WorldWideScience

Sample records for human gut ecosystem

  1. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  2. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  3. The human gut resistome.

    Science.gov (United States)

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  4. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  5. Disruption of the Gut Ecosystem by Antibiotics

    Science.gov (United States)

    2018-01-01

    The intestinal microbiota is a complex ecosystem consisting of various microorganisms that expands human genetic repertoire and therefore affects human health and disease. The metabolic processes and signal transduction pathways of the host and intestinal microorganisms are intimately linked, and abnormal progression of each process leads to changes in the intestinal environment. Alterations in microbial communities lead to changes in functional structures based on the metabolites produced in the gut, and these environmental changes result in various bacterial infections and chronic enteric inflammatory diseases. Here, we illustrate how antibiotics are associated with an increased risk of antibiotic-associated diseases by driving intestinal environment changes that favor the proliferation and virulence of pathogens. Understanding the pathogenesis caused by antibiotics would be a crucial key to the treatment of antibiotic-associated diseases by mitigating changes in the intestinal environment and restoring it to its original state. PMID:29214770

  6. Healthy human gut phageome.

    Science.gov (United States)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  7. The human gut microbiota and virome: Potential therapeutic implications.

    Science.gov (United States)

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of

  9. Impacts of Gut Bacteria on Human Health and Diseases

    Science.gov (United States)

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  10. The human gut virome: a multifaceted majority

    Directory of Open Access Journals (Sweden)

    Lesley Ann Ogilvie

    2015-09-01

    Full Text Available Here we outline our current understanding of the human gut virome, in particular the phage component of this ecosystem, highlighting progress and challenges in viral discovery in this arena. We reveal how developments in high-throughput sequencing technologies and associated data analysis methodologies are helping to illuminate this abundant ‘biological dark matter’. Current evidence suggests that the human gut virome is a highly individual but temporally stable collective, dominated by phage exhibiting a temperate lifestyle. This viral community also appears to encode a surprisingly rich functional repertoire that confers a range of attributes to their bacterial hosts, ranging from bacterial virulence and pathogenesis to maintaining host-microbiome stability and community resilience. Despite the significant advances in our understanding of the gut virome in recent years, it is clear that we remain in a period of discovery and revelation, as new methods and technologies begin to provide deeper understanding of the inherent ecological characteristics of this viral ecosystem. As our understanding increases, the nature of the multi-partite interactions occurring between host and microbiome will become clearer, helping us to more rationally define the concepts and principles that will underpin approaches to using human gut virome components for medical or biotechnological applications.

  11. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  12. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    Science.gov (United States)

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  13. Metagenomic Analysis of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha

    Understanding the link between the human gut microbiome and human health is one of the biggest scientific challenges in our decade. Because 90% of our cells are bacteria, and the microbial genome contains 200 times more genes than the human genome, the study of the human microbiome has...... the potential to impact many areas of our health. This PhD thesis is the first study to generate a large amount of experimental data on the DNA and RNA of the human gut microbiome. This was made possible by our development of a human gut microbiome array capable of profiling any human gut microbiome. Analysis...... of our results changes the way we link the gut microbiome with diseases. Our results indicate that inflammatory diseases will affect the ecological system of the human gut microbiome, reducing its diversity. Classification analysis of healthy and unhealthy individuals demonstrates that unhealthy...

  14. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    Directory of Open Access Journals (Sweden)

    Nishat Tasnim

    2017-10-01

    Full Text Available Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development.

  16. Rapid changes in the gut microbiome during human evolution.

    Science.gov (United States)

    Moeller, Andrew H; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V; Pusey, Anne E; Peeters, Martine; Hahn, Beatrice H; Ochman, Howard

    2014-11-18

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.

  17. Antivirulence activity of the human gut metabolome.

    Science.gov (United States)

    Antunes, L Caetano M; McDonald, Julie A K; Schroeter, Kathleen; Carlucci, Christian; Ferreira, Rosana B R; Wang, Melody; Yurist-Doutsch, Sophie; Hira, Gill; Jacobson, Kevan; Davies, Julian; Allen-Vercoe, Emma; Finlay, B Brett

    2014-07-29

    The mammalian gut contains a complex assembly of commensal microbes termed microbiota. Although much has been learned about the role of these microbes in health, the mechanisms underlying these functions are ill defined. We have recently shown that the mammalian gut contains thousands of small molecules, most of which are currently unidentified. Therefore, we hypothesized that these molecules function as chemical cues used by hosts and microbes during their interactions in health and disease. Thus, a search was initiated to identify molecules produced by the microbiota that are sensed by pathogens. We found that a secreted molecule produced by clostridia acts as a strong repressor of Salmonella virulence, obliterating expression of the Salmonella pathogenicity island 1 as well as host cell invasion. It has been known for decades that the microbiota protects its hosts from invading pathogens, and these data suggest that chemical sensing may be involved in this phenomenon. Further investigations should reveal the exact biological role of this molecule as well as its therapeutic potential. Importance: Microbes can communicate through the production and sensing of small molecules. Within the complex ecosystem formed by commensal microbes living in and on the human body, it is likely that these molecular messages are used extensively during the interactions between different microbial species as well as with host cells. Deciphering such a molecular dialect will be fundamental to our understanding of host-microbe interactions in health and disease and may prove useful for the design of new therapeutic strategies that target these mechanisms of communication. Copyright © 2014 Antunes et al.

  18. Soy and Gut Microbiota: Interaction and Implication for Human Health.

    Science.gov (United States)

    Huang, Haiqiu; Krishnan, Hari B; Pham, Quynhchi; Yu, Liangli Lucy; Wang, Thomas T Y

    2016-11-23

    Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.

  19. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  20. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Science.gov (United States)

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  1. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    Directory of Open Access Journals (Sweden)

    Dragana Dobrijevic

    Full Text Available The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  2. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  3. Colonic transit time is related to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic t...... imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.......Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic...... transit time and the gut microbial composition and metabolism, we assessed the colonic transit time of 98 subjects using radiopaque markers, and profiled their gut microbiota by16S rRNA gene sequencing and their urine metabolome by ultra performance liquid chromatography mass spectrometry. Based...

  4. The human gut microbiome and its dysfunctions through the meta-omics prism.

    Science.gov (United States)

    Mondot, Stanislas; Lepage, Patricia

    2016-05-01

    The microorganisms inhabiting the human gut are abundant (10(14) cells) and diverse (approximately 500 species per individual). It is now acknowledged that the microbiota has coevolved with its host to achieve a symbiotic relationship, leading to physiological homeostasis. The gut microbiota ensures vital functions, such as food digestibility, maturation of the host immune system, and protection against pathogens. Over the last few decades, the gut microbiota has also been associated with numerous diseases, such as inflammatory bowel disease, irritable bowel syndrome, obesity, and metabolic diseases. In most of these pathologies, a microbial dysbiosis has been found, indicating shifts in the taxonomic composition of the gut microbiota and changes in its functionality. Our understanding of the influence of the gut microbiota on human health is still growing. Working with microorganisms residing in the gut is challenging since most of them are anaerobic and a vast majority (approximately 75%) are uncultivable to date. Recently, a wide range of new approaches (meta-omics) has been developed to bypass the uncultivability and reveal the intricate mechanisms that sustain gut microbial homeostasis. After a brief description of these approaches (metagenomics, metatranscriptomics, metaproteomics, and metabolomics), this review will discuss the importance of considering the gut microbiome as a structured ecosystem and the use of meta-omics to decipher dysfunctions of the gut microbiome in diseases. © 2016 New York Academy of Sciences.

  5. Enterotypes of the human gut microbiome

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Raes, Jeroen; Pelletier, Eric

    2011-01-01

    Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previou......Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries....... This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species...

  6. Metabolome of human gut microbiome is predictive of host dysbiosis.

    Science.gov (United States)

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  7. Metabolome of human gut microbiome is predictive of host dysbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  8. The first microbial colonizers of the human gut

    NARCIS (Netherlands)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Palacio, Susana Delgado; Montes, Silvia Arboleya; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; Vos, De Willem; Gueimonde, Miguel; Margolles, Abelardo; Sinderen, Van Douwe; Ventura, Marco

    2017-01-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially)

  9. Gut microbiomes and their metabolites shape human and animal health.

    Science.gov (United States)

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  10. The human gut microbiome, a taxonomic conundrum.

    Science.gov (United States)

    Sankar, Senthil Alias; Lagier, Jean-Christophe; Pontarotti, Pierre; Raoult, Didier; Fournier, Pierre-Edouard

    2015-06-01

    From culture to metagenomics, within only 130 years, our knowledge of the human microbiome has considerably improved. With >1000 microbial species identified to date, the gastro-intestinal microbiota is the most complex of human biotas. It is composed of a majority of Bacteroidetes and Firmicutes and, although exhibiting great inter-individual variations according to age, geographic origin, disease or antibiotic uptake, it is stable over time. Metagenomic studies have suggested associations between specific gut microbiota compositions and a variety of diseases, including irritable bowel syndrome, Crohn's disease, colon cancer, type 2 diabetes and obesity. However, these data remain method-dependent, as no consensus strategy has been defined to decipher the complexity of the gut microbiota. High-throughput culture-independent techniques have highlighted the limitations of culture by showing the importance of uncultured species, whereas modern culture methods have demonstrated that metagenomics underestimates the microbial diversity by ignoring minor populations. In this review, we highlight the progress and challenges that pave the way to a complete understanding of the human gastrointestinal microbiota and its influence on human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. The Human Neonatal Gut Microbiome: A Brief Review

    Directory of Open Access Journals (Sweden)

    Emily C. Gritz

    2015-03-01

    Full Text Available The field of genomics has expanded into subspecialties such as metagenomics over the course of the last decade and a half. The development of massively parallel sequencing capabilities has allowed for increasingly detailed study of the genome of the human microbiome, the microbial super organ that resides symbiotically within the mucosal tissues and integumentary system of the human host. The gut microbiome, and particularly the study of its origins in neonates, have become subtopics of great interest within the field of genomics. This brief review seeks to summarize recent literature regarding the origins and establishment of the neonatal gut microbiome, beginning in utero, and how it is affected by neonatal nutritional status (breastfed versus formula fed and gestational age (term versus preterm. We also explore the role of dysbiosis, a perturbation within the fragile ecosystem of the microbiome, and its role in the origin of select pathologic states, specifically, obesity and necrotizing enterocolitis in preterm infants. We discuss the evidence supporting enteral pre- and probiotic supplementation of commensal organisms such as Bifidobacterium and Lactobacillus in the neonatal period, and their role in the prevention and amelioration of necrotizing enterocolitis in premature infants. Finally, we review directions to consider for further research to promote human health within this field.

  12. Advances and perspectives in in vitro human gut fermentation modeling.

    Science.gov (United States)

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Hh pathway expression in human gut tissues and in inflammatory gut diseases

    NARCIS (Netherlands)

    Nielsen, Corinne M.; Williams, Jerrell; van den Brink, Gijs R.; Lauwers, Gregory Y.; Roberts, Drucilla J.

    2004-01-01

    Sonic hedgehog (Shh) directs early gut patterning via epithelial-mesenchymal signaling and remains expressed in endoderm-derived tissues into the adult period. In human adult gut epithelium SHH/SHH expression is strongest in basal layers, which suggests that SHH may function in the maintenance of

  14. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    Science.gov (United States)

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Human gut microbiome viewed across age and geography

    Science.gov (United States)

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, we characterized bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy child...

  16. Gut-Bioreactor and Human Health in Future.

    Science.gov (United States)

    Purohit, Hemant J

    2018-03-01

    Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.

  17. Metatranscriptomics of the human gut microbiome

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas

    2011-01-01

    Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes ...... that there is a division of labor between the bacterial species in the human gut microbiome.......Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes...... in the human genome by more than 100 to 1. How these organisms contribute to and affect human health is poorly understood, but the emerging field of metagenomics promises a more comprehensive and complete understanding of the human microbiome. In the European-funded Metagenomics of the Human Intestinal Tract...

  18. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome.

    Science.gov (United States)

    Maldonado-Gómez, María X; Martínez, Inés; Bottacini, Francesca; O'Callaghan, Amy; Ventura, Marco; van Sinderen, Douwe; Hillmann, Benjamin; Vangay, Pajau; Knights, Dan; Hutkins, Robert W; Walter, Jens

    2016-10-12

    Live bacteria (such as probiotics) have long been used to modulate gut microbiota and human physiology, but their colonization is mostly transient. Conceptual understanding of the ecological principles as they apply to exogenously introduced microbes in gut ecosystems is lacking. We find that, when orally administered to humans, Bifidobacterium longum AH1206 stably persists in the gut of 30% of individuals for at least 6 months without causing gastrointestinal symptoms or impacting the composition of the resident gut microbiota. AH1206 engraftment was associated with low abundance of resident B. longum and underrepresentation of specific carbohydrate utilization genes in the pre-treatment microbiome. Thus, phylogenetic limiting and resource availability are two factors that control the niche opportunity for AH1206 colonization. These findings suggest that bacterial species and functional genes absent in the gut microbiome of individual humans can be reestablished, providing opportunities for precise and personalized microbiome reconstitution. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    Science.gov (United States)

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Preface: Ecosystem services, ecosystem health and human communities

    Science.gov (United States)

    Plag, Hans-Peter

    2018-04-01

    This special issue contains a collection of manuscripts that were originally intended to be included in the special issue on "Physics and Economics of Ecosystem Services Flows" (Volume 101, guest editors H. Su, J. Dong and S. Nagarajan) and "Biogeochemical Processes in the Changing Wetland Environment" (Volume 103, guest editors J. Bai, L. Huang and H. Gao). All of them are addressing issues related to ecosystem services in different settings. Ecosystem services are of high value for both the ecosystems and human communities, and understanding the impacts of environmental processes and human activities on ecosystems is of fundamental importance for the preservation of these services.

  4. Metaproteomic analysis of human gut microbiota: where are we heading?

    Science.gov (United States)

    Lee, Pey Yee; Chin, Siok-Fong; Neoh, Hui-Min; Jamal, Rahman

    2017-06-12

    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.

  5. Gut microbes in correlation with mood: case study in a closed experimental human life support system.

    Science.gov (United States)

    Li, L; Su, Q; Xie, B; Duan, L; Zhao, W; Hu, D; Wu, R; Liu, H

    2016-08-01

    Gut microbial community, which may influence our mood, can be shaped by modulating the gut ecosystem through dietary strategies. Understanding the gut-brain correlationship in healthy people is important for maintenance of mental health and prevention of mental illnesses. A case study on the correlation between gut microbial alternation and mood swing of healthy adults was conducted in a closed human life support system during a 105-day experiment. Gut microbial community structures were analyzed using high-throughput sequencing every 2 weeks. A profile of mood states questionnaire was used to record the mood swings. Correlation between gut microbes and mood were identified with partial least squares discrimination analysis. Microbial community structures in the three healthy adults were strongly correlated with mood states. Bacterial genera Roseburia, Phascolarctobacterium, Lachnospira, and Prevotella had potential positive correlation with positive mood, while genera Faecalibacterium, Bifidobacterium, Bacteroides, Parabacteroides, and Anaerostipes were correlated with negative mood. Among which, Faecalibacterium spp. had the highest abundance, and showed a significant negative correlation with mood. Our results indicated that the composition of microbial community could play a role in emotional change in mentally physically healthy adults. © 2016 John Wiley & Sons Ltd.

  6. Obesity changes the human gut mycobiome

    Science.gov (United States)

    Mar Rodríguez, M.; Pérez, Daniel; Javier Chaves, Felipe; Esteve, Eduardo; Marin-Garcia, Pablo; Xifra, Gemma; Vendrell, Joan; Jové, Mariona; Pamplona, Reinald; Ricart, Wifredo; Portero-Otin, Manuel; Chacón, Matilde R.; Fernández Real, José Manuel

    2015-01-01

    The human intestine is home to a diverse range of bacterial and fungal species, forming an ecological community that contributes to normal physiology and disease susceptibility. Here, the fungal microbiota (mycobiome) in obese and non-obese subjects was characterized using Internal Transcribed Spacer (ITS)-based sequencing. The results demonstrate that obese patients could be discriminated by their specific fungal composition, which also distinguished metabolically “healthy” from “unhealthy” obesity. Clusters according to genus abundance co-segregated with body fatness, fasting triglycerides and HDL-cholesterol. A preliminary link to metabolites such as hexadecanedioic acid, caproic acid and N-acetyl-L-glutamic acid was also found. Mucor racemosus and M. fuscus were the species more represented in non-obese subjects compared to obese counterparts. Interestingly, the decreased relative abundance of the Mucor genus in obese subjects was reversible upon weight loss. Collectively, these findings suggest that manipulation of gut mycobiome communities might be a novel target in the treatment of obesity. PMID:26455903

  7. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  8. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    Science.gov (United States)

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus ...... and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities....

  10. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  11. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  12. Molecular biological methods for studying the gut microbiota : the EU human gut flora project

    NARCIS (Netherlands)

    Blaut, M; Collins, MD; Welling, GW; Dore, J; van Loo, J; de Vos, W

    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to

  13. Gut

    DEFF Research Database (Denmark)

    Muscogiuri, Giovanna; Balercia, Giancarlo; Barrea, Luigi

    2017-01-01

    The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes...... which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible...... metabolism. Thus, the aim of this manuscript is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects....

  14. Potential Effects of Horizontal Gene Exchange in the Human Gut.

    Science.gov (United States)

    Lerner, Aaron; Matthias, Torsten; Aminov, Rustam

    2017-01-01

    Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  15. Potential Effects of Horizontal Gene Exchange in the Human Gut

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-11-01

    Full Text Available Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host–microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.

  16. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  17. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    Science.gov (United States)

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  18. Ecosystem Services: Benefits Supplied to Human Societies by Natural Ecosystems

    Science.gov (United States)

    The module provides a link to an article that is part of a series of articles in Issues in Ecology. This article discusses the many services an ecosystem provides in order to sustain and fulfill human needs.

  19. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  20. Survival of Yogurt Bacteria in the Human Gut

    Science.gov (United States)

    Elli, Marina; Callegari, Maria Luisa; Ferrari, Susanna; Bessi, Elena; Cattivelli, Daniela; Soldi, Sara; Morelli, Lorenzo; Goupil Feuillerat, Nathalie; Antoine, Jean-Michel

    2006-01-01

    Whether Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus can be recovered after passage through the human gut was tested by feeding 20 healthy volunteers commercial yogurt. Yogurt bacteria were found in human feces, suggesting that they can survive transit in the gastrointestinal tract. PMID:16820518

  1. Survival of Yogurt Bacteria in the Human Gut

    OpenAIRE

    Elli, Marina; Callegari, Maria Luisa; Ferrari, Susanna; Bessi, Elena; Cattivelli, Daniela; Soldi, Sara; Morelli, Lorenzo; Goupil Feuillerat, Nathalie; Antoine, Jean-Michel

    2006-01-01

    Whether Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus can be recovered after passage through the human gut was tested by feeding 20 healthy volunteers commercial yogurt. Yogurt bacteria were found in human feces, suggesting that they can survive transit in the gastrointestinal tract.

  2. Characterization of the human gut microbiome during travelers' diarrhea.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  3. The Human Gut Phage Community and Its Implications for Health and Disease.

    Science.gov (United States)

    Manrique, Pilar; Dills, Michael; Young, Mark J

    2017-06-08

    In this review, we assess our current understanding of the role of bacteriophages infecting the human gut bacterial community in health and disease. In general, bacteriophages contribute to the structure of their microbial communities by driving host and viral diversification, bacterial evolution, and by expanding the functional diversity of ecosystems. Gut bacteriophages are an ensemble of unique and shared phages in individuals, which encompass temperate phages found predominately as prophage in gut bacteria (prophage reservoir) and lytic phages. In healthy individuals, only a small fraction of the prophage reservoir is activated and found as extracellular phages. Phage community dysbiosis is characterized by a shift in the activated prophage community or an increase of lytic phages, and has been correlated with disease, suggesting that a proper balance between lysis and lysogeny is needed to maintain health. Consequently, the concept of microbial dysbiosis might be extended to the phage component of the microbiome as well. Understanding the dynamics and mechanisms to restore balance after dysbiosis is an active area of research. The use of phage transplants to re-establish health suggests that phages can be used as disease treatment. Such advances represent milestones in our understanding of gut phages in human health and should fuel research on their role in health and disease.

  4. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin......-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus...

  5. Effect of diet on the human gut microbiota

    DEFF Research Database (Denmark)

    Bahl, Martin Iain

    The gut microbiota plays an important role for humans in both health and disease. It is therefore important to understand how and to what extent choice of diet may influence the microbial community and the effects this has on the host. The variation in the normal human gut microbiota may however...... impede the discovery of correlations between dietary changes and compositional shifts in the microbiota by masking such effects. Although specific functional food ingredients, such as prebiotics, are known to have measurable effects on e.g. abundance of bifidobacteria, it is nevertheless clear...... that induced shifts in gut microbiota show large inter-individual variations. It thus seems plausible that knowing the microbiota composition could facilitate predictions as to how the community will react to dietary interventions thus moving towards some degree of personalised dietary recommendations. During...

  6. The human gut microbiome: current knowledge, challenges, and future directions.

    Science.gov (United States)

    Dave, Maneesh; Higgins, Peter D; Middha, Sumit; Rioux, Kevin P

    2012-10-01

    The Human Genome Project was completed a decade ago, leaving a legacy of process, tools, and infrastructure now being turned to the study of the microbes that reside in and on the human body as determinants of health and disease, and has been branded "The Human Microbiome Project." Of the various niches under investigation, the human gut houses the most complex and abundant microbial community and is an arena for important host-microbial interactions that have both local and systemic impact. Initial studies of the human microbiome have been largely descriptive, a testing ground for innovative molecular techniques and new hypotheses. Methods for studying the microbiome have quickly evolved from low-resolution surveys of microbial community structure to high-definition description of composition, function, and ecology. Next-generation sequencing technologies combined with advanced bioinformatics place us at the doorstep of revolutionary insight into the composition, capability, and activity of the human intestinal microbiome. Renewed efforts to cultivate previously "uncultivable" microbes will be important to the overall understanding of gut ecology. There remain numerous methodological challenges to the effective study and understanding of the gut microbiome, largely relating to study design, sample collection, and the number of predictor variables. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, and bioinformaticians is the ideal paradigm for success in this field. Meaningful interpretation of the gut microbiome requires that host genetic and environmental influences be controlled or accounted for. Understanding the gut microbiome in healthy humans is a foundation for discovering its influence in various important gastrointestinal and nutritional diseases (eg, inflammatory bowel disease, diabetes, and obesity), and for rational translation to human health gains. Copyright © 2012 Mosby, Inc. All rights

  7. Shotgun metaproteomics of the human distal gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; Jansson, Janet K.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  8. A review of metabolic potential of human gut microbiome in human nutrition.

    Science.gov (United States)

    Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh

    2018-03-01

    The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.

  9. Prostaglandin H synthase immunoreactivity in human gut. An immunohistochemical study

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J; Qvortrup, Klaus

    1991-01-01

    Prostaglandins exhibit a variety of actions on intestinal smooth muscle depending upon the type, dose and muscle layer studied. As the cellular origin of prostaglandin H (PGH) synthase has not been established with certainty in the human gut wall, we studied the localization of PGH synthase...

  10. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  11. Diet rapidly and reproducibly alters the human gut microbiome

    Science.gov (United States)

    David, Lawrence A.; Maurice, Corinne F.; Carmody, Rachel N.; Gootenberg, David B.; Button, Julie E.; Wolfe, Benjamin E.; Ling, Alisha V.; Devlin, A. Sloan; Varma, Yug; Fischbach, Michael A.; Biddinger, Sudha B.; Dutton, Rachel J.; Turnbaugh, Peter J.

    2013-01-01

    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. PMID:24336217

  12. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2017-07-01

    Full Text Available Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease.

  13. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut.

    Directory of Open Access Journals (Sweden)

    Sudarshan Anand Shetty

    Full Text Available With increasing number of novel bacteria being isolated from the human gut ecosystem, there is a greater need to study their role in the gut ecosystem and their effect on the host health. In the present study, we carried out in silico genome-wide analysis of two novel Megasphaera sp. isolates NM10 (DSM25563 and BL7 (DSM25562, isolated from feces of two healthy individuals and validated the key features by in vitro studies. The analysis revealed the general metabolic potential, adaptive features and the potential effects of these isolates on the host. The comparative genome analysis of the two human gut isolates NM10 and BL7 with ruminal isolate Megasphaera elsdenii (DSM20460 highlighted the differential adaptive features for their survival in human gut. The key findings include features like bile resistance, presence of various sensory and regulatory systems, stress response systems, membrane transporters and resistance to antibiotics. Comparison of the "glycobiome" based on the genomes of the ruminal isolate with the human gut isolates NM10 and BL revealed the presence of diverse and unique sets of Carbohydrate-Active enzymes (CAZymes amongst these isolates, with a higher collection of CAZymes in the human gut isolates. This could be attributed to the difference in host diet and thereby the environment, consequently suggesting host specific adaptation in these isolates. In silico analysis of metabolic potential predicted the ability of these isolates to produce important metabolites like short chain fatty acids (butyrate, acetate, formate, and caproate, vitamins and essential amino acids, which was further validated by in vitro experiments. The ability of these isolates to produce important metabolites advocates for a potential healthy influence on the host. Further in vivo studies including transcriptomic and proteomic analysis will be required for better understanding the role and impact of these Megasphaera sp. isolates NM10 and BL7 on the

  14. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling.

    Science.gov (United States)

    d'Hennezel, Eva; Abubucker, Sahar; Murphy, Leon O; Cullen, Thomas W

    2017-01-01

    Cohabitation of microbial communities with the host enables the formation of a symbiotic relationship that maintains homeostasis in the gut and beyond. One prevailing model suggests that this relationship relies on the capacity of host cells and tissues to remain tolerant to the strong immune stimulation generated by the microbiota such as the activation of Toll-like receptor 4 (TLR4) pathways by lipopolysaccharide (LPS). Indeed, gut microbial LPS is thought to be one of the most potent activators of innate immune signaling and an important mediator of the microbiome's influence on host physiology. In this study, we performed computational and experimental analyses of healthy human fecal samples to examine the TLR4 signaling capacity of the gut microbiota. These analyses revealed that an immunoinhibitory activity of LPS, conserved across the members of the order Bacteroidales and derived from an underacylated structural feature, silences TLR4 signaling for the entire consortium of organisms inhabiting the human gut. Comparative analysis of metagenomic data from the Human Microbiome Project and healthy-donor samples indicates that immune silencing via LPS is a microbe-intrinsic feature in all healthy adults. These findings challenge the current belief that robust TLR4 signaling is a feature of the microbiome and demonstrate that microbiome-derived LPS has the ability to facilitate host tolerance of gut microbes. These findings have broad implications for how we model host-microbe interactions and for our understanding of microbiome-linked disease. IMPORTANCE While the ability for humans to host a complex microbial ecosystem is an essential property of life, the mechanisms allowing for immune tolerance of such a large microbial load are not completely understood and are currently the focus of intense research. This study shows that an important proinflammatory pathway that is commonly triggered by pathogenic bacteria upon interaction with the host is, in fact

  15. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    Science.gov (United States)

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and

  16. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    Science.gov (United States)

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  17. Variations in the post-weaning human gut metagenome profile as result of Bifidobacterium acquisition in the Western microbiome

    Directory of Open Access Journals (Sweden)

    Matteo Soverini

    2016-07-01

    Full Text Available Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.

  18. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia.

    Science.gov (United States)

    Rosa, Bruce A; Supali, Taniawati; Gankpala, Lincoln; Djuardi, Yenny; Sartono, Erliyani; Zhou, Yanjiao; Fischer, Kerstin; Martin, John; Tyagi, Rahul; Bolay, Fatorma K; Fischer, Peter U; Yazdanbakhsh, Maria; Mitreva, Makedonka

    2018-02-28

    -kingdom interactions in the human gut ecosystem by unlocking the microbiome assemblages at taxonomic, genetic, and functional levels so that advances towards key mechanistic studies can be made.

  19. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.; Altman, Tomer; Konwar, Kishori M.; Hanson, Niels W.; Kim, Dongjae; Relman, David A.; Dill, David L.; Hallam, Steven J.

    2017-01-01

    the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions

  20. Emulating Host-Microbiome Ecosystem of Human Gastrointestinal Tract in Vitro.

    Science.gov (United States)

    Park, Gun-Seok; Park, Min Hee; Shin, Woojung; Zhao, Connie; Sheikh, Sameer; Oh, So Jung; Kim, Hyun Jung

    2017-06-01

    The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.

  1. Variable responses of human and non-human primate gut microbiomes to a Western diet.

    Science.gov (United States)

    Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R

    2015-11-16

    The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.

  2. Wheat bran cereal, human gut bacteria and subjective wellbeing

    OpenAIRE

    Smith, Andrew; Deaville, Eddie; Gibson, Glenn

    2018-01-01

    Research has shown that consumption of high fiber breakfast cereal is associated with improved subjective well-being, especially increased energy. One possible explanation of these results is through metabolism by gut bacteria and concomitant production of metabolites that influence psychological and gastrointestinal (GI) welfare. This was examined in the present study to determine whether consumption of wheat bran could modulate the composition of the GI microbiota. This human volunteer stud...

  3. Research Award: Ecosystems and Human Health (Ecohealth ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... Research Award: Ecosystems and Human Health (Ecohealth) ... Your proposal should demonstrate an understanding of the ... demonstrated ability to work independently, and strong written and oral communications skills are ...

  4. Quinones are growth factors for the human gut microbiota.

    Science.gov (United States)

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  5. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    Science.gov (United States)

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  6. Ménage à trois in the human gut: interactions between host, bacteria and phages.

    Science.gov (United States)

    Mirzaei, Mohammadali Khan; Maurice, Corinne F

    2017-07-01

    The human gut is host to one of the densest microbial communities known, the gut microbiota, which contains bacteria, archaea, viruses, fungi and other microbial eukaryotes. Bacteriophages in the gut are largely unexplored, despite their potential to regulate bacterial communities and thus human health. In addition to helping us understand gut homeostasis, applying an ecological perspective to the study of bacterial and phage communities in the gut will help us to understand how this microbial system functions. For example, temporal studies of bacteria, phages and host immune cells in the gut during health and disease could provide key information about disease development and inform therapeutic treatments, whereas understanding the regulation of the replication cycles of phages could help harness the gut microbiota to improve disease outcomes. As the most abundant biological entities in our gut, we must consider bacteriophages in our pursuit of personalized medicine.

  7. Xenobiotics and the Human Gut Microbiome: Metatranscriptomics Reveal the Active Players

    OpenAIRE

    Ursell, Luke K.; Knight, Rob

    2013-01-01

    The human gut microbiome plays an important role in the metabolism of xenobiotics. In a recent issue of Cell, Maurice et al. identify the active members of the gut microbiome and show how gene expression profiles change within the gut microbial community in response to antibiotics and host-targeted xenobiotics.

  8. The gut mycobiome of the Human Microbiome Project healthy cohort.

    Science.gov (United States)

    Nash, Andrea K; Auchtung, Thomas A; Wong, Matthew C; Smith, Daniel P; Gesell, Jonathan R; Ross, Matthew C; Stewart, Christopher J; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Ajami, Nadim J; Petrosino, Joseph F

    2017-11-25

    Most studies describing the human gut microbiome in healthy and diseased states have emphasized the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2 (ITS2) region as well as the 18S rRNA gene. Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top 15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces, Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers, respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance mycobiome constituents. Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort were high, revealing that unlike bacterial communities, an individual's mycobiome is no more similar to itself over time than to another person's. Nonetheless, several fungal species persisted across a majority of samples, evidence that

  9. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    Science.gov (United States)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  10. Human Gut Microbiota: Toward an Ecology of Disease

    Directory of Open Access Journals (Sweden)

    Susannah Selber-Hnatiw

    2017-07-01

    Full Text Available Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  11. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  12. Connections between the human gut microbiome and gestational diabetes mellitus.

    Science.gov (United States)

    Kuang, Ya-Shu; Lu, Jin-Hua; Li, Sheng-Hui; Li, Jun-Hua; Yuan, Ming-Yang; He, Jian-Rong; Chen, Nian-Nian; Xiao, Wan-Qing; Shen, Song-Ying; Qiu, Lan; Wu, Ying-Fang; Hu, Cui-Yue; Wu, Yan-Yan; Li, Wei-Dong; Chen, Qiao-Zhu; Deng, Hong-Wen; Papasian, Christopher J; Xia, Hui-Min; Qiu, Xiu

    2017-08-01

    The human gut microbiome can modulate metabolic health and affect insulin resistance, and it may play an important role in the etiology of gestational diabetes mellitus (GDM). Here, we compared the gut microbial composition of 43 GDM patients and 81 healthy pregnant women via whole-metagenome shotgun sequencing of their fecal samples, collected at 21-29 weeks, to explore associations between GDM and the composition of microbial taxonomic units and functional genes. A metagenome-wide association study identified 154 837 genes, which clustered into 129 metagenome linkage groups (MLGs) for species description, with significant relative abundance differences between the 2 cohorts. Parabacteroides distasonis, Klebsiella variicola, etc., were enriched in GDM patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp., and Eubacterium spp. were enriched in controls. The ratios of the gross abundances of GDM-enriched MLGs to control-enriched MLGs were positively correlated with blood glucose levels. A random forest model shows that fecal MLGs have excellent discriminatory power to predict GDM status. Our study discovered novel relationships between the gut microbiome and GDM status and suggests that changes in microbial composition may potentially be used to identify individuals at risk for GDM. © The Author 2017. Published by Oxford University Press.

  13. Environmental contaminants, ecosystems and human health

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.K.; Miller, E.W.; Brenner, F.J. [eds.] [Lafayette College, Easton, PA (United States). Dept. of Biology

    1995-12-31

    The authors cover a variety of concerns regarding the adverse impacts of contaminants on ecosystems and human health. The twelve chapters in the first section of the text address the impact of contaminants on ecosystem function, and ten of the remaining twenty-two chapters are devoted to the effects of contaminants on human health. Part three presents eight case studies in humans, while the final four chapters provide the reader with an assessment of environmental problems and analyses. Two chapters, on the health effects of power plant generated air pollution and on black lung disease, have been abstracted separately for the IEA Coal Research CD-ROM.

  14. Gut microbiota modulate T cell trafficking into human colorectal cancer.

    Science.gov (United States)

    Cremonesi, Eleonora; Governa, Valeria; Garzon, Jesus Francisco Glaus; Mele, Valentina; Amicarella, Francesca; Muraro, Manuele Giuseppe; Trella, Emanuele; Galati-Fournier, Virginie; Oertli, Daniel; Däster, Silvio Raffael; Droeser, Raoul A; Weixler, Benjamin; Bolli, Martin; Rosso, Raffaele; Nitsche, Ulrich; Khanna, Nina; Egli, Adrian; Keck, Simone; Slotta-Huspenina, Julia; Terracciano, Luigi M; Zajac, Paul; Spagnoli, Giulio Cesare; Eppenberger-Castori, Serenella; Janssen, Klaus-Peter; Borsig, Lubor; Iezzi, Giandomenica

    2018-02-06

    Tumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers. Expression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing. CRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival. Gut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Capturing One of the Human Gut Microbiome's Most Wanted

    DEFF Research Database (Denmark)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik Bjørn

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of "most wanted" taxa: bacteria both prevalent...... the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases...

  16. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    Science.gov (United States)

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  17. Human Capital in the Entrepreneurship Ecosystem

    DEFF Research Database (Denmark)

    Østergaard, Annemarie; Marinova, Svetla Trifonova

    2018-01-01

    for entrepreneurial success and ultimately, for business growth and development. The increasing literature debating human capital confirms the relevance of locating and refining the factors for entrepreneurial success. Consequently, this paper improves the roadmap of Entrepreneurship Ecosystems by adding the innate......, aspirations and activities when dealing with entrepreneurship and entrepreneurs. Along these lines, this paper focuses on an in-depth investigation of the domain of human capital in Isenbergs Entrepreneurship Ecosystem. It captures the entrepreneurial mindset of the highly complex individual as a requisite...

  18. Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten; Degnan, Patrick H.

    2013-01-01

    The complex and intimate relationship between humans and their gut microbial communities is becoming less obscure, due in part to large-scale gut microbial genome-sequencing projects and culture-independent surveys of the composition and gene content of these communities.These studies build upon...... ofmicrobial genome and community profiling projects, and the loss-of-function and gain-of-function strategies long employed in model organisms are now being extended to microbial genes, species, and communities from the human gut. These developments promise to deepen our understanding of human gut host...

  19. Gut bifidobacteria populations in human health and aging

    Directory of Open Access Journals (Sweden)

    Silvia Arboleya

    2016-08-01

    Full Text Available The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Indeed, several studies have linked alterations in the gut microbiota with the development of different diseases. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. The presence of different species of bifidobacteria changes with age, from the childhood to old age. Bifidobacterium longum, Bifidobacterium breve and Bifidobacterium bifidum are generally dominant in infants whereas Bifidobacterium catenulatum, Bifidobacterium adolescentis and, as well as B. longum are more dominant in adults. Increasingly, evidence is accumulating which shows beneficial effect of supplementation with bifidobacteria for the improvement of human health conditions ranging from protection against infection to different extra- and intra-intestinal positive effects. Moreover, bifidobacteria can be associated with the production of a number of potentially health promoting metabolites including short chain fatty acids, conjugated linoleic acid and bacteriocins. The aim of this mini-review is to describe the bifidobacteria composition changes associated with different stages in life, highlighting their beneficial role, as well as their presence in commonly known disease states.

  20. Short-term effect of antibiotics on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Suchita Panda

    Full Text Available From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002. At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016. Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04. The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  1. Bacteriophages in the human gut: Our fellow travelers throughout life and potential biomarkers of heath or disease.

    Science.gov (United States)

    Bakhshinejad, Babak; Ghiasvand, Saeedeh

    2017-08-15

    The gastrointestinal (GI) tract is populated by a huge variety of viruses. Bacterial viruses (bacteriophages) constitute the largest and the most unrecognized part of virome. The total bacteriophage community of the human gut is called phageome. Phages colonize the gut from the earliest moments of life and become our fellow travelers throughout life. Phageome seems to be unique to each individual and shows a high degree of interpersonal variation. In the healthy gut, a vast majority of phages have a lysogenic lifestyle. These prophages serve as a major respository of mobile genetic elements in the gut and play key roles in the exchange of genetic material between bacterial species via horizontal gene transfer (HGT). But, imbalance in the gut microbial community during dysbiosis, caused by diseases or environmental stresses such as antibiotics, is accompanied by induction of prophages leading to a decreased ratio of symbionts to pathobionts. Based on this, a diseased gut is transformed from an environment predominantly occupied by prophages to an ecosystem mostly inhabited by lytic phages. A growing body of evidence has provided support for the notion that phageome structure and composition change dependent on the physiological or pathological status of the body. This has been demonstrated by pronounced quantitative and qualitative differences between the phageome of healthy individuals and patients. Although many aspects of the contribution made by phages to human biology remain to be understood, recent findings favor the suggestion that phageome might represent potential to serve as a biomarker of health or disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Metagenomics Study on the Polymorphism of Gut Microbiota and Their Function on Human Health

    DEFF Research Database (Denmark)

    Feng, Qiang

    diversity and functional complexity of the gut microbiome. Facilitated by the Next Generation Sequencing (NGS) technologies and the progress of bioinformatics in the past decade, we have acquired substantial achievements in metagenomic studies on human gut microbiome and established the fundamentals of our...... understanding of the interactions between gut microbes and human body, and also the importance of this interaction on human health. As one of the milestones, the first integrated gene catalog in the human gut microbiome was constructed in 2010 in the scheme of the Metagenomics of Human Intestinal Tract (Meta......’ are shared in the population. These microorganisms participate in various metabolic pathways and activities of the immune system and the nervous system of our bodies,and have fundamental impacts on our health. For example, an association study between gut microbiome and type 2 diabetes (T2D) highlighted...

  3. Absorption of environmental polonium-210 by the human gut

    International Nuclear Information System (INIS)

    Hunt, G.J.; Allington, D.J.

    1993-01-01

    Current values for the gut absorption factor of plutonium- 210 ( 210 Po) are based on very few human data, yet the dose due to 210 Po is an important component of the dose to man through food as a result of natural sources of radiation. In this study, three male and three female adult volunteers ate supplies of brown crab meat containing natural concentrations of 210 Po, which are analysed from sub-samples. Daily urine and faecal samples, taken for 3 days before and up to 3 weeks after ingestion, were also analysed. Values of apparent absorption were derived from the faecal measurements; estimates of the true absorption were derived taking account of endogenous faecal excretion on the basis of existing data for intravenous administration. The results appear to suggest that the gut absorption factor in current use for 210 Po (in connection with ingestion in food) should be increased from 0.1-03 to about 0.8. The implications for estimates of dose due to this exposure pathway are noted. (author)

  4. Absorption of environmental polonium-210 by the human gut

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G J; Allington, D J [Ministry of Agriculture, Fisheries and Food, Lowestoft (United Kingdom). Fisheries Radiobiological Lab.

    1993-06-01

    Current values for the gut absorption factor of plutonium- 210 ([sup 210]Po) are based on very few human data, yet the dose due to [sup 210]Po is an important component of the dose to man through food as a result of natural sources of radiation. In this study, three male and three female adult volunteers ate supplies of brown crab meat containing natural concentrations of [sup 210]Po, which are analysed from sub-samples. Daily urine and faecal samples, taken for 3 days before and up to 3 weeks after ingestion, were also analysed. Values of apparent absorption were derived from the faecal measurements; estimates of the true absorption were derived taking account of endogenous faecal excretion on the basis of existing data for intravenous administration. The results appear to suggest that the gut absorption factor in current use for [sup 210]Po (in connection with ingestion in food) should be increased from 0.1-03 to about 0.8. The implications for estimates of dose due to this exposure pathway are noted. (author).

  5. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  6. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...

  7. Human symbionts inject and neutralize antibacterial toxins to persist in the gut.

    Science.gov (United States)

    Wexler, Aaron G; Bao, Yiqiao; Whitney, John C; Bobay, Louis-Marie; Xavier, Joao B; Schofield, Whitman B; Barry, Natasha A; Russell, Alistair B; Tran, Bao Q; Goo, Young Ah; Goodlett, David R; Ochman, Howard; Mougous, Joseph D; Goodman, Andrew L

    2016-03-29

    The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.

  8. Impacts of the Human Gut Microbiome on Therapeutics.

    Science.gov (United States)

    Vázquez-Baeza, Yoshiki; Callewaert, Chris; Debelius, Justine; Hyde, Embriette; Marotz, Clarisse; Morton, James T; Swafford, Austin; Vrbanac, Alison; Dorrestein, Pieter C; Knight, Rob

    2018-01-06

    The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.

  9. The Human Gut Antibiotic Resistome in the Metagenomic Era: Progress and Perspectives

    Directory of Open Access Journals (Sweden)

    Yongfei Hu

    2016-04-01

    Full Text Available The human gut is populated by a vast number of bacteria, which play a critical role in human health. In recent years, attention has focused on the gut bacteria as a reservoir of antibiotic resistance genes (ARGs. Both culture-dependent and culture-independent methods have been applied to investigate numerous ARGs, collectively called the antibiotic resistome, harbored by gut bacteria. This has led to an increased understanding of the overall profile of the gut antibiotic resistome, although it remains incompletely understood. In this review, we summarize the recent research findings on the human gut antibiotic resistome, with an emphasis on progress achieved using the culture-independent metagenomic strategy. We also describe the features of different available ARG databases used for annotation in metagenomic analysis, discuss the potential problems and limitations in current research, and suggest several directions for future investigation.

  10. An integrated catalog of reference genes in the human gut microbiome

    DEFF Research Database (Denmark)

    Li, Junhua; Jia, Huijue; Cai, Xianghang

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly...... signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.......) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial...

  11. Human Capital in the Entrepreneurship Ecosystem

    DEFF Research Database (Denmark)

    Østergaard, Annemarie; Marinova, Svetla Trifonova

    2018-01-01

    Since Adam Smith (1776) took consideration to human capital as an asset of economic value, academic interest has focused on the economic effects of human capital. In 1931, Schumpeter called for a focus on the individual entrepreneur or the creative destructor with his/her motives, wishes, aspirat......Since Adam Smith (1776) took consideration to human capital as an asset of economic value, academic interest has focused on the economic effects of human capital. In 1931, Schumpeter called for a focus on the individual entrepreneur or the creative destructor with his/her motives, wishes......, aspirations and activities when dealing with entrepreneurship and entrepreneurs. Along these lines, this paper focuses on an in-depth investigation of the domain of human capital in Isenbergs Entrepreneurship Ecosystem. It captures the entrepreneurial mindset of the highly complex individual as a requisite...... for entrepreneurial success and ultimately, for business growth and development. The increasing literature debating human capital confirms the relevance of locating and refining the factors for entrepreneurial success. Consequently, this paper improves the roadmap of Entrepreneurship Ecosystems by adding the innate...

  12. Mucin glycan foraging in the human gut microbiome

    Science.gov (United States)

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  13. Effects of moderate, voluntary ethanol consumption on the rat and human gut microbiome.

    Science.gov (United States)

    Kosnicki, Kassi L; Penprase, Jerrold C; Cintora, Patricia; Torres, Pedro J; Harris, Greg L; Brasser, Susan M; Kelley, Scott T

    2018-05-11

    Many alcohol-induced health complications are directly attributable to the toxicity of alcohol or its metabolites, but another potential health impact of alcohol may be on the microbial communities of the human gut. Clear distinctions between healthy and diseased-state gut microbiota have been observed in subjects with metabolic diseases, and recent studies suggest that chronic alcoholism is linked to gut microbiome dysbiosis. Here, we investigated the effects of moderate levels of alcohol consumption on the gut microbiome in both rats and humans. The gut microbiota of rats voluntarily consuming a 20 percent ethanol solution, on alternate days, were compared with a non-exposed control group to identify differential taxonomic and functional profiles. Gut microbial diversity profiles were determined using culture-independent amplification, next-generation sequencing and bioinformatic analysis of bacterial 16S ribosomal RNA gene sequence libraries. Our results showed that, compared with controls, ethanol-consuming rats experienced a significant decline in the biodiversity of their gut microbiomes, a state generally associated with dysbiosis. We also observed significant shifts in the overall diversity of the gut microbial communities and a dramatic change in the relative abundance of particular microbes, such as the Lactobacilli. We also compared our results to human fecal microbiome data collected as part of the citizen science American Gut Project. In contrast to the rat data, human drinkers had significantly higher gut microbial biodiversity than non-drinkers. However, we also observed that microbes that differed among the human subjects displayed similar trends in the rat model, including bacteria implicated in metabolic disease. © 2018 Society for the Study of Addiction.

  14. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  15. Food Design to Feed the Human Gut Microbiota

    NARCIS (Netherlands)

    Ercolini, Danilo; Fogliano, Vincenzo

    2018-01-01

    The gut microbiome has an enormous impact on the life of the host, and the diet plays a fundamental role in shaping microbiome composition and function. The way food is processed is a key factor determining the amount and type of material reaching the gut bacteria and influencing their growth and

  16. Time for food: The impact of diet on gut microbiota and human health.

    Science.gov (United States)

    Zhang, Na; Ju, Zhongjie; Zuo, Tao

    There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Hildebrand, Falk ; Nielsen, Trine N.

    2015-01-01

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported1,2. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs...... on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified......, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa3,4. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures...

  18. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  19. Insights into the human gut microbiome and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Soumalya Sarkar

    2018-01-01

    Full Text Available The microbiome comprises all of the genetic materials within a microbiota. This can also be referred to as the metagenome of the microbiota. Dysbiosis, a change in the composition of the gut microbiota, has been associated with pathology, including cardiovascular diseases (CVDs. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention toward the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to chronic kidney disease, atherosclerosis, and hypertension. Dysbiosis has been implicated in CVD as well as many aspects of obesity, hypertension, chronic kidney disease, and diabetes.

  20. Food additives, contaminants and other minor components: effects on human gut microbiota-a review.

    Science.gov (United States)

    Roca-Saavedra, Paula; Mendez-Vilabrille, Veronica; Miranda, Jose Manuel; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos M; Cepeda, Alberto

    2018-02-01

    Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.

  1. Changes in human gut flora with age: an Indian familial study.

    Science.gov (United States)

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.

  2. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  3. Human gut microbiota and healthy aging: Recent developments and future prospective.

    Science.gov (United States)

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  4. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    Science.gov (United States)

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Pedersen, Helle K; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Costea, Paul Igor; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  5. Effect of dextransucrase cellobiose acceptor products on the growth of human gut bacteria

    Science.gov (United States)

    The selective fermentation by human gut bacteria of gluco-oligosaccharides obtained from the reaction between the glucosyl group of sucrose and cellobiose, catalyzed by dextransucrases from Leuconostoc mesenteroides, has been evaluated. Oligosaccharides were fractionated according to their molecula...

  6. Green Infrastructure, Ecosystem Services, and Human Health.

    Science.gov (United States)

    Coutts, Christopher; Hahn, Micah

    2015-08-18

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being.

  7. Green Infrastructure, Ecosystem Services, and Human Health

    Science.gov (United States)

    Coutts, Christopher; Hahn, Micah

    2015-01-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture—in the form of a primer—of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  8. Metabolic niche of a prominent sulfate-reducing human gut bacterium

    OpenAIRE

    Rey, Federico E.; Gonzalez, Mark D.; Cheng, Jiye; Wu, Meng; Ahern, Philip P.; Gordon, Jeffrey I.

    2013-01-01

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types ...

  9. The chemical interactome space between the human host and the genetically defined gut metabotypes

    DEFF Research Database (Denmark)

    Jacobsen, Ulrik Plesner; Nielsen, Henrik Bjørn; Hildebrand, Falk

    2013-01-01

    symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microiome based solely on metagenomics sequencing data derived from...... pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.......The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host’s metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial...

  10. The human gut microbiome of Latin America populations: a landscape to be discovered.

    Science.gov (United States)

    Magne, Fabien; O'Ryan, Miguel L; Vidal, Roberto; Farfan, Mauricio

    2016-10-01

    The gut microbiome is critical for human health, and its alteration is associated with intestinal, autoimmune and metabolic diseases. Numerous studies have focused on prevention or treatment of dysbiotic microbiome to reduce the risk or effect of these diseases. A key issue is to define the microbiome associated with the state of good health. The purpose of this review is to describe factors influencing the gut microbiome with special emphasis on contributions from Latin America. In addition, we will highlight opportunities for future studies on gut microbiome in Latin America. A relevant factor influencing gut microbiome composition is geographical location associated with specific genetic, dietary and lifestyle factors. Geographical specificities suggest that a universal 'healthy microbiome' is unlikely. Several research programs, mostly from Europe and North America, are extensively sequencing gut microbiome of healthy people, whereas data from Latin America remain scarce yet slowly increasing. Few studies have shown difference in the composition of gut microbiome between their local populations with that of other industrialized countries (North American populations). Latin America is composed of countries with a myriad of lifestyles, traditions, genetic backgrounds and socioeconomic conditions, which may determine differences in gut microbiome of individuals from different countries. This represents an opportunity to better understand the relationship between these factors and gut microbiome.

  11. Computational determination of the effects of virulent Escherichia coli and salmonella bacteriophages on human gut.

    Science.gov (United States)

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2016-10-01

    Salmonella and Escherichia coli are different types of bacteria that cause food poisoning in humans. In the elderly, infants and people with chronic conditions, it is very dangerous if Salmonella or E. coli gets into the bloodstream and then they must be treated by phage therapy. Treating Salmonella and E. coli by phage therapy affects the gut flora. This research paper presents a system for detecting the effects of virulent E. coli and Salmonella bacteriophages on human gut. A method based on Domain-Domain Interactions (DDIs) model is implemented in the proposed system to determine the interactions between the proteins of human gut bacteria and the proteins of bacteriophages that infect virulent E. coli and Salmonella. The system helps gastroenterologists to realize the effect of injecting bacteriophages that infect virulent E. coli and Salmonella on the human gut. By testing the system over Enterobacteria phage 933W, Enterobacteria phage VT2-Sa and Enterobacteria phage P22, it resulted in four interactions between the proteins of the bacteriophages that infect E. coli O157:H7, E. coli O104:H4 and Salmonella typhimurium and the proteins of human gut bacterium strains. Several effects were detected such as: antibacterial activity against a number of bacterial species in human gut, regulation of cellular differentiation and organogenesis during gut, lung, and heart development, ammonia assimilation in bacteria, yeasts, and plants, energizing defense system and its function in the detoxification of lipopolysaccharide, and in the prevention of bacterial translocation in human gut. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Transfer of environmental plutonium and americium across the human gut

    International Nuclear Information System (INIS)

    Hunt, G.J.; Leonard, D.R.P.; Lovett, M.B.

    1989-01-01

    Following the ingestion of winkles obtained from a coastal area near Sellafield nuclear reprocessing plant, a group of volunteers provided urine for the next 7 days to be analysed for plutonium and americium. From this, estimates of the intake and gut transfer factors for these isotopes were determined. Preliminary estimates of gut transfer factors from a previous study by the same authors were then re-interpreted and combined with the results from the present study. (UK)

  13. Metagenomic insights into the human gut resistome and the forces that shape it.

    Science.gov (United States)

    Forslund, Kristoffer; Sunagawa, Shinichi; Coelho, Luis P; Bork, Peer

    2014-03-01

    We show how metagenomic analysis of the human gut antibiotic resistome, compared across large populations and against environmental or agricultural resistomes, suggests a strong anthropogenic cause behind increasing antibiotic resistance in bacteria. This area has been the subject of intense and polarized debate driven by economic and political concerns; therefore such recently available insights address an important need. We derive and compare antibiotic resistomes of human gut microbes from 832 individuals from ten different countries. We observe and describe significant differences between samples from these countries in the gut resistance potential, in line with expectations from antibiotic usage and exposure in medical and food production contexts. Our results imply roles for both of these sources in increased resistance among pathogens in recent history. In contrast, other available metadata such as age, body mass index, sex, or health status have little effect on the antibiotic resistance potential of human gut microbes. Also watch the Video Abstract. © 2014 WILEY Periodicals, Inc.

  14. The Extended Nutrigenomics – Understanding the Interplay between the Genomes of Food, Gut Microbes and Human Host

    Directory of Open Access Journals (Sweden)

    Martin eKussmann

    2011-05-01

    Full Text Available Comprehensive investigation of nutritional health effects at molecular level requires understanding the interplay between three genomes, the food, the gut microbial and the human host genome. Food genomes are researched for exploitation of macro- and micronutrients as well as bioactives, with the genes coding for bioactive proteins and peptides being of central interest. The human gut microbiota encompasses a complex intestinal ecosystem with profound impact on host metabolism. It is studied at genomic, proteomic and metabolomic level. Humans are characterized at the level of: genetic predisposition and variability in terms of dietary response and direction of health trajectories; epigenetic, metabolic programming at certain life stages with health consequences later in life and for subsequent generations; and acute genomic expression as a holistic response to diet, monitored at gene transcript, protein and metabolite level.Modern nutrition science explores health aspects of bioactive food components, thereby promoting health, preventing or delaying the onset of disease, optimizing performance and assessing benefits and risks. Personalized nutrition means adapting food to individual needs, depending on the human host’s life stage, -style and -situation. Traditionally, nutrigenomics and nutri(epigenetics have been seen as the key sciences to understand human variability in preferences and requirements for diet as well as responses to nutrition. This article puts the three nutrition and health-relevant genomes into perspective, i.e. the food, the gut microbial and the human host’s genome, and calls for an extended nutrigenomics approach to build the future tools for personalized nutrition, health maintenance and disease prevention. We discuss examples of these genomes, proteomes, transcriptomes and metabolomes under the overarching term genomics that covers all Omics rather than the sole study of DNA and RNA.

  15. Ecological Interactions of Bacteria in the Human Gut

    Science.gov (United States)

    Falony, Gwen; de Vuyst, Luc

    The colon or large intestine is one of the most important organs of the human body (Macfarlane and Cummings, 1991). Moreover, its inhabitants, the colon microbiota, are the key elements of the human digestive ecosystem. The vast complexity of the human large-intestinal microbiota has inspired researchers to consider it as an organ itself, located inside the colon and acquired postnatally (Bäckhed et al., 2005; Zocco et al., 2007). From a physiologist's point of view, this image of the colon microbiota is relevant: like an organ, it is composed of different cell lineages that communicate with both one another and the host; it consumes, stores, and redistributes energy; it mediates physiologically important chemical transformations; and it is able to maintain and repair itself through self-replication (Bäckhed et al., 2005). As a microbial organ, the human colon community does not only broaden the digestive abilities of the host (Gill et al., 2006), but also influences body processes far beyond digestion (Roberfroid, 2005b; Turnbaugh et al., 2007).

  16. A systems biology approach to predict and characterize human gut microbial metabolites in colorectal cancer.

    Science.gov (United States)

    Wang, QuanQiu; Li, Li; Xu, Rong

    2018-04-18

    Colorectal cancer (CRC) is the second leading cause of cancer-related deaths. It is estimated that about half the cases of CRC occurring today are preventable. Recent studies showed that human gut microbiota and their collective metabolic outputs play important roles in CRC. However, the mechanisms by which human gut microbial metabolites interact with host genetics in contributing CRC remain largely unknown. We hypothesize that computational approaches that integrate and analyze vast amounts of publicly available biomedical data have great potential in better understanding how human gut microbial metabolites are mechanistically involved in CRC. Leveraging vast amount of publicly available data, we developed a computational algorithm to predict human gut microbial metabolites for CRC. We validated the prediction algorithm by showing that previously known CRC-associated gut microbial metabolites ranked highly (mean ranking: top 10.52%; median ranking: 6.29%; p-value: 3.85E-16). Moreover, we identified new gut microbial metabolites likely associated with CRC. Through computational analysis, we propose potential roles for tartaric acid, the top one ranked metabolite, in CRC etiology. In summary, our data-driven computation-based study generated a large amount of associations that could serve as a starting point for further experiments to refute or validate these microbial metabolite associations in CRC cancer.

  17. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    Science.gov (United States)

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  18. Dynamics and stabilization of the human gut microbiome during the first year of life

    DEFF Research Database (Denmark)

    Bäckhed, Gert Fredrik; Roswall, Josefine; Peng, Yangqing

    2015-01-01

    The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first...... of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life....... year of life and assessed the impact of mode of delivery and feeding on its establishment. In contrast to vaginally delivered infants, the gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers. Nutrition had a major impact on early microbiota...

  19. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    Directory of Open Access Journals (Sweden)

    Tatiana Shashkova

    Full Text Available Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes.In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial

  20. IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells Early in Life.

    Science.gov (United States)

    Hsu, Peter S; Lai, Catherine L; Hu, Mingjing; Santner-Nanan, Brigitte; Dahlstrom, Jane E; Lee, Cheng Hiang; Ajmal, Ayesha; Bullman, Amanda; Arbuckle, Susan; Al Saedi, Ahmed; Gacis, Lou; Nambiar, Reta; Williams, Andrew; Wong, Melanie; Campbell, Dianne E; Nanan, Ralph

    2018-06-15

    Recent evidence suggests early environmental factors are important for gut immune tolerance. Although the role of regulatory T (Treg) cells for gut immune homeostasis is well established, the development and tissue homing characteristics of Treg cells in children have not been studied in detail. In this article, we studied the development and homing characteristics of human peripheral blood Treg cell subsets and potential mechanisms inducing homing molecule expression in healthy children. We found contrasting patterns of circulating Treg cell gut and skin tropism, with abundant β7 integrin + Treg cells at birth and increasing cutaneous lymphocyte Ag (CLA + ) Treg cells later in life. β7 integrin + Treg cells were predominantly naive, suggesting acquisition of Treg cell gut tropism early in development. In vitro, IL-7 enhanced gut homing but reduced skin homing molecule expression in conventional T cells, whereas IL-2 induced a similar effect only in Treg cells. This effect was more pronounced in cord compared with adult blood. Our results suggest that early in life, naive Treg cells may be driven for gut tropism by their increased sensitivity to IL-2-induced β7 integrin upregulation, implicating a potential role of IL-2 in gut immune tolerance during this critical period of development. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  2. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    Science.gov (United States)

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  3. Characterization of the human DNA gut virome across populations with different subsistence strategies and geographical origin.

    Science.gov (United States)

    Rampelli, Simone; Turroni, Silvia; Schnorr, Stephanie L; Soverini, Matteo; Quercia, Sara; Barone, Monica; Castagnetti, Andrea; Biagi, Elena; Gallinella, Giorgio; Brigidi, Patrizia; Candela, Marco

    2017-11-01

    It is a matter of fact that the human gut microbiome also includes a non-bacterial fraction represented by eukaryotic cells and viruses. To further explore the gut microbiome variation in human populations, here we characterized the human DNA viral community from publicly available gut metagenome data sets from human populations with different geographical origin and lifestyle. In particular, such data sets encompass microbiome information from two western urban societies (USA and Italy), as well as two traditional hunter-gatherer communities (the Hadza from Tanzania and Matses from Peru) and one pre-agricultural tribe (Tunapuco from Peru). Our results allowed for the first taxonomic reconstruction of the complex viral metacommunities within the human gut. The core virome structure included herpesviruses, papillomaviruses, polyomaviruses, adenoviruses and anelloviruses. Using Random Forests and a co-occurrence analysis approach, we identified the viruses that distinguished populations according to their geographical origin and/or lifestyle. This paves the way for new research aimed at investigating the biological role of the gut virome in human physiology, and the importance of our viral counterpart in the microbiome-host co-evolutionary process. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Going beyond the Millennium Ecosystem Assessment: an index system of human dependence on ecosystem services.

    Science.gov (United States)

    Yang, Wu; Dietz, Thomas; Liu, Wei; Luo, Junyan; Liu, Jianguo

    2013-01-01

    The Millennium Ecosystem Assessment (MA) estimated that two thirds of ecosystem services on the earth have degraded or are in decline due to the unprecedented scale of human activities during recent decades. These changes will have tremendous consequences for human well-being, and offer both risks and opportunities for a wide range of stakeholders. Yet these risks and opportunities have not been well managed due in part to the lack of quantitative understanding of human dependence on ecosystem services. Here, we propose an index of dependence on ecosystem services (IDES) system to quantify human dependence on ecosystem services. We demonstrate the construction of the IDES system using household survey data. We show that the overall index and sub-indices can reflect the general pattern of households' dependences on ecosystem services, and their variations across time, space, and different forms of capital (i.e., natural, human, financial, manufactured, and social capitals). We support the proposition that the poor are more dependent on ecosystem services and further generalize this proposition by arguing that those disadvantaged groups who possess low levels of any form of capital except for natural capital are more dependent on ecosystem services than those with greater control of capital. The higher value of the overall IDES or sub-index represents the higher dependence on the corresponding ecosystem services, and thus the higher vulnerability to the degradation or decline of corresponding ecosystem services. The IDES system improves our understanding of human dependence on ecosystem services. It also provides insights into strategies for alleviating poverty, for targeting priority groups of conservation programs, and for managing risks and opportunities due to changes of ecosystem services at multiple scales.

  5. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP.

    Science.gov (United States)

    Perruzza, Lisa; Gargari, Giorgio; Proietti, Michele; Fosso, Bruno; D'Erchia, Anna Maria; Faliti, Caterina Elisa; Rezzonico-Jost, Tanja; Scribano, Daniela; Mauri, Laura; Colombo, Diego; Pellegrini, Giovanni; Moregola, Annalisa; Mooser, Catherine; Pesole, Graziano; Nicoletti, Mauro; Norata, Giuseppe Danilo; Geuking, Markus B; McCoy, Kathy D; Guglielmetti, Simone; Grassi, Fabio

    2017-03-14

    The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh) cell abundance in the Peyer's patches (PPs) of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP

    Directory of Open Access Journals (Sweden)

    Lisa Perruzza

    2017-03-01

    Full Text Available The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh cell abundance in the Peyer’s patches (PPs of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help.

  7. Cross-talk of human gut with bifidobacteria

    Czech Academy of Sciences Publication Activity Database

    Trebichavský, Ilja; Rada, V.; Šplíchalová, Alla; Šplíchal, Igor

    2009-01-01

    Roč. 67, č. 2 (2009), s. 77-82 ISSN 0029-6643 R&D Projects: GA ČR GA523/07/0572 Institutional research plan: CEZ:AV0Z50200510 Keywords : bifidobacteria * gut * innate immunity Subject RIV: EC - Immunology Impact factor: 3.443, year: 2009

  8. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.

    Science.gov (United States)

    Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Milani, Christian; Mangifesta, Marta; Ferrario, Chiara; Anzalone, Rosaria; Viappiani, Alice; van Sinderen, Douwe; Ventura, Marco

    2017-02-01

    The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria

  9. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-11-01

    Characterization of naturally mummified human gut remains could potentially provide insights into the preservation and evolution of commensal and pathogenic microorganisms, and metabolic profiles. We characterized the gut microbiome of two pre-Columbian Andean mummies dating to the 10-15th centuries using 16S rRNA gene high-throughput sequencing and metagenomics, and compared them to a previously characterized gut microbiome of an 11th century AD pre-Columbian Andean mummy. Our previous study showed that the Clostridiales represented the majority of the bacterial communities in the mummified gut remains, but that other microbial communities were also preserved during the process of natural mummification, as shown with the metagenomics analyses. The gut microbiome of the other two mummies were mainly comprised by Clostridiales or Bacillales, as demonstrated with 16S rRNA gene amplicon sequencing, many of which are facultative anaerobes, possibly consistent with the process of natural mummification requiring low oxygen levels. Metagenome analyses showed the presence of other microbial groups that were positively or negatively correlated with specific metabolic profiles. The presence of sequences similar to both Trypanosoma cruzi and Leishmania donovani could suggest that these pathogens were prevalent in pre-Columbian individuals. Taxonomic and functional profiling of mummified human gut remains will aid in the understanding of the microbial ecology of the process of natural mummification. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.

    Science.gov (United States)

    Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Li, Jennifer; Butcher, James; Deeke, Shelley Ann; Chen, Rui; Chiang, Cheng-Kang; Wen, Ming; Mack, David; Stintzi, Alain; Figeys, Daniel

    2016-06-24

    The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.

  11. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression Toward Type1 Diabetes

    Science.gov (United States)

    2016-09-09

    SECURITY CLASSIFICATION OF: Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease...susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33...unlimited. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. The views, opinions and/or

  12. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Science.gov (United States)

    The architecture of the human distal gut microbiota (microbiota) is sculpted by the complex carbohydrates delivered in the diet. Yeasts, which are among the earliest domesticated microorganisms and have been a component of the human diet for at least 7000 years, possess an elaborate cell wall alpha-...

  13. Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    Shoaie, Saeed; Ghaffari, Pouyan; Kovatcheva-Datchary, Petia

    2015-01-01

    The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet...... of single bacteria and whole communities in vitro. Focusing on metabolic interactions between the diet, gut microbiota, and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals and validated our predictions by fecal...... and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention....

  14. The human gut microbiota: metabolism and perspective in obesity.

    Science.gov (United States)

    Gomes, Aline Corado; Hoffmann, Christian; Mota, João Felipe

    2018-04-18

    The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.

  15. Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease.

    Science.gov (United States)

    Mangalam, Ashutosh; Shahi, Shailesh K; Luckey, David; Karau, Melissa; Marietta, Eric; Luo, Ningling; Choung, Rok Seon; Ju, Josephine; Sompallae, Ramakrishna; Gibson-Corley, Katherine; Patel, Robin; Rodriguez, Moses; David, Chella; Taneja, Veena; Murray, Joseph

    2017-08-08

    The human gut is colonized by a large number of microorganisms (∼10 13 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4 + FoxP3 + regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Human gut microbiota plays a role in the metabolism of drugs.

    Science.gov (United States)

    Jourova, Lenka; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-09-01

    The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.

  17. Comparison of DNA extraction methods for human gut microbial community profiling.

    Science.gov (United States)

    Lim, Mi Young; Song, Eun-Ji; Kim, Sang Ho; Lee, Jangwon; Nam, Young-Do

    2018-03-01

    The human gut harbors a vast range of microbes that have significant impact on health and disease. Therefore, gut microbiome profiling holds promise for use in early diagnosis and precision medicine development. Accurate profiling of the highly complex gut microbiome requires DNA extraction methods that provide sufficient coverage of the original community as well as adequate quality and quantity. We tested nine different DNA extraction methods using three commercial kits (TianLong Stool DNA/RNA Extraction Kit (TS), QIAamp DNA Stool Mini Kit (QS), and QIAamp PowerFecal DNA Kit (QP)) with or without additional bead-beating step using manual or automated methods and compared them in terms of DNA extraction ability from human fecal sample. All methods produced DNA in sufficient concentration and quality for use in sequencing, and the samples were clustered according to the DNA extraction method. Inclusion of bead-beating step especially resulted in higher degrees of microbial diversity and had the greatest effect on gut microbiome composition. Among the samples subjected to bead-beating method, TS kit samples were more similar to QP kit samples than QS kit samples. Our results emphasize the importance of mechanical disruption step for a more comprehensive profiling of the human gut microbiome. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. "Omic" investigations of protozoa and worms for a deeper understanding of the human gut "parasitome".

    Science.gov (United States)

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D'Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea; Putignani, Lorenza

    2017-11-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic "citizens." In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut "parasitome" through "omic" technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology-based profiles of the gut "parasitome" under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine.

  19. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria

    DEFF Research Database (Denmark)

    Rettedal, Elizabeth; Gumpert, Heidi; Sommer, Morten

    2014-01-01

    The human gut microbiota is linked to a variety of human health issues and implicated in antibiotic resistance gene dissemination. Most of these associations rely on culture-independent methods, since it is commonly believed that gut microbiota cannot be easily or sufficiently cultured. Here, we...... microbiota. Based on the phenotypic mapping, we tailor antibiotic combinations to specifically select for previously uncultivated bacteria. Utilizing this method we cultivate and sequence the genomes of four isolates, one of which apparently belongs to the genus Oscillibacter; uncultivated Oscillibacter...

  20. A wide diversity of bacteria from the human gut produces and degrades biogenic amines.

    Science.gov (United States)

    Pugin, Benoit; Barcik, Weronika; Westermann, Patrick; Heider, Anja; Wawrzyniak, Marcin; Hellings, Peter; Akdis, Cezmi A; O'Mahony, Liam

    2017-01-01

    Background : Biogenic amines (BAs) are metabolites produced by the decarboxylation of amino acids with significant physiological functions in eukaryotic and prokaryotic cells. BAs can be produced by bacteria in fermented foods, but little is known concerning the potential for microbes within the human gut microbiota to produce or degrade BAs. Objective : To isolate and identify BA-producing and BA-degrading microbes from the human gastrointestinal tract. Design : Fecal samples from human volunteers were screened on multiple growth media, under multiple growth conditions. Bacterial species were identified using 16S rRNA sequencing and BA production or degradation was assessed using ultra-performance liquid chromatography. Results : In total, 74 BA-producing or BA-degrading strains were isolated from the human gut. These isolates belong to the genera Bifidobacterium , Clostridium , Enterococcus , Lactobacillus , Pediococcus , Streptococcus , Enterobacter , Escherichia , Klebsiella , Morganella and Proteus . While differences in production or degradation of specific BAs were observed at the strain level, our results suggest that these metabolic activities are widely spread across different taxa present within the human gut microbiota. Conclusions : The isolation and identification of microbes from the human gut with BA-producing and BA-degrading metabolic activity is an important first step in developing a better understanding of how these metabolites influence health and disease.

  1. Enterochromaffin cells of the human gut: sensors for spices and odorants.

    Science.gov (United States)

    Braun, Thomas; Voland, Petra; Kunz, Lars; Prinz, Christian; Gratzl, Manfred

    2007-05-01

    Release of serotonin from mucosal enterochromaffin cells triggered by luminal substances is the key event in the regulation of gut motility and secretion. We were interested to know whether nasal olfactory receptors are also expressed in the human gut mucosa by enterochromaffin cells and whether their ligands and odorants present in spices, fragrances, detergents, and cosmetics cause serotonin release. Receptor expression was studied by the reverse-transcription polymerase chain reaction method in human mucosal enterochromaffin cells isolated by laser microdissection and in a cell line derived from human enterochromaffin cells. Activation of the cells by odorants was investigated by digital fluorescence imaging using the fluorescent Ca(2+) indicator Fluo-4. Serotonin release was measured in culture supernatants by a serotonin enzyme immunoassay and amperometry using carbon fiber microelectrodes placed on single cells. We found expression of 4 olfactory receptors in microdissected human mucosal enterochromaffin cells and in a cell line derived from human enterochromaffin cells. Ca(2+) imaging studies revealed that odorant ligands of the identified olfactory receptors cause Ca(2+) influx, elevation of intracellular free Ca(2+) levels, and, consequently, serotonin release. Our results show that odorants present in the luminal environment of the gut may stimulate serotonin release via olfactory receptors present in human enterochromaffin cells. Serotonin controls both gut motility and secretion and is implicated in pathologic conditions such as vomiting, diarrhea, and irritable bowel syndrome. Thus, olfactory receptors are potential novel targets for the treatment of gastrointestinal diseases and motility disorders.

  2. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Science.gov (United States)

    Raguideau, Sébastien; Plancade, Sandra; Pons, Nicolas; Leclerc, Marion; Laroche, Béatrice

    2016-12-01

    Whole Genome Shotgun (WGS) metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs) accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF) problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other metabolic processes in

  3. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Raguideau

    2016-12-01

    Full Text Available Whole Genome Shotgun (WGS metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other

  4. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.; Smith, Thomas J. (WU); (Danforth)

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the natural helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.

  5. Elasticity in ecosystem services: exploring the variable relationship between ecosystems and human well-being

    Directory of Open Access Journals (Sweden)

    Tim M. Daw

    2016-06-01

    Full Text Available Although ecosystem services are increasingly recognized as benefits people obtain from nature, we still have a poor understanding of how they actually enhance multidimensional human well-being, and how well-being is affected by ecosystem change. We develop a concept of "ecosystem service elasticity" (ES elasticity that describes the sensitivity of human well-being to changes in ecosystems. ES Elasticity is a result of complex social and ecological dynamics and is context dependent, individually variable, and likely to demonstrate nonlinear dynamics such as thresholds and hysteresis. We present a conceptual framework that unpacks the chain of causality from ecosystem stocks through flows, goods, value, and shares to contribute to the well-being of different people. This framework builds on previous conceptualizations, but places multidimensional well-being of different people as the final element. This ultimately disaggregated approach emphasizes how different people access benefits and how benefits match their needs or aspirations. Applying this framework to case studies of individual coastal ecosystem services in East Africa illustrates a wide range of social and ecological factors that can affect ES elasticity. For example, food web and habitat dynamics affect the sensitivity of different fisheries ecosystem services to ecological change. Meanwhile high cultural significance, or lack of alternatives enhance ES elasticity, while social mechanisms that prevent access can reduce elasticity. Mapping out how chains are interlinked illustrates how different types of value and the well-being of different people are linked to each other and to common ecological stocks. We suggest that examining chains for individual ecosystem services can suggest potential interventions aimed at poverty alleviation and sustainable ecosystems while mapping out of interlinkages between chains can help to identify possible ecosystem service trade-offs and winners and

  6. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements.

    Science.gov (United States)

    Coyne, Michael J; Roelofs, Kevin G; Comstock, Laurie E

    2016-01-15

    Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than

  7. Influence of food consumption patterns and Galician lifestyle on human gut microbiota.

    Science.gov (United States)

    Castro-Penalonga, María; Roca-Saavedra, Paula; Miranda, Jose Manuel; Porto-Arias, Jose Julio; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos Manuel; Cepeda, Alberto

    2018-02-01

    The proportion of different microbial populations in the human gut is an important factor that in recent years has been linked to obesity and numerous metabolic diseases. Because there are many factors that can affect the composition of human gut microbiota, it is of interest to have information about what is the composition of the gut microbiota in different populations in order to better understand the possibilities for improving nutritional management. A group of 31 volunteers were selected according to established inclusion and exclusion criteria and were asked about their diet history, lifestyle patterns, and adherence to the Southern European Atlantic Diet. Fecal samples were taken and subsequently analyzed by real-time PCR. The results indicated different dietary patterns for subjects who consumed a higher amount of fruits, vegetables, legumes, and fish and a lower amount of bakery foods and precooked foods and snacks compared to Spanish consumption data. Most participants showed intermediate or high adherence to Southern European Atlantic Diet, and an analysis of gut microbiota showed high numbers of total bacteria and Actinobacteria, as well as high amounts of bacteria belonging to the genera Lactobacillus spp. and Bifidobacterium spp. A subsequent statistical comparison also revealed differences in gut microbiota depending on the subject's body weight, age, or degree of adherence to the Southern European Atlantic Diet.

  8. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  9. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  10. Contribution of diet to the composition of the human gut microbiota.

    Science.gov (United States)

    Graf, Daniela; Di Cagno, Raffaella; Fåk, Frida; Flint, Harry J; Nyman, Margareta; Saarela, Maria; Watzl, Bernhard

    2015-01-01

    In the human gut, millions of bacteria contribute to the microbiota, whose composition is specific for every individual. Although we are just at the very beginning of understanding the microbiota concept, we already know that the composition of the microbiota has a profound impact on human health. A key factor in determining gut microbiota composition is diet. Preliminary evidence suggests that dietary patterns are associated with distinct combinations of bacteria in the intestine, also called enterotypes. Western diets result in significantly different microbiota compositions than traditional diets. It is currently unknown which food constituents specifically promote growth and functionality of beneficial bacteria in the intestine. The aim of this review is to summarize the recently published evidence from human in vivo studies on the gut microbiota-modulating effects of diet. It includes sections on dietary patterns (e.g. Western diet), whole foods, food constituents, as wells as food-associated microbes and their influence on the composition of human gut microbiota. The conclusions highlight the problems faced by scientists in this fast-developing field of research, and the need for high-quality, large-scale human dietary intervention studies.

  11. Differential effects of antibiotic therapy on the structure and function of human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Ana Elena Pérez-Cobas

    Full Text Available The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB, are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.

  12. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

    Science.gov (United States)

    Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A

    2018-02-15

    Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a

  13. Bacterial Impact on the Gut Metabolome

    DEFF Research Database (Denmark)

    Sulek, Karolina; Wilcks, Andrea; Licht, Tine Rask

    During the last decade, it has become evident that the complex ecosystem of mi-crobes inhabiting the human gut plays an important role for human health. An in-creasing number of publications have shown that the composition and activity of our intestinal microbiota affects a number of different so...

  14. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome.

    Science.gov (United States)

    Maier, Tanja V; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C; Brislawn, Colin J; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E; Bergeron, Nathalie; Heinzmann, Silke S; Morton, James T; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M; Schmitt-Kopplin, Philippe; Jansson, Janet K

    2017-10-17

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes , including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut. IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of

  15. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C.; Brislawn, Colin J.; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E.; Bergeron, Nathalie; Heinzmann, Silke S.; Morton, James T.; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M.; Schmitt-Kopplin, Philippe; Jansson, Janet K.; Moran, Mary Ann

    2017-10-17

    ABSTRACT

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.

    IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the

  16. The role of gut microbiota in human obesity: recent findings and future perspectives.

    Science.gov (United States)

    Tagliabue, A; Elli, M

    2013-03-01

    In recent years, gut microbiota have gained a growing interest as an environmental factor that may affect the predisposition toward adiposity. In this review, we describe and discuss the research that has focused on the involvement of gut microbiota in human obesity. We also summarize the current knowledge concerning the health effects of the composition of gut microbiota, acquired using the most recent methodological approaches, and the potential influence of gut microbiota on adiposity, as revealed by animal studies. Original research studies that were published in English or French until December 2011 were selected through a computer-assisted literature search. The studies conducted to date show that there are differences in the gut microbiota between obese and normal-weight experimental animals. There is also evidence that a high-fat diet may induce changes in gut microbiota in animal models regardless of the presence of obesity. In humans, obesity has been associated with reduced bacterial diversity and an altered representation of bacterial species, but the identified differences are not homogeneous among the studies. The question remains as to whether changes in the intestinal microbial community are one of the environmental causes of overweight and obesity or if they are a consequence of obesity, specifically of the unbalanced diet that often accompanies the development of excess weight gain. In the future, larger studies on the potential role of intestinal microbiota in human obesity should be conducted at the species level using standardized analytical techniques and taking all of the possible confounding variables into account. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.

    2017-04-11

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools.

  18. Relationship between Human Gut Microbiota and Interleukin 6 Levels in Overweight and Obese Adults

    Science.gov (United States)

    Background: Gut microbial diversity and abundance can profoundly impact human health. Research has shown that obese individuals are likely to have altered microbiota compared to lean individuals. Obesity is often considered a pro-inflammatory state, however the relationship between microbiota and i...

  19. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota.

    Science.gov (United States)

    Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier

    2018-03-01

    Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.

  20. The human gut microbiota as a reservoir for antimicrobial resistance genes

    NARCIS (Netherlands)

    Bülow, E.

    2015-01-01

    In the last decades, the emergence and spread of resistant opportunistic pathogens is compromising the effectiveness of antimicrobial therapies. Understanding the emergence and global spread of drug-resistant microorganisms is thus crucial to combat antimicrobial resistance. The human gut harbors a

  1. Gut Microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics and postbiotics on human health

    Science.gov (United States)

    Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...

  2. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron

    NARCIS (Netherlands)

    Lammerts van Bueren, Alicia; Mulder, Marieke; Leeuwen, Sander van; Dijkhuizen, Lubbert

    2017-01-01

    Galactooligosaccharides (GOS) are prebiotic carbohydrates that impart changes in the gut bacterial composition of formula-fed infants to more closely resemble that of breast-fed infants. Consuming human milk oligosaccharides (HMOs) provides specific bacterial strains with an advantage for colonizing

  3. Towards understanding the trajectory and interactions of the gut microbiome in healthy older humans

    DEFF Research Database (Denmark)

    Castro Mejia, Josue Leonardo

    The human gastrointestinal tract (GIT) is inhabited by a vast amount of microorganisms from different domains of life collectively denominated the gut microbiome (GM). Among its numerous functions, GM plays a crucial role in developing the immune system in early-life and contributes to maintain...... by food-selectivity (pickiness) and associated patterns of carbohydrates’ consumption (and total energy), reflecting changes in GM composition that corresponded with signs of glucoseintolerance. Lastly, in order to gain understanding on the role of viral communities in the gut of older adults, we...

  4. Transcriptional interactions suggest niche segregation among microorganisms in the human gut

    DEFF Research Database (Denmark)

    Plichta, Damian Rafal; Juncker, Agnieszka; dos Santos, Marcelo Bertalan Quintanilha

    2016-01-01

    The human gastrointestinal (GI) tract is the habitat for hundreds of microbial species, of which many cannot be cultivated readily, presumably because of the dependencies between species 1. Studies of microbial co-occurrence in the gut have indicated community substructures that may reflect...... functional and metabolic interactions between cohabiting species 2,3. To move beyond species co-occurrence networks, we systematically identified transcriptional interactions between pairs of coexisting gut microbes using metagenomics and microarray-based metatranscriptomics data from 233 stool samples from...

  5. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization

    Directory of Open Access Journals (Sweden)

    Arif Luqman

    2018-01-01

    Full Text Available Summary: A subgroup of biogenic amines, the so-called trace amines (TAs, are produced by mammals and bacteria and can act as neuromodulators. In the genus Staphylococcus, certain species are capable of producing TAs through the activity of staphylococcal aromatic amino acid decarboxylase (SadA. SadA decarboxylates aromatic amino acids to produce TAs, as well as dihydroxy phenylalanine and 5-hydroxytryptophan to thus produce the neurotransmitters dopamine and serotonin. SadA-expressing staphylococci were prevalent in the gut of most probands, where they are part of the human intestinal microflora. Furthermore, sadA-expressing staphylococci showed increased adherence to HT-29 cells and 2- to 3-fold increased internalization. Internalization and adherence was also increased in a sadA mutant in the presence of tryptamine. The α2-adrenergic receptor is required for enhanced adherence and internalization. Thus, staphylococci in the gut might contribute to gut activity and intestinal colonization. : Luqman et al. examine the sadA gene and argue that it contributes to TAs. They found that neuromodulator-producing staphylococci were present in the gut of most probands. The produced neuromodulators enhanced the adherence and internalization of staphylococci to cells in culture. Keywords: adherence, aromatic amino acid decarboxylase, gut microbiota, internalization, neuromodulator, neurotransmitter, staphylococcus

  6. ResistoMap-online visualization of human gut microbiota antibiotic resistome.

    Science.gov (United States)

    Yarygin, Konstantin S; Kovarsky, Boris A; Bibikova, Tatyana S; Melnikov, Damir S; Tyakht, Alexander V; Alexeev, Dmitry G

    2017-07-15

    We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. yarygin@phystech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  7. 56 Hydrological Dynamics and Human Impact on Ecosystems of ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Hydrological Dynamics and Human Impact on Ecosystems of Lake Tana, Northwestern. Ethiopia. 1Amare ... and lake level data were evaluated to identify change in climate and lake level. The annual ... economic importance. The total area of ...

  8. Ecosystem Approaches to Human Health Graduate Training Awards ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC's Ecosystem Approaches to Human Health (Ecohealth) program initiative ... Each grant will consist of CA $15 000 for field research and up to CA $4 000 for ... Nutrition, health policy, and ethics in the age of public-private partnerships.

  9. Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2008-12-01

    Full Text Available Abstract Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. Results The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Conclusion Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  10. Mapping Cumulative Impacts of Human Activities on Marine Ecosystems

    OpenAIRE

    , Seaplan

    2018-01-01

    Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Ma...

  11. FEGS at the inflection point: How linking Ecosystem Services to Human Benefit improves management of coastal ecosystems.

    Science.gov (United States)

    Final ecosystem goods and services (FEGS) are the connection between the ecosystem resources and human stakeholders that benefit from natural capital. The FEGS concept is an extension of the ecosystem services (ES) concept (e.g., Millennium Ecosystem Assessment) and results from...

  12. The Effect of Pomegranate (Punica granatum L.) Byproducts and Ellagitannins on the Growth of Human Gut Bacteria

    Science.gov (United States)

    The consumption of pomegranate products leads to a significant accumulation of ellagitannins in the large intestines, where they interact with complex gut microflora. This study investigated the effect of pomegranate tannin constituents on the growth of various species of human gut bacteria. Our r...

  13. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  14. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  15. Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues.

    Science.gov (United States)

    Zhou, Zejun; Zhang, Lumin; Ding, Miao; Luo, Zhenwu; Yuan, Shao; Bansal, Meena B; Gilkeson, Gary; Lang, Ren; Jiang, Wei

    2017-10-01

    Females have a higher prevalence of most autoimmune diseases; however, the mechanism is unknown. In this study, we examined the expression of tight junction protein zonula occludens 1 (ZO-1) and estrogen receptor (ER)-α/β in human primary gut tissues by immunohistochemistry, immunofluorescence and qPCR. The expression of ZO-1 and ER-β but not ER-α was present in both male and female gut tissues. There was no sex difference in ER-β expression, but ZO-1 expression was decreased in females compared to males. In vitro, estrogen treatment decreased ZO-1 mRNA and protein expression, ZO-1 promoter activity, IL-6 production, and NF-κB activation in human primary gut tissues or the Caco-2 cells, but increased the ER-β expression in Caco-2 cells. Consistently, plasma IL-6 levels in females were reduced relative to males in vivo. Our finding indicates that estrogen may play a role in gut tight junction expression and permeability. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.

    Science.gov (United States)

    Song, Han; Yoo, Young; Hwang, Junghyun; Na, Yun-Cheol; Kim, Heenam Stanley

    2016-03-01

    Atopic dermatitis (AD) is a serious global epidemic associated with a modern lifestyle. Although aberrant interactions between gut microbes and the intestinal immune system have been implicated in this skin disease, the nature of the microbiome dysfunction underlying the disease remains unclear. The gut microbiome from 132 subjects, including 90 patients with AD, was analyzed by using 16S rRNA gene and metagenome sequence analyses. Reference genomes from the Human Microbiome Project and the KEGG Orthology database were used for metagenome analyses. Short-chain fatty acids in fecal samples were compared by using gas chromatographic-mass spectrometric analyses. We show that enrichment of a subspecies of the major gut species Faecalibacterium prausnitzii is strongly associated with AD. In addition, the AD microbiome was enriched in genes encoding the use of various nutrients that could be released from damaged gut epithelium, reflecting a bloom of auxotrophic bacteria. Fecal samples from patients with AD showed decreased levels of butyrate and propionate, which have anti-inflammatory effects. This is likely a consequence of an intraspecies compositional change in F prausnitzii that reduces the number of high butyrate and propionate producers, including those related to the strain A2-165, a lack of which has been implicated in patients with Crohn disease. The data suggest that feedback interactions between dysbiosis in F prausnitzii and dysregulation of gut epithelial inflammation might underlie the chronic progression of AD by resulting in impairment of the gut epithelial barrier, which ultimately leads to aberrant TH2-type immune responses to allergens in the skin. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development.

    Science.gov (United States)

    Stagaman, Keaton; Cepon-Robins, Tara J; Liebert, Melissa A; Gildner, Theresa E; Urlacher, Samuel S; Madimenos, Felicia C; Guillemin, Karen; Snodgrass, J Josh; Sugiyama, Lawrence S; Bohannan, Brendan J M

    2018-01-01

    Economic development is marked by dramatic increases in the incidence of microbiome-associated diseases, such as autoimmune diseases and metabolic syndromes, but the lifestyle changes that drive alterations in the human microbiome are not known. We measured market integration as a proxy for economically related lifestyle attributes, such as ownership of specific market goods that index degree of market integration and components of traditional and nontraditional (more modern) house structure and infrastructure, and profiled the fecal microbiomes of 213 participants from a contiguous, indigenous Ecuadorian population. Despite relatively modest differences in lifestyle across the population, greater economic development correlated with significantly lower within-host diversity, higher between-host dissimilarity, and a decrease in the relative abundance of the bacterium Prevotella . These microbiome shifts were most strongly associated with more modern housing, followed by reduced ownership of traditional subsistence lifestyle-associated items. IMPORTANCE Previous research has reported differences in the gut microbiome between populations residing in wealthy versus poorer countries, leading to the assertion that lifestyle changes associated with economic development promote changes in the gut microbiome that promote the proliferation of microbiome-associated diseases. However, a direct relationship between economic development and the gut microbiome has not previously been shown. We surveyed the gut microbiomes of a single indigenous population undergoing economic development and found significant associations between features of the gut microbiome and lifestyle changes associated with economic development. These findings suggest that even the earliest stages of economic development can drive changes in the gut microbiome, which may provide a warning sign for the development of microbiome-associated diseases.

  18. The influence of a short-term gluten-free diet on the human gut microbiome.

    Science.gov (United States)

    Bonder, Marc Jan; Tigchelaar, Ettje F; Cai, Xianghang; Trynka, Gosia; Cenit, Maria C; Hrdlickova, Barbara; Zhong, Huanzi; Vatanen, Tommi; Gevers, Dirk; Wijmenga, Cisca; Wang, Yang; Zhernakova, Alexandra

    2016-04-21

    A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome. We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured. Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10(-05)). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements. A GFD changes the gut microbiome composition and alters the activity of microbial pathways.

  19. Use of dietary indices to control for diet in human gut microbiota studies.

    Science.gov (United States)

    Bowyer, Ruth C E; Jackson, Matthew A; Pallister, Tess; Skinner, Jane; Spector, Tim D; Welch, Ailsa A; Steves, Claire J

    2018-04-25

    Environmental factors have a large influence on the composition of the human gut microbiota. One of the most influential and well-studied is host diet. To assess and interpret the impact of non-dietary factors on the gut microbiota, we endeavoured to determine the most appropriate method to summarise community variation attributable to dietary effects. Dietary habits are multidimensional with internal correlations. This complexity can be simplified by using dietary indices that quantify dietary variance in a single measure and offer a means of controlling for diet in microbiota studies. However, to date, the applicability of different dietary indices to gut microbiota studies has not been assessed. Here, we use food frequency questionnaire (FFQ) data from members of the TwinsUK cohort to create three different dietary measures applicable in western-diet populations: The Healthy Eating Index (HEI), the Mediterranean Diet Score (MDS) and the Healthy Food Diversity index (HFD-Index). We validate and compare these three indices to determine which best summarises dietary influences on gut microbiota composition. All three indices were independently validated using established measures of health, and all were significantly associated with microbiota measures; the HEI had the highest t values in models of alpha diversity measures, and had the highest number of associations with microbial taxa. Beta diversity analyses showed the HEI explained the greatest variance of microbiota composition. In paired tests between twins discordant for dietary index score, the HEI was associated with the greatest variation of taxa and twin dissimilarity. We find that the HEI explains the most variance in, and has the strongest association with, gut microbiota composition in a western (UK) population, suggesting that it may be the best summary measure to capture gut microbiota variance attributable to habitual diet in comparable populations.

  20. Evolutionary and ecological forces that shape the bacterial communities of the human gut

    Science.gov (United States)

    Messer, Jeannette S.; Liechty, Emma R; Vogel, Olivia A.; Chang, Eugene B.

    2017-01-01

    Since microbes were first described in the mid-1600's, we have come to appreciate that they live all around and within us with both beneficial and detrimental effects on nearly every aspect of our lives. The human gastrointestinal tract is inhabited by a dynamic community of trillions of bacteria that constantly interact with each other and their human host. The acquisition of these bacteria is not stochastic, but determined by circumstance (environment), host rules (genetics, immune state, mucus, etc), and dynamic self-selection among microbes to form stable, resilient communities that are in balance with the host. In this review, we will discuss how these factors lead to formation of the gut bacterial community and influence its interactions with the host. We will also address how gut bacteria contribute to disease and how they could potentially be targeted to prevent and treat a variety of human ailments. PMID:28145439

  1. Challenges in simulating the human gut for understanding the role of the microbiota in obesity.

    Science.gov (United States)

    Aguirre, M; Venema, K

    2017-02-07

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.

  2. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis

    NARCIS (Netherlands)

    Gori, Andrea; Tincati, Camilla; Rizzardini, Giuliano; Torti, Carlo; Quirino, Tiziana; Haarman, Monique; Ben Amor, Kaouther; van Schaik, Jacqueline; Vriesema, Aldwin; Knol, Jan; Marchetti, Giulia; Welling, Gjalt; Clerici, Mario

    Our results show that impairment of the gastrointestinal tracts in human immunodeficiency virus (HIV)-positive patients is present in the early phases of HIV disease. This impairment is associated with alterations in gut microbiota and intestinal inflammatory parameters. These findings support the

  3. The role of gut microbiota in health and disease : In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut

    NARCIS (Netherlands)

    von Martels, Julius Z. H.; Sadabad, Mehdi Sadaghian; Bourgonje, Arno R.; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J. M.

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition.

  4. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire.

    Science.gov (United States)

    Vossenkämper, Anna; Blair, Paul A; Safinia, Niloufar; Fraser, Louise D; Das, Lisa; Sanders, Theodore J; Stagg, Andrew J; Sanderson, Jeremy D; Taylor, Kirstin; Chang, Fuju; Choong, Lee M; D'Cruz, David P; Macdonald, Thomas T; Lombardi, Giovanna; Spencer, Jo

    2013-08-26

    We have tracked the fate of immature human B cells at a critical stage in their development when the mature B cell repertoire is shaped. We show that a major subset of bone marrow emigrant immature human B cells, the transitional 2 (T2) B cells, homes to gut-associated lymphoid tissue (GALT) and that most T2 B cells isolated from human GALT are activated. Activation in GALT is a previously unknown potential fate for immature human B cells. The process of maturation from immature transitional B cell through to mature naive B cell includes the removal of autoreactive cells from the developing repertoire, a process which is known to fail in systemic lupus erythematosus (SLE). We observe that immature B cells in SLE are poorly equipped to access the gut and that gut immune compartments are depleted in SLE. Thus, activation of immature B cells in GALT may function as a checkpoint that protects against autoimmunity. In healthy individuals, this pathway may be involved in generating the vast population of IgA plasma cells and also the enigmatic marginal zone B cell subset that is poorly understood in humans.

  5. Differential effects of whisky brands on human gut microbiome and fecal metabolome

    Directory of Open Access Journals (Sweden)

    Priyanka Sarkar

    2017-10-01

    Full Text Available The gut bacteria have significant impact on human physiology and are influenced by dietary habit [1]. Apart from normal diet, alcoholic beverages have also been shown to influence gut microbial makeup. The wine polyphenols have been linked to increase the beneficial bacteria in the gut after 4 weeks of consumption [2]. Consumption of alcoholic beverages for longer period (>10 years has also been correlated to detrimental gut bacterial dysbiosis [3]. The contrasting effects of alcoholic beverages in these two studies necessitate further research. Globally, 45.7% of alcoholic drinkers are spirit drinkers with India having the highest (71% [4]. In India whisky is preferred by most of the drinkers and 1400 million liters of whisky was consumed in India in the year 2012 [5]. Till date, no study has been reported to understand the effect of long-term consumption of different types of whisky on gut bacterial profile (GBP. In this purview apilot study of gut bacterial and metabolite profile was performed between the whisky drinker (n=18 and non-drinker (n=8 along with rice beer drinkers (n=3. PCR-denaturing gradient gel electrophoresis (PCR-DGGE coupled with next generation sequencing (NGS analysis on illumina miseq platform revealed decrease in gut bacterial diversity in the drinkers compared to the non-drinkers. The whisky types have differential effects on the GBP. The GBP of whisky type 1 drinkers had higher abundance of Clostridiaceae and Enterobacteriaceae (fold change log 2: 3.33 & 3.1537, respectively; p< 0.002 in comparison to the non-drinker group, while the type 2 whisky drinkers had increased abundance of Lactococcus and Streptococcus (fold change log 2: 9.1827 & 4.2986; p< 0.002 compared to the non-drinker group. The butyric acid producing genera, Ruminococcaceae was found to be decreased in both the whisky drinking cohorts (fold change log 2: -1.5449 & -2.7327, respectively; p<0.002. Short-chain fatty acids (SCFA, mainly butyric acid

  6. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study.

    Science.gov (United States)

    Lankelma, Jacqueline M; Cranendonk, Duncan R; Belzer, Clara; de Vos, Alex F; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2017-09-01

    The gut microbiota is essential for the development of the intestinal immune system. Animal models have suggested that the gut microbiota also acts as a major modulator of systemic innate immunity during sepsis. Microbiota disruption by broad-spectrum antibiotics could thus have adverse effects on cellular responsiveness towards invading pathogens. As such, the use of antibiotics may attribute to immunosuppression as seen in sepsis. We aimed to test whether disruption of the gut microbiota affects systemic innate immune responses during endotoxemia in healthy subjects. In this proof-of-principle intervention trial, 16 healthy young men received either no treatment or broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days, after which all were administered lipopolysaccharide intravenously to induce a transient sepsis-like syndrome. At various time points, blood and faeces were sampled. Gut microbiota diversity was significantly lowered by the antibiotic treatment in all subjects. Clinical parameters, neutrophil influx, cytokine production, coagulation activation and endothelial activation during endotoxemia were not different between antibiotic-pretreated and control individuals. Antibiotic treatment had no impact on blood leucocyte responsiveness to various Toll-like receptor ligands and clinically relevant causative agents of sepsis ( Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli ) during endotoxemia. These findings suggest that gut microbiota disruption by broad-spectrum antibiotics does not affect systemic innate immune responses in healthy subjects during endotoxemia in humans, disproving our hypothesis. Further research is needed to test this hypothesis in critically ill patients. These data underline the importance of translating findings in mice to humans. ClinicalTrials.gov (NCT02127749; Pre-results). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  7. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.

    Science.gov (United States)

    Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Marc D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A

    2018-04-01

    Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls before outcome variable collection. Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk) that progressed from 30 to 60 min·d and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

  8. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    Science.gov (United States)

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  9. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  10. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  11. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    Science.gov (United States)

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  12. Emerging synbiotics and their effect on the composition and functionality of the human gut microbiota

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina

    Research indicates that the gut microbiota (GM) plays an important role in the health of the host and during recent years the increase in the composition and functionality of the gut microbiota has become of increasing interest. Probiotics, prebiotics or combinations hereof, so-called synbiotics......, may be used to change the composition and activity of the human GM and thereby potentially affect the host health beneficially. In this PhD study it was hypothesized that emerging synbiotics have the potential of modulating the human GM composition as well as the functionality. To gain the beneficial...... substrates. These findings indicate that the selected emerging prebiotics are able to provide a competitive advantage for NCFM and Bl-04. All the emerging synbiotics were able to induce changes in the predominant bacteria, observed as a decrease in the modified ratio of Bacteroidetes/Firmicutes (calculated...

  13. Characterization of the SOS meta-regulon in the human gut microbiome.

    Science.gov (United States)

    Cornish, Joseph P; Sanchez-Alberola, Neus; O'Neill, Patrick K; O'Keefe, Ronald; Gheba, Jameel; Erill, Ivan

    2014-05-01

    Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.

  14. Gut metabolome meets microbiome

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M

    2018-01-01

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We...... highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding...

  15. Millennium Ecosystem Assessment: Ecosystems and human well-being: wetlands and water synthesis

    NARCIS (Netherlands)

    Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; Groot, de R.S.; Lévêque, C.; Milton, G.R.; Peterson, G.; Pritchard, D.; Ratner, B.D.; Reid, W.V.; Revenga, C.; Rivera, M.; Schutyser, F.; Siebentritt, M.; Stuip, M.; Tharme, R.; Butchard, S.; Dieme-Amting, E.; Gitay, H.; Raaymakers, S.; Taylor, D.

    2005-01-01

    The Wetlands and Water synthesis was designed for the Ramsar Convention to meet the need for information about the consequences of ecosystem change for human well-being and sought to strengthen the link between scientific knowledge and decision-making for the conservation and wise use of wetlands.

  16. Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393.

    Science.gov (United States)

    Hong, Pei-Ying; Iakiviak, Michael; Dodd, Dylan; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac

    2014-04-01

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  17. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying

    2014-01-24

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  18. Two New Xylanases with Different Substrate Specificities from the Human Gut Bacterium Bacteroides intestinalis DSM 17393

    KAUST Repository

    Hong, Pei-Ying; Iakiviak, M.; Dodd, D.; Zhang, M.; Mackie, R. I.; Cann, I.

    2014-01-01

    Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.

  19. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer.

    Science.gov (United States)

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-06-13

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol.

  20. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  1. Measurements of actinide gut-transfer factors in humans

    International Nuclear Information System (INIS)

    Popplewell, D.S.; Ham, G.J.; Harrison, J.D.

    1992-01-01

    Measurements have been made of the gastrointestinal absorption in humans of 239 Np and 242 Cm administered together in citrate media. Using five volunteers, consistent results of (2.0 ± 0.2) x 10 -4 and (1.7 ± 0.3) x 10 -4 were obtained for Np and Cm respectively; the quoted uncertainties are the standard errors of the means. A progress report is given of work to measure the f 1 value for Pu in humans. Early work suggests an f 1 value of 2 x 10 -4 . (author)

  2. Interstitial cells of Cajal in human gut and gastrointestinal disease

    DEFF Research Database (Denmark)

    Vanderwinden, J M; Rumessen, J J

    1999-01-01

    This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective of their fun......This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective...

  3. MORPHOMETRICAL PARAMETERS OF GUT MICROFLORA IN HUMAN VOLUNTEERS

    NARCIS (Netherlands)

    Wilkinson, M.H.F.; Meijer, B.C

    1991-01-01

    The morphology of faecal microflora of nine healthy human volunteers was studied by digital image analysis of microscopic slides. Weekly specimens were collected during an 8-week period. Seven morphometrical parameters were derived: the means and medians of components 1, 2 and 3, and morphometrical

  4. Impact Of Human Activities On Ecosystem In Rivers State, Nigeria ...

    African Journals Online (AJOL)

    This study was to assess the percent sample population size of people involved in selected human economic activities and the impact on ecosystem in Rivers State. The data for this study was obtained from a sample size of 1000 respondents who were purposively selected from the study area. Purposive sample was used ...

  5. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.

    Science.gov (United States)

    Chen, Ligen; Xu, Wei; Chen, Dan; Chen, Guijie; Liu, Junwei; Zeng, Xiaoxiong; Shao, Rong; Zhu, Hongjun

    2018-06-01

    Sulfated polysaccharides from marine algae exhibit various bioactivities with potential benefits for human health and well-being. In this study, the in vitro digestibility and fermentability of polysaccharides from the brown seaweed Ascophyllum nodosum (AnPs) were examined, and the effects of AnPs on gut microbiota were determined using high-throughput sequencing technology. Salivary amylase, artificial gastric juice, and intestinal juice had no effect on AnPs, but the molecular weight of AnPs and reducing sugar decreased significantly after fermentation by gut microbiota. AnPs significantly modulated the composition of the gut microbiota; in particular, they increased the relative abundance of Bacteroidetes and Firmicutes, suggesting the potential for AnPs to decrease the risk of obesity. Furthermore, the total SCFA content after fermentation increased significantly. These results suggest that AnPs have potential uses as functional food components to improve human gut health. Copyright © 2018. Published by Elsevier B.V.

  6. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    Science.gov (United States)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization.

    Science.gov (United States)

    Luqman, Arif; Nega, Mulugeta; Nguyen, Minh-Thu; Ebner, Patrick; Götz, Friedrich

    2018-01-09

    A subgroup of biogenic amines, the so-called trace amines (TAs), are produced by mammals and bacteria and can act as neuromodulators. In the genus Staphylococcus, certain species are capable of producing TAs through the activity of staphylococcal aromatic amino acid decarboxylase (SadA). SadA decarboxylates aromatic amino acids to produce TAs, as well as dihydroxy phenylalanine and 5-hydroxytryptophan to thus produce the neurotransmitters dopamine and serotonin. SadA-expressing staphylococci were prevalent in the gut of most probands, where they are part of the human intestinal microflora. Furthermore, sadA-expressing staphylococci showed increased adherence to HT-29 cells and 2- to 3-fold increased internalization. Internalization and adherence was also increased in a sadA mutant in the presence of tryptamine. The α2-adrenergic receptor is required for enhanced adherence and internalization. Thus, staphylococci in the gut might contribute to gut activity and intestinal colonization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Phoebe Lin

    Full Text Available The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m, compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  9. Clinical Correlates of Diarrhea and Gut Parasites among Human Immunodeficiency Virus Seropositive Patients

    Directory of Open Access Journals (Sweden)

    Elvis Bisong

    2017-09-01

    Full Text Available Cluster differentiation 4 (CD4 count estimation, which is not readily available in most resource poor settings in Nigeria, is an important indexdetermining commencement of antiretroviral therapy (ART. It is imperative for physicians who come in contact with these patients in such settings to recognize other parameters to evaluate these patients. The clinical correlates of diarrhea and gut parasites among human immunodeficiency virus (HIV-seropositive patients attending our special treatment clinic were studied. Three hundred and forty consenting HIV-positive adult subjects were enrolled. Their stool and blood specimens were collected for a period of three months. Stool samples were analyzed for the presence of diarrhea and gut parasites. The patients were clinically evaluated by physical examination for the presence of pallor, dehydration, oral thrush, wasting lymphadenopathy, dermatitis, skin hyperpigmentation, and finger clubbing. Participants with diarrhea represented 14.1% of the population, while 21.5% harbored one or more parasites. In the subjects with diarrhea, 14.6% harbored gut parasites. The presence of diarrhea was associated with a low CD4 count. Clinically, oral thrush, wasting, and rashes were more reliable predictors of low CD4 count levels; whereas, the presence of pallor, dehydration, wasting, and rashes correlated with the presence of diarrhea. HIV patients presenting with pallor, dehydration, wasting, and rashes should be evaluated for the presence of diarrhea. The clinical variables associated with low CD4 count in this study may guide commencing antiretroviral therapy in resource poor settings.

  10. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body.

    Science.gov (United States)

    Yang, Xing; Xie, Lu; Li, Yixue; Wei, Chaochun

    2009-06-29

    Estimating the number of genes in human genome has been long an important problem in computational biology. With the new conception of considering human as a super-organism, it is also interesting to estimate the number of genes in this human super-organism. We presented our estimation of gene numbers in the human gut bacterial community, the largest microbial community inside the human super-organism. We got 552,700 unique genes from 202 complete human gut bacteria genomes. Then, a novel gene counting model was built to check the total number of genes by combining culture-independent sequence data and those complete genomes. 16S rRNAs were used to construct a three-level tree and different counting methods were introduced for the three levels: strain-to-species, species-to-genus, and genus-and-up. The model estimates that the total number of genes is about 9,000,000 after those with identity percentage of 97% or up were merged. By combining completed genomes currently available and culture-independent sequencing data, we built a model to estimate the number of genes in human gut bacterial community. The total number of genes is estimated to be about 9 million. Although this number is huge, we believe it is underestimated. This is an initial step to tackle this gene counting problem for the human super-organism. It will still be an open problem in the near future. The list of genomes used in this paper can be found in the supplementary table.

  11. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    OpenAIRE

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-01-01

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats...

  12. The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome.

    Science.gov (United States)

    Huseyin, Chloe E; Rubio, Raul Cabrera; O'Sullivan, Orla; Cotter, Paul D; Scanlan, Pauline D

    2017-01-01

    The human gut is host to a diverse range of fungal species, collectively referred to as the gut "mycobiome". The gut mycobiome is emerging as an area of considerable research interest due to the potential roles of these fungi in human health and disease. However, there is no consensus as to what the best or most suitable methodologies available are with respect to characterizing the human gut mycobiome. The aim of this study is to provide a comparative analysis of several previously published mycobiome-specific culture-dependent and -independent methodologies, including choice of culture media, incubation conditions (aerobic versus anaerobic), DNA extraction method, primer set and freezing of fecal samples to assess their relative merits and suitability for gut mycobiome analysis. There was no significant effect of media type or aeration on culture-dependent results. However, freezing was found to have a significant effect on fungal viability, with significantly lower fungal numbers recovered from frozen samples. DNA extraction method had a significant effect on DNA yield and quality. However, freezing and extraction method did not have any impact on either α or β diversity. There was also considerable variation in the ability of different fungal-specific primer sets to generate PCR products for subsequent sequence analysis. Through this investigation two DNA extraction methods and one primer set was identified which facilitated the analysis of the mycobiome for all samples in this study. Ultimately, a diverse range of fungal species were recovered using both approaches, with Candida and Saccharomyces identified as the most common fungal species recovered using culture-dependent and culture-independent methods, respectively. As has been apparent from ecological surveys of the bacterial fraction of the gut microbiota, the use of different methodologies can also impact on our understanding of gut mycobiome composition and therefore requires careful consideration

  13. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    Science.gov (United States)

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Human footprints on greenhouse gas fluxes in cryogenic ecosystems

    Science.gov (United States)

    Karelin, D. V.; Goryachkin, S. V.; Zamolodchikov, D. G.; Dolgikh, A. V.; Zazovskaya, E. P.; Shishkov, V. A.; Kraev, G. N.

    2017-12-01

    Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

  15. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.

    Directory of Open Access Journals (Sweden)

    Charles K Fisher

    Full Text Available Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1 a correlation between the abundances of two species does not imply that those species are interacting, 2 the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3 errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called "errors-in-variables". Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS, that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct "keystone species", Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in

  16. Modulation of the human gut microbiota by dietary fibres occurs at the species level.

    Science.gov (United States)

    Chung, Wing Sun Faith; Walker, Alan W; Louis, Petra; Parkhill, Julian; Vermeiren, Joan; Bosscher, Douwina; Duncan, Sylvia H; Flint, Harry J

    2016-01-11

    Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori

  17. In vitro fermentation behaviors of fucosylated chondroitin sulfate from Pearsonothuria graeffei by human gut microflora.

    Science.gov (United States)

    Wei, Chao-Yang; Liao, Ning-Bo; Zhang, Yu; Ye, Xing-Qian; Li, Shan; Hu, Ya-Qin; Liu, Dong-Hong; Linhardt, Robert J; Wang, Xin; Chen, Shi-Guo

    2017-09-01

    A fucosylated chondroitin sulfate (FCS-pg) with highly repeated structure from Pearsonothuria graeffei was subjected to a in vitro fermentation model to investigate its fermentability and effects on human gut microflora. High performance liquid chromatography (HPLC) measurement found FCS-pg can be fermented to short chain fatty acids (SCFAs) by gut microflora from partial human fecal samples. 16S rRNA gene-based polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) profiling and real-time quantitative PCR analysis showed that FCS-pg mainly increased the proportions of Clostridium cluster XI, Bacteriodes prevotella group, Bifidobacterium genus, Clostridium cluster I and Clostridium cluster XIVab, whereas the numbers of the Enterobacteriaceae and Lactobacillus decreased. These results indicated that FCS-pg was mainly fermented by Bacteroides, Bifidobacterium and Clostridium. It increased the content of probiotics bacteria in achieving health-enhancing effect, was slightly different than most sulfated polysaccharides from marine animals. The current study provides useful new information on the mechanism of absorption and functional activity on FCS-pg within the gastrointestinal tract of the human body. Copyright © 2017. Published by Elsevier B.V.

  18. Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Jens Christian Claussen

    2017-06-01

    Full Text Available The analysis of microbiome compositions in the human gut has gained increasing interest due to the broader availability of data and functional databases and substantial progress in data analysis methods, but also due to the high relevance of the microbiome in human health and disease. While most analyses infer interactions among highly abundant species, the large number of low-abundance species has received less attention. Here we present a novel analysis method based on Boolean operations applied to microbial co-occurrence patterns. We calibrate our approach with simulated data based on a dynamical Boolean network model from which we interpret the statistics of attractor states as a theoretical proxy for microbiome composition. We show that for given fractions of synergistic and competitive interactions in the model our Boolean abundance analysis can reliably detect these interactions. Analyzing a novel data set of 822 microbiome compositions of the human gut, we find a large number of highly significant synergistic interactions among these low-abundance species, forming a connected network, and a few isolated competitive interactions.

  19. [Ecosystem services supply and consumption and their relationships with human well-being].

    Science.gov (United States)

    Wang, Da-Shang; Zheng, Hua; Ouyang, Zhi-Yun

    2013-06-01

    Sustainable ecosystem services supply is the basis of regional sustainable development, and human beings can satisfy and improve their well-being through ecosystem services consumption. To understand the relationships between ecosystem services supply and consumption and human well-being is of vital importance for coordinating the relationships between the conservation of ecosystem services and the improvement of human well-being. This paper summarized the diversity, complexity, and regionality of ecosystem services supply, the diversity and indispensability of ecosystem services consumption, and the multi-dimension, regionality, and various evaluation indices of human well-being, analyzed the uncertainty and multi-scale correlations between ecosystem services supply and consumption, and elaborated the feedback and asynchronous relationships between ecosystem services and human well-being. Some further research directions for the relationships between ecosystem services supply and consumption and human well-being were recommended.

  20. Metabolic niche of a prominent sulfate-reducing human gut bacterium.

    Science.gov (United States)

    Rey, Federico E; Gonzalez, Mark D; Cheng, Jiye; Wu, Meng; Ahern, Philip P; Gordon, Jeffrey I

    2013-08-13

    Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger, the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger, which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides-encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H2S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage's substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H2-producing Actinobacterium, Collinsella aerofaciens. Our findings provide genetic and metabolic details of how this H2-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.

  1. Lateral gene transfer of an ABC transporter complex between major constituents of the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Meehan Conor J

    2012-11-01

    Full Text Available Abstract Background Several links have been established between the human gut microbiome and conditions such as obesity and inflammatory bowel syndrome. This highlights the importance of understanding what properties of the gut microbiome can affect the health of the human host. Studies have been undertaken to determine the species composition of this microbiome and infer functional profiles associated with such host properties. However, lateral gene transfer (LGT between community members may result in misleading taxonomic attributions for the recipient organisms, thus making species-function links difficult to establish. Results We identified a peptides/nickel transport complex whose components differed in abundance based upon levels of host obesity, and assigned the encoded proteins to members of the microbial community. Each protein was assigned to several distinct taxonomic groups, with moderate levels of agreement observed among different proteins in the complex. Phylogenetic trees of these proteins produced clusters that differed greatly from taxonomic attributions and indicated that habitat-directed LGT of this complex is likely to have occurred, though not always between the same partners. Conclusions These findings demonstrate that certain membrane transport systems may be an important factor within an obese-associated gut microbiome and that such complexes may be acquired several times by different strains of the same species. Additionally, an example of individual proteins from different organisms being transferred into one operon was observed, potentially demonstrating a functional complex despite the donors of the subunits being taxonomically disparate. Our results also highlight the potential impact of habitat-directed LGT on the resident microbiota.

  2. Understanding Complex Human Ecosystems: The Case of Ecotourism on Bonaire

    Directory of Open Access Journals (Sweden)

    Thomas Abel

    2003-12-01

    Full Text Available It is suggested that ecotourism development on the island of Bonaire can be productively understood as a perturbation of a complex human ecosystem. Inputs associated with ecotourism have fueled transformations of the island ecology and sociocultural system. The results of this study indicate that Bonaire's social and economic hierarchy is approaching a new, stable systems state following a 50-yr transition begun by government and industry that stabilized with the appearance of ecotourism development and population growth. Ecotourism can be understood to have "filled in" the middle of the production hierarchy of Bonaire. Interpreted from this perspective, population growth has completed the transformation by expanding into production niches at smaller scales in the production hierarchy. Both a consequence and a cause, ecotourism has transformed the island's social structure and demography. The theory and methods applied in this case study of interdisciplinary research in the field of human ecosystems are also presented.

  3. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    Directory of Open Access Journals (Sweden)

    Caleigh M. Sawicki

    2017-02-01

    Full Text Available Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1 modulation of colonic microflora; and/or (2 colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%, resistant starch (16%, and chemically synthesized fibers (15%. Short-chain fatty acid concentration (47% and bacterial composition (88% were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  4. Transfer factors across the human gut for plutonium and americium in shellfish from near Sellafield

    International Nuclear Information System (INIS)

    Hunt, G.J.; Leonard, D.R.P.; Lovett, M.B.

    1988-01-01

    Data on gut transfer factors for environmental forms of radionuclides are essential for estimates of public radiation exposures following ingestion, and thus in decisions on controlling waste disposals. Dose estimates for transuranic nuclides are particularly sensitive to uncertainties stemming from gut transfer data being related to non-environmental forms and/or derived from animal experiments. The main parameter in question is f 1 , the fraction of intake reaching human body fluids following ingestion, as applied in the model of the gastro-intestinal tract used by the ICRP. The ICRP have recently reviewed the metabolism of plutonium and related elements (ICRP, 1986). Values of f 1 were derived from animal data; limited verification was provided by the only human data then available which was based on the low levels of fallout in foodstuffs. The ICRP proposed a cautious value of f 1 of 10 -3 for unknown or mixed compounds of Pu and for other actinides. However, it was recognised that this cautious value may not be appropriate in all situations where a best estimate of absorption is required; in such cases, if a different value more suitable to the specific situation can be justified, it should be employed

  5. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation

    Science.gov (United States)

    Tailford, Louise E.; Owen, C. David; Walshaw, John; Crost, Emmanuelle H.; Hardy-Goddard, Jemma; Le Gall, Gwenaelle; de Vos, Willem M.; Taylor, Garry L.; Juge, Nathalie

    2015-07-01

    The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease.

  6. Human and rat gut microbiome composition is maintained following sleep restriction.

    Science.gov (United States)

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    2017-02-21

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.

  7. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents.

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann

    Full Text Available Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi, we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new associations to consider in modeling the effects of diet on the gut microbiome and human health.

  8. Urban transitions: on urban resilience and human-dominated ecosystems.

    Science.gov (United States)

    Ernstson, Henrik; van der Leeuw, Sander E; Redman, Charles L; Meffert, Douglas J; Davis, George; Alfsen, Christine; Elmqvist, Thomas

    2010-12-01

    Urbanization is a global multidimensional process paired with increasing uncertainty due to climate change, migration of people, and changes in the capacity to sustain ecosystem services. This article lays a foundation for discussing transitions in urban governance, which enable cities to navigate change, build capacity to withstand shocks, and use experimentation and innovation in face of uncertainty. Using the three concrete case cities--New Orleans, Cape Town, and Phoenix--the article analyzes thresholds and cross-scale interactions, and expands the scale at which urban resilience has been discussed by integrating the idea from geography that cities form part of "system of cities" (i.e., they cannot be seen as single entities). Based on this, the article argues that urban governance need to harness social networks of urban innovation to sustain ecosystem services, while nurturing discourses that situate the city as part of regional ecosystems. The article broadens the discussion on urban resilience while challenging resilience theory when addressing human-dominated ecosystems. Practical examples of harnessing urban innovation are presented, paired with an agenda for research and policy.

  9. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  10. “Omic” investigations of protozoa and worms for a deeper understanding of the human gut “parasitome”

    Science.gov (United States)

    Marzano, Valeria; Mancinelli, Livia; Bracaglia, Giorgia; Del Chierico, Federica; Vernocchi, Pamela; Di Girolamo, Francesco; Garrone, Stefano; Tchidjou Kuekou, Hyppolite; D’Argenio, Patrizia; Dallapiccola, Bruno; Urbani, Andrea

    2017-01-01

    The human gut has been continuously exposed to a broad spectrum of intestinal organisms, including viruses, bacteria, fungi, and parasites (protozoa and worms), over millions of years of coevolution, and plays a central role in human health. The modern lifestyles of Western countries, such as the adoption of highly hygienic habits, the extensive use of antimicrobial drugs, and increasing globalisation, have dramatically altered the composition of the gut milieu, especially in terms of its eukaryotic “citizens.” In the past few decades, numerous studies have highlighted the composition and role of human intestinal bacteria in physiological and pathological conditions, while few investigations exist on gut parasites and particularly on their coexistence and interaction with the intestinal microbiota. Studies of the gut “parasitome” through “omic” technologies, such as (meta)genomics, transcriptomics, proteomics, and metabolomics, are herein reviewed to better understand their role in the relationships between intestinal parasites, host, and resident prokaryotes, whether pathogens or commensals. Systems biology–based profiles of the gut “parasitome” under physiological and severe disease conditions can indeed contribute to the control of infectious diseases and offer a new perspective of omics-assisted tropical medicine. PMID:29095820

  11. Indicators of human health in ecosystems: what do we measure?

    International Nuclear Information System (INIS)

    Cole, D.C.; Eyles, J.; Gibson, B.L.

    1998-01-01

    Increasingly, scientists are being called upon to assist in the development of indicators for monitoring ecosystem health. For human health indicators, they may draw on environmental exposure, human morbidity/mortality or well-being and sustainability approaches. To improve the rigour of indicators, we propose six scientific criteria for indicator selection: (1) data availability, suitability and representativeness (of populations), (2) indicator validity (face, construct, predictive and convergent) and reliability; (3) indicator responsiveness to change; (4) indicator desegregation capability (across personal and community characteristics); (5) indicator comparability (across populations and jurisdictions); and (6) indicator representativeness (across important dimensions of concern). We comment on our current capacity to adhere to such criteria with examples of measures of environmental exposure, human health and sustainability. We recognize the considerable work still required on documenting environment-human health relationships and on monitoring potential indicators in similar ways over time. Yet we argue that such work is essential in order for science to inform policy decisions which affect the health of ecosystems and human health. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Ecosystem change and human health: implementation economics and policy.

    Science.gov (United States)

    Pattanayak, S K; Kramer, R A; Vincent, J R

    2017-06-05

    Several recent initiatives such as Planetary Health , EcoHealth and One Health claim that human health depends on flourishing natural ecosystems. However, little has been said about the operational and implementation challenges of health-oriented conservation actions on the ground. We contend that ecological-epidemiological research must be complemented by a form of implementation science that examines: (i) the links between specific conservation actions and the resulting ecological changes, and (ii) how this ecological change impacts human health and well-being, when human behaviours are considered. Drawing on the policy evaluation tradition in public economics, first, we present three examples of recent social science research on conservation interventions that affect human health. These examples are from low- and middle-income countries in the tropics and subtropics. Second, drawing on these examples, we present three propositions related to impact evaluation and non-market valuation that can help guide future multidisciplinary research on conservation and human health. Research guided by these propositions will allow stakeholders to determine how ecosystem-mediated strategies for health promotion compare with more conventional biomedical prevention and treatment strategies for safeguarding health.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.

  13. An exposure-effect approach for evaluating ecosystem-wide risks from human activities

    NARCIS (Netherlands)

    Knights, A.M.; Piet, G.J.; Jongbloed, R.H.; Tamis, J.E.; Robinson, L.A.

    2015-01-01

    Ecosystem-based management (EBM) is promoted as the solution for sustainable use. An ecosystem-wide assessment methodology is therefore required. In this paper, we present an approach to assess the risk to ecosystem components from human activities common to marine and coastal ecosystems. We build

  14. Complexity of human and ecosystem interactions in an agricultural landscape

    Science.gov (United States)

    Coupe, Richard H.; Barlow, Jeannie R.; Capel, Paul D.

    2012-01-01

    The complexity of human interaction in the commercial agricultural landscape and the resulting impacts on the ecosystem services of water quality and quantity is largely ignored by the current agricultural paradigm that maximizes crop production over other ecosystem services. Three examples at different spatial scales (local, regional, and global) are presented where human and ecosystem interactions in a commercial agricultural landscape adversely affect water quality and quantity in unintended ways in the Delta of northwestern Mississippi. In the first example, little to no regulation of groundwater use for irrigation has caused declines in groundwater levels resulting in loss of baseflow to streams and threatening future water supply. In the second example, federal policy which subsidizes corn for biofuel production has encouraged many producers to switch from cotton to corn, which requires more nutrients and water, counter to national efforts to reduce nutrient loads to the Gulf of Mexico and exacerbating groundwater level declines. The third example is the wholesale adoption of a system for weed control that relies on a single chemical, initially providing many benefits and ultimately leading to the widespread occurrence of glyphosate and its degradates in Delta streams and necessitating higher application rates of glyphosate as well as the use of other herbicides due to increasing weed resistance. Although these examples are specific to the Mississippi Delta, analogous situations exist throughout the world and point to the need for change in how we grow our food, fuel, and fiber, and manage our soil and water resources.

  15. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults

    DEFF Research Database (Denmark)

    Larsen, Nadja; Vogensen, Finn Kvist; van der Berg, Franciscus Winfried J

    2010-01-01

    . Methods and Findings The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag...... = 0.04). Conclusions The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies......Background Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control...

  16. Country-specific antibiotic use practices impact the human gut resistome

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Sunagawa, Shinichi; Kultima, Jens Roat

    2013-01-01

    Despite increasing concerns over inappropriate use of antibiotics in medicine and food production, population-level resistance transfer into the human gut microbiota has not been demonstrated beyond individual case studies. To determine the "antibiotic resistance potential" for entire microbial...... in animals and for antibiotics that have been available longer. Resistance genes are also more abundant in samples from Spain, Italy, and France than from Denmark, the United States, or Japan. Where comparable country-level data on antibiotic use in both humans and animals are available, differences...... communities, we employ metagenomic data and quantify the totality of known resistance genes in each community (its resistome) for 68 classes and subclasses of antibiotics. In 252 fecal metagenomes from three countries, we show that the most abundant resistance determinants are those for antibiotics also used...

  17. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air.

    Directory of Open Access Journals (Sweden)

    M Tanweer Khan

    Full Text Available The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precluded its clinical application in the treatment of patients with inflammatory bowel diseases. The present studies were therefore aimed at developing a strategy to keep F. prausnitzii alive at ambient air. Our previous research showed that F. prausnitzii can survive in moderately oxygenized environments like the gut mucosa by transfer of electrons to oxygen. For this purpose, the bacterium exploits extracellular antioxidants, such as riboflavin and cysteine, that are abundantly present in the gut. We therefore tested to what extent these antioxidants can sustain the viability of F. prausnitzii at ambient air. The present results show that cysteine can facilitate the survival of F. prausnitzii upon exposure to air, and that this effect is significantly enhanced the by addition of riboflavin and the cryoprotectant inulin. The highly oxygen-sensitive gut bacterium F. prausnitzii can be kept alive at ambient air for 24 h when formulated with the antioxidants cysteine and riboflavin plus the cryoprotectant inulin. Improved formulations were obtained by addition of the bulking agents corn starch and wheat bran. Our present findings pave the way towards the biomedical exploitation of F. prausnitzii in redox-based therapeutics for treatment of dysbiosis-related inflammatory disorders of the human gut.

  18. In vitro culture and characterization of enteric neural precursor cells from human gut biopsy specimens using polymer scaffold.

    Science.gov (United States)

    Krishnamohan, Janardhanam; Senthilnathan, Venugopal S; Vaikundaraman, Tirunelveli Muthiah; Srinivasan, Thangavelu; Balamurugan, Madasamy; Iwasaki, Masaru; Preethy, Senthilkumar; Abraham, Samuel Jk

    2013-08-01

    In vitro expansion and characterization of neural precursor cells from human gut biopsy specimens with or without Hirschsprung's disease using a novel thermoreversible gelation polymer (TGP) is reported aiming at a possible future treatment. Gut biopsy samples were obtained from five patients undergoing gut resection for Hirschsprung's disease (n = 1) or gastrointestinal disorders (n = 4). Cells isolated from the smooth muscle layer and the myenteric plexus were cultured in two groups for 18 to 28 days; Group I: conventional culture as earlier reported and Group II: using TGP scaffold. Neurosphere like bodies (NLBs) were observed in the cultures between 8th to 12th day and H & E staining was positive for neural cells in both groups including aganglionic gut portion from the Hirschsprung's disease patient. Immunohistochemistry using S-100 and neuron specific enolase (NSE) was positive in both groups but the TGP group (Group II) showed more number of cells with intense cytoplasmic granular positivity for both NSE and S-100 compared to Group I. TGP supports the in vitro expansion of human gut derived neuronal cells with seemingly better quality NLBs. Animal Studies can be tried to validate their functional outcome by transplanting the NLBs with TGP scaffolds to see whether this can enhance the outcome of cell based therapies for Hirschsprung's disease.

  19. Perception, acquisition and use of ecosystem services: human behavior, and ecosystem management and policy implications

    Science.gov (United States)

    Stanley T. Asah; Anne D. Guerry; Dale J. Blahna; Joshua J. Lawler

    2014-01-01

    Ecosystem services, fundamental to livelihoods and well-being, are reshaping environmental management and policy. However, the behavioral dimensions of ecosystem services and the responses of ordinary people to the management of those services, is less well understood. The ecosystem services framework lends itself to understanding the relationship between ecosystems...

  20. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Kelly, Amelia G; Pudlo, Nicholas A; Martens, Eric C; Boraston, Alisdair B

    2012-11-27

    Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.

  1. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes

    OpenAIRE

    Hehemann, Jan-Hendrik; Kelly, Amelia G.; Pudlo, Nicholas A.; Martens, Eric C.; Boraston, Alisdair B.

    2012-01-01

    Humans host an intestinal population of microbes—collectively referred to as the gut microbiome—which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations ...

  2. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study.

    Science.gov (United States)

    Losasso, Carmen; Eckert, Ester M; Mastrorilli, Eleonora; Villiger, Jorg; Mancin, Marzia; Patuzzi, Ilaria; Di Cesare, Andrea; Cibin, Veronica; Barrucci, Federica; Pernthaler, Jakob; Corno, Gianluca; Ricci, Antonia

    2018-01-01

    Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant's dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs) were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  3. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Carmen Losasso

    2018-03-01

    Full Text Available Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant’s dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  4. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air

    NARCIS (Netherlands)

    Khan, M. Tanweer; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2014-01-01

    The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far

  5. Discovery of α-L-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Katayama, Takane; Arakawa, Takatoshi

    2017-01-01

    Enzymes of the glycoside hydrolase family 42 (GH42) are widespread in bacteria of the human gut microbiome and play fundamental roles in the decomposition of both milk and plant oligosaccharides. All GH42 enzymes characterized so far have β-galactosidase activity. Here, we report the existence...

  6. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut

    DEFF Research Database (Denmark)

    Leth, Maria Louise; Ejby, Morten; Workman, Christopher

    2018-01-01

    Metabolism of dietary glycans is pivotal in shaping the human gut microbiota. However, the mechanisms that promote competition for glycans among gut commensals remain unclear. Roseburia intestinalis, an abundant butyrate-producing Firmicute, is a key degrader of the major dietary fibre xylan...... of capture and transport preferences as a possible strategy to facilitate co-growth on abundant dietary fibres and may offer a unique route to manipulate the microbiota based on glycan transport preferences in therapeutic interventions to boost distinct taxa....

  7. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  8. Production of α-galactosylceramide by a prominent member of the human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Laura C Wieland Brown

    2013-07-01

    Full Text Available While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf, which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000 that is the prototypical agonist of CD1d-restricted natural killer T (iNKT cells. We demonstrate that α-GalCer(Bf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.

  9. The obese gut microbiome across the epidemiologic transition

    Directory of Open Access Journals (Sweden)

    Lara R. Dugas

    2016-01-01

    Full Text Available Abstract The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host’s geographic location ‘human geography’, and behavioral factors (diet and physical activity. Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic.

  10. Screening assays of termite gut microbes that potentially as probiotic for human to digest cellulose as new food source

    Science.gov (United States)

    Abdullah, R.; Ananda, K. R. T.; Wijanarka

    2018-05-01

    According to UN, earth population will increase approximately 7.3 billion people up to 11.2 billion from 2015 until 2100. On the other side, food needs are not balance with the availability of food on earth. People of the world need solution for a new food source. By cellulose digesting ability, people analyzed can consume cellulose as the new food source to get glucose. The aims of research is obtaining termite gut cellulase bacteria selected which is potential as probiotic to split cellulose. Method used was as follows; isolation of termite gut microbes, microbial cellulase purification by screening method and probiotic test includes microbial pathogenicity test and human stomach acid and salt osmotic concentration resistance test. The result shows, 3 pure isolates of termite gut microbes can break down cellulose in the medium 1% CMC and 0.1% congo red (indicator of cellulose degradation activity) and life at pH 2- 2.5 and osmotic salt condition. Two isolates show the activity of gamma hemolysis (non-pathogenic in terms of pathogenicity on human blood). In conclusion, there are isolated termite gut microbes can be used as probiotic candidate for human to digest cellulose of the new food source for global food scarcity era.

  11. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health.

    Science.gov (United States)

    Wasielewski, Helen; Alcock, Joe; Aktipis, Athena

    2016-05-01

    Diet has been known to play an important role in human health since at least the time period of the ancient Greek physician Hippocrates. In the last decade, research has revealed that microorganisms inhabiting the digestive tract, known as the gut microbiota, are critical factors in human health. This paper draws on concepts of cooperation and conflict from ecology and evolutionary biology to make predictions about host-microbiota interactions involving nutrients. To optimally extract energy from some resources (e.g., fiber), hosts require cooperation from microbes. Other nutrients can be utilized by both hosts and microbes (e.g., simple sugars, iron) in their ingested form, which may lead to greater conflict over these resources. This framework predicts that some negative health effects of foods are driven by the direct effects of these foods on human physiology and by indirect effects resulting from microbiome-host competition and conflict (e.g., increased invasiveness and inflammation). Similarly, beneficial effects of some foods on host health may be enhanced by resource sharing and other cooperative behaviors between host and microbes that may downregulate inflammation and virulence. Given that some foods cultivate cooperation between hosts and microbes while others agitate conflict, host-microbe interactions may be novel targets for interventions aimed at improving nutrition and human health. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  12. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans : A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Damink, Steven W. M. Olde; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  13. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Olde Damink, Steven W. M.; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  14. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, Matthew C. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Research; Wu, Meng [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology; Rodionov, Dmitry A. [Russian Academy of Sciences (RAS), Moscow (Russian Federation). A.A. Kharkevich Inst. for Information Transmission Problems; Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Li, Xiaoqing [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Cheng, Jiye [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Griffin, Nicholas W. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Barratt, Michael J. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Osterman, Andrei L. [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Gordon, Jeffrey I. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc

    2017-05-17

    Micronutrient deficiencies afflict two billion people. And while the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the developing or adult gut microbiota. Thus, we established a community of 44 cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined, micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A, and manifesting transcriptional changes involving various metabolic pathways. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR functions as a repressor of an adjacent AcrAB-TolC efflux system plus other members of its regulon. Retinol efflux measurements in wild-type, acrR-mutant, and complemented acrR mutant strains, plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity. We associated acute vitamin A deficiency with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies.

  15. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    Science.gov (United States)

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  16. Gut does not contribute to systemic ammonia release in humans without portosystemic shunting

    NARCIS (Netherlands)

    van de Poll, Marcel C. G.; Ligthart-Melis, Gerdien C.; Damink, Steven W. M. Olde; van Leeuwen, Paul A. M.; Beets-Tan, Regina G. H.; Deutz, Nicolaas E. P.; Wigmore, Stephen J.; Soeters, Peter B.; Dejong, Cornelis H. C.

    2008-01-01

    The gut is classically seen as the main source of circulating ammonia. However, the contribution of the intestines to systemic ammonia production may be limited by hepatic extraction of portal-derived ammonia. Recent data suggest that the kidney may be more important than the gut for systemic

  17. Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence

    NARCIS (Netherlands)

    Hartstra, A. V.; Nieuwdorp, M.; Herrema, H.

    2016-01-01

    Background: Alterations in gut microbiota composition and bacterial metabolites have been increasingly recognized to affect host metabolism and are at the basis of metabolic diseases such as obesity and type 2 diabetes (DM2). Intestinal enteroendocrine cells (EEC's) sense gut luminal content and

  18. Human transformations of the Wadden Sea ecosystem through time : a synthesis

    NARCIS (Netherlands)

    Lotze, H.K.; Reise, K; Worm, B.; van Beusekom, J.; Busch, M.; Ehlers, A.; Heinrich, D.; Hoffman, R.C.; Holm, P.; Jensen, C.; Knottnerus, O.S.; Langhanki, N.; Prummel, W.; Vollmer, M.; Wolff, W.J.

    Todays Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the

  19. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  20. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition.

    Science.gov (United States)

    Beards, Emma; Tuohy, Kieran; Gibson, Glenn

    2010-09-01

    Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22.8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0.00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0.002 and 0.006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45.6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.

  1. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Science.gov (United States)

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Lundstedt, Torbjörn; Lek, Per; Rezzi, Serge; Ramadan, Ziad; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics. PMID:18197175

  2. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.

    Science.gov (United States)

    Ukhanova, Maria; Wang, Xiaoyu; Baer, David J; Novotny, Janet A; Fredborg, Marlene; Mai, Volker

    2014-06-28

    The modification of microbiota composition to a 'beneficial' one is a promising approach for improving intestinal as well as overall health. Natural fibres and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for the maintenance of healthy and diverse microbiota. The effects of increased consumption of specific nuts, which are rich in fibre as well as various phytonutrients, on human gut microbiota composition have not been investigated to date. The objective of the present study was to determine the effects of almond and pistachio consumption on human gut microbiota composition. We characterised microbiota in faecal samples collected from volunteers in two separate randomised, controlled, cross-over feeding studies (n 18 for the almond feeding study and n 16 for the pistachio feeding study) with 0, 1·5 or 3 servings/d of the respective nuts for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various operational taxonomic units that appeared to be affected by nut consumption. The effect of pistachio consumption on gut microbiota composition was much stronger than that of almond consumption and included an increase in the number of potentially beneficial butyrate-producing bacteria. Although the numbers of bifidobacteria were not affected by the consumption of either nut, pistachio consumption appeared to decrease the number of lactic acid bacteria (Ppistachios appears to be an effective means of modifying gut microbiota composition.

  3. Natural and human impacts on ecosystem services in Guanzhong - Tianshui economic region of China.

    Science.gov (United States)

    Li, Jing; Zhou, Z X

    2016-04-01

    Due to the accelerated growth of society, the gaps between the capacity of ecosystems to provide services and human needs are steadily widening. Natural, semi-natural, or managed ecosystems had been able to provide ecosystem services to meet the needs of social development. Four agricultural ecosystem services (net primary production (NPP), carbon sequestration and oxygen production (CSOP), water interception, soil conservation and agriculture production) were quantified in Guanzhong-Tianshui economic region. Estimates of ecosystem services were obtained from the analysis of satellite imagery and the use of well-known models. Based on the ecological services in Guanzhong-Tianshui economic region, this study mainly analysed the driving mechanism of the changes from the two aspects of natural drivers and human drivers. Natural drivers (climate, soil, elevation, land cover) had incentive to the ecological services. Human activity was quantified by an integrated human activity index (HAI) based on population density, farmland ratio, and the influence of road networks and residential areas. We found relationships between ecosystem services, human activities and many natural factors, however these varied according to the service studied. Human activities were mostly negatively related to each ecosystem services, while population and residential land ware positively related to agricultural production. Land use change had made a contribution to ecosystem services. Based on the selected ecosystem services and HAI, we provided sustainable ecosystem management suggestions.

  4. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lukasz Krych

    Full Text Available BACKGROUND: A number of human diseases such as obesity and diabetes are associated with changes or imbalances in the gut microbiota (GM. Laboratory mice are commonly used as experimental models for such disorders. The introduction and dynamic development of next generation sequencing techniques have enabled detailed mapping of the GM of both humans and animal models. Nevertheless there is still a significant knowledge gap regarding the human and mouse common GM core and thus the applicability of the latter as an animal model. The aim of the present study was to identify inter- and intra-individual differences and similarities between the GM composition of particular mouse strains and humans. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1509428 high quality tag-encoded partial 16S rRNA gene sequences determined using 454/FLX Titanium (Roche pyro-sequencing reflecting the GM composition of 32 human samples from 16 individuals and 88 mouse samples from three laboratory mouse strains commonly used in diabetes research were analyzed using Principal Coordinate Analysis (PCoA, nonparametric multivariate analysis of similarity (ANOSIM and alpha diversity measures. A reliable cutoff threshold for low abundant taxa estimated on the basis of the present study is recommended for similar trials. CONCLUSIONS/SIGNIFICANCE: Distinctive quantitative differences in the relative abundance of most taxonomic groups between the examined categories were found. All investigated mouse strains clustered separately, but with a range of shared features when compared to the human GM. However, both mouse fecal, caecal and human fecal samples shared to a large extent not only representatives of the same phyla, but also a substantial fraction of common genera, where the number of shared genera increased with sequencing depth. In conclusion, the GM of mice and humans is quantitatively different (in terms of abundance of specific phyla and species but share a large qualitatively

  5. Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk

    Directory of Open Access Journals (Sweden)

    Anna Parra-Llorca

    2018-06-01

    Full Text Available Preterm microbial colonization is affected by gestational age, antibiotic treatment, type of birth, but also by type of feeding. Breast milk has been acknowledged as the gold standard for human nutrition. In preterm infants breast milk has been associated with improved growth and cognitive development and a reduced risk of necrotizing enterocolitis and late onset sepsis. In the absence of their mother’s own milk (MOM, pasteurized donor human milk (DHM could be the best available alternative due to its similarity to the former. However, little is known about the effect of DHM upon preterm microbiota and potential biological implications. Our objective was to determine the impact of DHM upon preterm gut microbiota admitted in a referral neonatal intensive care unit (NICU. A prospective observational cohort study in NICU of 69 neonates <32 weeks of gestation and with a birth weight ≤1,500 g was conducted. Neonates were classified in three groups according to feeding practices consisting in their MOM, DHM, or formula. Fecal samples were collected when full enteral feeding (defined as ≥150 cc/kg/day was achieved. Gut microbiota composition was analyzed by 16S rRNA gene sequencing. Despite the higher variability, no differences in microbial diversity and richness were found, although feeding type significantly influenced the preterm microbiota composition and predictive functional profiles. Preterm infants fed MOM showed a significant greater presence of Bifidobacteriaceae and lower of Staphylococcaceae, Clostridiaceae, and Pasteurellaceae compared to preterm fed DHM. Formula fed microbial profile was different to those observed in preterm fed MOM. Remarkably, preterm infants fed DHM showed closer microbial profiles to preterm fed their MOM. Inferred metagenomic analyses showed higher presence of Bifidobacterium genus in mother’s milk group was related to enrichment in the Glycan biosynthesis and metabolism pathway that was not identified in

  6. Transfer across the human gut of environmental technetium in lobsters (Homarus gammarus L.) from the Irish Sea

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.J. [The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT (United Kingdom)]. E-mail: g.j.hunt@cefas.co.uk; Young, A.K.; Bonfield, R.A. [The Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT (United Kingdom)

    2001-03-01

    Few data are available on the uptake by the human gut of the element technetium. Of current radiological interest in connection with discharges of technetium-99 in liquid discharges from BNFL, Sellafield, is uptake from European lobsters (Homarus gammarus), whose edible parts are known to concentrate technetium. In this study, a group of eight adult volunteers (six males and two females) ate samples of edible flesh from lobsters caught off the west Cumbrian coast and provided 24 h samples of urine and faeces for analysis. Detection of uptake from the gut by difference between intake and faecal measurements proved insensitive, suggesting a low value of the gut transfer factor (f{sub 1} value) of up to 0.1 with a maximum (two standard deviations) level of about 0.3. In urine, technetium was detectable at a relatively low level compared with the intakes, consistent with a low absorption across the gut. Values for f{sub 1} were derived with the aid of literature data for excretion following intravenous administration of technetium-95m as pertechnetate, and gave averaged data for f{sub 1} in the range 0.046 to 0.23. These results are in broad conformity with those derived from the faecal measurements, and suggest a lower value than the 0.5 used by ICRP. (author)

  7. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome.

    Directory of Open Access Journals (Sweden)

    Abdessamad El Kaoutari

    Full Text Available Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.

  8. Impact of the gut microbiota on inflammation, obesity, and metabolic disease.

    Science.gov (United States)

    Boulangé, Claire L; Neves, Ana Luisa; Chilloux, Julien; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2016-04-20

    The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.

  9. The role of the gut microbiota in childhood obesity

    DEFF Research Database (Denmark)

    Friis Pihl, Andreas; Esmann Fonvig, Cilius; Stjernholm, Theresa

    2016-01-01

    Background: Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism...... associated with obesity. Methods: We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. Results: The review discusses the potential role of the bacterial...... component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood...

  10. Comprehensive analysis of polyamine transport and biosynthesis in the dominant human gut bacteria: Potential presence of novel polyamine metabolism and transport genes.

    Science.gov (United States)

    Sugiyama, Yuta; Nara, Misaki; Sakanaka, Mikiyasu; Gotoh, Aina; Kitakata, Aya; Okuda, Shujiro; Kurihara, Shin

    2017-12-01

    Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Closer Look at Bacteroides: Phylogenetic Relationship and Genomic Implications of a Life in the Human Gut

    DEFF Research Database (Denmark)

    Karlsson, Fredrik H.; Ussery, David; Nielsen, Jens

    2011-01-01

    The human gut is extremely densely inhabited by bacteria mainly from two phyla, Bacteroidetes and Firmicutes, and there is a great interest in analyzing whole-genome sequences for these species because of their relation to human health and disease. Here, we do whole-genome comparison of 105...... of extracytoplasmic function σ factors (ECF σ factors) and two component systems for extracellular signal transduction compared to other Bacteroidetes/Chlorobi species. A whole-genome phylogenetic analysis shows a very little difference between the Parabacteroides and Bacteroides genera. Further analysis shows...... of members of the Bacteroidetes/Chlorobi phylum by whole genome comparison. Gut living Bacteroides have an enriched set of glycan, vitamin, and cofactor enzymes important for diet digestion....

  12. Ecosystems and human well-being: health synthesis : a report of the Millennium Ecosystem Assessment

    National Research Council Canada - National Science Library

    Hales, Simon; Corvalan, Carlos; McMichael, Anthony (Tony) J

    2005-01-01

    ... 36 4 What actions are required to address the health consequences of ecosystem change? 4.1 Reducing vulnerability 4.2 The Millennium Development Goals 38 38 39 5 How can priorities be established for actions to address the health consequences of ecosystem change? 5.1 What considerations are important when setting priorities and what...

  13. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    Science.gov (United States)

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  14. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Hwey-Lian Hsieh

    2015-06-01

    Full Text Available The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  15. Conservation of gene cassettes among diverse viruses of the human gut.

    Directory of Open Access Journals (Sweden)

    Samuel Minot

    Full Text Available Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.

  16. Amidated joining peptide in the human pituitary, gut, adrenal gland and bronchial carcinoids. Immunocytochemical and immunochemical evidence

    DEFF Research Database (Denmark)

    Bjartell, A; Fenger, M; Ekman, R

    1990-01-01

    The distribution of the proopiomelanocortin-derivated amidated joining peptide (JP-N) was examined in the human pituitary gland, adrenal gland, gut and in three bronchial carcinoids. Double immunostaining showed coexistence of immunoreactive JP-N and other proopiomelanocortin derivatives, e......-N, respectively, but under reduced conditions most of the immunoreactive material appeared as of low molecular weight in both extracts. In conclusion, immunoreactive JP-N is a major product from the processing of proopiomelanocortin in human extrapituitary tissues. The molecular forms of immunoreactive JP......-N correspond to previous findings in the human pituitary gland....

  17. ‘Lachnoclostridium massiliosenegalense’, a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of ‘Lachnoclostridium massiliosenegalense’ strain mt23T (=CSUR P299 =DSM 102084, a new bacterial species isolated from the gut microbiota of a healthy young girl from Senegal.

  18. Arsenic Metabolism by Human Gut Microbiota upon In Vitro Digestion of Contaminated Soils

    Science.gov (United States)

    Background: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with ...

  19. Human and rat gut microbiome composition is maintained following sleep restriction

    NARCIS (Netherlands)

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome

  20. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    OpenAIRE

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from...

  1. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity.

    Science.gov (United States)

    Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P

    2018-02-06

    The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.

  2. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  4. Combined enteral infusion of glutamine, carbohydrates, and antioxidants modulates gut protein metabolism in humans.

    Science.gov (United States)

    Coëffier, Moïse; Claeyssens, Sophie; Lecleire, Stéphane; Leblond, Jonathan; Coquard, Aude; Bôle-Feysot, Christine; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2008-11-01

    Available data suggest that nutrients can affect intestinal protein metabolism, which contributes to the regulation of gut barrier function. We aimed to assess whether an oral nutritional supplement (ONS) containing glutamine (as the dipeptide Ala-Gln), carbohydrates, and antioxidants would modulate duodenal protein metabolism in healthy humans. Thirty healthy control subjects were included and, over a period of 5 h, received by nasogastric tube either saline or ONS providing 11.7 kcal/kg as 0.877 g Ala-Gln/kg, 3.9 g carbohydrates/kg, and antioxidants (29.25 mg vitamin C/kg, 9.75 mg vitamin E/kg, 195 microg beta-carotene/kg, 5.85 mg Se/kg, and 390 microg Zn/kg) or glutamine (0.585 g/kg, 2.34 kcal/kg). Simultaneously, a continuous intravenous infusion of l-[1-(13)C]-leucine was done until endoscopy. Leucine enrichment was assessed by using gas chromatography-mass spectrometric analysis, and mucosal fractional synthesis rate was calculated by using intracellular amino acid enrichment as precursor. Mucosal proteolytic pathways were also evaluated. ONS infusion resulted in a doubling increase (P < 0.01) of duodenal fractional synthesis rate and a significant (P < 0.05) decrease in cathepsin D-mediated proteolysis compared with saline, whereas proteasome and Ca(2+)-dependent activities were unaffected. ONS infusion significantly (P < 0.01) decreased duodenal glutathione but not glutathione disulfide concentrations or the ratio of glutathione to glutathione disulfide. Insulinemia increased after ONS infusion, whereas plasma essential amino acids decreased. Infusion of glutamine alone did not reproduce ONS effects. ONS infusion improves duodenal protein balance in healthy humans. Further investigations are needed to study the origin of these effects and to evaluate ONS supply in stressed persons.

  5. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?

    Science.gov (United States)

    Doré, Joël; Multon, Marie-Christine; Béhier, Jehan-Michel

    2017-02-01

    From the moment of birth, each human being builds a microbe-host symbiosis which is key for the preservation of its health and well-being. This personal symbiotic coexistence is the result of progressive enrichments in microorganism diversity through external supplies. This diversity is nowadays massively overthrown by drastic changes related to clinical practice in birth management, environmental exposure, nutrition and healthcare behaviors. The last two generations have been the frame of massive modifications in life and food habits, with people being more and more sedentary, overfed and permeated with drugs and pollutants. We are now able to measure the impact of these changes on the gut microbiota diversity. Concomitantly, these modifications of lifestyle were associated with a dramatic increase in incidence of immune-mediated diseases including metabolic, allergic and inflammatory diseases and most likely neurodegenerative and psychiatric disorders. Microbiota is becoming a hot topic in the scientific community and in the mainstream media. The number of scientific publications increased by up to a factor three over the last five years, with gastrointestinal and metabolic diseases being the most productive areas. In the intellectual property landscape, the patent families on microbiota have more than doubled in the meantime. In parallel, funding either from National Institutes (e.g. from NIH which funds research mainly in the field of allergies, infections, cancer and cardiovascular diseases, from the White House which launched the national microbiome initiative) or by pharmaceutical companies follow the same trend, showing a boost and a strong support in the research field on microbiota. All major health players are investing in microbiome research as shown by the number of deals signed and by funding during 2015. The Giens round table addressed how the medicine of tomorrow, considering human beings as a human-microbe symbiotic supraorganism, could leverage

  6. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic:a randomised, double-blind, placebo-controlled, cross-over, human intervention study

    OpenAIRE

    Healey, Genelle; Murphy, Rinki; Butts, Chrissie; Brough, Louise; Whelan, Kevin; Coad, Jane

    2018-01-01

    Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-...

  7. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Shaofeng Bai

    Full Text Available Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  8. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  9. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    Science.gov (United States)

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  10. Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG

    Science.gov (United States)

    Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.

    2015-12-01

    Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach

  11. Rangeland Ecosystem Services: Nature's Supply and Humans' Demand

    Science.gov (United States)

    Ecosystem services are the benefits that society receives from nature and they include the regulation of climate, the pollination of crops, the provisioning of intellectual inspiration and recreational environment, as well as many essential goods such as food, fiber, and wood. Rangeland ecosystem se...

  12. The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?

    Science.gov (United States)

    Wang, Kai; Li, Hong; Yuan, Yue; Etheridge, Alton; Zhou, Yong; Huang, David; Wilmes, Paul; Galas, David

    2012-01-01

    Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under in vitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health. PMID:23251414

  13. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    Science.gov (United States)

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  14. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Geographical patterns of the standing and active human gut microbiome in health and IBD.

    Science.gov (United States)

    Rehman, Ateequr; Rausch, Philipp; Wang, Jun; Skieceviciene, Jurgita; Kiudelis, Gediminas; Bhagalia, Ketan; Amarapurkar, Deepak; Kupcinskas, Limas; Schreiber, Stefan; Rosenstiel, Philip; Baines, John F; Ott, Stephan

    2016-02-01

    A global increase of IBD has been reported, especially in countries that previously had low incidence rates. Also, the knowledge of the human gut microbiome is steadily increasing, however, limited information regarding its variation on a global scale is available. In the light of the microbial involvement in IBDs, we aimed to (1) identify shared and distinct IBD-associated mucosal microbiota patterns from different geographical regions including Europe (Germany, Lithuania) and South Asia (India) and (2) determine whether profiling based on 16S rRNA transcripts provides additional resolution, both of which may hold important clinical relevance. In this study, we analyse a set of 89 mucosal biopsies sampled from individuals of German, Lithuanian and Indian origins, using bacterial community profiling of a roughly equal number of healthy controls, patients with Crohn's disease and UC from each location, and analyse 16S rDNA and rRNA as proxies for standing and active microbial community structure, respectively. We find pronounced population-specific as well as general disease patterns in the major phyla and patterns of diversity, which differ between the standing and active communities. The geographical origin of samples dominates the patterns of β diversity with locally restricted disease clusters and more pronounced effects in the active microbial communities. However, two genera belonging to the Clostridium leptum subgroup, Faecalibacteria and Papillibacter, display consistent patterns with respect to disease status and may thus serve as reliable 'microbiomarkers'. These analyses reveal important interactions of patients' geographical origin and disease in the interpretation of disease-associated changes in microbial communities and highlight the added value of analysing communities on both the 16S rRNA gene (DNA) and transcript (RNA) level. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  16. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  17. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  18. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  19. Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Corinna Bang

    Full Text Available The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natural habitat of M. luminyensis as it has been shown for the other two reported mucosa-associated methanoarchaea. This study aimed at unraveling susceptibility of M. luminyensis to antimicrobial peptides as well as its immunogenicity. By using the established microtiter plate assay adapted to the anaerobic growth requirements of methanogenic archaea, we demonstrated that M. luminyensis is highly sensitive against LL32, a derivative of human cathelicidin (MIC = 2 μM. However, the strain was highly resistant against the porcine lysin NK-2 (MIC = 10 μM and the synthetic antilipopolysaccharide peptide (Lpep (MIC>10 μM and overall differed from the two other methanoarchaea, Methanobrevibacter smithii and Methanosphaera stadtmanae in respect to AMP sensitivity. Moreover, only weak immunogenic potential of M. luminyensis was demonstrated using peripheral blood mononuclear cells (PBMCs and monocyte-derived dendritic cells (moDCs by determining release of pro-inflammatory cytokines. Overall, our findings clearly demonstrate that the archaeal gut inhabitant M. luminyensis is susceptible to the release of human-derived antimicrobial peptides and exhibits low immunogenicity towards human immune cells in vitro-revealing characteristics of a typical commensal gut microbe.

  20. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease

    Directory of Open Access Journals (Sweden)

    Chuan-Sheng Lin

    2014-10-01

    Full Text Available Recent studies have revealed that the gut microbiota regulates many physiological functions, ranging from energy regulation and cognitive processes to toxin neutralization and immunity against pathogens. Accordingly, alterations in the composition of the gut microbiota have been shown to contribute to the development of various chronic diseases. The main objectives of this review are to present recent breakthroughs in the study of the gut microbiota and show that intestinal bacteria play a critical role in the development of different disease conditions, including obesity, fatty liver disease, and lung infection. We also highlight the potential application of prebiotics and probiotics in maintaining optimal health and treating chronic inflammatory and immunity-related diseases.

  1. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  2. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  3. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  4. The Gut Microbiota: Ecology and Function

    Energy Technology Data Exchange (ETDEWEB)

    Willing, B.P.; Jansson, J.K.

    2010-06-01

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowel diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.

  5. GUTs without guts

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.nl [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2014-06-15

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts.

  6. GUTs without guts

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2014-01-01

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts

  7. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  8. Ecosystem services altered by human changes in the nitrogen cycle: A new perspective for assessment

    Science.gov (United States)

    Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here...

  9. Human impacts on riparian ecosystems of the Middle Rio Grande Valley during historic times

    Science.gov (United States)

    Frank E. Wozniak

    1996-01-01

    The development of irrigation agriculture in historic times has profoundly impacted riparian ecosystems in the Middle Rio Grande Valley of New Mexico. A vital relationship has existed between water resources and settlement in the semi-arid Southwest since prehistoric times. Levels of technology have influenced human generated changes in the riparian ecosystems of the...

  10. Mapping and assessment of ecosystem services to improve resource management and human wellbeing in data-scarce peri-urban ecosystems

    OpenAIRE

    Wangai, Peter Waweru

    2017-01-01

    The ecosystem service (ES) approach acknowledges the fundamental interactions between biodiversity, ecosystems, natural resources and human wellbeing, while substantiating both tangible and intangible benefits of ecosystems to humans. Reflecting on the challenges of rapid population growth and land use changes in Africa’s urban areas on the one hand, and the opportunities provided by the ES approach on the other hand, the thesis adopts suitable ES mapping and assessment methodologies, framewo...

  11. “Lachnoclostridium touaregense,” a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of “Lachnoclostridium touaregense” strain Marseille-P2415T (= CSUR P2415 = DSM 102219, a new bacterial species isolated from the gut microbiota of a healthy young girl from Niger.

  12. Expression of receptors for gut peptides in human pancreatic adenocarcinoma and tumour-free pancreas

    NARCIS (Netherlands)

    Tang, C.; Biemond, I.; Offerhaus, G. J.; Verspaget, W.; Lamers, C. B.

    1997-01-01

    Gut hormones that modulate the growth of normal pancreas may also modulate the growth of cancers originating from pancreas. This study visualized and compared the receptors for cholecystokinin (CCK), bombesin (BBS), secretin and vasoactive intestinal peptide (VIP) in tumour-free tissue sections of

  13. Pacaella massiliensis gen. nov., sp. nov., a new bacterial species isolated from the human gut

    Directory of Open Access Journals (Sweden)

    S. Ndongo

    2017-03-01

    Full Text Available Herein, we report the main characteristics of a new species named Pacaella massiliensis gen. nov., sp. nov., strain Marseille-P2670T (CSUR P2670 that was isolated from the gut microbiota of a 45-year-old French patient.

  14. Christensenella timonensis, a new bacterial species isolated from the human gut

    Directory of Open Access Journals (Sweden)

    S. Ndongo

    2016-09-01

    Full Text Available We propose a new species, Christensenella timonensis, strain Marseille-P2437T (CSUR P2437T, which was isolated from gut microbiota of a 66-year-old patient as a part of culturomics study. C. timonensis represents the second species isolated within the Christensenella genus.

  15. "Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans"

    NARCIS (Netherlands)

    Meijnikman, Abraham S.; Gerdes, Victor E.; Nieuwdorp, Max; Herrema, Hilde

    2017-01-01

    The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus (T2DM) is complex and driven by many factors. One of the most recently identified factors in development of these metabolic pathologies is the gut microbiota. The introduction of affordable, high-throughput

  16. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  17. Colonic transit time relates to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    catabolism as reflected by microbial metabolites in urine. This results in a number of potentially deleterious protein-derived metabolites. Additionally, longer colonic transit time correlates with metabolites likely reflecting reduced renewal of the colonic mucosa. Together, this suggests that a high gut...

  18. The influence of a short-term gluten-free diet on the human gut microbiome

    NARCIS (Netherlands)

    Bonder, Marc Jan; Tigchelaar, Ettje F.; Cai, Xianghang; Trynka, Gosia; Cenit, Maria C; Hrdlickova, Barbara; Zhong, Huanzi; Vatanen, Tommi; Gevers, Dirk; Wijmenga, Cisca; Wang, Yang; Zhernakova, Alexandra

    2016-01-01

    Background: A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome,

  19. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    Science.gov (United States)

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles.

    Science.gov (United States)

    Gotoh, Aina; Nara, Misaki; Sugiyama, Yuta; Sakanaka, Mikiyasu; Yachi, Hiroyuki; Kitakata, Aya; Nakagawa, Akira; Minami, Hiromichi; Okuda, Shujiro; Katoh, Toshihiko; Katayama, Takane; Kurihara, Shin

    2017-10-01

    Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.

  1. Multicompartment Ecosystem Mass Balances as a Tool for Understanding and Managing the Biogeochemical Cycles of Human Ecosystems

    Directory of Open Access Journals (Sweden)

    Lawrence A. Baker

    2001-01-01

    Full Text Available Nitrogen remains a ubiquitous pollutant in surface and groundwater throughout the United States, despite 30 years of pollution control efforts. A detailed multicompartment N balance for the Central Arizona-Phoenix ecosystem is used to illustrate how an ecosystem-level approach can be used to develop improved N management strategies. The N balance is used to demonstrate how nitrate in pumped groundwater used for crop irrigation could be used to reduce inputs of commercial fertilizer and decrease N leaching to aquifers. Effectively managing N pollution also will require an understanding of the complex factors that control the N balance, including targeted regulations, individual human behavior, land-use conversion, and other ecosystem management practices that affect the N balance. These sometimes countervailing factors are illustrated with several scenarios of wastewater treatment technology and population growth in the Phoenix area. Management of N eventually must be coupled to management of other elements, notably carbon, phosphorus, and salts. We postulate that an ecosystem framework for pollution management will result in strategies that are more effective, fairer, and less expensive than current approaches.

  2. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota.

    Science.gov (United States)

    Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre

    2017-01-01

    Benzo[ a ]pyrene (B[ a ]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[ a ]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[ a ]P on two distinct human fecal microbiota. B[ a ]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[ a ]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[ a ]P induces a specific deviation in the microbial metabolism.

  3. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron

    International Nuclear Information System (INIS)

    Xu, Qingping; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of a novel MACPF protein, which may play a role in the adaptation of commensal bacteria to host environments in the human gut, was determined and analyzed. Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT-3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment

  4. Provision of ecosystem services by human-made structures in a highly impacted estuary

    International Nuclear Information System (INIS)

    Layman, Craig A; Jud, Zachary R; Archer, Stephanie K; Riera, David

    2014-01-01

    Water filtration is one of the most important ecosystem services provided by sessile organisms in coastal ecosystems. As a consequence of increased coastal development, human-made shoreline structures (e.g., docks and bulkheads) are now common, providing extensive surface area for colonization by filter feeders. We estimate that in a highly urbanized sub-tropical estuary, water filtration capacity supported by filter feeding assemblages on dock pilings accounts for 11.7 million liters of water h −1 , or ∼30% of the filtration provided by all natural oyster reef throughout the estuary. Assemblage composition, and thus filtration capacity, varied as a function of piling type, suggesting that the choice of building material has critical implications for ecosystem function. A more thorough depiction of the function of coastal ecosystems necessitates quantification of the extensive ecosystem services associated with human-made structures. (paper)

  5. The Role of the Gut Microbiota in Childhood Obesity.

    Science.gov (United States)

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2016-08-01

    Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism associated with obesity. We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. The review discusses the potential role of the bacterial component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood obesity. A vast number of variables are influencing the gut microbial ecology (e.g., the host genetics, delivery method, diet, age, environment, and the use of pre-, pro-, and antibiotics); but the exact physiological processes behind these relationships need to be clarified. Exploring the role of the gut microbiota in the development of childhood obesity may potentially reveal new strategies for obesity prevention and treatment.

  6. An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus.

    Science.gov (United States)

    Møller, Marie S; Goh, Yong Jun; Rasmussen, Kasper Bøwig; Cypryk, Wojciech; Celebioglu, Hasan Ufuk; Klaenhammer, Todd R; Svensson, Birte; Abou Hachem, Maher

    2017-06-15

    Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 ( La Pul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by La Pul13_14 and is abolished in a mutant strain lacking a functional La Pul13_14 gene. Hydrolysis kinetics of recombinant La Pul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest K m reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut. IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a

  7. Human dimensions in ecosystem management: a USDA Forest Service perspective

    Science.gov (United States)

    Deborah S. Carr

    1995-01-01

    For many decades, the natural resource profession has approached the management of public lands as exclusively a natural science endeavor requiring purely technical solutions. With the adoption of an ecosystem management philosophy, the USDA Forest Service has acknowledged the centrality of people in land management policy and decision-making. This paper explores the...

  8. [Key role played by the gut associated lymphoid tissue during human immunodeficiency virus infection].

    Science.gov (United States)

    Vergnon-Miszczycha, Delphine; Lucht, Frédéric; Roblin, Xavier; Pozzetto, Bruno; Paul, Stéphane; Bourlet, Thomas

    2015-12-01

    The gut associated lymphoid tissue (GALT) is the site of numerous immunological disturbances during HIV-1 infection. It constitutes the largest reservoir for HIV, not or very poorly susceptible to antiretroviral therapy (ART), making it a major obstacle to HIV cure. Moreover, the GALT is involved in systemic immune activation in HIV-infected individuals: intestinal damage due to viral replication and severe CD4(+) T cell depletion in the GALT leads to microbial translocation, a key driver of immune activation, and in turn, disease progression. In this review, we describe the role of the GALT in HIV infection and we discuss therapeutic options to decrease the intestinal viral reservoir and to preserve immune function in the gut of HIV-infected people. Achieving these goals is necessary for a long-term infection control after the interruption of ART. © 2015 médecine/sciences – Inserm.

  9. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses.

    Science.gov (United States)

    Feng, Jie; Li, Bing; Jiang, Xiaotao; Yang, Ying; Wells, George F; Zhang, Tong; Li, Xiaoyan

    2018-01-01

    The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10 -7 to 2.72 × 10 -1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Impact of concentration and rate of intraluminal drug delivery on absorption and gut wall metabolism of verapamil in humans.

    Science.gov (United States)

    Glaeser, Hartmut; Drescher, Siegfried; Hofmann, Ute; Heinkele, Georg; Somogyi, Andrew A; Eichelbaum, Michel; Fromm, Martin F

    2004-09-01

    In humans gut wall metabolism can be quantitatively as important as hepatic drug metabolism in limiting the systemic exposure to drugs after oral administration. However, it has been proposed that the role of gut wall metabolism might be overemphasized, because high luminal drug concentrations would lead to a saturation of gut wall metabolism. Therefore we investigated the impact of concentration and rate of intraluminal drug delivery on absorption (F(abs)) and gastrointestinal extraction (E(GI)) of a luminally administered cytochrome P450 (CYP) 3A4 substrate (verapamil) using a multilumen perfusion catheter in combination with a stable isotope technique. Two 20-cm-long, adjacent jejunal segments were isolated with the multilumen perfusion catheter in 7 subjects. In this study 80 mg of unlabeled verapamil (d0-verapamil 15 min) was infused into one segment over a 15-minute period, 80 mg of 3-fold deuterated verapamil (d3-verapamil 240 min) was administered over a 240-minute period into the other segment, and simultaneously, 5 mg of 7-fold deuterated verapamil (d7-verapamil) was injected intravenously over a 15-minute period. The rate of intraluminal drug delivery had only a modest effect on bioavailability of the verapamil isotopes (after correction for F abs ) (F/F abs d3-verapamil 240 min versus d0-verapamil 15 min, 0.24 +/- 0.10 versus 0.20 +/- 0.09; P d3-verapamil 240 min was 0.50 +/- 0.18 compared with 0.59 +/- 0.14 for d0 -verapamil 15 min ( P d0-verapamil 15 min ) correlated strongly with E GI (d3-verapamil 240 min ) (r = 0.94, P d0-verapamil 15 min /d3-verapamil 240 min (r = 0.62, P =.03). Substantial gut wall metabolism of verapamil occurs in humans and can be predicted from ex vivo data by use of shed enterocytes. The different intraluminal concentrations and rates of intraluminal drug delivery did not lead to a pronounced saturation of intestinal drug metabolism.

  11. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities.

    Science.gov (United States)

    Brunkwall, Louise; Orho-Melander, Marju

    2017-06-01

    The totality of microbial genomes in the gut exceeds the size of the human genome, having around 500-fold more genes that importantly complement our coding potential. Microbial genes are essential for key metabolic processes, such as the breakdown of indigestible dietary fibres to short-chain fatty acids, biosynthesis of amino acids and vitamins, and production of neurotransmitters and hormones. During the last decade, evidence has accumulated to support a role for gut microbiota (analysed from faecal samples) in glycaemic control and type 2 diabetes. Mechanistic studies in mice support a causal role for gut microbiota in metabolic diseases, although human data favouring causality is insufficient. As it may be challenging to sort the human evidence from the large number of animal studies in the field, there is a need to provide a review of human studies. Thus, the aim of this review is to cover the current and future possibilities and challenges of using the gut microbiota, with its capacity to be modified, in the development of preventive and treatment strategies for hyperglycaemia and type 2 diabetes in humans. We discuss what is known about the composition and functionality of human gut microbiota in type 2 diabetes and summarise recent evidence of current treatment strategies that involve, or are based on, modification of gut microbiota (diet, probiotics, metformin and bariatric surgery). We go on to review some potential future gut-based glucose-lowering approaches involving microbiota, including the development of personalised nutrition and probiotic approaches, identification of therapeutic components of probiotics, targeted delivery of propionate in the proximal colon, targeted delivery of metformin in the lower gut, faecal microbiota transplantation, and the incorporation of genetically modified bacteria that express therapeutic factors into microbiota. Finally, future avenues and challenges for understanding the interplay between human nutrition, genetics

  12. Urban transitions: On urban resilience and human-dominated ecosystems

    OpenAIRE

    Ernstson H.; Leeuw S.E.V.D.; Redman C.L.; Meffert D.J.; Davis G.; Alfsen C.; Elmqvist T.

    2010-01-01

    Urbanization is a global multidimensional process paired with increasing uncertainty due to climate change, migration of people, and changes in the capacity to sustain ecosystem services. This article lays a foundation for discussing transitions in urban governance, which enable cities to navigate change, build capacity to withstand shocks, and use experimentation and innovation in face of uncertainty. Using the three concrete case cities—New Orleans, Cape Town, and Phoenix—the article analyz...

  13. EnviroAtlas Connects Urban Ecosystem Services and Human ...

    Science.gov (United States)

    Ecosystem services in urban areas can improve public health and well-being by mitigating natural and anthropogenic pollution, and by promoting healthy lifestyles that include engagement with nature and enhanced opportunities for physical activity and social interaction. EPA’s EnviroAtlas online mapping tool identifies urban environmental features linked in the scientific and medical literature to specific aspects of public health and well-being. EnviroAtlas researchers have synthesized newly-generated one-meter resolution landcover data, downscaled census population data, and other existing datasets such as roads and parks. Resulting geospatial metrics represent health-related indicators of urban ecosystem services supply and demand by census block-group and finer scales. EnviroAtlas maps include percent of the population with limited window views of trees, tree cover along walkable roads, overall neighborhood green space, and proximity to parks. Demographic data can be overlaid to perform analyses of disproportionate distribution of urban ecosystem services across population groups. Together with the Eco-Health Relationship Browser, EnviroAtlas data can be linked to numerous aspects of public health and well-being including school performance, physical fitness, social capital, and longevity. EnviroAtlas maps have been developed using consistent methods to allow for comparisons between neighborhoods and across multiple U.S. communities. To feature eco-heal

  14. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina; Krych, Lukasz; Roytio, Henna

    2014-01-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n=18) were enrolled i...

  15. Compositional and Functional Differences in the Human Gut Microbiome Correlate with Clinical Outcome following Infection with Wild-Type Salmonella enterica Serovar Typhi.

    Science.gov (United States)

    Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Pollard, Andrew J; Magder, Laurence S; Fasano, Alessio; Sztein, Marcelo B; Fraser, Claire M

    2018-05-08

    Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S.  Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S.  Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S.  Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S.  Typhi. IMPORTANCE S.  Typhi is a significant cause of systemic febrile morbidity in settings with poor sanitation and limited access to clean water. It has been demonstrated that the human gut microbiota can influence mucosal immune responses, but there is little information available on the impact of the human gut

  16. [Diet and gut microbiota: two sides of the same coin?

    Science.gov (United States)

    Schiumerini, Ramona; Pasqui, Francesca; Festi, Davide

    2018-01-01

    Gut microbiota is a complex ecosystem, resident in the digestive tract, exerting multiple functions that can have a significant impact on the pathophysiology of the host organism. The composition and functions of this "superorganism" are influenced by many factors, and among them, the host's dietary habits seem to have a significant effect. Dietary changes in the evolution of human history and in the different stages of life of the human subjects are responsible for qualitative and functional modification of gut microbiota. At the same time, the different dietary models adopted in worldwide geographic areas take into account the inter-individual differences concerning composition and microbial function. This close relationship between diet, gut microbiota and host seems, in fact, to be responsible for the protection or predisposition to develop several metabolic, immunological, neoplastic and functional diseases. Thus, several studies have evaluated the impact of diet and lifestyle modification strategies on gut microbiota composition and functions which, in turn, seems to affect the effectiveness of such therapeutic measures. Gut microbiota manipulation strategies, as complementary to dietary modifications, represent a fascinating field of research, even if consolidated data are still lacking.

  17. Probiotic Species in the Modulation of Gut Microbiota: An Overview

    Directory of Open Access Journals (Sweden)

    Md. Abul Kalam Azad

    2018-01-01

    Full Text Available Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.

  18. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes.

    Science.gov (United States)

    Bircher, Lea; Geirnaert, Annelies; Hammes, Frederik; Lacroix, Christophe; Schwab, Clarissa

    2018-04-17

    Strict anaerobic gut microbes have been suggested as 'next-generation probiotics' for treating several intestinal disorders. The development of preservation techniques is of major importance for therapeutic application. This study investigated cryopreservation (-80°C) and lyophilization survival and storage stability (4°C for 3 months) of the strict anaerobic gut microbes Bacteroides thetaiotaomicron, Faecalibacterium prausnitzii, Roseburia intestinalis, Anaerostipes caccae, Eubacterium hallii and Blautia obeum. To improve preservation survival, protectants sucrose and inulin (both 5% w/v) were added for lyophilization and were also combined with glycerol (15% v/v) for cryopreservation. Bacterial fitness, evaluated by maximum growth rate and lag phase, viability and membrane integrity were determined using a standardized growth assay and by flow cytometry as markers for preservation resistance. Lyophilization was more detrimental to viability and fitness than cryopreservation, but led to better storage stability. Adding sucrose and inulin enhanced viability and the proportion of intact cells during lyophilization of all strains. Viability of protectant-free B. thetaiotaomicron, A. caccae and F. prausnitzii was above 50% after cryopreservation and storage and increased to above 80% if protectants were present. The addition of glycerol, sucrose and inulin strongly enhanced the viability of B. obeum, E. hallii and R. intestinalis from 0.03-2% in protectant-free cultures to 11-37%. This is the first study that quantitatively compared the effect of cryopreservation and lyophilization and the addition of selected protectants on viability and fitness of six strict anaerobic gut microbes. Our results suggest that efficiency of protectants is process- and species-specific. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  20. Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.

    Science.gov (United States)

    Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.

    2014-05-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. A modelling framework that is specifically adapted to mountain environments is currently lacking. Most studies make use of general river basin models that were originally parameterized and calibrated for temperate, low relief landscapes. Transposing these modelling concepts directly to steep environments with shallow and stony soils often leads to unrealistic model predictions, as model input parameters are rarely calibrated for the range of environmental conditions found in mountain regions. Here, we present a conceptual model that evaluates erosion regulation as a function of human disturbances in vegetation cover. The basic idea behind this model is that soil erosion mechanisms are independent of human impact, but that the frequency-magnitude distributions of erosion rates change as a response to human disturbances. Pre-disturbance (or natural) erosion rates are derived from in-situ produced 10Be concentrations in river sediment, while post-disturbance (or modern) erosion rates are derived from sedimentation rates in small catchments. In its simplicity, the model uses vegetation cover change as a proxy of human disturbance in a given vegetation system. The model is then calibrated with field measurements from two mountainous sites with strongly different vegetation dynamics, climatic and geological settings: the Tropical Andes, and the Spanish Betic Cordillera. Natural erosion processes are important in mountainous sites, and natural erosion benchmarks are primordial to assess human-induced changes in erosion rates. While the Spanish Betic Cordillera is commonly characterized as a degraded landscape, there is no significant change in erosion due to human disturbance for uncultivated sites. The opposite is true for the

  1. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    Science.gov (United States)

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  2. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes

    KAUST Repository

    Zhang, Meiling

    2014-08-18

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT-04215 and BACOVA-04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xy-lose- configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM fromits homolog in the Prevotella bryantii B 14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. Aminimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  3. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  4. Millennium Ecosystem Assessment: Ecosystems and human well-being: a framework for assessment

    NARCIS (Netherlands)

    Leemans, R.; Groot, de R.S.

    2003-01-01

    The 245-page report lays out the approaches, assumptions, processes, and parameters scientists are using in the study. It offers decision-makers a mechanism to identify options that can better achieve core human development and sustainability goals and better understand the trade-offs in decisions

  5. Genomics: A gut prediction

    NARCIS (Netherlands)

    Vos, de W.M.; Nieuwdorp, M.

    2013-01-01

    Microbial cells make up the majority of cells in the human body, and most of these reside in the intestinal tract. Researchers have long recognized that some intestinal microorganisms are associated with health, but the beneficial impact of most of the gut's microbes on human metabolism has been

  6. In vitro activity on human gut bacteria of murta leaf extracts (Ugni molinae Turcz. ), a native plant from southern chile

    DEFF Research Database (Denmark)

    Shene, C.; Canquil, N.; Jorquera, M.

    2012-01-01

    Despite the fact that murta infusions have been used to treat gut/urinary infections by native Chileans for centuries, the mechanisms promoting such effects still remain unclear. As a first attempt to unravel these mechanisms, human fecal samples were incubated in a medium containing water extrac...

  7. The Influence of Social Conditions Across the Life Course on the Human Gut Microbiota: A Pilot Project With the Wisconsin Longitudinal Study.

    Science.gov (United States)

    Herd, Pamela; Schaeffer, Nora Cate; DiLoreto, Kerryann; Jacques, Karen; Stevenson, John; Rey, Federico; Roan, Carol

    2017-12-15

    To test the feasibility of collecting and integrating data on the gut microbiome into one of the most comprehensive longitudinal studies of aging and health, the Wisconsin Longitudinal Study (WLS). The long-term goal of this integration is to clarify the contribution of social conditions in shaping the composition of the gut microbiota late in life. Research on the microbiome, which is considered to be of parallel importance to human health as the human genome, has been hindered by human studies with nonrandomly selected samples and with limited data on social conditions over the life course. No existing population-based longitudinal study had collected fecal specimens. Consequently, we created an in-person protocol to collect stool specimens from a subgroup of WLS participants. We collected 429 stool specimens, yielding a 74% response rate and one of the largest human samples to date. The addition of data on the gut microbiome to the WLS-and to other population based longitudinal studies of aging-is feasible, under the right conditions, and can generate innovative research on the relationship between social conditions and the gut microbiome. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Bovine colostrum improves neonatal growth, digestive function, and gut immunity relative to donor human milk and infant formula in preterm pigs

    DEFF Research Database (Denmark)

    Rasmussen, Stine Ostenfeldt; Martin, Lena; Østergaard, Mette Viberg

    2016-01-01

    Mother's own milk is the optimal first diet for preterm infants, but donor human milk (DM) or infant formula (IF) is used when supply is limited. We hypothesized that a gradual introduction of bovine colostrum (BC) or DM improves gut maturation, relative to IF during the first 11 days after preterm...

  9. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale

    NARCIS (Netherlands)

    Aminov, Rustam I.; Walker, Alan W.; Duncan, Sylvia H.; Harmsen, Hermie J. M.; Welling, Gjalt W.; Flint, Harry J.

    Phylogenetic analysis was used to compare 16S rRNA sequences from 19 cultured human gut strains of Roseburia and Eabacterium rectale with 356 related sequences derived from clone libraries. The cultured strains were found to represent five of the six phylotypes identified. A new oligonucleotide

  10. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale.

    Science.gov (United States)

    Aminov, Rustam I; Walker, Alan W; Duncan, Sylvia H; Harmsen, Hermie J M; Welling, Gjalt W; Flint, Harry J

    2006-09-01

    Phylogenetic analysis was used to compare 16S rRNA sequences from 19 cultured human gut strains of Roseburia and Eubacterium rectale with 356 related sequences derived from clone libraries. The cultured strains were found to represent five of the six phylotypes identified. A new oligonucleotide probe, Rrec584, and the previous group probe Rint623, when used in conjunction with a new helper oligonucleotide, each recognized an average of 7% of bacteria detected by the eubacterial probe Eub338 in feces from 10 healthy volunteers. Most of the diversity within this important group of butyrate-producing gut bacteria can apparently be retrieved through cultivation.

  11. Signals from the gut microbiota to distant organs in physiology and disease

    DEFF Research Database (Denmark)

    Schroeder, Bjoern O; Bäckhed, Gert Fredrik

    2016-01-01

    The ecosystem of the human gut consists of trillions of bacteria forming a bioreactor that is fueled by dietary macronutrients to produce bioactive compounds. These microbiota-derived metabolites signal to distant organs in the body, which enables the gut bacteria to connect to the immune...... and hormone system, to the brain (the gut-brain axis) and to host metabolism, as well as other functions of the host. This microbe-host communication is essential to maintain vital functions of the healthy host. Recently, however, the gut microbiota has been associated with a number of diseases, ranging from...... obesity and inflammatory diseases to behavioral and physiological abnormalities associated with neurodevelopmental disorders. In this Review, we will discuss microbiota-host cross-talk and intestinal microbiome signaling to extraintestinal organs. We will review mechanisms of how this communication might...

  12. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  13. Transfer and Persistence of a Multi-Drug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment

    Directory of Open Access Journals (Sweden)

    Heidi Gumpert

    2017-09-01

    Full Text Available The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high-resolution insight into the plasticity, and selective forces shaping individual genomes is scarce. In a longitudinal study, we followed the dynamics of co-existing Escherichia coli lineages in an infant not receiving antibiotics. Using whole genome sequencing, we observed large genomic deletions, bacteriophage infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness advantage in the mouse gut in spite of a fitness cost in vitro. Our findings highlight the dynamic nature of the human gut microbiota and provide the first genomic description of antibiotic resistance gene transfer between bacteria in the unperturbed human gut. These results exemplify that conjugative plasmids, harboring resistance determinants, can transfer and persists in the gut in the absence of antibiotic treatment.

  14. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Science.gov (United States)

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis (n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  15. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Mehrdad Tajkarimi

    2017-11-01

    Full Text Available Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation.Results: Clustered regularly interspaced short palindromic repeats (CRISPR elements in all strains of B. fragilis (n = 109 with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes.Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B

  16. An Exploration of Human Well-Being Bundles as Identifiers of Ecosystem Service Use Patterns.

    Directory of Open Access Journals (Sweden)

    Maike Hamann

    Full Text Available We take a social-ecological systems perspective to investigate the linkages between ecosystem services and human well-being in South Africa. A recent paper identified different types of social-ecological systems in the country, based on distinct bundles of ecosystem service use. These system types were found to represent increasingly weak direct feedbacks between nature and people, from rural "green-loop" communities to urban "red-loop" societies. Here we construct human well-being bundles and explore whether the well-being bundles can be used to identify the same social-ecological system types that were identified using bundles of ecosystem service use. Based on national census data, we found three distinct well-being bundle types that are mainly characterized by differences in income, unemployment and property ownership. The distribution of these well-being bundles approximates the distribution of ecosystem service use bundles to a substantial degree: High levels of income and education generally coincided with areas characterised by low levels of direct ecosystem service use (or red-loop systems, while the majority of low well-being areas coincided with medium and high levels of direct ecosystem service use (or transition and green-loop systems. However, our results indicate that transformations from green-loop to red-loop systems do not always entail an immediate improvement in well-being, which we suggest may be due to a time lag between changes in the different system components. Using human well-being bundles as an indicator of social-ecological dynamics may be useful in other contexts since it is based on socio-economic data commonly collected by governments, and provides important insights into the connections between ecosystem services and human well-being at policy-relevant sub-national scales.

  17. An Exploration of Human Well-Being Bundles as Identifiers of Ecosystem Service Use Patterns.

    Science.gov (United States)

    Hamann, Maike; Biggs, Reinette; Reyers, Belinda

    2016-01-01

    We take a social-ecological systems perspective to investigate the linkages between ecosystem services and human well-being in South Africa. A recent paper identified different types of social-ecological systems in the country, based on distinct bundles of ecosystem service use. These system types were found to represent increasingly weak direct feedbacks between nature and people, from rural "green-loop" communities to urban "red-loop" societies. Here we construct human well-being bundles and explore whether the well-being bundles can be used to identify the same social-ecological system types that were identified using bundles of ecosystem service use. Based on national census data, we found three distinct well-being bundle types that are mainly characterized by differences in income, unemployment and property ownership. The distribution of these well-being bundles approximates the distribution of ecosystem service use bundles to a substantial degree: High levels of income and education generally coincided with areas characterised by low levels of direct ecosystem service use (or red-loop systems), while the majority of low well-being areas coincided with medium and high levels of direct ecosystem service use (or transition and green-loop systems). However, our results indicate that transformations from green-loop to red-loop systems do not always entail an immediate improvement in well-being, which we suggest may be due to a time lag between changes in the different system components. Using human well-being bundles as an indicator of social-ecological dynamics may be useful in other contexts since it is based on socio-economic data commonly collected by governments, and provides important insights into the connections between ecosystem services and human well-being at policy-relevant sub-national scales.

  18. Human ecology and environmentalism: Two different approaches to the relationships ecosystem/culture

    International Nuclear Information System (INIS)

    Leon Sicard, Tomas

    2001-01-01

    A comparative analysis of the human ecology focus versus the environmental dimension analysis, emphasizing that the first one does not have theoretical instruments to adequately consider the human action inside the ecosystems, while the second one considers the concept of culture as an explanation of the human niche and then of the environmental problem. It ends with thoughts about the environmental or ecologist conception that is discussed in the Colombian peace negotiations

  19. Generation of Immunoglobulin diversity in human gut-associated lymphoid tissue.

    Science.gov (United States)

    Spencer, Jo; Barone, Francesca; Dunn-Walters, Deborah

    2009-06-01

    The organised gut associated lymphoid tissue (GALT) exists adjacent to an extensive and diverse luminal flora. The follicle associated epithelium and associated dendritic cells and lymphocytes form a tightly fortified gateway between the flora and the host that permits connectivity between them and chronic activation of the lymphoid compartment. As a consequence, plasma cell precursors are generated continuously, and in abundance, in GALT by clonal proliferation. Clonal proliferation alone on this scale would reduce the spectrum of B cell specificity. To compensate, GALT also houses molecular machinery that diversifies the receptor repertoire by somatic hypermutation, class switch recombination and receptor revision. These three processes of enhancing the diversity of mature B cells ensure that although clonally related plasma cells may secrete immunoglobulin side by side in the mucosa they rarely have identical antigen binding sites.

  20. Persistent colonization of Helicobacter pylori in human gut induces gastroduodenal diseases

    Directory of Open Access Journals (Sweden)

    Animesh Sarker

    2014-12-01

    Full Text Available Helicobacter pylori are gut bacteria colonize in the epithelial cell lining of the stomach and persist there for long du­ration. Around two-thirds of the world’s populations are infected with H. pylori and cause more than 90 percent of ulcers. The development of persistent inflammation is the main cause of chronic gastritis that finally results in a severe consequence known as stomach cancer. Two major virulence factors cytotoxin-associated gene product (cagA and the vacuolating toxin (vacA are mostly investigated as their close association with gastric carcinoma. In this review, host im­munity against H. pylori infection and their evasion mechanism are intensely explored. It is the fact, that understanding pin point molecular mechanisms of any infection is critical to develop novel strategies to prevent pertinent diseases. .J Microbiol Infect Dis 2014; 4(4: 170-176

  1. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.

    Science.gov (United States)

    Klinder, Annett; Shen, Qing; Heppel, Susanne; Lovegrove, Julie A; Rowland, Ian; Tuohy, Kieran M

    2016-04-01

    Epidemiological studies have shown protective effects of fruits and vegetables (F&V) in lowering the risk of developing cardiovascular diseases (CVD) and cancers. Plant-derived dietary fibre (non-digestible polysaccharides) and/or flavonoids may mediate the observed protective effects particularly through their interaction with the gut microbiota. The aim of this study was to assess the impact of fruit and vegetable (F&V) intake on gut microbiota, with an emphasis on the role of flavonoids, and further to explore relationships between microbiota and factors associated with CVD risk. In the study, a parallel design with 3 study groups, participants in the two intervention groups representing high-flavonoid (HF) and low flavonoid (LF) intakes were asked to increase their daily F&V intake by 2, 4 and 6 portions for a duration of 6 weeks each, while a third (control) group continued with their habitual diet. Faecal samples were collected at baseline and after each dose from 122 subjects. Faecal bacteria enumeration was performed by fluorescence in situ hybridisation (FISH). Correlations of dietary components, flavonoid intake and markers of CVD with bacterial numbers were also performed. A significant dose X treatment interaction was only found for Clostidium leptum-Ruminococcus bromii/flavefaciens with a significant increase after intake of 6 additional portions in the LF group. Correlation analysis of the data from all 122 subjects independent from dietary intervention indicated an inhibitory role of F&V intake, flavonoid content and sugars against the growth of potentially pathogenic clostridia. Additionally, we observed associations between certain bacterial populations and CVD risk factors including plasma TNF-α, plasma lipids and BMI/waist circumference.

  2. Natural hazards, disasters and human kind: Whither ecosystem management?

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.; Mudholkar, A.V.

    in the way of powerful natural forces. Abandoning vulnerable geomorphic features, managed retreat, or safer setback with intervening forested landforms are feasible long-term options. The incalculable human misery that ultimately follows ia an ideal...

  3. Earth Observation Data for Mapping and Evaluation of Ecosystem Services to Improve Human Livelihoods and Conserve Species

    Science.gov (United States)

    Shapiro, Aurelie C.; Bhagabati, Nirmal

    2010-12-01

    Mapping and evaluating ecosystem services is of increasing concern and urgency for conservation organizations such as WWF. Coupling biodiversity assessments with ecosystem services e.g., carbon sequestration, water regulation, sediment reduction, is an effective way to visualize additional financial and human benefits of conservation for decision makers. WWF is eager to apply various Earth Observation data to conservation applications for consistent mapping and monitoring of natural ecosystems and the potential impacts of their loss on humans and wildlife alike. Such examples include forest carbon mapping, integrated evaluation of ecosystem services (via the InVEST tool) and bundling endangered Tiger habitat with various ecosystem services for bundled benefits.

  4. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    Science.gov (United States)

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. © 2014 British Society for Immunology.

  5. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Clusterin in human gut-associated lymphoid tissue, tonsils, and adenoids: localization to M cells and follicular dendritic cells.

    Science.gov (United States)

    Verbrugghe, Phebe; Kujala, Pekka; Waelput, Wim; Peters, Peter J; Cuvelier, Claude A

    2008-03-01

    The follicle-associated epithelium (FAE) overlying the follicles of mucosa-associated lymphoid tissue is a key player in the initiation of mucosal immune responses. We recently reported strong clusterin expression in the FAE of murine Peyer's patches. In this study, we examined the expression of clusterin in the human gut-associated lymphoid tissue (GALT) and Waldeyer's ring. Immunohistochemistry for clusterin in human Peyer's patches, appendix and colon lymphoid follicles revealed expression in M cells and in follicular dendritic cells (FDCs). Using cryo-immunogold electron microscopy in Peyer's patches, we observed cytosolic immunoreactivity in M cells and labeling in the ER/Golgi biosynthetic pathway in FDCs. In palatine tonsils and adenoids, we demonstrated clusterin expression in germinal centers and in the lymphoepithelium in the crypts where M cells are localized. In conclusion, clusterin is expressed in M cells and follicular dendritic cells at inductive sites of human mucosa-associated lymphoid tissue suggesting a role for this protein in innate immune responses. Moreover, the use of clusterin as a human M cell marker could prove to be a valuable tool in future M cell research.

  7. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health.

    Science.gov (United States)

    Donovan, Sharon M

    2017-03-04

    Over the past decade, application of culture-independent, next generation DNA sequencing has dramatically enhanced our understanding of the composition of the gut microbiome and its association with human states of health and disease. Host genetics, age, and environmental factors such as where and who you live with, use of pre-, pro- and antibiotics, exercise and diet influence the short- and long-term composition of the microbiome. Dietary intake is a key determinant of microbiome composition and diversity and studies to date have linked long-term dietary patterns as well as short-term dietary interventions to the composition and diversity of the gut microbiome. The goal of this special focus issue was to review the role of diet in regulating the composition and function of the gut microbiota across the lifespan, from pregnancy to old age. Overall dietary patterns, as well as perturbations such as undernutrition and obesity, as well as the effects of dietary fiber/prebiotics and fat composition are explored.

  8. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  9. Measuring resilience of coupled human-water systems using ecosystem services compatible indicators

    Science.gov (United States)

    Hannah, D. M.; Mao, F.; Karpouzoglou, T.; Clark, J.; Buytaert, W.

    2017-12-01

    To explore the dynamics of socio-hydrological systems under change, the concepts of resilience and ecosystem services serve as useful tools. In this context, resilience refers to the capacity of a socio-hydrological system to retain its structural and functional state despite perturbations, while ecosystem services offer a good proxy of the state that reflects human-water intersections. Efforts are needed to maintain and improve socio-hydrological resilience for future contingencies to secure hydrological ecosystem services supply. This requires holistic indicators of resilience for coupled human-water systems that are essential for quantitative assessment, change tracking, inter-case comparison, as well as resilience management. However, such indicators are still lacking. Our research aims to propose widely applicable resilience indicators that are suitable for the coupled human-water context, and compatible with ecosystem services. The existing resilience indicators for both eco-hydrological and socio-economic sectors are scrutinised, screened and analysed to build these new indicators. Using the proposed indicators, we compare the resilience and its temporal change among a set of example regions, and discusses the linkages between socio-hydrological resilience and hydrological ecosystem services with empirical cases.

  10. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    Science.gov (United States)

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  11. Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America

    Directory of Open Access Journals (Sweden)

    Domingo Alcaraz-Segura

    2013-01-01

    Full Text Available The regional controls of biodiversity patterns have been traditionally evaluated using structural and compositional components at the species level, but evaluation of the functional component at the ecosystem level is still scarce. During the last decades, the role of ecosystem functioning in management and conservation has increased. Our aim was to use satellite-derived Ecosystem Functional Types (EFTs, patches of the land-surface with similar carbon gain dynamics to characterize the regional patterns of ecosystem functional diversity and to evaluate the environmental and human controls that determine EFT richness across natural and human-modified systems in temperate South America. The EFT identification was based on three descriptors of carbon gain dynamics derived from seasonal curves of the MODIS Enhanced Vegetation Index (EVI: annual mean (surrogate of primary production, seasonal coefficient of variation (indicator of seasonality and date of maximum EVI (descriptor of phenology. As observed for species richness in the southern hemisphere, water availability, not energy, emerged as the main climatic driver of EFT richness in natural areas of temperate South America. In anthropogenic areas, the role of both water and energy decreased and increasing human intervention increased richness at low levels of human influence, but decreased richness at high levels of human influence.

  12. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts.

    Science.gov (United States)

    Wei, Guifang; Pan, Li; Du, Huimin; Chen, Junyi; Zhao, Liping

    2004-10-01

    Bacterial populations common to healthy human guts may play important roles in human health. A new strategy for discovering genomic sequences as markers for these bacteria was developed using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting. Structural features within microbial communities are compared with ERIC-PCR followed by DNA hybridization to identify genomic fragments shared by samples from healthy human individuals. ERIC-PCR profiles of fecal samples from 12 diseased or healthy human and piglet subjects demonstrated stable, unique banding patterns for each individual tested. Sequence homology of DNA fragments in bands of identical size was examined between samples by hybridization under high stringency conditions with DIG-labeled ERIC-PCR products derived from the fecal sample of one healthy child. Comparative analysis of the hybridization profiles with the original agarose fingerprints identified three predominant bands as signatures for populations associated with healthy human guts with sizes of 500, 800 and 1000 bp. Clone library profiling of the three bands produced 17 genome fragments, three of which showed high similarity only with regions of the Bacteroides thetaiotaomicron genome, while the remainder were orphan sequences. Association of these sequences with healthy guts was validated by sequence-selective PCR experiments, which showed that a single fragment was present in all 32 healthy humans and 13 healthy piglets tested. Two fragments were present in the healthy human group and in 18 children with non-infectious diarrhea but not in eight children with infectious diarrhea. Genome fragments identified with this novel strategy may be used as genome-specific markers for dynamic monitoring and sequence-guided isolation of functionally important bacterial populations in complex communities such as human gut microflora.

  13. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.; Hoey, Andrew; Hughes, Terence P.

    2011-01-01

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  14. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs

    KAUST Repository

    Bellwood, David R.

    2011-11-16

    Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. © 2011 The Royal Society.

  15. Human impacts on genetic diversity in forest ecosystems

    Science.gov (United States)

    F. Thomas Ledig

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands. changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of they activities is new; perhaps with the exception of...

  16. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study.

    Science.gov (United States)

    Stewart, Christopher J; Auchtung, Thomas A; Ajami, Nadim J; Velasquez, Kenia; Smith, Daniel P; De La Garza, Richard; Salas, Ramiro; Petrosino, Joseph F

    2018-01-01

    The use of electronic cigarettes (ECs) has increased drastically over the past five years, primarily as an alternative to smoking tobacco cigarettes. However, the adverse effects of acute and long-term use of ECs on the microbiota have not been explored. In this pilot study, we sought to determine if ECs or tobacco smoking alter the oral and gut microbiota in comparison to non-smoking controls. We examined a human cohort consisting of 30 individuals: 10 EC users, 10 tobacco smokers, and 10 controls. We collected cross-sectional fecal, buccal swabs, and saliva samples from each participant. All samples underwent V4 16S rRNA gene sequencing. Tobacco smoking had a significant effect on the bacterial profiles in all sample types when compared to controls, and in feces and buccal swabs when compared to EC users. The most significant associations were found in the gut, with an increased relative abundance of Prevotella ( P = 0.006) and decreased Bacteroides ( P = 0.036) in tobacco smokers. The Shannon diversity was also significantly reduced ( P = 0.009) in fecal samples collected from tobacco smokers compared to controls. No significant difference was found in the alpha diversity, beta-diversity or taxonomic relative abundances between EC users and controls. From a microbial ecology perspective, the current pilot data demonstrate that the use of ECs may represent a safer alternative compared to tobacco smoking. However, validation in larger cohorts and greater understanding of the short and long-term impact of EC use on microbiota composition and function is warranted.

  17. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study

    Directory of Open Access Journals (Sweden)

    Christopher J. Stewart

    2018-04-01

    Full Text Available Background The use of electronic cigarettes (ECs has increased drastically over the past five years, primarily as an alternative to smoking tobacco cigarettes. However, the adverse effects of acute and long-term use of ECs on the microbiota have not been explored. In this pilot study, we sought to determine if ECs or tobacco smoking alter the oral and gut microbiota in comparison to non-smoking controls. Methods We examined a human cohort consisting of 30 individuals: 10 EC users, 10 tobacco smokers, and 10 controls. We collected cross-sectional fecal, buccal swabs, and saliva samples from each participant. All samples underwent V4 16S rRNA gene sequencing. Results Tobacco smoking had a significant effect on the bacterial profiles in all sample types when compared to controls, and in feces and buccal swabs when compared to EC users. The most significant associations were found in the gut, with an increased relative abundance of Prevotella (P = 0.006 and decreased Bacteroides (P = 0.036 in tobacco smokers. The Shannon diversity was also significantly reduced (P = 0.009 in fecal samples collected from tobacco smokers compared to controls. No significant difference was found in the alpha diversity, beta-diversity or taxonomic relative abundances between EC users and controls. Discussion From a microbial ecology perspective, the current pilot data demonstrate that the use of ECs may represent a safer alternative compared to tobacco smoking. However, validation in larger cohorts and greater understanding of the short and long-term impact of EC use on microbiota composition and function is warranted.

  18. Acid sulfate soils and human health--a Millennium Ecosystem Assessment.

    Science.gov (United States)

    Ljung, Karin; Maley, Fiona; Cook, Angus; Weinstein, Philip

    2009-11-01

    Acid sulfate soils have been described as the "nastiest soils on earth" because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.

  19. Striking a Balance with Help from our Little Friends - How the Gut Microbiota Contributes to Immune Homeostasis.

    Science.gov (United States)

    Arnolds, Kathleen L; Lozupone, Catherine A

    2016-09-01

    The trillions of microbes that inhabit the human gut (the microbiota) together with the host comprise a complex ecosystem, and like any ecosystem, health relies on stability and balance. Some of the most important members of the human microbiota are those that help maintain this balance via modulation of the host immune system. Gut microbes, through both molecular factors (such as capsular components) and by-products of their metabolism (such as Short Chain Fatty Acids (SCFAs)), can influence both innate and adaptive components of the immune system, in ways that can drive both effector, and regulatory responses. Here we review how commensal microbes can specifically promote a dynamic balance of these immune responses in the mammalian gut.

  20. Human dose pathways of radionuclides in forests; Forests ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A. (Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki (Finland))

    2009-06-15

    Forest soil, understorey vegetation and trees are all sources of radionuclides and human radiation doses after contaminating atmospheric deposition. People are exposed to radiation externally from sources outside the body and internally via ingestion and inhalation of radionuclides. Understorey vegetation contributes to ingestion doses through berries, herbs, wild honey, mushrooms and game meat; also trees provide feed to terrestrial birds and big game. During stay in forests people are subject to external radiation from forest floor and overstorey, and they may inhale airborne radioactive aerosol or gaseous radionuclides in ground level air. In the early phase of contamination also resuspended radionuclides may add to the internal dose of people via inhalation. People in Nordic countries are most exposed to radiation via ingestion of radionuclides in wild foods. The distribution of radionuclides in forests is changed by environmental processes, and thereby also the significance of various dose pathways to humans will change with time. External exposure is received in living environment from contaminated stemwood used as building timber and for manufacturing of furniture and other wood products. The aim of this paper is to outline the significance of various human dose pathways of radionuclides in forests considering the public and workers in forestry and production of bioenergy. Examples on effective doses are given based on two historical events, atmospheric nuclear weapon tests (mostly in 1950's and in 1960's) and the Chernobyl nuclear power plant accident in 1986. (au)

  1. Modelling of spatially complex human-ecosystem, rural-urban and rich-poor interactions

    CSIR Research Space (South Africa)

    Naude, AH

    2008-06-01

    Full Text Available The paper outlines the challenges of modelling and assessing spatially complex human-ecosystem interactions, and the need to simultaneously consider rural-urban and rich-poor interactions. The context for exploring these challenges is South Africa...

  2. Solute transport by groundwater flow to wetland ecosystems : the environmental impact of human activities

    NARCIS (Netherlands)

    Schot, P.P.

    1991-01-01

    This thesis deals with solute transport by groundwater flow and the way in which solute transport is affected by human activities. This in relation to wetland ecosystems. Wetlands in the eastern part of the Vecht river plain in The Netherlands are historically renown for their great variety of

  3. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    Science.gov (United States)

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  4. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    Science.gov (United States)

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  5. Ecosystem-based approach for the marine environment and the position of humans : Lessons from the EU natura 2000 regime

    NARCIS (Netherlands)

    Bastmeijer, Cornelis; Langlet, David; Rayfuse, Rosemary

    2018-01-01

    In policy documents and the literature it has often been emphasised that the concept of ecosystem-based management includes human use of natural resources as humans are also part of the ecosystem. This chapter aims to contribute to the broader discussion of what this consideration should mean for

  6. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.

    Science.gov (United States)

    Greenblum, Sharon; Turnbaugh, Peter J; Borenstein, Elhanan

    2012-01-10

    The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic "inputs." These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.

  7. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.

    Science.gov (United States)

    Vandeputte, Doris; Falony, Gwen; Vieira-Silva, Sara; Wang, Jun; Sailer, Manuela; Theis, Stephan; Verbeke, Kristin; Raes, Jeroen

    2017-11-01

    Contrary to the long-standing prerequisite of inducing selective (ie, bifidogenic) effects, recent findings suggest that prebiotic interventions lead to ecosystem-wide microbiota shifts. Yet, a comprehensive characterisation of this process is still lacking. Here, we apply 16S rDNA microbiota profiling and matching (gas chromatography mass spectrometry) metabolomics to assess the consequences of inulin fermentation both on the composition of the colon bacterial ecosystem and faecal metabolites profiles. Faecal samples collected during a double-blind, randomised, cross-over intervention study set up to assess the effect of inulin consumption on stool frequency in healthy adults with mild constipation were analysed. Faecal microbiota composition and metabolite profiles were linked to the study's clinical outcome as well as to quality-of-life measurements recorded. While faecal metabolite profiles were not significantly altered by inulin consumption, our analyses did detect a modest effect on global microbiota composition and specific inulin-induced changes in relative abundances of Anaerostipes , Bilophila and Bifidobacterium were identified. The observed decrease in Bilophila abundances following inulin consumption was associated with both softer stools and a favourable change in constipation-specific quality-of-life measures. Ecosystem-wide analysis of the effect of a dietary intervention with prebiotic inulin-type fructans on the colon microbiota revealed that this effect is specifically associated with three genera, one of which ( Bilophila ) representing a promising novel target for mechanistic research. NCT02548247. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. HUMAN-INDUCED CHANGES IN ECOSYSTEM SERVICES IN THE PETROŞANI DEPRESSION (SOUTHERN CARPATHIANS, ROMANIA

    Directory of Open Access Journals (Sweden)

    ANDRA COSTACHE

    2013-04-01

    Full Text Available The paper focuses on the changes in ecosystem services in the most important coal field from the Southern Carpathians (Romania. The time horizon considered is the interval 1950-2010, characterized by two major processes: intensive development of the mining industry (1950-1989 and subsequent restructuring of mining, with significant consequences since 1996. Socio-economic phenomena associated with these two stages in the evolution of the region have generated major changes in ecosystem services, leading to increased human vulnerability, both to extreme events (natural hazards and pressure from economic factors.

  9. Growing population and ecosystem change increase human schistosomiasis around Lake Malaŵi.

    Science.gov (United States)

    Van Bocxlaer, Bert; Albrecht, Christian; Stauffer, Jay R

    2014-05-01

    Multiple anthropogenic environmental stressors with reinforcing effects to the deterioration of ecosystem stability can obscure links between ecosystem change and the prevalence of infectious diseases. Incomplete understanding may lead to ineffective public health and disease control strategies, as appears to be the case with increased urogenital schistosomiasis in humans around Lake Malaŵi over recent decades. Sedimentation and eutrophication help explain historical changes in intermediate host range and parasite transmission. Hence, control strategies should account for abiotic changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. An extracellular cell-attached pullulanase confers branched α-glucan utilization in human gut Lactobacillus acidophilus

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Goh, Yong Jun; Rasmussen, Kasper Bøwig

    2017-01-01

    binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here we explore the specificity of a representative of this group of pullulanases, LaPul13_14 and its role in branched α-glucans metabolism in the well characterized Lactobacillus acidophilus...... in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by LaPul13_14 and is abolished in a mutant strain lacking a functional LaPul13_14 gene. Hydrolysis kinetics of recombinant LaPul13_14 confirmed the preference for short branched α-glucan oligomers....... Branched α-1,6-glucans in dietary starch and glycogen are non-degradable by human enzymes and constitute a metabolic resource for the gut microbiota. The role of health-beneficial lactobacilli prevalent in the human small intestine in starch metabolism remains unexplored in contrast to colonic bacterial...

  11. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation.

    Science.gov (United States)

    Akkerman, Renate; Faas, Marijke M; de Vos, Paul

    2018-01-15

    Human milk (HM) is the golden standard for nutrition of newborn infants. Human milk oligosaccharides (HMOs) are abundantly present in HM and exert multiple beneficial functions, such as support of colonization of the gut microbiota, reduction of pathogenic infections and support of immune development. HMO-composition is during lactation continuously adapted by the mother to accommodate the needs of the neonate. Unfortunately, for many valid reasons not all neonates can be fed with HM and are either totally or partly fed with cow-milk derived infant formulas, which do not contain HMOs. These cow-milk formulas are supplemented with non-digestible carbohydrates (NDCs) that have functional effects similar to that of some HMOs, since production of synthetic HMOs is challenging and still very expensive. However, NDCs cannot substitute all HMO functions. More efficacious NDCs may be developed and customized for specific groups of neonates such as pre-matures and allergy prone infants. Here current knowledge of HMO functions in the neonate in view of possible replacement of HMOs by NDCs in infant formulas is reviewed. Furthermore, methods to expedite identification of suitable NDCs and structure/function relationships are reviewed as in vivo studies in babies are impossible.

  12. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    Science.gov (United States)

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  13. MALDI-TOF identification of the human Gut microbiome in people with and without diarrhea in Senegal.

    Directory of Open Access Journals (Sweden)

    Bissoume Samb-Ba

    Full Text Available BACKGROUND: In Africa, there are several problems with the specific identification of bacteria. Recently, MALDI-TOF mass spectrometry has become a powerful tool for the routine microbial identification in many clinical laboratories. METHODOLOGY/PRINCIPAL FINDINGS: This study was conducted using feces from 347 individuals (162 with diarrhea and 185 without diarrhea sampled in health centers in Dakar, Senegal. Feces were transported from Dakar to Marseille, France, where they were cultured using different culture conditions. The isolated colonies were identified using MALDI-TOF. If a colony was unidentified, 16S rRNA sequencing was performed. Overall, 2,753 isolates were tested, allowing for the identification of 189 bacteria from 5 phyla, including 2 previously unknown species, 11 species not previously reported in the human gut, 10 species not previously reported in humans, and 3 fungi. 2,718 bacterial isolates (98.8% out of 2,750 yielded an accurate identification using mass spectrometry, as did the 3 Candida albicans isolates. Thirty-two bacterial isolates not identified by MALDI-TOF (1.2% were identified by sequencing, allowing for the identification of 2 new species. The number of bacterial species per fecal sample was significantly higher among patients without diarrhea (8.6±3 than in those with diarrhea (7.3±3.4; P = 0.0003. A modification of the gut microbiota was observed between the two groups. In individuals with diarrhea, major commensal bacterial species such as E. coli were significantly decreased (85% versus 64%, as were several Enterococcus spp. (E. faecium and E. casseliflavus and anaerobes, such as Bacteroides spp. (B. uniformis and B. vulgatus and Clostridium spp. (C. bifermentans, C. orbiscindens, C. perfringens, and C. symbosium. Conversely, several Bacillus spp. (B. licheniformis, B. mojavensis, and B. pumilus were significantly more frequent among patients with diarrhea. CONCLUSIONS/SIGNIFICANCE: MALDI-TOF is a

  14. Prehistoric Human-environment Interactions and Their Impact on Aquatic Ecosystems

    Science.gov (United States)

    Mackay, H.; Henderson, A. C. G.; van Hardenbroek, M.; Cavers, G.; Crone, A.; Davies, K. L.; Fonville, T. R.; Head, K.; Langdon, P. G.; Matton, R.; McCormick, F.; Murray, E.; Whitehouse, N. J.; Brown, A. G.

    2017-12-01

    One of the first widespread human-environment interactions in Scotland and Ireland occurred 3000 years ago when communities first inhabited wetlands, building artificial islands in lakes called crannogs. The reason behind the development and intermittent occupation of crannogs is unclear. We don't know if they were a response to changes in environment or if they were driven by societal influences. Furthermore, the impact of the construction, settlement and human activities on lake ecosystems is unknown, but is a key example of early anthropogenic signatures on the environment. Our research characterises the prehistoric human-environment interactions associated with crannogs by analysing geochemical and biological signals preserved within the crannog and wetland sediments. Records of anthropogenic activities and environmental change have been produced using lipid biomarkers of faecal matter, sedimentary DNA, and the remains of beetles, aquatic invertebrates (chironomids), siliceous algae (diatoms) and pollen. Results of these analyses reveal settlement occupations occurred in phases from the Iron Age to the Medieval Period. The main effects of occupation on the wetland ecosystems are nutrient-driven increases in productivity and shifts in aquatic species from clear water taxa to those associated with more eutrophic conditions. Crannog abandonment reduces nutrient inputs and therefore levels of aquatic productivity, as evidenced by decreases in the abundance of siliceous algae. Despite returns to pre-settlement nutrient and productivity levels, the lake ecosystems do not recover to their previous ecological state: dominant aquatic invertebrate and siliceous algae taxa shift in response to elevated levels of macrophytes within the lakes. Whilst these phase changes in lake ecosystems highlight their adaptive capacity to environmental change, the temporary human interactions associated with crannogs had persisting environmental impacts that shaped the long

  15. Human impacts on genetic diversity in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Ledig, F T [Inst. of Forest Genetics, Southwest Forest and Range Experiment Station, USDA Forest Service, Berkeley (US)

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands, changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of these activities is new; perhaps with the exception of atmospheric pollution, they date back to prehistory. All have impacted genetic diversity by their influence on the evolutionary processes of extinction, selection, drift, gene flow, and mutation, sometimes increasing diversity, as int he case of domestication, but often reducing it. Even in the absence of changes in diversity, mating systems were altered, changing the genetic structure of populations. Demographic changes influenced selection by increasing the incidence of disease. Introduction of exotic diseases, insects, mammalian herbivores, and competing vegetation has had the best-documented effects on genetic diversity, reducing both species diversity and intraspecific diversity. Deforestation has operated on a vast scale to reduce diversity by direct elimination of locally-adapted populations. Atmospheric pollution and global warming will be a major threat in the near future, particularly because forests are fragmented and migration is impeded. Past impacts can be estimated with reference to expert knowledge, but hard data are often laching. Baselines are needed to quantify future impacts and provide an early warning of problems. Genetic inventories of indicator species can provide the baselines against which to measure changes in diversity. (author) (44 refs.).

  16. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.

    Science.gov (United States)

    Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I

    2009-06-01

    Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial

  17. A new framework for assessing river ecosystem health with consideration of human service demand.

    Science.gov (United States)

    Luo, Zengliang; Zuo, Qiting; Shao, Quanxi

    2018-06-01

    In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.

  18. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model

    NARCIS (Netherlands)

    Martin, F.P.J.; Wang, Y.; Sprenger, N.; Yap, K.S.; Rezzi, S.; Ramadan, Z.; Peré-Trepat, E.; Rochat, F.; Cherbut, C.; Bladeren, van P.J.; Fay, L.B.; Kochhar, S.; LindOn, J.C.; Holmes, E.; Nicholson, J.K.

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse

  19. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes

    Directory of Open Access Journals (Sweden)

    Jean-Marc eRolain

    2013-06-01

    Full Text Available The increase and spread of antibiotic resistance (AR over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.

  20. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment

    DEFF Research Database (Denmark)

    Gumpert, Heidi; Kubicek-Sutherland, Jessica Z.; Porse, Andreas

    2017-01-01

    lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness......The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high...... infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant...

  1. Molecular Diversity, Cultivation, and Improved Detection by Fluorescent In Situ Hybridization of a Dominant Group of Human Gut Bacteria Related to Roseburia spp. or Eubacterium rectale

    OpenAIRE

    Aminov, Rustam I.; Walker, Alan W.; Duncan, Sylvia H.; Harmsen, Hermie J. M.; Welling, Gjalt W.; Flint, Harry J.

    2006-01-01

    Phylogenetic analysis was used to compare 16S rRNA sequences from 19 cultured human gut strains of Roseburia and Eubacterium rectale with 356 related sequences derived from clone libraries. The cultured strains were found to represent five of the six phylotypes identified. A new oligonucleotide probe, Rrec584, and the previous group probe Rint623, when used in conjunction with a new helper oligonucleotide, each recognized an average of 7% of bacteria detected by the eubacterial probe Eub338 i...

  2. Vulnerability assessment of urban ecosystems driven by water resources, human health and atmospheric environment

    Science.gov (United States)

    Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li

    2016-05-01

    As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.

  3. The nexus between climate change, ecosystem services and human health: Towards a conceptual framework.

    Science.gov (United States)

    Chiabai, Aline; Quiroga, Sonia; Martinez-Juarez, Pablo; Higgins, Sahran; Taylor, Tim

    2018-09-01

    This paper addresses the impact that changes in natural ecosystems can have on health and wellbeing focusing on the potential co-benefits that green spaces could provide when introduced as climate change adaptation measures. Ignoring such benefits could lead to sub-optimal planning and decision-making. A conceptual framework, building on the ecosystem-enriched Driver, Pressure, State, Exposure, Effect, Action model (eDPSEEA), is presented to aid in clarifying the relational structure between green spaces and human health, taking climate change as the key driver. The study has the double intention of (i) summarising the literature with a special emphasis on the ecosystem and health perspectives, as well as the main theories behind these impacts, and (ii) modelling these findings into a framework that allows for multidisciplinary approaches to the underlying relations between human health and green spaces. The paper shows that while the literature based on the ecosystem perspective presents a well-documented association between climate, health and green spaces, the literature using a health-based perspective presents mixed evidence in some cases. The role of contextual factors and the exposure mechanism are rarely addressed. The proposed framework could serve as a multidisciplinary knowledge platform for multi-perspecitve analysis and discussion among experts and stakeholders, as well as to support the operationalization of quantitative assessment and modelling exercises. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum.

    Science.gov (United States)

    Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C

    2016-02-01

    Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    Science.gov (United States)

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  6. Measurement of human serum parathyroid hormone in disorders of calcium metabolism and during administration of certain gut hormones

    International Nuclear Information System (INIS)

    Coetzee, J.; Klaff, L.J.; Epstein, S.

    1980-01-01

    A sensitive radio-immunoassay for parathyroid hormone (PTH) using the commercially available antisera AS 211/32 and AS 211/41 has been established. The lower limit of sensitivity of the assay is 0,25 ng/ml. Seventy-nine per cent of normal subjects have PTH levels in the measurable range, with a mean of 0,49 ng/ml (SD more or less 0,26 ng/ml). Only 1 of 9 patients with proven primary hyperparathyroidism had a normal serum PTH value. The mean serum PTH value in this group was 3,0 more or less 0,26 ng/ml, which differed significantly from that in the normal group (P<0,001). The serum PTH level of 33 patients on chronic haemodialysis was uniformly raised, while in 8 patients with hypoparathyroidism PTH levels were undetectable. Patients with malignant disease presented a mixed picture, with raised, normal or undetectable PTH levels. We investigated a possible relationship between the gut hormones, gastrin, secretin and cholecystokininpancreozymin (CCK-PZ) and PTH secretion in human volunteers. No effect was found, although the investigations were conducted over relatively short time periods

  7. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.

    Directory of Open Access Journals (Sweden)

    Fabrice Armougom

    Full Text Available BACKGROUND: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. METHODS AND FINDINGS: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01. We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p=0.0197 or anorexic patients (p=0.0332. The M. smithii concentration was much higher in anorexic patients than in the lean population (p=0.0171. CONCLUSIONS: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population.

  8. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria

    Science.gov (United States)

    Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T; Spector, Timothy D; Banfield, Jillian F; Ley, Ruth E

    2013-01-01

    Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation ‘Melainabacteria’. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI: http://dx.doi.org/10.7554/eLife.01102.001 PMID:24137540

  9. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans

    OpenAIRE

    Cartmell, Alan; Lowe, Elisabeth C.; Basl?, Arnaud; Firbank, Susan J.; Ndeh, Didier A.; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E.; Czjzek, Mirjam; Gilbert, Harry J.; Bolam, David N.

    2017-01-01

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases...

  10. Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems.

    Science.gov (United States)

    De Schryver, An M; Brakkee, Karin W; Goedkoop, Mark J; Huijbregts, Mark A J

    2009-03-15

    Human and ecosystem health damage due to greenhouse gas (GHG) emissions is generally poorly quantified in the life cycle assessment of products, preventing an integrated comparison of the importance of GHGs with other stressor types, such as ozone depletion and acidifying emissions. In this study, we derived new characterization factors for 63 GHGs that quantify the impact of an emission change on human and ecosystem health damage. For human health damage, the Disability Adjusted Life Years (DALYs) per unit emission related to malaria, diarrhea, malnutrition, drowning, and cardiovascular diseases were quantified. For ecosystem health damage, the Potentially Disappeared Fraction (PDF) over space and time of various species groups, including plants, butterflies, birds, and mammals, per unit emission was calculated. The influence of value choices in the modeling procedure was analyzed by defining three coherent scenarios, based on Cultural theory perspectives. It was found that the characterization factor for human health damage by carbon dioxide (CO2) ranges from 1.1 x 10(-2) to 1.8 x 10(+1) DALY per kton of emission, while the characterization factor for ecosystem damage by CO2 ranges from 5.4 x 10(-2) to 1.2 x 10(+1) disappeared fraction of species over space and time ((km2 x year)/kton), depending on the scenario chosen. The characterization factor of a GHG can change up to 4 orders of magnitude, depending on the scenario. The scenario-specific differences are mainly explained by the choice for a specific time horizon and stresses the importance of dealing with value choices in the life cycle impact assessment of GHG emissions.

  11. Evapotranspiration Power Law in Self-Organized and Human-Managed Ecosystems

    Science.gov (United States)

    Zeng, R.; Cai, X.

    2017-12-01

    Natural systems display a profound degree of self-organization, often apparent even to the untrained eye. However, in this age of increased coupling among human and natural systems, it is unclear to what degree natural organization principles continue to govern human-managed landscapes. Here we present an emerging characteristic of terrestrial evapotranspiration (ET), one of the key components of the water cycle and energy budget, adhered to by both naturally organized and intensively managed landscapes. We find that ET variance and ET mean for ecosystems throughout the world with diverse climate conditions, vegetation structures, and land covers and land uses organize themselves according to a specific power law curve. From multi-source observations, the ET power law curve stands true through varying spatial scales, from field to region. Moreover, a phenomenon of similar ecosystems gravitating toward particular segments of the power law curve, suggests that the feature of self-optimization of ecosystems establishes the ET power law together with climatic conditions. Perhaps surprisingly, we find that landscapes persistently follow the power law curve even upon human-induced transition from rain-fed to irrigated agriculture in the American High Plains and from wetland to agricultural land in American Midwest. As such, the ET power law can be an informative tool for predicting consequences of anthropogenic disturbances to the hydrologic cycle and understanding constraints to sustainable land use.

  12. In vitro fermentation of alternansucrase raffinose acceptor products by human gut bacteria

    Science.gov (United States)

    In this work, in vitro fermentation of alternansucrase raffinose acceptor products, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10) was carried out using pH-controlled small scale batch cultures at 37ºC under anaerobic conditions with human faeces. Bifidog...

  13. Challenges in simulating the human gut for understanding the role of the microbiota in obesity

    NARCIS (Netherlands)

    Aguirre, M.; Venema, K.

    2017-01-01

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to

  14. Human taurine metabolism: fluxes and fractional extraction rates of the gut, liver, and kidneys

    NARCIS (Netherlands)

    van Stijn, Mireille F. M.; Vermeulen, Mechteld A. R.; Siroen, Michiel P. C.; Wong, Leanne N.; van den Tol, M. Petrousjka; Ligthart-Melis, Gerdien C.; Houdijk, Alexander P. J.; van Leeuwen, Paul A. M.

    2012-01-01

    Taurine is involved in numerous biological processes. However, taurine plasma level decreases in response to pathological conditions, suggesting an increased need. Knowledge on human taurine metabolism is scarce and only described by arterial-venous differences across a single organ. Here we present

  15. Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse

    2006-01-01

    The capability of two bioinsecticide strains of Bacillus thuringiensis (ssp. israelensis and ssp. kurstaki) to germinate and persist in vivo in the gastrointestinal tract of human-flora-associated rats was studied. Rats were dosed either with vegetative cells or spores of the bacteria for 4 conse...

  16. Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance.

    Science.gov (United States)

    Heinsen, Femke-Anouska; Fangmann, Daniela; Müller, Nike; Schulte, Dominik M; Rühlemann, Malte C; Türk, Kathrin; Settgast, Ute; Lieb, Wolfgang; Baines, John F; Schreiber, Stefan; Franke, Andre; Laudes, Matthias

    2016-01-01

    In the present study, we examined the effect of a very low-calorie diet(VLCD)-based obesity program on human gut microbiome diversity and metabolism during weight loss and weight maintenance. Obese subjects underwent 3 months of VLCD followed by 3 months of weight maintenance. A lean and an obese control group were included. The microbiome was characterized by performing high-throughput dual-indexed 16S rDNA amplicon sequencing. At baseline, a significant difference in the Firmicutes/Bacteroidetes ratio between the lean and obese individuals was observed (p = 0.047). The VLCD resulted in significant alterations in gut microbiome diversity from baseline to 3 months (p = 0.0053). Acinetobacter represented an indicator species for the observed effect (indicator value = 0.998, p = 0.006). Metabolic analyses revealed alterations of the bacterial riboflavin pathway from baseline to 3 months (pnom = 0.0078). These changes in diversity and bacterial metabolism induced by VLCD diminished during the weight maintenance phase, despite sustained reductions in body weight and sustained improvements of insulin sensitivity. The present data show that a VLCD is able to beneficially alter both gut microbiome diversity and metabolism in obese humans, but that these changes are not sustained during weight maintenance. This finding might suggest that the microbiome should be targeted during obesity programs. © 2016 The Author(s) Published by S. Karger GmbH, Freiburg.

  17. Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance

    Directory of Open Access Journals (Sweden)

    Femke-Anouska Heinsen

    2016-11-01

    Full Text Available Objective: In the present study, we examined the effect of a very low-calorie diet(VLCD-based obesity program on human gut microbiome diversity and metabolism during weight loss and weight maintenance. Methods: Obese subjects underwent 3 months of VLCD followed by 3 months of weight maintenance. A lean and an obese control group were included. The microbiome was characterized by performing high-throughput dual-indexed 16S rDNA amplicon sequencing. Results: At baseline, a significant difference in the Firmicutes/Bacteroidetes ratio between the lean and obese individuals was observed (p = 0.047. The VLCD resulted in significant alterations in gut microbiome diversity from baseline to 3 months (p = 0.0053. Acinetobacter represented an indicator species for the observed effect (indicator value = 0.998, p = 0.006. Metabolic analyses revealed alterations of the bacterial riboflavin pathway from baseline to 3 months (pnom = 0.0078. These changes in diversity and bacterial metabolism induced by VLCD diminished during the weight maintenance phase, despite sustained reductions in body weight and sustained improvements of insulin sensitivity. Conclusion: The present data show that a VLCD is able to beneficially alter both gut microbiome diversity and metabolism in obese humans, but that these changes are not sustained during weight maintenance. This finding might suggest that the microbiome should be targeted during obesity programs.

  18. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies.

    Science.gov (United States)

    Distrutti, Eleonora; Monaldi, Lorenzo; Ricci, Patrizia; Fiorucci, Stefano

    2016-02-21

    In the last decade the impressive expansion of our knowledge of the vast microbial community that resides in the human intestine, the gut microbiota, has provided support to the concept that a disturbed intestinal ecology might promote development and maintenance of symptoms in irritable bowel syndrome (IBS). As a correlate, manipulation of gut microbiota represents a new strategy for the treatment of this multifactorial disease. A number of attempts have been made to modulate the gut bacterial composition, following the idea that expansion of bacterial species considered as beneficial (Lactobacilli and Bifidobacteria) associated with the reduction of those considered harmful (Clostridium, Escherichia coli, Salmonella, Shigella and Pseudomonas) should attenuate IBS symptoms. In this conceptual framework, probiotics appear an attractive option in terms of both efficacy and safety, while prebiotics, synbiotics and antibiotics still need confirmation. Fecal transplant is an old treatment translated from the cure of intestinal infective pathologies that has recently gained a new life as therapeutic option for those patients with a disturbed gut ecosystem, but data on IBS are scanty and randomized, placebo-controlled studies are required.

  19. Eco-Health Linkages: Assessing the Role of Ecosystem Goods and Services on Human Health Using Causal Criteria Analysis

    Science.gov (United States)

    Objectives In the last decade, we saw an upsurge of studies evaluating the role of ecosystem goods and services (EGS) on human health (Eco-Health). Most of this work consists of observational research of intermediate processes and few address the full pathways from ecosystem to E...

  20. Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making Ecology Letters

    Science.gov (United States)

    The human alteration of the nitrogen (N) cycle has yielded many benefits, but also has altered ecosystems and degraded air and water quality in many areas. Here we explore the science available to connect the effects of increasing N on ecosystem structure and function to ecosyst...

  1. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites

    Science.gov (United States)

    Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams

    2012-01-01

    Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...

  2. Preclinical assessment of the distribution of maraviroc to potential human immunodeficiency virus (HIV) sanctuary sites in the central nervous system (CNS) and gut-associated lymphoid tissue (GALT).

    Science.gov (United States)

    Walker, D K; Bowers, S J; Mitchell, R J; Potchoiba, M J; Schroeder, C M; Small, H F

    2008-10-01

    1. Growing knowledge of the pathogenesis of human immunodeficiency virus (HIV)-1 infection has led to the identification of potential virus sanctuary sites within the central nervous system and gut-associated lymphoid tissue. 2. Maraviroc is a novel CCR5 antagonist for the treatment of HIV-1 infection. Disposition studies have been performed within the preclinical testing of maraviroc to determine its distribution to these anatomical sites. 3. Maraviroc, which is a substrate of the efflux transporter P-glycoprotein, shows limited distribution to the central nervous system as evidenced by cerebrospinal fluid concentrations that were 10% of the free plasma concentration following intravenous infusion to rats. Tissue distribution studies also indicated limited distribution of radioactivity into brain tissue of rats. 4. Radioactivity in gut-associated lymphoid tissue lymph nodes exceeded the concentrations in blood and concentrations in the contents of thoracic ducts of the lymphatic system were similar to blood levels following intravenous administration to rats.

  3. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  4. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  5. Gut luminal endogenous protein: implications for the determination of ileal amino acid digestibility in humans.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M

    2012-08-01

    The true ileal digestibility assay provides the most informative measure of digestibility to assess bioavailability of amino acids in foods for humans. To determine 'true' estimates of ileal amino acid digestibility, requires that endogenous amino acids present in digesta at the terminal ileum be quantified. The amounts of endogenous amino acids in ileal digesta can be determined after feeding an animal or human a protein-free diet (traditional approach) or by various methods after giving a protein-containing diet. When the protein-free method has been applied with adult human subjects an overall mean value (three separate studies) for endogenous ileal nitrogen flow of 800 mg N/d has been reported. This value is considerably lower than a comparable value obtained after feeding protein of 1852 mg N/d (mean of four separate studies), and thus endogenous ileal N and amino acids should be measured under conditions of protein alimentation. There is some confusion concerning the terminology used to define digestibility, with the term "true" digestibility having different adopted meanings. Here, true amino acid digestibility is defined as apparent amino acid digestibility corrected for the basal amino acid losses determined after giving either a protein-free or a protein-containing diet. Basal losses should be determined at a defined dry-matter and protein intake. The protein-free diet approach to determining endogenous amino acids is considered unphysiological and basal losses refer to ileal endogenous amino acid flows associated with digesta dry-matter flow, and not including "specific" effects of dietary factors such as non starch polysaccharides and anti nutritional factors. Arguments are advanced that the enzyme hydrolysed protein/ultra filtration method may be suitable for routine application with a cannulated pig model, to obtain physiologically-valid basal estimates of ileal endogenous amino acids to allow calculation of true ileal amino acid digestibility in the

  6. Closely spaced fibre Bragg grating sensors for detailed measurement of peristalsis in the human gut

    Science.gov (United States)

    Arkwright, John W.; Dinning, Phil G.; Underhill, Ian D.; Maunder, Simon A.; Blenman, Neil; Szczesniak, Michal M.; Cook, Ian J.

    2009-10-01

    We report the design and use of multi-channel fibre Bragg grating based manometry catheters with pressure sensors spaced at 1 cm intervals along its axis. The catheters have been tested in-vivo in both the human oesophagus and colon and have been shown to provide analogous results to commercially available solid state pressure sensors. The advantage of using fibre gratings comes from the ability to extend the number of sensor elements without increasing the diameter or complexity of the catheter or data acquisition system. We present our progress towards the fabrication of a manometry catheter suitable for recording manometric data along the full length of the human colon. Results from early phase equivalence testing and recent in-vivo trials in the human oesophagus and colon are presented. The colonic recordings were taken in basal and post-prandial periods of 2.5 hours each. The close axial spacing of the pressure sensors has identified the complex nature of propagating sequences in the colon in both antegrade (towards the anus) and retrograde (away from the anus) for the first time. By sub-sampling the data using data from sensors 7 cm apart the potential to misrepresent propagating sequences at wider sensor spacings is demonstrated and proposed as a potential reason why correlation between peristaltic abnormalities recorded using traditional catheters, with 7.5-10 cm spaced sensors, and actual patient symptoms remains elusive.

  7. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation

    Science.gov (United States)

    Yuksel, Muhammed; Wang, Yipeng; Tai, Ningwen; Peng, Jian; Guo, Junhua; Beland, Kathie; Lapierre, Pascal; David, Chella; Alvarez, Fernando; Colle, Isabelle; Yan, Huiping; Mieli-Vergani, Giorgina; Vergani, Diego; Ma, Yun; Wen, Li

    2016-01-01

    Background Autoimmune hepatitis (AIH) in humans is a severe inflammatory liver disease, characterized by interface hepatitis, the presence of circulating autoantibodies and hyper-gammaglobulinemia. There are two types of AIH, type-1 (AIH-1) and type-2 (AIH-2) characterized by distinct autoimmune serology. Patients with AIH-1 are positive for anti-smooth muscle and/or anti-nuclear (SMA/ANA) autoantibodies whereas patients with AIH-2 have anti-liver kidney microsomal type 1 (anti-LKM1) and/or anti-liver cytosol type 1 (anti-LC1) autoantibodies. Cytochrome P4502D6 (CYP2D6) is the antigenic target of anti-LKM1 and formiminotransferase cyclodeaminase (FTCD) is the antigenic target of anti-LC1. It is known that AIH, both type-1 and type-2, is strongly linked to the Human Leukocyte Antigen (HLA) alleles -DR3, -DR4 and -DR7. However, the direct evidence of the association of HLA with AIH is lacking. Methods We developed a novel mouse model of AIH using the HLA-DR3 transgenic mouse on the non-obese diabetic (NOD) background (HLA-DR3 NOD) by immunization of HLA-DR3− and HLA-DR3+ NOD mice with a DNA plasmid, coding for human CYP2D6/FTCD fusion protein. Results Immunization with CYP2D6/FTCD leads to a sustained elevation of alanine aminotransferase (ALT), development of ANA and anti-LKM1/anti-LC1 autoantibodies, chronic immune cell infiltration and parenchymal fibrosis on liver histology in HLA-DR3+ mice. Immunized mice also showed an enhanced Th1 immune response and paucity of the frequency of regulatory T-cell (Treg) in the liver. Moreover, HLA-DR3+ mice with exacerbated AIH showed reduced diversity and total load of gut bacteria. Conclusion Our humanized animal model has provided a novel experimental tool to further elucidate the pathogenesis of AIH and to evaluate the efficacy and safety of immunoregulatory therapeutic interventions in vivo. PMID:26185095

  8. Perfluorinated compounds: Levels, trophic web enrichments and human dietary intakes in transitional water ecosystems

    International Nuclear Information System (INIS)

    Renzi, Monia; Guerranti, Cristiana; Giovani, Andrea; Perra, Guido; Focardi, Silvano E.

    2013-01-01

    Highlights: • PFOA/S levels in a trophic web of a heavily human-stressed lagoon are measured. • High levels were found in mussels, clams and crabs. • The principal PFCs inflow sources for the ecosystem is the river. • Biota (i.e. macroalgae proliferation) contributes to redistribute pollutants in the lagoon. • Human daily dietary intakes are below maximum tolerable levels suggested by the EFSA. -- Abstract: The results of a study on levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), analyzed in terms of HPLC-ESI-MS in water, sediment, macrophyte, bivalve, crustacean and fish samples, are reported here. The aim of the research is to define, for the first time, PFOA/S levels in a heavily human-stressed transitional water ecosystem (Orbetello lagoon, Italy) and evaluate trophic web enrichments and human dietary intakes. The results obtained show that: (i) levels significantly higher than those reported in the literature were found in mussels, clams and crabs; (ii) the river is a significant pollution source; (iii) although absolute levels are relatively low, macroalgae proliferation contributes to redistribute pollutants from river-affected areas throughout the entire lagoon basin; (iv) to the best of our current knowledge, water-filtering species considered in this study are the most exposed to PFOA/S pollution; (v) human daily dietary intakes of PFOA/S through Slow Food-endorsed product consumption are below maximum tolerable levels suggested by the EFSA

  9. Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut.

    Science.gov (United States)

    Nueno-Palop, Carmen; Narbad, Arjan

    2011-02-28

    A total of seventy lactic acid bacteria (LAB) were isolated from the faeces of healthy humans and their identities were confirmed by sequencing of their 16S rDNA genes. Of these only 5 isolates were found to resist bile salts and indicated survival in the simulated in vitro digestion assay which reproduces the stomach and intestinal digestion indicating their tolerance to gastric enzymes and the low pH conditions. Species that showed the best resistance to these conditions were: Lactobacillus casei, Lactobacillus sp., uncultured bifidobacteria, Enterococcus faecalis and Streptococcus anginosus. These strains were investigated further to study their capacity to adhere to human intestinal Caco-2 cells. E. faecalis was the most adherent strain. Examination of the virulence determinants for this strain indicated that it was positive for efaAfs, gelE, agg, cpd, cob, ccf and cad, a profile that is similar to that of many E. faecalis isolates from food sources. The cytolysin biosynthetic genes cylA, cylB and cylM that are more associated with the clinical isolates of E. faecium were not detected in this strain. The antibiotic susceptibility tests indicated that the strain was sensitive to vancomycin, tetracycline, rifampicin and erythromycin but resistant only to kanamycin and chloramphenicol. These data suggest that the strain E. faecalis CP58 may be tested further for beneficial properties and developed as a new probiotic. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The Gut Microbial Metabolite Trimethylamine-N-Oxide Is Present in Human Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Daniele Del Rio

    2017-09-01

    Full Text Available Trimethylamine-N-oxide (TMAO is a small organic molecule, derived from the intestinal and hepatic metabolism of dietary choline and carnitine. Although the involvement of TMAO in the framework of many chronic diseases has been recently described, no evidence on its putative role in the central nervous system has been provided. The aim of this study was to evaluate whether TMAO is present at detectable levels in human cerebrospinal fluid (CSF. CSF was collected for diagnostic purposes from 58 subjects by lumbar puncture and TMAO was quantified by using liquid chromatography coupled with multiple-reaction monitoring mass spectrometry. The molecule was detected in all samples, at concentrations ranging between 0.11 and 6.43 µmol/L. Further analysis on CSF revealed that a total of 22 subjects were affected by Alzheimer’s disease (AD, 16 were affected by non-AD related dementia, and 20 were affected by other neurological disorders. However, the stratification of TMAO levels according to the neurological diagnoses revealed no differences among the three groups. In conclusion, we provide the first evidence that TMAO can be assessed in human CSF, but the actual impact of this dietary metabolite in the patho-physiolgy of the central nervous system requires further study.

  11. Dynamics of co-existing Escherichia colilineages in situ of the infant gut and multiplex phenotypic targeted recovery of previously uncultivated bacteria from the human gut

    DEFF Research Database (Denmark)

    Gumpert, Heidi

    The work in this thesis explores the dynamic nature of Escherichia coli lineages co-existing in the human intestinal tract. The work is supported via full genomesequencing of co-existing E. coli strains isolated from infants enrolled in the ALLERGYFLORA study. Both sets of isolates examined here...... were selected due to an observed change in their antibiotic susceptibility profile. Via full genome sequencing, we identified that in both cases a conjugative plasmid harboring antibiotic resistance genes was transferred between co-existing E. coli lineages and is responsible for the change...... in antibiotic susceptibility. In one case, the transfer occurred in the absenceof antibiotic treatment and the transconjugant remained amongst the gut microbiota for months, providing evidence to the hypothesis that resistance genes are stably maintained once acquired. To our knowledge, this is the first...

  12. Urban ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Duvigneaud, P

    1974-01-01

    The author considers the town as an ecosystem. He examines its various subdivisions (climate, soil, structure, human and non-human communities, etc.) for which he chooses examples with particular reference to the city of Brussels.

  13. Fungal Diversity of Human Gut Microbiota Among Eutrophic, Overweight, and Obese Individuals Based on Aerobic Culture-Dependent Approach.

    Science.gov (United States)

    Borges, Francis M; de Paula, Thaís O; Sarmiento, Marjorie R A; de Oliveira, Maycon G; Pereira, Maria L M; Toledo, Isabela V; Nascimento, Thiago C; Ferreira-Machado, Alessandra B; Silva, Vânia L; Diniz, Cláudio G

    2018-06-01

    Fungi have a complex role in the intestinal tract, influencing health and disease, with dysbiosis contributing to obesity. Our objectives were to investigate fungal diversity in human gut microbiota among eutrophic, overweight, and obese. Epidemiological and nutritional information were collected from adult individuals, as well as stool samples processed for selective fungi isolation and identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (yeasts) or microculture (filamentous fungi). Further 18S rDNA sequencing was performed to confirm identification. The mean count of fungi was 241 CFU/g of feces. Differences in the population level of the filamentous fungi were observed within eutrophic and obese groups. Overall, 34 genera were identified. The predominant phylum was Ascomycota with 20 different genera, followed by Basidiomycota and Zygomycota. As for Ascomycota, the most prevalent species were Paecilomyces sp., Penicillium sp., Candida sp., Aspergillus sp., Fonsecaea sp., and Geotrichum sp. (76.39, 65.28, 59.72, 58.33, 12.50, and 9.72%, respectively). As for Basidiomycota, Trichosporon sp. and Rhodotorula sp. were the most prevalent (30.56 and 15.28%, respectively), and for Zygomycota, Rhizopus sp. and Mucor sp. were the most numerous (15.28 and 9.72%, respectively). As expected there is a mycobiota shift towards obesity, with slightly higher diversity associated to eutrophic individuals. This mycobiota shift seems also to be related to the nutritional behavior of the individuals, as observed that the macronutrients intake may be positively related to the different fungi occurrences. Other studies are needed to better understand relationships between mycobiota and obesity, which could be used in future obesity treatments.

  14. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  15. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.

    Science.gov (United States)

    Ruiz-Moyano, Santiago; Totten, Sarah M; Garrido, Daniel A; Smilowitz, Jennifer T; German, J Bruce; Lebrilla, Carlito B; Mills, David A

    2013-10-01

    Human milk contains a high concentration of complex oligosaccharides that influence the composition of the intestinal microbiota in breast-fed infants. Previous studies have indicated that select species such as Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum can utilize human milk oligosaccharides (HMO) in vitro as the sole carbon source, while the relatively few B. longum subsp. longum and Bifidobacterium breve isolates tested appear less adapted to these substrates. Considering the high frequency at which B. breve is isolated from breast-fed infant feces, we postulated that some B. breve strains can more vigorously consume HMO and thus are enriched in the breast-fed infant gastrointestinal tract. To examine this, a number of B. breve isolates from breast-fed infant feces were characterized for the presence of different glycosyl hydrolases that participate in HMO utilization, as well as by their ability to grow on HMO or specific HMO species such as lacto-N-tetraose (LNT) and fucosyllactose. All B. breve strains showed high levels of growth on LNT and lacto-N-neotetraose (LNnT), and, in general, growth on total HMO was moderate for most of the strains, with several strain differences. Growth and consumption of fucosylated HMO were strain dependent, mostly in isolates possessing a glycosyl hydrolase family 29 α-fucosidase. Glycoprofiling of the spent supernatant after HMO fermentation by select strains revealed that all B. breve strains can utilize sialylated HMO to a certain extent, especially sialyl-lacto-N-tetraose. Interestingly, this specific oligosaccharide was depleted before neutral LNT by strain SC95. In aggregate, this work indicates that the HMO consumption phenotype in B. breve is variable; however, some strains display specific adaptations to these substrates, enabling more vigorous consumption of fucosylated and sialylated HMO. These results provide a rationale for the predominance of this species in breast-fed infant feces and

  16. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  17. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  18. A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Li

    Full Text Available Aberrant interactions between the host and the intestinal bacteria are thought to contribute to the pathogenesis of many digestive diseases. However, studying the complex ecosystem at the human mucosal-luminal interface (MLI is challenging and requires an integrative systems biology approach. Therefore, we developed a novel method integrating lavage sampling of the human mucosal surface, high-throughput proteomics, and a unique suite of bioinformatic and statistical analyses. Shotgun proteomic analysis of secreted proteins recovered from the MLI confirmed the presence of both human and bacterial components. To profile the MLI metaproteome, we collected 205 mucosal lavage samples from 38 healthy subjects, and subjected them to high-throughput proteomics. The spectral data were subjected to a rigorous data processing pipeline to optimize suitability for quantitation and analysis, and then were evaluated using a set of biostatistical tools. Compared to the mucosal transcriptome, the MLI metaproteome was enriched for extracellular proteins involved in response to stimulus and immune system processes. Analysis of the metaproteome revealed significant individual-related as well as anatomic region-related (biogeographic features. Quantitative shotgun proteomics established the identity and confirmed the biogeographic association of 49 proteins (including 3 functional protein networks demarcating the proximal and distal colon. This robust and integrated proteomic approach is thus effective for identifying functional features of the human mucosal ecosystem, and a fresh understanding of the basic biology and disease processes at the MLI.

  19. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    Science.gov (United States)

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  20. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  1. Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy.

    Directory of Open Access Journals (Sweden)

    Marion Dalmasso

    Full Text Available With the emergence of multi-drug resistant bacteria the use of bacteriophages (phages is gaining renewed interest as promising anti-microbial agents. The aim of this study was to isolate and characterize phages from human fecal samples. Three new coliphages, ɸAPCEc01, ɸAPCEc02 and ɸAPCEc03, were isolated. Their phenotypic and genomic characteristics, and lytic activity against biofilm, and in combination with ciprofloxacin, were investigated. All three phages reduced the growth of E. coli strain DPC6051 at multiplicity of infection (MOI between 10-3 and 105. A cocktail of all three phages completely inhibited the growth of E. coli. The phage cocktail also reduced biofilm formation and prevented the emergence of phage-resistant mutants which occurred with single phage. When combined with ciprofloxacin, phage alone or in cocktail inhibited the growth of E. coli and prevented the emergence of resistant mutants. These three new phages are promising biocontrol agents for E. coli infections.

  2. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    The establishment of the human gut microbiota in early life has been associated with later health and disease. During the 1st months after birth, the microbial composition in the gut is known to be affected by the mode of delivery, use of antibiotics, geographical location and type of feeding...... of this window is currently debated, but it likely coincides with the complementary feeding period, marking the gradual transition from milk- based infant feeding to family diet usually occurring between 6 and 24 months. Furthermore, the 'first 1000 days,' i.e., the period from conception until age 2 years...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential...

  3. Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls.

    Science.gov (United States)

    Mangericao, Tatiana C; Peng, Zhanhao; Zhang, Xuegong

    2016-01-11

    CRISPR has been becoming a hot topic as a powerful technique for genome editing for human and other higher organisms. The original CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats coupled with CRISPR-associated proteins) is an important adaptive defence system for prokaryotes that provides resistance against invading elements such as viruses and plasmids. A CRISPR cassette contains short nucleotide sequences called spacers. These unique regions retain a history of the interactions between prokaryotes and their invaders in individual strains and ecosystems. One important ecosystem in the human body is the human gut, a rich habitat populated by a great diversity of microorganisms. Gut microbiomes are important for human physiology and health. Metagenome sequencing has been widely applied for studying the gut microbiomes. Most efforts in metagenome study has been focused on profiling taxa compositions and gene catalogues and identifying their associations with human health. Less attention has been paid to the analysis of the ecosystems of microbiomes themselves especially their CRISPR composition. We conducted a preliminary analysis of CRISPR sequences in a human gut metagenomic data set of Chinese individuals of type-2 diabetes patients and healthy controls. Applying an available CRISPR-identification algorithm, PILER-CR, we identified 3169 CRISPR cassettes in the data, from which we constructed a set of 1302 unique repeat sequences and 36,709 spacers. A more extensive analysis was made for the CRISPR repeats: these repeats were submitted to a more comprehensive clustering and classification using the web server tool CRISPRmap. All repeats were compared with known CRISPRs in the database CRISPRdb. A total of 784 repeats had matches in the database, and the remaining 518 repeats from our set are potentially novel ones. The computational analysis of CRISPR composition based contigs of metagenome sequencing data is feasible. It provides an efficient

  4. An ecosystem approach to human health and the prevention of cutaneous leishmaniasis in Tumaco, Colombia

    Directory of Open Access Journals (Sweden)

    Rojas Carlos A.

    2001-01-01

    Full Text Available A study was conducted during 1996-1997 in 20 villages of Tumaco, Colombia, to evaluate the effectiveness of personal protective measures against cutaneous leishmaniasis (CL. The intervention was effective, but the high costs of the preventive measures and the lack of a more holistic approach hampered the intervention's sustainability. This paper analyzes the results using an ecosystem approach to human health. Using this approach, we found that CL has been present in the study area for a long time and affects farmers and those living closest to the forest. The forest constitutes the habitat for insect vectors (sandflies and parasite reservoirs (wild mammals. Four spatial scales were identified in this ecosystem: residential, village, regional, and global. From the ecosystem perspective, three interventions are proposed to prevent CL in the 20 villages: improve housing construction, organize village housing in clusters, and make diagnosis and treatment of CL more accessible. The design and implementation of these interventions require active involvement by people with the disease (village inhabitants and decision-makers (local authorities.

  5. Concerning human well-being and ecosystems sustainability on water resources management for Qishan River

    Science.gov (United States)

    Wang, C. Y.; Ho, C. C.; Chang, L. C.

    2016-12-01

    There are no large hydraulic structures in Qishan River cause the less human interference than other major river in Taiwan. However, the aquatic habitats still suffer disturbance from the discharge changes greatly between wet and drought season, and Jiaxian Weir and Yuemei Weir draw surplus water from Qishan River to Nanhua Reservoir and Agongdian Reservoir respectively. The weir operation rule doesn't clear define how much environmental flow should be preserved for maintaining downstream ecological environment. Hence, the study proposes a process for evaluating environmental flow under considering impact on human well-being and ecosystems sustainability. Empirical formula, hydrological, hydraulic and habitat methodologies were used to propose the environmental flow alternatives. Next, water allocation model and Habitat model were used to analysis the impact of environment flow alternatives on human well-being and ecosystems sustainability. The results show the suggested environmental flow in Qishan River is estimated by MAF10%. The environmental flow is between 8.03 10.83 cms during wet season and is between 1.07 1.44cms during wet season. The simulation results also provide the evidence from diverse aspect to help different authorities realized what they get and lose. The information can advance to reach a consensus during negotiations with different authorities and help decision maker make decisions.

  6. Effect of almond and pistachio consumption on gut microbiota composition in a randomized cross-over human feeding study

    DEFF Research Database (Denmark)

    Ukhanova, M; Wang, X; Baer, D J

    2014-01-01

    for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various...

  7. Transfer of radionuclides by terrestrial food products from semi-natural ecosystems to humans

    International Nuclear Information System (INIS)

    Howard, B.J.

    1996-01-01

    The potential radiological significance of radionuclide transfer to humans via foodstuffs derived from semi-natural ecosystems has become apparent since the Chernobyl accident. Foodchain models developed before this time usually did not take such transfers into account. The processes leading to contamination of food in these environments are complex and current understanding of the transfer mechanisms is incomplete. For these reasons the approach adopted in Chapter 3 is to represent, by means of aggregated parameters, the empirical relationships between ground deposits and concentration in the food product. 107 refs, 2 figs, 9 tabs

  8. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase.

    Directory of Open Access Journals (Sweden)

    Eamonn P Culligan

    Full Text Available The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.

  9. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    Science.gov (United States)

    Lupisella, M. L.

    2000-07-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  10. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria.

    Science.gov (United States)

    Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M

    2018-05-15

    Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In

  11. Indium-labelled human gut-derived T cells from healthy subjects with strong in vitro adhesion to MAdCAM-1 show no detectable homing to the gut in vivo

    DEFF Research Database (Denmark)

    Rømer, Johanne Lade

    2004-01-01

    Integrin alpha4beta 7 is the principal gut-homing receptor, and it is assumed that expression of this specific integrin directs lymphocytes to the gut in vivo. Adoptive cellular immunotherapy against inflammatory bowel disease (IBD) may depend on the expression of integrin alpha4beta 7...

  12. Assemblage structure: an overlooked component of human-mediated species movements among freshwater ecosystems

    Directory of Open Access Journals (Sweden)

    D. Andrew R. Drake

    2014-04-01

    Full Text Available The spread and impact of alien species among freshwater ecosystems has increased with global trade and human movement; therefore, quantifying the role of anthropogenic and ecological factors that increase the risk of invasion is an important conservation goal. Two factors considered as null models when assessing the potential for invasion are colonization pressure (i.e., the number of species introduced and propagule pressure [i.e., the number (propagule size, and frequency (propagule number, of individuals of each species introduced]. We translate the terminology of species abundance distributions to the invasion terminology of propagule size and colonization size (PS and CS, respectively. We conduct hypothesis testing to determine the underlying statistical species abundance distribution for zooplankton assemblages transported between freshwater ecosystems; and, on the basis of a lognormal distribution, construct four hypothetical assemblages spanning assemblage structure, rank-abundance gradient (e.g., even vs uneven, total abundance (of all species combined, and relative contribution of PS vs CS. For a given CS, many combinations of PS and total abundance can occur when transported assemblages conform to a lognormal species abundance distribution; therefore, for a given transportation event, many combinations of CS and PS are possible with potentially different ecological outcomes. An assemblage exhibiting high PS but low CS (species poor, but highly abundant may overcome demographic barriers to establishment, but with lower certainty of amenable environmental conditions in the recipient region; whereas, the opposite extreme, high CS and low PS (species rich, but low abundance per species may provide multiple opportunities for one of n arriving species to circumvent environmental barriers, albeit with lower potential to overcome demographic constraints. Species abundance distributions and the corresponding influence of CS and PS are some of

  13. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse.

    Science.gov (United States)

    MacDougall, A S; McCann, K S; Gellner, G; Turkington, R

    2013-02-07

    Long-term and persistent human disturbances have simultaneously altered the stability and diversity of ecological systems, with disturbances directly reducing functional attributes such as invasion resistance, while eliminating the buffering effects of high species diversity. Theory predicts that this combination of environmental change and diversity loss increases the risk of abrupt and potentially irreversible ecosystem collapse, but long-term empirical evidence from natural systems is lacking. Here we demonstrate this relationship in a degraded but species-rich pyrogenic grassland in which the combined effects of fire suppression, invasion and trophic collapse have created a species-poor grassland that is highly productive, resilient to yearly climatic fluctuations, and resistant to invasion, but vulnerable to rapid collapse after the re-introduction of fire. We initially show how human disturbance has created a negative relationship between diversity and function, contrary to theoretical predictions. Fire prevention since the mid-nineteenth century is associated with the loss of plant species but it has stabilized high-yield annual production and invasion resistance, comparable to a managed high-yield low-diversity agricultural system. In managing for fire suppression, however, a hidden vulnerability to sudden environmental change emerges that is explained by the elimination of the buffering effects of high species diversity. With the re-introduction of fire, grasslands only persist in areas with remnant concentrations of native species, in which a range of rare and mostly functionally redundant plants proliferate after burning and prevent extensive invasion including a rapid conversion towards woodland. This research shows how biodiversity can be crucial for ecosystem stability despite appearing functionally insignificant beforehand, a relationship probably applicable to many ecosystems given the globally prevalent combination of intensive long-term land

  14. Incorporating Ecosystem Processes Controlling Carbon Balance Into Models of Coupled Human-Natural Systems

    Science.gov (United States)

    Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.

    2012-12-01

    A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also

  15. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome.

    Directory of Open Access Journals (Sweden)

    Nathan P McNulty

    Full Text Available The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These

  16. Diversity of key players in the microbial ecosystems of the human body.

    Science.gov (United States)

    Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado

    2015-10-30

    Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different.

  17. Correlating the Gut Microbiome to Health and Disease

    NARCIS (Netherlands)

    Marques, T.M.; Holster, S.; Wall, R.; König, J.; Brummer, R.J.; Vos, de Willem

    2016-01-01

    The gut microbiota is a complex ecosystem consisting of a diverse population of prokaryotes that has a symbiotic relationship with its host; thus it plays a vital role for the host's health. Our understanding of the effect of the gut microbiome in health and disease has grown substantially over

  18. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  19. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  20. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  1. A catalog of the mouse gut metagenome

    DEFF Research Database (Denmark)

    Xiao, Liang; Feng, Qiang; Liang, Suisha

    2015-01-01

    laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human......We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing...... counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies....

  2. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502