes of Cajal bodies that differ in their size, antigen composition, and dynamic behavior. The smaller size class shows more frequent and faster rates of movement, up to 0.9 microm/min. The GFP-coilin protein is dynamically associated with Cajal bodies as shown by changes in their fluorescence intensity over time. This study reveals an unexpectedly high level of movement and interactions of nuclear bodies in human cells and suggests that these movements may be driven, at least in part, by regulated mechanisms.

  3. Involuntary human hand movements due to FM radio waves in a moving van.

    Science.gov (United States)

    Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R

    2011-06-01

    Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety.

  4. Islamic movement and human rights: Pertubuhan Jamaah Islah Malaysia’s involvement in the “Abolish Internal Security Act Movement,” 2000-2012

    Directory of Open Access Journals (Sweden)

    Maszlee Malik

    2014-12-01

    Full Text Available Human rights has been acknowledged as one of the essential characteristics of good governance. Abuse of human rights is strongly associated with bad governance, which is believed by many to be a serious impediment to development and sustainable growth. Despite the active participations of Islamic movements in many parts of the political world, very little is known of their involvement in advocating human rights issues as part of their struggle for power. Nevertheless, as an Islamic movement and an Islamic revivalism actor in Malaysia, Pertubuhan Jamaah Islah Malaysia (JIM has shown otherwise. JIM has resembled a different attitude towards the issue of human rights that they believe as an integrated and pertinent composition of good governance. By scrutinising their political activities and discourse since 2000, it becomes clear that JIM has been actively engaged in good governance and human rights issues, especially those that relate to the political rights of citizens through its involvement in the Abolish Internal Security Act (ISA Movement (Gerakan Mansuhkan ISA. This paper examines JIM’s involvement in human rights issues with a special focus on its active and leading role in calling for the abolishment of the Internal Security Act (ISA.

  5. Restoring cortical control of functional movement in a human with quadriplegia.

    Science.gov (United States)

    Bouton, Chad E; Shaikhouni, Ammar; Annetta, Nicholas V; Bockbrader, Marcia A; Friedenberg, David A; Nielson, Dylan M; Sharma, Gaurav; Sederberg, Per B; Glenn, Bradley C; Mysiw, W Jerry; Morgan, Austin G; Deogaonkar, Milind; Rezai, Ali R

    2016-05-12

    Millions of people worldwide suffer from diseases that lead to paralysis through disruption of signal pathways between the brain and the muscles. Neuroprosthetic devices are designed to restore lost function and could be used to form an electronic 'neural bypass' to circumvent disconnected pathways in the nervous system. It has previously been shown that intracortically recorded signals can be decoded to extract information related to motion, allowing non-human primates and paralysed humans to control computers and robotic arms through imagined movements. In non-human primates, these types of signal have also been used to drive activation of chemically paralysed arm muscles. Here we show that intracortically recorded signals can be linked in real-time to muscle activation to restore movement in a paralysed human. We used a chronically implanted intracortical microelectrode array to record multiunit activity from the motor cortex in a study participant with quadriplegia from cervical spinal cord injury. We applied machine-learning algorithms to decode the neuronal activity and control activation of the participant's forearm muscles through a custom-built high-resolution neuromuscular electrical stimulation system. The system provided isolated finger movements and the participant achieved continuous cortical control of six different wrist and hand motions. Furthermore, he was able to use the system to complete functional tasks relevant to daily living. Clinical assessment showed that, when using the system, his motor impairment improved from the fifth to the sixth cervical (C5-C6) to the seventh cervical to first thoracic (C7-T1) level unilaterally, conferring on him the critical abilities to grasp, manipulate, and release objects. This is the first demonstration to our knowledge of successful control of muscle activation using intracortically recorded signals in a paralysed human. These results have significant implications in advancing neuroprosthetic technology

  6. Urban dogs in rural areas: Human-mediated movement defines dog populations in southern Chile.

    Science.gov (United States)

    Villatoro, Federico J; Sepúlveda, Maximiliano A; Stowhas, Paulina; Silva-Rodríguez, Eduardo A

    2016-12-01

    Management strategies for dog populations and their diseases include reproductive control, euthanasia and vaccination, among others. However, the effectiveness of these strategies can be severely affected by human-mediated dog movement. If immigration is important, then the location of origin of dogs imported by humans will be fundamental to define the spatial scales over which population management and research should apply. In this context, the main objective of our study was to determine the spatial extent of dog demographic processes in rural areas and the proportion of dogs that could be labeled as immigrants at multiple spatial scales. To address our objective we conducted surveys in households located in a rural landscape in southern Chile. Interviews allowed us to obtain information on the demographic characteristics of dogs in these rural settings, human influence on dog mortality and births, the localities of origin of dogs living in rural areas, and the spatial extent of human-mediated dog movement. We found that most rural dogs (64.1%) were either urban dogs that had been brought to rural areas (40.0%), or adopted dogs that had been previously abandoned in rural roads (24.1%). Some dogs were brought from areas located as far as ∼700km away from the study area. Human-mediated movement of dogs, especially from urban areas, seems to play a fundamental role in the population dynamics of dogs in rural areas. Consequently, local scale efforts to manage dog populations or their diseases are unlikely to succeed if implemented in isolation, simply because dogs can be brought from surrounding urban areas or even distant locations. We suggest that efforts to manage or study dog populations and related diseases should be implemented using a multi-scale approach.

  7. Modeling collective human mobility: Understanding exponential law of intra-urban movement

    CERN Document Server

    Liang, Xiao; Dong, Li; Xu, Ke

    2013-01-01

    It is very important to understand urban mobility patterns because most trips are concentrated in urban areas. In the paper, a new model is proposed to model collective human mobility in urban areas. The model can be applied to predict individual flows not only in intra-city but also in countries or a larger range. Based on the model, it can be concluded that the exponential law of distance distribution is attributed to decreasing exponentially of average density of human travel demands. Since the distribution of human travel demands only depends on urban planning, population distribution, regional functions and so on, it illustrates that these inherent properties of cities are impetus to drive collective human movements.

  8. Validity of using tri-axial accelerometers to measure human movement - Part I: Posture and movement detection.

    Science.gov (United States)

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2014-02-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures were identified. Additionally, subjects walked and jogged at self-selected slow, comfortable, and fast speeds. Identification of tasks was performed using a combination of the signal magnitude area, continuous wavelet transforms and accelerometer orientations. Twelve healthy adults were studied in the laboratory, with two investigators identifying tasks during each second of video observation. The intraclass correlation coefficients for inter-rater reliability were greater than 0.95 for all activities except for transitions. Results demonstrated high validity, with sensitivity and positive predictive values of greater than 85% for sitting and lying, with walking and jogging identified at greater than 90%. The greatest disagreement in identification accuracy between the algorithm and video occurred when subjects were asked to fidget while standing or sitting. During variable speed tasks, gait was correctly identified for speeds between 0.1m/s and 4.8m/s. This study included a range of walking speeds and natural movements such as fidgeting during static postures, demonstrating that accelerometer data can be used to identify orientation and movement among the general population.

  9. Detection of error related neuronal responses recorded by electrocorticography in humans during continuous movements.

    Directory of Open Access Journals (Sweden)

    Tomislav Milekovic

    Full Text Available BACKGROUND: Brain-machine interfaces (BMIs can translate the neuronal activity underlying a user's movement intention into movements of an artificial effector. In spite of continuous improvements, errors in movement decoding are still a major problem of current BMI systems. If the difference between the decoded and intended movements becomes noticeable, it may lead to an execution error. Outcome errors, where subjects fail to reach a certain movement goal, are also present during online BMI operation. Detecting such errors can be beneficial for BMI operation: (i errors can be corrected online after being detected and (ii adaptive BMI decoding algorithm can be updated to make fewer errors in the future. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that error events can be detected from human electrocorticography (ECoG during a continuous task with high precision, given a temporal tolerance of 300-400 milliseconds. We quantified the error detection accuracy and showed that, using only a small subset of 2×2 ECoG electrodes, 82% of detection information for outcome error and 74% of detection information for execution error available from all ECoG electrodes could be retained. CONCLUSIONS/SIGNIFICANCE: The error detection method presented here could be used to correct errors made during BMI operation or to adapt a BMI algorithm to make fewer errors in the future. Furthermore, our results indicate that smaller ECoG implant could be used for error detection. Reducing the size of an ECoG electrode implant used for BMI decoding and error detection could significantly reduce the medical risk of implantation.

  10. Hardware Design of Head Movements Recognized System%头部动作识别系统的硬件设计

    Institute of Scientific and Technical Information of China (English)

    张海龙; 周威; 耿乙迦; 张先彪; 刘春杰

    2013-01-01

    介绍了一种用于残疾人的智能交互系统——头部动作识别系统的主体硬件框架,包括头部运动测量单元的设计,采用了三轴陀螺仪L3G4200D和三轴加速度传感器ADXL345.机械臂的执行器驱动单元设计,该部分采用MOSFET驱动,有电流反馈.机械臂结构设计,该部分采用线性执行器电动推杆,推力1500N,速度在2mm/s至60mm/s之间可控,行程200mm,机械臂底盘支持360度全向旋转,整体水平作用距离达1.2m,垂直作用距离1.0m,腕关节支持360度旋转,夹持机构开合行程30mm,可以应对一般家庭应用.为机械臂控制算法的工作提供了硬件平台.%Intelligent interactive system based on head movements recognized for disabled people is introduced in this paper.Head movement measurement module is designed with a 3-axis digital gyroscope L3G4200D and a 3-axis accelerometer ADXL345.Actuator of manipulator is driven by MOSFET.Motorized faders which is a kind of linear actuator is selected to drive the manipulator,the thrust of it can go up to 1500N,it can move between the speed of 2mm/s and 60mm/s controlled by MCU.The stroke can be as far as 200mm,the chassis of it can turn in 360 degrees.The level of the horizontal and vertical distance is 1.2m and 1.0m.the wrist also can turn in 360 degrees.The stroke of the clamping mechanism can be as far as 30mm.Generally speaking,it can qualified ordinary home use.Its feature satisfies the system need.The hardware design supplies control algorithm with a stable platform.

  11. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria;

    2013-01-01

    The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...... rate and tear film quality. In a test room with DV and six workstations 30 human subjects were exposed for four hours to each of the following 5 experimental conditions: 23 °C and DV only, 23 °C and DPV with air filter, 29 °C and DV only, 29 °C and DPV, and 29 °C and DPV with air filter. At warm...... environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film...

  12. Computational study of human head response to primary blast waves of five levels from three directions.

    Directory of Open Access Journals (Sweden)

    Chenzhi Wang

    Full Text Available Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI. To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.

  13. A morphological study on femoral heads in human hip joint osteoarthrosis.

    Science.gov (United States)

    Morini, S; Pannarale, L; Braidotti, P; Marinozzi, A; Gaudio, E

    1996-01-01

    Several pathogenetical and clinical interpretation of osteoarthritic modifications are given in the literature. In this work we tried to compare in humans macroscopic, structural and ultrastructural observations on eight osteoarthritic with four femural heads from control patients. The sample for Light Microscopy and Scanning Electron Microscopy observations came from selected regions of the femural head, which included both cartilage and bone tissue of loaded and unloaded regions. The cartilage showed superficial lesions, such as erosions and fissures, and deep lesions that included matrix alterations and chondrocyte proliferation. In relation to the thickening of the subchondral bone we noticed an irregular bone-cartilage surface with signs of bone tissue proliferation. The trabeculae appeared thickened in loaded zones and rarefied in unloaded ones. Cavities were sometimes present at different depths in cancellous bone. Our observations allow us to conclude that cartilage lesions are precocious, diffusely located and relatively independent of the considered zone of the femural head, while bone tissue alterations seem evenly sited and chronologically subsequent. The cavities in the cancellous bone could produce load modifications and consequent bone deformity.

  14. Development of a Human Head FE Model and Impact Simulation on the Focal Brain Injury

    Science.gov (United States)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512×512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, CSF, skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are 1) it is based on the explicit time integration method and 2) it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belytschko(1) and 3) it utilizes the parallel computation system based on MPI. In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al.(2) was simulated. The calculated results showed good agreement with the experimental ones. A front and rear impact analyses were also performed to discuss on the characteristic measure of the brain injury, in which the von-Mises stress was high in the frontal lobe in both of the analyses because of the large deformations of a frontal cranial base. This result suggests that the von-Mises stress can be a good measure of the brain injury since it is empirically well known that the frontal lobe tends to get injured regardless of the impact positions.

  15. A Novel Method for Intraoral Access to the Superior Head of the Human Lateral Pterygoid Muscle

    Directory of Open Access Journals (Sweden)

    Aleli Tôrres Oliveira

    2014-01-01

    Full Text Available Background. The uncoordinated activity of the superior and inferior parts of the lateral pterygoid muscle (LPM has been suggested to be one of the causes of temporomandibular joint (TMJ disc displacement. A therapy for this muscle disorder is the injection of botulinum toxin (BTX, of the LPM. However, there is a potential risk of side effects with the injection guide methods currently available. In addition, they do not permit appropriate differentiation between the two bellies of the muscle. Herein, a novel method is presented to provide intraoral access to the superior head of the human LPM with maximal control and minimal hazards. Methods. Computational tomography along with digital imaging software programs and rapid prototyping techniques were used to create a rapid prototyped guide to orient BTX injections in the superior LPM. Results. The method proved to be feasible and reliable. Furthermore, when tested in one volunteer it allowed precise access to the upper head of LPM, without producing side effects. Conclusions. The prototyped guide presented in this paper is a novel tool that provides intraoral access to the superior head of the LPM. Further studies will be necessary to test the efficacy and validate this method in a larger cohort of subjects.

  16. Comparing the accuracy of video-oculography and the scleral search coil system in human eye movement analysis.

    Science.gov (United States)

    Imai, Takao; Sekine, Kazunori; Hattori, Kousuke; Takeda, Noriaki; Koizuka, Izumi; Nakamae, Koji; Miura, Katsuyoshi; Fujioka, Hiromu; Kubo, Takeshi

    2005-03-01

    The measurement of eye movements in three dimensions is an important tool to investigate the human vestibular and oculomotor system. The primary methods for three dimensional eye movement measurement are the scleral search coil system (SSCS) and video-oculography (VOG). In the present study, we compare the accuracy of VOG with that of SSCS using an artificial eye. We then analyzed the Y (pitch) and Z (yaw) component of human eye movements during saccades, smooth pursuit and optokinetic nystagmus, and the X (roll) component of human eye movement during the torsional vestibulo-ocular reflex induced by rotation in normal subjects, using simultaneous VOG and SSCS measures. The coefficients of the linear relationship between the angle of a simulated eyeball and the angle measured by both VOG and SSCS was almost unity with y-intercepts close to zero for torsional (X), vertical (Y) and horizontal (Z) movements, indicating that the in vitro accuracy of VOG was similar to that of SSCS. The average difference between VOG and SSCS was 0.56 degrees , 0.78 degrees and 0.18 degrees for the X, Y and Z components of human eye movements, respectively. Both the in vitro and in vivo comparisons demonstrate that VOG has accuracy comparable to SSCS, and is a reliable method for measurement of three dimensions (3D) human eye movements.

  17. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.

    Science.gov (United States)

    Yoo, Bum-Soo; Kim, Jong-Hwan

    2015-09-01

    During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.

  18. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats

    Science.gov (United States)

    Madan, Monica S.; Liu, Zee J.; Gu, Gao M.; King, Gregory J.

    2010-01-01

    . Conclusions Human relaxin does not accelerate orthodontic tooth movement in rats; it can reduce the level of PDL organization, reduce PDL mechanical strength, and increase tooth mobility at early time points. PMID:17208099

  19. Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis.

    Science.gov (United States)

    Grosbras, Marie-Hélène; Beaton, Susan; Eickhoff, Simon B

    2012-02-01

    Face, hands, and body movements are powerful signals essential for social interactions. In the last 2 decades, a large number of brain imaging studies have explored the neural correlates of the perception of these signals. Formal synthesis is crucially needed, however, to extract the key circuits involved in human motion perception across the variety of paradigms and stimuli that have been used. Here, we used the activation likelihood estimation (ALE) meta-analysis approach with random effect analysis. We performed meta-analyses on three classes of biological motion: movement of the whole body, hands, and face. Additional analyses of studies of static faces or body stimuli and sub-analyses grouping experiments as a function of their control stimuli or task employed allowed us to identify main effects of movements and forms perception, as well as effects of task demand. In addition to specific features, all conditions showed convergence in occipito-temporal and fronto-parietal regions, but with different peak location and extent. The conjunction of the three ALE maps revealed convergence in all categories in a region of the right posterior superior temporal sulcus as well as in a bilateral region at the junction between middle temporal and lateral occipital gyri. Activation in these regions was not a function of attentional demand and was significant also when controlling for non-specific motion perception. This quantitative synthesis points towards a special role for posterior superior temporal sulcus for integrating human movement percept, and supports a specific representation for body parts in middle temporal, fusiform, precentral, and parietal areas.

  20. Studies on Human Head Louse Pediculus humanus capitis (Anoplura) Infestation (Case Report)

    OpenAIRE

    HATSUSHIKA, Ryo; MIYOSHI, Kaoru

    1983-01-01

    Thirteen cases of the human head louse infestation (Pediculus humanus capitis De Geer, 1778) in Okayama City were reported. All the patients were found in ages between 2 and 35, and the highest incidence ranged in the age group of 10 years old and younger. The sex ratio of the patients was higher in female than in male. The patients were recognized more often in the early winter months of November and December. Adults and/or eggs (nits) of Pediculus louse were localized on hair of all the pat...

  1. Physiology and pathology of eye-head coordination.

    Science.gov (United States)

    Proudlock, Frank Antony; Gottlob, Irene

    2007-09-01

    Human head movement control can be considered as part of the oculomotor system since the control of gaze involves coordination of the eyes and head. Humans show a remarkable degree of flexibility in eye-head coordination strategies, nonetheless an individual will often demonstrate stereotypical patterns of eye-head behaviour for a given visual task. This review examines eye-head coordination in laboratory-based visual tasks, such as saccadic gaze shifts and combined eye-head pursuit, and in common tasks in daily life, such as reading. The effect of the aging process on eye-head coordination is then reviewed from infancy through to senescence. Consideration is also given to how pathology can affect eye-head coordination from the lowest through to the highest levels of oculomotor control, comparing conditions as diverse as eye movement restrictions and schizophrenia. Given the adaptability of the eye-head system we postulate that this flexible system is under the control of the frontal cortical regions, which assist in planning, coordinating and executing behaviour. We provide evidence for this based on changes in eye-head coordination dependant on the context and expectation of presented visual stimuli, as well as from changes in eye-head coordination caused by frontal lobe dysfunction.

  2. Modelling and assessment of the electric field strength caused by mobile phone to the human head

    Directory of Open Access Journals (Sweden)

    Buckus Raimondas

    2016-01-01

    Full Text Available Background/Aim. Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. Methods. In this paper the software “COMSOL Multiphysics” was used to establish the electric field strength created by mobile phones around the head. Results. The second generation (2G Global System for Mobile (GSM phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G UMTS smart phones that effectively use high (2,100 MHz radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear, and constitutes 1-12% of the artificial head’s surface. Conclusion. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user ear.

  3. Modular use of human body models of varying levels of complexity: Validation of head kinematics.

    Science.gov (United States)

    Decker, William; Koya, Bharath; Davis, Matthew L; Gayzik, F Scott

    2017-05-29

    The significant computational resources required to execute detailed human body finite-element models has motivated the development of faster running, simplified models (e.g., GHBMC M50-OS). Previous studies have demonstrated the ability to modularly incorporate the validated GHBMC M50-O brain model into the simplified model (GHBMC M50-OS+B), which allows for localized analysis of the brain in a fraction of the computation time required for the detailed model. The objective of this study is to validate the head and neck kinematics of the GHBMC M50-O and M50-OS (detailed and simplified versions of the same model) against human volunteer test data in frontal and lateral loading. Furthermore, the effect of modular insertion of the detailed brain model into the M50-OS is quantified. Data from the Navy Biodynamics Laboratory (NBDL) human volunteer studies, including a 15g frontal, 8g frontal, and 7g lateral impact, were reconstructed and simulated using LS-DYNA. A five-point restraint system was used for all simulations, and initial positions of the models were matched with volunteer data using settling and positioning techniques. Both the frontal and lateral simulations were run with the M50-O, M50-OS, and M50-OS+B with active musculature for a total of nine runs. Normalized run times for the various models used in this study were 8.4 min/ms for the M50-O, 0.26 min/ms for the M50-OS, and 0.97 min/ms for the M50-OS+B, a 32- and 9-fold reduction in run time, respectively. Corridors were reanalyzed for head and T1 kinematics from the NBDL studies. Qualitative evaluation of head rotational accelerations and linear resultant acceleration, as well as linear resultant T1 acceleration, showed reasonable results between all models and the experimental data. Objective evaluation of the results for head center of gravity (CG) accelerations was completed via ISO TS 18571, and indicated scores of 0.673 (M50-O), 0.638 (M50-OS), and 0.656 (M50-OS+B) for the 15g frontal impact

  4. Human perception of air movement. Impact of frequency and airflow direction on draught sensation

    Energy Technology Data Exchange (ETDEWEB)

    Genhong Zhou

    1999-08-01

    Draught is defined as an unwanted local cooling of the human body caused by air movement. Air velocity and temperature are the main characteristics of air movement in rooms. Characteristics of instantaneous air velocity and temperature records previously measured in ventilated indoor spaces were analyzed. Air velocity and temperature fluctuated randomly. The amplitude and frequency of the fluctuations changed over time. Air movements around the human body were measured with a three-dimensional laser Doppler amemometer. A new parameter, equivalent frequency, was defined as an integral single parameter for describing the frequency characteristics of air velocity. The equivalent frequency of a randomly fluctuating velocity is defined as the frequency of sinusoidal velocity fluctuations with the same ratio of the standard deviation of acceleration to the standard deviation of air velocity as in the random velocity fluctuations. The equivalent frequencies of numerous instantaneous air-velocity records measured in ventilated space were analysed. The equivalent frequency of an airflow in an indoor space was found to be 0.1 to 2 Hz. The equivalent frequencies of most of the airflows were between 0.2 and 0.6 Hz. The relation between equivalent frequency and mean air velocity and standard deviation was established. Experiments were performed to identify the impact of the equivalent frequency on the human perception of draught. Forty subjects (20 women and 20 men) were subjected to airflows from behind with mean air velocities of 0.1, 0.2 and 0.3 m/s, with equivalent frequencies from 0 to 1 Hz at an air temperature of 20 deg. C. In this human-subject experimental study the frequency was found to have a significant impact on draught sensation. Subjects were more sensitive to airflow at an equivalent frequency between 0.2 and 0.6 Hz. A mathematical model for the simulation of draught was established and a computer program was developed for simulating the draught. The program

  5. Study of movement coordination in human ensembles via a novel computer-based set-up

    CERN Document Server

    Alderisio, Francesco; Fiore, Gianfranco; di Bernardo, Mario

    2016-01-01

    Movement coordination in human ensembles has been studied little in the current literature. In the existing experimental works, situations where all subjects are connected with each other through direct visual and auditory coupling, and social interaction affects their coordination, have been investigated. Here, we study coordination in human ensembles via a novel computer-based set-up that enables individuals to coordinate each other's motion from a distance so as to minimize the influence of social interaction. The proposed platform makes it possible to implement different visual interaction patterns among the players, so that participants take into consideration the motion of a designated subset of the others. This allows the evaluation of the exclusive effects on coordination of the structure of interconnections among the players and their own dynamics. Our set-up enables also the deployment of virtual players to investigate dyadic interaction between a human and a virtual agent, as well as group synchron...

  6. Effectiveness of isopropyl myristate/cyclomethicone D5 solution of removing cuticular hydrocarbons from human head lice (Pediculus humanus capitis

    Directory of Open Access Journals (Sweden)

    Barnett Eric

    2012-09-01

    Full Text Available Abstract Background In the treatment of human head lice infestation, healthcare providers are increasingly concerned about lice becoming resistant to existing pesticide treatments. Traditional pesticides, used to control these pests, have a neurological mechanism of action. This publication describes a topical solution with a non-traditional mechanism of action, based on physical disruption of the wax layer that covers the cuticle of the louse exoskeleton. This topical solution has been shown clinically to cure 82% of patients with only a 10-minute treatment time, repeated once after 7 days. All insects, including human head lice, have a wax-covered exoskeleton. This wax, composed of hydrocarbons, provides the insect with protection against water loss and is therefore critical to its survival. When the protective wax is disrupted, water loss becomes uncontrollable and irreversible, leading to dehydration and death. A specific pattern of hydrocarbons has been found in all of the head louse cuticular wax studied. Iso-octane effectively removes these hydrocarbons from human head lice’s cuticular wax. Methods A method of head louse cuticle wax extraction and analysis by gas chromatography was developed. Human head lice (Pediculus humanus capitis were collected from infested patients and subjected to any of three extraction solvents comprising either the test product or one of two solvents introduced as controls. A gas chromatograph equipped with a flame ionization detector (GC/FID was used to determine the presence of hydrocarbons in the three head lice extracts. Results In the study reported herein, the test product isopropyl myristate/cyclomethicone D5 (IPM/D5 was shown to perform comparably with iso-octane, effectively extracting the target hydrocarbons from the cuticular wax that coats the human head louse exoskeleton. Conclusions Disruption of the integrity of the insect cuticle by removal of specific hydrocarbons found in the cuticular wax

  7. Elephant movement patterns in relation to human inhabitants in and around the Great Limpopo Transfrontier Park

    Directory of Open Access Journals (Sweden)

    Robin M. Cook

    2015-03-01

    Full Text Available The presence of humans and African elephants (Loxodonta africana in the Great Limpopo Transfrontier Park can create situations of potential human–elephant conflict. Such conflict will likely be exacerbated as elephant and human populations increase, unless mitigation measures are put in place. In this study we analysed the movement patterns of 13 collared adult African elephants from the northern Kruger National Park over a period of eight years (2006–2014. We compared the occurrence and displacement rates of elephant bulls and cows around villages in the Limpopo National Park and northern border of the Kruger National Park across seasons and at different times of the day. Elephants occurred close to villages more often in the dry season than in the wet season, with bulls occurring more frequently around villages than cows. Both the bulls and the cows preferred to use areas close to villages from early evening to midnight, with the bulls moving closer to villages than the cows. These results suggest that elephants, especially the bulls, are moving through the studied villages in Mozambique and Zimbabwe at night and that these movements are most common during the drier months when resources are known to be scarce.Conservation implications: Elephants from the Kruger National Park are moving in close proximity to villages within the Great Limpopo Transfrontier Park. Resettlement of villages within and around the park should therefore be planned away from elephant seasonal routes to minimise conflict between humans and elephants.

  8. Numerical Analysis of Induced Current in Human Head Exposed to Nonuniform Magnetic Field Including Harmonics

    Science.gov (United States)

    Tarao, Hiroo; Hayashi, Noriyuki; Isaka, Katsuo

    In this paper, induced currents in an anatomical head model exposed to a non-uniform ELF magnetic field (B-field) including harmonics are numerically calculated, and are discussed based on the basic restriction established by International Commission on Non-Ionizing Radiation Protection (ICNIRP). A casual hair dryer of 100V and 1.2kW is chosen as a typical source of the non-uniform B-field including both the fundamental and second harmonic components. The B-field distribution around the hair dryer is estimated by using the 3-orthogonal magnetic dipole moments, which are derived from a couple of measured values around it. The high-resolution human head model used is constructed based on the MRI images of a real human, and consists of six kinds of tissues (bone, brain, eyeballs, muscle, skin and blood). So-called impedance method is used for the numerical calculation of the induced current. The numerical results show that the maximum values of the induced current of 17µA/m2, for the 60Hz component, which is about 1/120 of the ICNIRP basic restriction appear in the muscle near the eyeball when the hair dryer is used from the side of the head model, and the averaged current in the eyeballs that have the highest conductivity is the highest among the six tissues. It is also demonstrated that the induced current due to the 120Hz B-field becomes comparable to the 60Hz current although the magnitude of the 120Hz B-field is much smaller than that of the 60Hz B-field.

  9. Development of software application dedicated to impulse- radar-based system for monitoring of human movements

    Science.gov (United States)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.; Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Jacobsen, Frode F.; Ciamulski, Tomasz; Winiecki, Wiesław

    2016-11-01

    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of radar sensors, when applied for non-invasive monitoring of such persons in their home environment, are indicated. A need for comprehensible visualisation of the intermediate results of measurement data processing is justified. Capability of an impulse-radar-based system to provide information, being of crucial importance for medical or healthcare personnel, are investigated. An exemplary software interface, tailored for non-technical users, is proposed, and preliminary results of impulse-radar-based monitoring of human movements are demonstrated.

  10. Human movement stochastic variability leads to diagnostic biomarkers In Autism Spectrum Disorders (ASD)

    Science.gov (United States)

    Wu, Di; Torres, Elizabeth B.; Jose, Jorge V.

    2015-03-01

    ASD is a spectrum of neurodevelopmental disorders. The high heterogeneity of the symptoms associated with the disorder impedes efficient diagnoses based on human observations. Recent advances with high-resolution MEM wearable sensors enable accurate movement measurements that may escape the naked eye. It calls for objective metrics to extract physiological relevant information from the rapidly accumulating data. In this talk we'll discuss the statistical analysis of movement data continuously collected with high-resolution sensors at 240Hz. We calculated statistical properties of speed fluctuations within the millisecond time range that closely correlate with the subjects' cognitive abilities. We computed the periodicity and synchronicity of the speed fluctuations' from their power spectrum and ensemble averaged two-point cross-correlation function. We built a two-parameter phase space from the temporal statistical analyses of the nearest neighbor fluctuations that provided a quantitative biomarker for ASD and adult normal subjects and further classified ASD severity. We also found age related developmental statistical signatures and potential ASD parental links in our movement dynamical studies. Our results may have direct clinical applications.

  11. "Green earth, women's power, human liberation": women in peasant movements in India.

    Science.gov (United States)

    Omvedt, G

    1992-01-01

    The experience of 2 peasant women's movements in India's state of Maharashtra--Stri Mukti Sangharsh and Shetkari Mahila Aghadi--highlights the potential power of women in resisting capitalist exploitation of peasant and forest-dwelling communities. The former organization is the women's branch of a movement that is resisting the ecological destruction and displacement of peasants and tribal people resulting from development projects such as dam construction; the latter addresses the demand for fair prices for agricultural produce and inequities created by a market economy. Both are mass-based, self-financed people's movements unconnected with any political party. Although women are under-represented in the formal decision-making bodies of the parent organizations, they are struggling to become a central force in the development of alternative technology and agriculture. In 1990, Stri Mukti Sangharsh activists devised a new slogan--green earth, women's power, human liberation--summarizing this process. Similarly, Shetkari Mahila Aghadi calls upon women to monopolize political power and runs all-women panels in district council elections. These campaigns have challenged women's exclusion from ownership of land in spite of laws granting property rights and placed the issues of women's health and nutrition on the political agenda. Moreover, peasant women have played a leading role in the current experimentation with energy-recycling, regenerative, low-input agricultural development. Together, these developments may provide Indian women with the power to recover their former centrality in agricultural decision-making and production.

  12. Analysis of Deformation of the Human Ear and Canal Caused by Mandibular Movement

    DEFF Research Database (Denmark)

    Darkner, Sune; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2007-01-01

    Many hearing aid users experience physical discomfort when wearing their device. The main contributor to this problem is believed to be deformation of the ear and ear canal caused by movement of the mandible. Physical discomfort results from added pressure on soft tissue areas in the ear. Identif......Many hearing aid users experience physical discomfort when wearing their device. The main contributor to this problem is believed to be deformation of the ear and ear canal caused by movement of the mandible. Physical discomfort results from added pressure on soft tissue areas in the ear....... Identifying features that can predict potential deformation is therefore important for identifying problematic cases in advance. A study on the physical deformation of the human ear and canal due to movement of the mandible is presented. The study is based on laser scannings of 30 pairs of ear impressions...... and propagated to the shape model, enabling the building of a deformation model in the reference frame of the shape model. A relationship between the two models is established, showing that the shape variation can explain approximately 50% of the variation in the deformation model. An hypothesis test...

  13. Analysis on the effect of the distances and inclination angles between human head and mobile phone on SAR.

    Science.gov (United States)

    Hossain, M I; Faruque, M R I; Islam, M T

    2015-11-01

    The aim of this paper is to investigate the effects of the distances between the human head and internal cellular device antenna on the specific absorption rate (SAR). This paper also analyzes the effects of inclination angles between user head and mobile terminal antenna on SAR values. The effects of the metal-glass casing of mobile phone on the SAR values were observed in the vicinity of the human head model. Moreover, the return losses were investigated in all cases to mark antenna performance. This analysis was performed by adopting finite-difference time-domain (FDTD) method on Computer Simulation Technology (CST) Microwave Studio. The results indicate that by increasing the distance between the user head and antenna, SAR values are decreased. But the increase in inclination angle does not reduce SAR values in all cases. Additionally, this investigation provides some useful indication for future design of low SAR mobile terminal antenna.

  14. Partially Automated Method for Localizing Standardized Acupuncture Points on the Heads of Digital Human Models

    Directory of Open Access Journals (Sweden)

    Jungdae Kim

    2015-01-01

    Full Text Available Having modernized imaging tools for precise positioning of acupuncture points over the human body where the traditional therapeutic method is applied is essential. For that reason, we suggest a more systematic positioning method that uses X-ray computer tomographic images to precisely position acupoints. Digital Korean human data were obtained to construct three-dimensional head-skin and skull surface models of six individuals. Depending on the method used to pinpoint the positions of the acupoints, every acupoint was classified into one of three types: anatomical points, proportional points, and morphological points. A computational algorithm and procedure were developed for partial automation of the positioning. The anatomical points were selected by using the structural characteristics of the skin surface and skull. The proportional points were calculated from the positions of the anatomical points. The morphological points were also calculated by using some control points related to the connections between the source and the target models. All the acupoints on the heads of the six individual were displayed on three-dimensional computer graphical image models. This method may be helpful for developing more accurate experimental designs and for providing more quantitative volumetric methods for performing analyses in acupuncture-related research.

  15. Body movement distribution with respect to swimmer's glide position in human underwater undulatory swimming.

    Science.gov (United States)

    Hochstein, Stefan; Blickhan, Reinhard

    2014-12-01

    Human swimmers use undulatory motions similar to fish locomotion to attain high speeds. The human body is a non-smooth multi-body linkage system with restricted flexibility and is not primarily adapted to motion in the water. Due to anatomical limitations, the human swimmer is forced to deviate from the symmetric fish-like motion and to adjust his motion to his limited abilities. The goal of this paper is to investigates the movement of ten swimmers during human underwater undulatory in a still water pool and to find out to what extent the human swimmer approaches an ideal undulatory wave which is symmetric with respect to the extended gliding position. Therefore, it is necessary to (i) to ascertain the magnitude of the normalized dorsal, ventral and total amplitudes of the undulatory movements, (ii) to examine the distribution and symmetry/asymmetry of the dorsal, ventral and total amplitudes along the length of the swimming body, and (iii) to compare the differences in amplitude distribution and other indicators between different skill levels. The amplitude distribution of the dorsal and ventral deflection along the body (related to the swimmer's stretched position) is highly asymmetric. Skilled swimmers swim with a more linear body wave and use a smaller range of envelop than less skilled swimmers. The durations of the up and down kicks show only minor differences. The down kick is slightly faster than the up kick. Although the down kick is more powerful than the up kick, the hip marker shows almost the same average swimming speed in both half-cycles. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Engineering geology of underground movements

    Energy Technology Data Exchange (ETDEWEB)

    Bell, F.G.; Culshaw, M.G.; Cripps, J.C.; Lovell, M.A. (eds.) (Teeside Polytechnic, Middlesbrough (UK). Dept. of Civil Engineering)

    1988-01-01

    39 papers are presented under the following session headings: introduction; ground movements due to tunnelling; ground movements due to deep excavations; ground movements and construction operations; ground movements due to abandoned mine workings; ground movements due to longwall mining; abandoned limestone mines in the West Midlands; investigation of ground movements; ground movements due to the abstraction or injection of fluids; and induced seismicity. Each session is followed by a discussion.

  17. MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    2013-01-01

    Full Text Available Deep brain stimulation (DBS is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS was created by an atlas-based segmentation using a 1 mm3 head model (mRes refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg. The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.

  18. MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS

    Science.gov (United States)

    Iacono, Maria Ida; Makris, Nikos; Mainardi, Luca; Angelone, Leonardo M.; Bonmassar, Giorgio

    2013-01-01

    Deep brain stimulation (DBS) is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI) to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF) energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS) was created by an atlas-based segmentation using a 1 mm3 head model (mRes) refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m) and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg). The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant. PMID:23956789

  19. Human Age Estimation Method Robust to Camera Sensor and/or Face Movement.

    Science.gov (United States)

    Nguyen, Dat Tien; Cho, So Ra; Pham, Tuyen Danh; Park, Kang Ryoung

    2015-08-31

    Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method.

  20. Human Age Estimation Method Robust to Camera Sensor and/or Face Movement

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2015-08-01

    Full Text Available Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method.

  1. Influence of human population movements on urban climate of Beijing during the Chinese New Year holiday

    Science.gov (United States)

    Zhang, Jingyong; Wu, Lingyun

    2017-01-01

    The population movements for the Chinese New Year (CNY) celebrations, known as the world’s largest yearly migration of human beings, have grown rapidly in the past several decades. The massive population outflows from urban areas largely reduce anthropogenic heat release and modify some other processes, and may thus have noticeable impacts on urban climate of large cities in China. Here, we use Beijing as an example to present observational evidence for such impacts over the period of 1990–2014. Our results show a significant cooling trend of up to 0.55 °C per decade, particularly at the nighttime during the CNY holiday relative to the background period. The average nighttime cooling effect during 2005–2014 reaches 0.94 °C relative to the 1990s, significant at the 99% confidence level. The further analysis supports that the cooling during the CNY holiday is attributable primarily to the population outflow of Beijing. These findings illustrate the importance of population movements in influencing urban climate despite certain limitations. As the world is becoming more mobile and increasingly urban, more efforts are called for to understand the role of human mobility at various spatial and temporal scales. PMID:28358399

  2. Methodological and technological implications of quantitative human movement analysis in long term space flights.

    Science.gov (United States)

    Ferrigno, G; Baroni, G; Pedotti, A

    1999-04-01

    In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments foresaw the analysis of three-dimensional human movements in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers was installed onboard the MIR Space Station. The paper describes the experimental procedures designed in order to face technical and operational limitations imposed by the critical environment of the orbital module. The reliability of the performed analysis is discussed, focusing two related aspects: accuracy in three-dimensional marker localisation and data comparability among different experimental sessions. The effect of the critical experimental set-up and of TV cameras optical distortions is evaluated on in-flight acquired data, by performing an analysis on Euclidean distance conservation on rigid bodies. An optimisation method for the recovering of a unique reference frame throughout the whole mission is described. Results highlight the potentiality that opto-electronics and close-range photogrammetry have for automatic motion analysis onboard orbital modules. The discussion of the obtained results provides general suggestions for the implementation of experimental human movement analysis in critical environments, based on the suitable trade-off between external constraints and achievable analysis reliability.

  3. Evaluation of electric field distribution in electromagnetic stimulation of human femoral head.

    Science.gov (United States)

    Su, Yukun; Souffrant, Robert; Kluess, Daniel; Ellenrieder, Martin; Mittelmeier, Wolfram; van Rienen, Ursula; Bader, Rainer

    2014-12-01

    Electromagnetic stimulation is a common therapy used to support bone healing in the case of avascular necrosis of the femoral head. In the present study, we investigated a bipolar induction screw system with an integrated coil. The aim was to analyse the influence of the screw parameters on the electric field distribution in the human femoral head. In addition, three kinds of design parameters (the shape of the screw tip, position of the screw in the femoral head, and size of the screw insulation) were varied. The electric field distribution in the bone was calculated using the finite element software Comsol Multiphysics. Moreover, a validation experiment was set up for an identical bone specimen with an implanted screw. The electric potential of points inside and on the surface of the bone were measured and compared to numerical data. The electric field distribution within the bone was clearly changed by the different implant parameters. Repositioning the screw by a maximum of 10 mm and changing the insulation length by a maximum of 4 mm resulted in electric field volume changes of 16% and 7%, respectively. By comparing the results of numerical simulation with the data of the validation experiment, on average, the electric potential difference of 19% and 24% occurred when the measuring points were at a depth of approximately 5 mm within the femoral bone and directly on the surface of the femoral bone, respectively. The results of the numerical simulations underline that the electro-stimulation treatment of bone in clinical applications can be influenced by the implant parameters. © 2014 Wiley Periodicals, Inc.

  4. Verrucous carcinoma of the head and neck - not a human papillomavirus-related tumour?

    Science.gov (United States)

    Odar, Katarina; Kocjan, Boštjan J; Hošnjak, Lea; Gale, Nina; Poljak, Mario; Zidar, Nina

    2014-04-01

    Association between verrucous carcinoma (VC) of the head and neck and human papillomaviruses (HPV) is highly controversial. Previous prevalence studies focused mostly on α-PV, while little is known about other PV genera. Our aim was to investigate the prevalence of a broad spectrum of HPV in VC of the head and neck using sensitive and specific molecular assays. Formalin-fixed, paraffin-embedded samples of 30 VC and 30 location-matched normal tissue samples were analysed, by using six different polymerase chain reaction-based methods targeting DNA of at least 87 HPV types from α-PV, β-PV, γ-PV and μ-PV genera, and immunohistochemistry against p16 protein. α-PV, γ-PV and μ-PV were not detected. β-PV DNA was detected in 5/30 VC (16.7%) and in 18/30 normal tissue samples (60.0%): HPV-19, -24 and -36 were identified in VC, and HPV-5, -9, -12, -23, -24, -38, -47, -49 and -96 in normal tissue, whereas HPV type was not determined in 2/5 cases of VC and in 6/18 normal tissue samples. p16 expression was detected in a subset of samples and was higher in VC than in normal tissue. However, the reaction was predominantly cytoplasmic and only occasionally nuclear, and the extent of staining did not exceed 75%. Our results indicate that α-PV, γ-PV and μ-PV are not associated with aetiopathogenesis of VC of the head and neck. β-PV DNA in a subset of VC and normal tissue might reflect incidental colonization, but its potential biological significance needs further investigation. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Verrucous carcinoma of the head and neck – not a human papillomavirus-related tumour?

    Science.gov (United States)

    Odar, Katarina; Kocjan, Boštjan J; Hošnjak, Lea; Gale, Nina; Poljak, Mario; Zidar, Nina

    2014-01-01

    Association between verrucous carcinoma (VC) of the head and neck and human papillomaviruses (HPV) is highly controversial. Previous prevalence studies focused mostly on α-PV, while little is known about other PV genera. Our aim was to investigate the prevalence of a broad spectrum of HPV in VC of the head and neck using sensitive and specific molecular assays. Formalin-fixed, paraffin-embedded samples of 30 VC and 30 location-matched normal tissue samples were analysed, by using six different polymerase chain reaction-based methods targeting DNA of at least 87 HPV types from α-PV, β-PV, γ-PV and μ-PV genera, and immunohistochemistry against p16 protein. α-PV, γ-PV and μ-PV were not detected. β-PV DNA was detected in 5/30 VC (16.7%) and in 18/30 normal tissue samples (60.0%): HPV-19, -24 and -36 were identified in VC, and HPV-5, -9, -12, -23, -24, -38, -47, -49 and -96 in normal tissue, whereas HPV type was not determined in 2/5 cases of VC and in 6/18 normal tissue samples. p16 expression was detected in a subset of samples and was higher in VC than in normal tissue. However, the reaction was predominantly cytoplasmic and only occasionally nuclear, and the extent of staining did not exceed 75%. Our results indicate that α-PV, γ-PV and μ-PV are not associated with aetiopathogenesis of VC of the head and neck. β-PV DNA in a subset of VC and normal tissue might reflect incidental colonization, but its potential biological significance needs further investigation. PMID:24350715

  6. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach.

    Science.gov (United States)

    Soda, Paolo; Mazzoleni, Stefano; Cavallo, Giuseppe; Guglielmelli, Eugenio; Iannello, Giulio

    2010-09-01

    Recent research has successfully introduced the application of robotics and mechatronics to functional assessment and motor therapy. Measurements of movement initiation in isometric conditions are widely used in clinical rehabilitation and their importance in functional assessment has been demonstrated for specific parts of the human body. The determination of the voluntary movement initiation time, also referred to as onset time, represents a challenging issue since the time window characterizing the movement onset is of particular relevance for the understanding of recovery mechanisms after a neurological damage. Establishing it manually as well as a troublesome task may also introduce oversight errors and loss of information. The most commonly used methods for automatic onset time detection compare the raw signal, or some extracted measures such as its derivatives (i.e., velocity and acceleration) with a chosen threshold. However, they suffer from high variability and systematic errors because of the weakness of the signal, the abnormality of response profiles as well as the variability of movement initiation times among patients. In this paper, we introduce a technique to optimise onset detection according to each input signal. It is based on a classification system that enables us to establish which deterministic method provides the most accurate onset time on the basis of information directly derived from the raw signal. The approach was tested on annotated force and torque datasets. Each dataset is constituted by 768 signals acquired from eight anatomical districts in 96 patients who carried out six tasks related to common daily activities. The results show that the proposed technique improves not only on the performance achieved by each of the deterministic methods, but also on that attained by a group of clinical experts. The paper describes a classification system detecting the voluntary movement initiation time and adaptable to different signals. By

  7. Study of Electromagnetic Radiation and Specific Absorption Rate of Mobile Phones with Fractional Human Head Models via Green's Functions

    Directory of Open Access Journals (Sweden)

    Nookala S. Rao

    2011-01-01

    Full Text Available Problem statement: Electromagnetic Radiation from mobile hand set is identified as one of the side effects for increasing rate of brain tumor. Due to this reason, Mobile phone industries are attentive towards safety issues of human health. Specific Absorption Rate is one of the important parameter while modeling the radiation effect on human head. Brain material with homogeneity is treated as an equivalent model of human head. The radiation caused by antennas mounted on mobile set is assumed to be monopolar. Approach: Apart from the Specific Absorption Rate, period of exposure to radiation is an extremely important parameter while assessing the effects on brain tissue. Correlation between the amount of radiation versus spherical model of brain is a complex phenomena, addressed in various simulation models. In the present work the field distribution inside the head are modeled using Dyadic Greens Functions while describing the effect of radiation pattern. Multilayered homogeneous lossy spherical model is proposed as an equivalent to head. Results: In this paper we present the depth of penetration of radiation and its effect on brain tissue. In essence the amount of electromagnetic power absorbed by biological tissues for various exposure conditions and types of emitting sources, utilizing a detailed model of the human head. Conclusion: Bio-heat equation is used to predict heat distribution inside the brain when exposed to radiation. The medium is assumed to be homogeneous, isotropic, linear, non dispersive and stationary. A critical evaluation of the method is discussed.

  8. Productivity Losses Associated with Head and Neck Cancer Using the Human Capital and Friction Cost Approaches.

    Science.gov (United States)

    Pearce, Alison M; Hanly, Paul; Timmons, Aileen; Walsh, Paul M; O'Neill, Ciaran; O'Sullivan, Eleanor; Gooberman-Hill, Rachael; Thomas, Audrey Alforque; Gallagher, Pamela; Sharp, Linda

    2015-08-01

    Previous studies suggest that productivity losses associated with head and neck cancer (HNC) are higher than in other cancers. These studies have only assessed a single aspect of productivity loss, such as temporary absenteeism or premature mortality, and have only used the Human Capital Approach (HCA). The Friction Cost Approach (FCA) is increasingly recommended, although has not previously been used to assess lost production from HNC. The aim of this study was to estimate the lost productivity associated with HNC due to different types of absenteeism and premature mortality, using both the HCA and FCA. Survey data on employment status were collected from 251 HNC survivors in Ireland and combined with population-level survival estimates and national wage data. The cost of temporary and permanent time off work, reduced working hours and premature mortality using both the HCA and FCA were calculated. Estimated total productivity losses per employed person of working age were EUR253,800 using HCA and EUR6800 using FCA. The main driver of HCA costs was premature mortality (38% of total) while for FCA it was temporary time off (73% of total). The productivity losses associated with head and neck cancer are substantial, and return to work assistance could form an important part of rehabilitation. Use of both the HCA and FCA approaches allowed different drivers of productivity losses to be identified, due to the different assumptions of the two methods. For future estimates of productivity losses, the use of both approaches may be pragmatic.

  9. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom

    Science.gov (United States)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.

    2012-01-01

    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  10. Nanotribological characterization of human head hair by friction force microscopy in dry atmosphere and aqueous environment.

    Science.gov (United States)

    Nikogeorgos, Nikos; Fletcher, Ian W; Boardman, Christopher; Doyle, Peter; Ortuoste, Nerea; Leggett, Graham J

    2010-06-01

    Friction force microscopy was employed for the tribological investigation of human head hair in two different environments: a dry atmosphere and de-ionized water. The fibers were immobilized by embedding them in indium. The effects of bleaching, conditioning, and immersion in methanolic KOH were quantified in terms of the relative coefficient of friction (μ). The virgin fibers were clearly distinguished in terms of friction coefficient from the chemically damaged ones in both environments, while all categories of hair exhibited higher friction coefficients in the aqueous environment. Secondary ion mass spectroscopy was used as a complementary technique to examine the presence of fatty acids on the cuticular surface of the different categories of hair as well as the conditioner distribution. Neither bleaching nor 30 min treatment in methanolic KOH was found adequate to completely remove the fatty acids from the fibers' surface. Conditioner species were detected along the whole cuticular surface.

  11. Microdialysis in the femoral head of the minipig and in a blood cloth of human blood

    DEFF Research Database (Denmark)

    Bøgehøj, Morten Foged; Emmeluth, Claus; Overgaard, Søren

    2011-01-01

    Introduction Microdialysis can detect ischemia in soft tissue. In a previous study, we have shown the development of ischemia in the femoral head removed from patients undergoing total hip replacement. That study also raised some methodological questions that this study tries to answer: what...... is happening in the dead space around the catheter in the drill canal, and is there an equilibrium period after the insertion of the catheter? Material and methods In an ex-vivo study using 5 syringes with 5 mL human blood, a microdialysis catheter was inserted and microdialysis was performed over 3 h....... In an in-vivo study, a drill hole was made in the proximal part of the femur in 6 mature Göttingen minipigs and microdialysis was performed over 3 h. The pigs were kept normoventilated during the experiment. Results The ex-vivo microdialysis results showed that lactate kept a steady level and glucose...

  12. [Analysis of Electric Stress in Human Head in High-frequency Low-power Electromagnetic Environment].

    Science.gov (United States)

    Zhou, Yongjun; Zhang, Hui; Niu, Zhongqi

    2015-04-01

    Action of electromagnetic radiation exerting on human body has been a concerned issue for people. Because electromagnetic waves could generate an electric stress in a discontinuous medium, we used the finite difference time domain (FDTD) as calculation methods to calculate the electric stress and its distribution in human head caused by high-frequency low-power electromagnetic environment, which was generated by dual-band (900 MHz and 1 800 MHz) PIFA antennas with radiated power 1 W, and we then performed the safety evaluation of cell phone radiation from the angle whether the electric stress further reached the human hearing threshold. The result showed that there existed the electric stress at the interface of different permittivity organization caused by the two kinds of high-frequency low-power electromagnetic environment and the maximum electric stress was located at the interface between skin and air of the phone side, and the electric stress peak at skull did not reach the threshold of auditory caused by bone tissue conduction so that it can not produce auditory effects.

  13. Characterization of proteoglycan metabolites in human gingival crevicular fluid during orthodontic tooth movement.

    Science.gov (United States)

    Waddington, R J; Embery, G; Samuels, R H

    1994-05-01

    Previous studies have identified glycosaminoglycans in gingival crevicular fluid (GCF) associated with a variety of clinical conditions, notably those involving bone resorptive activity. GCF was here collected from around teeth undergoing active orthodontic movement. Proteoglycan metabolites were purified from GCF by anion-exchange chromatography using fast performance liquid chromatography. Sulphated glycosaminoglycan was associated with the most highly anionic protein fractions IV, V and VI, and biochemical analysis was restricted to these fractions. Analysis included glycosaminoglycan content by cellulose acetate electrophoresis, molecular size by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and amino acid analyses. Fraction IV contained hyaluronan (18.7%) and chondroitin sulphate (10.9%), fraction V heparan sulphate (29.5%) and chondroitin sulphate (19.6%) and fraction VI chondroitin sulphate only (21.3%). SDS-PAGE revealed two Coomassie blue bands in fraction V of 72 and 60 kDa and two further bands in fraction VI of 71 and 56 kDa. These proteoglycans appeared resistant to digestion by chondroitinase ABC or heparinase III, although the glycosaminoglycan chains underwent degradation after protein-core removal. The molecular mass and amino acid composition of the chondroitin sulphate proteoglycan fractions showed a close similarity to those of human alveolar bone proteoglycan. The presence of heparan sulphate proteoglycan in GCF in association with orthodontic movement is in accord with previous reports. The findings support the view that proteoglycans in GCF are 'biomarkers', notably those associated with active resorption of alveolar bone.

  14. Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of human movement.

    Science.gov (United States)

    Howarth, Samuel J; Callaghan, Jack P

    2010-12-01

    Marker obstruction during human movement analyses requires interpolation to reconstruct missing kinematic data. This investigation quantifies errors associated with three interpolation techniques and varying interpolated durations. Right ulnar styloid kinematics from 13 participants performing manual wheelchair ramp ascent were reconstructed using linear, cubic spline and local coordinate system (LCS) interpolation from 11-90% of one propulsive cycle. Elbow angles (flexion/extension and pronation/supination) were calculated using real and reconstructed kinematics. Reconstructed kinematics produced maximum elbow flexion/extension errors of 37.1 (linear), 23.4 (spline) and 9.3 (LCS) degrees. Reconstruction errors are unavoidable [minimum errors of 6.7 mm (LCS); 0.29 mm (spline); 0.42 mm (linear)], emphasising careful motion capture system setup must be performed to minimise data interpolation. For the observed movement, LCS-based interpolation (average error of 14.3 mm; correlation of 0.976 for elbow flexion/extension) was most suitable for reconstructing durations longer than 200 ms. Spline interpolation was superior for shorter durations.

  15. A real-time system for biomechanical analysis of human movement and muscle function.

    Science.gov (United States)

    van den Bogert, Antonie J; Geijtenbeek, Thomas; Even-Zohar, Oshri; Steenbrink, Frans; Hardin, Elizabeth C

    2013-10-01

    Mechanical analysis of movement plays an important role in clinical management of neurological and orthopedic conditions. There has been increasing interest in performing movement analysis in real-time, to provide immediate feedback to both therapist and patient. However, such work to date has been limited to single-joint kinematics and kinetics. Here we present a software system, named human body model (HBM), to compute joint kinematics and kinetics for a full body model with 44 degrees of freedom, in real-time, and to estimate length changes and forces in 300 muscle elements. HBM was used to analyze lower extremity function during gait in 12 able-bodied subjects. Processing speed exceeded 120 samples per second on standard PC hardware. Joint angles and moments were consistent within the group, and consistent with other studies in the literature. Estimated muscle force patterns were consistent among subjects and agreed qualitatively with electromyography, to the extent that can be expected from a biomechanical model. The real-time analysis was integrated into the D-Flow system for development of custom real-time feedback applications and into the gait real-time analysis interactive lab system for gait analysis and gait retraining.

  16. Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys.

    Science.gov (United States)

    Mukherjee, Trishna; Liu, Bing; Simoncini, Claudio; Osborne, Leslie C

    2017-02-08

    Despite the enduring interest in motion integration, a direct measure of the space-time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus-response correlations across space and time, computing the linear space-time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms.SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space-time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use

  17. [On the road to a new humanity: the reception of psychoanalysis in the early Kinderladen movement].

    Science.gov (United States)

    Kauders, Anthony D

    2014-01-01

    In the late 1960s a group of students in West Germany founded the so-called Kinderläden (day care centers) in order to experiment with new forms of early childhood education. Members of the early Kinderladen movement in particular pursued a radically utopian approach that, they hoped, would engender new human beings. With the aid of psychoanalytic writings, especially those of Wilhelm Reich, they sought to create subjects that would overcome repressive bourgeois norms and live out their sexuality freely. This reliance on Reich entailed a new interpretation of the "base", as psychoanalytic drive theory supplanted Marxist theory. As such, the early Kinderladen ac- tivists regarded the "basis" of society in biological, psychological, and pedagogic rather than economic terms.

  18. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking.

    Science.gov (United States)

    Nofzinger, Eric A; Buysse, Daniel J; Miewald, Jean M; Meltzer, Carolyn C; Price, Julie C; Sembrat, Robert C; Ombao, Hernando; Reynolds, Charles F; Monk, Timothy H; Hall, Martica; Kupfer, David J; Moore, Robert Y

    2002-05-01

    Sleep is an essential human function. Although the function of sleep has generally been regarded to be restorative, recent data indicate that it also plays an important role in cognition. The neurobiology of human sleep is most effectively analysed with functional imaging, and PET studies have contributed substantially to our understanding of both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. In this study, PET was used to determine patterns of regional glucose metabolism in NREM sleep compared with waking. We hypothesized that brain structures related to waking cognitive function would show a persistence of function into the NREM sleep state. Fourteen healthy subjects (age range 21-49 years; 10 women, 4 men) underwent concurrent EEG sleep studies and [(18)F]fluoro-2-deoxy-D-glucose PET scans during waking and NREM sleep. Whole-brain glucose metabolism declined significantly from waking to NREM sleep. Relative decreases in regional metabolism from waking to NREM sleep occurred in wide areas of frontal, parietal, temporal and occipital association cortex, primary visual cortex, and in anterior/dorsomedial thalamus. After controlling for the whole-brain declines in absolute metabolism, relative increases in regional metabolism from waking to NREM were found bilaterally in the dorsal pontine tegmentum, hypothalamus, basal forebrain, ventral striatum, anterior cingulate cortex and extensive regions of the mesial temporal lobe, including the amygdala and hippocampus, and in the right dorsal parietal association cortex and primary somatosensory and motor cortices. The reductions in relative metabolism in NREM sleep compared with waking are consistent with prior findings from blood flow studies. The relative increases in glucose utilization in the basal forebrain, hypothalamus, ventral striatum, amygdala, hippocampus and pontine reticular formation are new observations that are in accordance with the view that NREM sleep is important to brain

  19. Functional exploration of the human spinal cord during voluntary movement and somatosensory stimulation.

    Science.gov (United States)

    Summers, Paul E; Iannetti, Gian Domenico; Porro, Carlo A

    2010-10-01

    Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology. A striking weakness of many spinal fMRI studies is the use of small numbers of subjects and of time-points in the acquired functional image series. In addition, spinal fMRI is characterised by large physiological noise, while the recorded functional responses are poorly characterised. For all these reasons, spinal fMRI experiments risk having low statistical power, and few spinal fMRI studies have yielded physiologically relevant information. Thus, while available evidence indicates that spinal fMRI is feasible, we are only approaching the stage at which the technique can be considered to have been rigorously established as a viable means of noninvasively investigating spinal cord functioning in humans.

  20. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    Science.gov (United States)

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with (99m)Tc or (113m)In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions.NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  1. Robust adaptive control modeling of human arm movements subject to altered gravity and mechanical loads

    Science.gov (United States)

    Tryfonidis, Michail

    It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that

  2. Perceived visual motion as effective stimulus to pursuit eye movement system

    Science.gov (United States)

    Yasui, S.; Young, L. R.

    1975-01-01

    Human eye tracking of a foveal afterimage during angular head oscillation in the dark produced smooth eye movements exceeding those for normal vestibular nystagmus, and a reduction in the frequency of the fast phase component of nystagmus eye movements. These results may support a closed loop extension of the corollary discharge theory, with oculomotor commands based on perceived object velocity.

  3. A comparison of clinically utilized human papillomavirus detection methods in head and neck cancer.

    Science.gov (United States)

    Schlecht, Nicolas F; Brandwein-Gensler, Margaret; Nuovo, Gerard J; Li, Maomi; Dunne, Anne; Kawachi, Nicole; Smith, Richard V; Burk, Robert D; Prystowsky, Michael B

    2011-10-01

    Detection of human papillomavirus (HPV) in head and neck cancer has therapeutic implications. In situ hybridization and immunohistochemistry for p16 are used by surgical pathologists. We compared the sensitivity and specificity of three popular commercial tests for HPV detection in head and neck squamous cell carcinomas with a 'gold standard' HPV PCR assay. A total of 110 prospectively collected, formalin-fixed tumor specimens were compiled onto tissue microarrays and tested for HPV DNA by in situ hybridization with two probe sets, a biotinylated probe for high-risk (HR) HPV types 16/18 (Dako, CA, USA) and a probe cocktail for 16/18, plus 10 additional HR types (Ventana, AZ, USA). The p16(INK4) expression was also assessed using a Pharmingen immunohistochemistry antibody (BD Biosciences, CA, USA). Tissue microarrays were stained and scored at expert laboratories. HPV DNA was detected by MY09/11-PCR, using Gold AmpliTaq and dot-blot hybridization on matched-fresh frozen specimens in a research laboratory. HPV 16 E6 and E7-RNA expression was also measured using RT-PCR. Test performance was assessed by a receiver operating characteristic analysis. HR-HPV DNA types 16, 18 and 35 were detected by MY-PCR in 28% of tumors, with the majority (97%) testing positive for type 16. Compared with MY-PCR, the sensitivity and specificity for HR-HPV DNA detection with Dako in situ hybridization was 21% (95% confidence interval (CI): 7-42) and 100% (95% CI: 93-100), respectively. Corresponding test results by Ventana in situ hybridization were 59% (95% CI: 39-78) and 58% (95% CI: 45-71), respectively. The p16 immunohistochemistry performed better overall than Dako (P=0.042) and Ventana (P=0.055), with a sensitivity of 52% (95% CI: 32-71) and specificity of 93% (95% CI: 84-98). Compared with a gold standard HPV-PCR assay, HPV detection by in situ hybridization was less accurate for head and neck squamous cell carcinoma on tissue microarrays than p16 immunohistochemistry. Further

  4. BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research

    Science.gov (United States)

    Okada, Yoshio; Hämäläinen, Matti; Pratt, Kevin; Mascarenas, Anthony; Miller, Paul; Han, Menglai; Robles, Jose; Cavallini, Anders; Power, Bill; Sieng, Kosal; Sun, Limin; Lew, Seok; Doshi, Chiran; Ahtam, Banu; Dinh, Christoph; Esch, Lorenz; Grant, Ellen; Nummenmaa, Aapo; Paulson, Douglas

    2016-09-01

    We developed a 375-channel, whole-head magnetoencephalography (MEG) system ("BabyMEG") for studying the electrophysiological development of human brain during the first years of life. The helmet accommodates heads up to 95% of 36-month old boys in the USA. The unique two-layer sensor array consists of: (1) 270 magnetometers (10 mm diameter, ˜15 mm coil-to-coil spacing) in the inner layer, (2) thirty-five three-axis magnetometers (20 mm × 20 mm) in the outer layer 4 cm away from the inner layer. Additionally, there are three three-axis reference magnetometers. With the help of a remotely operated position adjustment mechanism, the sensor array can be positioned to provide a uniform short spacing (mean 8.5 mm) between the sensor array and room temperature surface of the dewar. The sensors are connected to superconducting quantum interference devices (SQUIDs) operating at 4.2 K with median sensitivity levels of 7.5 fT/√Hz for the inner and 4 fT/√Hz for the outer layer sensors. SQUID outputs are digitized by a 24-bit acquisition system. A closed-cycle helium recycler provides maintenance-free continuous operation, eliminating the need for helium, with no interruption needed during MEG measurements. BabyMEG with the recycler has been fully operational from March, 2015. Ongoing spontaneous brain activity can be monitored in real time without interference from external magnetic noise sources including the recycler, using a combination of a lightly shielded two-layer magnetically shielded room, an external active shielding, a signal-space projection method, and a synthetic gradiometer approach. Evoked responses in the cortex can be clearly detected without averaging. These new design features and capabilities represent several advances in MEG, increasing the utility of this technique in basic neuroscience as well as in clinical research and patient studies.

  5. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    Full Text Available Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI modalities, the parameters of which were tailored to enhance the signals of specific tissues: i structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii magnetic resonance angiography (MRA data to image the vasculature, and iii diffusion tensor imaging (DTI to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  6. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck.

    Science.gov (United States)

    Iacono, Maria Ida; Neufeld, Esra; Akinnagbe, Esther; Bower, Kelsey; Wolf, Johanna; Vogiatzis Oikonomidis, Ioannis; Sharma, Deepika; Lloyd, Bryn; Wilm, Bertram J; Wyss, Michael; Pruessmann, Klaas P; Jakab, Andras; Makris, Nikos; Cohen, Ethan D; Kuster, Niels; Kainz, Wolfgang; Angelone, Leonardo M

    2015-01-01

    Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA". The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community.

  7. Basics of tumor development and importance of human papilloma virus (HPV for head and neck cancer [

    Directory of Open Access Journals (Sweden)

    Klussmann, Jens Peter

    2012-12-01

    Full Text Available [english] Head and Neck Squamous Cell Carcinomas (HNSCC are the 6 most common cancers worldwide. While incidence rates for cancer of the hypopharynx and larynx are decreasing, a significant increase in cancer of the oropharynx (OSCC is observed. Classical risk factors for HNSCC are smoking and alcohol. It has been shown for 25 to 60% of OSCC to be associated with an infection by oncogenic human papilloma viruses (HPV. The development of “common” cancer of the head and neck is substantially enhanced by an accumulation of genetic changes, which lead to an inactivation of tumor suppressor genes or activation of proto-oncogenes. A more or less uniform sequence of different DNA-damages leads to genetic instability. In this context, an early and frequent event is deletion on the short arm of chromosome 9, which results in inactivation of the p16-gene. In contrast, for HPV-induced carcinogenesis, expression of the viral proteins E6 and E7 is most important, since they lead to inactivation of the cellular tumor-suppressor-proteins p53 and Rb. The natural route of transoral infection is a matter of debate; peroral HPV-infections might be frequent and disappear uneventfully in most cases. Smoking seems to increase the probability for developing an HPV-associated OSCC. The association of HNSCC with HPV can be proven with established methods in clinical diagnostics. In addition to classical prognostic factors, diagnosis of HPV-association may become important for selection of future therapies. Prognostic relevance of HPV probably surmounts many known risk-factors, for example regional metastasis. Until now, no other molecular markers are established in clinical routine. Future therapy concepts may vary for the two subgroups of patients, particularly patients with HPV-associated OSCC may take advantage of less aggressive treatments. Finally, an outlook will be given on possible targeted therapies.

  8. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level.

    Directory of Open Access Journals (Sweden)

    Deli Liu

    2015-06-01

    Full Text Available Spontaneous canine head and neck squamous cell carcinoma (HNSCC represents an excellent model of human HNSCC but is greatly understudied. To better understand and utilize this valuable resource, we performed a pilot study that represents its first genome-wide characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high density array comparative genomic hybridization and RNA-seq. The analyses reveal that these canine cancers recapitulate many molecular features of human HNSCC. These include analogous genomic copy number abnormality landscapes and sequence mutation patterns, recurrent alteration of known HNSCC genes and pathways (e.g., cell cycle, PI3K/AKT signaling, and comparably extensive heterogeneity. Amplification or overexpression of protein kinase genes, matrix metalloproteinase genes, and epithelial-mesenchymal transition genes TWIST1 and SNAI1 are also prominent in these canine tumors. This pilot study, along with a rapidly growing body of literature on canine cancer, reemphasizes the potential value of spontaneous canine cancers in HNSCC basic and translational research.

  9. Gene Expression Changes in Femoral Head Necrosis of Human Bone Tissue

    Directory of Open Access Journals (Sweden)

    Bernadett Balla

    2011-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is the result of an interruption of the local circulation and the injury of vascular supply of bone. Multiple factors have been implicated in the development of the disease. However the mechanism of ischemia and necrosis in non-traumatic ONFH is not clear. The aim of our investigation was to identify genes that are differently expressed in ONFH vs. non-ONFH human bone and to describe the relationships between these genes using multivariate data analysis. Six bone tissue samples from ONFH male patients and 8 bone tissue samples from non-ONFH men were examined. The expression differences of selected 117 genes were analyzed by TaqMan probe-based quantitative real-time RT-PCR system. The significance test indicated marked differences in the expression of nine genes between ONFH and non-ONFH individuals. These altered genes code for collagen molecules, an extracellular matrix digesting metalloproteinase, a transcription factor, an adhesion molecule, and a growth factor. Canonical variates analysis demonstrated that ONFH and non-ONFH bone tissues can be distinguished by the multiple expression profile analysis of numerous genes controlled via canonical TGFB pathway as well as genes coding for extracellular matrix composing collagen type molecules. The markedly altered gene expression profile observed in the ONFH of human bone tissue may provide further insight into the pathogenetic process of osteonecrotic degeneration of bone.

  10. Quantitative analysis of illusory movement : spatial filtering and line localization in the human visual system

    NARCIS (Netherlands)

    Jansonius, Nomdo M.; Stam, Lucas; de Jong, Tim; Pijpker, Ben A.

    2014-01-01

    A narrow bar or line (width around 1 arcmin) between two fields of which the luminances are sinusoidally and in counterphase modulated in time appears to make an oscillatory movement. It is possible to annihilate this illusory movement with a real movement and thus to analyze this phenomenon quantit

  11. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.

    Science.gov (United States)

    Ariki, Yuka; Hyon, Sang-Ho; Morimoto, Jun

    2013-04-01

    In this paper, we propose an imitation learning framework to generate physically consistent behaviors by estimating the ground reaction force from captured human behaviors. In the proposed framework, we first extract behavioral primitives, which are represented by linear dynamical models, from captured human movements and measured ground reaction force by using the Gaussian mixture of linear dynamical models. Therefore, our method has small dependence on classification criteria defined by an experimenter. By switching primitives with different combinations while estimating the ground reaction force, different physically consistent behaviors can be generated. We apply the proposed method to a four-link robot model to generate squat motion sequences. The four-link robot model successfully generated the squat movements by using our imitation learning framework. To show generalization performance, we also apply the proposed method to robot models that have different torso weights and lengths from a human demonstrator and evaluate the control performances. In addition, we show that the robot model is able to recognize and imitate demonstrator movements even when the observed movements are deviated from the movements that are used to construct the primitives. For further evaluation in higher-dimensional state space, we apply the proposed method to a seven-link robot model. The seven-link robot model was able to generate squat-and-sway motions by using the proposed framework.

  12. Application of high-performance computing to numerical simulation of human movement

    Science.gov (United States)

    Anderson, F. C.; Ziegler, J. M.; Pandy, M. G.; Whalen, R. T.

    1995-01-01

    We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.

  13. A Social Movements' Perspective on Human Rights Impact of Mining Liberalization in the Philippines.

    Science.gov (United States)

    Aytin, Andrew

    2016-02-01

    When it comes to minerals like gold, copper, or nickel, the Philippines ranks among the world's richest countries, but it has continued to perform poorly in terms of human and economic development. In the belief that foreign investments will bring development, the government in 1995 liberalized its mining industry allowing full foreign ownership and control of the mining activities. After almost two decades of mining liberalization, the country has never achieved its goal of development but is now reeling from the adverse impacts of large-scale corporate mining on the environment and lives of mining-affected communities. Moreover, human rights violations against anti-mining activists and environmental advocates have escalated at an alarming rate making the country one of the most dangerous places for land and environmental defenders. But social movements are now taking big steps to empower the people, especially the mining-affected communities, to confront the adverse impacts of corporate mining and to reverse the current path of the mining industry to one that aims to achieve national industrialization where national development is prioritized over transnational corporations' interests.

  14. Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds.

    Science.gov (United States)

    Nilsson, J; Thorstensson, A

    1987-01-01

    In this study of human locomotion we investigate to what extent the normal frequency and amplitude of leg movements can be modified voluntarily at different constant velocities, and how these modifications are accomplished in terms of changes in duration and length of the support and swing phases of the stride cycle. Eight healthy male subjects performed walking and running on a motor-driven treadmill at speeds ranging from 1.0 to 3.0 m s-1 (walking) and 1.5 to 8.0 m s-1 (running), respectively. At each speed the subjects walked and ran with: normal stride frequency; the highest possible stride frequency, and the lowest possible stride frequency. Time for foot contact was measured with a special pressure transducer system under the sole of each shoe. At all speeds of walking and running it was possible to either increase or decrease the frequency of leg movements; that is, to decrease or increase stride cycle duration. The range of variation decreased with increasing speed. The mean overall stride frequency range was 0.41 (low frequency walk 1.0 m s-1)-3.57 Hz (high-frequency run 1.5 m s-1). Stride length ranged 0.40 (high frequency walk 1.0 m s-1)-5.00 m (low frequency run 6.0 m s-1). At normal frequency the overall ranges of stride frequency and length were 0.83-1.95 Hz and 1.16-4.10 m, respectively. The stride frequency increased with speed in low frequency walking and running (as in normal frequency) and decreased in high frequency, despite the effort to maintain extreme frequencies. Only in high frequency walking could the stride frequency be kept approximately constant.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Human, Nature, Dynamism: The Effects of Content and Movement Perception on Brain Activations during the Aesthetic Judgment of Representational Paintings.

    Science.gov (United States)

    Di Dio, Cinzia; Ardizzi, Martina; Massaro, Davide; Di Cesare, Giuseppe; Gilli, Gabriella; Marchetti, Antonella; Gallese, Vittorio

    2015-01-01

    Movement perception and its role in aesthetic experience have been often studied, within empirical aesthetics, in relation to the human body. No such specificity has been defined in neuroimaging studies with respect to contents lacking a human form. The aim of this work was to explore, through functional magnetic imaging (f MRI), how perceived movement is processed during the aesthetic judgment of paintings using two types of content: human subjects and scenes of nature. Participants, untutored in the arts, were shown the stimuli and asked to make aesthetic judgments. Additionally, they were instructed to observe the paintings and to rate their perceived movement in separate blocks. Observation highlighted spontaneous processes associated with aesthetic experience, whereas movement judgment outlined activations specifically related to movement processing. The ratings recorded during aesthetic judgment revealed that nature scenes received higher scored than human content paintings. The imaging data showed similar activation, relative to baseline, for all stimuli in the three tasks, including activation of occipito-temporal areas, posterior parietal, and premotor cortices. Contrast analyses within aesthetic judgment task showed that human content activated, relative to nature, precuneus, fusiform gyrus, and posterior temporal areas, whose activation was prominent for dynamic human paintings. In contrast, nature scenes activated, relative to human stimuli, occipital and posterior parietal cortex/precuneus, involved in visuospatial exploration and pragmatic coding of movement, as well as central insula. Static nature paintings further activated, relative to dynamic nature stimuli, central and posterior insula. Besides insular activation, which was specific for aesthetic judgment, we found a large overlap in the activation pattern characterizing each stimulus dimension (content and dynamism) across observation, aesthetic judgment, and movement judgment tasks. These

  16. How the unique configuration of the human head may enhance flavor perception capabilities: an evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Daniel E Lieberman

    2014-07-01

    Full Text Available Since flavor derives from the synthesis of taste, somatosensation and smell, one of the most important factors in the ability to perceive flavor is retronasal olfaction in which volatile compounds pass from the oral cavity through the pharynx to the olfactory epithelium. Retronasal olfaction has been documented in both humans and rodents, but appears less effective in rodents than orthonasal olfaction because expired air does not come into as much contact with the sensory neurons in the olfactory epithelium as inspired air [1,2]. Detailed comparisons of retronasal airflow patterns among different species have not been conducted, but several lines of evidence lead to the hypothesis that retronasal airflow may be specially enhanced in humans because of four derived features of the human head and neck that evolved at different stages because of selection for functions other than olfaction [3]. If so, then human flavor perception capabilities may be more derived than is commonly appreciated, and perhaps played a role in selecting for the evolution of cooking. The first derived adaptation that aids human retronasal olfaction is the absence of the transverse lamina, a horizontal shelf of bone that partitions the olfactory chamber of the nasal fossa from the more inferior respiratory passage. This lamina, which is present in most mammals, was lost during the evolution of monkeys (haplorhines from more primitive primates (strepsirhines as part of a reorganization of the nasal cavity. The function of the transverse lamina has not been tested but it probably aids orthonasal olfaction by trapping inspired air in the olfactory region. Loss of the transverse lamina is commonly interpreted to be one of several trade-offs in primate evolution that favored vision over olfaction [4], but it likely benefits retronasal olfaction by permitting a direct pathway for expired air to flow towards the olfactory epithelium. A second derived adaptation present in humans is

  17. 'Goats that stare at men': dwarf goats alter their behaviour in response to human head orientation, but do not spontaneously use head direction as a cue in a food-related context.

    Science.gov (United States)

    Nawroth, Christian; von Borell, Eberhard; Langbein, Jan

    2015-01-01

    Recently, comparative research on the mechanisms and species-specific adaptive values of attributing attentive states and using communicative cues has gained increased interest, particularly in non-human primates, birds, and dogs. Here, we investigate these phenomena in a farm animal species, the dwarf goat (Capra aegagrus hircus). In the first experiment, we investigated the effects of different human head and body orientations, as well as human experimenter presence/absence, on the behaviour of goats in a food-anticipating paradigm. Over a 30-s interval, the experimenter engaged in one of four different postures or behaviours (head and body towards the subject-'Control', head to the side, head and body away from the subject, or leaving the room) before delivering a reward. We found that the level of subjects' active anticipatory behaviour was highest in the control condition and decreased with a decreasing level of attention paid to the subject by the experimenter. Additionally, goats 'stared' (i.e. stood alert) at the experimental set-up for significantly more time when the experimenter was present but paid less attention to the subject ('Head' and 'Back' condition) than in the 'Control' and 'Out' conditions. In a second experiment, the experimenter provided different human-given cues that indicated the location of a hidden food reward in a two-way object choice task. Goats were able to use both 'Touch' and 'Point' cues to infer the correct location of the reward but did not perform above the level expected by chance in the 'Head only' condition. We conclude that goats are able to differentiate among different body postures of a human, including head orientation; however, despite their success at using multiple physical human cues, they fail to spontaneously use human head direction as a cue in a food-related context.

  18. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    Science.gov (United States)

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  19. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    Science.gov (United States)

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  20. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies

    Science.gov (United States)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-01

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  1. The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies.

    Science.gov (United States)

    Wake, Kanako; Varsier, Nadège; Watanabe, Soichi; Taki, Masao; Wiart, Joe; Mann, Simon; Deltour, Isabelle; Cardis, Elisabeth

    2009-10-07

    A worldwide epidemiological study called 'INTERPHONE' has been conducted to estimate the hypothetical relationship between brain tumors and mobile phone use. In this study, we proposed a method to estimate 3D distribution of the specific absorption rate (SAR) in the human head due to mobile phone use to provide the exposure gradient for epidemiological studies. 3D SAR distributions due to exposure to an electromagnetic field from mobile phones are estimated from mobile phone compliance testing data for actual devices. The data for compliance testing are measured only on the surface in the region near the device and in a small 3D region around the maximum on the surface in a homogeneous phantom with a specific shape. The method includes an interpolation/extrapolation and a head shape conversion. With the interpolation/extrapolation, SAR distributions in the whole head are estimated from the limited measured data. 3D SAR distributions in the numerical head models, where the tumor location is identified in the epidemiological studies, are obtained from measured SAR data with the head shape conversion by projection. Validation of the proposed method was performed experimentally and numerically. It was confirmed that the proposed method provided good estimation of 3D SAR distribution in the head, especially in the brain, which is the tissue of major interest in epidemiological studies. We conclude that it is possible to estimate 3D SAR distributions in a realistic head model from the data obtained by compliance testing measurements to provide a measure for the exposure gradient in specific locations of the brain for the purpose of exposure assessment in epidemiological studies. The proposed method has been used in several studies in the INTERPHONE.

  2. Prevalence of human papillomaviruses in patients with head and neck squamous cell carcinoma in Lithuania and Belarus.

    Science.gov (United States)

    Gudleviciene, Zivile; Didziapetriene, Janina; Mackeviciene, Irina; Cicenas, Saulius; Smolyakova, Raisa; Zhukavetc, Aliaksandr; Zivile, Gudleviciene; Janina, Didziapetriene; Irina, Mackeviciene; Saulius, Cicenas; Raisa, Smolyakova; Aliaksandr, Zhukavetc

    2014-03-01

    Overall, head and neck sqamous cell carcinoma accounts for more than 550,000 cases annually worldwide. It is well known that human papillomavirus (HPV) is the main risk factor for cervical cancer development. As the incidence and the mortality of cervical cancer are closely related to the HPV prevalence, we hypothesized that there is the same association between HPV prevalence and head and neck squamous cell carcinoma. Therefore we performed the study aiming to compare the level of HPV infection and HPV type distribution between two groups of Lithuanian and Belarusian patients with head and neck sqamous cell carcinoma. One hundred ninety head and neck sqamous cell carcinoma patients were included in the study, 75 from Lithuania and 115 from Belarus. PCR was used for HPV detection and typing. The distribution of HPV infection among head and neck sqamous cell carcinoma patients was similar in the Lithuanian (20.0%) and Belarusian (18.3%) patient groups, however differences were found in the distribution of HPV types.

  3. SPATIAL AND TEMPORAL ANALYSIS OF HUMAN MOVEMENTS AND APPLICATIONS FOR DISASTER RESPONSE MANAGEMENT UTILIZING CELL PHONE USAGE DATA

    Directory of Open Access Journals (Sweden)

    M. Yasumiishi

    2015-07-01

    Full Text Available As cell phone usage becomes a norm in our daily lives, analysis and application of the data has become part of various research fields. This study focuses on the application of cell phone usage data to disaster response management. Cell phones work as a communication link between emergency responders and victims during and after a major disaster. This study recognizes that there are two kinds of disasters, one with an advance warning, and one without an advance warning. Different movement distance between a day with a blizzard (advanced warning and a normal weather day was identified. In the scenario of a day with an extreme event without advanced warning (earthquake, factors that alter the phone users' movements were analyzed. Lastly, combining both cases, a conceptual model of human movement factors is proposed. Human movements consist of four factors that are push factors, movement-altering factors, derived attributes and constraint factors. Considering each category of factors in case of emergency, it should be necessary that we prepare different kinds of emergency response plans depending on the characteristics of a disaster.

  4. Improved Sensing Pulses for Increased Human Head Depth Measurement Sensitivity With Electrical Impedance Spectroscopy

    Science.gov (United States)

    Lev, Michael H.

    2017-01-01

    This paper describes an improved electrical impedance spectroscopy (EIS) stimulus paradigm, based on dual-energy pulses using the stochastic Gabor function (SGF) that may more sensitively assess deep brain tissue impedance than current single-pulse paradigms. The SGF is a uniformly distributed noise, modulated by a Gaussian envelope, with a wide-frequency spectrum representation regardless of the stimuli energy, and is least compact in the sample frequency phase plane. Numerical results obtained using a realistic human head model confirm that two sequential SGF pulses at different energies can improve EIS depth sensitivity when used in a dual-energy subtraction scheme. Specifically, although the two SGF pulses exhibit different tissue current distributions, they maintain the broadband sensing pulse characteristics needed to generate all the frequencies of interest. Moreover, finite-difference time domain simulations show that this dual-energy excitation scheme is capable of reducing the amplitude of weighted current densities surface directly underneath the electrodes by approximately 3 million times versus single stimulation pulses, while maintaining an acceptable tissue conductivity distribution at depth. This increased sensitivity for the detection of small, deep impedance changes might be of value in potential future EIS applications, such as the portable, point-of-care detection of deep brain hemorrhage or infarction. PMID:24043365

  5. Dissection and Exposure of the Whole Course of Deep Nerves in Human Head Specimens after Decalcification

    Directory of Open Access Journals (Sweden)

    Longping Liu

    2012-01-01

    Full Text Available The whole course of the chorda tympani nerve, nerve of pterygoid canal, and facial nerves and their relationships with surrounding structures are complex. After reviewing the literature, it was found that details of the whole course of these deep nerves are rarely reported and specimens displaying these nerves are rarely seen in the dissecting room, anatomical museum, or atlases. Dissections were performed on 16 decalcified human head specimens, exposing the chorda tympani and the nerve connection between the geniculate and pterygopalatine ganglia. Measurements of nerve lengths, branching distances, and ganglia size were taken. The chorda tympani is a very fine nerve (0.44 mm in diameter within the tympanic cavity and approximately 54 mm in length. The mean length of the facial nerve from opening of internal acoustic meatus to stylomastoid foramen was 52.5 mm. The mean length of the greater petrosal nerve was 26.1 mm and nerve of the pterygoid canal was 15.1 mm.

  6. Three-dimensional optical topography of brain activity in infants watching videos of human movement

    Science.gov (United States)

    Correia, Teresa; Lloyd-Fox, Sarah; Everdell, Nick; Blasi, Anna; Elwell, Clare; Hebden, Jeremy C.; Gibson, Adam

    2012-03-01

    We present 3D optical topography images reconstructed from data obtained previously while infants observed videos of adults making natural movements of their eyes and hands. The optical topography probe was placed over the temporal cortex, which in adults is responsible for cognitive processing of similar stimuli. Increases in oxyhaemoglobin were measured and reconstructed using a multispectral imaging algorithm with spatially variant regularization to optimize depth discrimination. The 3D optical topography images suggest that similar brain regions are activated in infants and adults. Images were presented showing the distribution of activation in a plane parallel to the surface, as well as changes in activation with depth. The time-course of activation was followed in the pixel which demonstrated the largest change, showing that changes could be measured with high temporal resolution. These results suggest that infants a few months old have regions which are specialized for reacting to human activity, and that these subtle changes can be effectively analysed using 3D optical topography.

  7. Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory.

    Science.gov (United States)

    Varga, Andrew W; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P; Osorio, Ricardo S; Rapoport, David M; Ayappa, Indu

    2014-10-29

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA. Copyright © 2014 the authors 0270-6474/14/3414571-07$15.00/0.

  8. Cryodamage to plasma membrane integrity in head and tail regions of human sperm

    Institute of Scientific and Technical Information of China (English)

    Wei-JieZHU; Xue-GaoLIU

    2000-01-01

    Aim: To investigate the effect of cryopreservation on the plasma membrane integrity in the head and tail regions of individual sperm, and the relationship between intact cryopreserved sperm and its motility and zona-free hamster oocyte penetration rate. Methods: The eosin Y exclusion and the hypoosmotic swelling tests were combined to form a single test (HOS-EY test) to identify the spermatozoa with four types of membrane integrity. Results: After cryopreservation, there was a marked decline in the percentage of spermatozoa with Type IV membrane integrity (head membrane intact/tail membrane intact), and a significant increase in those with Type Ⅰ (head membrane damaged/tail membrane damaged) and Type Ⅲ (head membrane damaged/tail membrane intact) membrane integrity (n = 50, P0.05). Conclusion: (1) The HOS-EY test has the advantage of showing four patterns of membrane integrity in individual spermatozoon; (2) Cryopreservation causes a significant membrane rupture in the head and tail regions of spermatozoa; Type IT[ is the main transitional state of membrane cryodamage; (3) Cryodamage to head and tail membrane may occur independently; the presence of an intact tail membrane does not necessarily indicate the intactness of head membrane. (4) Intact membranes am closely related to postthaw motility, but do not reflect the fertilizing potential.

  9. Does forward head posture affect postural control in human healthy volunteers?

    Science.gov (United States)

    Silva, Anabela G; Johnson, Mark I

    2013-06-01

    Proprioceptive afferent input from neck muscles plays an important role in postural control. Forward head posture has the potential to impair proprioceptive information from neck muscles and contribute to postural control deficits in patients with neck pain. This study investigated whether induced forward head posture affects postural control in healthy participants when compared to natural head posture. Centre of pressure sway area, distance covered and mean velocity were measured during 30s of static standing using a force platform with 25 healthy individuals (mean age ± SD = 20.76 ± 2.19 years) in 8 different conditions. Base of support, eyes open or closed and natural or forward head posture varied within these testing conditions. The majority of comparisons between natural and forward head posture were not statistically significant (p>0.05). This suggests that induced forward head posture in young healthy adults does not challenge them enough to impair postural control. Future studies should evaluate whether forward head posture affects postural control of individuals with chronic neck pain.

  10. Effects on visual functions during tasks of object handling in virtual environment with a head mounted display.

    Science.gov (United States)

    Kawara, T; Ohmi, M; Yoshizawa, T

    1996-11-01

    This study examined the effects on visual functions of a prolonged handling task within the helmet-mounted display environment. Both version eye movement and accommodative response became gradually slower during the 40-min task. Although delayed presentation of display after head movement noticeably worsened both visual responses, presentation delay after hand movement did not significantly change the sluggishness of responses. Therefore it is suggested that decreasing time delay after head movement is a more important factor in order to improve human performance of handling tasks within the HMD environment.

  11. Redressing Past Human Rights Violations: Global Dimensions of Contemporary Social Movements

    Science.gov (United States)

    Tsutsui, Kiyoteru

    2006-01-01

    This paper proposes a theoretical framework to analyze global dimensions of contemporary social movements and attempts to answer the empirical question: why did the social movement for former comfort women emerge in the late 1980s after more than 40 years of silence? The theoretical framework integrates the world polity approach into social…

  12. Loading and reflexes : the influence of body weight and active movements on reflex responses in humans

    NARCIS (Netherlands)

    Bastiaanse, Catharina Maria

    2003-01-01

    This thesis describes six studies on the influence of active movements and body loading on reflex responses. To measure those influences healthy subjects were asked to walk with different loadings (e.g. a backpack) or with different active movements (e.g. arm swing) while different reflex responses

  13. Head Rotation Detection in Marmoset Monkeys

    Science.gov (United States)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  14. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  15. Feasibility and Implementation of a Literature Information Management System for Human Papillomavirus in Head and Neck Cancers with Imaging

    Science.gov (United States)

    Wu, Dee H; Matthiesen, Chance L; Alleman, Anthony M; Fournier, Aaron L; Gunter, Tyler C

    2014-01-01

    This work examines the feasibility and implementation of information service-orientated architecture (ISOA) on an emergent literature domain of human papillomavirus, head and neck cancer, and imaging. From this work, we examine the impact of cancer informatics and generate a full set of summarizing clinical pearls. Additionally, we describe how such an ISOA creates potential benefits in informatics education, enhancing utility for creating enduring digital content in this clinical domain. PMID:25392683

  16. Feasibility and implementation of a literature information management system for human papillomavirus in head and neck cancers with imaging.

    Science.gov (United States)

    Wu, Dee H; Matthiesen, Chance L; Alleman, Anthony M; Fournier, Aaron L; Gunter, Tyler C

    2014-01-01

    This work examines the feasibility and implementation of information service-orientated architecture (ISOA) on an emergent literature domain of human papillomavirus, head and neck cancer, and imaging. From this work, we examine the impact of cancer informatics and generate a full set of summarizing clinical pearls. Additionally, we describe how such an ISOA creates potential benefits in informatics education, enhancing utility for creating enduring digital content in this clinical domain.

  17. Human papillomavirus infection on initiating synchronous esophageal neoplasia in patients with head and neck cancer.

    Science.gov (United States)

    Wang, Wen-Lun; Wang, Yu-Chi; Chang, Chi-Yang; Lo, Jo-Lin; Kuo, Yao-Hung; Hwang, Tzer-Zen; Wang, Chih-Chun; Mo, Lein-Ray; Lin, Jaw-Town; Lee, Ching-Tai

    2016-05-01

    Human papillomavirus (HPV) is a risk factor for head and neck squamous cell carcinoma (HNSCC) as well as esophageal squamous cell carcinoma (ESCC). We aimed to investigate whether HPV infection underlies the field cancerization phenomenon over upper aerodigestive tract to develop synchronous multiple cancers. A case control study. The presence and subtype of HPV-DNA sequence in cancers were examined by polymerase chain reaction and sequencing in a prospective cohort with 100 HNSCCs, 50 of which had synchronous ESCCs. The clinicopathologic characteristics were further analyzed according to the presence of HPV. Twelve patients were HPV-positive, of which 11 were positive for HPV-16. The prevalence of HPV infection were not different between the synchronous and HNSCC alone groups (P = 0.357). Testing for HPV in paired HNSCC and ESCC tissues from the same patient revealed that none were concomitantly HPV-positive. Multivariate logistic regression showed drinking alcohol (odds ratio [OR], 18.75; P = 0.030), alcohol flushing (OR, 2.53; P = 0.041), and body mass index (OR, 0.77; P = 0.001) but not HPV infection were independent risk factors for synchronous phenotype. The patients with synchronous ESCCs had significantly poorer survival than those with HNSCC alone (5-year overall survival: 30% vs. 70%; log-rank P infection plays little role in field cancerization phenomenon to initiate synchronous SCC. The synchronous HNSCC and ESCC from the same patients had no clonal relationship. Routine endoscopic examination of the esophagus should be recommended for patients with risk factors identified. NA. Laryngoscope, 126:1097-1102, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Glucocorticoids Significantly Influence the Transcriptome of Bone Microvascular Endothelial Cells of Human Femoral Head

    Institute of Scientific and Technical Information of China (English)

    Qing-Sheng Yu; Wan-Shou Guo; Li-Ming Cheng; Yu-Feng Lu; Jian-Ying Shen; Ping Li

    2015-01-01

    Background:Appropriate expression and regulation of the transcriptome,which mainly comprise ofmRNAs and lncRNAs,are important for all biological and cellular processes including the physiological activities of bone microvascular endothelial cells (BMECs).Through an intricate intracellular signaling systems,the transcriptome regulates the pharmacological response of the cells.Although studies have elucidated the impact of glucocorticoids (GCs) cell-specific gene expression signatures,it remains necessary to comprehensively characterize the impact of lncRNAs to transcriptional changes.Methods:BMECs were divided into two groups.One was treated with GCs and the other left untreated as a paired control.Differential expression was analyzed with GeneSpring software V12.0 (Agilent,Santa Clara,CA,USA) and hierarchical clustering was conducted using Cluster 3.0 software.The Gene Ontology (GO) analysis was performed with Molecular Annotation System provided by CapitalBio Corporation.Results:Our results highlight the involvement of genes implicated in development,differentiation and apoptosis following GC stimulation.Elucidation of differential gene expression emphasizes the importance of regulatory gene networks induced by GCs.We identified 73 up-regulated and 166 down-regulated long noncoding RNAs,the expression of 107 of which significantly correlated with 172 mRNAs induced by hydrocortisone.Conclusions:Transcriptome analysis of BMECs from human samples was performed to identify specific gene networks induced by GCs.Our results identified complex RNA crosstalk underlying the pathogenesis of steroid-induced necrosis of femoral head.

  19. A Novel Cellular Handset Design for an Enhanced Antenna Performance and a Reduced SAR in the Human Head

    Directory of Open Access Journals (Sweden)

    Salah I. Al-Mously

    2008-01-01

    Full Text Available This paper presents a novel cellular handset design with a bottom-mounted short loaded-whip antenna. This new handset design is modeled and simulated using a finite difference time-domain (FDTD-based platform SEMCAD. The proposed handset is based on a current commercially available bar-phone type with a curvature shape, keypad positioned above the screen, and top-mounted antenna. The specific absorption rates (SARs are determined computationally in the specific anthropomorphic mannequin (SAM and anatomically correct model of a human head when exposed to the EM-field radiation of the proposed cellular handset and the handset with top-mounted antenna. The two cellular handsets are simulated to operate at both GSM standards, 900 MHz as well as 1800 MHz, having different antenna dimensions and intput power of 0.6 W and 0.125 W, respectively. The proposed human hand holding the two handset models is a semirealistic hand model consists of three tissues: skin, muscle, and bone. The simulations are conducted with handset positions based on the IEEE standard 1528-2003. The results show that the proposed handset has a significant improvement of antenna efficiency when it is hand-held close to head, as compared with the handset of top-mounted antenna. Also, the results show that a significant reduction of the induced SAR in the human head-tissues can be achieved with the proposed handset.

  20. System identification of the human vestibulo-ocular reflex during head-free tracking.

    Science.gov (United States)

    Tangorra, James L; Jones, Lynette A; Hunter, Ian W

    2004-01-01

    A method was developed to identify the linear, system level dynamics of the horizontal, angular vestibulo-ocular reflex (VOR) as it stabilized vision during head-free tracking of a visual target. Small amplitude, broad spectrum, stochastic torque perturbations were applied to the head while the subject tracked an unpredictable, moving target with active head and eye motions. Stochastic system identification techniques were used to design the torque and target inputs and to conduct the analysis such that the linear dynamics of the VOR, independently of the visual system's influence on eye motions, were determined. The linear analysis was limited to evaluating VOR dynamics from approximately 0.5 to 4.5 Hz. Nonlinearities in the head-neck system affected the low frequency response of the head to the torque perturbations, and the eye velocity sequence was affected by nonlinearities and degraded by noise at high frequencies. The VOR's gain was near 1.0 between about 0.5 and 2.5 Hz, and then decreased steadily to 0.85 as the frequency increased towards 4.0 Hz. The VOR phase angle was also frequency dependent and corresponded to VOR eye motions lagging the head's disturbance motion by less than 10 ms at frequencies greater than 1.0 Hz.

  1. Detection of movement intention using EEG in a human-robot interaction environment

    Directory of Open Access Journals (Sweden)

    Ernesto Pablo Lana

    Full Text Available Introduction : This paper presents a detection method for upper limb movement intention as part of a brain-machine interface using EEG signals, whose final goal is to assist disabled or vulnerable people with activities of daily living. Methods EEG signals were recorded from six naïve healthy volunteers while performing a motor task. Every volunteer remained in an acoustically isolated recording room. The robot was placed in front of the volunteers such that it seemed to be a mirror of their right arm, emulating a Brain Machine Interface environment. The volunteers were seated in an armchair throughout the experiment, outside the reaching area of the robot to guarantee safety. Three conditions are studied: observation, execution, and imagery of right arm’s flexion and extension movements paced by an anthropomorphic manipulator robot. The detector of movement intention uses the spectral F test for discrimination of conditions and uses as feature the desynchronization patterns found on the volunteers. Using a detector provides an objective method to acknowledge for the occurrence of movement intention. Results When using four realizations of the task, detection rates ranging from 53 to 97% were found in five of the volunteers when the movement was executed, in three of them when the movement was imagined, and in two of them when the movement was observed. Conclusions Detection rates for movement observation raises the question of how the visual feedback may affect the performance of a working brain-machine interface, posing another challenge for the upcoming interface implementation. Future developments will focus on the improvement of feature extraction and detection accuracy for movement intention using EEG data.

  2. Investigating the impact of performance management on human resource performance across head offices of Agricultural bank branches in Tehran

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Torabi Shahidi

    2013-08-01

    Full Text Available Human resource is one of the most precious assets across contemporary organizations and companies. For this reason, enterprises have to invest on them to promote and improve their employees’ performance. An effective mechanism to develop corporate and human performance is to design and establish a system of performance management so that it improves employees’ performance by determining explicit organizational objectives and coordinating them with individual goals.Current work aims to determine the impact of performance management on human resource performance across head offices of Agricultural Bank branches in Tehran (the main goal and prioritize among performance management components and human resource performance components and also present some procedures to improve human performance using performance management components (sub-goals.

  3. Horizontal plane head stabilization during locomotor tasks.

    Science.gov (United States)

    Cromwell, R L; Newton, R A; Carlton, L G

    2001-03-01

    Frequency characteristics of head stabilization were examined during locomotor tasks in healthy young adults(N = 8) who performed normal walking and 3 walking tasks designed to produce perturbations primarily in the horizontal plane. In the 3 walking tasks, the arms moved in phase with leg movement, with abnormally large amplitude, and at twice the frequency of leg movement. Head-in-space angular velocity was examined at the predominant frequencies of trunk motion. Head movements in space occurred at low frequencies ( 4.0 Hz) when the arms moved at twice the frequency of the legs. Head stabilization strategies were determined from head-on-trunk with respect to trunk frequency profiles derived from angular velocity data. During natural walking at low frequencies (head-on-trunk movement was less than trunk movement. At frequencies 3.0 Hz or greater, equal and opposite compensatory movement ensured head stability. When arm swing was altered, compensatory movement guaranteed head stability at all frequencies. Head stabilization was successful for frequencies up to 10.0 Hz during locomotor tasks. Maintaining head stability at high frequencies during voluntary tasks suggests that participants used feedforward mechanisms to coordinate head and trunk movements. Maintenance of head stability during dynamic tasks allows optimal conditions for vestibulo-ocular reflex function.

  4. Dynamic and opposing adjustment of movement cancellation and generation in an oculomotor countermanding task.

    Science.gov (United States)

    Corneil, Brian D; Cheng, Joshua C; Goonetilleke, Samanthi C

    2013-06-12

    Adaptive adjustments of strategies help optimize behavior in a dynamic and uncertain world. Previous studies in the countermanding (or stop-signal) paradigm have detailed how reaction times (RTs) change with trial sequence, demonstrating adaptive control of movement generation. Comparatively little is known about the adaptive control of movement cancellation in the countermanding task, mainly because movement cancellation implies the absence of an outcome and estimates of movement cancellation require hundreds of trials. Here, we exploit a within-trial proxy of movement cancellation based on recordings of neck muscle activity while human subjects attempted to cancel large eye-head gaze shifts. On a subset of successfully cancelled trials where gaze remains stable, small head-only movements to the target are actively braked by a pulse of antagonist neck muscle activity. The timing of such antagonist muscle recruitment relative to the stop signal, termed the "antagonist latency," tended to decrease or increase after trials with or without a stop-signal, respectively. Over multiple time scales, fluctuations in the antagonist latency tended to be the mirror opposite of those occurring contemporaneously with RTs. These results provide new insights into the adaptive control of movement cancellation at an unprecedented resolution, suggesting it can be as prone to dynamic adjustment as movement generation. Adaptive control in the countermanding task appears to be governed by a dynamic balance between movement cancellation and generation: shifting the balance in favor of movement cancellation slows movement generation, whereas shifting the balance in favor of movement generation slows movement cancellation.

  5. Levels of matrix metalloproteinase-7 and osteopontin in human gingival crevicular fluid during initial tooth movement

    Directory of Open Access Journals (Sweden)

    Dhaval Oswal

    2015-01-01

    Full Text Available Purpose: During orthodontic treatment, the early response of periodontal tissues to mechanical stress involves several metabolic changes that allow tooth movement. The purpose of this investigation was to evaluate osteopontin (OPN and matrix metalloproteinase (MMP-7 in the gingival crevicular fluid (GCF of human teeth exposed to orthodontic force. Materials and Methods: GCF samples were obtained from 15 healthy orthodontic patients (age, 12-22 years. In each patient, the left maxillary canine having the fixed orthodontic appliance was used as the test tooth, and its antagonist, with no appliance, was the control. Orthodontic force, 75 g was applied using a 16 × 22 beta titanium closing loop. The GCF sampling on the disto-buccal aspects of experimental and control tooth was performed at specific time interval with sterilized absorbent paper point. Processing was carried out with enzyme-linked immunosorbent assay to detect OPN and MMP-7 levels. Results: The peak level of OPN was seen after 1 h application of orthodontic force which was 1280.36 pg/ml ± 185.02. The peak level of MMP-7 was seen at 0 h which was 598.3 pg/ml ± 107.5. The levels of OPN after 1 h increased to 1280.36 pg/ml ± 185.02, and they decreased at 24 h to 1012.86 pg/ml ± 168.47 (P = 0.001. The levels of MMP-7 after 1 h decreased to 478 pg/ml ± 99.7 which increased at 24 h to 526.9 pg/ml ± 99.2. Conclusions: Orthodontic forces affect both OPN and MMP-7 protein levels on the compression side in a time-dependent fashion.

  6. Exploiting Human Resource Requirements to Infer Human Movement Patterns for Use in Modelling Disease Transmission Systems: An Example from Eastern Province, Zambia.

    Directory of Open Access Journals (Sweden)

    Simon Alderton

    Full Text Available In this research, an agent-based model (ABM was developed to generate human movement routes between homes and water resources in a rural setting, given commonly available geospatial datasets on population distribution, land cover and landscape resources. ABMs are an object-oriented computational approach to modelling a system, focusing on the interactions of autonomous agents, and aiming to assess the impact of these agents and their interactions on the system as a whole. An A* pathfinding algorithm was implemented to produce walking routes, given data on the terrain in the area. A* is an extension of Dijkstra's algorithm with an enhanced time performance through the use of heuristics. In this example, it was possible to impute daily activity movement patterns to the water resource for all villages in a 75 km long study transect across the Luangwa Valley, Zambia, and the simulated human movements were statistically similar to empirical observations on travel times to the water resource (Chi-squared, 95% confidence interval. This indicates that it is possible to produce realistic data regarding human movements without costly measurement as is commonly achieved, for example, through GPS, or retrospective or real-time diaries. The approach is transferable between different geographical locations, and the product can be useful in providing an insight into human movement patterns, and therefore has use in many human exposure-related applications, specifically epidemiological research in rural areas, where spatial heterogeneity in the disease landscape, and space-time proximity of individuals, can play a crucial role in disease spread.

  7. Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).

    Science.gov (United States)

    Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C

    2016-08-01

    Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.

  8. Vitreitis and movement disorder associated with neurosyphilis and human immunodeficiency virus (HIV) infection: case report

    OpenAIRE

    2008-01-01

    In this report, we describe an unusual patient with a choreiform movement disorder, misdiagnosed as Huntington disease, who later developed dense vitreitis leading to the identification of Treponema pallidum as the underlying pathogen of both abnormalities.

  9. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Directory of Open Access Journals (Sweden)

    Jin Qi

    Full Text Available Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  10. Coordination Mechanism in Fast Human Movements - Experimental and Modelling Studies. Volume 2.

    Science.gov (United States)

    1982-02-01

    produced a delayed second burst from the triceps brachii which translated into increased movement times. Antagonist fatigue regimens, 5:5 and 5:10... translation and commentary by T.S. Hall, Cambridge, MA: Harvard University Press, 1972, pp. 24-30. 15. Dindar, F. and M. Verrier. "Studies of the...Sisson. "The Time Relations of the Events in Quick Voluntary Movements." Journal of Experimental Psychology. 19: 519-523, 1936. 28. Henneman , E., and C. B

  11. Effect on the disability index of adult patients with benign paroxysmal positional vertigo using vestibular rehabilitation and human movement

    OpenAIRE

    Chaverri Flores, Sofía; Chaverri Polini, Julián; Mora Campos, Andrea

    2007-01-01

    Objective: determine the effect on the disability index of adult patients with benign paroxysmal positional vertigo (BPPV) using vestibular rehabilitation therapy (VRT) and human movement. Subjects: six subjects with an average age of 49.5 ± 14.22 years who have been diagnosed with benign paroxysmal positional vertigo by an otolaryngologist. Instruments: the Dizziness Handicap Inventory and a questionnaire to determine impact on the quality of life of patients with this pathology (Ceballos an...

  12. Factors affecting the aluminium content of human femoral head and neck.

    Science.gov (United States)

    Zioła-Frankowska, Anetta; Dąbrowski, Mikołaj; Kubaszewski, Łukasz; Rogala, Piotr; Frankowski, Marcin

    2015-11-01

    Tissues for the study were obtained intraoperatively during hip replacement procedures from 96 patients. In all the cases, the indication for this treatment was primary or secondary degenerative changes in the hip joint. The subject of the study was the head and neck of the femur, resected in situ. Aluminium concentrations measured in femoral head and neck samples from patients aged between 25 and 91 were varied. Statistical methods were applied to determine the variations in relation to the parameters from the background survey. Significant differences in the aluminium content of femoral head samples were observed between patients under and over 60 years of age. Based on the results, it was confirmed that the aluminium accumulates in bones over a lifetime. The study showed that the content of aluminium in the head and neck of the femur depends on the factors such as: type of medicines taken, contact with chemicals at work, differences in body anatomy and sex. The study on the levels of aluminium in bones and the factors affecting its concentration is a valuable source of information for further research on the role of aluminium in bone diseases. Based on the investigations, it was found that the GF-AAS technique is the best analytical tool for routine analysis of aluminium in complex matrix samples. The use of femoral heads in the investigations was approved by the Bioethics Committee of the University of Medical Sciences in Poznań (Poland). Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients.

    Science.gov (United States)

    Glover, P M; Bowtell, R

    2008-01-21

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s(-1) near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s(-1) rate of change of magnetic field were 0.15+/-0.02, 0.077+/-0.003 and 0.015+/-0.002 V m(-1) respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m(-1) s(-1) the measured rate-of-change of magnetic field was 2.2+/-0.1 T s(-1) and the peak electric field was 0.30+/-0.01 V m(-1) on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  14. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients

    Science.gov (United States)

    Glover, P. M.; Bowtell, R.

    2008-01-01

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s-1 near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s-1 rate of change of magnetic field were 0.15 ± 0.02, 0.077 ± 0.003 and 0.015 ± 0.002 V m-1 respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m-1 s-1 the measured rate-of-change of magnetic field was 2.2 ± 0.1 T s-1 and the peak electric field was 0.30 ± 0.01 V m-1 on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  15. Gaze following in baboons (Papio anubis): juveniles adjust their gaze and body position to human's head redirections.

    Science.gov (United States)

    Parron, Carole; Meguerditchian, Adrien

    2016-12-01

    Gaze following, the ability to follow the gaze of other individuals, has been widely studied in non-human primate species, mostly in adult individuals. Yet, the literature on gaze following revealed a quite variability across the different findings, some of it might reflect true inter-species differences, while others might be related to methodological differences, or to an underestimation of the factors involved in the expression of gaze following. In the current study, we tested 54 captive olive baboons (Papio anubis), housed in social groups, to assess how juvenile and adult baboons would spontaneously react to a sudden change in the direction of a human experimenter's head. First, our results showed that juveniles, more than adult baboons, co-oriented their gaze with the experimenter's gaze. We also observed a strong habituation effect in adult baboons but not in juveniles, as the adults' response vanished at the second exposure to a change of direction of the experimenter's head. Second, our results showed that juveniles subsequently adopted an original strategy when the experimenter's head indicated some new directions: they reliably adjusted their spatial body position to keep a gaze contact with the experimenter's line of sight. We discussed how the age class and the individual expertise of the baboons could lead to some modulations in terms of attentiveness, motivation, or cognitive abilities, and thus likely influence gaze following.

  16. Organization and Detailed Parcellation of Human Hippocampal Head and Body Regions Based on a Combined Analysis of Cyto- and Chemoarchitecture.

    Science.gov (United States)

    Ding, Song-Lin; Van Hoesen, Gary W

    2015-10-15

    The hippocampal formation (HF) is one of the hottest regions in neuroscience because it is critical to learning, memory, and cognition, while being vulnerable to many neurological and mental disorders. With increasing high-resolution imaging techniques, many scientists have started to use distinct landmarks along the anterior-posterior axis of HF to allow segmentation into individual subfields in order to identify specific functions in both normal and diseased conditions. These studies urgently call for more reliable and accurate segmentation of the HF subfields DG, CA3, CA2, CA1, prosubiculum, subiculum, presubiculum, and parasubiculum. Unfortunately, very limited data are available on detailed parcellation of the HF subfields, especially in the complex, curved hippocampal head region. In this study we revealed detailed organization and parcellation of all subfields of the hippocampal head and body regions on the base of a combined analysis of multiple cyto- and chemoarchitectural stains and dense sequential section sampling. We also correlated these subfields to macro-anatomical landmarks, which are visible on magnetic resonance imaging (MRI) scans. Furthermore, we created three versions of the detailed anatomic atlas for the hippocampal head region to account for brains with four, three, or two hippocampal digitations. These results will provide a fundamental basis for understanding the organization, parcellation, and anterior-posterior difference of human HF, facilitating accurate segmentation and measurement of HF subfields in the human brain on MRI scans.

  17. Role of human papillomavirus and its detection in potentially malignant and malignant head and neck lesions: updated review.

    Science.gov (United States)

    Chaudhary, Ajay Kumar; Singh, Mamta; Sundaram, Shanthy; Mehrotra, Ravi

    2009-06-25

    Head and neck malignancies are characterized by a multiphasic and multifactorial etiopathogenesis. Tobacco and alcohol consumption are the most common risk factors for head and neck malignancy. Other factors, including DNA viruses, especially human papilloma virus (HPV), may also play a role in the initiation or development of these lesions. The pathways of HPV transmission in the head and neck mucosal lesions include oral-genital contact, more than one sexual partner and perinatal transmission of HPV to the neonatal child. The increase in prevalence of HPV infection in these lesions may be due to wider acceptance of oral sex among teenagers and adults as this is perceived to be a form of safe sex. The prevalence of HPV in benign lesions as well as malignancies has been assessed by many techniques. Among these, the polymerase chain reaction is the most sensitive method. Review of literature reveals that HPV may be a risk factor for malignancies, but not in all cases. For confirmation of the role of HPV in head and neck squamous cell carcinoma, large population studies are necessary in an assortment of clinical settings. Prophylactic vaccination against high-risk HPV types eventually may prevent a significant number of cervical carcinomas. Of the two vaccines currently available, Gardasil (Merck & Co., Inc.) protects against HPV types 6, 11, 16 and 18, while the other vaccine, Cervarix (GlaxoSmithKline, Rixensart, Belgium) protects against HPV types 16 and 18 only. However, the HPV vaccine has, to the best of our knowledge, not been tried in head and neck carcinoma. The role of HPV in etiopathogenesis, prevalence in benign and malignant lesions of this area and vaccination strategies are briefly reviewed here.

  18. Human motor development and hand laterality: a kinematic analysis of drawing movements.

    Science.gov (United States)

    Blank, R; Miller, V; von Voss, H

    2000-12-08

    This study examines the developmental profiles of basic 'open-loop' drawing movements on the non-dominant hand (ND) in comparison with the dominant hand (D). Fifty-three right-handed children aged 7-14 years and 15 adults aged 27-43 years were examined. Each subject drew lines and circles of different sizes at maximum velocity with a pressure-sensitive pen on a computer graphics tablet. Small lines were drawn at 90 degrees to the axis of the forearm (lines using wrist movements (LWM)) and along the axis of the forearm (lines using elbow movements (LEM)). Larger lines were drawn at 90 degrees to the axis of the forearm (LEM). At both extremities, the movement frequencies of the proximally generated drawing movements increased in a parallel fashion at different levels. In LWM, the right-left-differences (RLD) were high in 7- to 8-year-old children; until puberty, the ND hand reached almost the performance of the D hand. In contrast, the RLD of the LFM increased at the same time. As adulthood approaches, frequencies of all drawings increased further while the LWM on the ND side remained stable. In adults, there were similar RLD for all line drawings involving predominantly flexion and extension movements. When drawing circles, the RLD were highest, though stable in all age groups. Hand laterality of pen use changes over time; these changes are dependent on complexity (combined/sequential cf. flexion-extension muscle activation) and on topography (proximal cf. distal movements). Distinct developmental profiles of motoneuronal populations of the cortex may be responsible for the distinct hand laterality effects and the decreasing variability of motor patterns. The drawing abilities and developmental changes on the untrained ND hand indicate that effector-specific practice plays a minor role.

  19. Epstein-Barr virus and human papillomavirus infections and genotype distribution in head and neck cancers.

    Directory of Open Access Journals (Sweden)

    Zeyi Deng

    Full Text Available To investigate the prevalence, genotypes, and prognostic values of Epstein-Barr virus (EBV and human papillomavirus (HPV infections in Japanese patients with different types of head and neck cancer (HNC.HPV and EBV DNA, EBV genotypes and LMP-1 variants, and HPV mRNA expression were detected by PCR from fresh-frozen HNC samples. HPV genotypes were determined by direct sequencing, and EBV encoded RNA (EBER was examined by in situ hybridization.Of the 209 HNC patients, 63 (30.1% had HPV infection, and HPV-16 was the most common subtype (86.9%. HPV E6/E7 mRNA expression was found in 23 of 60 (38.3% HPV DNA-positive cases detected. The site of highest prevalence of HPV was the oropharynx (45.9%. Among 146 (69.9% HNCs in which EBV DNA was identified, 107 (73.3% and 27 (18.5% contained types A and B, respectively, and 124 (84.9% showed the existence of del-LMP-1. However, only 13 (6.2% HNCs were positive for EBER, 12 (92.3% of which derived from the nasopharynx. Co-infection of HPV and EBER was found in only 1.0% of HNCs and 10.0% of NPCs. Kaplan-Meier survival analysis showed significantly better disease-specific and overall survival in the HPV DNA+/mRNA+ oropharyngeal squamous cell carcinoma (OPC patients than in the other OPC patients (P = 0.027 and 0.017, respectively. Multivariate analysis showed that stage T1-3 (P = 0.002 and HPV mRNA-positive status (P = 0.061 independently predicted better disease-specific survival. No significant difference in disease-specific survival was found between the EBER-positive and -negative NPC patients (P = 0.155.Our findings indicate that co-infection with HPV and EBV is rare in HNC. Oropharyngeal SCC with active HPV infection was related to a highly favorable outcome, while EBV status was not prognostic in the NPC cohort.

  20. Epstein-Barr virus and human papillomavirus infections and genotype distribution in head and neck cancers.

    Science.gov (United States)

    Deng, Zeyi; Uehara, Takayuki; Maeda, Hiroyuki; Hasegawa, Masahiro; Matayoshi, Sen; Kiyuna, Asanori; Agena, Shinya; Pan, Xiaoli; Zhang, Chunlin; Yamashita, Yukashi; Xie, Minqiang; Suzuki, Mikio

    2014-01-01

    To investigate the prevalence, genotypes, and prognostic values of Epstein-Barr virus (EBV) and human papillomavirus (HPV) infections in Japanese patients with different types of head and neck cancer (HNC). HPV and EBV DNA, EBV genotypes and LMP-1 variants, and HPV mRNA expression were detected by PCR from fresh-frozen HNC samples. HPV genotypes were determined by direct sequencing, and EBV encoded RNA (EBER) was examined by in situ hybridization. Of the 209 HNC patients, 63 (30.1%) had HPV infection, and HPV-16 was the most common subtype (86.9%). HPV E6/E7 mRNA expression was found in 23 of 60 (38.3%) HPV DNA-positive cases detected. The site of highest prevalence of HPV was the oropharynx (45.9%). Among 146 (69.9%) HNCs in which EBV DNA was identified, 107 (73.3%) and 27 (18.5%) contained types A and B, respectively, and 124 (84.9%) showed the existence of del-LMP-1. However, only 13 (6.2%) HNCs were positive for EBER, 12 (92.3%) of which derived from the nasopharynx. Co-infection of HPV and EBER was found in only 1.0% of HNCs and 10.0% of NPCs. Kaplan-Meier survival analysis showed significantly better disease-specific and overall survival in the HPV DNA+/mRNA+ oropharyngeal squamous cell carcinoma (OPC) patients than in the other OPC patients (P = 0.027 and 0.017, respectively). Multivariate analysis showed that stage T1-3 (P = 0.002) and HPV mRNA-positive status (P = 0.061) independently predicted better disease-specific survival. No significant difference in disease-specific survival was found between the EBER-positive and -negative NPC patients (P = 0.155). Our findings indicate that co-infection with HPV and EBV is rare in HNC. Oropharyngeal SCC with active HPV infection was related to a highly favorable outcome, while EBV status was not prognostic in the NPC cohort.

  1. Mixed Movements

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2010-01-01

    Mixed Movements is a research project engaged in performance-based architectural drawing. Architectonic implementation questions relations between the human body and a body of architecture by the different ways we handle drawing materials. A drawing may explore architectonic problems at other...... levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....

  2. Effect of 4-Horizontal Rectus Muscle Tenotomy on Visual Function and Eye Movement Records in Patients with Infantile Nystagmus Syndrome without Abnormal Head Posture and Strabismus: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Ahmad Ameri

    2013-10-01

    Full Text Available Purpose: To evaluate the effect of tenotomy on visual function and eye movement records in patients with infantile nystagmus syndrome (INS without abnormal head posture (AHP and strabismusMethods: A prospective interventional case-series of patients with INS with no AHP or strabismus. Patients underwent 4-horizontal muscle tenotomy. Best corrected visual acuity (BCVA and eye movement recordings were compared pre and postoperatively.Results: Eight patients were recruited in this study with 3 to 15.5 months of follow-up. Patients showed significant improvement in their visual function. Overall nystagmus amplitude and velocity was decreased 30.7% and 19.8%, respectively. Improvements were more marked at right and left gazes. Conclusion: Tenotomy improves both visual function and eye movement records in INS with no strabismus and eccentric null point. The procedure has more effect on lateral gazes with worse waveforms, thus can broaden area with better visual function. We recommend this surgery in patients with INS but no associated AHP or strabismus.

  3. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.

    Science.gov (United States)

    Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J

    2007-03-28

    A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a

  4. ENVIRONMENTAL JUSTICE MOVEMENTS AND GANDHI’S ECOLOGICAL VISION: A STUDY ON HUMAN RIGHTS VIOLATION BY DEVELOPMENTAL PROJECTS IN ODISHA

    Directory of Open Access Journals (Sweden)

    Braja Kishore Sahoo

    2016-01-01

    Full Text Available The state continues to be the key institution around which struggles for environmental justice in India are articulated. Its dominant role in the economy and its hierarchical, authoritarian and legitimate role as arbiter of rights and resources, the violation of its own environmental laws or acts in ways inimical to environmental justice has been protected by indigenous people. In my paper, I draw on the theme of the protest movements against developmental projects which are rooted in the livelihood and survival of the common people and the violation of human rights. The threats of displacement, loss of livelihood, alienation from their own surroundings are catalysts for this strand of the movement. The indigenous peoples facing threats to their rights, lands and cultures are the major force behind the mobilization against the corporate, government, policies and other forces which threaten them to fragment, displace, assimilate or drive towards cultural disintegration. I describe the main aim of these movements are based around the re-scaling of development projects to the local level, the defense of common property resources and the restoration of participatory, community based forms of environmental management. Based on this perspective, I discuss how the peoples of Odisha protest against developmental projects particularly Neo-Gandhian activists incorporating the political thinking and practice practiced by Gandhiji.This research shows that protest movements against developmental projects in Odisha were by and large successful by incorporating procedural, corrective and social aspects of justice inherent in Gandhian ecological ideas.

  5. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    Science.gov (United States)

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.

  6. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury.

    Science.gov (United States)

    Schalow, G

    2010-01-01

    Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can

  7. Fetal eye movements on magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Ramona Woitek

    Full Text Available OBJECTIVES: Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. METHODS: Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]. Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981: Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. RESULTS: In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%. Significant differences between the age groups were found for Type I (p = 0.03, Type Ia (p = 0.031, and Type IV eye movements (p = 0.033. Consistently parallel bulbs were found in 27.3-45%. CONCLUSIONS: In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  8. Fetal eye movements on magnetic resonance imaging.

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  9. Fetal Eye Movements on Magnetic Resonance Imaging

    Science.gov (United States)

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  10. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Rufener, Nora; Bojsen-Møller, Jens

    2010-01-01

    Abstract The effect of a period of passive movement training on angiogenic factors and capillarization in skeletal muscle was examined. Seven young males were subjected to passive training for 90 min, four times/week in a motor-driven knee extensor device that extended one knee passively at 80...... cycles/min. The other leg was used as control. Muscle biopsies were obtained from m. v. lateralis of both legs before as well as after 2 and 4 weeks of training. After the training period, passive movement and active exercise were performed with both legs and muscle interstitial fluid was sampled from...... legs. Acute passive movement increased (P muscle interstitial VEGF levels 4-6 -fold above rest and the proliferative effect, determined in vitro, of the muscle interstitial fluid ~16-fold compared to perfusate. These increases were similar for active exercise. The results demonstrate...

  11. Eye-head stabilization mechanism for a humanoid robot tested on human inertial data

    DEFF Research Database (Denmark)

    Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia;

    2016-01-01

    they keep the image stationary on the retina. In this work we present the first complete model of eye-head stabilization based on the coordination of VCR and VOR. The model is provided with learning and adaptation capabilities based on internal models. Tests on a simulated humanoid platform replicating...

  12. [Cosmus Conrad Cuno (1652-1745) on a human ectoparasite: the head louse].

    Science.gov (United States)

    Müller, G H

    1979-07-01

    Cosmus Conrad Cuno, a less well known optician and inventor of microscopes from the second half of the 17th century, published in 1734 at Augsburg his Observationes durch dessen verfertigte Microscopia where along with various observations he communicated salient details pertaining to the biology of the head louse.

  13. Survey of Permethrin and Malathion Resistance in Human Head Lice Populations from Denmark

    DEFF Research Database (Denmark)

    Kristensen, Michael; Knorr, Mette; Rasmussen, Anne-Marie

    2006-01-01

    at the discriminating dose. The connection between permethrin resistance and kdr-like mutations is confirmed by our findings. The frequency of the double mutation T929I-L932 F in the voltage-sensitive sodium channel gene associated with permethrin resistance was 0.95 in Danish head lice populations....

  14. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Science.gov (United States)

    van Hees, Vincent T; Gorzelniak, Lukas; Dean León, Emmanuel Carlos; Eder, Martin; Pias, Marcelo; Taherian, Salman; Ekelund, Ulf; Renström, Frida; Franks, Paul W; Horsch, Alexander; Brage, Søren

    2013-01-01

    Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr), and wrist in 63 women (20-35 yr) in whom daily activity-related energy expenditure (PAEE) was available. In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in

  15. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Directory of Open Access Journals (Sweden)

    Vincent T van Hees

    Full Text Available INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. METHODS: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+] were derived for each experimental condition and compared against the reference acceleration (forward kinematics of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr, and wrist in 63 women (20-35 yr in whom daily activity-related energy expenditure (PAEE was available. RESULTS: In the robot experiment, HFEN+ had lowest error during (vertical plane rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively. ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN. CONCLUSION: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice

  16. Preliminary investigation of bird and human movements and disease-management practices in noncommercial poultry flocks in southwestern British Columbia.

    Science.gov (United States)

    Burns, Theresa E; Kelton, David; Ribble, Carl; Stephen, Craig

    2011-09-01

    Understanding normal movement patterns and husbandry practices of poultry production systems is important for understanding the dynamics of disease spread, and for controlling outbreaks of highly infectious diseases, such as highly pathogenic avian influenza. To learn about these patterns in the noncommercial or "backyard" poultry-keeping sector, an open-ended questionnaire was administered to 18 backyard-flock owners in British Columbia, Canada, and responses were analyzed descriptively. Six participants reported that they visited premises that were part of the commercial poultry system in the last year; however, bird movements between commercial and noncommercial farms were always unidirectional, from commercial to backyard. Bird movements into and out of participants' flocks occurred multiple times per month (two flocks), three times per year (five flocks), once or twice a year (nine flocks) and every 3-5 yr (two flocks). Visitors had direct contact with three participants' flocks multiple times per week; for other flocks, visitors had direct contact three times or less per year. Fourteen participants rarely had direct contact with other backyard flocks, three had contact more than once per week, and one had contact every 3 mo. Participants stated that the health of their birds was excellent (7), very good (3), good (6), O.K. (1), and all right (1), and used a median of two biosecurity practices to maintain health in their flock. Our findings suggest that bird movements are not likely to transmit disease from backyard to commercial flocks; however, human movements between backyard and commercial premises could transmit diseases. Within the backyard-flock sector, the majority of small flocks appear to pose little risk of disease transmission because they are maintained in semi-isolation from other flocks; however, a minority of flocks has high contact levels with other flocks and could be important in disease spread.

  17. Time-course of coherence in the human basal ganglia during voluntary movements

    Science.gov (United States)

    Talakoub, Omid; Neagu, Bogdan; Udupa, Kaviraja; Tsang, Eric; Chen, Robert; Popovic, Milos R.; Wong, Willy

    2016-01-01

    We are interested in characterizing how brain networks interact and communicate with each other during voluntary movements. We recorded electrical activities from the globus pallidus pars interna (GPi), subthalamic nucleus (STN) and the motor cortex during voluntary wrist movements. Seven patients with dystonia and six patients with Parkinson’s disease underwent bilateral deep brain stimulation (DBS) electrode placement. Local field potentials from the DBS electrodes and scalp EEG from the electrodes placed over the motor cortices were recorded while the patients performed externally triggered and self-initiated movements. The coherence calculated between the motor cortex and STN or GPi was found to be coupled to its power in both the beta and the gamma bands. The association of coherence with power suggests that a coupling in neural activity between the basal ganglia and the motor cortex is required for the execution of voluntary movements. Finally, we propose a mathematical model involving coupled neural oscillators which provides a possible explanation for how inter-regional coupling takes place. PMID:27725721

  18. Cortical excitability is not depressed in movement-modulated stretch response of human thumb flexor.

    Science.gov (United States)

    Wallace, C J; Miles, T S

    2001-08-01

    There is strong evidence that the predominant pathway of the long-latency stretch reflex for flexor pollicis longus crosses the motor cortex. This reflex response is diminished during active thumb movements. We tested the hypothesis that this could be due to a decrease in the excitability of the transcortical component during movement. During isometric, concentric and eccentric thumb movements, transcranial magnetic stimulation (TMS) of the motor cortex was given at a time when the reflex signal was traversing the motor cortex. TMS was also given earlier in separate runs when the signal was traversing the spinal cord under each of the three contractile conditions. The electromyogram was analysed for non-linear summation between stretch responses and the potential evoked by the cortical stimulus. The response to TMS alone was uniform across the three types of contraction, and the lack of cortical involvement in the short-latency reflex was confirmed. The TMS-evoked response summed in a non-linear manner with the long-latency reflex response, confirming that the excitability of the motor cortex was increased as the reflex signal passed through it. The long-latency response was markedly depressed during isotonic compared with isometric contractions. However, the non-linear summation was not greater during the isometric contractions. Thus, the depressed reflex responses during isotonic movements do not stem from reduced motor cortical responsiveness or afferent input to the transcortical pathway, and may instead reflect modulation of cutaneous reflexes during isotonic contractions.

  19. The Humanity of Movement or "It's Not Just a Gym Class."

    Science.gov (United States)

    Anderson, Douglas R.

    2002-01-01

    Argues that transitioning from physical education to kinesiology involved developing the kinesiological sciences such that the discipline has become dominated by a scientific outlook, thus marginalizing the humanistic features of movement. Gym classes are being weeded out of many university programs, with the claim that they must be retained and…

  20. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.

    Science.gov (United States)

    Reichenbach, Alexandra; Thielscher, Axel; Peer, Angelika; Bülthoff, Heinrich H; Bresciani, Jean-Pierre

    2014-01-01

    Seemingly effortless, we adjust our movements to continuously changing environments. After initiation of a goal-directed movement, the motor command is under constant control of sensory feedback loops. The main sensory signals contributing to movement control are vision and proprioception. Recent neuroimaging studies have focused mainly on identifying the parts of the posterior parietal cortex (PPC) that contribute to visually guided movements. We used event-related TMS and force perturbations of the reaching hand to test whether the same sub-regions of the left PPC contribute to the processing of proprioceptive-only and of multi-sensory information about hand position when reaching for a visual target. TMS over two distinct stimulation sites elicited differential effects: TMS applied over the posterior part of the medial intraparietal sulcus (mIPS) compromised reaching accuracy when proprioception was the only sensory information available for correcting the reaching error. When visual feedback of the hand was available, TMS over the anterior intraparietal sulcus (aIPS) prolonged reaching time. Our results show for the first time the causal involvement of the posterior mIPS in processing proprioceptive feedback for online reaching control, and demonstrate that distinct cortical areas process proprioceptive-only and multi-sensory information for fast feedback corrections.

  1. The resonant component of human physiological hand tremor is altered by slow voluntary movements.

    Science.gov (United States)

    Lakie, Martin; Vernooij, Carlijn A; Osborne, Timothy M; Reynolds, Raymond F

    2012-05-15

    Limb resonance imparts a characteristic spectrum to hand tremor. Movement will alter the resonance. We have examined the consequences of this change. Rectified forearm extensor muscle EMG and physiological hand tremor were recorded. In postural conditions the EMG spectrum is relatively flat whereas the acceleration spectrum is sharply peaked. Consequently, the gain between EMG and acceleration is maximal at the frequency where the tremor is largest (∼8 Hz). The shape of the gain curve implies mechanical resonance. Substantial alterations in posture do not significantly change the characteristics of the tremor or the shape or size of the gain curve. By contrast, slow or moderately paced voluntary wrist flexion–extension movements dramatically increase the hand tremor size and lower its peak frequency. These changes in size and frequency of the tremor cannot be attributed to changes in the EMG. Instead they reflect a very large change in the size and shape of the gain curve relating EMG to acceleration. The gain becomes larger and the peak moves to a lower frequency (∼6 Hz). We suggest that a movement-related (thixotropic) alteration in resonant properties of the wrist provides a simple explanation for these changes. The mechanism is illustrated by a model. Our new findings confirm that resonance plays a major role in wrist tremor. We also demonstrate that muscles operate very differently under postural and dynamic conditions. The different coupling between EMG and movement in posture and when moving must pose a considerable challenge for neural predictive control of skeletal muscles.

  2. Information transmission via movement behaviour improves decision accuracy in human groups

    NARCIS (Netherlands)

    Clément, R.J.G.; Wolf, Max; Snijders, Lysanne; Krause, Jens; Kurvers, R.H.J.M.

    2015-01-01

    A major advantage of group living is increased decision accuracy. In animal groups information is often transmitted via movement. For example, an individual quickly moving away from its group may indicate approaching predators. However, individuals also make mistakes which can initiate informatio

  3. Information transmission via movement behaviour improves decision accuracy in human groups

    NARCIS (Netherlands)

    Clément, Romain J.G.; Wolf, Max; Snijders, Lysanne; Krause, Jens; Kurvers, Ralf H.J.M.

    2015-01-01

    A major advantage of group living is increased decision accuracy. In animal groups information is often transmitted via movement. For example, an individual quickly moving away from its group may indicate approaching predators. However, individuals also make mistakes which can initiate information c

  4. Human Response to Air Movement - Evaluation of ASHRAE´s Draft Criteria

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.

    2003-01-01

    air velocities than did subjects feeling neutral or warmer. No difference in draft sensitivity between subjects feeling neutral, slightly warm or warm was observed. A smaller percentage of subjects were dissatisfied due to draft than prescribed by ASHRAE Standard 55 guidelines on air movement...

  5. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans.

    Science.gov (United States)

    Angeli, Claudia A; Edgerton, V Reggie; Gerasimenko, Yury P; Harkema, Susan J

    2014-05-01

    Previously, we reported that one individual who had a motor complete, but sensory incomplete spinal cord injury regained voluntary movement after 7 months of epidural stimulation and stand training. We presumed that the residual sensory pathways were critical in this recovery. However, we now report in three more individuals voluntary movement occurred with epidural stimulation immediately after implant even in two who were diagnosed with a motor and sensory complete lesion. We demonstrate that neuromodulating the spinal circuitry with epidural stimulation, enables completely paralysed individuals to process conceptual, auditory and visual input to regain relatively fine voluntary control of paralysed muscles. We show that neuromodulation of the sub-threshold motor state of excitability of the lumbosacral spinal networks was the key to recovery of intentional movement in four of four individuals diagnosed as having complete paralysis of the legs. We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis even years after injury.

  6. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    Directory of Open Access Journals (Sweden)

    Pedro Hernández-Cortés

    2014-01-01

    Full Text Available Objective. This study was designed to explore relationships of resonance frequency analysis (RFA—assessed implant stability (ISQ values with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP (n=7 or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA (n=10. Sixty 4.5×13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA (P0.5 in all cases, and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P>0.08. Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA. This ex vivo model is useful for dental implant studies.

  7. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect.

    Science.gov (United States)

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants' behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  8. Composite body movements modulate numerical cognition: Evidence from the motion–numerical compatibility effect

    Directory of Open Access Journals (Sweden)

    Xiaorong eCheng

    2015-11-01

    Full Text Available A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011 and Fisher (2012, suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher and colleagues (2008 found that participants’ behavior in a random number generation (RNG task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e. a motion–numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion–numerical compatibility effects exist for movements of other important body components, e.g. arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008 finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  9. The application of additive technologies in creation a medical simulator-trainer of the human head operating field

    Science.gov (United States)

    Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.; Pashaev, B. Y.

    2016-06-01

    The aim of the work was to determine the possible application of additive manufacturing technology during the manufacturing process as close as possible to reality of medical simulator-trainers. In work were used some additive manufacturing technologies: selective laser sintering (SLS), fused deposition modeling (FDM), binder Jetting. As a result, a prototype of simulator-trainer of the human head operating field, which based on the CT real patient, was manufactured and conducted its tests. It was found that structure, which is obtained with the use of 3D-printers ProJet 160, most appropriate and closest to the real properties of the bone.

  10. BOLD Consistently Matches Electrophysiology in Human Sensorimotor Cortex at Increasing Movement Rates: A Combined 7T fMRI and ECoG Study on Neurovascular Coupling

    National Research Council Canada - National Science Library

    Siero, Jeroen CW; Hermes, Dora; Hoogduin, Hans; Luijten, Peter R; Petridou, Natalia; Ramsey, Nick F

    2013-01-01

    .... We combined BOLD fMRI at 7T and intracranial electrocorticography (ECoG) to assess the relationship between BOLD and neuronal population activity in human sensorimotor cortex using a motor task with increasing movement rates...

  11. Efficacy of neem seed extract shampoo on head lice of naturally infected humans in Egypt.

    Science.gov (United States)

    Abdel-Ghaffar, Fathy; Semmler, Margit

    2007-01-01

    Sixty heavily lice-infested male and female children (4-15 years) were selected and subjected to the treatment with a neem seed extract shampoo. Twenty to thirty milliliter of the shampoo were thoroughly mixed with completely wet hair and rubbed in to reach the skin of the scalp. After 5, 10, 15 and 30 min, the shampoo was washed out and the hair basically combed. Head lice were collected and examined. The neem seed extract shampoo proved to be highly effective against all stages of head lice. No obvious differences regarding the efficacy of the shampoo were observed between an exposure time of 10, 15 or 30 min. No side effects, such as skin irritation, burning sensations, or red spots on the scalp, forehead or neck, respectively, were observed.

  12. Impact of head modeling and sensor types in localizing human gamma-band oscillations.

    Science.gov (United States)

    Mideksa, K G; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2014-01-01

    An effective mechanism in neuronal communication is oscillatory neuronal synchronization. The neuronal gamma-band (30-100 Hz) synchronization is associated with attention which is induced by a certain visual stimuli. Numerous studies have shown that the gamma-band activity is observed in the visual cortex. However, impact of different head modeling techniques and sensor types to localize gamma-band activity have not yet been reported. To do this, the brain activity was recorded using 306 magnetoencephalography (MEG) sensors, consisting of 102 magnetometers and 102 pairs of planar gradiometers (one measuring the derivative of the magnetic field along the latitude and the other along the longitude), and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head models with a single-shell and overlapping spheres (local sphere) have been used as a forward model for calculating the external magnetic fields generated from the gamma-band activity. For each sensor type, the subject-specific frequency range of the gamma-band activity was obtained from the spectral analysis. The identified frequency range of interest with the highest gamma-band activity is then localized using a spatial-filtering technique known as dynamic imaging of coherent sources (DICS). The source analysis for all the subjects revealed that the gradiometer sensors which measure the derivative along the longitude, showed sources close to the visual cortex (cuneus) as compared to the other gradiometer sensors which measure the derivative along the latitude. However, using the magnetometer sensors, it was not possible to localize the sources in the region of interest. When comparing the two head models, the local-sphere model helps in localizing the source more focally as compared to the single-shell head model.

  13. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions.

    Science.gov (United States)

    Martin-Fernandez, M L; Bordas, J; Diakun, G; Harries, J; Lowy, J; Mant, G R; Svensson, A; Towns-Andrews, E

    1994-06-01

    Using the facilities at the Daresbury Synchrotron Radiation Source, meridional diffraction patterns of muscles at ca 8 degrees C were recorded with a time resolution of 2 or 4 ms. In isometric contractions tetanic peak tension (P0) is reached in ca 400 ms. Under such conditions, following stimulation from rest, the timing of changes in the major reflections (the 38.2 nm troponin reflection, and the 21.5 and 14.34/14.58 nm myosin reflections) can be explained in terms of four types of time courses: K1, K2, K3 and K4. The onset of K1 occurs immediately after stimulation, but that of K2, K3 and K4 is delayed by a latent period of ca 16 ms. Relative to the end of their own latent periods the half-times for K1, K2, K3 and K4 are 14-16, 16, 32 and 52 ms, respectively. In half-times, K1, K2, K3 lead tension rise by 52, 36 and 20 ms, respectively. K4 parallels the time course of tension rise. From an analysis of the data we conclude that K1 reflects thin filament activation which involves the troponin system; K2 arises from an order-disorder transition during which the register between the filaments is lost; K3 is due to the formation of an acto-myosin complex which (at P0) causes 70% or more of the heads to diffract with actin-based periodicities; and K4 is caused by a change in the axial orientation of the myosin heads (relative to thin filament axis) which is estimated to be from 65-70 degrees at rest to ca 90 degrees at P0. Isotonic contraction experiments showed that during shortening under a load of ca 0.27 P0, at least 85% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, whilst their axial orientation does not change from that at rest. During shortening under a negligible load, at most 5-10% of the heads (relative to those forming an acto-myosin complex at P0) diffract with actin-based periodicities, and their axial orientation also remains the same as that at rest. This suggests that in isometric

  14. A Theatre Movement Bibliography, 1978 Edition.

    Science.gov (United States)

    Norris, Lynne

    Reference materials that deal with various aspects of theater movement are grouped in this partially annotated bibliography under the following headings: anatomy, kinesiology, and physiology; combat and martial arts; integrated approaches to movement; mime; miscellaneous acting and movement approaches; movement notations systems; movement…

  15. Coordination Mechanism in Fast Human Movements. Experimental and Modelling Studies. Volume 2.

    Science.gov (United States)

    1983-09-01

    spinal cord injury, and p stroke . It had been accepted that functional electrical - stimulation can be responsible for muscle rehabilitation and... Physiotherapy Canada, 1979, 31(5), 265-267. 59. Golla, F., and Hettwer, J. A study of the electromyograms of voluntary movement. Brain, 1924, 47, 57-69. ’ao 60...Kinetics Pub., 1982. 134. Schuck, E., Friedman, H., Wileman., W. and McNeal, D. Developing clinical devices for hemiplegic stroke patients. In M.M

  16. Geographically Modified PageRank Algorithms: Identifying the Spatial Concentration of Human Movement in a Geospatial Network.

    Directory of Open Access Journals (Sweden)

    Wei-Chien-Benny Chin

    Full Text Available A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms-Distance-Decay PageRank (DDPR and Geographical PageRank (GPR-that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility.

  17. Visual and non-visual control of landing movements in humans

    Science.gov (United States)

    Santello, Marco; McDonagh, Martin J N; Challis, John H

    2001-01-01

    The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583

  18. Human Response to Air Movement - Evaluation of ASHRAE´s Draft Criteria

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.;

    2003-01-01

    The aim of this study was to evaluate the present ASHRAE Standard 55-92 draft criteria and to describe how air movement is perceived at thermal sensations slightly cooler and slightly warmer than neutral. At temperatures 18oC, 20oC, 23oC, 26oC, and 28oC (64.4oF, 68oF, 73.4oF, 78.8oF, and 82.4o......F), 40 subjects at slightly cool, neutral and slightly warm overall thermal sensation were exposed to air velocities that were increased step-by-step from less than 0.1 m/s to 0.8 m/s (19.7 fpm to 157.5 fpm). Subjects who felt cool or slightly cool perceived air movement as being uncomfortable at lower...... air velocities than did subjects feeling neutral or warmer. No difference in draft sensitivity between subjects feeling neutral, slightly warm or warm was observed. A smaller percentage of subjects were dissatisfied due to draft than prescribed by ASHRAE Standard 55 guidelines on air movement...

  19. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    Science.gov (United States)

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  20. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans

    Science.gov (United States)

    Wolpaw, Jonathan R.; McFarland, Dennis J.

    2004-12-01

    Brain-computer interfaces (BCIs) can provide communication and control to people who are totally paralyzed. BCIs can use noninvasive or invasive methods for recording the brain signals that convey the user's commands. Whereas noninvasive BCIs are already in use for simple applications, it has been widely assumed that only invasive BCIs, which use electrodes implanted in the brain, can provide multidimensional movement control of a robotic arm or a neuroprosthesis. We now show that a noninvasive BCI that uses scalp-recorded electroencephalographic activity and an adaptive algorithm can provide humans, including people with spinal cord injuries, with multidimensional point-to-point movement control that falls within the range of that reported with invasive methods in monkeys. In movement time, precision, and accuracy, the results are comparable to those with invasive BCIs. The adaptive algorithm used in this noninvasive BCI identifies and focuses on the electroencephalographic features that the person is best able to control and encourages further improvement in that control. The results suggest that people with severe motor disabilities could use brain signals to operate a robotic arm or a neuroprosthesis without needing to have electrodes implanted in their brains. brain-machine interface | electroencephalography

  1. Tooth enamel EPR dosimetry of neutrons: Enhancement of the apparent sensitivity at irradiation in the human head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Khailov, A.M. [Medical Radiological Research Center, Korolyov str., 4, Obninsk 249032 (Russian Federation); Ivannikov, A.I. [Medical Radiological Research Center, Korolyov str., 4, Obninsk 249032 (Russian Federation)], E-mail: ivannikov@mrrc.obninsk.ru; Tikunov, D.D.; Skvortsov, V.G.; Stepanenko, V.F. [Medical Radiological Research Center, Korolyov str., 4, Obninsk 249032 (Russian Federation); Zhumadilov, K.; Tanaka, K.; Endo, S.; Hoshi, M. [Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)

    2007-07-15

    Induction of the EPR signal in tooth enamel at irradiation by the neutrons produced by a generator with maximal energy of 0.8 MeV in the air and in the human head phantom was investigated. Neutron and photon tissue absorbed doses in the mixed radiation field were determined experimentally and calculated using the Monte-Carlo method. It is shown that the EPR signal response of enamel to neutrons relative to the tissue dose is (2{+-}2)% of the appropriate value for {sup 60}Co gamma radiation. At irradiation in the human head phantom, the EPR signal response relatively to the input neutron tissue dose near the surface of the phantom (apparent EPR sensitivity to neutrons) increases to (14{+-}1)%. The observed EPR signal enhancement is caused by absorption in enamel of the secondary photons produced at H(n,{gamma})H{sup 2}, E{sub {gamma}}=2.23MeV reaction in the material of the phantom.

  2. ArduinoBased Head GestureControlled Robot UsingWireless Communication

    Directory of Open Access Journals (Sweden)

    Saurabh Kandalkar,

    2015-05-01

    Full Text Available This paper describes the robustness of ardiuno based head movement controlled robot. This robot is controlled using motion sensor which is mounted on the head. In future there is need of robots which can be used to ease the human tasks and interact with the human