WorldWideScience

Sample records for human goal-directed cognition

  1. Do domestic dogs understand human actions as goal-directed?

    Directory of Open Access Journals (Sweden)

    Sarah Marshall-Pescini

    Full Text Available Understanding of other's actions as goal-directed is considered a fundamental ability underlying cognitive and social development in human infants. A number of studies using the habituation-dishabituation paradigm have shown that the ability to discern intentional relations, in terms of goal-directedness of an action towards an object, appears around 5 months of age. The question of whether non-human species can perceive other's actions as goal-directed has been more controversial, however there is mounting evidence that at least some primates species do. Recently domestic dogs have been shown to be particularly sensitive to human communicative cues and more so in cooperative and intentional contexts. Furthermore, they have been shown to imitate selectively. Taken together these results suggest that dogs may perceive others' actions as goal-directed, however no study has investigated this issue directly. In the current study, adopting an infant habituation-dishabituation paradigm, we investigated whether dogs attribute intentions to an animate (a human but not an inanimate (a black box agent interacting with an object. Following an habituation phase in which the agent interacted always with one of two objects, two sets of 3 trials were presented: new side trials (in which the agent interacted with the same object as in the habituation trial but placed in a novel location and new goal trials (in which the agent interacted with the other object placed in the old location. Dogs showed a similar pattern of response to that shown in infants, looking longer in the new goal than new side trials when they saw the human agent interact with the object. No such difference emerging with the inanimate agent (the black box. Results provide the first evidence that a non-primate species can perceive another individual's actions as goal-directed. We discuss results in terms of the prevailing mentalisitic and non-mentalistic hypotheses regarding goal-attribution.

  2. Emotion and goal-directed behavior: ERP evidence on cognitive and emotional conflict

    OpenAIRE

    Zinchenko, Artyom; Kanske, Philipp; Obermeier, Christian; Schröger, Erich; Kotz, Sonja A.

    2015-01-01

    Cognitive control supports goal-directed behavior by resolving conflict among opposing action tendencies. Emotion can trigger cognitive control processes, thus speeding up conflict processing when the target dimension of stimuli is emotional. However, it is unclear what role emotionality of the target dimension plays in the processing of emotional conflict (e.g. in irony). In two EEG experiments, we compared the influence of emotional valence of the target (emotional, neutral) in cognitive an...

  3. Emotion and goal-directed behavior: ERP evidence on cognitive and emotional conflict.

    Science.gov (United States)

    Zinchenko, Artyom; Kanske, Philipp; Obermeier, Christian; Schröger, Erich; Kotz, Sonja A

    2015-11-01

    Cognitive control supports goal-directed behavior by resolving conflict among opposing action tendencies. Emotion can trigger cognitive control processes, thus speeding up conflict processing when the target dimension of stimuli is emotional. However, it is unclear what role emotionality of the target dimension plays in the processing of emotional conflict (e.g. in irony). In two EEG experiments, we compared the influence of emotional valence of the target (emotional, neutral) in cognitive and emotional conflict processing. To maximally approximate real-life communication, we used audiovisual stimuli. Participants either categorized spoken vowels (cognitive conflict) or their emotional valence (emotional conflict), while visual information was congruent or incongruent. Emotional target dimension facilitated both cognitive and emotional conflict processing, as shown in a reduced reaction time conflict effect. In contrast, the N100 in the event-related potentials showed a conflict-specific reversal: the conflict effect was larger for emotional compared with neutral trials in cognitive conflict and smaller in emotional conflict. Additionally, domain-general conflict effects were observed in the P200 and N200 responses. The current findings confirm that emotions have a strong influence on cognitive and emotional conflict processing. They also highlight the complexity and heterogeneity of the interaction of emotion with different types of conflict. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Reductions in Goal-Directed Cognition as a Consequence of Being the Target of Empathy.

    Science.gov (United States)

    Vorauer, Jacquie D; Quesnel, Matthew; St Germain, Sara L

    2016-01-01

    Although empathy is widely promoted as a beneficial practice across both intergroup and interpersonal contexts, the implications of being the target of empathy for the target's own psychological state are unclear. Three experiments examined how being the target of empathy affects goal-directed cognition outcomes related to a psychological sense of power, namely, the ability to maintain goal focus and readiness to ask for more in negotiations. We reasoned that because individuals typically empathize with others they perceive as disadvantaged and needing support, trying to empathize would raise individuals up in terms of such outcomes at the same time as it pushed the targets of their empathy down in a complementary fashion. Results were consistent with these predictions across intergroup and intragroup interaction. The findings thus suggest that individuals' efforts to empathize can undermine the targets of their empathy in a subtle manner by hindering their ability to pursue their goals. © 2015 by the Society for Personality and Social Psychology, Inc.

  5. Frontoparietal representations of task context support the flexible control of goal-directed cognition.

    Science.gov (United States)

    Waskom, Michael L; Kumaran, Dharshan; Gordon, Alan M; Rissman, Jesse; Wagner, Anthony D

    2014-08-06

    Cognitive control allows stimulus-response processing to be aligned with internal goals and is thus central to intelligent, purposeful behavior. Control is thought to depend in part on the active representation of task information in prefrontal cortex (PFC), which provides a source of contextual bias on perception, decision making, and action. In the present study, we investigated the organization, influences, and consequences of context representation as human subjects performed a cued sorting task that required them to flexibly judge the relationship between pairs of multivalent stimuli. Using a connectivity-based parcellation of PFC and multivariate decoding analyses, we determined that context is specifically and transiently represented in a region spanning the inferior frontal sulcus during context-dependent decision making. We also found strong evidence that decision context is represented within the intraparietal sulcus, an area previously shown to be functionally networked with the inferior frontal sulcus at rest and during task performance. Rule-guided allocation of attention to different stimulus dimensions produced discriminable patterns of activation in visual cortex, providing a signature of top-down bias over perception. Furthermore, demands on cognitive control arising from the task structure modulated context representation, which was found to be strongest after a shift in task rules. When context representation in frontoparietal areas increased in strength, as measured by the discriminability of high-dimensional activation patterns, the bias on attended stimulus features was enhanced. These results provide novel evidence that illuminates the mechanisms by which humans flexibly guide behavior in complex environments. Copyright © 2014 the authors 0270-6474/14/3410743-13$15.00/0.

  6. Goal-directed memory: the role of cognitive control in older adults' emotional memory.

    Science.gov (United States)

    Mather, Mara; Knight, Marisa

    2005-12-01

    The present study revealed that older adults recruit cognitive control processes to strengthen positive and diminish negative information in memory. In Experiment 1, older adults engaged in more elaborative processing when retrieving positive memories than they did when retrieving negative memories. In Experiment 2, older adults who did well on tasks involving cognitive control were more likely than those doing poorly to favor positive pictures in memory. In Experiment 3, older adults who were distracted during memory encoding no longer favored positive over negative pictures in their later recall, revealing that older adults use cognitive resources to implement emotional goals during encoding. In contrast, younger adults showed no signs of using cognitive control to make their memories more positive, indicating that, for them, emotion regulation goals are not chronically activated.

  7. Impairments in goal-directed actions predict treatment response to cognitive-behavioral therapy in social anxiety disorder.

    Directory of Open Access Journals (Sweden)

    Gail A Alvares

    Full Text Available Social anxiety disorder is characterized by excessive fear and habitual avoidance of social situations. Decision-making models suggest that patients with anxiety disorders may fail to exhibit goal-directed control over actions. We therefore investigated whether such biases may also be associated with social anxiety and to examine the relationship between such behavior with outcomes from cognitive-behavioral therapy. Patients diagnosed with social anxiety and controls completed an instrumental learning task in which two actions were performed to earn food outcomes. After outcome devaluation, where one outcome was consumed to satiety, participants were re-tested in extinction. Results indicated that, as expected, controls were goal-directed, selectively reducing responding on the action that previously delivered the devalued outcome. Patients with social anxiety, however, exhibited no difference in responding on either action. This loss of a devaluation effect was associated with greater symptom severity and poorer response to therapy. These findings indicate that variations in goal-directed control in social anxiety may represent both a behavioral endophenotype and may be used to predict individuals who will respond to learning-based therapies.

  8. Effects of experimental pain on jaw muscle activity during goal-directed jaw movements in humans.

    Science.gov (United States)

    Sae-Lee, Daraporn; Whittle, Terry; Forte, Anna R C; Peck, Christopher C; Byth, Karen; Sessle, Barry J; Murray, Greg M

    2008-08-01

    To study the effects of masseter muscle pain on jaw muscle electromyographic (EMG) activity during goal-directed tasks. Mandibular movement was tracked and EMG activity was recorded from bilateral masseter, and right posterior temporalis, anterior digastric, and inferior head of lateral pterygoid muscles in 22 asymptomatic subjects at postural jaw position, and during three tasks: (a) protrusion, (b) contralateral (left), (c) open jaw movement. Tasks were performed during three conditions: control (no infusion), test 1 [continuous infusion into right masseter of 4.5% hypertonic saline to achieve 30-60 mm pain intensity on 100-mm visual analog scale (VAS)], and test 2 (isotonic saline infusion; in 16 subjects only); the sequence of hypertonic and isotonic saline was randomized. The average EMG root-mean-square values at 0.5 mm increments of mid-incisor-point displacement were analysed using linear mixed effects model statistics (significance: P jaw displacement. Hypertonic saline infusion had no significant effect on postural EMG activity in any of the recorded jaw muscles. The data suggest that under constrained goal-directed tasks, the pattern of pain-induced changes in jaw muscle EMG activity is not clear cut, but can vary with the task performed, jaw displacement magnitude, and the subject being studied.

  9. The time course for kinetic versus kinematic planning of goal-directed human motor behavior.

    Science.gov (United States)

    Vesia, Michael; Vander, Helena; Yan, Xiaogang; Sergio, Lauren E

    2005-01-01

    The present psychophysical study compares motor planning during goal-directed reaching movements and isometric spatial force generation. Our objective is to characterize the extent to which the motor system accounts for the biomechanical details of an impending reach. One issue that the nervous system must take into account when transforming a spatial sensory signal into an intrinsic pattern of joint torques is that of limb dynamics, including intersegmental dynamics and inertial anisotropy of the arm. These will act to displace the hand away from a straight path to an object. In theory, if the nervous system accounts for movement-related limb dynamics prior to its initial motor output, early force direction for a movement will differ from an isometric force to the same spatial target. Alternatively, biomechanical details of motor behavior may be implemented into the motor act following its initiation. Limb position and force output at the wrist were recorded while subjects displaced a cursor to targets viewed on a computer monitor. To generate isometric forces, a magnetic brake held a mechanical linkage supporting the arm in place. Subjects were cued to displace the cursor by using either isometric force or limb movement. On random trials, a movement was cued but an isometric force was unexpectedly required. Results show that there is not a significant directional difference in the initial force trajectory when planning a movement versus planning an isometric force. These findings suggest that the motor system may initially use a coarse approximation of movement-related limb dynamics, allowing for the refinement of the motor plan as the movement unfolds.

  10. Modeling Goal-Directed User Exploration in Human-Computer Interaction

    Science.gov (United States)

    2011-02-01

    is implemented as a LISP program outside the confines of a cognitive architecture. The normalization assumption is implemented by simply normalizing...invoke a LISP function to compute the infoscent of the link with respect to the goal. The LISP function will then update the utilities of the three...competing productions (see Section 4.2.1.1) based on the link’s infoscent. This LISP function is an example of a black-box implementation of the

  11. Goal directed worry rules are associated with distinct patterns of amygdala functional connectivity and vagal modulation during perseverative cognition

    Directory of Open Access Journals (Sweden)

    Frances Meeten

    2016-11-01

    Full Text Available Excessive and uncontrollable worry is a defining feature of Generalized Anxiety Disorder. An important endeavor in the treatment of pathological worry is to understand why some people are unable to stop worrying once they have started. Worry perseveration is associated with a tendency to deploy goal-directed worry rules (known as ‘as many as can’ worry rules; AMA. These require attention to the goal of the worry task and continuation of worry until the aims of the ‘worry bout’ are achieved. This study examined the association between the tendency to use AMA worry rules and neural and autonomic responses to a perseverative cognition induction. To differentiate processes underlying AMA worry rule use from trait worry, we also examined the relationship between scores on the Penn State Worry Questionnaire and neural and autonomic responses following the same induction. We used resting-state functional magnetic resonance brain imaging while measuring emotional bodily arousal from heart rate variability (where decreased HRV indicates stress-related parasympathetic withdrawal in 19 patients with GAD and 21 control participants. Seed-based analyses were conducted to quantify brain changes in functional connectivity with the amygdala. The tendency to adopt an AMA worry rule was associated with validated measures of worry, anxiety, depression, and rumination. AMA worry rule endorsement predicted a stronger decrease in HRV and was positively associated with increased connectivity between right amygdala and locus coeruleus, a brainstem noradrenergic projection nucleus. Higher AMA scores were also associated with increased connectivity between amygdala and rostral superior frontal gyrus. Higher PSWQ scores amplified decreases in functional connectivity between right amygdala and subcallosal cortex, bilateral inferior frontal gyrus, middle frontal gyrus, and areas of parietal cortex. Our results identify neural mechanisms underlying the deployment of

  12. Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans

    NARCIS (Netherlands)

    de Wit, S.; Corlett, P.R.; Aitken, M.R.; Dickinson, A.; Fletcher, P.C.

    2009-01-01

    According to dual-system accounts, instrumental learning is supported by both a goal-directed and a habitual system. Although behavioral control by the goal-directed system, through outcome-action associations, dominates with moderate training, stimulus-response associations are thought to form conc

  13. Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze.

    Science.gov (United States)

    Cornwell, Brian R; Johnson, Linda L; Holroyd, Tom; Carver, Frederick W; Grillon, Christian

    2008-06-04

    The hippocampus and parahippocampal cortices exhibit theta oscillations during spatial navigation in animals and humans, and in the former are thought to mediate spatial memory formation. Functional specificity of human hippocampal theta, however, is unclear. Neuromagnetic activity was recorded with a whole-head 275-channel magnetoencephalographic (MEG) system as healthy participants navigated to a hidden platform in a virtual reality Morris water maze. MEG data were analyzed for underlying oscillatory sources in the 4-8 Hz band using a spatial filtering technique (i.e., synthetic aperture magnetometry). Source analyses revealed greater theta activity in the left anterior hippocampus and parahippocampal cortices during goal-directed navigation relative to aimless movements in a sensorimotor control condition. Additional analyses showed that left anterior hippocampal activity was predominantly observed during the first one-half of training, pointing to a role for this region in early learning. Moreover, posterior hippocampal theta was highly correlated with navigation performance, with the former accounting for 76% of the variance of the latter. Our findings suggest human spatial learning is dependent on hippocampal and parahippocampal theta oscillations, extending to humans a significant body of research demonstrating such a pivotal role for hippocampal theta in animal navigation.

  14. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Oliver Alan Kannape

    Full Text Available The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants. We measured walking kinematics (joint-angles, velocity profiles and motor performance (end-point-compensation, trajectory-deviations. Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  15. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Science.gov (United States)

    Kannape, Oliver Alan; Barré, Arnaud; Aminian, Kamiar; Blanke, Olaf

    2014-01-01

    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  16. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions.

    Science.gov (United States)

    Vesia, Michael; Barnett-Cowan, Michael; Elahi, Behzad; Jegatheeswaran, Gaayathiri; Isayama, Reina; Neva, Jason L; Davare, Marco; Staines, W Richard; Culham, Jody C; Chen, Robert

    2017-07-01

    According to one influential view, two specialized parieto-frontal circuits control prehension: a dorsomedial stream for hand transport during reaching and a dorsolateral stream for preshaping the fingers during grasping. However, recent evidence argues that an area within the dorsomedial stream-macaque area V6A and, its putative human homolog, superior parietal occipital cortex (SPOC) - encodes both hand transport and grip formation. We tested whether planning varied hand actions modulates functional connectivity between left SPOC and ipsilateral primary motor cortex (M1) using a dual-site, paired-pulse transcranial magnetic stimulation paradigm with two coils (dsTMS). Participants performed three different hand actions to a target object comprising a small cylinder atop a larger cylinder. These actions were: reaching-to-grasp the top (GT) using a precision grip, reaching-to-grasp the bottom (GB) using a whole-hand grip, or reaching-to-touch (Touch) the side of the target object without forming a grip. Motor-evoked potentials (MEPs) from TMS to M1, with or without preceding TMS to SPOC, were recorded from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) hand muscles in two experiments that varied timing parameters (the stimulus onset asynchrony, SOA, between the 'GO' cue and stimulation and interpulse interval, IPI, between SPOC and M1 stimulation). We found that preparatory response amplitudes in the SPOC-M1 circuit of different hand muscles were selectively modulated early in the motor plan for different types of grasps. First, based on SPOC-M1 interactions, across two experiments, the role of the ADM was facilitated during a whole-hand grasp of a large object (GB) relative to other conditions under certain timing parameters (SOA = 150 msec; IPI = 6 msec). Second, the role of the FDI was facilitated during hand action planning compared to rest. These findings suggest that the human dorsomedial parieto-motor stream plays a causal role in

  17. INFORMATIONAL CONSTRAINTS-DRIVEN ORGANIZATION IN GOAL-DIRECTED BEHAVIOR

    OpenAIRE

    SANDER G. VAN DIJK; DANIEL POLANI

    2013-01-01

    We study goal-directed behavior in the light of informationally constrained cognition. In a formal information-theoretical model, based on a description of goal-directed behavior as a family of Markov Decision Processes, we study lower bounds of constraints on the information about a goal needed to generate behavior that achieves such a goal at a certain level of optimality. We assume a working memory that operates on this minimally relevant goal information and study the necessary dynamics o...

  18. Neuroimaging of goal-directed behavior in midlife women.

    Science.gov (United States)

    Bosak, Kelly; Martin, Laura

    2014-01-01

    Motivational interventions to improve health behaviors based on conventional cognitive and behavioral theories have been extensively studied; however, advances in neuroimaging technology make it possible to assess the neurophysiological basis of health behaviors, such as physical activity. The goals of this approach are to support new interventions to achieve optimal outcomes. This study used functional magnetic resonance imaging (fMRI) to assess differences in brain responses in healthy weight to obese midlife women during a goal-directed decision task. Thirty nondiabetic, midlife (age 47-55 years) women with body mass index (BMI) ranging from 18.5 to 40 kg/m were recruited. A descriptive, correlational design was used to assess the relationship between brain activations and weight status. Participants underwent a goal-directed behavior task in the fMRI scanner consisting of a learning and implementation phase. The task was designed to assess both goal-directed and habitual behaviors. One participant was omitted from the analysis because of excessive motion (>4 mm), and six were omitted because of fewer than 50% correct responses on the exit survey. Four participants developed claustrophobia in the scanner and were disqualified from further participation. The remaining 19 participants were included in the final analysis. Brain responses while participants learned goal-directed behavior showed a positive correlation with BMI in the dorsomedial prefrontal cortex (dmPFC) and a negative correlation with BMI in the insula. During the implementation of goal-directed behavior, brain responses in the dorsolateral prefrontal cortex (dlPFC) negatively correlated with BMI. These results indicate that overweight women activate regions associated with cognitive control to a greater degree than healthy weight women during goal-directed learning. The brain regions activated (dmPFC, dlPFC, insula) are associated with cognitive control and self-regulation. On the other hand

  19. Children's Memory for Goal-Directed Events.

    Science.gov (United States)

    Levorato, M. Chiara

    1991-01-01

    Investigates whether children's representations of the linguistic description of a goal-directed event was similar to their representation of the same event observed visually. Finds that mode of presentation did not affect the recall of most important actions, but that verbal description led to recall characterized by greater cohesion than visual…

  20. By force of habit: On the formation and maintenance of goal-directed habits

    NARCIS (Netherlands)

    Danner, U.N.

    2007-01-01

    The aim of this thesis was to examine how goal-directed habits are formed and established. Specifically, the focus was on the cognitive mechanism underlying habits and the role of habits in guiding goal-directed behavior. In daily life we perform all kinds of behaviors to attain specific goals in

  1. By force of habit: On the formation and maintenance of goal-directed habits

    NARCIS (Netherlands)

    Danner, U.N.

    2007-01-01

    The aim of this thesis was to examine how goal-directed habits are formed and established. Specifically, the focus was on the cognitive mechanism underlying habits and the role of habits in guiding goal-directed behavior. In daily life we perform all kinds of behaviors to attain specific goals in ab

  2. EARLY GOAL DIRECTED THERAPY AT SEPTIC SYOK

    Directory of Open Access Journals (Sweden)

    Ayu Widyanti

    2013-04-01

    Full Text Available Sepsis is the most commom cause of death in children with critically ill. Using WHO criteria (severe sepsis defined as sepsis with acidosis, hypotension or both, it was determined that in 1995 there were more than 42.000 cases of severe sepsis in children in the United States with mortality rate was 10.3%. To answer that finding, evicende based protocol was made, it called early goal directed therapy (EGDT. EGDT is a comprehensive strategy to evaluate patient with septic shock include, challenge of fluid, antibiotic, vasopressor, measurement of central vein oxygen saturation, PRC transfusion, administering inotropic dan mechanic ventilation. All of these must be done in the first 6 hours since sepsis or septic shock was found, because if there is a delay of resuscitation, anything we do to increase oxygenation level of the cell will be useless.

  3. Goal-directed learning and obsessive-compulsive disorder.

    Science.gov (United States)

    Gillan, Claire M; Robbins, Trevor W

    2014-11-05

    Obsessive-compulsive disorder (OCD) has become a paradigmatic case of goal-directed dysfunction in psychiatry. In this article, we review the neurobiological evidence, historical and recent, that originally led to this supposition and continues to support a habit hypothesis of OCD. We will then discuss a number of recent studies that have directly tested this hypothesis, using behavioural experiments in patient populations. Based on this research evidence, which suggests that rather than goal-directed avoidance behaviours, compulsions in OCD may derive from manifestations of excessive habit formation, we present the details of a novel account of the functional relationship between these habits and the full symptom profile of the disorder. Borrowing from a cognitive dissonance framework, we propose that the irrational threat beliefs (obsessions) characteristic of OCD may be a consequence, rather than an instigator, of compulsive behaviour in these patients. This lays the foundation for a potential shift in both clinical and neuropsychological conceptualization of OCD and related disorders. This model may also prove relevant to other putative disorders of compulsivity, such as substance dependence, where the experience of 'wanting' drugs may be better understood as post hoc rationalizations of otherwise goal-insensitive, stimulus-driven behaviour.

  4. Goal-Directed Movement Enhances Body Representation Updating.

    Science.gov (United States)

    Wen, Wen; Muramatsu, Katsutoshi; Hamasaki, Shunsuke; An, Qi; Yamakawa, Hiroshi; Tamura, Yusuke; Yamashita, Atsushi; Asama, Hajime

    2016-01-01

    Body representation refers to perception, memory, and cognition related to the body and is updated continuously by sensory input. The present study examined the influence of goals on body representation updating with two experiments of the rubber hand paradigm. In the experiments, participants moved their hidden left hands forward and backward either in response to instruction to touch a virtual object or without any specific goal, while a virtual left hand was presented 250 mm above the real hand and moved in synchrony with the real hand. Participants then provided information concerning the perceived heights of their real left hands and rated their sense of agency and ownership of the virtual hand. Results of Experiment 1 showed that when participants moved their hands with the goal of touching a virtual object and received feedback indicating goal attainment, the perceived positions of their real hands shifted more toward that of the virtual hand relative to that in the condition without a goal, indicating that their body representations underwent greater modification. Furthermore, results of Experiment 2 showed that the effect of goal-directed movement occurred in the active condition, in which participants moved their own hands, but did not occur in the passive condition, in which participants' hands were moved by the experimenter. Therefore, we concluded that the sense of agency probably contributed to the updating of body representation involving goal-directed movement.

  5. Human evolution and cognition.

    Science.gov (United States)

    Tattersall, Ian

    2010-09-01

    Human beings are distinguished from all other organisms by their symbolic way of processing information about the world. This unique cognitive style is qualitatively different from all the earlier hominid cognitive styles, and is not simply an improved version of them. The hominid fossil and archaeological records show clearly that biological and technological innovations have typically been highly sporadic, and totally out of phase, since the invention of stone tools some 2.5 million years ago. They also confirm that this pattern applied in the arrival of modern cognition: the anatomically recognizable species Homo sapiens was well established long before any population of it began to show indications of behaving symbolically. This places the origin of symbolic thought in the realms of exaptation, whereby new structures come into existence before being recruited to new uses, and of emergence, whereby entire new levels of complexity are achieved through new combinations of attributes unremarkable in themselves. Both these phenomena involve entirely routine evolutionary processes; special as we human beings may consider ourselves, there was nothing special about the way we came into existence. Modern human cognition is a very recent acquisition; and its emergence ushered in an entirely new pattern of technological (and other behavioral) innovation, in which constant change results from the ceaseless exploration of the potential inherent in our new capacity.

  6. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making

    OpenAIRE

    Shuyan Liu; Schad, Daniel J; Kuschpel, Maxim S.; Rapp, Michael A.; Andreas Heinz

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults l...

  7. Goal-directed, habitual and Pavlovian prosocial behavior.

    Science.gov (United States)

    Gęsiarz, Filip; Crockett, Molly J

    2015-01-01

    Although prosocial behaviors have been widely studied across disciplines, the mechanisms underlying them are not fully understood. Evidence from psychology, biology and economics suggests that prosocial behaviors can be driven by a variety of seemingly opposing factors: altruism or egoism, intuition or deliberation, inborn instincts or learned dispositions, and utility derived from actions or their outcomes. Here we propose a framework inspired by research on reinforcement learning and decision making that links these processes and explains characteristics of prosocial behaviors in different contexts. More specifically, we suggest that prosocial behaviors inherit features of up to three decision-making systems employed to choose between self- and other- regarding acts: a goal-directed system that selects actions based on their predicted consequences, a habitual system that selects actions based on their reinforcement history, and a Pavlovian system that emits reflexive responses based on evolutionarily prescribed priors. This framework, initially described in the field of cognitive neuroscience and machine learning, provides insight into the potential neural circuits and computations shaping prosocial behaviors. Furthermore, it identifies specific conditions in which each of these three systems should dominate and promote other- or self- regarding behavior.

  8. Goal-directed, habitual and Pavlovian prosocial behavior

    Directory of Open Access Journals (Sweden)

    Filip eGęsiarz

    2015-05-01

    Full Text Available Although prosocial behaviors have been widely studied across disciplines, the mechanisms underlying them are not fully understood. Evidence from psychology, biology and economics suggests that prosocial behaviors can be driven by a variety of seemingly opposing factors: altruism or egoism, intuition or deliberation, inborn instincts or learned dispositions, and utility derived from actions or their outcomes. Here we propose a framework inspired by research on reinforcement learning and decision making that links these processes and explains characteristics of prosocial behaviors in different contexts. More specifically, we suggest that prosocial behaviors inherit features of up to three decision-making systems employed to choose between self- and other- regarding acts: a goal-directed system that selects actions based on their predicted consequences, a habitual system that selects actions based on their reinforcement history, and a Pavlovian system that emits reflexive responses based on evolutionarily prescribed priors. This framework, initially described in the field of cognitive neuroscience and machine learning, provides insight into the potential neural circuits and computations shaping prosocial behaviors. Furthermore, it identifies specific conditions in which each of these three systems should dominate and promote other- or self- regarding behavior.

  9. Human reasoning and cognitive science

    NARCIS (Netherlands)

    Stenning, K.; van Lambalgen, M.

    2008-01-01

    In Human Reasoning and Cognitive Science, Keith Stenning and Michiel van Lambalgen—a cognitive scientist and a logician—argue for the indispensability of modern mathematical logic to the study of human reasoning. Logic and cognition were once closely connected, they write, but were "divorced" in the

  10. Slips of Action and Sequential Decisions: A Cross-Validation Study of Tasks Assessing Habitual and Goal-Directed Action Control.

    Science.gov (United States)

    Sjoerds, Zsuzsika; Dietrich, Anja; Deserno, Lorenz; de Wit, Sanne; Villringer, Arno; Heinze, Hans-Jochen; Schlagenhauf, Florian; Horstmann, Annette

    2016-01-01

    Instrumental learning and decision-making rely on two parallel systems: a goal-directed and a habitual system. In the past decade, several paradigms have been developed to study these systems in animals and humans by means of e.g., overtraining, devaluation procedures and sequential decision-making. These different paradigms are thought to measure the same constructs, but cross-validation has rarely been investigated. In this study we compared two widely used paradigms that assess aspects of goal-directed and habitual behavior. We correlated parameters from a two-step sequential decision-making task that assesses model-based (MB) and model-free (MF) learning with a slips-of-action paradigm that assesses the ability to suppress cue-triggered, learnt responses when the outcome has been devalued and is therefore no longer desirable. MB control during the two-step task showed a very moderately positive correlation with goal-directed devaluation sensitivity, whereas MF control did not show any associations. Interestingly, parameter estimates of MB and goal-directed behavior in the two tasks were positively correlated with higher-order cognitive measures (e.g., visual short-term memory). These cognitive measures seemed to (at least partly) mediate the association between MB control during sequential decision-making and goal-directed behavior after instructed devaluation. This study provides moderate support for a common framework to describe the propensity towards goal-directed behavior as measured with two frequently used tasks. However, we have to caution that the amount of shared variance between the goal-directed and MB system in both tasks was rather low, suggesting that each task does also pick up distinct aspects of goal-directed behavior. Further investigation of the commonalities and differences between the MF and habit systems as measured with these, and other, tasks is needed. Also, a follow-up cross-validation on the neural systems driving these constructs

  11. Slips of action and sequential decisions: a cross-validation study of tasks assessing habitual and goal-directed action control

    Directory of Open Access Journals (Sweden)

    Zsuzsika Sjoerds

    2016-12-01

    Full Text Available Instrumental learning and decision-making rely on two parallel systems: a goal-directed and a habitual system. In the past decade, several paradigms have been developed to study these systems in animals and humans by means of e.g. overtraining, devaluation procedures and sequential decision-making. These different paradigms are thought to measure the same constructs, but cross-validation has rarely been investigated. In this study we compared two widely used paradigms that assess aspects of goal-directed and habitual behavior. We correlated parameters from a two-step sequential decision-making task that assesses model-based and model-free learning with a slips-of-action paradigm that assesses the ability to suppress cue-triggered, learnt responses when the outcome has been devalued and is therefore no longer desirable. Model-based control during the two-step task showed a very moderately positive correlation with goal-directed devaluation sensitivity, whereas model-free control did not. Interestingly, parameter estimates of model-based and goal-directed behavior in the two tasks were positively correlated with higher-order cognitive measures (e.g. visual short-term memory. These cognitive measures seemed to (at least partly mediate the association between model-based control during sequential decision-making and goal-directed behavior after instructed devaluation. This study provides moderate support for a common framework to describe the propensity towards goal-directed behavior as measured with two frequently used tasks. However, we have to caution that the amount of shared variance between the goal-directed and model-based system in both tasks was rather low, suggesting that each task does also pick up distinct aspects of goal-directed behavior. Further investigation of the commonalities and differences between the model-free and habit systems as measured with these, and other, tasks is needed. Also, a follow-up cross-validation on the neural

  12. Social cognition in humans

    DEFF Research Database (Denmark)

    Frith, Christopher; Frith, Uta

    2007-01-01

    We review a diversity of studies of human social interaction and highlight the importance of social signals. We also discuss recent findings from social cognitive neuroscience that explore the brain basis of the capacity for processing social signals. These signals enable us to learn about...... the world from others, to learn about other people, and to create a shared social world. Social signals can be processed automatically by the receiver and may be unconsciously emitted by the sender. These signals are non-verbal and are responsible for social learning in the first year of life. Social...... signals can also be processed consciously and this allows automatic processing to be modulated and overruled. Evidence for this higher-level social processing is abundant from about 18 months of age in humans, while evidence is sparse for non-human animals. We suggest that deliberate social signalling...

  13. Pupil responses to task requirement in goal-directed movements

    OpenAIRE

    Jiang, Xianta

    2014-01-01

    Objectively measuring the operators’ task workload in goal-directed motor tasks such as surgical operations, is important for performance and safety. This thesis presents an approach for objectively measuring task workload in goal-directed movements using an important eye response: the pupil diameter. We demonstrate how to capture movement-related pupil size changes during motor tasks, investigate how the pupil responds to task requirement, and show that the pupil diameter can be employed a...

  14. Anterior hippocampus and goal-directed spatial decision making.

    Science.gov (United States)

    Viard, Armelle; Doeller, Christian F; Hartley, Tom; Bird, Chris M; Burgess, Neil

    2011-03-23

    Planning spatial paths through our environment is an important part of everyday life and is supported by a neural system including the hippocampus and prefrontal cortex. Here we investigated the precise functional roles of the components of this system in humans by using fMRI as participants performed a simple goal-directed route-planning task. Participants had to choose the shorter of two routes to a goal in a visual scene that might contain a barrier blocking the most direct route, requiring a detour, or might be obscured by a curtain, requiring memory for the scene. The participant's start position was varied to parametrically manipulate their proximity to the goal and the difference in length of the two routes. Activity in medial prefrontal cortex, precuneus, and left posterior parietal cortex was associated with detour planning, regardless of difficulty, whereas activity in parahippocampal gyrus was associated with remembering the spatial layout of the visual scene. Activity in bilateral anterior hippocampal formation showed a strong increase the closer the start position was to the goal, together with medial prefrontal, medial and posterior parietal cortices. Our results are consistent with computational models in which goal proximity is used to guide subsequent navigation and with the association of anterior hippocampal areas with nonspatial functions such as arousal and reward expectancy. They illustrate how spatial and nonspatial functions combine within the anterior hippocampus, and how these functions interact with parahippocampal, parietal, and prefrontal areas in decision making and mnemonic function.

  15. Cognitive Robotics, Embodied Cognition and Human-Robot Interaction

    Science.gov (United States)

    2010-11-03

    Cognitive Robotics , Embodied Cognition and Human-Robot Interaction Greg Trafton, Ph.D Naval Research Laboratory Wednesday, November 3, 2010 Report...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Cognitive Robotics , Embodied Cognition and Human-Robot Interaction 5a. CONTRACT...that cognition is for action (embodied cognition) • We are building embodied models for cognitive robotics and human-robot interaction • Online

  16. Thinking as the control of imagination: a conceptual framework for goal-directed systems.

    Science.gov (United States)

    Pezzulo, Giovanni; Castelfranchi, Cristiano

    2009-07-01

    This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.

  17. Goal-directed action is automatically biased towards looming motion

    Science.gov (United States)

    Moher, Jeff; Sit, Jonathan; Song, Joo-Hyun

    2014-01-01

    It is known that looming motion can capture attention regardless of an observer’s intentions. Real-world behavior, however, frequently involves not just attentional selection, but selection for action. Thus, it is important to understand the impact of looming motion on goal-directed action to gain a broader perspective on how stimulus properties bias human behavior. We presented participants with a visually-guided reaching task in which they pointed to a target letter presented among non-target distractors. On some trials, one of the pre-masks at the location of the upcoming search objects grew rapidly in size, creating the appearance of a “looming” target or distractor. Even though looming motion did not predict the target location, the time required to reach to the target was shorter when the target loomed compared to when a distractor loomed. Furthermore, reach movement trajectories were pulled towards the location of a looming distractor when one was present, a pull that was greater still when the looming motion was on a collision path with the participant. We also contrast reaching data with data from a similarly designed visual search task requiring keypress responses. This comparison underscores the sensitivity of visually-guided reaching data, as some experimental manipulations, such as looming motion path, affected reach trajectories but not keypress measures. Together, the results demonstrate that looming motion biases visually-guided action regardless of an observer’s current behavioral goals, affecting not only the time required to reach to targets but also the path of the observer’s hand movement itself. PMID:25159287

  18. Goal Direction and Effectiveness, Emotional Maturity, and Nuclear Family Functioning

    Science.gov (United States)

    Klever, Phillip

    2009-01-01

    Differentiation of self, a cornerstone concept in Bowen theory, has a profound influence over time on the functioning of the individual and his or her family unit. This 5-year longitudinal study tested this hypothesis with 50 developing nuclear families. The dimensions of differentiation of self that were examined were goal direction and…

  19. Impaired acquisition of goal-directed action in healthy aging

    NARCIS (Netherlands)

    de Wit, S.; van de Vijver, I.; Ridderinkhof, K.R.

    2014-01-01

    According to dual-system theories, instrumental learning is supported by dissociable goal-directed and habitual systems. Previous investigations of the dual-system balance in healthy aging have yielded mixed results. To further investigate this issue, we compared performance of young (17-24 years) a

  20. The Construction of Career through Goal-Directed Action

    Science.gov (United States)

    Young, Richard A.; Valach, Ladislav

    2004-01-01

    The thesis of this article is that occupational career is constructed through a system of intentional, goal-directed processes in the form of actions and projects as well as other careers, such as the family career and relationship careers. A contextual action theory of career is proposed as an approach that reflects a constructionist stance and…

  1. A Pavlovian Analysis of Goal-Directed Behavior.

    Science.gov (United States)

    Rescorla, Robert A.

    1987-01-01

    Analyzes associative structures underlying goal-directed behavior using well-developed techniques for studying Pavlovian conditioning. Identifies the roles of the stimulus, response, and reinforcer in instrumental learning. A response and its reinforcer must be associated for acquisition and maintenance of instrumental behavior. (Author/LHW)

  2. Semantic Networks as Means for Goal-Directed Formative Feedback

    NARCIS (Netherlands)

    Kalz, Marco; Berlanga, Adriana; Van Rosmalen, Peter; Stoyanov, Slavi; Van Bruggen, Jan; Koper, Rob

    2009-01-01

    Kalz, M., Berlanga, A., Van Rosmalen, P., Stoyanov, S., Van Bruggen, J., & Koper, R. (2009). Semantic Networks as Means for Goal Directed Formative Feedback. In V. Hornung-Prähauser & M. Luckmann (Eds.), Kreativität und Innovationskompetenz im digitalen Netz - Creativity and Innovation Competencies

  3. Goal-Directed Aiming: Two Components but Multiple Processes

    Science.gov (United States)

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.

    2010-01-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…

  4. Semantic Networks as Means for Goal-Directed Formative Feedback

    NARCIS (Netherlands)

    Kalz, Marco; Berlanga, Adriana; Van Rosmalen, Peter; Stoyanov, Slavi; Van Bruggen, Jan; Koper, Rob

    2009-01-01

    Kalz, M., Berlanga, A., Van Rosmalen, P., Stoyanov, S., Van Bruggen, J., & Koper, R. (2009). Semantic Networks as Means for Goal Directed Formative Feedback. In V. Hornung-Prähauser & M. Luckmann (Eds.), Kreativität und Innovationskompetenz im digitalen Netz - Creativity and Innovation Competencies

  5. Latent Toxoplasma gondii infection leads to deficits in goal-directed behavior in healthy elderly.

    Science.gov (United States)

    Beste, Christian; Getzmann, Stephan; Gajewski, Patrick D; Golka, Klaus; Falkenstein, Michael

    2014-05-01

    Goal-directed behavior is well-known to show declines in elderly individuals, possibly because of alterations in dopaminergic neural transmission. The dopaminergic system is modulated by a number of other different factors. One of these factors, which has attracted a considerable amount of interest in neurobiology, but has only rarely been examined with respect to its possible modulatory role for cognitive functions in elderly individuals, is latent Toxoplasma gondii (T. gondii) infection. Latent T. gondii infection may be of relevance to goal-directed behavior as it alters dopaminergic neural transmission. We examine goal-directed behavior in T. gondii IgG positive and negative elderly subjects in auditory distraction paradigm. We apply event-related potentials to examine which cognitive subprocesses are affected by latent T. gondii infection on a neurophysiological level. We show that latent T. gondii infection compromises the management of auditory distraction in elderly by specifically delaying processes of attentional allocation and disengagement. The results show that latent T. gondii infection is neglected but an important neurobiological modulator of cognitive functions in elderly individuals.

  6. Is Agency Skin Deep? Surface Attributes Influence Infants' Sensitivity to Goal-Directed Action

    Science.gov (United States)

    Guajardo, Jose J.; Woodward, Amanda L.

    2004-01-01

    Three studies investigated the role of surface attributes in infants' identification of agents, using a habituation paradigm designed to tap infants' interpretation of grasping as goal directed (Woodward, 1998). When they viewed a bare human hand grasping objects, 7- and 12-month-old infants focused on the relation between the hand and its goal.…

  7. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    NARCIS (Netherlands)

    de Wit, S.; Standing, H.R.; DeVito, E.E.; Robinson, O.J.; Ridderinkhof, K.R.; Robbins, T.W.; Sahakian, B.J.

    2012-01-01

    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not

  8. Retrosplenial Cortical Neurons Encode Navigational Cues, Trajectories and Reward Locations During Goal Directed Navigation.

    Science.gov (United States)

    Vedder, Lindsey C; Miller, Adam M P; Harrison, Marc B; Smith, David M

    2016-07-29

    The retrosplenial cortex (RSC) plays an important role in memory and spatial navigation. It shares functional similarities with the hippocampus, including the presence of place fields and lesion-induced impairments in spatial navigation, and the RSC is an important source of visual-spatial input to the hippocampus. Recently, the RSC has been the target of intense scrutiny among investigators of human memory and navigation. fMRI and lesion data suggest an RSC role in the ability to use landmarks to navigate to goal locations. However, no direct neurophysiological evidence of encoding navigational cues has been reported so the specific RSC contribution to spatial cognition has been uncertain. To examine this, we trained rats on a T-maze task in which the reward location was explicitly cued by a flashing light and we recorded RSC neurons as the rats learned. We found that RSC neurons rapidly encoded the light cue. Additionally, RSC neurons encoded the reward and its location, and they showed distinct firing patterns along the left and right trajectories to the goal. These responses may provide key information for goal-directed navigation, and the loss of these signals may underlie navigational impairments in subjects with RSC damage.

  9. To get the grasp: seven-month-olds encode and selectively reproduce goal-directed grasping.

    Science.gov (United States)

    Thoermer, Claudia; Woodward, Amanda; Sodian, Beate; Perst, Hannah; Kristen, Susanne

    2013-10-01

    Infants need to analyze human behavior in terms of goal-directed actions in order to form expectations about agents' rationality. There is converging evidence for goal encoding during the first year of life from looking time as well as social learning paradigms using imitation procedures. However, conceptual interpretations of these abilities are challenged by low-level motor resonance accounts that propose task-specific lower level sensorimotor associations underlying looking time tasks rather than abstract conceptual knowledge. To test the differential predictions derived from the two accounts, we investigated within-child consistency of performance on different, but conceptually related, tasks requiring goal encoding. This study presented seven-month-old infants with a looking time task and an imitation task, both testing their ability to encode an action goal based on a reaching action, as well as a working memory task to control for the influence of general cognitive capacity. Results showed inter task convergence to be independent of working memory: infants who spent more time looking at goal change events in the looking time task were more likely to selectively reproduce the goal in the imitation task when the model had performed an intentional grasping action rather than a back-of-hand object contact. These findings support the view that low-level motor resonance mechanisms are not sufficient to explain the capacities of action understanding in infants.

  10. Dynamical Intention: Integrated Intelligence Modeling for Goal-directed Embodied Agents

    Directory of Open Access Journals (Sweden)

    Eric Aaron

    2016-11-01

    Full Text Available Intelligent embodied robots are integrated systems: As they move continuously through their environments, executing behaviors and carrying out tasks, components for low-level and high-level intelligence are integrated in the robot's cognitive system, and cognitive and physical processes combine to create their behavior. For a modeling framework to enable the design and analysis of such integrated intelligence, the underlying representations in the design of the robot should be dynamically sensitive, capable of reflecting both continuous motion and micro-cognitive influences, while also directly representing the necessary beliefs and intentions for goal-directed behavior. In this paper, a dynamical intention-based modeling framework is presented that satisfies these criteria, along with a hybrid dynamical cognitive agent (HDCA framework for employing dynamical intentions in embodied agents. This dynamical intention-HDCA (DI-HDCA modeling framework is a fusion of concepts from spreading activation networks, hybrid dynamical system models, and the BDI (belief-desire-intention theory of goal-directed reasoning, adapted and employed unconventionally to meet entailments of environment and embodiment. The paper presents two kinds of autonomous agent learning results that demonstrate dynamical intentions and the multi-faceted integration they enable in embodied robots: with a simulated service robot in a grid-world office environment, reactive-level learning minimizes reliance on deliberative-level intelligence, enabling task sequencing and action selection to be distributed over both deliberative and reactive levels; and with a simulated game of Tag, the cognitive-physical integration of an autonomous agent enables the straightforward learning of a user-specified strategy during gameplay, without interruption to the game. In addition, the paper argues that dynamical intentions are consistent with cognitive theory underlying goal-directed behavior, and

  11. Cognitive Neuroscience of Human Counterfactual Reasoning

    Directory of Open Access Journals (Sweden)

    Nicole eVan Hoeck

    2015-07-01

    Full Text Available Counterfactual reasoning is a hallmark of human thought, enabling the capacity to shift from perceiving the immediate environment to an alternative, imagined perspective. Mental representations of counterfactual possibilities (e.g., imagined past events or future outcomes not yet at hand provide the basis for learning from past experience, enable planning and prediction, support creativity and insight, and give rise to emotions and social attributions (e.g., regret and blame. Yet remarkably little is known about the psychological and neural foundations of counterfactual reasoning. In this review, we survey recent findings from psychology and neuroscience indicating that counterfactual thought depends on an integrative network of systems for affective processing, mental simulation, and cognitive control. We review evidence to elucidate how these mechanisms are systematically altered through psychiatric illness and neurological disease. We propose that counterfactual thinking depends on the coordination of multiple information processing systems that together enable adaptive behavior and goal-directed decision making and make recommendations for the study of counterfactual inference in health, aging, and disease.

  12. Cognition: Human Information Processing. Introduction.

    Science.gov (United States)

    Griffith, Belver C.

    1981-01-01

    Summarizes the key research issues and developments in cognitive science, especially with respect to the similarities, differences, and interrelationships between human and machine information processing. Nine references are listed. (JL)

  13. Goal-directed learning and obsessive–compulsive disorder

    OpenAIRE

    Gillan, Claire M.; Robbins, Trevor W.

    2014-01-01

    Obsessive–compulsive disorder (OCD) has become a paradigmatic case of goal-directed dysfunction in psychiatry. In this article, we review the neurobiological evidence, historical and recent, that originally led to this supposition and continues to support a habit hypothesis of OCD. We will then discuss a number of recent studies that have directly tested this hypothesis, using behavioural experiments in patient populations. Based on this research evidence, which suggests that rather than goal...

  14. Blocking effects in non-conditioned goal-directed behaviour.

    Science.gov (United States)

    Stock, Ann-Kathrin; Gohil, Krutika; Beste, Christian

    2017-08-01

    A great deal of our goal-directed behaviour depends on stimulus-response (S-R) associations, which can be established through conditioning or explicit instructions. For conditioned and reward maximizing behaviour, it has been shown that redundant information will no longer be taken into account once those associations have been formed ("blocking effect"). Following from this, new aspects will not be included in a pre-established association unless they improve behaviour. Opposing this, influential action control theories state that all kinds of information may be taken into account during action selection, thus denying the possibility of blocking redundant "surplus" information from non-conditioned goal-directed behaviour. We probed these contradicting predictions by asking two groups of healthy young adults to perform a redundant and a non-redundant version of a stop-change task in a counter-balanced order. Using behavioural and electrophysiological data, we demonstrate that contradicting current theories, blocking seems to be a general mechanism which also applies to non-conditioned goal-directed behaviour. Specifically, we show that the complexity of response selection processes associated with medial frontal cortical activity is altered by blocking. This was reflected by faster responses and smaller central P3 amplitudes originating in the ACC (BA24/BA32). Preceding attentional processes were not affected. Contradicting current views, our ability to ignore information that hampers an expedient unfolding of goal-directed behaviour is quite limited. Prior experiences have a much larger influence on which input we consider for response formation. This offers a functional explanation for why it can be hard to alter (inefficient) behaviour once it has been established.

  15. Simulating real world functioning in schizophrenia using a naturalistic city environment and single-trial, goal-directed navigation

    Directory of Open Access Journals (Sweden)

    John A Zawadzki

    2013-11-01

    Full Text Available Objective: To develop a virtual reality platform that would serve as a functionally meaningful measure of cognition in schizophrenia that would complement standard batteries of cognitive tests during clinical trials for cognitive treatments in schizophrenia, be amenable to human neuroimaging research, yet lend itself to neurobiological comparison with rodent analogues.Method: Thirty-three patients with schizophrenia and 33 healthy controls matched for age, sex, video gaming experience and education completed eight rapid, single-trial virtual navigation tasks within a naturalistic virtual city. Four trials tested their ability to find different targets seen during the passive viewing of a closed path that led them around different city blocks. Four subsequent trials tested their ability to return to four different starting points after viewing a path that took them several blocks away from the starting position. Results: Individuals with schizophrenia had difficulties in way-finding, measured as distance travelled to find targets previously encountered within the virtual city. They were also more likely not to notice the target during passive viewing, less likely to find novel shortcuts to targets and more likely to become lost and fail completely in finding the target. Total travel distances across all eight trials strongly correlated (negatively with neurocognitive measures and, for 49 participants who completed the Quality of Life Scale, psychosocial functioning. Conclusion: Single-trial, goal-directed navigation in a naturalistic virtual environment is a functionally meaningful measure of cognitive functioning in schizophrenia.

  16. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.

    Directory of Open Access Journals (Sweden)

    Shuyan Liu

    Full Text Available Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.

  17. Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.

    Science.gov (United States)

    Liu, Shuyan; Schad, Daniel J; Kuschpel, Maxim S; Rapp, Michael A; Heinz, Andreas

    2016-01-01

    Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.

  18. A Unifying Approach to Goal-Directed Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Grobauer, Bernd; Rhiger, Morten

    2001-01-01

    Goal-directed evaluation, as embodied in Icon and Snobol, is built on the notions of backtracking and of generating successive results, and therefore it has always been something of a challenge to specify and implement. In this article, we address this challenge using computational monads...... and partial evaluation. We consider a subset of Icon and we specify it with a monadic semantics and a list monad. We then consider a spectrum of monads that also fit the bill, and we relate them to each other. For example, we derive a continuation monad as a Church encoding of the list monad. The resulting...

  19. A Unifying Approach to Goal-Directed Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Grobauer, Bernd; Rhiger, Morten

    2001-01-01

    Goal-directed evaluation, as embodied in Icon and Snobol, is built on the notions of backtracking and of generating successive results, and therefore it has always been something of a challenge to specify and implement. In this article, we address this challenge using computational monads...... and partial evaluation.We consider a subset of Icon and we specify it with a monadic semantics and a list monad. We then consider a spectrum of monads that also fit the bill, and we relate them to each other. For example, we derive a continuation monad as a Church encoding of the list monad. The resulting...

  20. Goal-directed learning of features and forward models.

    Science.gov (United States)

    Saeb, Sohrab; Weber, Cornelius; Triesch, Jochen

    2009-01-01

    The brain is able to perform actions based on an adequate internal representation of the world, where task-irrelevant features are ignored and incomplete sensory data are estimated. Traditionally, it is assumed that such abstract state representations are obtained purely from the statistics of sensory input for example by unsupervised learning methods. However, more recent findings suggest an influence of the dopaminergic system, which can be modeled by a reinforcement learning approach. Standard reinforcement learning algorithms act on a single layer network connecting the state space to the action space. Here, we involve in a feature detection stage and a memory layer, which together, construct the state space for a learning agent. The memory layer consists of the state activation at the previous time step as well as the previously chosen action. We present a temporal difference based learning rule for training the weights from these additional inputs to the state layer. As a result, the performance of the network is maintained both, in the presence of task-irrelevant features, and at randomly occurring time steps during which the input is invisible. Interestingly, a goal-directed forward model emerges from the memory weights, which only covers the state-action pairs that are relevant to the task. The model presents a link between reinforcement learning, feature detection and forward models and may help to explain how reward systems recruit cortical circuits for goal-directed feature detection and prediction.

  1. The multiple process model of goal-directed reaching revisited.

    Science.gov (United States)

    Elliott, Digby; Lyons, James; Hayes, Spencer J; Burkitt, James J; Roberts, James W; Grierson, Lawrence E M; Hansen, Steve; Bennett, Simon J

    2017-01-01

    Recently our group forwarded a model of speed-accuracy relations in goal-directed reaching. A fundamental feature of our multiple process model was the distinction between two types of online regulation: impulse control and limb-target control. Impulse control begins during the initial stages of the movement trajectory and involves a comparison of actual limb velocity and direction to an internal representation of expectations about the limb trajectory. Limb-target control involves discrete error-reduction based on the relative positions of the limb and the target late in the movement. Our model also considers the role of eye movements, practice, energy optimization and strategic behavior in limb control. Here, we review recent work conducted to test specific aspects of our model. As well, we consider research not fully incorporated into our earlier contribution. We conclude that a slightly modified and expanded version of our model, that includes crosstalk between the two forms of online regulation, does an excellent job of explaining speed, accuracy, and energy optimization in goal-directed reaching.

  2. Human mobility, cognition and GISc

    DEFF Research Database (Denmark)

    Welcome to Human Mobility, Cognition and GISc’ - a conference hosted by the University of Copenhagen on November 9, 2015. The present document encloses the abstracts contributed by five invited speakers and eight submitted as responses to a public call made on June 1st 2015. In GIS and related...... sciences (GISc) registration and analysis of human behavior and development of technologies to back us up during our daily activities has a long history behind. Such activities include navigation and wayfinding. At the same time a lot of effort has been spend to investigate and conceptualize...... the psychological/cognitive and neurophysiological background of our spatial behavior - including our abilities to perceive, memorize, apply and communicate spatial knowledge. It is the aim of the conference to bring together professionals from cognitive, analytical and geo-technical sciences (including...

  3. A Unifying Approach to Goal-Directed Evaluation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Rhiger, Morten; Grobauer, Bernd

    2001-01-01

    Goal-directed evaluation, as embodied in Icon and Snobol, is built on the notions of backtracking and of generating successive results, and therefore it has always been something of a challenge to specify and implement. In this article, we address this challenge using computational monads...... and partial evaluation. We consider a subset of Icon and we specify it with a monadic semantics and a list monad. We then consider a spectrum of monads that also fit the bill, and we relate them to each other. For example, we derive a continuation monad as a Church encoding of the list monad. The resulting...... semantics coincides with Gudeman’s continuation semantics of Icon. We then compile Icon programs by specializing their interpreter (i.e., by using the first Futamura projection), using type-directed partial evaluation. Through various back ends, including a run-time code generator, we generate ML code, C...

  4. Goal Directed Relative Skyline Queries in Time Dependent Road Networks

    CERN Document Server

    Iyer, K B Priya

    2012-01-01

    The Wireless GIS technology is progressing rapidly in the area of mobile communications. Location-based spatial queries are becoming an integral part of many new mobile applications. The Skyline queries are latest apps under Location-based services. In this paper we introduce Goal Directed Relative Skyline queries on Time dependent (GD-RST) road networks. The algorithm uses travel time as a metric in finding the data object by considering multiple query points (multi-source skyline) relative to user location and in the user direction of travelling. We design an efficient algorithm based on Filter phase, Heap phase and Refine Skyline phases. At the end, we propose a dynamic skyline caching (DSC) mechanism which helps to reduce the computation cost for future skyline queries. The experimental evaluation reflects the performance of GD-RST algorithm over the traditional branch and bound algorithm for skyline queries in real road networks.

  5. Goal-directed imitation in patients with Ideomotor Apraxia.

    Science.gov (United States)

    Bekkering, Harold; Brass, Marcel; Woschina, Susanne; Jacobs, Arthur M

    2005-05-01

    The present study compared imitation performance in patients with ideomotor apraxia (IMA), eight right hemispheric-damaged patients, and eight control participants without neurological damage in three experiments. Experiment 1 confirmed in the Goldenberg test that IMA patients were particularly impaired in hand gestures and combined finger and hand gestures, but not in the imitation of finger gestures, compared to the other two groups. Experiment 2, however, demonstrated that finger selection is not per se preserved in imitative behaviour in patients with IMA. Experiment 3 confirmed this finding in an experiment under visual control. Together, the results add evidence to the idea that imitation should be viewed from a goal-directed rather than a body-mapping perspective, and that highest priority is given to more distal aspects of imitation as reaching for the correct object, rather than the means used to achieve the goal of a modelled action.

  6. The nature of goal-directed action representations in infancy.

    Science.gov (United States)

    Sommerville, Jessica A; Upshaw, Michaela B; Loucks, Jeff

    2012-01-01

    A critical question for developmental psychologists concerns how representations in infancy are best characterized. Past and current research provides paradoxical evidence regarding the nature of early representations: in some ways, infants appear to build concrete and specific representations that guide their online perception and understanding of different events; in other ways, infants appear to possess abstract representations that support inferences regarding unseen event outcomes. Characterizing the nature of early representations across domains is a central charge for developmentalists because this task can provide important information regarding the underlying learning process or processes that drive development. Yet, little existing work has attempted to resolve this paradox by characterizing the ways in which infants' representations may have both abstract and concrete elements. The goal of this chapter is to take a close look at infants' early representations of goal-directed action in order to describe the nature of these representations. We first discuss the nature of representations of action that infants build through acting on the world and argue that these representations possess both concrete and abstract elements. On the one hand, infants appear to build representations of action that stress goal-relevant features of actions in an action- or event-specific fashion, suggesting specificity or concreteness. On the other hand, these representations are sufficiently abstract to not only drive action but also support infants' perception of others actions and to support inferences regarding unseen action outcomes. We next discuss evidence to suggest that by the end of the first year of life, infants possess increasingly abstract representations of the actions of others and use contextual cues, including linguistic statements accompanying action, to flexibly specify the level of representational specificity. We further consider the possibility that

  7. Devaluation and sequential decisions: linking goal-directed and model-based behavior.

    Science.gov (United States)

    Friedel, Eva; Koch, Stefan P; Wendt, Jean; Heinz, Andreas; Deserno, Lorenz; Schlagenhauf, Florian

    2014-01-01

    In experimental psychology different experiments have been developed to assess goal-directed as compared to habitual control over instrumental decisions. Similar to animal studies selective devaluation procedures have been used. More recently sequential decision-making tasks have been designed to assess the degree of goal-directed vs. habitual choice behavior in terms of an influential computational theory of model-based compared to model-free behavioral control. As recently suggested, different measurements are thought to reflect the same construct. Yet, there has been no attempt to directly assess the construct validity of these different measurements. In the present study, we used a devaluation paradigm and a sequential decision-making task to address this question of construct validity in a sample of 18 healthy male human participants. Correlational analysis revealed a positive association between model-based choices during sequential decisions and goal-directed behavior after devaluation suggesting a single framework underlying both operationalizations and speaking in favor of construct validity of both measurement approaches. Up to now, this has been merely assumed but never been directly tested in humans.

  8. Exploring the neural correlates of goal-directed action and intention understanding.

    Science.gov (United States)

    Carter, Elizabeth J; Hodgins, Jessica K; Rakison, David H

    2011-01-15

    Because we are a cooperative species, understanding the goals and intentions of others is critical for human survival. In this fMRI study, participants viewed reaching behaviors in which one of four animated characters moved a hand towards one of two objects and either (a) picked up the object, (b) missed the object, or (c) changed his path halfway to lift the other object. The characters included a human, a humanoid robot, stacked boxes with an arm, and a mechanical claw. The first three moved in an identical, human-like biological pattern. Right posterior superior temporal sulcus (pSTS) activity increased when the human or humanoid robot shifted goals or missed the target relative to obtaining the original goal. This suggests that the pSTS was engaged differentially for figures that appeared more human-like rather than for all human-like motion. Medial frontal areas that are part of a protagonist-monitoring network with the right pSTS (e.g., Mason and Just, 2006) were most engaged for the human character, followed by the robot character. The current data suggest that goal-directed action and intention understanding require this network and it is used similarly for the two processes. Moreover, it is modulated by character identity rather than only the presence of biological motion. We discuss the implications for behavioral theories of goal-directed action and intention understanding.

  9. The why, what, where, when and how of goal-directed choice: neuronal and computational principles.

    Science.gov (United States)

    Verschure, Paul F M J; Pennartz, Cyriel M A; Pezzulo, Giovanni

    2014-11-05

    The central problems that goal-directed animals must solve are: 'What do I need and Why, Where and When can this be obtained, and How do I get it?' or the H4W problem. Here, we elucidate the principles underlying the neuronal solutions to H4W using a combination of neurobiological and neurorobotic approaches. First, we analyse H4W from a system-level perspective by mapping its objectives onto the Distributed Adaptive Control embodied cognitive architecture which sees the generation of adaptive action in the real world as the primary task of the brain rather than optimally solving abstract problems. We next map this functional decomposition to the architecture of the rodent brain to test its consistency. Following this approach, we propose that the mammalian brain solves the H4W problem on the basis of multiple kinds of outcome predictions, integrating central representations of needs and drives (e.g. hypothalamus), valence (e.g. amygdala), world, self and task state spaces (e.g. neocortex, hippocampus and prefrontal cortex, respectively) combined with multi-modal selection (e.g. basal ganglia). In our analysis, goal-directed behaviour results from a well-structured architecture in which goals are bootstrapped on the basis of predefined needs, valence and multiple learning, memory and planning mechanisms rather than being generated by a singular computation.

  10. Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder.

    Science.gov (United States)

    Banca, Paula; Voon, Valerie; Vestergaard, Martin D; Philipiak, Gregor; Almeida, Inês; Pocinho, Fernando; Relvas, João; Castelo-Branco, Miguel

    2015-03-01

    Intrusive thoughts and compulsive urges to perform stereotyped behaviours are typical symptoms of obsessive-compulsive disorder. Emerging evidence suggests a cognitive bias towards habit formation at the expense of goal-directed performance in obsessive-compulsive disorder. In this study, we test this hypothesis using a novel individualized ecologically valid symptom provocation design: a live provocation functional magnetic resonance imaging paradigm with synchronous video-recording of behavioural avoidance responses. By pairing symptom provocation with online avoidance responses on a trial-by-trial basis, we sought to investigate the neural mechanisms leading to the compulsive avoidance response. In keeping with the model of habit formation in obsessive-compulsive disorder, we hypothesized that this disorder would be associated with lower activity in regions implicated in goal-directed behaviours and higher activity in regions implicated in habitual behaviours. Fifteen patients with obsessive-compulsive disorder and 15 healthy control volunteers participated in this functional magnetic resonance imaging study. Online stimuli were individually tailored to achieve effective symptom provocation at neutral, intermediate and strong intensity levels. During the symptom provocation block, the participant could choose to reject or terminate the provoking stimuli resulting in cessation of the symptom provocation. We thus separately analysed the neural correlates of symptom provocation, the urge to avoid, rejection and relief. Strongly symptom-provoking conditions evoked a dichotomous pattern of deactivation/activation in patients, which was not observed either in control conditions or in healthy subjects: a deactivation of caudate-prefrontal circuits accompanied by hyperactivation of subthalamic nucleus/putaminal regions. This finding suggests a dissociation between regions engaged in goal-directed and habitual behaviours. The putaminal hyperactivity during patients

  11. Goal-directed and habit-like modulations of stimulus processing during reinforcement learning.

    Science.gov (United States)

    Luque, David; Beesley, Tom; Morris, Richard; Jack, Bradley N; Griffiths, Oren; Whitford, Thomas; Le Pelley, Mike E

    2017-02-13

    Recent research has shown that perceptual processing of stimuli previously associated with high-value rewards is automatically prioritized, even when rewards are no longer available. It has been hypothesized that such reward-related modulation of stimulus salience is conceptually similar to an 'attentional habit'. Recording event-related potentials in humans during a reinforcement learning task, we show strong evidence in favor of this hypothesis. Resistance to outcome devaluation (the defining feature of a habit) was shown by the stimulus-locked P1 component, reflecting activity in the extrastriate visual cortex. Analysis at longer latencies revealed a positive component (corresponding to the P3b, from 550 to 700ms) sensitive to outcome devaluation. Thus, distinct spatio-temporal patterns of brain activity were observed corresponding to habitual and goal-directed processes. These results demonstrate that reinforcement learning engages both attentional habits and goal-directed processes in parallel. Consequences for brain and computational models of reinforcement learning are discussed.Significance statementThe human attentional network adapts in order to detect stimuli that predict important rewards. A recent hypothesis suggests that the visual cortex automatically prioritizes reward-related stimuli, driven by cached representations of reward value -i.e., Stimulus-Response habits. Alternatively the neural system may track the current value of the predicted outcome. Our results demonstrate for the first time that visual cortex activity is increased for reward-related stimuli even when the rewarding event is temporarily devalued. In contrast, longer latency brain activity was specifically sensitive to transient changes in reward value. Therefore, we show that both habit-like attention and goal directed processes occur in the same learning episode at different latencies. This result has important consequences for computational models of reinforcement learning.

  12. Human mobility, cognition and GISc

    DEFF Research Database (Denmark)

    Welcome to Human Mobility, Cognition and GISc’ - a conference hosted by the University of Copenhagen on November 9, 2015. The present document encloses the abstracts contributed by five invited speakers and eight submitted as responses to a public call made on June 1st 2015. In GIS and related...... exclusive) list of topics was suggested: • Wayfinding and navigation • Agent based simulation and modelling (ABM) • Movement analysis • Emerging and classic technologies for recording movement • Visualisation of moving objects • Spatial perception and memory • Efficient structures for storing movement data...

  13. SHOULD I STAY OR SHOULD I GO? CONCEPTUAL UNDERPINNINGS OF GOAL-DIRECTED ACTIONS

    Directory of Open Access Journals (Sweden)

    GIOVANNI eMIRABELLA

    2014-11-01

    Full Text Available All actions, even the simplest like moving an arm to grasp a pen, are associated with energy costs. Thus all mobile organisms possess the ability to evaluate resources and select those behaviours that are most likely to lead to the greatest accrual of valuable items (rewards in the near or, especially in the case of humans, distant future. The evaluation process is performed at all possible stages of the series of decisions that lead to the building of a goal-directed action or to its suppression. This is because all animals have a limited amount of energy and resources; to survive and be able to reproduce they have to minimize the costs and maximize the outcomes of their actions. These computations are at the root of behavioral flexibility. Two executive functions play a major role in generating flexible behaviors: i the ability to predict future outcomes of goal-directed actions; and ii the ability to cancel them when they are unlikely to accomplish valuable results. These two processes operate continuously during the entire course of a movement: during its genesis, its planning and even its execution, so that the motor output can be modulated or suppressed at any time before its execution.In this review, functional interactions of the extended neural network subserving generation and inhibition of goal-directed movements will be outlined, leading to the intriguing hypothesis that the performance of actions and their suppression are not specified by independent sets of brain regions. Rather, it will be proposed that acting and stopping are functions emerging from specific interactions between largely overlapping brain regions, whose activity is intimately linked (directly or indirectly to the evaluations of pros and cons of an action. Such mechanism would allow the brain to perform as a highly efficient and flexible system, as different functions could be computed exploiting the same components operating in different configurations.

  14. Devaluation and sequential decisions: linking goal-directed and model-based behaviour

    Directory of Open Access Journals (Sweden)

    Eva eFriedel

    2014-08-01

    Full Text Available In experimental psychology different experiments have been developed to assess goal–directed as compared to habitual control over instrumental decisions. Similar to animal studies selective devaluation procedures have been used. More recently sequential decision-making tasks have been designed to assess the degree of goal-directed versus habitual choice behavior in terms of an influential computational theory of model-based compared to model-free behavioral control. As recently suggested, different measurements are thought to reflect the same construct. Yet, there has been no attempt to directly assess the construct validity of these different measurements. In the present study, we used a devaluation paradigm and a sequential decision-making task to address this question of construct validity in a sample of 18 healthy male human participants. Correlational analysis revealed a positive association between model-based choices during sequential decisions and goal-directed behavior after devaluation suggesting a single framework underlying both operationalizations and speaking in favour of construct validity of both measurement approaches. Up to now, this has been merely assumed but never been directly tested in humans.

  15. Unraveling the evolution of uniquely human cognition.

    Science.gov (United States)

    MacLean, Evan L

    2016-06-07

    A satisfactory account of human cognitive evolution will explain not only the psychological mechanisms that make our species unique, but also how, when, and why these traits evolved. To date, researchers have made substantial progress toward defining uniquely human aspects of cognition, but considerably less effort has been devoted to questions about the evolutionary processes through which these traits have arisen. In this article, I aim to link these complementary aims by synthesizing recent advances in our understanding of what makes human cognition unique, with theory and data regarding the processes of cognitive evolution. I review evidence that uniquely human cognition depends on synergism between both representational and motivational factors and is unlikely to be accounted for by changes to any singular cognitive system. I argue that, whereas no nonhuman animal possesses the full constellation of traits that define the human mind, homologies and analogies of critical aspects of human psychology can be found in diverse nonhuman taxa. I suggest that phylogenetic approaches to the study of animal cognition-which can address questions about the selective pressures and proximate mechanisms driving cognitive change-have the potential to yield important insights regarding the processes through which the human cognitive phenotype evolved.

  16. Network mechanisms of hippocampal laterality, place coding, and goal-directed navigation.

    Science.gov (United States)

    Kitanishi, Takuma; Ito, Hiroshi T; Hayashi, Yuichiro; Shinohara, Yoshiaki; Mizuseki, Kenji; Hikida, Takatoshi

    2017-03-01

    The hippocampus and associated structures are responsible for episodic memory in humans. In rodents, the most prominent behavioral correlate of hippocampal neural activity is place coding, which is thought to underlie spatial navigation. While episodic memory is considered to be unique to humans in a restricted context, it has been proposed that the same neural circuitry and algorithms that enable spatial coding and navigation also support episodic memory. Here we review the recent progress in neural circuit mechanisms of hippocampal activity by introducing several topics: (1) cooperation and specialization of the bilateral hippocampi, (2) the role of synaptic plasticity in gamma phase-locking of spikes and place cell formation, (3) impaired goal-related activity and oscillations in a mouse model of mental disorders, and (4) a prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation.

  17. Goal-directed attention alters the tuning of object-based representations in extrastriate cortex

    Directory of Open Access Journals (Sweden)

    Anthony J.-W. Chen

    2012-06-01

    Full Text Available Humans survive in environments that contain a vast quantity and variety of visual information. All items of perceived visual information must be represented within a limited number of brain networks. The human brain requires mechanisms for selecting only a relevant fraction of perceived information for more in-depth processing, where neural representations of that information may be actively maintained and utilized for goal-directed behavior. Object-based attention is crucial for goal-directed behavior and yet remains poorly understood. Thus, in the study we investigate how neural representations of visual object information are guided by selective attention. The magnitude of activation in human extrastriate cortex has been shown to be modulated by attention; however object-based attention is not likely to be fully explained by a localized gain mechanism. Thus, we measured information coded in spatially distributed patterns of brain activity with fMRI while human participants performed a task requiring selective processing of a relevant visual object category that differed across conditions. Using pattern classification and spatial correlation techniques, we found that the direction of selective attention is implemented as a shift in the tuning of object-based information representations within extrastriate cortex. In contrast, we found that representations within lateral prefrontal cortex coded for the attention condition rather than the concrete representations of object category. In sum, our findings are consistent with a model of object-based selective attention in which representations coded within extrastriate cortex are tuned to favor the representation of goal-relevant information, guided by more abstract representations within lateral prefrontal cortex.

  18. Motivation Based on Goal-directed Theory In SLA

    Institute of Scientific and Technical Information of China (English)

    尚静; 焦丽芳; 魏立红; 崔瑞国

    2006-01-01

    @@ I.Introduction With the development of modern science and education, more and more people begin to master a second language to prepare for their future career. There are many factors influencing language learners' success or failure in second language learning, such as language learners' motivation, intelligence, aptitude, strategies and other components. Among these factors, motivation plays a crucial part in language learning. Motivation may be defined as the conscious or subconscious direction which cause a certain human behavior. Here by motivation we mean the factors that cause a person to learn a language whether positively or negatively.

  19. Prefrontally driven downregulation of neural synchrony mediates goal-directed forgetting.

    Science.gov (United States)

    Hanslmayr, Simon; Volberg, Gregor; Wimber, Maria; Oehler, Nora; Staudigl, Tobias; Hartmann, Thomas; Raabe, Markus; Greenlee, Mark W; Bäuml, Karl-Heinz T

    2012-10-17

    Neural synchronization between distant cell assemblies is crucial for the formation of new memories. To date, however, it remains unclear whether higher-order brain regions can adaptively regulate neural synchrony to control memory processing in humans. We explored this question in two experiments using a voluntary forgetting task. In the first experiment, we simultaneously recorded electroencephalography along with fMRI. The results show that a reduction in neural synchrony goes hand-in-hand with a BOLD signal increase in the left dorsolateral prefrontal cortex (dlPFC) when participants are cued to forget previously studied information. In the second experiment, we directly stimulated the left dlPFC with repetitive transcranial magnetic stimulation during the same task, and show that such stimulation specifically boosts the behavioral forgetting effect and induces a reduction in neural synchrony. These results suggest that prefrontally driven downregulation of long-range neural synchronization mediates goal-directed forgetting of long-term memories.

  20. A Prefrontal-Hippocampal Comparator for Goal-Directed Behavior: The Intentional Self and Episodic Memory.

    Science.gov (United States)

    Numan, Robert

    2015-01-01

    The hypothesis of this article is that the interactions between the prefrontal cortex and the hippocampus play a critical role in the modulation of goal-directed self-action and the strengthening of episodic memories. We describe various theories that model a comparator function for the hippocampus, and then elaborate the empirical evidence that supports these theories. One theory which describes a prefrontal-hippocampal comparator for voluntary action is emphasized. Action plans are essential for successful goal-directed behavior, and are elaborated by the prefrontal cortex. When an action plan is initiated, the prefrontal cortex transmits an efference copy (or corollary discharge) to the hippocampus where it is stored as a working memory for the action plan (which includes the expected outcomes of the action plan). The hippocampus then serves as a response intention-response outcome working memory comparator. Hippocampal comparator function is enabled by the hippocampal theta rhythm allowing the hippocampus to compare expected action outcomes to actual action outcomes. If the expected and actual outcomes match, the hippocampus transmits a signal to prefrontal cortex which strengthens or consolidates the action plan. If a mismatch occurs, the hippocampus transmits an error signal to the prefrontal cortex which facilitates a reformulation of the action plan, fostering behavioral flexibility and memory updating. The corollary discharge provides the self-referential component to the episodic memory, affording the personal and subjective experience of what behavior was carried out, when it was carried out, and in what context (where) it occurred. Such a perspective can be applied to episodic memory in humans, and episodic-like memory in non-human animal species.

  1. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition.

    Science.gov (United States)

    Stutz, Aaron J

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  2. Enhancing Human Cognition with Cocoa Flavonoids

    Directory of Open Access Journals (Sweden)

    Valentina Socci

    2017-05-01

    Full Text Available Enhancing cognitive abilities has become a fascinating scientific challenge, recently driven by the interest in preventing age-related cognitive decline and sustaining normal cognitive performance in response to cognitively demanding environments. In recent years, cocoa and cocoa-derived products, as a rich source of flavonoids, mainly the flavanols sub-class, have been clearly shown to exert cardiovascular benefits. More recently, neuromodulation and neuroprotective actions have been also suggested. Here, we discuss human studies specifically aimed at investigating the effects of acute and chronic administration of cocoa flavanols on different cognitive domains, such as executive functions, attention and memory. Through a variety of direct and indirect biological actions, in part still speculative, cocoa and cocoa-derived food have been suggested to possess the potential to counteract cognitive decline and sustain cognitive abilities, particularly among patients at risk. Although still at a preliminary stage, research investigating the relations between cocoa and cognition shows dose-dependent improvements in general cognition, attention, processing speed, and working memory. Moreover, cocoa flavanols administration could also enhance normal cognitive functioning and exert a protective role on cognitive performance and cardiovascular function specifically impaired by sleep loss, in healthy subjects. Together, these findings converge at pointing to cocoa as a new interesting nutraceutical tool to protect human cognition and counteract different types of cognitive decline, thus encouraging further investigations. Future research should include complex experimental designs combining neuroimaging techniques with physiological and behavioral measures to better elucidate cocoa neuromodulatory properties and directly compare immediate versus long-lasting cognitive effects.

  3. Functional Magnetic Resonance Imaging of Goal-Directed Reaching in Children with Autism Spectrum Disorders: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Nicole M. G. Salowitz

    2014-04-01

    Full Text Available An unanswered question concerning the neural basis of autism spectrum disorders (ASD is how sensorimotor deficits in individuals with ASD are related to abnormalities of brain function. We previously described a robotic joystick and video game system that allows us to record functional magnetic resonance images (FMRI while adult humans make goal-directed wrist motions. We anticipated several challenges in extending this approach to studying goal-directed behaviors in children with ASD and in typically developing (TYP children. In particular we were concerned that children with autism may express increased levels of anxiety as compared to typically developing children due to the loud sounds and small enclosed space of the MRI scanner. We also were concerned that both groups of children might become restless during testing, leading to an unacceptable amount of head movement. Here we performed a pilot study evaluating the extent to which autistic and typically developing children exhibit anxiety during our experimental protocol as well as their ability to comply with task instructions. Our experimental controls were successful in minimizing group differences in drop-out due to anxiety. Kinematic performance and head motion also were similar across groups. Both groups of children engaged cortical regions (frontal, parietal, temporal, occipital while making goal-directed movements. In addition, the ASD group exhibited task-related correlations in subcortical regions (cerebellum, thalamus, whereas correlations in the TYP group did not reach statistical significance in subcortical regions. Four distinct regions in frontal cortex showed a significant group difference such that TYP children exhibited positive correlations between the hemodynamic response and movement, whereas children with ASD exhibited negative correlations. These findings demonstrate feasibility of simultaneous application of robotic manipulation and functional imaging to study goal-directed

  4. Visual Experience Influences 12-Month-Old Infants' Perception of Goal-Directed Actions of Others

    Science.gov (United States)

    Myowa-Yamakoshi, Masako; Kawakita, Yuka; Okanda, Mako; Takeshita, Hideko

    2011-01-01

    In the present study, we investigated whether infants' own visual experiences affected their perception of the visual status of others engaging in goal-directed actions. In Experiment 1, infants viewed video clips of successful and failed goal-directed actions performed by a blindfolded adult, with half the infants having previously experienced…

  5. Infantile nystagmus syndrome is associated with inefficiency of goal-directed hand movements

    NARCIS (Netherlands)

    Liebrand-Schurink, J.; Cox, R.F.A.; Rens, G.H.M.B. van; Cillessen, A.H.N.; Meulenbroek, R.G.J.; Boonstra, F.N.

    2015-01-01

    Purpose.: The effect of infantile nystagmus syndrome (INS) on the efficiency of goal-directed hand movements was examined. Methods.: We recruited 37 children with INS and 65 control subjects with normal vision, aged 4 to 8 years. Participants performed horizontally-oriented, goal-directed cylinder d

  6. Infantile nystagmus syndrome is associated with inefficiency of goal-directed hand movements

    NARCIS (Netherlands)

    Liebrand-Schurink, Joyce; Cox, Ralf F A; van Rens, Ger H M B; Cillessen, Antonius H N; Meulenbroek, Ruud G J; Boonstra, F Nienke

    2015-01-01

    PURPOSE: The effect of infantile nystagmus syndrome (INS) on the efficiency of goal-directed hand movements was examined. METHODS: We recruited 37 children with INS and 65 control subjects with normal vision, aged 4 to 8 years. Participants performed horizontally-oriented, goal-directed cylinder dis

  7. A prefrontal-hippocampal comparator for goal-directed behavior: the intentional self and episodic memory

    Directory of Open Access Journals (Sweden)

    Robert eNuman

    2015-11-01

    Full Text Available AbstractThe hypothesis of this article is that the interactions between the prefrontal cortex and the hippocampus play a critical role in the modulation of goal-directed self-action and the strengthening of episodic memories. We describe various theories that model a comparator function for the hippocampus, and then elaborate the empirical evidence that supports these theories. One theory which describes a prefrontal-hippocampal comparator for voluntary action, is emphasized. Action plans are essential for successful goal-directed behavior, and are elaborated by the prefrontal cortex. When an action plan is initiated, the prefrontal cortex transmits an efference copy (or corollary discharge to the hippocampus where it is stored as a working memory for the action plan (which includes the expected outcomes of the action plan. The hippocampus then serves as a response intention-response outcome working memory comparator. Hippocampal comparator function is enabled by the hippocampal theta rhythm allowing the hippocampus to compare expected action outcomes to actual action outcomes. If the expected and actual outcomes match, the hippocampus transmits a signal to prefrontal cortex which strengthens or consolidates the action plan. If a mismatch occurs, the hippocampus transmits an error signal to the prefrontal cortex which facilitates a reformulation of the action plan, fostering behavioral flexibility. The corollary discharge provides the self-referential component to the episodic memory, affording the personal and subjective experience of what behavior was carried out, when it was carried out, and in what context (where it occurred. Such a perspective can be applied to episodic memory in humans, and episodic-like memory in subhuman animal species.

  8. Spatial cognition in apes and humans.

    Science.gov (United States)

    Gentner, Dedre

    2007-05-01

    The debate on whether language influences cognition is sometimes seen as a simple dichotomy: cognitive development is governed either by innate predispositions or by influences of language and culture. In two recent papers on spatial cognition, Haun and colleagues break new ground in bringing together a comparative cognition approach with a cross-linguistic framework to arrive at a third position: that humans begin with the same spatial reference frames as our near relatives, the great apes, and diverge later owing to the influence of language and culture.

  9. Dopaminergic modulation of positive expectations for goal-directed action: evidence from Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Noham eWolpe

    2015-10-01

    Full Text Available Parkinson’s disease (PD impairs the control of movement and cognition, including the planning of action and its consequences. This provides the opportunity to study the dopaminergic influences on the perception and awareness of action. Here we examined the perception of the outcome of a goal-directed action made by medicated patients with PD. A visuomotor task probed the integration of sensorimotor signals with the positive expectations of outcomes (Self priors, which in healthy adults bias perception towards success in proportion to trait optimism. We tested the hypotheses that (i the priors on the perception of the consequences of one’s own actions differ between patients and age- and sex-matched controls, and (ii that these priors are modulated by the levodopa dose equivalent in patients. There was no overall difference between patients and controls in the perceptual priors used. However, the precision of patient priors was inversely related to their levodopa dose equivalent. Patients with high levodopa dose equivalent showed more accurate priors, representing predictions that were closer to the true distribution of performance. Such accuracy has previously been demonstrated when observing the actions of others, suggesting abnormal awareness of action in these patients. These results confirm a link between dopamine and the positive expectation of the outcome of one’s own actions, and may have implications for the management of PD.

  10. New thinking: the evolution of human cognition.

    Science.gov (United States)

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  11. Language Diversity and Cognitive Representations. Human Cognitive Processing, Volume 3.

    Science.gov (United States)

    Fuchs, Catherine, Ed.; Robert, Stephane, Ed.

    This book brings together the contributions of individual language scholars, linguists, anthropologists, psychologists, and neurophysicians. Each chapter focuses on the human cognitive processes involved in language activity and the impact of language diversity on them. The basic issue is how to correlate language diversity with the universality…

  12. Brain activation related to combinations of gaze position, visual input, and goal-directed hand movements.

    Science.gov (United States)

    Bédard, Patrick; Wu, Min; Sanes, Jerome N

    2011-06-01

    Humans reach to and acquire objects by transforming visual targets into action commands. How the brain integrates goals specified in a visual framework to signals into a suitable framework for an action plan requires clarification whether visual input, per se, interacts with gaze position to formulate action plans. To further evaluate brain control of visual-motor integration, we assessed brain activation, using functional magnetic resonance imaging. Humans performed goal-directed movements toward visible or remembered targets while fixating gaze left or right from center. We dissociated movement planning from performance using a delayed-response task and manipulated target visibility by its availability throughout the delay or blanking it 500 ms after onset. We found strong effects of gaze orientation on brain activation during planning and interactive effects of target visibility and gaze orientation on movement-related activation during performance in parietal and premotor cortices (PM), cerebellum, and basal ganglia, with more activation for rightward gaze at a visible target and no gaze modulation for movements directed toward remembered targets. These results demonstrate effects of gaze position on PM and movement-related processes and provide new information how visual signals interact with gaze position in transforming visual inputs into motor goals.

  13. Human agency in social cognitive theory.

    Science.gov (United States)

    Bandura, A

    1989-09-01

    The present article examines the nature and function of human agency within the conceptual model of triadic reciprocal causation. In analyzing the operation of human agency in this interactional causal structure, social cognitive theory accords a central role to cognitive, vicarious, self-reflective, and self-regulatory processes. The issues addressed concern the psychological mechanisms through which personal agency is exercised, the hierarchical structure of self-regulatory systems, eschewal of the dichotomous construal of self as agent and self as object, and the properties of a nondualistic but nonreductional conception of human agency. The relation of agent causality to the fundamental issues of freedom and determinism is also analyzed.

  14. Cognitive modelling of human temporal reasoning

    NARCIS (Netherlands)

    ter Meulen, AGB

    2003-01-01

    Modelling human reasoning characterizes the fundamental human cognitive capacity to describe our past experience and use it to form expectations as well as plan and direct our future actions. Natural language semantics analyzes dynamic forms of reasoning in which the real-time order determines the

  15. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.

    Science.gov (United States)

    Decker, Johannes H; Otto, A Ross; Daw, Nathaniel D; Hartley, Catherine A

    2016-06-01

    Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults performed a sequential reinforcement-learning task that enabled estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was apparent in choice behavior across all age groups, a model-based strategy was absent in children, became evident in adolescents, and strengthened in adults. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior.

  16. Human and animal cognition: continuity and discontinuity.

    Science.gov (United States)

    Premack, David

    2007-08-28

    Microscopic study of the human brain has revealed neural structures, enhanced wiring, and forms of connectivity among nerve cells not found in any animal, challenging the view that the human brain is simply an enlarged chimpanzee brain. On the other hand, cognitive studies have found animals to have abilities once thought unique to the human. This suggests a disparity between brain and mind. The suggestion is misleading. Cognitive research has not kept pace with neural research. Neural findings are based on microscopic study of the brain and are primarily cellular. Because cognition cannot be studied microscopically, we need to refine the study of cognition by using a different approach. In examining claims of similarity between animals and humans, one must ask: What are the dissimilarities? This approach prevents confusing similarity with equivalence. We follow this approach in examining eight cognitive cases--teaching, short-term memory, causal reasoning, planning, deception, transitive inference, theory of mind, and language--and find, in all cases, that similarities between animal and human abilities are small, dissimilarities large. There is no disparity between brain and mind.

  17. Goal-Directed Modulation of Neural Memory Patterns: Implications for fMRI-Based Memory Detection.

    Science.gov (United States)

    Uncapher, Melina R; Boyd-Meredith, J Tyler; Chow, Tiffany E; Rissman, Jesse; Wagner, Anthony D

    2015-06-03

    Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel pattern analysis (MVPA) of fMRI data. Brain-based memory detection--if valid and reliable--would have clear utility beyond the domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory decoding validity may be the deployment of "countermeasures": strategies used to mask memory signals. Here we tested the vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identification. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on their real-world utility.

  18. Feature interactions enable decoding of sensorimotor transformations for goal-directed movement.

    Science.gov (United States)

    Barany, Deborah A; Della-Maggiore, Valeria; Viswanathan, Shivakumar; Cieslak, Matthew; Grafton, Scott T

    2014-05-14

    Neurophysiology and neuroimaging evidence shows that the brain represents multiple environmental and body-related features to compute transformations from sensory input to motor output. However, it is unclear how these features interact during goal-directed movement. To investigate this issue, we examined the representations of sensory and motor features of human hand movements within the left-hemisphere motor network. In a rapid event-related fMRI design, we measured cortical activity as participants performed right-handed movements at the wrist, with either of two postures and two amplitudes, to move a cursor to targets at different locations. Using a multivoxel analysis technique with rigorous generalization tests, we reliably distinguished representations of task-related features (primarily target location, movement direction, and posture) in multiple regions. In particular, we identified an interaction between target location and movement direction in the superior parietal lobule, which may underlie a transformation from the location of the target in space to a movement vector. In addition, we found an influence of posture on primary motor, premotor, and parietal regions. Together, these results reveal the complex interactions between different sensory and motor features that drive the computation of sensorimotor transformations.

  19. Oxytocin, testosterone, and human social cognition.

    Science.gov (United States)

    Crespi, Bernard J

    2016-05-01

    I describe an integrative social-evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co-opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness-enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness-reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self-oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under-developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively 'hyper-developed' social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint

  20. Evidence for a Cognitive Control Network for Goal-Directed Attention in Simple Sustained Attention

    Science.gov (United States)

    Hilti, Caroline C.; Jann, Kay; Heinemann, Doerthe; Federspiel, Andrea; Dierks, Thomas; Seifritz, Erich; Cattapan-Ludewig, Katja

    2013-01-01

    The deterioration of performance over time is characteristic for sustained attention tasks. This so-called "performance decrement" is measured by the increase of reaction time (RT) over time. Some behavioural and neurobiological mechanisms of this phenomenon are not yet fully understood. Behaviourally, we examined the increase of RT over time and…

  1. Pattern Separation and Goal-Directed Behavior in the Aged Canine

    Science.gov (United States)

    Snigdha, Shikha; Yassa, Michael A.; deRivera, Christina; Milgram, Norton W.; Cotman, Carl W.

    2017-01-01

    The pattern separation task has recently emerged as a behavioral model of hippocampus function and has been used in several pharmaceutical trials. The canine is a useful model to evaluate a multitude of hippocampal-dependent cognitive tasks that parallel those in humans. Thus, this study was designed to evaluate the suitability of pattern…

  2. Electromyographic analysis of goal-directed grasping behavior in the American lobster.

    Science.gov (United States)

    Tomina, Yusuke; Takahata, Masakazu

    2014-10-15

    Animals spontaneously initiate goal-directed behavior including foraging action based on their appetitive motivation. The American lobster Homarus americanus exhibits grasping behavior with its crusher claw as feeding behavior that can be initiated after appropriate operant conditioning. In order to quantitatively characterize the goal-directed grasping behavior with a time resolution fine enough for neurophysiological analysis of its initiation and control mechanisms, we made simultaneous electromyographic (EMG) recording from grasping- and reaching-related muscles of the crusher claw while animals initiated grasping behavior. We developed an in vivo extracellular recording chamber that allowed the animal under a semi-restrained condition to perform operant reward learning of claw grasping. Three muscles in the crusher claw (propodite-dactyl closer/opener and coxal protractor) were found to be closely associated with spontaneous grasping behavior. In spontaneous grasping, the activation of those muscles consistently preceded the grasping onset time and exhibited different activity patterns from the grasp induced by a mechanical stimulus. Furthermore, we found that the timing of coxal protractor activation was closer to the grasp onset and its activity was briefer for goal-directed grasping behavior in trained and hungry animals than for non-goal-directed spontaneous grasping behavior in naive or satiated animals. It is suggested that the goal-directed grasping behavior of lobster is characterized, at least partly, by experience-dependent briefer activity of specific muscles involved in reaching action.

  3. Educational Cognitive Technologies as Human Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Marja Nesterova

    2017-07-01

    Full Text Available Modernity is characterized by profound changes in all spheres of human life caused by the global transformations on macro and micro levels of social reality. These changes allow us to speak about the present as the era of civilizational transition in the mode of uncertainty. Therefore, this situation demands qualitative transformations of human adaptive strategies and educational technologies accordingly. The dominant role in the dynamics of pedagogics and andragogy’s landscape belongs to transformative learning. The transformative learning theory is considered as the relevant approach to education of the individual, which is able to become an autonomous communicative actor of the social complexity. The article considers the cognitive technologies of social cohesion development and perspectives of their implementation in the educational dimension. In addition to implementing the principles of inclusion, equity in education, an important factor for improving social cohesion, stability and unity of society is the development of cognitive educational technologies. The key factors and foundations for the cognitive educational technologies are transversal competencies. They create the conditions for civil, public dialogue, non-violent type of communication. These “21st century skills” are extremely important for better human adaptation. One of the aspects and roots of social adaptation is social cohesion. Mutual determinations and connections between social cohesion development and transversal competences have been shown. The perspective direction of further researches is to find a methodological base for the further development of cognitive education technologies and platform for realization of innovative services for educational programs. New educational paradigm offers the concept of human adaptation as cognitive effectiveness and how to reach it through educational technologies. The article includes topics of creative thinking, teambuilding

  4. Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning.

    Science.gov (United States)

    Chalmers, Eric; Luczak, Artur; Gruber, Aaron J

    2016-01-01

    The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL) to guide "goal-directed" behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals' ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, "forward sweeps" through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort) required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks.

  5. Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Eric Chalmers

    2016-12-01

    Full Text Available The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL to guide goal-directed behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals’ ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, forward sweeps through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks.

  6. How Has the Internet Reshaped Human Cognition?

    Science.gov (United States)

    Loh, Kep Kee; Kanai, Ryota

    2016-10-01

    Throughout our evolutionary history, our cognitive systems have been altered by the advent of technological inventions such as primitive tools, spoken language, writing, and arithmetic systems. Thirty years ago, the Internet surfaced as the latest technological invention poised to deeply reshape human cognition. With its multifaceted affordances, the Internet environment has profoundly transformed our thoughts and behaviors. Growing up with Internet technologies, "Digital Natives" gravitate toward "shallow" information processing behaviors characterized by rapid attention shifting and reduced deliberations. They engage in increased multitasking behaviors that are linked to increased distractibility and poor executive control abilities. Digital natives also exhibit higher prevalence of Internet-related addictive behaviors that reflect altered reward-processing and self-control mechanisms. Recent neuroimaging investigations have suggested associations between these Internet-related cognitive impacts and structural changes in the brain. Against mounting apprehension over the Internet's consequences on our cognitive systems, several researchers have lamented that these concerns were often exaggerated beyond existing scientific evidence. In the present review, we aim to provide an objective overview of the Internet's impacts on our cognitive systems. We critically discuss current empirical evidence about how the Internet environment has altered the cognitive behaviors and structures involved in information processing, executive control, and reward-processing.

  7. Dissociation between goal-directed and discrete response localization in a patient with bilateral cortical blindness.

    Science.gov (United States)

    Buetti, Simona; Tamietto, Marco; Hervais-Adelman, Alexis; Kerzel, Dirk; de Gelder, Beatrice; Pegna, Alan J

    2013-10-01

    We investigated localization performance of simple targets in patient TN, who suffered bilateral damage of his primary visual cortex and shows complete cortical blindness. Using a two-alternative forced-choice paradigm, TN was asked to guess the position of left-right targets with goal-directed and discrete manual responses. The results indicate a clear dissociation between goal-directed and discrete responses. TN pointed toward the correct target location in approximately 75% of the trials but was at chance level with discrete responses. This indicates that the residual ability to localize an unseen stimulus depends critically on the possibility to translate a visual signal into a goal-directed motor output at least in certain forms of blindsight.

  8. Intraoperative fluid management in open gastrointestinal surgery: goal-directed versus restrictive

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-10-01

    Full Text Available OBJECTIVE: The optimal strategy for fluid management during gastrointestinal surgery remains unclear. Minimizing the variation in arterial pulse pressure, which is induced by mechanical ventilation, is a potential strategy to improve postoperative outcomes. We tested this hypothesis in a prospective, randomized study with lactated Ringer's solution and 6% hydroxyethyl starch solution. METHOD: A total of 60 patients who were undergoing gastrointestinal surgery were randomized into a restrictive lactated Ringer's group (n = 20, a goal-directed lactated Ringer's group (n = 20 and a goal-directed hydroxyethyl starch group (n = 20. The goal-directed fluid treatment was guided by pulse pressure variation, which was recorded during surgery using a simple manual method with a Datex Ohmeda S/5 Monitor and minimized to 11% or less by volume loading with either lactated Ringer's solution or 6% hydroxyethyl starch solution (130/0.4. The postoperative flatus time, the length of hospital stay and the incidence of complications were recorded as endpoints. RESULTS: The goal-directed lactated Ringer's group received the greatest amount of total operative fluid compared with the two other groups. The flatus time and the length of hospital stay in the goal-directed hydroxyethyl starch group were shorter than those in the goal-directed lactated Ringer's group and the restrictive lactated Ringer's group. No significant differences were found in the postoperative complications among the three groups. CONCLUSION: Monitoring and minimizing pulse pressure variation by 6% hydroxyethyl starch solution (130/0.4 loading during gastrointestinal surgery improves postoperative outcomes and decreases the discharge time of patients who are graded American Society of Anesthesiologists physical status I/II.

  9. Intraoperative goal directed hemodynamic therapy in noncardiac surgery: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Javier Ripollés

    Full Text Available Abstract Background: The goal directed hemodynamic therapy is an approach focused on the use of cardiac output and related parameters as end-points for fluids and drugs to optimize tissue perfusion and oxygen delivery. Primary aim: To determine the effects of intraoperative goal directed hemodynamic therapy on postoperative complications rates. Methods: A meta-analysis was carried out of the effects of goal directed hemodynamic therapy in adult noncardiac surgery on postoperative complications and mortality using Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology. A systematic search was performed in Medline PubMed, Embase, and the Cochrane Library (last update, October 2014. Inclusion criteria were randomized clinical trials in which intraoperative goal directed hemodynamic therapy was compared to conventional fluid management in noncardiac surgery. Exclusion criteria were trauma and pediatric surgery studies and that using pulmonary artery catheter. End-points were postoperative complications (primary and mortality (secondary. Those studies that fulfilled the entry criteria were examined in full and subjected to quantifiable analysis, predefined subgroup analysis (stratified by type of monitor, therapy, and hemodynamic goal, and predefined sensitivity analysis. Results: 51 RCTs were initially identified, 24 fulfilling the inclusion criteria. 5 randomized clinical trials were added by manual search, resulting in 29 randomized clinical trials in the final analysis, including 2654 patients. A significant reduction in complications for goal directed hemodynamic therapy was observed (RR: 0.70, 95% CI: 0.62-0.79, p < 0.001. No significant decrease in mortality was achieved (RR: 0.76, 95% CI: 0.45-1.28, p = 0.30. Quality sensitive analyses confirmed the main overall results. Conclusions: Intraoperative goal directed hemodynamic therapy with minimally invasive monitoring decreases postoperative complications in noncardiac

  10. Monitoring of peri-operative fluid administration by individualized goal-directed therapy

    DEFF Research Database (Denmark)

    Bundgaard-Nielsen, M; Holte, Kathrine; Secher, N H;

    2007-01-01

    (n = 725) found a reduced hospital stay. Post-operative nausea and vomiting (PONV) and ileus were reduced in three studies and complications were reduced in four studies. Of the monitors that may be applied for goal-directed therapy, only oesophageal Doppler has been tested adequately; however......, several other options exist. CONCLUSION: Goal-directed therapy with the maximization of flow-related haemodynamic variables reduces hospital stay, PONV and complications, and facilitates faster gastrointestinal functional recovery. So far, oesophageal Doppler is recommended, but other monitors...

  11. Embodied Niche Construction in the Hominin Lineage: Semiotic Structure and Sustained Attention in Human Embodied Cognition

    Directory of Open Access Journals (Sweden)

    Aaron Jonas Stutz

    2014-08-01

    Full Text Available Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  12. Towards a three-dimensional framework of centrally regulated and goal-directed exercise behaviour: a narrative review.

    Science.gov (United States)

    Venhorst, Andreas; Micklewright, Dominic; Noakes, Timothy D

    2017-08-23

    The Central Governor Model (CGM) ignited a paradigm shift from concepts of catastrophic failure towards central regulation of exercise performance. However, the CGM has focused on the central integration of afferent feedback in homeostatic control. Accordingly, it neglected the important role of volitional self-regulatory control and the integration of affective components inherently attached to all physiological cues. Another limitation is the large reliance on the Gestalt phenomenon of perceived exertion. Thus, progress towards a comprehensive multidimensional model of perceived fatigability and exercise regulation is needed. Drawing on Gate Control Theory of pain, we propose a three-dimensional framework of centrally regulated and goal-directed exercise behaviour, which differentiates between sensory, affective and cognitive processes shaping the perceptual milieu during exercise. We propose that: (A) perceived mental strain and perceived physical strain are primary determinants of pacing behaviour reflecting sensory-discriminatory processes necessary to align planned behaviour with current physiological state, (B) core affect plays a primary and mediatory role in exercise and performance regulation, and its underlying two dimensions hedonicity and arousal reflect affective-motivational processes triggering approach and avoidance behaviour, and (C) the mindset-shift associated with an action crisis plays a primary role in volitional self-regulatory control reflecting cognitive-evaluative processes between further goal-pursuit and goal-disengagement. The proposed framework has the potential to enrich theory development in centrally regulated and goal-directed exercise behaviour by emphasising the multidimensional dynamic processes underpinning perceived fatigability and provides a practical outline for investigating the complex interplay between the psychophysiological determinants of pacing and performance during prolonged endurance exercise. © Article author

  13. Principles of goal-directed spatial robot navigation in biomimetic models.

    Science.gov (United States)

    Milford, Michael; Schulz, Ruth

    2014-11-01

    Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in 'real-world' environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.

  14. Psychometric assessment of scales for a Model of Goal Directed Vegetable Parenting Practices (MGDVPP)

    Science.gov (United States)

    Vegetable intake has been related to lower risk of chronic illnesses in the adult years. The habit of vegetable intake should be established early in life, but many parents of preschoolers report not being able to get their child to eat vegetables. The Model of Goal Directed Behavior (MGDB) has been...

  15. Emotion, Intent and Voluntary Movement in Children with Autism. an Example: The Goal Directed Locomotion

    Science.gov (United States)

    Longuet, Sophie; Ferrel-Chapus, Carole; Oreve, Marie-Joelle; Chamot, Jean-Marc; Vernazza-Martin, Sylvie

    2012-01-01

    This article focuses on the impact of intentionality on goal directed locomotion in healthy and autistic children. Closely linked with emotions and motivation, it is directly connected with movement planning. Is planning only preserved when the goal of the action appears motivating for healthy and autistic children? Is movement programming similar…

  16. Counseling for the Transition to Adulthood as Joint, Goal-Directed Action

    Science.gov (United States)

    Young, Richard A.; Marshall, Sheila K.; Foulkes, Kristen; Haber, Carla; Lee, Celine S. M.; Penner, Carey; Rostram, Hajara

    2011-01-01

    Transition is important in the career literature as it identifies times at which people are often likely to consult counselors about issues for which they need help. However, the counseling literature has not provided a conceptualization of, or research on, the joint, goal-directed actions and projects of the counselor and the client, which…

  17. The why, what, where, when and how of goal-directed choice: neuronal and computational principles

    NARCIS (Netherlands)

    Verschure, P.F.M.J.; Pennartz, C.M.A.; Pezzulo, G.

    2014-01-01

    The central problems that goal-directed animals must solve are: ‘What do I need and Why, Where and When can this be obtained, and How do I get it?' or the H4W problem. Here, we elucidate the principles underlying the neuronal solutions to H4W using a combination of neurobiological and neurorobotic a

  18. Goal-directed action control in children with autism spectrum disorders

    NARCIS (Netherlands)

    Geurts, H.M.; de Wit, S.

    2014-01-01

    Repetitive behavior is a key characteristic of autism spectrum disorders. Our aim was to investigate the hypothesis that this abnormal behavioral repetition results from a tendency to over-rely on habits at the expense of flexible, goal-directed action. Twenty-four children with autism spectrum diso

  19. Goal-Directed and Goal-Less Imitation in Autism Spectrum Disorder

    Science.gov (United States)

    Wild, Kelly S.; Poliakoff, Ellen; Jerrison, Andrew; Gowen, Emma

    2012-01-01

    To investigate how people with Autism are affected by the presence of goals during imitation, we conducted a study to measure movement kinematics and eye movements during the imitation of goal-directed and goal-less hand movements. Our results showed that a control group imitated changes in movement kinematics and increased the level that they…

  20. Four Weeks of Goal-Directed Learning in Primary Physical Education Classes

    NARCIS (Netherlands)

    Platvoet, Sebastiaan W. J.; Elferink-Gemser, Marije T.; Kannekens, Rianne; de Niet, Mark; Visscher, Chris

    2016-01-01

    Relatively little is known about how practice relates to children's improvement in gross motor skill performance. The aim of this study is to determine to what extent 6- and 7-year-old children improve their gross motor skill performance in a four-week period, in which goal-directed learning is stim

  1. Goal directed preemptive ephedrine attenuates the reperfusion syndrome during adult living donor liver transplantation

    Directory of Open Access Journals (Sweden)

    Nirmeen A. Fayed

    2014-04-01

    Conclusion: The preemptive goal directed titration of ephedrine against a target MAP pre-reperfusion could decrease the incidence of PRS by 40%, attenuated the hypotensive response to reperfusion and decreased the need for postreperfusion vasoconstrictor support without over shooting of any of the monitored hemodynamic indices.

  2. Internally generated sequences in learning and executing goal-directed behavior

    NARCIS (Netherlands)

    Pezzulo, G.; van der Meer, M.A.A.; Lansink, C.S.; Pennartz, C.M.A.

    2014-01-01

    A network of brain structures including hippocampus (HC), prefrontal cortex, and striatum controls goal-directed behavior and decision making. However, the neural mechanisms underlying these functions are unknown. Here, we review the role of 'internally generated sequences': structured, multi-neuron

  3. Goal directed reaching and postural control in supine position in healthy infants

    NARCIS (Netherlands)

    Fallang, B; Saugstad, OD; Hadders-Algra, M

    2000-01-01

    The present study focussed on the development and interaction of reaching and posture in supine position in young infants. The kinematics of goal directed reaches and the concurrent ground reaction forces of the total body centre of pressure (COP) in cranial-caudal and medial-lateral direction were

  4. The Presence or Absence of Older Siblings and Variation in Infant Goal-Directed Motor Development

    Science.gov (United States)

    Reid, Vincent; Stahl, Daniel; Striano, Tricia

    2010-01-01

    This study investigates the relationship between having an older sibling and early goal-directed motor development. In a longitudinal study, infants were filmed playing with their mother and were observed at 5 and 12 months of age. After each observation, they were assessed with the Mental Bayley Scale. From the mother-child interaction, playing…

  5. Crystalloids versus colloids for goal-directed fluid therapy in major surgery

    Science.gov (United States)

    Hiltebrand, Luzius B; Kimberger, Oliver; Arnberger, Michael; Brandt, Sebastian; Kurz, Andrea; Sigurdsson, Gisli H

    2009-01-01

    Introduction Perioperative hypovolemia arises frequently and contributes to intestinal hypoperfusion and subsequent postoperative complications. Goal-directed fluid therapy might reduce these complications. The aim of this study was to compare the effects of goal-directed administration of crystalloids and colloids on the distribution of systemic, hepatosplanchnic, and microcirculatory (small intestine) blood flow after major abdominal surgery in a clinically relevant pig model. Methods Twenty-seven pigs were anesthetized and mechanically ventilated and underwent open laparotomy. They were randomly assigned to one of three treatment groups: the restricted Ringer lactate (R-RL) group (n = 9) received 3 mL/kg per hour of RL, the goal-directed RL (GD-RL) group (n = 9) received 3 mL/kg per hour of RL and intermittent boluses of 250 mL of RL, and the goal-directed colloid (GD-C) group (n = 9) received 3 mL/kg per hour of RL and boluses of 250 mL of 6% hydroxyethyl starch (130/0.4). The latter two groups received a bolus infusion when mixed venous oxygen saturation was below 60% ('lockout' time of 30 minutes). Regional blood flow was measured in the superior mesenteric artery and the celiac trunk. In the small bowel, microcirculatory blood flow was measured using laser Doppler flowmetry. Intestinal tissue oxygen tension was measured with intramural Clark-type electrodes. Results After 4 hours of treatment, arterial blood pressure, cardiac output, mesenteric artery flow, and mixed oxygen saturation were significantly higher in the GD-C and GD-RL groups than in the R-RL group. Microcirculatory flow in the intestinal mucosa increased by 50% in the GD-C group but remained unchanged in the other two groups. Likewise, tissue oxygen tension in the intestine increased by 30% in the GD-C group but remained unchanged in the GD-RL group and decreased by 18% in the R-RL group. Mesenteric venous glucose concentrations were higher and lactate levels were lower in the GD-C group

  6. Advanced Parkinson’s disease effect on goal-directed and habitual processes involved in visuomotor associative learning

    Directory of Open Access Journals (Sweden)

    Fadila eHadj-Bouziane

    2013-01-01

    Full Text Available The present behavioral study readdresses the question of habit learning in Parkinson's disease. Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding versus following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under sixty years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by Parkinson's disease. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced Parkinson's disease stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed

  7. Slips of Action and Sequential Decisions : A Cross-Validation Study of Tasks Assessing Habitual and Goal-Directed Action Control

    NARCIS (Netherlands)

    Sjoerds, Z.; Dietrich, A.; Deserno, L.; de Wit, S.; Villringer, A.; Heinze, H.J.; Schlagenhauf, F.; Horstmann, A.

    2016-01-01

    Instrumental learning and decision-making rely on two parallel systems: a goal-directed and a habitual system. In the past decade, several paradigms have been developed to study these systems in animals and humans by means of e.g., overtraining, devaluation procedures and sequential decision-making.

  8. Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity.

    Science.gov (United States)

    Janssen, Lieneke K; Duif, Iris; van Loon, Ilke; Wegman, Joost; de Vries, Jeanne H M; Cools, Roshan; Aarts, Esther

    2017-02-01

    Loss of lateral prefrontal cortex (lPFC)-mediated attentional control may explain the automatic tendency to eat in the face of food. Here, we investigate the neurocognitive mechanism underlying attentional bias to food words and its association with obesity using a food Stroop task. We tested 76 healthy human subjects with a wide body mass index (BMI) range (19-35kg/m(2)) using fMRI. As a measure of obesity we calculated individual obesity scores based on BMI, waist circumference and waist-to-hip ratio using principal component analyses. To investigate the automatic tendency to overeat directly, the same subjects performed a separate behavioral outcome devaluation task measuring the degree of goal-directed versus automatic food choices. We observed that increased obesity scores were associated with diminished lPFC responses during food attentional bias. This was accompanied by decreased goal-directed control of food choices following outcome devaluation. Together these findings suggest that deficient control of both food-directed attention and choice may contribute to obesity, particularly given our obesogenic environment with food cues everywhere, and the choice to ignore or indulge despite satiety.

  9. Ethanol seeking by Long Evans rats is not always a goal-directed behavior.

    Directory of Open Access Journals (Sweden)

    Regina A Mangieri

    Full Text Available BACKGROUND: Two parallel and interacting processes are said to underlie animal behavior, whereby learning and performance of a behavior is at first via conscious and deliberate (goal-directed processes, but after initial acquisition, the behavior can become automatic and stimulus-elicited (habitual. With respect to instrumental behaviors, animal learning studies suggest that the duration of training and the action-outcome contingency are two factors involved in the emergence of habitual seeking of "natural" reinforcers (e.g., sweet solutions, food or sucrose pellets. To rigorously test whether behaviors reinforced by abused substances such as ethanol, in particular, similarly become habitual was the primary aim of this study. METHODOLOGY/PRINCIPAL FINDINGS: Male Long Evans rats underwent extended or limited operant lever press training with 10% sucrose/10% ethanol (10S10E reinforcement (variable interval (VI or (VR ratio schedule of reinforcement, or with 10% sucrose (10S reinforcement (VI schedule only. Once training and pretesting were complete, the impact of outcome devaluation on operant behavior was evaluated after lithium chloride injections were paired with the reinforcer, or unpaired 24 hours later. After limited, but not extended instrumental training, lever pressing by groups trained under VR with 10S10E and under VI with 10S was sensitive to outcome devaluation. In contrast, responding by both the extended and limited training 10S10E VI groups was not sensitive to ethanol devaluation during the test for habitual behavior. CONCLUSIONS/SIGNIFICANCE: Operant behavior by rats trained to self-administer an ethanol-sucrose solution showed variable sensitivity to a change in the value of ethanol, with relative insensitivity developing sooner in animals that received time-variable ethanol reinforcement during training sessions. One important implication, with respect to substance abuse in humans, is that initial learning about the

  10. Goal-Directed Resilience in Training (GRIT: A Biopsychosocial Model of Self-Regulation, Executive Functions, and Personal Growth (Eudaimonia in Evocative Contexts of PTSD, Obesity, and Chronic Pain

    Directory of Open Access Journals (Sweden)

    Martha Kent

    2015-06-01

    Full Text Available This paper presents a biopsychosocial model of self-regulation, executive functions, and personal growth that we have applied to Goal-Directed Resilience in Training (GRIT interventions for posttraumatic stress disorder (PTSD, obesity, and chronic pain. Implications of the training for the prevention of maladaptation, including psychological distress and health declines, and for promoting healthy development are addressed. Existing models of attention, cognition, and physiology were sourced in combination with qualitative study findings in developing this resilience skills intervention. We used qualitative methods to uncover life skills that are most salient in cases of extreme adversity, finding that goal-directed actions that reflected an individual’s values and common humanity with others created a context-independent domain that could compensate for the effects of adversity. The efficacy of the resilience skills intervention for promoting positive emotion, enhancing neurocognitive capacities, and reducing symptoms was investigated in a randomized controlled trial with a veteran population diagnosed with PTSD. The intervention had low attrition (8% and demonstrated improvement on symptom and wellbeing outcomes, indicating that the intervention may be efficacious for PTSD and that it taps into those mechanisms which the intervention was designed to address. Feasibility studies for groups with comorbid diagnoses, such as chronic pain and PTSD, also showed positive results, leading to the application of the GRIT intervention to other evocative contexts such as obesity and chronic pain.

  11. Goal-Directed Resilience in Training (GRIT): A Biopsychosocial Model of Self-Regulation, Executive Functions, and Personal Growth (Eudaimonia) in Evocative Contexts of PTSD, Obesity, and Chronic Pain

    Science.gov (United States)

    Kent, Martha; Rivers, Crystal T.; Wrenn, Glenda

    2015-01-01

    This paper presents a biopsychosocial model of self-regulation, executive functions, and personal growth that we have applied to Goal-Directed Resilience in Training (GRIT) interventions for posttraumatic stress disorder (PTSD), obesity, and chronic pain. Implications of the training for the prevention of maladaptation, including psychological distress and health declines, and for promoting healthy development are addressed. Existing models of attention, cognition, and physiology were sourced in combination with qualitative study findings in developing this resilience skills intervention. We used qualitative methods to uncover life skills that are most salient in cases of extreme adversity, finding that goal-directed actions that reflected an individual’s values and common humanity with others created a context-independent domain that could compensate for the effects of adversity. The efficacy of the resilience skills intervention for promoting positive emotion, enhancing neurocognitive capacities, and reducing symptoms was investigated in a randomized controlled trial with a veteran population diagnosed with PTSD. The intervention had low attrition (8%) and demonstrated improvement on symptom and wellbeing outcomes, indicating that the intervention may be efficacious for PTSD and that it taps into those mechanisms which the intervention was designed to address. Feasibility studies for groups with comorbid diagnoses, such as chronic pain and PTSD, also showed positive results, leading to the application of the GRIT intervention to other evocative contexts such as obesity and chronic pain. PMID:26039013

  12. Internally generated sequences in learning and executing goal-directed behavior.

    Science.gov (United States)

    Pezzulo, Giovanni; van der Meer, Matthijs A A; Lansink, Carien S; Pennartz, Cyriel M A

    2014-12-01

    A network of brain structures including hippocampus (HC), prefrontal cortex, and striatum controls goal-directed behavior and decision making. However, the neural mechanisms underlying these functions are unknown. Here, we review the role of 'internally generated sequences': structured, multi-neuron firing patterns in the network that are not confined to signaling the current state or location of an agent, but are generated on the basis of internal brain dynamics. Neurophysiological studies suggest that such sequences fulfill functions in memory consolidation, augmentation of representations, internal simulation, and recombination of acquired information. Using computational modeling, we propose that internally generated sequences may be productively considered a component of goal-directed decision systems, implementing a sampling-based inference engine that optimizes goal acquisition at multiple timescales of on-line choice, action control, and learning.

  13. Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal-Directed Behavior.

    Science.gov (United States)

    Sippy, Tanya; Lapray, Damien; Crochet, Sylvain; Petersen, Carl C H

    2015-10-21

    Goal-directed sensorimotor transformation drives important aspects of mammalian behavior. The striatum is thought to play a key role in reward-based learning and action selection, receiving glutamatergic sensorimotor signals and dopaminergic reward signals. Here, we obtain whole-cell membrane potential recordings from the dorsolateral striatum of mice trained to lick a reward spout after a whisker deflection. Striatal projection neurons showed strong task-related modulation, with more depolarization and action potential firing on hit trials compared to misses. Direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, exhibited a prominent early sensory response. Optogenetic stimulation of direct pathway striatonigral neurons, but not indirect pathway striatopallidal neurons, readily substituted for whisker stimulation evoking a licking response. Our data are consistent with direct pathway striatonigral neurons contributing a "go" signal for goal-directed sensorimotor transformation leading to action initiation. VIDEO ABSTRACT.

  14. Human Behavior Cognition Using Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Jyrki Kaistinen

    2013-01-01

    Full Text Available This research focuses on sensing context, modeling human behavior and developing a new architecture for a cognitive phone platform. We combine the latest positioning technologies and phone sensors to capture human movements in natural environments and use the movements to study human behavior. Contexts in this research are abstracted as a Context Pyramid which includes six levels: Raw Sensor Data, Physical Parameter, Features/Patterns, Simple Contextual Descriptors, Activity-Level Descriptors, and Rich Context. To achieve implementation of the Context Pyramid on a cognitive phone, three key technologies are utilized: ubiquitous positioning, motion recognition, and human behavior modeling. Preliminary tests indicate that we have successfully achieved the Activity-Level Descriptors level with our LoMoCo (Location-Motion-Context model. Location accuracy of the proposed solution is up to 1.9 meters in corridor environments and 3.5 meters in open spaces. Test results also indicate that the motion states are recognized with an accuracy rate up to 92.9% using a Least Square-Support Vector Machine (LS-SVM classifier.

  15. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new “foil” information

    OpenAIRE

    Vogelsang, David A.; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-01-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new “foil” words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlyin...

  16. A Prefrontal-Hippocampal Comparator for Goal-Directed Behavior: The Intentional Self and Episodic Memory

    OpenAIRE

    Robert eNuman

    2015-01-01

    The hypothesis of this article is that the interactions between the prefrontal cortex and the hippocampus play a critical role in the modulation of goal-directed self-action and the strengthening of episodic memories. We describe various theories that model a comparator function for the hippocampus, and then elaborate the empirical evidence that supports these theories. One theory which describes a prefrontal-hippocampal comparator for voluntary action is emphasized. Action plans are essentia...

  17. How to Build an Intentional Android: Infants' Imitation of a Robot's Goal-Directed Actions

    Science.gov (United States)

    Itakura, Shoji; Ishida, Hiraku; Kanda, Takayuki; Shimada, Yohko; Ishiguro, Hiroshi; Lee, Kang

    2008-01-01

    This study examined whether young children are able to imitate a robot's goal-directed actions. Children (24-35 months old) viewed videos showing a robot attempting to manipulate an object (e.g., putting beads inside a cup) but failing to achieve its goal (e.g., beads fell outside the cup). In 1 video, the robot made eye contact with a human…

  18. How to Build an Intentional Android: Infants' Imitation of a Robot's Goal-Directed Actions

    Science.gov (United States)

    Itakura, Shoji; Ishida, Hiraku; Kanda, Takayuki; Shimada, Yohko; Ishiguro, Hiroshi; Lee, Kang

    2008-01-01

    This study examined whether young children are able to imitate a robot's goal-directed actions. Children (24-35 months old) viewed videos showing a robot attempting to manipulate an object (e.g., putting beads inside a cup) but failing to achieve its goal (e.g., beads fell outside the cup). In 1 video, the robot made eye contact with a human…

  19. Developing Mobile Clinical Decision Support for Nursing Home Staff Assessment of Urinary Tract Infection using Goal-Directed Design.

    Science.gov (United States)

    Jones, Wallace; Drake, Cynthia; Mack, David; Reeder, Blaine; Trautner, Barbara; Wald, Heidi

    2017-06-20

    Unique characteristics of nursing homes (NHs) contribute to high rates of inappropriate antibiotic use for asymptomatic bacteriuria (ASB), a benign condition. A mobile clinical decision support system (CDSS) may support NH staff in differentiating urinary tract infections (UTI) from ASB and reducing antibiotic days. We used Goal-Directed Design to: 1) Characterize information needs for UTI identification and management in NHs; 2) Develop UTI Decide, a mobile CDSS prototype informed by personas and scenarios of use constructed from Aim 1 findings; 3) Evaluate the UTI Decide prototype with NH staff. Focus groups were conducted with providers and nurses in NHs in Denver, Colorado (n= 24). Qualitative descriptive analysis was applied to focus group transcripts to identify information needs and themes related to mobile clinical decision support for UTI identification and management. Personas representing typical end users were developed; typical clinical context scenarios were constructed using information needs as goals. Usability testing was performed using cognitive walk-throughs and a think-aloud protocol. Four information needs were identified including guidance regarding resident assessment; communication with providers; care planning; and urine culture interpretation. Design of a web-based application incorporating a published decision support algorithm for evidence-based UTI diagnoses proceeded with a focus on nursing information needs during resident assessment and communication with providers. Certified nursing assistant (CNA) and registered nurse (RN) personas were constructed in 4 context scenarios with associated key path scenarios. After field testing, a high fidelity prototype of UTI Decide was completed and evaluated by potential end users. Design recommendations and content recommendations were elicited. Goal-Directed Design informed the development of a mobile CDSS supporting participant-identified information needs for UTI assessment and communication

  20. Changes in Timing and kinematics of goal directed eye-hand movements in early-stage Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Muilwijk Danya

    2013-01-01

    Full Text Available Abstract Objective Many daily activities involve intrinsic or extrinsic goal-directed eye and hand movements. An extensive visuomotor coordination network including nigro-striatal pathways is required for efficient timing and positioning of eyes and hands. The aim of this study was to investigate how Parkinson’s disease (PD affects eye-hand coordination in tasks with different cognitive complexity. Methods We used a touch screen, an eye-tracking device and a motion capturing system to quantify changes in eye-hand coordination in early-stage PD patients (H&Y  Results In the pro-tapping task, saccade initiation towards extrinsic goals was not impaired. However, in the dual planning and anti-tapping task initiation of saccades towards intrinsic goals was faster in PD patients. Hand movements were differently affected: initiation of the hand movement was only delayed in the pro-tapping and dual planning task. Overall, hand movements in PD patients were slower executed compared to controls. Interpretation Whereas initiation of saccades in an extrinsic goal-directed task (pro-tapping task is not affected, early stage PD patients have difficulty in suppressing reflexive saccades towards extrinsic goals in tasks where the endpoint is an intrinsic goal (e.g. dual planning and anti-tapping task. This is specific for eye movements, as hand movements have delayed responses in the pro-tapping and dual planning task. This suggests that reported impairment of the dorsolateral prefrontal cortex in early-stage PD patients affects only inhibition of eye movements. We conclude that timing and kinematics of eye and hand movements in visuomotor tasks are affected in PD patients. This result may have clinical significance by providing a behavioral marker for the early diagnosis of PD.

  1. Cognitive neuroscience robotics B analytic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume B describes to what extent cognitive science and neuroscience have revealed the underlying mechanism of human cognition, and investigates how development of neural engineering and advances in other disciplines could lead to deep understanding of human cognition.

  2. Executive control of stimulus-driven and goal-directed attention in visual working memory.

    Science.gov (United States)

    Hu, Yanmei; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2016-10-01

    We examined the role of executive control in stimulus-driven and goal-directed attention in visual working memory using probed recall of a series of objects, a task that allows study of the dynamics of storage through analysis of serial position data. Experiment 1 examined whether executive control underlies goal-directed prioritization of certain items within the sequence. Instructing participants to prioritize either the first or final item resulted in improved recall for these items, and an increase in concurrent task difficulty reduced or abolished these gains, consistent with their dependence on executive control. Experiment 2 examined whether executive control is also involved in the disruption caused by a post-series visual distractor (suffix). A demanding concurrent task disrupted memory for all items except the most recent, whereas a suffix disrupted only the most recent items. There was no interaction when concurrent load and suffix were combined, suggesting that deploying selective attention to ignore the distractor did not draw upon executive resources. A final experiment replicated the independent interfering effects of suffix and concurrent load while ruling out possible artifacts. We discuss the results in terms of a domain-general episodic buffer in which information is retained in a transient, limited capacity privileged state, influenced by both stimulus-driven and goal-directed processes. The privileged state contains the most recent environmental input together with goal-relevant representations being actively maintained using executive resources.

  3. Avian Models for Human Cognitive Neuroscience: A Proposal.

    Science.gov (United States)

    Clayton, Nicola S; Emery, Nathan J

    2015-06-17

    Research on avian cognitive neuroscience over the past two decades has revealed the avian brain to be a better model for understanding human cognition than previously thought, despite differences in the neuroarchitecture of avian and mammalian brains. The brain, behavior, and cognition of songbirds have provided an excellent model of human cognition in one domain, namely learning human language and the production of speech. There are other important behavioral candidates of avian cognition, however, notably the capacity of corvids to remember the past and plan for the future, as well as their ability to think about another's perspective, and physical reasoning. We review this work and assess the evidence that the corvid brain can support such a cognitive architecture. We propose potential applications of these behavioral paradigms for cognitive neuroscience, including recent work on single-cell recordings and neuroimaging in corvids. Finally, we discuss their impact on understanding human developmental cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cognition beyond the brain computation, interactivity and human artifice

    CERN Document Server

    Cowley, Stephen J

    2013-01-01

    Arguing that a collective dimension has given cognitive flexibility to human intelligence, this book shows that traditional cognitive psychology underplays the role of bodies, dialogue, diagrams, tools, talk, customs, habits, computers and cultural practices.

  5. Speed/accuracy trade-off between the habitual and the goal-directed processes.

    Directory of Open Access Journals (Sweden)

    Mehdi Keramati

    2011-05-01

    Full Text Available Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we propose a normative model for arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the model can explain choice reaction time variations during the course of learning, as well as the experimental observation that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition between the habitual and the goal-directed systems and thus, affect reaction time.

  6. Acuity of goal-directed arm movements to visible targets in chronic neck pain

    OpenAIRE

    2008-01-01

    Objective: To evaluate end-point acuity in goal-directed arm movements in subjects with chronic neck pain, while taking the trade-off between speed and accuracy into account, and to evaluate associations between reduced acuity and self-rated characteristics. Design: Single-blinded, controlled, comparative group study. Subjects: Forty-five subjects with chronic non-traumatic, non-specific neck pain (n = 24) and whiplash-associated disorders (n = 21). Healthy subjects served as controls (n = 22...

  7. April 2014 Phoenix critical care journal club: early goal-directed therapy

    Directory of Open Access Journals (Sweden)

    Raschke RA

    2014-04-01

    Full Text Available No abstract available. Article truncated at 150 words. We were fortunate to be joined in our discussion by Dr. Frank LoVecchio, one of the primary investigators of the ProCESS trial, and doctors Robbins, Bajo, Mand and Thomas, as well as our pulmonary critical care fellows. The ProCESS trial was important for two reasons: first, it showed that early goal-directed therapy (EGDT does not benefit patient mortality; second, it provides another example of how the evidence-based practice of critical care medicine has often been misguided by invalid evidence. In this aspect, EGDT joins the ranks of tight glucose control, drotrecogin alpha (Xigris®, Swan Ganz catheter-guided resuscitation, corticosteroids, and other interventions in our field that were once part of evidence-based practice, but ultimately found to lack benefit or even be harmful to our patients. That recurrent theme in our literature is the main point of this Journal Club. The first example of an algorithm for goal-directed therapy (GDT that we ...

  8. INSTALLING AN ERP SYSTEM WITH A METHODOLOGY BASED ON THE PRINCIPLES OF GOAL DIRECTED PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ioannis Zafeiropoulos

    2010-01-01

    Full Text Available This paper describes a generic methodology to support the process of modelling, adaptation and implementation (MAI of Enterprise Resource Planning Systems (ERPS based on the principles of goal directed project management (GDPM. The proposed methodology guides the project manager through specific stages in order to successfully complete the ERPS implementation. The development of the proper MAI methodology is deemed necessary because it will simplify the installation process of ERPS. The goal directed project management method was chosen since it provides a way of focusing all changes towards a predetermined goal. The main stages of the methodology are the promotion and preparation steps, the proposal, the contract, the implementation and the completion. The methodology was applied as a pilot application by a major ERPS development company. Important benefits were the easy and effective guidance for all installation and analysis stages, the faster installation for the ERPS and the control and cost reduction for the installation, in terms of time, manpower, technological equipment and other resources.

  9. INSTALLING AN ERP SYSTEM WITH A METHODOLOGY BASED ON THE PRINCIPLES OF GOAL DIRECTED PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ioannis Zafeiropoulos

    2009-12-01

    Full Text Available This paper describes a generic methodology to support the process of modelling, adaptation and implementation (MAI of Enterprise Resource Planning Systems (ERPS based on the principles of goal directed project management (GDPM. The proposed methodology guides the project manager through specific stages in order to successfully complete the ERPS implementation. The development of the proper MAI methodology is deemed necessary because it will simplify the installation process of ERPS. The goal directed project management method was chosen since it provides a way of focusing all changes towards a predetermined goal. The main stages of the methodology are the promotion and preparation steps, the proposal, the contract, the implementation and the completion. The methodology was applied as a pilot application by a major ERPS development company. Important benefits were the easy and effective guidance for all installation and analysis stages, the faster installation for the ERPS and the control and cost reduction for the installation, in terms of time, manpower, technological equipment and other resources.

  10. Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior.

    Science.gov (United States)

    Alcaraz, Fabien; Naneix, Fabien; Desfosses, Emilie; Marchand, Alain R; Wolff, Mathieu; Coutureau, Etienne

    2016-01-01

    Goal-directed behaviors are thought to be supported by a neural circuit encompassing the prefrontal cortex, the dorsomedial striatum, the amygdala, and, as more recently suggested, the limbic thalamus. Since evidence indicates that the various thalamic nuclei contribute to dissociable functions, we directly compared the functional contribution of the mediodorsal thalamus (MD) and of the anterior thalamic nuclei (ATN) in a new task assessing spatial goal-directed behavior in a cross-maze. Rats sustaining lesions of the mediodorsal or the anterior thalamus were trained to associate each of the two goal arms with a distinctive food reward. Unlike control rats, both lesioned groups failed to express a bias for the goal arm corresponding to the non-devalued outcome following devaluation by sensory-specific satiety. In addition, MD rats were slower than the other groups to complete the trials. When tested for spatial working memory using a standard non-matching-to-place procedure in the same apparatus, ATN rats were severely impaired but MD rats performed as well as controls, even when spatial or temporal challenges were introduced. Finally, all groups displayed comparable breaking points in a progressive ratio test, indicating that the slower choice performance of MD rats did not result from motivational factors. Thus, a spatial task requiring the integration of instrumental and Pavlovian contingencies reveals a fundamental deficit of MD rats in adapting their choice according to goal value. By contrast, the deficit associated with anterior thalamic lesions appears to simply reflect the inability to process spatial information.

  11. Neural systems analysis of decision making during goal-directed navigation.

    Science.gov (United States)

    Penner, Marsha R; Mizumori, Sheri J Y

    2012-01-01

    The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.

  12. Neurocognitive abnormalities during comprehension of real-world goal-directed behaviors in schizophrenia.

    Science.gov (United States)

    Sitnikova, Tatiana; Goff, Donald; Kuperberg, Gina R

    2009-05-01

    Origins of impaired adaptive functioning in schizophrenia remain poorly understood. Behavioral disorganization may arise from an abnormal reliance on common combinations between concepts stored in semantic memory. Avolition-apathy may be related to deficits in using goal-related requirements to flexibly plan behavior. The authors recorded event-related potentials (ERPs) in 16 patients with medicated schizophrenia and 16 healthy controls in a novel video paradigm presenting congruous or incongruous objects in real-world activities. All incongruous objects were contextually inappropriate, but the incongruous scenes varied in comprehensibility. Psychopathology was assessed with the Scales for the Assessment of Positive and Negative Symptoms (SAPS/SANS) and the Brief Psychiatric Rating Scale. In patients, an N400 ERP, thought to index activity in semantic memory, was abnormally enhanced to less comprehensible incongruous scenes, and larger N400 priming was associated with disorganization severity. A P600 ERP, which may index flexible object-action integration based on goal-related requirements, was abnormally attenuated in patients, and its smaller magnitude was associated with the SANS rating of impersistence at work or school (goal-directed behavior). Thus, distinct neurocognitive abnormalities may underlie disorganization and goal-directed behavior deficits in schizophrenia.

  13. A goal-directed spatial navigation model using forward trajectory planning based on grid cells.

    Science.gov (United States)

    Erdem, Uğur M; Hasselmo, Michael

    2012-03-01

    A goal-directed navigation model is proposed based on forward linear look-ahead probe of trajectories in a network of head direction cells, grid cells, place cells and prefrontal cortex (PFC) cells. The model allows selection of new goal-directed trajectories. In a novel environment, the virtual rat incrementally creates a map composed of place cells and PFC cells by random exploration. After exploration, the rat retrieves memory of the goal location, picks its next movement direction by forward linear look-ahead probe of trajectories in several candidate directions while stationary in one location, and finds the one activating PFC cells with the highest reward signal. Each probe direction involves activation of a static pattern of head direction cells to drive an interference model of grid cells to update their phases in a specific direction. The updating of grid cell spiking drives place cells along the probed look-ahead trajectory similar to the forward replay during waking seen in place cell recordings. Directions are probed until the look-ahead trajectory activates the reward signal and the corresponding direction is used to guide goal-finding behavior. We report simulation results in several mazes with and without barriers. Navigation with barriers requires a PFC map topology based on the temporal vicinity of visited place cells and a reward signal diffusion process. The interaction of the forward linear look-ahead trajectory probes with the reward diffusion allows discovery of never-before experienced shortcuts towards a goal location.

  14. Early goal-directed therapy in treatment of pediatric septic shock.

    Science.gov (United States)

    de Oliveira, Cláudio Flauzino

    2010-09-01

    In the whole world, around 29,000 children younger than 5 years die every day, and sepsis is the most common cause of death. Whereas in adult patients vasomotor paralysis represents the predominant cause of mortality, death in pediatric sepsis is associated with severe hypovolemia and low cardiac output. The purpose of this article was to review the recent evidence on early treatment of pediatric severe sepsis and septic shock. Although current American College of Critical Care Medicine-Pediatric Advanced Life Support guidelines represent best practice, stronger evidences are lacking to confirm the components of these recommendations. Retrospective studies showed, at the same time, the positive effects arising from the utilization of American College of Critical Care Medicine-Pediatric Advanced Life Support guidelines and the existing barriers to its implementation. And one randomized control trial paralleled the results observed in adult patients and revealed that early goal-directed therapy in children is one of the few therapeutic interventions that proved to be beneficial in septic shock treatment. Early goal-directed therapy in pediatric septic shock is a successful method to optimize and parameterize treatment, but there is still a long way to turn septic shock resuscitation simpler and more widely spread.

  15. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    Science.gov (United States)

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications.

  16. Comparative developmental psychology: how is human cognitive development unique?

    Science.gov (United States)

    Rosati, Alexandra G; Wobber, Victoria; Hughes, Kelly; Santos, Laurie R

    2014-04-29

    The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

  17. Comparative Developmental Psychology: How is Human Cognitive Development Unique?

    Directory of Open Access Journals (Sweden)

    Alexandra G. Rosati

    2014-04-01

    Full Text Available The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

  18. Comparative Developmental Psychology: How is Human Cognitive Development Unique?

    OpenAIRE

    Rosati, Alexandra G.; Victoria Wobber; Kelly Hughes; Santos, Laurie R

    2014-01-01

    The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In th...

  19. Goal-directed fluid therapy: stroke volume optimisation and cardiac dimensions in supine healthy humans

    DEFF Research Database (Denmark)

    Jans, O.; Tollund, C.; Bundgaard-Nielsen, M.

    2008-01-01

    by thoracic electrical admittance, central venous oxygenation and pressure, and arterial plasma atrial natriuretic peptide. Also, muscle and brain oxygenation were assessed by near infrared spectroscopy (n=7). RESULTS: The HUT reduced the mentioned indices of CBV, the end-diastolic dimensions of the heart...... to head-up (HUT) and head-down tilt (HDT). METHODS: Twelve healthy volunteers underwent graded tilt from 20 degrees HDT to 30 degrees HUT. The end-diastolic dimensions of the heart were assessed by transthoracic echocardiography with independent evaluation of SV by Modelflow. The CBV was monitored...

  20. On the relationship between feelings and action tendencies in the emotional regulation of goal-directed behaviour

    Directory of Open Access Journals (Sweden)

    Robert eLowe

    2011-12-01

    Full Text Available In this article, we review the nature of the functional and causal relationship between neurophysiologically/psychologically generated states of emotional feeling and action tendencies and extrapolate a novel perspective. Emotion research, over the past century and beyond, has tended to view feeling and action tendency as independent phenomena: Attempts to outline the functional and causal relationship that exists between them have been framed therein. Classically, such relationships have been viewed as unidirectional, but an argument for bidirectionality rooted in a dynamic systems perspective has gained strength in recent years whereby the feeling-action tendency relationship is viewed as a composite whole. On the basis of our review of somatic-visceral theories of feelings, we argue that feelings are grounded upon neural-dynamic representations (elevated and stable activation patterns of action tendency. Such representations amount to predictions, updated by cognitive and bodily feedback. Specifically, we view emotional feelings as minimalist predictions of the action tendency (what the agent is likely to do in a given situation. The essence of this point is captured by our exposition of action tendency prediction-feedback loops (ATPFL which we consider, above all, in the context of emotion regulation, and in particular, of emotion regulation of goal-directed behaviour. The perspective outlined may be of use to emotion theorists, computational modellers and roboticists.

  1. Predicting Use of Ineffective Responsive, Structure and Control Vegetable Parenting Practices with the Model of Goal Directed Behavior.

    Science.gov (United States)

    Baranowski, Tom; Beltran, Alicia; Chen, Tzu-An; Thompson, Debbe; O'Connor, Teresia; Hughes, Sheryl; Diep, Cassandra; Baranowski, Janice C

    This study reports the modeling of three categories of ineffective vegetable parenting practices (IVPP) separately (responsive, structure, and control vegetable parenting practices). An internet survey was employed for a cross sectional assessment of parenting practices and cognitive-emotional variables. Parents (n=307) of preschool children (3-5 years old) were recruited through announcements and postings. Models were analyzed with block regression and backward deletion procedures using a composite IVPP scale as the dependent variable. The independent variables included validated scales from a Model of Goal Directed Vegetable Parenting Practices (MGDVPP), including: intention, habit, perceived barriers, desire, competence, autonomy, relatedness, attitudes, norms, perceived behavioral control, and anticipated emotions. The available scales accounted for 26.5%, 16.7% and 44.6% of the variance in the IVPP responsive, structure and control subscales, respectively. Different sets of diverse variables predicted the three IVPP constructs. Intentions, Habits and Perceived Behavioral Control were strong predictors for each of the IVPP constructs, but the subscales were specific to each IVPP construct. Parent emotional responses, an infrequently investigated variable, was an important predictor of ineffective responsive vegetable parenting practices and ineffective structure vegetable parenting practices, but not ineffective control vegetable parenting practices. An Attitude subscale and a Norms subscale predicted ineffective responsive vegetable parenting practices alone. This was the first report of psychometrically tested scales to predict use of IVPP subscales. Further research is needed to verify these findings in larger longitudinal cohorts. Interventions to increase child vegetable intake may have to reduce IVPP.

  2. Reward Contingencies Improve Goal-Directed Behavior by Enhancing Posterior Brain Attentional Regions and Increasing Corticostriatal Connectivity in Cocaine Addicts

    Science.gov (United States)

    Rosell-Negre, Patricia; Bustamante, Juan-Carlos; Fuentes-Claramonte, Paola; Costumero, Víctor; Llopis-Llacer, Juan-José; Barrós-Loscertales, Alfonso

    2016-01-01

    The dopaminergic system provides the basis for the interaction between motivation and cognition. It is triggered by the possibility of obtaining rewards to initiate the neurobehavioral adaptations necessary to achieve them by directing the information from motivational circuits to cognitive and action circuits. In drug addiction, the altered dopamine (DA) modulation of the meso-cortico-limbic reward circuitry, such as the prefrontal cortex (PFC), underlies the disproportionate motivational value of drug use at the expense of other non-drug reinforcers and the user’s loss of control over his/her drug intake. We examine how the magnitude of the reward affects goal-directed processes in healthy control (HC) subjects and abstinent cocaine dependent (ACD) patients by using functional magnetic resonance imaging (fMRI) during a counting Stroop task with blocked levels of monetary incentives of different magnitudes (€0, €0.01, €0.5, €1 or €1.5). Our results showed that increasing reward magnitude enhances (1) performance facilitation in both groups; (2) left dorsolateral prefrontal cortex (DLPFC) activity in HC and left superior occipital cortex activity in ACD; and (3) left DLPFC and left putamen connectivity in ACD compared to HC. Moreover, we observed that (4) dorsal striatal and pallidum activity was associated with craving and addiction severity during the parametric increases in the monetary reward. In conclusion, the brain response to gradients in monetary value was different in HC and ACD, but both groups showed improved task performance due to the possibility of obtaining greater monetary rewards. PMID:27907134

  3. Molecular networks and the evolution of human cognitive specializations

    OpenAIRE

    Fontenot, Miles; Konopka, Genevieve

    2014-01-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks ...

  4. Neuroevolution Results in Emergence of Short-Term Memory for Goal-Directed Behavior

    CERN Document Server

    Lakhman, Konstantin

    2012-01-01

    Animals behave adaptively in the environment with multiply competing goals. Understanding of the mechanisms underlying such goal-directed behavior remains a challenge for neuroscience as well for adaptive system research. To address this problem we developed an evolutionary model of adaptive behavior in the multigoal stochastic environment. Proposed neuroevolutionary algorithm is based on neuron's duplication as a basic mechanism of agent's recurrent neural network development. Results of simulation demonstrate that in the course of evolution agents acquire the ability to store the short-term memory and, therefore, use it in behavioral strategies with alternative actions. We found that evolution discovered two mechanisms for short-term memory. The first mechanism is integration of sensory signals and ongoing internal neural activity, resulting in emergence of cell groups specialized on alternative actions. And the second mechanism is slow neurodynamical processes that makes possible to code the previous behav...

  5. The hippocampal-striatal axis in learning, prediction and goal-directed behavior.

    Science.gov (United States)

    Pennartz, C M A; Ito, R; Verschure, P F M J; Battaglia, F P; Robbins, T W

    2011-10-01

    The hippocampal formation and striatum subserve declarative and procedural memory, respectively. However, experimental evidence suggests that the ventral striatum, as opposed to the dorsal striatum, does not lend itself to being part of either system. Instead, it may constitute a system integrating inputs from the amygdala, prefrontal cortex and hippocampus to generate motivational, outcome-predicting signals that invigorate goal-directed behaviors. Inspired by reinforcement learning models, we suggest an alternative scheme for computational functions of the striatum. Dorsal and ventral striatum are proposed to compute outcome predictions largely in parallel, using different types of information as input. The nature of the inputs to striatum is furthermore combinatorial, and the specificity of predictions transcends the level of scalar value signals, incorporating episodic information.

  6. Early goal-directed nutrition in ICU patients (EAT-ICU)

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Kondrup, Jens; Wiis, Jørgen

    2016-01-01

    -energy nutrition based on measured requirements on short-term clinical outcomes and long-term physical quality of life in ICU patients. METHODS: The EAT-ICU trial is a single-centre, randomised, parallel-group trial with concealed allocation and blinded outcome assessment. A total of 200 consecutive, acutely...... admitted, mechanically ventilated intensive care patients will be randomised 1:1 to early goal-directed nutrition versus standard of care to show a potential 15% relative risk reduction in the primary outcome measure (physical function) at six months (two-sided significance level α = 0.05; power β = 80......%). Secondary outcomes include energy- and protein balances, metabolic control, new organ failure, use of life support, nosocomial infections, ICU- and hospital length of stay, mortality and cost analyses. CONCLUSION: The optimal nutrition strategy for ICU patients remains unsettled. The EAT-ICU trial...

  7. Early and individualized goal-directed therapy for trauma-induced coagulopathy

    Directory of Open Access Journals (Sweden)

    Schöchl Herbert

    2012-02-01

    Full Text Available Abstract Severe trauma-related bleeding is associated with high mortality. Standard coagulation tests provide limited information on the underlying coagulation disorder. Whole-blood viscoelastic tests such as rotational thromboelastometry or thrombelastography offer a more comprehensive insight into the coagulation process in trauma. The results are available within minutes and they provide information about the initiation of coagulation, the speed of clot formation, and the quality and stability of the clot. Viscoelastic tests have the potential to guide coagulation therapy according to the actual needs of each patient, reducing the risks of over- or under-transfusion. The concept of early, individualized and goal-directed therapy is explored in this review and the AUVA Trauma Hospital algorithm for managing trauma-induced coagulopathy is presented.

  8. Evaluation of a local ICU sedation guideline on goal-directed administration of sedatives and analgesics

    Directory of Open Access Journals (Sweden)

    DeGrado JR

    2011-05-01

    Full Text Available Jeremy R DeGrado1, Kevin E Anger1, Paul M Szumita1, Carol D Pierce2, Anthony F Massaro31Department of Pharmacy, 2Department of Nursing, 3Department of Pulmonary Medicine, Brigham and Women's Hospital, Boston, MA, USAPurpose: Sedatives and analgesics are commonly used in mechanically ventilated patients in the intensive care unit. Sedation guidelines have been shown to improve sedation management as well as various patient outcomes. The main objective was to evaluate adherence to a sedation guideline with both sedative prescribing and documentation of Richmond Agitation-Sedation Scale (RASS scores.Methods: In a retrospective chart review, data was collected on 111 medical intensive care unit patients mechanically ventilated via endotracheal tube for 12 hours or greater at Brigham and Women's Hospital. Fifty-seven patients were evaluated pre-guideline implementation and 54 patients were evaluated post-guideline.Results: Significant increases were seen in the post-guideline group in goal-directed sedation with a patient-specific RASS goal in the sedation order: 21.3 vs 85.4% (P < 0.001, and mean number of sedation assessments per 24 hours using the RASS: 4.7 vs 11.4 (P < 0.001. Similarly, this group experienced a higher percentage of RASS scores at their sedation goal: 31.4 vs 44.1% (P < 0.001. No difference was seen in other clinical endpoints.Conclusion: Implementation and routine application of a hospital pain and sedation guideline was associated with significantly improved sedation metrics, such as goal-directed sedation, as well as frequency of sedation level assessment and documentation. An increase was observed in the time that post-guideline patients spent at or near their RASS goal.Keywords: sedation, agitation, guideline, RASS, mechanically ventilated, intensive care unit

  9. Goal-directed hemostatic therapy using the rotational thromboelastometry in patients requiring emergent cardiovascular surgery

    Directory of Open Access Journals (Sweden)

    Danièle Sartorius

    2014-01-01

    Full Text Available Aims and Objectives: We assessed the clinical impact of goal-directed coagulation management based on rotational thromboelastometry (ROTEM in patients undergoing emergent cardiovascular surgical procedures. Materials and Methods: Over a 2-year period, data from 71 patients were collected prospectively and blood samples were obtained for coagulation testing. Administration of packed red blood cells (PRBC and hemostatic products were guided by an algorithm using ROTEM-derived information and hemoglobin level. Based on the amount of PRBC transfused, two groups were considered: High bleeders (≥5 PRBC; HB and low bleeders (<5 PRBC; LB. Data were analyzed using Chi-square test, unpaired t-test and analysis of variance as appropriate. Results: Pre-operatively, the HB group (n = 31 was characterized by lower blood fibrinogen and decreased clot amplitude at ROTEM compared with the LB group (n = 40. Intraoperatively, larger amounts of fibrinogen, fresh frozen plasma and platelets were required to normalize the coagulation parameters in the HB group. Post-operatively, the incidence of major thromboembolic and ischemic events did not differ between the two groups (<10% and the observed in-hospital mortality was significantly less than expected by the Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM score, 22% vs. 35% in HB and 5% vs. 13% in LB group. Conclusions: ROTEM-derived information is helpful to detect early coagulation abnormalities and to monitor the response to hemostatic therapy. Early goal-directed management of coagulopathy may improve outcome after cardiovascular surgery.

  10. Cognitive neuroscience robotics A synthetic approaches to human understanding

    CERN Document Server

    Ishiguro, Hiroshi; Asada, Minoru; Osaka, Mariko; Fujikado, Takashi

    2016-01-01

    Cognitive Neuroscience Robotics is the first introductory book on this new interdisciplinary area. This book consists of two volumes, the first of which, Synthetic Approaches to Human Understanding, advances human understanding from a robotics or engineering point of view. The second, Analytic Approaches to Human Understanding, addresses related subjects in cognitive science and neuroscience. These two volumes are intended to complement each other in order to more comprehensively investigate human cognitive functions, to develop human-friendly information and robot technology (IRT) systems, and to understand what kind of beings we humans are. Volume A describes how human cognitive functions can be replicated in artificial systems such as robots, and investigates how artificial systems could acquire intelligent behaviors through interaction with others and their environment.

  11. Cognitive approach to human-centered systems design

    Science.gov (United States)

    Taylor, Robert M.

    1996-04-01

    User requirements and system cognitive quality are considered in relation to the integration of new technology, in particular for aiding cognitive functions. Intuitive interfaces and display design matching user mental models and memory schema are identified as human-centered design strategies. Situational awareness is considered in terms of schema theory and perceptual control. A new method for measuring cognitive compatibility is described, and linked to the SRK taxonomy of human performance, in order to provide a framework for analyzing and specifying user cognitive requirements.

  12. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    Science.gov (United States)

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  13. A Review of Intraoperative Goal-Directed Therapy Using Arterial Waveform Analysis for Assessment of Cardiac Output

    Directory of Open Access Journals (Sweden)

    Neil Mehta

    2014-01-01

    Full Text Available Increasing evidence shows that goal-directed hemodynamic management can improve outcomes in surgical and intensive care settings. Arterial waveform analysis is one of the different techniques used for guiding goal-directed therapy. Multiple proprietary systems have developed algorithms for obtaining cardiac output from an arterial waveform, including the FloTrac, LiDCO, and PiCCO systems. These systems vary in terms of how they analyze the arterial pressure waveform as well as their requirements for invasive line placement and calibration. Although small-scale clinical trials using these monitors show promising data, large-scale multicenter trials are still needed to better determine how intraoperative goal-directed therapy with arterial waveform analysis can improve patient outcomes. This review provides a comparative analysis of the different arterial waveform monitors for intraoperative goal-directed therapy.

  14. A review of intraoperative goal-directed therapy using arterial waveform analysis for assessment of cardiac output.

    Science.gov (United States)

    Mehta, Neil; Fernandez-Bustamante, Ana; Seres, Tamas

    2014-01-01

    Increasing evidence shows that goal-directed hemodynamic management can improve outcomes in surgical and intensive care settings. Arterial waveform analysis is one of the different techniques used for guiding goal-directed therapy. Multiple proprietary systems have developed algorithms for obtaining cardiac output from an arterial waveform, including the FloTrac, LiDCO, and PiCCO systems. These systems vary in terms of how they analyze the arterial pressure waveform as well as their requirements for invasive line placement and calibration. Although small-scale clinical trials using these monitors show promising data, large-scale multicenter trials are still needed to better determine how intraoperative goal-directed therapy with arterial waveform analysis can improve patient outcomes. This review provides a comparative analysis of the different arterial waveform monitors for intraoperative goal-directed therapy.

  15. Early goal-directed therapy in moderate to high-risk cardiac surgery patients

    Directory of Open Access Journals (Sweden)

    Kapoor Poonam

    2008-01-01

    Full Text Available Early goal-directed therapy is a term used to describe the guidance of intravenous fluid and vasopressor/inotropic therapy by using cardiac output or similar parameters in the immediate post-cardiopulmonary bypass in cardiac surgery patients. Early recognition and therapy during this period may result in better outcome. In keeping with this aim in the cardiac surgery patients, we conducted the present study. The study included 30 patients of both sexes, with EuroSCORE ≥3 undergoing coronary artery bypass surgery under cardiopulmonary bypass. The patients were randomly divided into two groups, namely, control and early goal-directed therapy (EGDT groups. All the subjects received standardized care; arterial pressure was monitored through radial artery, central venous pressure through a triple lumen in the right internal jugular vein, electrocardiogram, oxygen saturation, temperature, urine output per hour and frequent arterial blood gas analysis. In addition, cardiac index monitoring using FloTrac™ and continuous central venous oxygen saturation using PreSep™ was used in patients in the EGTD group. Our aim was to maintain the cardiac index at 2.5-4.2 l/min/m 2 , stroke volume index 30-65 ml/beat/m 2 , systemic vascular resistance index 1500-2500 dynes/s/cm 5 /m 2 , oxygen delivery index 450-600 ml/min/m 2 , continuous central venous oximetry more than 70%, stroke volume variation less than 10%; in addition to the control group parameters such as central venous pressure 6-8 mmHg, mean arterial pressure 90-105 mmHg, normal arterial blood gas analysis values, pulse oximetry, hematocrit value above 30% and urine output more than 1 ml/kg/h. The aims were achieved by altering the administration of intravenous fluids and doses of inotropic or vasodilator agents. Three patients were excluded from the study and the data of 27 patients analyzed. The extra volume used (330 ± 160 v/s 80 ± 80 ml, P = 0.043 number of adjustments of inotropic agents (3

  16. A Human-Information Interaction Perspective on Augmented Cognition

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Griffith, Douglas

    2006-10-15

    Nearly a half-century ago, J.C.R. Licklider expressed a vision for “man-machine symbiosis,” coupling human brains and computing machines in a partnership that “will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today.” Until relatively recently, this vision was largely left idle by human factors engineering (HFE) research that grew over the decades from an initial focus on design of equipment to accommodate human limitations to cognitive systems engineering research to a more recent perspective focusing on design of human-information interaction. These perspective shifts and insights have brought a degree of success to the field in design efforts aimed at enhancing human-system performance. In recent years, the research area of augmented cognition has begun to shift the focus once more not only to enhancing the interaction environment, but also the cognitive abilities of the human operators and decision makers themselves. Ambitious goals of increasing total cognitive capacity through augmented cognition technologies are still on the horizon of this research program. This paper describes a framework within which augmented cognition research may identify requirements that compensate for human information processing shortcomings and augment human potential.

  17. Success of applying early goal-directed therapy for septic shock patients in the emergency department

    Directory of Open Access Journals (Sweden)

    Worapratya P

    2016-01-01

    Full Text Available Panita Worapratya,1 Apisit Wanjaroenchaisuk,2 Jutharat Joraluck,3 Prasit Wuthisuthimethawee1 1Department of Emergency Medicine, Songklanagarind Hospital, Faculty of Medicine, Prince of Songkla University, Songkhla, 2Emergency Department, Samitivej Thonburi Hospital, Bangkok, 3Emergency Department, Hatyai Hospital, Hatyai, Songkhla, Thailand Background: Since early goal-directed therapy (EGDT became standard care in severe sepsis and septic shock patients in intensive care units many years ago, we suppose that the survival rate of severe sepsis and septic shock patients improves if the resuscitative procedure is quickly implemented and is initiated in the emergency room. Objective: We aimed at recording emergency department time to improve our patient care system as well as determine the rate at which EGDT goals can be achieved. The second analysis is to find out how much we can improve the survival rate. Methods: This was a prospective observational study in an emergency room setting at a tertiary care facility where EGDT was applied for resuscitation of severe sepsis and septic shock patients. The data recorded were the initial vital signs, APACHE II (Acute Physiology and Chronic Health Evaluation II score, SAP II (Simplified Acute Physiology II score, SOFA (Sequential Organ Failure Assessment score, time at which EGDT goals were achieved (central venous oxygen saturation [Scvo2] >70%, initial and final diagnosis, and outcome of treatment. The t-test and Mann–Whitney U-test were used to compare between the achieved goal and nonachieved goal groups. Results: There were 63 cases of severe sepsis in the study period. Only 55 patients submitted a signed consent form and had central line insertion. Twenty-eight (50.9% cases were male. Thirty-nine (70.9% patients achieved the goal, and the mean SAP II score was 8. There were no statistically significant differences between the two groups (P-value =0.097. Thirty of the 39 patients (70.9% survived in

  18. Early goal-directed therapy in severe sepsis and septic shock: a contemporary review of the literature.

    Science.gov (United States)

    Rivers, Emanuel P; Coba, Victor; Whitmill, Melissa

    2008-04-01

    Aggressive approaches to acute diseases such as acute myocardial infarction, trauma, and stroke have improved outcomes. Early goal-directed therapy for severe sepsis and septic shock represents a similar approach. An analysis of the literature assessing external validity and generalizability of this intervention is lacking. Eleven peer-reviewed publications (1569 patients) and 28 abstracts (4429 patients) after the original early goal-directed therapy study were identified from academic, community and international settings. These publications total 5998 patients (3042 before and 2956 after early goal-directed therapy). The mean age, sex, APACHE II scores and mortality were similar across all studies. The mean relative and absolute risk reduction was 0.46 +/- 26% and 20.3 +/- 12.7%, respectively. These findings are superior to the original early goal-directed therapy trial which showed figures of 34% and 16%, respectively. A consistent and similar decrease in healthcare resource consumption was also found. Early goal-directed therapy modulates systemic inflammation and results in significant reductions in morbidity, mortality, and healthcare resource consumption. Early goal-directed therapy has been externally validated and is generalizable across multiple healthcare settings. Because of these robust findings, further emphasis should be placed on overcoming logistical, institutional, and professional barriers to implementation which can save the life of one of every six patients presenting with severe sepsis and septic shock.

  19. Characterizing healthy samples for studies of human cognitive aging

    OpenAIRE

    Geldmacher, David S.; Levin, Bonnie E.; Wright, Clinton B.

    2012-01-01

    Characterizing the cognitive declines associated with aging, and differentiating them from the effects of disease in older adults, are important goals for human neuroscience researchers. This is also an issue of public health urgency in countries with rapidly aging populations. Progress toward understanding cognitive aging is complicated by numerous factors. Researchers interested in cognitive changes in healthy older adults need to consider these complexities when they design and interpre...

  20. Cooperation and human cognition: the Vygotskian intelligence hypothesis.

    Science.gov (United States)

    Moll, Henrike; Tomasello, Michael

    2007-04-29

    Nicholas Humphrey's social intelligence hypothesis proposed that the major engine of primate cognitive evolution was social competition. Lev Vygotsky also emphasized the social dimension of intelligence, but he focused on human primates and cultural things such as collaboration, communication and teaching. A reasonable proposal is that primate cognition in general was driven mainly by social competition, but beyond that the unique aspects of human cognition were driven by, or even constituted by, social cooperation. In the present paper, we provide evidence for this Vygotskian intelligence hypothesis by comparing the social-cognitive skills of great apes with those of young human children in several domains of activity involving cooperation and communication with others. We argue, finally, that regular participation in cooperative, cultural interactions during ontogeny leads children to construct uniquely powerful forms of perspectival cognitive representation.

  1. Cultural Change, Human Activity, and Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Munroe, Robert L.

    2012-01-01

    Differential cognitive performance across cultural contexts has been a standard result in comparative research. Here we discuss how societal changes occurring when a small-scale traditional community incorporates elements from industrialized society may contribute to cognitive development, and we illustrate this with an analysis of the cognitive…

  2. Cultural Change, Human Activity, and Cognitive Development

    Science.gov (United States)

    Gauvain, Mary; Munroe, Robert L.

    2012-01-01

    Differential cognitive performance across cultural contexts has been a standard result in comparative research. Here we discuss how societal changes occurring when a small-scale traditional community incorporates elements from industrialized society may contribute to cognitive development, and we illustrate this with an analysis of the cognitive…

  3. Goal-directed therapy in trauma induced coagulopathy and focus on traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Klaus Görlinger

    2013-08-01

    Full Text Available In recent years there have been major advances in the management of trauma-induced coagulopathy (TIC and many experiences have demonstrated how we can achieve significant improvements with multidisciplinary approach and implementation of standardized protocols and algorithms. Central nervous system injuries and exanguination remain the primary causes of early trauma-related mortality. Traumatic brain injuries (TBI make hemostasis in TIC even more complex and it is known that the onset of coagulopathy in a patient with severe brain injury has a negative impact on the patient’s outcome in terms of mortality. Standard coagulation tests provide limited information on coagulation disorder. The advantages of whole-blood viscoelastic tests, such as rotational thromboelastometry or thrombelastography, are shorter turn-around time and better diagnostic performance compared to routine plasmatic coagulation tests. In contrast to a fixed ratio of FFP:PC:RBC, the aim of the goal-directed coagulation therapy is to set treatment to the actual needs of the individual patient, based on viscoelastic test results. This article describes the improvements achieved through the implementation of ROTEM-guided treatment algorithms for visceral surgery and liver trasplantation, severe trauma and post-partum hemorrhage and cardiovascular surgery.http://dx.doi.org/10.7175/rhc.v4i3s.877

  4. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    Science.gov (United States)

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding.

  5. Motivational states activate distinct hippocampal representations to guide goal-directed behaviors.

    Science.gov (United States)

    Kennedy, Pamela J; Shapiro, Matthew L

    2009-06-30

    Adaptive behaviors are guided by motivation and memory. Motivational states specify goals, and memory can inform motivated behavior by providing detailed records of past experiences when goals were obtained. These 2 fundamental processes interact to guide animals to biologically relevant targets, but the neuronal mechanisms that integrate them remain unknown. To investigate these mechanisms, we recorded unit activity from the same population of hippocampal neurons as rats performed identical tasks while either food or water deprived. We compared the influence of motivational state (hunger and thirst), memory demand, and spatial behavior in 2 tasks: hippocampus-dependent contextual memory retrieval and hippocampus-independent random foraging. We found that: (i) hippocampal coding was most strongly influenced by motivational state during contextual memory retrieval, when motivational cues were required to select among remembered, goal-directed actions in the same places; (ii) the same neuronal populations were relatively unaffected by motivational state during random foraging, when hunger and thirst were incidental to behavior, and signals derived from deprivation states thus informed, but did not determine, hippocampal coding; and (iii) "prospective coding" in the contextual retrieval task was not influenced by allocentric spatial trajectory, but rather by the animal's deprivation state and the associated, non-spatial target, suggesting that hippocampal coding includes a wide range of predictive associations. The results show that beyond coding spatiotemporal context, hippocampal representations encode the relationships between internal states, the external environment, and action to provide a mechanism by which motivation and memory are coordinated to guide behavior.

  6. Using hippocampal-striatal loops for spatial navigation and goal-directed decision-making.

    Science.gov (United States)

    Chersi, Fabian; Pezzulo, Giovanni

    2012-08-01

    The hippocampus plays a central role in spatial representation, declarative and episodic memory. In this area, so-called place cells possess high spatial selectivity, firing preferentially when the individual is within a small area of the environment. Interestingly, it has been found in rats that these cells can be active also when the animal is outside the location or context of their corresponding place field producing so-called "forward sweeps". These typically occur at decision points during task execution and seem to be utilized, among other things, for the evaluation of potential alternative paths. Anticipatory firing is also found in the ventral striatum, a brain area that is strongly interconnected with the hippocampus and is known to encode value and reward. In this paper, we describe a biologically based computational model of the hippocampal-ventral striatum circuit that implements a goal-directed mechanism of choice, with the hippocampus primarily involved in the mental simulation of possible navigation paths and the ventral striatum involved in the evaluation of the associated reward expectancies. The model is validated in a navigation task in which a rat is placed in a complex maze with multiple rewarding sites. We show that the rat mentally activates place cells to simulate paths, estimate their value, and make decisions, implementing two essential processes of model-based reinforcement learning algorithms of choice: look-ahead prediction and the evaluation of predicted states.

  7. Revealing non-analytic kinematic shifts in smooth goal-directed behaviour.

    Science.gov (United States)

    Weir, M K; Wale, A P

    2011-08-01

    How do biological agents plan and organise a smooth accurate path to shift from one smooth mode of behaviour to another as part of graceful movement that is both plastic and controlled? This paper addresses the question in conducting a novel shape analysis of approach and adjustment phases in rapid voluntary target aiming and 2-D reaching hand actions. A number of mode changing experiments are reported that investigate these actions under a range of goals and conditions. After a typically roughly aimed approach, regular projective adjustment is observed that has height and velocity kinematic profiles that are scaled copies of one another. This empirical property is encapsulated as a novel self-similar shift function. The mathematics shows that the biological shifts consist of continual deviation from their full Taylor series everywhere throughout their interval, which is a deep form of plasticity not described before. The experimental results find the same approach and adjustment strategy to occur with behavioural trajectories over the full and varied range of tested goals and conditions. The trajectory shapes have a large degree of predictability through using the shift function to handle extensive variation in the trajectories' adjustment across individual behaviours and subjects. We provide connections between the behavioural features and results and various neural studies to show how the methodology may be exploited. The conclusion is that a roughly aimed approach followed by a specific highly plastic shift adjustment can provide a regular basis for fast and accurate goal-directed motion in a simple and generalisable way.

  8. Exploring the neural bases of goal-directed motor behavior using fully resolved simulations

    Science.gov (United States)

    Patel, Namu; Patankar, Neelesh A.

    2016-11-01

    Undulatory swimming is an ideal problem for understanding the neural architecture for motor control and movement; a vertebrate's robust morphology and adaptive locomotive gait allows the swimmer to navigate complex environments. Simple mathematical models for neurally activated muscle contractions have been incorporated into a swimmer immersed in fluid. Muscle contractions produce bending moments which determine the swimming kinematics. The neurobiology of goal-directed locomotion is explored using fast, efficient, and fully resolved constraint-based immersed boundary simulations. Hierarchical control systems tune the strength, frequency, and duty cycle for neural activation waves to produce multifarious swimming gaits or synergies. Simulation results are used to investigate why the basal ganglia and other control systems may command a particular neural pattern to accomplish a task. Using simple neural models, the effect of proprioceptive feedback on refining the body motion is demonstrated. Lastly, the ability for a learned swimmer to successfully navigate a complex environment is tested. This work is supported by NSF CBET 1066575 and NSF CMMI 0941674.

  9. Dissociating Goal-Directed and Stimulus-Driven Determinants in Attentional Capture

    Directory of Open Access Journals (Sweden)

    Louis K. H. Chan

    2011-05-01

    Full Text Available Although attentional capture is now a commonplace finding, the exact roles played by goal-directed and stimulus-driven determents remain elusive. An unsettled issue is on the relative contribution of attentional set and visual saliency. In the present study, we investigated this issue by mixing color and orientation search trials, so that distractors of either feature dimension fell into the current attentional set. In our test, color features were more salient. As a result, in orientation search, whereas a color distractor produced huge capture (109 ms, an orientation distractor produced moderate capture (50 ms. With color targets, distractors were not interfering. On one hand, these results reflect that relative salience of the target and the distractor is critical for producing capture; on the other hand, a huge capture size associated with a nontarget dimension feature is novel. Similar previous measurements, but without matching the attentional set, consistently report attentional capture of only 20-30 ms. This comparison shows the role played by attentional set. Taken together, we suggest that visual saliency determines search order, and sets the platform for capture. However, attentional dwell time on the distractor is determined by how much it matches the current attentional set, and in turn explains the capture size.

  10. Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior.

    Science.gov (United States)

    Pinto, Lucas; Dan, Yang

    2015-07-15

    The prefrontal cortex (PFC) plays a key role in controlling goal-directed behavior. Although a variety of task-related signals have been observed in the PFC, whether they are differentially encoded by various cell types remains unclear. Here we performed cellular-resolution microendoscopic Ca(2+) imaging from genetically defined cell types in the dorsomedial PFC of mice performing a PFC-dependent sensory discrimination task. We found that inhibitory interneurons of the same subtype were similar to each other, but different subtypes preferentially signaled different task-related events: somatostatin-positive neurons primarily signaled motor action (licking), vasoactive intestinal peptide-positive neurons responded strongly to action outcomes, whereas parvalbumin-positive neurons were less selective, responding to sensory cues, motor action, and trial outcomes. Compared to each interneuron subtype, pyramidal neurons showed much greater functional heterogeneity, and their responses varied across cortical layers. Such cell-type and laminar differences in neuronal functional properties may be crucial for local computation within the PFC microcircuit.

  11. Early goal-directed top-down influences in the production of speech.

    Directory of Open Access Journals (Sweden)

    Kristof eStrijkers

    2011-12-01

    Full Text Available It was recently reported that the conscious intention to produce speech affects the speed with which lexical information is retrieved upon presentation of an object (Strijkers, Holcomb & Costa, under review. The goal of the present study was to elaborate further on the role of these top-down influences in language production. In an ERP setting participants were required to overtly name pictures and words in one block of trials, while categorizing the same stimuli in another block of trials. The ERPs elicited by the naming task started to diverge very early on (~ 170 ms from those elicited by the non-verbal semantic categorization task. Interestingly, these early ERP differences related to task intentionality were identical for pictures and words. From these results we conclude that (a in line with Strijkers and colleagues (under review, goal-directed processes play a crucial role very early on in speech production, and (b these task-driven top-down influences function at least in a domain-general manner by modulating those networks which are always relevant for the production of language, irrespective of which cortical pathways are triggered by the input.

  12. Purposeful Goal-Directed Movements Give Rise to Higher Tactile Discrimination Performance

    Directory of Open Access Journals (Sweden)

    Georgiana Juravle

    2011-10-01

    Full Text Available Tactile perception is inhibited during goal-directed reaching movements (sensory suppression. Here, participants performed simple reaching or exploratory movements (where contact with the table surface was maintained. We measured tactile discrimination thresholds for vibratory stimuli delivered to participants' wrists while executing the movement, and while at rest. Moreover, we measured discrimination performance (in a same vs. different task for the materials covering the table surface, during the execution of the different movements. The threshold and discrimination tasks could be performed either singly or together, both under active movement and passive conditions (ie, no movement required, but with tactile stimulation. Thresholds measured at rest were significantly lower than thresholds measured during both active movements and passive touches. This provides a clear indication of sensory suppression during movement execution. Moreover, the discrimination data revealed main effects of task (single vs. dual, movement execution type (passive vs. active, and movement type (reach vs. exploration: Discrimination performance was significantly higher under conditions of single-tasking, active movements, as well as exploratory movements. Therefore, active movement of the hand with the purpose of gaining tactual information about the surface of the table gives rise to enhanced performance, thus suggesting that we feel more when we need to; It would appear that tactual information is prioritized when relevant for the movement being executed.

  13. Cognitive Empathy and Emotional Empathy in Human Behavior and Evolution

    Science.gov (United States)

    Smith, Adam

    2006-01-01

    This article presents 7 simple models of the relationship between cognitive empathy (mental perspective taking) and emotional empathy (the vicarious sharing of emotion). I consider behavioral outcomes of the models, arguing that, during human evolution, natural selection may have acted on variation in the relationship between cognitive empathy and…

  14. Cognitive Empathy and Emotional Empathy in Human Behavior and Evolution

    Science.gov (United States)

    Smith, Adam

    2006-01-01

    This article presents 7 simple models of the relationship between cognitive empathy (mental perspective taking) and emotional empathy (the vicarious sharing of emotion). I consider behavioral outcomes of the models, arguing that, during human evolution, natural selection may have acted on variation in the relationship between cognitive empathy and…

  15. Putting an object in context and acting on it: neural mechanisms of goal-directed response to contextual object.

    Science.gov (United States)

    Lee, Inah; Lee, Sang-Hun

    2013-01-01

    Animals including humans experience objects in a certain environment, that is, a context. Same objects may have to be treated differently, or different objects may need to be treated similarly depending on contexts. Flexible behavioral choice in such ambiguous situations involves dynamic interactions among brain regions, but underlying neural mechanisms are poorly understood. In this article, prior studies that have examined (mostly in rodents) some of the brain regions involved in contextual processing of object information using goal-directed tasks are selectively reviewed. The current review identifies the hippocampus, prefrontal cortex (PFC) and perirhinal cortex (PER) as key regions for associating the same objects with different reward values and responses depending on the background visual context. The hippocampus is particularly important for contextual choice behavior when the context must be used as a conditional cue that can disambiguate reward-related 'meanings' of objects. The PER appears to play significant roles in such tasks during initial learning (but not so much for retrieval) because perturbations in the PER produce severe deficits in the acquisition of the contextual object memory task. Perturbations in the PFC also affect performance when flexible contextual responses should be made toward otherwise ambiguous objects.

  16. Goal-directed behaviour and instrumental devaluation: a neural system-level computational model

    Directory of Open Access Journals (Sweden)

    Francesco Mannella

    2016-10-01

    Full Text Available Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviours guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers activate the representation of rewards (or `action-outcomes', e.g. foods while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods. The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b the three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and integrates the results of different devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behaviour.

  17. Goal-Directed Resuscitation Aiming Cardiac Index Masks Residual Hypovolemia: An Animal Experiment

    Directory of Open Access Journals (Sweden)

    Krisztián Tánczos

    2015-01-01

    Full Text Available The aim of this study was to compare stroke volume (SVI to cardiac index (CI guided resuscitation in a bleeding-resuscitation experiment. Twenty six pigs were randomized and bled in both groups till baseline SVI (Tbsl dropped by 50% (T0, followed by resuscitation with crystalloid solution until initial SVI or CI was reached (T4. Similar amount of blood was shed but animals received significantly less fluid in the CI-group as in the SVI-group: median = 900 (interquartile range: 850–1780 versus 1965 (1584–2165 mL, p=0.02, respectively. In the SVI-group all variables returned to their baseline values, but in the CI-group animals remained underresuscitated as indicated by SVI, heart rate (HR and stroke volume variation (SVV, and central venous oxygen saturation (ScvO2 at T4 as compared to Tbsl: SVI = 23.8 ± 5.9 versus 31.4 ± 4.7 mL, HR: 117 ± 35 versus 89 ± 11/min SVV: 17.4 ± 7.6 versus 11.5 ± 5.3%, and ScvO2: 64.1 ± 11.6 versus 79.2 ± 8.1%, p<0.05, respectively. Our results indicate that CI-based goal-directed resuscitation may result in residual hypovolaemia, as bleeding caused stress induced tachycardia “normalizes” CI, without restoring adequate SVI. As the SVI-guided approach normalized most hemodynamic variables, we recommend using SVI instead of CI as the primary goal of resuscitation during acute bleeding.

  18. Apathy in Frontotemporal Degeneration: Neuroanatomical Evidence of Impaired Goal-Directed Behavior

    Directory of Open Access Journals (Sweden)

    Lauren eMassimo

    2015-11-01

    Full Text Available Background: Apathy, the major manifestation of impaired goal-directed behavior (GDB, is the most common neuropsychiatric syndrome associated with behavioral variant frontotemporal degeneration (bvFTD. The behavioral and biological mechanisms of apathy, however, are not well understood. We hypothesized that GDB has multiple components – including at least initiation, planning and motivation – and that GDB is supported by a network of multiple frontal brain regions. In this study, we examined this hypothesis by evaluating the selective breakdown of GDB in bvFTD, and relating these deficits to grey matter (GM atrophy and white matter (WM integrity. Methods: Eighteen apathetic bvFTD participants and 17 healthy controls completed the Philadelphia Apathy Computerized Test (PACT. This test quantifies each of three components of GDB hypothesized to contribute to apathy. We then used regression analyses to relate PACT scores to GM atrophy and reduced white matter (WM fractional anisotropy (FA in bvFTD. Results: Compared to controls, bvFTD participants demonstrated significant impairments in each of the three hypothesized components of GDB that contribute to apathy. Regression analyses related each component to disease in specific GM structures and associated WM tracts. Poor initiation thus was related to GM atrophy in anterior cingulate and reduced FA in the cingulum. Planning impairment was related to GM atrophy in dorsolateral prefrontal cortex and reduced FA in superior longitudinal fasciculus. Poor motivation was related to GM atrophy in orbitofrontal cortex and reduced FA in uncinate fasciculus. Conclusions: bvFTD patients have difficulty with initiation, planning and motivation components of GDB. These findings are consistent with the hypotheses that GDB encompasses at least three processes, that these are supported by a large-scale neural network within specific portions of the frontal lobe, and that degradation of any one of these prefrontal

  19. A hierarchical model of goal directed navigation selects trajectories in a visual environment.

    Science.gov (United States)

    Erdem, Uğur M; Milford, Michael J; Hasselmo, Michael E

    2015-01-01

    We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model's flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat's point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.

  20. Selective theta-synchronization of choice-relevant information subserves goal-directed behavior

    Directory of Open Access Journals (Sweden)

    Thilo eWomelsdorf

    2010-11-01

    Full Text Available Theta activity reflects a state of rhythmic modulation of excitability at the level of single neuron membranes, within local neuronal groups and between distant nodes of a neuronal network. A wealth of evidence has shown that during theta states distant neuronal groups synchronize, forming networks of spatially confined neuronal clusters at specific time periods during task performance. Here, we show that a functional commonality of networks engaging in theta rhythmic states is that they emerge around decision points, reflecting rhythmic synchronization of choice-relevant information. Decision points characterize a point in time shortly before a subject chooses to select one action over another, i.e. when automatic behavior is terminated and the organism reactivates multiple sources of information to evaluate the evidence for available choices. As such, decision processes require the coordinated retrieval of choice-relevant information including (i the retrieval of stimulus evaluations (stim.-reward associations and reward expectancies about future outcomes, (ii the retrieval of past and prospective memories (e.g. stim.-stim. associations, (iii the reactivation of contextual task rule representations (e.g. stim.-response mappings, along with (iv an ongoing assessment of sensory evidence. An increasing number of studies reveal that retrieval of these multiple types of information proceeds within few theta cycles through synchronized spiking activity across limbic, striatal and cortical processing nodes. The outlined evidence suggests that evolving spatially and temporally specific theta synchronization could serve as the critical correlate underlying the selection of a choice during goal-directed behavior.

  1. Movement-related activity during goal-directed hand actions in the monkey ventrolateral prefrontal cortex.

    Science.gov (United States)

    Simone, Luciano; Rozzi, Stefano; Bimbi, Marco; Fogassi, Leonardo

    2015-12-01

    Grasping actions require the integration of two neural processes, one enabling the transformation of object properties into corresponding motor acts, and the other involved in planning and controlling action execution on the basis of contextual information. The first process relies on parieto-premotor circuits, whereas the second is considered to be a prefrontal function. Up to now, the prefrontal cortex has been mainly investigated with conditional visuomotor tasks requiring a learned association between cues and behavioural output. To clarify the functional role of the prefrontal cortex in grasping actions, we recorded the activity of ventrolateral prefrontal (VLPF) neurons while monkeys (Macaca mulatta) performed tasks requiring reaching-grasping actions in different contextual conditions (in light and darkness, memory-guided, and in the absence of abstract learned rules). The results showed that the VLPF cortex contains neurons that are active during action execution (movement-related neurons). Some of them showed grip selectivity, and some also responded to object presentation. Most movement-related neurons discharged during action execution both with and without visual feedback, and this discharge typically did not change when the action was performed with object mnemonic information and in the absence of abstract rules. The findings of this study indicate that a population of VLPF neurons play a role in controlling goal-directed grasping actions in several contexts. This control is probably exerted within a wider network, involving parietal and premotor regions, where the role of VLPF movement-related neurons would be that of activating, on the basis of contextual information, the representation of the motor goal of the intended action (taking possession of an object) during action planning and execution.

  2. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model.

    Science.gov (United States)

    Mannella, Francesco; Mirolli, Marco; Baldassarre, Gianluca

    2016-01-01

    Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or "action-outcomes", e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior.

  3. Embodied artificial agents for understanding human social cognition.

    Science.gov (United States)

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?'

  4. Evidence for habitual and goal-directed behavior following devaluation of cocaine: a multifaceted interpretation of relapse.

    Directory of Open Access Journals (Sweden)

    David H Root

    Full Text Available BACKGROUND: Cocaine addiction is characterized as a chronically relapsing disorder. It is believed that cues present during self-administration become learned and increase the probability that relapse will occur when they are confronted during abstinence. However, the way in which relapse-inducing cues are interpreted by the user has remained elusive. Recent theories of addiction posit that relapse-inducing cues cause relapse habitually or automatically, bypassing processing information related to the consequences of relapse. Alternatively, other theories hypothesize that relapse-inducing cues produce an expectation of the drug's consequences, designated as goal-directed relapse. Discrete discriminative stimuli signaling the availability of cocaine produce robust cue-induced responding after thirty days of abstinence. However, it is not known whether cue-induced responding is a goal-directed action or habit. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether cue-induced responding is a goal-directed action or habit by explicitly pairing or unpairing cocaine with LiCl-induced sickness (n = 7/group, thereby decreasing or not altering the value of cocaine, respectively. Following thirty days of abstinence, no difference in responding between groups was found when animals were reintroduced to the self-administration environment alone, indicating habitual behavior. However, upon discriminative stimulus presentations, cocaine-sickness paired animals exhibited decreased cue-induced responding relative to unpaired controls, indicating goal-directed behavior. In spite of the difference between groups revealed during abstinent testing, no differences were found between groups when animals were under the influence of cocaine. CONCLUSIONS/SIGNIFICANCE: Unexpectedly, both habitual and goal-directed responding occurred during abstinent testing. Furthermore, habitual or goal-directed responding may have been induced by cues that differed in their correlation

  5. Circadian and Wakefulness-Sleep Modulation of Cognition in Humans

    Directory of Open Access Journals (Sweden)

    Kenneth P Wright

    2012-04-01

    Full Text Available Cognitive and affective processes vary over the course of the 24 hour day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24-hour period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei, to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.

  6. Preventing the stress-induced shift from goal-directed to habit action with a β-adrenergic antagonist.

    Science.gov (United States)

    Schwabe, Lars; Höffken, Oliver; Tegenthoff, Martin; Wolf, Oliver T

    2011-11-23

    Stress modulates instrumental action in favor of habit processes that encode the association between a response and preceding stimuli and at the expense of goal-directed processes that learn the association between an action and the motivational value of the outcome. Here, we asked whether this stress-induced shift from goal-directed to habit action is dependent on noradrenergic activation and may therefore be blocked by a β-adrenoceptor antagonist. To this end, healthy men and women were administered a placebo or the β-adrenoceptor antagonist propranolol before they underwent a stress or a control procedure. Shortly after the stress or control procedure, participants were trained in two instrumental actions that led to two distinct food outcomes. After training, one of the food outcomes was selectively devalued by feeding participants to satiety with that food. A subsequent extinction test indicated whether instrumental behavior was goal-directed or habitual. As expected, stress after placebo rendered participants' behavior insensitive to the change in the value of the outcome and thus habitual. After propranolol intake, however, stressed participants behaved, same as controls, goal-directed, suggesting that propranolol blocked the stress-induced bias toward habit behavior. Our findings show that the shift from goal-directed to habitual control of instrumental action under stress necessitates noradrenergic activation and could have important clinical implications, particularly for addictive disorders.

  7. Goal Statements and Goal-Directed Behavior: A Relational Frame Account of Goal Setting in Organizations

    Science.gov (United States)

    O'Hora, Denis; Maglieri, Kristen A.

    2006-01-01

    Goal setting has consistently been shown to increase performance under specific conditions. These goal setting effects have previously been explored from both a cognitive perspective and in terms of traditional behavioral concepts. We highlight limitations of these approaches and propose a novel account based on Relational Frame Theory. This…

  8. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory.

  9. Hepatic Perfusion Alterations in Septic Shock Patients: Impact of Early Goal-directed Therapy

    Institute of Scientific and Technical Information of China (English)

    Xi-Wen Zhang; Jian-Feng Xie; Ai-Ran Liu; Ying-Zi Huang; Feng-Mei Guo; Cong-Shan Yang; Yi Yang

    2016-01-01

    Background:Early goal-directed therapy (EGDT) has become an important therapeutic management in early salvage stage of septic shock.However,splenic organs possibly remained hypoperfused and hypoxic despite fluid resuscitation.This study aimed to evaluate the effect of EGDT on hepatic perfusion in septic shock patients.Methods:A prospective observational study was carried out in early septic shock patients who were admitted to Intensive Care Unit within 24 h after onset and who met all four elements of the EGDT criteria after treatment with the standard EGDT procedure within 6 h between December 1,2012 and November 30,2013.The hemodynamic data were recorded,and oxygen metabolism and hepatic functions were monitored.An indocyanine green clearance test was applied to detect the hepatic perfusion.The patients' characteristics were compared before treatment (T0),immediately after EGDT (T 1),and 24 h after EGDT (T2).This study is registered at ClinicalTrials.org,NCT02060773.Results:Twenty-one patients were included in the study;however,the hepatic perfusion data were not included in the analysis for two patients;therefore,19 patients were eligible for the study.Hemodynamics data,as monitored by pulse-indicator continuous cardiac output,were obtained from 16 patients.There were no significant differences in indocyanine green plasma disappearance rate (ICG-PDR) and 15-min retention rate (R15) at T0 (11.9 ± 5.0%/min and 20.0 ± 13.2%),T 1 (11.4 ± 5.1%/min and 23.6 ± 14.9%),and T2 (11.0 ± 4.5%/min and 23.7 ± 15.3%) (all P > 0.05).Both of the alterations of ICG-PDR and R1 5 showed no differences at T0,T1,and T2 in the patients of different subgroups that achieved different resuscitation goal numbers when elected (P > 0.05).Conclusion:There were no hepatic perfusion improvements after EGDT in the early phase of patients with septic shock.

  10. Dissociable contributions of the left and right posterior medial orbitofrontal cortex in motivational control of goal-directed behavior.

    Science.gov (United States)

    Szatkowska, Iwona; Szymańska, Olga; Marchewka, Artur; Soluch, Paweł; Rymarczyk, Krystyna

    2011-09-01

    Several findings from both human neuroimaging and nonhuman primate studies suggest that the posterior medial orbitofrontal cortex (OFC) may be critical for the motivational control of goal-directed behavior. The present study was conducted to clarify the role of the left and right posterior medial OFC in that function by examining the effects of focal unilateral lesions to this region on the performance on an incentive working memory task. The study covered patients who had undergone surgery for an ACoA aneurysm and normal control subjects (C). The patients were subdivided into three groups: those with resection of the left (LGR+) or right (RGR+) posterior part of the gyrus rectus, and without such a resection (GR-). Participants performed a 2-back working memory task under three motivational conditions (penalty, reward, and no-incentive). The C group performed worse in the penalty condition and better in the reward condition as compared to the no-incentive condition. Similar results were obtained for the GR- group. Performance of the LGR+ group did not depend on incentive manipulations, whereas the RGR+ group performed better in both the penalty and reward conditions than in the no-incentive condition. The results show that the posterior medial OFC is involved in the motivational modulation of working memory performance. Our findings also suggest that the left posterior medial OFC plays a crucial role in this function, whereas the right posterior medial OFC is particularly involved in the processing of the punishing aspect of salient events and it probably mediates in guiding behavior on the basis of negative outcomes of action.

  11. Cognitive representation of human action: theory, applications, and perspectives

    Directory of Open Access Journals (Sweden)

    Christian eSeegelke

    2016-02-01

    Full Text Available In this perspective article, we propose a cognitive architecture model of human action that stresses the importance of cognitive representations stored in long-term memory (LTM as reference structures underlying and guiding voluntary motor performance. We introduce an experimental approach to ascertain cognitive representation structures, and provide evidence from a variety of different studies, ranging from basic research in manual action to application-oriented research such as athlete performance and rehabilitation. As results from these studies strongly support the presence of functional links between cognitive and motor processes, we regard this approach as a suitable and valuable tool for a variety of different disciplines related to cognition and movement. We conclude this article by highlighting current advances in ongoing research projects aimed at improving interaction capabilities in technical systems, particularly for rehabilitation and everyday support of the elderly, and outline future research directions.

  12. Human Uniqueness, Cognition by Description, and Procedural Memory

    Directory of Open Access Journals (Sweden)

    John Bolender

    2008-06-01

    Full Text Available Evidence will be reviewed suggesting a fairly direct link between the human ability to think about entities which one has never perceived — here called “cognition by description” — and procedural memory. Cognition by description is a uniquely hominid trait which makes religion, science, and history possible. It is hypothesized that cognition by description (in the manner of Bertrand Russell’s “knowledge by description” requires variable binding, which in turn utilizes quantifier raising. Quantifier raising plausibly depends upon the computational core of language, specifically the element of it which Noam Chomsky calls “internal Merge”. Internal Merge produces hierarchical structures by means of a memory of derivational steps, a process plausibly involving procedural memory. The hypothesis is testable, predicting that procedural memory deficits will be accompanied by impairments in cognition by description. We also discuss neural mechanisms plausibly underlying procedural memory and also, by our hypothesis, cognition by description.

  13. Molecular networks and the evolution of human cognitive specializations.

    Science.gov (United States)

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cognition, Emotion, and Other Inescapable Dimensions of Human Experience.

    Science.gov (United States)

    Frascara, Jorge

    1999-01-01

    Looks at human information processing as a complex system, concentrating on certain insights about field interactions that will reposition the understanding of mental processes, moving it from an analysis of logical steps to the exploration of the influence that contexts have on human cognitive performance. (CR)

  15. Predictors of Unattempted Central Venous Catheterization in Septic Patients Eligible for Early Goal-directed Therapy

    Directory of Open Access Journals (Sweden)

    David R. Vinson

    2014-02-01

    Full Text Available Introduction: Central venous catheterization (CVC can be an important component of the management of patients with severe sepsis and septic shock. CVC, however, is a time- and resource-intensive procedure associated with serious complications. The effects of the absence of shock or the presence of relative contraindications on undertaking central line placement in septic emergency department (ED patients eligible for early goal-directed therapy (EGDT have not been well described. We sought to determine the association of relative normotension (sustained systolic blood pressure >90 mmHg independent of or in response to an initial crystalloid resuscitation of 20 mL/kg, obesity (body mass index [BMI] ≥30, moderate thrombocytopenia (platelet count <50,000 per μL, and coagulopathy (international normalized ratio ≥2.0 with unattempted CVC in EGDT-eligible patients. Methods: This was a retrospective cohort study of 421 adults who met EGDT criteria in 5 community EDs over a period of 13 months. We compared patients with attempted thoracic (internal jugular or subclavian CVC with those who did not undergo an attempted thoracic line. We also compared patients with any attempted CVC (either thoracic or femoral with those who did not undergo any attempted central line. We used multivariate logistic regression analysis to calculate adjusted odd ratios (AORs. Results: In our study, 364 (86.5% patients underwent attempted thoracic CVC and 57 (13.5% did not. Relative normotension was significantly associated with unattempted thoracic CVC (AOR 2.6 95% confidence interval [CI], 1.6-4.3, as were moderate thrombocytopenia (AOR 3.9; 95% CI, 1.5-10.1 and coagulopathy (AOR 2.7; 95% CI, 1.3-5.6. When assessing for attempted catheterization of any central venous site (thoracic or femoral, 382 (90.7% patients underwent attempted catheterization and 39 (9.3% patients did not. Relative normotension (AOR 2.3; 95% CI, 1.2-4.5 and moderate thrombocytopenia (AOR 3.9; 95

  16. Verification of extended model of goal directed behavior applied on aggression

    Directory of Open Access Journals (Sweden)

    Katarína Vasková

    2016-01-01

    Full Text Available The study was aimed to verify Model of Goal Directed Behavior (EMGB by Perugini and Bagozzi (2001 applied on aggression by Richetin, Richardson and Boykin (2011. Two different studies were performed. Firstly original form of model was verified. In the second study, modification of EMGB through new conceptualization of scale of perceived behavioral control was executed. The research sample consisted together from 385 students of University of P.J. Šafárik and High school in Košice (182 respondents (78 men, 104 women with average age 20,84 years and standard deviation 1,94, who were involved in first study and 203 students (49 men and 154 women, with average age 19,71 and standard deviation 1,99 participated in second study who were administrated questionnaire by Richetin et al. (2011 and Richardson Conflict Response Questionnaire (Richardson & Green, 2006. Expectancy of comparable relationships between particular factors of EMGB in comparison to its published original version was verified. Data were analyzed by structural equation modeling. In first study was shown insufficient fit of EMGB model. There were hypothesized two main sources of problems. At first, weak relationship between attitudes and behavioral desire was shown. Following statistical procedures confirmed its direct impact on intention, what is in correspondence with another studies (see Leone, Perugini & Ercolani, 2004, Perugini & Bagozzi, 2001, Richetin et al., 2011. Second source of problems was identified in factor named perceived behavioral control. Difficulties from our point of view lied in conceptualization of the term and its subsequent measurement. In the second study was involved new conceptualization of control. It corresponded with Baumeister´s understanding of selfcontrol as asserting control over one´s emotions, thoughts and behavior. After this modification sufficient fit of EMGB was shown. Besides this, factor of self-control was the strongest predictor of

  17. Postural adjustments during spontaneous and goal-directed arm movements in the first half year of life

    NARCIS (Netherlands)

    van der Fits, IBM; Klip, AWJ; van Eykern, LA; Hadders-Algra, M

    1999-01-01

    We studied the development of postural control during goal-directed reaching and spontaneous arm movements in early infancy. Two groups of infants participated. The first group consisted of 10 healthy infants, who were assessed four times at the ages of 3, 4, 5 and 6 months. Each assessment consiste

  18. Reinforcement Learning Approach to Generate Goal-directed Locomotion of a Snake-Like Robot with Screw-Drive Units

    DEFF Research Database (Denmark)

    Chatterjee, Sromona; Nachstedt, Timo; Tamosiunaite, Minija

    2014-01-01

    Abstract—In this paper we apply a policy improvement algorithm called Policy Improvement using Path Integrals (PI2) to generate goal-directed locomotion of a complex snake-like robot with screw-drive units. PI2 is numerically simple and has an ability to deal with high dimensional systems. Here...

  19. Effects of psychosocial stress on the goal-directed and habit memory systems during learning and later execution.

    Science.gov (United States)

    Fournier, Marion; d'Arripe-Longueville, Fabienne; Radel, Rémi

    2017-03-01

    Instrumental learning occurs through both goal-directed and habit memory systems, which are supported by anatomically distinct brain systems. Interestingly, stress may promote habits at the expense of goal-directed performance, since stress before training in an instrumental task was found to cause individuals to carry on with the learned association in spite of a devalued outcome. These findings nevertheless left pending questions, and it has been difficult to determine which system is primarily affected by stress (an improved habit system, an impaired goal-directed system, or both) and at what point the stress acts (at the moment of learning by making more resistant habits, or after devaluation by making individuals less sensitive to change in the outcome value). The present study (N=72 participants, 63 males and 9 females) aimed to answer these questions with (i) an instrumental task that dissociates the two memory systems and (ii) three conditions of psychosocial stress exposure (Trier Social Stress Test): stress induced before learning, before devaluation, and not induced for the control group. The study confirms that exposure to psychosocial stress leads to habitual performance. Moreover, it provides new insight into this effect by locating its origin as an impairment in the capacity of the goal-directed system rather than a reinforcement in habit learning. These results are discussed in light of recent neurobiological models of stress and memory.

  20. A daily-life-oriented intervention to improve prospective memory and goal-directed behaviour in ageing: a pilot study.

    Science.gov (United States)

    Burkard, Christina; Rochat, Lucien; Blum, Anaëlle; Emmenegger, Joëlle; Juillerat Van der Linden, Anne-Claude; Van der Linden, Martial

    2014-01-01

    Difficulties in the execution of goal-directed behaviours, and particularly their prospective memory component, can arise in ageing and have important consequences for autonomy. The first objective of this article is to present an intervention that trained older individuals who reported prospective memory or goal-directed behaviour problems to use "implementation intentions". This technique, which has been shown to improve different aspects of goal-directed behaviour enactment, consists of establishing a mental (verbal and/or visual) link between the action that must be performed and the situation in which it must be performed. Our programme proposes exercises of progressively increasing difficulty that are targeted at daily life situations. Our second objective was to test the programme in small groups of older adults. Preliminary data regarding the programme's feasibility and its initial efficacy show a significant improvement in the main outcome measure, a questionnaire assessing goal-directed behaviours in everyday life. The participants also reported being significantly less bothered by their difficulties, although there were no significant changes in quality of life, self-esteem, anxiety or depression. Two participants with different psychological profiles, who benefited differently from the intervention, are then presented in more detail.

  1. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    that transplanted hGPCs not only engraft and expand within murine hosts, but dynamically outcompete the resident progenitors so as to ultimately dominate the host brain. The engrafted human progenitor cells proceed to generate parenchymal astrocytes, and when faced with a hypomyelinated environment......, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our...

  2. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU.

    Science.gov (United States)

    Hodgson, Carol L; Bailey, Michael; Bellomo, Rinaldo; Berney, Susan; Buhr, Heidi; Denehy, Linda; Gabbe, Belinda; Harrold, Megan; Higgins, Alisa; Iwashyna, Theodore J; Papworth, Rebecca; Parke, Rachael; Patman, Shane; Presneill, Jeffrey; Saxena, Manoj; Skinner, Elizabeth; Tipping, Claire; Young, Paul; Webb, Steven

    2016-06-01

    To determine if the early goal-directed mobilization intervention could be delivered to patients receiving mechanical ventilation with increased maximal levels of activity compared with standard care. A pilot randomized controlled trial. Five ICUs in Australia and New Zealand. Fifty critically ill adults mechanically ventilated for greater than 24 hours. Patients were randomly assigned to either early goal-directed mobilization (intervention) or to standard care (control). Early goal-directed mobilization comprised functional rehabilitation treatment conducted at the highest level of activity possible for that patient assessed by the ICU mobility scale while receiving mechanical ventilation. The ICU mobility scale, strength, ventilation duration, ICU and hospital length of stay, and total inpatient (acute and rehabilitation) stay as well as 6-month post-ICU discharge health-related quality of life, activities of daily living, and anxiety and depression were recorded. The mean age was 61 years and 60% were men. The highest level of activity (ICU mobility scale) recorded during the ICU stay between the intervention and control groups was mean (95% CI) 7.3 (6.3-8.3) versus 5.9 (4.9-6.9), p = 0.05. The proportion of patients who walked in ICU was almost doubled with early goal-directed mobilization (intervention n = 19 [66%] vs control n = 8 [38%]; p = 0.05). There was no difference in total inpatient stay (d) between the intervention versus control groups (20 [15-35] vs 34 [18-43]; p = 0.37). There were no adverse events. Key Practice Points: Delivery of early goal-directed mobilization within a randomized controlled trial was feasible, safe and resulted in increased duration and level of active exercises.

  3. Deciphering CAPTCHAs: What a Turing Test Reveals about Human Cognition

    OpenAIRE

    Thomas Hannagan; Maria Ktori; Myriam Chanceaux; Jonathan Grainger

    2012-01-01

    International audience; Turning Turing's logic on its head, we used widespread letter-based Turing Tests found on the internet CAPTCHAs) to shed light on human cognition. We examined the basis of the human ability to solve CAPTCHAs, where machines fail. We asked whether this is due to our use of slow-acting inferential processes that would not be available to machines, or whether fastacting automatic orthographic processing in humans has superior robustness to shape variations. A masked primi...

  4. Electrophysiological evidence for flexible goal-directed cue processing during episodic retrieval.

    Science.gov (United States)

    Herron, Jane E; Evans, Lisa H; Wilding, Edward L

    2016-05-15

    A widely held assumption is that memory retrieval is aided by cognitive control processes that are engaged flexibly in service of memory retrieval and memory decisions. While there is some empirical support for this view, a notable exception is the absence of evidence for the flexible use of retrieval control in functional neuroimaging experiments requiring frequent switches between tasks with different cognitive demands. This absence is troublesome in so far as frequent switches between tasks mimic some of the challenges that are typically placed on memory outside the laboratory. In this experiment we instructed participants to alternate frequently between three episodic memory tasks requiring item recognition or retrieval of one of two different kinds of contextual information encoded in a prior study phase (screen location or encoding task). Event-related potentials (ERPs) elicited by unstudied items in the two tasks requiring retrieval of study context were reliably different, demonstrating for the first time that ERPs index task-specific processing of retrieval cues when retrieval goals change frequently. The inclusion of the item recognition task was a novel and important addition in this study, because only the ERPs elicited by unstudied items in one of the two context conditions diverged from those in the item recognition condition. This outcome constrains functional interpretations of the differences that emerged between the two context conditions and emphasises the utility of this baseline in functional imaging studies of retrieval processing operations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Orientation toward humans predicts cognitive performance in orang-utans

    Science.gov (United States)

    Damerius, Laura A.; Forss, Sofia I. F.; Kosonen, Zaida K.; Willems, Erik P.; Burkart, Judith M.; Call, Josep; Galdikas, Birute M. F.; Liebal, Katja; Haun, Daniel B. M.; van Schaik, Carel P.

    2017-01-01

    Non-human animals sometimes show marked intraspecific variation in their cognitive abilities that may reflect variation in external inputs and experience during the developmental period. We examined variation in exploration and cognitive performance on a problem-solving task in a large sample of captive orang-utans (Pongo abelii & P. pygmaeus, N = 103) that had experienced different rearing and housing conditions during ontogeny, including human exposure. In addition to measuring exploration and cognitive performance, we also conducted a set of assays of the subjects’ psychological orientation, including reactions towards an unfamiliar human, summarized in the human orientation index (HOI), and towards novel food and objects. Using generalized linear mixed models we found that the HOI, rather than rearing background, best predicted both exploration and problem-solving success. Our results suggest a cascade of processes: human orientation was accompanied by a change in motivation towards problem-solving, expressed in reduced neophobia and increased exploration variety, which led to greater experience, and thus eventually to higher performance in the task. We propose that different experiences with humans caused individuals to vary in curiosity and understanding of the physical problem-solving task. We discuss the implications of these findings for comparative studies of cognitive ability. PMID:28067260

  6. Linguistic fire and human cognitive powers

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2012-01-01

    To view language as a cultural tool challenges much of what claims to be linguistic science while opening up a new people-centred linguistics. On this view, how we speak, think and act depends on, not just brains (or minds), but also cultural traditions. Yet, Everett is conservative: like others...... trained in distributional analysis, he reifies ‘words’. Though rejecting inner languages and grammatical universals, he ascribes mental reality to a lexicon. Reliant as he is on transcriptions, he takes the cognitivist view that brains represent word-forms. By contrast, in radical embodied cognitive...

  7. Plasticity of human spatial cognition: spatial language and cognition covary across cultures.

    Science.gov (United States)

    Haun, Daniel B M; Rapold, Christian J; Janzen, Gabriele; Levinson, Stephen C

    2011-04-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of task-complexity and instruction. Data show a correlation between dominant linguistic spatial frames of reference and performance patterns in non-linguistic spatial memory tasks. This correlation is shown to be stable across an increase of complexity in the spatial array. When instructed to use their respective non-habitual cognitive strategy, participants were not easily able to switch between strategies and their attempts to do so impaired their performance. These results indicate a difference not only in preference but also in competence and suggest that spatial language and non-linguistic preferences and competences in spatial cognition are systematically aligned across human populations.

  8. Cognitive impairment in human chronic Chagas' disease

    Directory of Open Access Journals (Sweden)

    C.A. Mangone

    1994-06-01

    Full Text Available We proposed to investigate subclinical cognitive impairment secondary to chronic Chagas' disease (CCD. No similar study was previously done. The neuropsychological performance of 45 chronic Chagasic patients and 26 matched controls (age, education place and years of residency in endemic area was compared using the Mini Mental State Exam (MMSE, Weschler Memory Scale (WMS and the Weschler Adult Intelligent Scale (WAIS. Non-parametric tests and Chi2 were used to compare group means and multivariate statistics in two way frequency tables for measures of independence and association of categorical variables with the disease. Results: Chagasic patients showed lower MMSE scores (p<004, poor orientation (p<.004, and attention (p<.007. Lower WMS MQ were associated with CCD (Chi2 5.9; p<.01; Fisher test p<.02. Lower WAIS IQ were associated with CCD (Chi2 6.3, p<.01; Fisher test p<.01 being the digit symbol (p<.03, picture completion (p<.03, picture arrangement (p<.01 and object assembly (p<.03 subtests the most affected. The impairment in non-verbal reasoning, speed of information processing, problem solving, learning and sequencing observed in chronic Chagas disease patients resembles the cognitive dysfunction associated with white matter disease.

  9. Simulating Human Cognitive Using Computational Verb Theory

    Institute of Scientific and Technical Information of China (English)

    YANGTao

    2004-01-01

    Modeling and simulation of a life system is closely connected to the modeling of cognition,especially for advanced life systems. The primary difference between an advanced life system and a digital computer is that the advanced life system consists of a body with mind while a digital computer is only a mind in a formal sense. To model an advanced life system one needs to symbols into a body where a digital computer is embedded. In this paper, a computational verb theory is proposed as a new paradigm of grounding symbols into the outputs of sensors. On one hand, a computational verb can preserve the physical "meanings" of the dynamics of sensor data such that a symbolic system can be used to manipulate physical meanings instead of abstract tokens in the digital computer. On the other hand, the physical meanings of an abstract symbol/token, which is usually an output of a reasoning process in the digital computer, can be restored and fed back to the actuators. Therefore, the computational verb theory bridges the gap between symbols and physical reality from the dynamic cognition perspective.

  10. Dopaminergic control of cognitive flexibility in humans and animals

    Directory of Open Access Journals (Sweden)

    Marianne eKlanker

    2013-11-01

    Full Text Available Striatal dopamine is thought to code for learned associations between cues and reinforcers and to mediate approach behavior towards a reward. Less is known about the contribution of dopamine to cognitive flexibility – the ability to adapt behavior in response to changes in the environment. Altered reward processing and impairments in cognitive flexibility are observed in psychiatric disorders such as obsessive compulsive disorder. Patients with this disorder show a disruption of functioning in the frontostriatal circuit and alterations in dopamine signaling. In this review we summarize findings from animal and human studies that have investigated the involvement of striatal dopamine in cognitive flexibility. These findings may provide a better understanding of the role of dopaminergic dysfunction in cognitive inflexibility in psychiatric disorders, such as OCD.

  11. [Human interaction, social cognition, and the superior temporal sulcus].

    Science.gov (United States)

    Brunelle, Francis; Saitovitch, Anna; Boddaert, Nathalie; Grevent, David; Cambier, Jean; Lelord, Gilbert; Samson, Yves; Zilbovicius, Monica

    2013-01-01

    Human beings are social animals. This ability to live together is ensured by cognitive functions, the neuroanatomical bases of which are starting to be unraveled by MRI-based studies. The regions and network engaged in this process are known as the "social brain ". The core of this network is the superior temporal sulcus (STS), which integrates sensory and emotional inputs. Modeling studies of healthy volunteers have shown the role of the STS.in recognizing others as biological beings, as well as facial and eye-gaze recognition, intentionality and emotions. This cognitive capacity has been described as the "theory of mind ". Pathological models such as autism, in which the main clinical abnormality is altered social abilities and communication, have confirmed the role of the STS in the social brain. Conceptualisation of this empathic capacity has been described as "meta cognition ", which forms the basis of human social organizationand culture.

  12. Consciousness, Mind, and Spirit: Three Levels of Human Cognition

    Directory of Open Access Journals (Sweden)

    Andrej Ule

    2015-10-01

    Full Text Available The article elucidates three important concepts and realities that refer to cognitive phenomena and are often (mistakenly used as synonyms: consciousness (slo. zavest, mind (slo. um, and spirit (slo. duh. They present three levels of human cognition: individual-experiential, individual-mental, and trans-individual-mental. Simply put: the concept of consciousness pertains to the waking mental life of a human being, while the concept of mind pertains to the ability and activity to consciously comprehend and understand contents and objects of human activity. I delineate three “types” of spirit: personal spirit, objective spirit, and the objectification of spirit in productions of human culture; I have doubts, however, about the existence of cosmic or super-cosmic dimensions of spirit, although some interpretations of quantum physics and modern cosmology suggest that such dimensions are possible.

  13. Human strategic reasoning in dynamic games: Experiments, logics, cognitive models

    NARCIS (Netherlands)

    Ghosh, Sujata; Halder, Tamoghna; Sharma, Khyati; Verbrugge, Rineke

    2015-01-01

    © Springer-Verlag Berlin Heidelberg 2015.This article provides a three-way interaction between experiments, logic and cognitive modelling so as to bring out a shared perspective among these diverse areas, aiming towards better understanding and better modelling of human strategic reasoning in

  14. Environmental Stimulation, Parental Nurturance and Cognitive Development in Humans

    Science.gov (United States)

    Farah, Martha J.; Betancourt, Laura; Shera, David M.; Savage, Jessica H.; Giannetta, Joan M.; Brodsky, Nancy L.; Malmud, Elsa K.; Hurt, Hallam

    2008-01-01

    The effects of environmental stimulation and parental nurturance on brain development have been studied extensively in animals. Much less is known about the relations between childhood experience and cognitive development in humans. Using a longitudinally collected data set with ecologically valid in-home measures of childhood experience and later…

  15. Human strategic reasoning in dynamic games: Experiments, logics, cognitive models

    NARCIS (Netherlands)

    Ghosh, Sujata; Halder, Tamoghna; Sharma, Khyati; Verbrugge, Rineke

    2015-01-01

    © Springer-Verlag Berlin Heidelberg 2015.This article provides a three-way interaction between experiments, logic and cognitive modelling so as to bring out a shared perspective among these diverse areas, aiming towards better understanding and better modelling of human strategic reasoning in dynami

  16. Evaluating on-line control of goal-directed arm movement while standing in virtual visual environment

    OpenAIRE

    Martin, Olivier; Julian, Benjamin; Boissieux, Laurence; Gascuel, Jean-Dominique; Prablanc, Claude

    2002-01-01

    International audience; The control of visually guided movement has been showed to be optimised when motor programming quickly integrated the visual information to update on-going motor commands. The purpose of this study was to verify this proposition for movement executed in virtual visual environment (VE), by exploring the effect of immersion on the on-line visuomotor control of goal-directed arm movement. Six subjects participated in the experiment, in which hand reaching toward a station...

  17. Enhanced Neural Processing of Goal-directed Actions After Active Training in 4-Month-Old Infants.

    Science.gov (United States)

    Bakker, Marta; Sommerville, Jessica A; Gredebäck, Gustaf

    2016-03-01

    The current study explores the neural correlates of action perception and its relation to infants' active experience performing goal-directed actions. Study 1 provided active training with sticky mittens that enables grasping and object manipulation in prereaching 4-month-olds. After training, EEG was recorded while infants observed images of hands grasping toward (congruent) or away from (incongruent) objects. We demonstrate that brief active training facilitates social perception as indexed by larger amplitude of the P400 ERP component to congruent compared with incongruent trials. Study 2 presented 4-month-old infants with passive training in which they observed an experimenter perform goal-directed reaching actions, followed by an identical ERP session to that used in Study 1. The second study did not demonstrate any differentiation between congruent and incongruent trials. These results suggest that (1) active experience alters the brains' response to goal-directed actions performed by others and (2) visual exposure alone is not sufficient in developing the neural networks subserving goal processing during action observation in infancy.

  18. Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread.

    Science.gov (United States)

    Ho, Jeffrey; Dawes, Donald; Miner, James; Kunz, Sebastian; Nelson, Rebecca; Sweeney, James

    2012-12-01

    Despite training and field experience that the location and spread between conducted electrical weapon (CEW) probes is important in establishing incapacitation, there have been no human studies which have systematically examined the relationships between probe spread and incapacitation. We have investigated this relationship with the TASER(®) X26. We have also developed and validated methodologies for prospective assessment of the effectiveness of CEWs in the incapacitation of highly motivated human subjects. Subjects (n = 30) had probes placed on the front or back with randomly varied spreads in accordance with recommended targeting zones. Subjects were motivated to complete the task of disabling the device or a dummy officer suspended ten feet away during the exposure while using a training knife. Subjects were rated on their progress toward goal success and on the extent of any incapacitation using two separate observer scoring panels: one consisting of experts in physiology and X26 technology, and another of veteran peace officers. Incapacitation by all measures was found to be a function of spread; generally increasing in effectiveness up to spreads between 9 and 12 in. There were notable differences between front and back exposures, with front exposures not leading to full incapacitation of the upper extremities regardless of probe spread. This is the first published study on a quantitative methodology for directly assessing the effectiveness of CEWs in human incapacitation. We have also validated and quantified for the first time in human subjects that establishing a minimal spread between X26 probes correlates to the extent of device effectiveness.

  19. Computational model of sustained acceleration effects on human cognitive performance.

    Science.gov (United States)

    McKinlly, Richard A; Gallimore, Jennie J

    2013-08-01

    Extreme acceleration maneuvers encountered in modern agile fighter aircraft can wreak havoc on human physiology, thereby significantly influencing cognitive task performance. As oxygen content declines under acceleration stress, the activity of high order cortical tissue reduces to ensure sufficient metabolic resources are available for critical life-sustaining autonomic functions. Consequently, cognitive abilities reliant on these affected areas suffer significant performance degradations. The goal was to develop and validate a model capable of predicting human cognitive performance under acceleration stress. Development began with creation of a proportional control cardiovascular model that produced predictions of several hemodynamic parameters, including eye-level blood pressure and regional cerebral oxygen saturation (rSo2). An algorithm was derived to relate changes in rSo2 within specific brain structures to performance on cognitive tasks that require engagement of different brain areas. Data from the "precision timing" experiment were then used to validate the model predicting cognitive performance as a function of G(z) profile. The following are value ranges. Results showed high agreement between the measured and predicted values for the rSo2 (correlation coefficient: 0.7483-0.8687; linear best-fit slope: 0.5760-0.9484; mean percent error: 0.75-3.33) and cognitive performance models (motion inference task--correlation coefficient: 0.7103-0.9451; linear best-fit slope: 0.7416-0.9144; mean percent error: 6.35-38.21; precision timing task--correlation coefficient: 0.6856-0.9726; linear best-fit slope: 0.5795-1.027; mean percent error: 6.30-17.28). The evidence suggests that the model is capable of accurately predicting cognitive performance of simplistic tasks under high acceleration stress.

  20. L\\'evy flights in human behavior and cognition

    CERN Document Server

    Baronchelli, Andrea

    2013-01-01

    L\\'evy flights represent the best strategy to randomly search for a target in an unknown environment, and have been widely observed in many animal species. Here, we inspect and discuss recent results concerning human behavior and cognition. Different studies have shown that human mobility can be described in terms of L\\'evy flights, while fresh evidence indicates that the same pattern accounts for human mental searches in online gambling sites. Thus, L\\'evy flights emerge as a unifying concept with broad cross-disciplinary implications. We argue that the ubiquity of such a pattern, both in behavior and cognition, suggests that the brain regions responsible for this behavior are likely to be evolutionarily old (i.e. no frontal cortex is involved), and that fMRI techniques might help to confirm this hypothesis.

  1. Neuroethical considerations: cognitive liberty and converging technologies for improving human cognition.

    Science.gov (United States)

    Sententia, Wrye

    2004-05-01

    Developers of NBIC (Nano-Bio-Info-Cogno) technologies face a multitude of obstacles, not the least of which is navigating the public ethics of their applied research. Biotechnologies have received widespread media attention and spawned heated interest in their perceived social implications. Now, in view of the rapidly expanding purview of neuroscience and the growing array of technologic developments capable of affecting or monitoring cognition, the emerging field of neuroethics calls for a consideration of the social and ethical implications of neuroscientific discoveries and trends. To negotiate the complex ethical issues at stake in new and emerging kinds of technologies for improving human cognition, we need to overcome political, disciplinary, and religious sectarianism. We need analytical models that protect values of personhood at the heart of a functional democracy-values that allow, as much as possible, for individual decision-making, despite transformations in our understanding and ability to manipulate cognitive processes. Addressing cognitive enhancement from the legal and ethical notion of "cognitive liberty" provides a powerful tool for assessing and encouraging NBIC developments.

  2. Dissociable neural mechanisms for goal-directed versus incidental memory reactivation.

    Science.gov (United States)

    Kuhl, Brice A; Johnson, Marcia K; Chun, Marvin M

    2013-10-09

    Remembering a past event involves reactivation of distributed patterns of neural activity that represent the features of that event-a process that depends on associative mechanisms supported by medial temporal lobe structures. Although efficient use of memory requires prioritizing those features of a memory that are relevant to current behavioral goals (target features) over features that may be goal-irrelevant (incidental features), there remains ambiguity concerning how this is achieved. We tested the hypothesis that although medial temporal lobe structures may support reactivation of both target and incidental event features, frontoparietal cortex preferentially reactivates those features that match current goals. Here, human participants were cued to remember either the category (face/scene) to which a picture belonged (category trials) or the location (left/right) in which a picture appeared (location trials). Multivoxel pattern analysis of fMRI data were used to measure reactivation of category information as a function of its behavioral relevance (target vs incidental reactivation). In ventral/medial temporal lobe (VMTL) structures, incidental reactivation was as robust as target reactivation. In contrast, frontoparietal cortex exhibited stronger target than incidental reactivation; that is, goal-modulated reactivation. Reactivation was also associated with later memory. Frontoparietal biases toward target reactivation predicted subsequent memory for target features, whereas incidental reactivation in VMTL predicted subsequent memory for nontested features. These findings reveal a striking dissociation between goal-modulated reactivation in frontoparietal cortex and incidental reactivation in VMTL.

  3. Telerobotic Pointing Gestures Shape Human Spatial Cognition

    CERN Document Server

    Cabibihan, John-John; Saj, Sujin; Zhang, Zhengchen

    2012-01-01

    This paper aimed to explore whether human beings can understand gestures produced by telepresence robots. If it were the case, they can derive meaning conveyed in telerobotic gestures when processing spatial information. We conducted two experiments over Skype in the present study. Participants were presented with a robotic interface that had arms, which were teleoperated by an experimenter. The robot could point to virtual locations that represented certain entities. In Experiment 1, the experimenter described spatial locations of fictitious objects sequentially in two conditions: speech condition (SO, verbal descriptions clearly indicated the spatial layout) and speech and gesture condition (SR, verbal descriptions were ambiguous but accompanied by robotic pointing gestures). Participants were then asked to recall the objects' spatial locations. We found that the number of spatial locations recalled in the SR condition was on par with that in the SO condition, suggesting that telerobotic pointing gestures c...

  4. Imprinting and flexibility in human face cognition

    Science.gov (United States)

    Marcinkowska, Urszula M.; Terraube, Julien; Kaminski, Gwenaël

    2016-01-01

    Faces are an important cue to multiple physiological and psychological traits. Human preferences for exaggerated sex typicality (masculinity or femininity) in faces depend on multiple factors and show high inter-subject variability. To gain a deeper understanding of the mechanisms underlying facial femininity preferences in men, we tested the interactive effect of family structure (birth order, sibling sex-ratio and number of siblings) and parenthood status on these preferences. Based on a group of 1304 heterosexual men, we have found that preference for feminine faces was not only influenced by sibling age and sex, but also that fatherhood modulated this preference. Men with sisters had a weaker preference for femininity than men with brothers, highlighting a possible effect of a negative imprinting-like mechanism. What is more, fatherhood increased strongly the preference for facial femininity. Finally, for fathers with younger sisters only, the more the age difference increased between them, the more femininity preference increased. Overall our findings bring new insight into how early-acquired experience at the individual level may determine face preference in adulthood, and what is more, how these preferences are flexible and potentially dependent on parenthood status in adult men. PMID:27680495

  5. Agent-based cognitive model for human resources competence management.

    Science.gov (United States)

    Oliveira, Stefan; Gluz, João Carlos

    2010-01-01

    This chapter presents an agent-based cognitive model aimed to represent human competency concepts and competence management processes of psychological nature. This model is implemented by a multiagent system application intended to help managers of software development projects to select, based on the competence management model, the right professionals to integrate a development team. There are several software engineering methodologies that can be used to design and develop multiagent systems. However, due to the necessity to handle human competency concepts of cognitive nature, like aptitudes, interests, abilities and knowledge, we were driven to choose methodologies that can handle these concepts since the inception of the system. To do so, we integrated the TROPOS methodology, and a set of software engineering methods derived from intelligent tutoring systems research to successfully analyze and design the proposed system. At the end of the paper we present a study case, showing how the proposed system should be applied to the domain of website development.

  6. Linking human factors to corporate strategy with cognitive mapping techniques.

    Science.gov (United States)

    Village, Judy; Greig, Michael; Salustri, Filippo A; Neumann, W Patrick

    2012-01-01

    For human factors (HF) to avoid being considered of "side-car" status, it needs to be positioned within the organization in such a way that it affects business strategies and their implementation. Tools are needed to support this effort. This paper explores the feasibility of applying a technique from operational research called cognitive mapping to link HF to corporate strategy. Using a single case study, a cognitive map is drawn to reveal the complex relationships between human factors and achieving an organization's strategic goals. Analysis of the map for central concepts and reinforcing loops enhances understanding that can lead to discrete initiatives to facilitate integration of HF. It is recommended that this technique be used with senior managers to understand the organizations` strategic goals and enhance understanding of the potential for HF to contribute to the strategic goals.

  7. Quantum Structure in Cognition and the Foundations of Human Reasoning

    Science.gov (United States)

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-12-01

    Traditional cognitive science rests on a foundation of classical logic and probability theory. This foundation has been seriously challenged by several findings in experimental psychology on human decision making. Meanwhile, the formalism of quantum theory has provided an efficient resource for modeling these classically problematical situations. In this paper, we start from our successful quantum-theoretic approach to the modeling of concept combinations to formulate a unifying explanatory hypothesis. In it, human reasoning is the superposition of two processes - a conceptual reasoning, whose nature is emergence of new conceptuality, and a logical reasoning, founded on an algebraic calculus of the logical type. In most cognitive processes however, the former reasoning prevails over the latter. In this perspective, the observed deviations from classical logical reasoning should not be interpreted as biases but, rather, as natural expressions of emergence in its deepest form.

  8. Sleep intensity and the evolution of human cognition.

    Science.gov (United States)

    Samson, David R; Nunn, Charles L

    2015-01-01

    Over the past four decades, scientists have made substantial progress in understanding the evolution of sleep patterns across the Tree of Life. Remarkably, the specifics of sleep along the human lineage have been slow to emerge. This is surprising, given our unique mental and behavioral capacity and the importance of sleep for individual cognitive performance. One view is that our species' sleep architecture is in accord with patterns documented in other mammals. We promote an alternative view, that human sleep is highly derived relative to that of other primates. Based on new and existing evidence, we specifically propose that humans are more efficient in their sleep patterns than are other primates, and that human sleep is shorter, deeper, and exhibits a higher proportion of REM than expected. Thus, we propose the sleep intensity hypothesis: Early humans experienced selective pressure to fulfill sleep needs in the shortest time possible. Several factors likely served as selective pressures for more efficient sleep, including increased predation risk in terrestrial environments, threats from intergroup conflict, and benefits arising from increased social interaction. Less sleep would enable longer active periods in which to acquire and transmit new skills and knowledge, while deeper sleep may be critical for the consolidation of those skills, leading to enhanced cognitive abilities in early humans.

  9. How Does Awareness Modulate Goal-Directed and Stimulus-Driven Shifts of Attention Triggered by Value Learning?

    Science.gov (United States)

    Bourgeois, Alexia; Neveu, Rémi; Vuilleumier, Patrik

    2016-01-01

    In order to behave adaptively, attention can be directed in space either voluntarily (i.e., endogenously) according to strategic goals, or involuntarily (i.e., exogenously) through reflexive capture by salient or novel events. The emotional or motivational value of stimuli can also strongly influence attentional orienting. However, little is known about how reward-related effects compete or interact with endogenous and exogenous attention mechanisms, particularly outside of awareness. Here we developed a visual search paradigm to study subliminal value-based attentional orienting. We systematically manipulated goal-directed or stimulus-driven attentional orienting and examined whether an irrelevant, but previously rewarded stimulus could compete with both types of spatial attention during search. Critically, reward was learned without conscious awareness in a preceding phase where one among several visual symbols was consistently paired with a subliminal monetary reinforcement cue. Our results demonstrated that symbols previously associated with a monetary reward received higher attentional priority in the subsequent visual search task, even though these stimuli and reward were no longer task-relevant, and despite reward being unconsciously acquired. Thus, motivational processes operating independent of conscious awareness may provide powerful influences on mechanisms of attentional selection, which could mitigate both stimulus-driven and goal-directed shifts of attention. PMID:27483371

  10. Interaction of insular cortex and ventral striatum mediates the effect of incentive memory on choice between goal-directed actions.

    Science.gov (United States)

    Parkes, Shauna L; Bradfield, Laura A; Balleine, Bernard W

    2015-04-22

    The anterior insular cortex (IC) and the nucleus accumbens (NAc) core have been separately implicated in the selection and performance of actions based on the incentive value of the instrumental outcome. Here, we examined the role of connections between the IC and the NAc core in the performance of goal-directed actions. Rats were trained on two actions for distinct outcomes, after which one of the two outcomes was devalued by specific satiety immediately before a choice extinction test. We first confirmed the projection from the IC to the NAc core and then disconnected these structures via asymmetrical excitotoxic lesions before training. Contralateral, but not ipsilateral, disconnection of the IC and NAc core disrupted outcome devaluation. We hypothesized that communication between the IC and NAc core is necessary for the retrieval of incentive value at test. To test this, we infused the GABAA agonist muscimol into the IC and the μ-opioid receptor antagonist CTAP into the contralateral NAc before the choice extinction test. As expected, inactivation of the IC in one hemisphere and blocking μ-opioid receptors in the contralateral NAc core abolished outcome-selective devaluation. These results suggest that the IC and NAc core form part of a circuit mediating the retrieval of outcome values and the subsequent choice between goal-directed actions based on those values.

  11. Variation in key genes of serotonin and norepinephrine function predicts gamma-band activity during goal-directed attention.

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Lesch, Klaus-Peter; Reif, Andreas; Strobel, Alexander

    2014-05-01

    Recent evidence shows that genetic variations in key regulators of serotonergic (5-HT) signaling explain variance in executive tasks, which suggests modulatory actions of 5-HT on goal-directed selective attention as one possible underlying mechanism. To investigate this link, 130 volunteers were genotyped for the 5-HT transporter gene-linked polymorphic region (5-HTTLPR) and for a variation (TPH2-703 G/T) of the TPH2 gene coding for the rate-limiting enzyme of 5-HT synthesis in the brain. Additionally, a functional polymorphism of the norepinephrine transporter gene (NET -3081 A/T) was considered, which was recently found to predict attention and working memory processes in interaction with serotonergic genes. The flanker-based Attention Network Test was used to assess goal-directed attention and the efficiency of attentional networks. Event-related gamma-band activity served to indicate selective attention at the intermediate phenotype level. The main findings were that 5-HTTLPR s allele and TPH2 G-allele homozygotes showed increased induced gamma-band activity during target processing when combined with the NET A/A genotype compared with other genotype combinations, and that gamma activity mediates the genotype-specific effects on task performance. The results further support a modulatory role of 5-HT and NE function in the top-down attentional selection of motivationally relevant over competing or irrelevant sensory input.

  12. Distributed coordination of heterogeneous agents using a semantic overlay network and a goal-directed graphplan planner.

    Directory of Open Access Journals (Sweden)

    António Luís Lopes

    Full Text Available In this paper, we describe a distributed coordination system that allows agents to seamlessly cooperate in problem solving by partially contributing to a problem solution and delegating the subproblems for which they do not have the required skills or knowledge to appropriate agents. The coordination mechanism relies on a dynamically built semantic overlay network that allows the agents to efficiently locate, even in very large unstructured networks, the necessary skills for a specific problem. Each agent performs partial contributions to the problem solution using a new distributed goal-directed version of the Graphplan algorithm. This new goal-directed version of the original Graphplan algorithm provides an efficient solution to the problem of "distraction", which most forward-chaining algorithms suffer from. We also discuss a set of heuristics to be used in the backward-search process of the planning algorithm in order to distribute this process amongst idle agents in an attempt to find a solution in less time. The evaluation results show that our approach is effective in building a scalable and efficient agent society capable of solving complex distributable problems.

  13. Does human cognition allow Human Factors (HF) certification of advanced aircrew systems?

    Science.gov (United States)

    Macleod, Iain S.; Taylor, Robert M.

    1994-01-01

    This paper has examined the requirements of HF specification and certification within advanced or complex aircrew systems. It suggests reasons for current inadequacies in the use of HF in the design process, giving some examples in support, and suggesting an avenue towards the improvement of the HF certification process. The importance of human cognition to the operation and performance of advanced aircrew systems has been stressed. Many of the shortfalls of advanced aircrew systems must be attributed to over automated designs that show little consideration on either the mental limits or the cognitive capabilities of the human system component. Traditional approaches to system design and HF certification are set within an over physicalistic foundation. Also, traditionally it was assumed that physicalistic system functions could be attributed to either the human or the machine on a one to one basis. Moreover, any problems associated with the parallel needs, or promoting human understanding alongside system operation and direction, were generally equated in reality by the natural flexibility and adaptability of human skills. The consideration of the human component of a complex system is seen as being primarily based on manifestations of human behavior to the almost total exclusion of any appreciation of unobservable human mental and cognitive processes. The argument of this paper is that the considered functionality of any complex human-machine system must contain functions that are purely human and purely cognitive. Human-machine system reliability ultimately depends on human reliability and dependability and, therefore, on the form and frequency of cognitive processes that have to be conducted to support system performance. The greater the demand placed by an advanced aircraft system on the human component's basic knowledge processes or cognition, rather than on skill, the more insiduous the effects the human may have on that system. This paper discusses one

  14. A Unified Theoretical Framework for Cognitive Sequencing.

    Science.gov (United States)

    Savalia, Tejas; Shukla, Anuj; Bapi, Raju S

    2016-01-01

    The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.

  15. A Unified Theoretical Framework for Cognitive Sequencing

    Directory of Open Access Journals (Sweden)

    Tejas Savalia

    2016-11-01

    Full Text Available The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit versus explicit and goal-directed versus habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops ─ basal ganglia-frontal cortex and hippocampus-frontal cortex loops ─ mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI on developing awareness in implicit learning tasks.

  16. Speculations on the Impact of Global Electronic Networks on Human Cognition and Human Organization.

    Science.gov (United States)

    Nilan, Michael S.

    1993-01-01

    Examines the relationship between a society's communication technology and Marshall McLuhan's concerns for human cognition, and between the technology and the ways that humans organize their societies. It is suggested that appropriate development of global electronic networks could have a positive effect on individual and organizational abilities…

  17. Deciphering CAPTCHAs: what a Turing test reveals about human cognition.

    Directory of Open Access Journals (Sweden)

    Thomas Hannagan

    Full Text Available Turning Turing's logic on its head, we used widespread letter-based Turing Tests found on the internet (CAPTCHAs to shed light on human cognition. We examined the basis of the human ability to solve CAPTCHAs, where machines fail. We asked whether this is due to our use of slow-acting inferential processes that would not be available to machines, or whether fast-acting automatic orthographic processing in humans has superior robustness to shape variations. A masked priming lexical decision experiment revealed efficient processing of CAPTCHA words in conditions that rule out the use of slow inferential processing. This shows that the human superiority in solving CAPTCHAs builds on a high degree of invariance to location and continuous transforms, which is achieved during the very early stages of visual word recognition in skilled readers.

  18. Deciphering CAPTCHAs: what a Turing test reveals about human cognition.

    Science.gov (United States)

    Hannagan, Thomas; Ktori, Maria; Chanceaux, Myriam; Grainger, Jonathan

    2012-01-01

    Turning Turing's logic on its head, we used widespread letter-based Turing Tests found on the internet (CAPTCHAs) to shed light on human cognition. We examined the basis of the human ability to solve CAPTCHAs, where machines fail. We asked whether this is due to our use of slow-acting inferential processes that would not be available to machines, or whether fast-acting automatic orthographic processing in humans has superior robustness to shape variations. A masked priming lexical decision experiment revealed efficient processing of CAPTCHA words in conditions that rule out the use of slow inferential processing. This shows that the human superiority in solving CAPTCHAs builds on a high degree of invariance to location and continuous transforms, which is achieved during the very early stages of visual word recognition in skilled readers.

  19. On the Morphology of Uncertainty in Human Perception and Cognition

    Science.gov (United States)

    Gupta, Madan M.; Solo, Ashu M. G.

    Human cognitive and perception processes have a great tolerance for imprecision or uncertainty. For this reason, the notions of perception and cognition have great importance in solving many decision making problems in engineering, medicine, science, and social science as there are innumerable uncertainties in real-world phenomena. These uncertainties can be broadly classified as either uncertainties arising from the random behavior of physical processes or uncertainties arising from human perception and cognition processes. Statistical theory can be used to model the former, but lacks the sophistication to process the latter. The theory of fuzzy logic has proven to be very effective in processing the latter. The methodology of computing with words and the computational theory of perceptions are branches of fuzzy logic that deal with the manipulation of words that act as labels for perceptions expressed in natural language propositions. New computing methods based on fuzzy logic can lead to greater adaptability, tractability, robustness, a lower cost solution, and better rapport with reality in the development of intelligent systems.

  20. Human Cognition and Emotion using Physio Psychological Approach : A Survey

    Directory of Open Access Journals (Sweden)

    B. Amutha

    2015-11-01

    Full Text Available A soldier’s responsibility in the military includes his physical and mental attitudes which makes him to support the army in a full-fledged manner. This type of human dimension recognizes Soldier readiness from training proficiency to motivation for the Army’s future success. It introduces the concept of holistic fitness, a comprehensive combination of the whole person, including all components of the human dimension as a triad of moral, cognitive and physical components. The human dimension concept is directly related to the human mind and memory system. In this research, a system which will be capable of recognizing human emotions based on physiological parameters of a human body is discussed. The data from the system is fed to a computer where it is stored. Stored information regarding human parameters is retrieved and classified using support vector machine to generate a data set about the various emotions the human poses at a specific situation. The emotion, thus calculated is grouped to generate a grade for his present status. This grade is used to recommend the suitable working environment for the person.

  1. DUF1220 domains, cognitive disease, and human brain evolution.

    Science.gov (United States)

    Dumas, L; Sikela, J M

    2009-01-01

    We have established that human genome sequences encoding a novel protein domain, DUF1220, show a dramatically elevated copy number in the human lineage (>200 copies in humans vs. 1 in mouse/rat) and may be important to human evolutionary adaptation. Copy-number variations (CNVs) in the 1q21.1 region, where most DUF1220 sequences map, have now been implicated in numerous diseases associated with cognitive dysfunction, including autism, autism spectrum disorder, mental retardation, schizophrenia, microcephaly, and macrocephaly. We report here that these disease-related 1q21.1 CNVs either encompass or are directly flanked by DUF1220 sequences and exhibit a dosage-related correlation with human brain size. Microcephaly-producing 1q21.1 CNVs are deletions, whereas macrocephaly-producing 1q21.1 CNVs are duplications. Similarly, 1q21.1 deletions and smaller brain size are linked with schizophrenia, whereas 1q21.1 duplications and larger brain size are associated with autism. Interestingly, these two diseases are thought to be phenotypic opposites. These data suggest a model which proposes that (1) DUF1220 domain copy number may be involved in influencing human brain size and (2) the evolutionary advantage of rapidly increasing DUF1220 copy number in the human lineage has resulted in favoring retention of the high genomic instability of the 1q21.1 region, which, in turn, has precipitated a spectrum of recurrent human brain and developmental disorders.

  2. Contexts Paired with Junk Food Impair Goal-Directed Behavior in Rats: Implications for Decision Making in Obesogenic Environments.

    Science.gov (United States)

    Kendig, Michael D; Cheung, Ambrose M K; Raymond, Joel S; Corbit, Laura H

    2016-01-01

    The high prevalence of obesity and related metabolic diseases calls for greater understanding of the factors that drive excess energy intake. Calorie-dense palatable foods are readily available and often are paired with highly salient environmental cues. These cues can trigger food-seeking and consumption in the absence of hunger. Here we examined the effects of palatable food-paired environmental cues on control of instrumental food-seeking behavior. In Experiment 1, adult male rats received exposures to one context containing three "junk" foods (JFs context) and another containing chow (Chow context). Next, rats were food-deprived and trained to perform instrumental responses (lever-press) for two novel food rewards in a third, distinct context. Contextual influences on flexible control of food-seeking behavior were then assessed by outcome devaluation tests held in the JF, chow and training contexts. Devaluation was achieved using specific satiety and test order was counterbalanced. Rats exhibited goal-directed control over behavior when tested in the training and chow-paired contexts. Notably, performance was habitual (insensitive to devaluation) when tested in the JF context. In Experiment 2 we tested whether the impairment found in the JF context could be ameliorated by the presentation of a discrete auditory cue paired with the chow context, relative to a second cue paired with the JF context. Consistent with the results of Experiment 1, the devaluation effect was not significant when rats were tested in the JF context with the JF cue. However, presenting the chow cue increased the impact of the devaluation treatment leading to a robust devaluation effect. Further tests confirmed that performance in the chow context was goal-directed and that sensory-specific satiety in the JF context was intact. These results show that environments paired with palatable foods can impair goal-directed control over food-seeking behavior, but that this deficit was improved by

  3. Contexts paired with junk food impair goal-directed behaviour in rats: implications for decision making in obesogenic environments

    Directory of Open Access Journals (Sweden)

    Michael D. Kendig

    2016-11-01

    Full Text Available The high prevalence of obesity and related metabolic diseases calls for greater understanding of the factors that drive excess energy intake. Calorie-dense palatable foods are readily available and often are paired with highly salient environmental cues. These cues can trigger food-seeking and consumption in the absence of hunger. Here we examined the effects of palatable food-paired environmental cues on control of instrumental food-seeking behaviour. In Experiment 1, adult male rats received exposures to one context containing three ‘junk’ foods (JF context and another containing chow (Chow context. Next, rats were food-deprived and trained to perform instrumental responses (lever-press for two novel food rewards in a third, distinct context. Contextual influences on flexible control of food-seeking behaviour were then assessed by outcome devaluation tests held in the JF, chow, and training contexts. Devaluation was achieved using specific satiety and test order was counterbalanced. Rats exhibited goal-directed control over behaviour when tested in the training and chow-paired contexts. Notably, performance was habitual (insensitive to devaluation when tested in the JF context. In Experiment 2 we tested whether the impairment found in the JF context could be ameliorated by the presentation of a discrete auditory cue paired with the chow context, relative to a second cue paired with the JF context. Consistent with the results of Experiment 1, the devaluation effect was not significant when rats were tested in the JF context with the JF cue. However, presenting the chow cue increased the impact of the devaluation treatment leading to a robust devaluation effect. Further tests confirmed that performance in the chow context was goal-directed and that sensory-specific satiety in the JF context was intact. These results show that environments paired with palatable foods can impair goal-directed control over food-seeking behaviour, but that this

  4. Contexts Paired with Junk Food Impair Goal-Directed Behavior in Rats: Implications for Decision Making in Obesogenic Environments

    Science.gov (United States)

    Kendig, Michael D.; Cheung, Ambrose M. K.; Raymond, Joel S.; Corbit, Laura H.

    2016-01-01

    The high prevalence of obesity and related metabolic diseases calls for greater understanding of the factors that drive excess energy intake. Calorie-dense palatable foods are readily available and often are paired with highly salient environmental cues. These cues can trigger food-seeking and consumption in the absence of hunger. Here we examined the effects of palatable food-paired environmental cues on control of instrumental food-seeking behavior. In Experiment 1, adult male rats received exposures to one context containing three “junk” foods (JFs context) and another containing chow (Chow context). Next, rats were food-deprived and trained to perform instrumental responses (lever-press) for two novel food rewards in a third, distinct context. Contextual influences on flexible control of food-seeking behavior were then assessed by outcome devaluation tests held in the JF, chow and training contexts. Devaluation was achieved using specific satiety and test order was counterbalanced. Rats exhibited goal-directed control over behavior when tested in the training and chow-paired contexts. Notably, performance was habitual (insensitive to devaluation) when tested in the JF context. In Experiment 2 we tested whether the impairment found in the JF context could be ameliorated by the presentation of a discrete auditory cue paired with the chow context, relative to a second cue paired with the JF context. Consistent with the results of Experiment 1, the devaluation effect was not significant when rats were tested in the JF context with the JF cue. However, presenting the chow cue increased the impact of the devaluation treatment leading to a robust devaluation effect. Further tests confirmed that performance in the chow context was goal-directed and that sensory-specific satiety in the JF context was intact. These results show that environments paired with palatable foods can impair goal-directed control over food-seeking behavior, but that this deficit was improved

  5. Goal-directed diuresis: A case - control study of continuous furosemide infusion in critically ill trauma patients

    Directory of Open Access Journals (Sweden)

    Daniel Dante Yeh

    2015-01-01

    Full Text Available Background: Excessive crystalloid administration is common and associated with negative outcomes in critically ill trauma patients. Continuous furosemide infusion (CFI to remove excessive fluid has not been previously described in this population. We hypothesized that a goal-directed CFI is more effective for fluid removal than intermittent bolus injection (IBI diuresis without excess incidence of hypokalemia or renal failure. Materials and Methods: CFI cases were prospectively enrolled between November 2011 and August 2012, and matched to historic IBI controls by age, gender, Injury Severity Score (ISS, and net fluid balance (NFB at diuresis initiation. Paired and unpaired analyses were performed to compare groups. The primary endpoints were net fluid balance, potassium and creatinine levels. Secondary endpoints included intensive care unit (ICU and hospital length of stay (LOS, ventilator-free days (VFD, and mortality. Results: 55 patients were included, with 19 cases and 36 matched controls. Mean age was 54 years, mean ISS was 32.7, and mean initial NFB was +7.7 L. After one day of diuresis with CFI vs. IBI, net 24 h fluid balance was negative (−0.55 L vs. +0.43 L, P = 0.026 only for the CFI group, and there was no difference in potassium and creatinine levels. Cumulative furosemide dose (59.4mg vs. 25.4mg, P < 0.001 and urine output (4.2 L vs. 2.8 L, P < 0.001 were also significantly increased with CFI vs. IBI. There were no statistically significant differences in ICU LOS, hospital LOS, VFD, or mortality. Conclusions: Compared to IBI, goal-directed diuresis by CFI is more successful in achieving net negative fluid balance in patients with fluid overload with no detrimental side effects on renal function or patient outcome.

  6. Cognition and procedure representational requirements for predictive human performance models

    Science.gov (United States)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  7. Impact of Cognitive Architectures on Human-Computer Interaction

    Science.gov (United States)

    2014-09-01

    simulation. In this work they were preparing for the Synthetic Theatre of War-1997 exercise where between 10,000 and 50,000 automated agents would...work with up to 1,000 humans.27 The results of this exercise are documented by Laird et al.28 5. Conclusions and Future Work To assess whether cognitive...RW, MacKenzie IS. Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. International Journal of

  8. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS).

    Science.gov (United States)

    Luber, Bruce; Lisanby, Sarah H

    2014-01-15

    Here we review the usefulness of transcranial magnetic stimulation (TMS) in modulating cortical networks in ways that might produce performance enhancements in healthy human subjects. To date over sixty studies have reported significant improvements in speed and accuracy in a variety of tasks involving perceptual, motor, and executive processing. Two basic categories of enhancement mechanisms are suggested by this literature: direct modulation of a cortical region or network that leads to more efficient processing, and addition-by-subtraction, which is disruption of processing which competes or distracts from task performance. Potential applications of TMS cognitive enhancement, including research into cortical function, rehabilitation therapy in neurological and psychiatric illness, and accelerated skill acquisition in healthy individuals are discussed, as are methods of optimizing the magnitude and duration of TMS-induced performance enhancement, such as improvement of targeting through further integration of brain imaging with TMS. One technique, combining multiple sessions of TMS with concurrent TMS/task performance to induce Hebbian-like learning, appears to be promising for prolonging enhancement effects. While further refinements in the application of TMS to cognitive enhancement can still be made, and questions remain regarding the mechanisms underlying the observed effects, this appears to be a fruitful area of investigation that may shed light on the basic mechanisms of cognitive function and their therapeutic modulation.

  9. The tangle of space and time in human cognition.

    Science.gov (United States)

    Núñez, Rafael; Cooperrider, Kensy

    2013-05-01

    Everyday concepts of duration, of sequence, and of past, present, and future are fundamental to how humans make sense of experience. In culture after culture, converging evidence from language, co-speech gesture, and behavioral tasks suggests that humans handle these elusive yet indispensable notions by construing them spatially. Where do these spatial construals come from and why do they take the particular, sometimes peculiar, spatial forms that they do? As researchers across the cognitive sciences pursue these questions on different levels--cultural, developmental--in diverse populations and with new methodologies, clear answers will depend upon a shared and nuanced set of theoretical distinctions. Time is not a monolith, but rather a mosaic of construals with distinct properties and origins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Zero magnetic field effect observed in human cognitive processes.

    Science.gov (United States)

    Binhi, V N; Sarimov, R M

    2009-01-01

    In our previous works, we reported that compensation of the geomagnetic field to a level less than 0.4 microT ("zero magnetic field," or ZMF) affected human cognitive processes. ZMF exposure increased the number of errors and the task processing time by 2.4% in average. However, in the array of the magnetic effects calculated from the experimental data, some readings have been found to deviate from the mean magnetic effect by more than three standard deviations. This finding could give rise to doubt as to whether the magnetic effect observed was a mere sequence of the presence of such unlikely data values. In the present work we examine the results of the unlikely data elimination and show that the corrected magnetic effect in tested humans remains statistically significant, though at a reduced magnitude 1.5%.

  11. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  12. Naturalistic Cognition: A Research Paradigm for Human-Centered Design

    Directory of Open Access Journals (Sweden)

    Peter Storkerson

    2010-01-01

    Full Text Available Naturalistic thinking and knowing, the tacit, experiential, and intuitive reasoning of everyday interaction, have long been regarded as inferior to formal reason and labeled primitive, fallible, subjective, superstitious, and in some cases ineffable. But, naturalistic thinking is more rational and definable than it appears. It is also relevant to design. Inquiry into the mechanisms of naturalistic thinking and knowledge can bring its resources into focus and enable designers to create better, human-centered designs for use in real-world settings. This article makes a case for the explicit, formal study of implicit, naturalistic thinking within the fields of design. It develops a framework for defining and studying naturalistic thinking and knowledge, for integrating them into design research and practice, and for developing a more integrated, consistent theory of knowledge in design. It will (a outline historical definitions of knowledge, attitudes toward formal and naturalistic thinking, and the difficulties presented by the co-presence of formal and naturalistic thinking in design, (b define and contrast formal and naturalistic thinking as two distinct human cognitive systems, (c demonstrate the importance of naturalistic cognition in formal thinking and real-world judgment, (d demonstrate methods for researching naturalistic thinking that can be of use in design, and (e briefly discuss the impact on design theory of admitting naturalistic thinking as valid, systematic, and knowable.

  13. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  14. Incorporating Dynamic Assessment of Fluid Responsiveness Into Goal-Directed Therapy: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Bednarczyk, Joseph M; Fridfinnson, Jason A; Kumar, Anand; Blanchard, Laurie; Rabbani, Rasheda; Bell, Dean; Funk, Duane; Turgeon, Alexis F; Abou-Setta, Ahmed M; Zarychanski, Ryan

    2017-09-01

    Dynamic tests of fluid responsiveness have been developed and investigated in clinical trials of goal-directed therapy. The impact of this approach on clinically relevant outcomes is unknown. We performed a systematic review and meta-analysis to evaluate whether fluid therapy guided by dynamic assessment of fluid responsiveness compared with standard care improves clinically relevant outcomes in adults admitted to the ICU. Randomized controlled trials from MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and the International Clinical Trials Registry Platform from inception to December 2016, conference proceedings, and reference lists of relevant articles. Two reviewers independently identified randomized controlled trials comparing dynamic assessment of fluid responsiveness with standard care for acute volume resuscitation in adults admitted to the ICU. Two reviewers independently abstracted trial-level data including population characteristics, interventions, clinical outcomes, and source of funding. Our primary outcome was mortality at longest duration of follow-up. Our secondary outcomes were ICU and hospital length of stay, duration of mechanical ventilation, and frequency of renal complications. The internal validity of trials was assessed in duplicate using the Cochrane Collaboration's Risk of Bias tool. We included 13 trials enrolling 1,652 patients. Methods used to assess fluid responsiveness included stroke volume variation (nine trials), pulse pressure variation (one trial), and stroke volume change with passive leg raise/fluid challenge (three trials). In 12 trials reporting mortality, the risk ratio for death associated with dynamic assessment of fluid responsiveness was 0.59 (95% CI, 0.42-0.83; I = 0%; n = 1,586). The absolute risk reduction in mortality associated with dynamic assessment of fluid responsiveness was -2.9% (95% CI, -5.6% to -0.2%). Dynamic assessment of fluid responsiveness was associated with reduced duration of ICU length of stay

  15. Goal-directed therapy improves the outcome of high-risk cardiac patients undergoing off-pump coronary artery bypass

    Directory of Open Access Journals (Sweden)

    Poonam Malhotra Kapoor

    2017-01-01

    Full Text Available Background: There has been a constant emphasis on developing management strategies to improve the outcome of high-risk cardiac patients undergoing surgical revascularization. The performance of coronary artery bypass surgery on an off-pump coronary artery bypass (OPCAB avoids the risks associated with extra-corporeal circulation. The preliminary results of goal-directed therapy (GDT for hemodynamic management of high-risk cardiac surgical patients are encouraging. The present study was conducted to study the outcome benefits with the combined use of GDT with OPCAB as compared to the conventional hemodynamic management. Material and Method: Patients with the European System for Cardiac Operative Risk Evaluation ≥3 scheduled for OPCAB were randomly divided into two groups; the control and GDT groups. The GDT group included the monitoring and optimization of advanced parameters, including cardiac index (CI, systemic vascular resistance index, oxygen delivery index, stroke volume variation; continuous central venous oxygen saturation (ScVO 2 , global end-diastolic volume, and extravascular lung water (EVLW, using FloTrac™ , PreSep™ , and EV-1000 ® monitoring panels, in addition to the conventional hemodynamic management in the control group. The hemodynamic parameters were continuously monitored for 48 h in Intensive Care Unit (ICU and corrected according to GDT protocol. A total of 163 patients consented for the study. Result: Seventy-five patients were assigned to the GDT group and 88 patients were in the control group. In view of 9 exclusions from the GDT group and 12 exclusions from control group, 66 patients in the GDT group and 76 patients in control group completed the study. Conclusion: The length of stay in hospital (LOS-H (7.42 ± 1.48 vs. 5.61 ± 1.11 days, P < 0.001 and ICU stay (4.2 ± 0.82 vs. 2.53 ± 0.56 days, P < 0.001 were significantly lower in the GDT group as compared to control group. The duration of inotropes (3.24 ± 0

  16. Children's Perception of Death in Humans and Animals as a Function of Age, Anxiety and Cognitive Ability.

    Science.gov (United States)

    Orbach, Israel; And Others

    1985-01-01

    Findings indicate a main effect of age, anxiety, and cognition on the conception of animal and human death. Human death scores were higher than animal death scores. Anxiety had a stranger impact on cognitively high subjects than on cognitively low subjects. Cognition affected the animal death concept more than the human death concept. (Author/RH)

  17. Association of Gait Characteristics and Depression in Patients with Parkinson's Disease Assessed in Goal-Directed Locomotion Task.

    Science.gov (United States)

    Kincses, Péter; Kovács, Norbert; Karádi, Kázmér; Feldmann, Ádám; Dorn, Krisztina; Aschermann, Zsuzsanna; Komoly, Sámuel; Szolcsányi, Tibor; Csathó, Árpád; Kállai, János

    2017-01-01

    Introduction. In the genesis of Parkinson's disease (PD) clinical phenomenology the exact nature of the association between bradykinesia and affective variables is unclear. In the present study, we analyzed the gait characteristics and level of depression in PD and healthy volunteers. Methods. Patients with PD (n = 48) and healthy controls (n = 52) were recruited for the present study. Walking speed, stride length, and cadence were compared between groups while participants completed a goal-directed locomotion task under visually controlled (VC) and visually noncontrolled conditions (VnC). Results. Significantly higher depression scores were found in PD comparing to healthy control groups. In PD, depression was associated with gait components in the VC wherein the place of the target was visible. In contrast, in healthy subjects the depression was associated with gait components in VnC wherein the location and image of the target were memorized and recalled. In patients with PD and depression, the visually deprived multitask augments the rate of cadence and diminishes stride length, while velocity remains relatively unchanged. The depression associated with gait characteristics as a comorbid affective factor in PD, and that impairs the coherence of gait pattern. Conclusion. The relationship between depression and gait parameters appears to indicate that PD not only is a neurological disease but also incorporates affective disturbances that associate with the regulation of gait characteristics.

  18. Individual Differences in Participations of a Brand Community: A Validation of the Goal-Directed Behavior Model

    Directory of Open Access Journals (Sweden)

    Badri Munir Sukoco

    2011-10-01

    Full Text Available Previous studies have been neglected the behavior of the owners who are non-members when discussing brand community (BC, even though they are substantially larger. This study purposely discuss what are the differences between the two by using model of goal directed behavior (MGB and uses the findings as a way to recruit non-members in BC activities. This study also proposes some refinements to the original concept of MGB. This survey-based study, conducted with 201 active members and 226 non-members of a motor club in Indonesia, employs structural equation modeling methodology which supports the proposed model. The findings suggest that non-members have a stronger effect of positive anticipated emotions on attitude and desire to participate, which could be the starting point for marketers to recruit them. While for non-members, the perceived behavioral control and attitude toward BC activities have greater effects. The findings and discussion lead to some managerial and research implications.

  19. A role of phase-resetting in coordinating large scale neural oscillations during attention and goal-directed behavior

    Directory of Open Access Journals (Sweden)

    Benjamin eVoloh

    2016-03-01

    Full Text Available Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets (1 set a neural context in terms of narrow band frequencies that uniquely characterizes the activated circuits, (2 impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances, (3 are critical for neural coding models that depend on phase, increasing the informational content of neural representations, and (4 likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior.

  20. The central role of RNA in human development and cognition.

    Science.gov (United States)

    Mattick, John S

    2011-06-06

    It appears that the genetic programming of humans and other complex organisms has been misunderstood for the past 50 years, due to the assumption that most genetic information is transacted by proteins. However, the human genome contains only about 20,000 protein-coding genes, similar in number and with largely orthologous functions as those in nematodes that have only 1000 somatic cells. By contrast, the extent of non-protein-coding DNA increases with increasing complexity, reaching 98.8% in humans. The majority of these sequences are dynamically transcribed, mainly into non-protein-coding RNAs, with tens if not hundreds of thousands that show specific expression patterns and subcellular locations, as well as many classes of small regulatory RNAs. The emerging evidence indicates that these RNAs control the epigenetic states that underpin development, and that many are dysregulated in cancer and other complex diseases. Moreover it appears that animals, particularly primates, have evolved plasticity in these RNA regulatory systems, especially in the brain. Thus, it appears that what was dismissed as 'junk' because it was not understood holds the key to understanding human evolution, development, and cognition. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Enabling Robotic Social Intelligence by Engineering Human Social-Cognitive Mechanisms

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Warta, Samantha F.; Barber, Daniel

    2017-01-01

    for artificial cognitive systems. We discuss a recent integrative perspective of social cognition to provide a systematic theoretical underpinning for computational instantiations of these mechanisms. We highlight several commitments of our approach that we refer to as Engineering Human Social Cognition. We...... then provide a series of recommendations to facilitate the development of the perceptual, motor, and cognitive architecture for this proposed artificial cognitive system in future work. For each recommendation, we highlight their relation to the discussed social-cognitive mechanisms, provide the rationale...

  2. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  3. Cognitive models applied to human effectiveness in national security environments (ergonomics of augmented cognition system design and application).

    Energy Technology Data Exchange (ETDEWEB)

    Ntuen, Celestine (North Carolina Agricultural and Technical State University, Greensboro, NC); Winchester, Woodrow III (North Carolina Agricultural and Technical State University, Greensboro, NC)

    2004-06-01

    In complex simulation systems where humans interact with computer-generated agents, information display and the interplay of virtual agents have become dominant media and modalities of interface design. This design strategy is reflected in augmented reality (AR), an environment where humans interact with computer-generated agents in real-time. AR systems can generate large amount of information, multiple solutions in less time, and perform far better in time-constrained problem solving. The capabilities of AR have been leveraged to augment cognition in human information processing. In this sort of augmented cognition (AC) work system, while technology has become the main source for information acquisition from the environment, the human sensory and memory capacities have failed to cope with the magnitude and scale of information they encounter. This situation generates opportunity for excessive cognitive workloads, a major factor in degraded human performance. From the human effectiveness point of view, research is needed to develop, model, and validate simulation tools that can measure the effectiveness of an AR technology used to support the amplification of human cognition. These tools will allow us to predict human performance for tasks executed under an AC tool construct. This paper presents an exploration of ergonomics issues relevant to AR and AC systems design. Additionally, proposed research to investigate those ergonomic issues is discussed.

  4. Genomic imprinting and human psychology: cognition, behavior and pathology.

    Science.gov (United States)

    Goos, Lisa M; Ragsdale, Gillian

    2008-01-01

    Imprinted genes expressed in the brain are numerous and it has become clear that they play an important role in nervous system development and function. The significant influence of genomic imprinting during development sets the stage for structural and physiological variations affecting psychological function and behaviour, as well as other physiological systems mediating health and well-being. However, our understanding of the role of imprinted genes in behaviour lags far behind our understanding of their roles in perinatal growth and development. Knowledge of genomic imprinting remains limited among behavioral scientists and clinicians and research regarding the influence of imprinted genes on normal cognitive processes and the most common forms of neuropathology has been limited to date. In this chapter, we will explore how knowledge of genomic imprinting can be used to inform our study of normal human cognitive and behavioral processes as well as their disruption. Behavioural analyses of rare imprinted disorders, such as Prader-Willi and Angelman syndromes, provide insight regarding the phenotypic impact of imprinted genes in the brain, and can be used to guide the study of normal behaviour as well as more common but etiologically complex disorders such as ADHD and autism. Furthermore, hypotheses regarding the evolutionary development of imprinted genes can be used to derive predictions about their role in normal behavioural variation, such as that observed in food-related and social interactions.

  5. Allocation of cognitive processing capacity during human autonomic classical conditioning.

    Science.gov (United States)

    Dawson, M E; Schell, A M; Beers, J R; Kelly, A

    1982-09-01

    expected UCS. Fourth, large electrodermal responders to the CSs exhibited patterns of capacity allocation during the CSs, particularly during the CS+, different from those of small electrodermal responders. In particular, they exhibited significantly longer RTs at 300 msec after CS+ onset than did the small responders, followed by a shortening of RT at 500 msec relative to the small responders. This finding suggests that large electrodermal responders devote greater processing capacity to significant environmental stimuli than do small responders and that their processing may begin and be completed more rapidly. All in all, the data indicate the complexity of the cognitive processes that occur during human classical conditioning and the usefulness of the secondary-task technique in integrating conditioning theories and psychophysiology with cognitive psychology.

  6. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    NARCIS (Netherlands)

    G.W.C. Paas (Fred); J. Sweller (John)

    2012-01-01

    textabstractCognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ame

  7. "Minding the gap": imagination, creativity and human cognition.

    Science.gov (United States)

    Pelaprat, Etienne; Cole, Michael

    2011-12-01

    Inquiry into the nature of mental images is a major topic in psychology where research is focused on the psychological faculties of imagination and creativity. In this paper, we draw on the work of L.S. Vygotsky to develop a cultural-historical approach to the study of imagination as central to human cognitive processes. We characterize imagination as a process of image making that resolves "gaps" arising from biological and cultural-historical constraints, and that enables ongoing time-space coordination necessary for thought and action. After presenting some basic theoretical considerations, we offer a series of examples to illustrate for the reader the diversity of processes of imagination as image making. Applying our arguments to contemporary digital media, we argue that a cultural-historical approach to image formation is important for understanding how imagination and creativity are distinct, yet inter-penetrating processes.

  8. Fast Track Open Partial Nephrectomy: Reduced Postoperative Length of Stay with a Goal-Directed Pathway Does Not Compromise Outcome

    Directory of Open Access Journals (Sweden)

    Bilal Chughtai

    2008-01-01

    Full Text Available Introduction. The aim of this study is to examine the feasibility of reducing postoperative hospital stay following open partial nephrectomy through the implementation of a goal directed clinical management pathway. Materials and Methods. A fast track clinical pathway for open partial nephrectomy was introduced in July 2006 at our institution. The pathway has daily goals and targets discharge for all patients on the 3rd postoperative day (POD. Defined goals are (1 ambulation and liquid diet on the evening of the operative day; (2 out of bed (OOB at least 4 times on POD 1; (3 removal of Foley catheter on the morning of POD 2; (4 removal of Jackson Pratt drain on the afternoon of POD 2; (4 discharge to home on POD 3. Patients and family are instructed in the fast track protocol preoperatively. Demographic data, tumor size, length of stay, and complications were captured in a prospective database, and compared to a control group managed consecutively immediately preceding the institution of the fast track clinical pathway. Results. Data on 33 consecutive patients managed on the fast track clinical pathway was compared to that of 25 control patients. Twenty two (61% out of 36 fast track patients and 4 (16% out of 25 control patients achieved discharge on POD 3. Overall, fast track patients had a shorter hospital stay than controls (median, 3 versus 4 days; P = .012. Age (median, 55 versus 57 years, tumor size (median, 2.5 versus 2.5 cm, readmission within 30 days (5.5% versus 5.1%, and complications (10.2% versus 13.8% were similar in the fast track patients and control, respectively. Conclusions. In the present series, a fast track clinical pathway after open partial nephrectomy reduced the postoperative length of hospital stay and did not appear to increase the postoperative complication rate.

  9. Of goals and habits: Age-related and individual differences in goal-directed decision-making

    Directory of Open Access Journals (Sweden)

    Ben eEppinger

    2013-12-01

    Full Text Available In this study we investigated age-related and individual differences in habitual (model-free and goal-directed (model-based decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults.

  10. Of goals and habits: age-related and individual differences in goal-directed decision-making.

    Science.gov (United States)

    Eppinger, Ben; Walter, Maik; Heekeren, Hauke R; Li, Shu-Chen

    2013-01-01

    In this study we investigated age-related and individual differences in habitual (model-free) and goal-directed (model-based) decision-making. Specifically, we were interested in three questions. First, does age affect the balance between model-based and model-free decision mechanisms? Second, are these age-related changes due to age differences in working memory (WM) capacity? Third, can model-based behavior be affected by manipulating the distinctiveness of the reward value of choice options? To answer these questions we used a two-stage Markov decision task in in combination with computational modeling to dissociate model-based and model-free decision mechanisms. To affect model-based behavior in this task we manipulated the distinctiveness of reward probabilities of choice options. The results show age-related deficits in model-based decision-making, which are particularly pronounced if unexpected reward indicates the need for a shift in decision strategy. In this situation younger adults explore the task structure, whereas older adults show perseverative behavior. Consistent with previous findings, these results indicate that older adults have deficits in the representation and updating of expected reward value. We also observed substantial individual differences in model-based behavior. In younger adults high WM capacity is associated with greater model-based behavior and this effect is further elevated when reward probabilities are more distinct. However, in older adults we found no effect of WM capacity. Moreover, age differences in model-based behavior remained statistically significant, even after controlling for WM capacity. Thus, factors other than decline in WM, such as deficits in the in the integration of expected reward value into strategic decisions may contribute to the observed impairments in model-based behavior in older adults.

  11. Goal directed hemodynamic therapy based in esophageal Doppler flow parameters: A systematic review, meta-analysis and trial sequential analysis.

    Science.gov (United States)

    Ripollés-Melchor, J; Casans-Francés, R; Espinosa, A; Abad-Gurumeta, A; Feldheiser, A; López-Timoneda, F; Calvo-Vecino, J M

    2016-01-01

    Numerous studies have compared perioperative esophageal doppler monitoring (EDM) guided intravascular volume replacement strategies with conventional clinical volume replacement in surgical patients. The use of the EDM within hemodynamic algorithms is called 'goal directed hemodynamic therapy' (GDHT). Meta-analysis of the effects of EDM guided GDHT in adult non-cardiac surgery on postoperative complications and mortality using PRISMA methodology. A systematic search was performed in Medline, PubMed, EMBASE, and the Cochrane Library (last update, March 2015). Randomized clinical trials (RCTs) in which perioperative GDHT was compared to other fluid management. Overall complications. Mortality; number of patients with complications; cardiac, renal and infectious complications; incidence of ileus. Studies were subjected to quantifiable analysis, pre-defined subgroup analysis (stratified by surgery, type of comparator and risk); pre-defined sensitivity analysis and trial sequential analysis (TSA). Fifty six RCTs were initially identified, 15 fulfilling the inclusion criteria, including 1,368 patients. A significant reduction was observed in overall complications associated with GDHT compared to other fluid therapy (RR=0.75; 95%CI: 0.63-0.89; P=0.0009) in colorectal, urological and high-risk surgery compared to conventional fluid therapy. No differences were found in secondary outcomes, neither in other subgroups. The impact on preventing the development of complications in patients using EDM is high, causing a relative risk reduction (RRR) of 50% for a number needed to treat (NNT)=6. GDHT guided by EDM decreases postoperative complications, especially in patients undergoing colorectal surgery and high-risk surgery. However, no differences versus restrictive fluid therapy and in intermediate-risk patients were found. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Dynamic muscle O2 saturation response is impaired during major non-cardiac surgery despite goal-directed haemodynamic therapy.

    Science.gov (United States)

    Feldheiser, A; Hunsicker, O; Kaufner, L; Köhler, J; Sieglitz, H; Casans Francés, R; Wernecke, K-D; Sehouli, J; Spies, C

    2016-03-01

    Near-infrared spectroscopy combined with a vascular occlusion test (VOT) could indicate an impairment of microvascular reactivity (MVR) in septic patients by detecting changes in dynamic variables of muscle O2 saturation (StO2). However, in the perioperative context the consequences of surgical trauma on dynamic variables of muscle StO2 as indicators of MVR are still unknown. This study is a sub-analysis of a randomised controlled trial in patients with metastatic primary ovarian cancer undergoing debulking surgery, during which a goal-directed haemodynamic algorithm was applied using oesophageal Doppler. During a 3 min VOT, near-infrared spectroscopy was used to assess dynamic variables arising from changes in muscle StO2. At the beginning of surgery, values of desaturation and recovery slope were comparable to values obtained in healthy volunteers. During the course of surgery, both desaturation and recovery slope showed a gradual decrease. Concomitantly, the study population underwent a transition to a surgically induced systemic inflammatory response state shown by a gradual increase in norepinephrine administration, heart rate, and Interleukin-6, with a peak immediately after the end of surgery. Higher rates of norepinephrine and a higher heart rate were related to a faster decline in StO2 during vascular occlusion. Using near-infrared spectroscopy combined with a VOT during surgery showed a gradual deterioration of MVR in patients treated with optimal haemodynamic care. The deterioration of MVR was accompanied by the transition to a surgically induced systemic inflammatory response state. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Coordinating long-latency stretch responses across the shoulder, elbow, and wrist during goal-directed reaching.

    Science.gov (United States)

    Weiler, Jeffrey; Saravanamuttu, James; Gribble, Paul L; Pruszynski, J Andrew

    2016-11-01

    The long-latency stretch response (muscle activity 50-100 ms after a mechanical perturbation) can be coordinated across multiple joints to support goal-directed actions. Here we assessed the flexibility of such coordination and whether it serves to counteract intersegmental dynamics and exploit kinematic redundancy. In three experiments, participants made planar reaches to visual targets after elbow perturbations and we assessed the coordination of long-latency stretch responses across shoulder, elbow, and wrist muscles. Importantly, targets were placed such that elbow and wrist (but not shoulder) rotations could help transport the hand to the target-a simple form of kinematic redundancy. In experiment 1 we applied perturbations of different magnitudes to the elbow and found that long-latency stretch responses in shoulder, elbow, and wrist muscles scaled with perturbation magnitude. In experiment 2 we examined the trial-by-trial relationship between long-latency stretch responses at adjacent joints and found that the magnitudes of the responses in shoulder and elbow muscles, as well as elbow and wrist muscles, were positively correlated. In experiment 3 we explicitly instructed participants how to use their wrist to move their hand to the target after the perturbation. We found that long-latency stretch responses in wrist muscles were not sensitive to our instructions, despite the fact that participants incorporated these instructions into their voluntary behavior. Taken together, our results indicate that, during reaching, the coordination of long-latency stretch responses across multiple joints counteracts intersegmental dynamics but may not be able to exploit kinematic redundancy. Copyright © 2016 the American Physiological Society.

  14. [From animal communication to the human language and cognition: evolution or revolution?].

    Science.gov (United States)

    Chernigovskaia, T V

    2008-09-01

    The paper discusses the problem of language and cognitive specificity in humans as compared to other species. The main hypotheses of human evolution and the emergence of language seem to be well researched on genetic basis of higher functions. Cognitive abilities of other animals and their communication signals and the main views on basic principles of brain underlying these functions are described.

  15. The limits of chimpanzee-human comparisons for understanding human cognition.

    Science.gov (United States)

    Reader, Simon M; Hrotic, Steven M

    2012-08-01

    Evolutionary questions require specialized approaches, part of which are comparisons between close relatives. However, to understand the origins of human tool behavior, comparisons with solely chimpanzees are insufficient, lacking the power to identify derived traits. Moreover, tool use is unlikely a unitary phenomenon. Large-scale comparative analyses provide an alternative and suggest that tool use co-evolves with a suite of cognitive traits.

  16. Directional dominance on stature and cognition in diverse human populations

    Science.gov (United States)

    Mattsson, Hannele; Eklund, Niina; Gandin, Ilaria; Nutile, Teresa; Jackson, Anne U.; Schurmann, Claudia; Smith, Albert V.; Zhang, Weihua; Okada, Yukinori; Stančáková, Alena; Faul, Jessica D.; Zhao, Wei; Bartz, Traci M.; Concas, Maria Pina; Franceschini, Nora; Enroth, Stefan; Vitart, Veronique; Trompet, Stella; Guo, Xiuqing; Chasman, Daniel I.; O’Connel, Jeffery R.; Corre, Tanguy; Nongmaithem, Suraj S.; Chen, Yuning; Mangino, Massimo; Ruggiero, Daniela; Traglia, Michela; Farmaki, Aliki-Eleni; Kacprowski, Tim; Bjonnes, Andrew; van der Spek, Ashley; Wu, Ying; Giri, Anil K.; Yanek, Lisa R.; Wang, Lihua; Hofer, Edith; Rietveld, Cornelius A.; McLeod, Olga; Cornelis, Marilyn C.; Pattaro, Cristian; Verweij, Niek; Baumbach, Clemens; Abdellaoui, Abdel; Warren, Helen R.; Vuckovic, Dragana; Mei, Hao; Bouchard, Claude; Perry, John R.B.; Cappellani, Stefania; Mirza, Saira S.; Benton, Miles C.; Broeckel, Ulrich; Medland, Sarah E.; Lind, Penelope A.; Malerba, Giovanni; Drong, Alexander; Yengo, Loic; Bielak, Lawrence F.; Zhi, Degui; van der Most, Peter J.; Shriner, Daniel; Mägi, Reedik; Hemani, Gibran; Karaderi, Tugce; Wang, Zhaoming; Liu, Tian; Demuth, Ilja; Zhao, Jing Hua; Meng, Weihua; Lataniotis, Lazaros; van der Laan, Sander W.; Bradfield, Jonathan P.; Wood, Andrew R.; Bonnefond, Amelie; Ahluwalia, Tarunveer S.; Hall, Leanne M.; Salvi, Erika; Yazar, Seyhan; Carstensen, Lisbeth; de Haan, Hugoline G.; Abney, Mark; Afzal, Uzma; Allison, Matthew A.; Amin, Najaf; Asselbergs, Folkert W.; Bakker, Stephan J.L.; Barr, R. Graham; Baumeister, Sebastian E.; Benjamin, Daniel J.; Bergmann, Sven; Boerwinkle, Eric; Bottinger, Erwin P.; Campbell, Archie; Chakravarti, Aravinda; Chan, Yingleong; Chanock, Stephen J.; Chen, Constance; Chen, Y.-D. Ida; Collins, Francis S.; Connell, John; Correa, Adolfo; Cupples, L. Adrienne; Smith, George Davey; Davies, Gail; Dörr, Marcus; Ehret, Georg; Ellis, Stephen B.; Feenstra, Bjarke; Feitosa, Mary F.; Ford, Ian; Fox, Caroline S.; Frayling, Timothy M.; Friedrich, Nele; Geller, Frank; Scotland, Generation; Gillham-Nasenya, Irina; Gottesman, Omri; Graff, Misa; Grodstein, Francine; Gu, Charles; Haley, Chris; Hammond, Christopher J.; Harris, Sarah E.; Harris, Tamara B.; Hastie, Nicholas D.; Heard-Costa, Nancy L.; Heikkilä, Kauko; Hocking, Lynne J.; Homuth, Georg; Hottenga, Jouke-Jan; Huang, Jinyan; Huffman, Jennifer E.; Hysi, Pirro G.; Ikram, M. Arfan; Ingelsson, Erik; Joensuu, Anni; Johansson, Åsa; Jousilahti, Pekka; Jukema, J. Wouter; Kähönen, Mika; Kamatani, Yoichiro; Kanoni, Stavroula; Kerr, Shona M.; Khan, Nazir M.; Koellinger, Philipp; Koistinen, Heikki A.; Kooner, Manraj K.; Kubo, Michiaki; Kuusisto, Johanna; Lahti, Jari; Launer, Lenore J.; Lea, Rodney A.; Lehne, Benjamin; Lehtimäki, Terho; Liewald, David C.M.; Lind, Lars; Loh, Marie; Lokki, Marja-Liisa; London, Stephanie J.; Loomis, Stephanie J.; Loukola, Anu; Lu, Yingchang; Lumley, Thomas; Lundqvist, Annamari; Männistö, Satu; Marques-Vidal, Pedro; Masciullo, Corrado; Matchan, Angela; Mathias, Rasika A.; Matsuda, Koichi; Meigs, James B.; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Mentch, Frank D.; Mihailov, Evelin; Milani, Lili; Montasser, May E.; Montgomery, Grant W.; Morrison, Alanna; Myers, Richard H.; Nadukuru, Rajiv; Navarro, Pau; Nelis, Mari; Nieminen, Markku S.; Nolte, Ilja M.; O’Connor, George T.; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R.; Pankow, James S.; Patarcic, Inga; Pavani, Francesca; Peyser, Patricia A.; Pietilainen, Kirsi; Poulter, Neil; Prokopenko, Inga; Ralhan, Sarju; Redmond, Paul; Rich, Stephen S.; Rissanen, Harri; Robino, Antonietta; Rose, Lynda M.; Rose, Richard; Sala, Cinzia; Salako, Babatunde; Salomaa, Veikko; Sarin, Antti-Pekka; Saxena, Richa; Schmidt, Helena; Scott, Laura J.; Scott, William R.; Sennblad, Bengt; Seshadri, Sudha; Sever, Peter; Shrestha, Smeeta; Smith, Blair H.; Smith, Jennifer A.; Soranzo, Nicole; Sotoodehnia, Nona; Southam, Lorraine; Stanton, Alice V.; Stathopoulou, Maria G.; Strauch, Konstantin; Strawbridge, Rona J.; Suderman, Matthew J.; Tandon, Nikhil; Tang, Sian-Tsun; Taylor, Kent D.; Tayo, Bamidele O.; Töglhofer, Anna Maria; Tomaszewski, Maciej; Tšernikova, Natalia; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vaidya, Dhananjay; van Hylckama Vlieg, Astrid; van Setten, Jessica; Vasankari, Tuula; Vedantam, Sailaja; Vlachopoulou, Efthymia; Vozzi, Diego; Vuoksimaa, Eero; Waldenberger, Melanie; Ware, Erin B.; Wentworth-Shields, William; Whitfield, John B.; Wild, Sarah; Willemsen, Gonneke; Yajnik, Chittaranjan S.; Yao, Jie; Zaza, Gianluigi; Zhu, Xiaofeng; Project, The BioBank Japan; Salem, Rany M.; Melbye, Mads; Bisgaard, Hans; Samani, Nilesh J.; Cusi, Daniele; Mackey, David A.; Cooper, Richard S.; Froguel, Philippe; Pasterkamp, Gerard; Grant, Struan F.A.; Hakonarson, Hakon; Ferrucci, Luigi; Scott, Robert A.; Morris, Andrew D.; Palmer, Colin N.A.; Dedoussis, George; Deloukas, Panos; Bertram, Lars; Lindenberger, Ulman; Berndt, Sonja I.; Lindgren, Cecilia M.; Timpson, Nicholas J.; Tönjes, Anke; Munroe, Patricia B.; Sørensen, Thorkild I.A.; Rotimi, Charles N.; Arnett, Donna K.; Oldehinkel, Albertine J.; Kardia, Sharon L.R.; Balkau, Beverley; Gambaro, Giovanni; Morris, Andrew P.; Eriksson, Johan G.; Wright, Margie J.; Martin, Nicholas G.; Hunt, Steven C.; Starr, John M.; Deary, Ian J.; Griffiths, Lyn R.; Tiemeier, Henning; Pirastu, Nicola; Kaprio, Jaakko; Wareham, Nicholas J.; Pérusse, Louis; Wilson, James G.; Girotto, Giorgia; Caulfield, Mark J.; Raitakari, Olli; Boomsma, Dorret I.; Gieger, Christian; van der Harst, Pim; Hicks, Andrew A.; Kraft, Peter; Sinisalo, Juha; Knekt, Paul; Johannesson, Magnus; Magnusson, Patrik K.E.; Hamsten, Anders; Schmidt, Reinhold; Borecki, Ingrid B.; Vartiainen, Erkki; Becker, Diane M.; Bharadwaj, Dwaipayan; Mohlke, Karen L.; Boehnke, Michael; van Duijn, Cornelia M.; Sanghera, Dharambir K.; Teumer, Alexander; Zeggini, Eleftheria; Metspalu, Andres; Gasparini, Paolo; Ulivi, Sheila; Ober, Carole; Toniolo, Daniela; Rudan, Igor; Porteous, David J.; Ciullo, Marina; Spector, Tim D.; Hayward, Caroline; Dupuis, Josée; Loos, Ruth J.F.; Wright, Alan F.; Chandak, Giriraj R.; Vollenweider, Peter; Shuldiner, Alan; Ridker, Paul M.; Rotter, Jerome I.; Sattar, Naveed; Gyllensten, Ulf; North, Kari E.; Pirastu, Mario; Psaty, Bruce M.; Weir, David R.; Laakso, Markku; Gudnason, Vilmundur; Takahashi, Atsushi; Chambers, John C.; Kooner, Jaspal S.; Strachan, David P.; Campbell, Harry; Hirschhorn, Joel N.; Perola, Markus

    2015-01-01

    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been

  17. Cognitive conflict in human-automation interactions: a psychophysiological study.

    Science.gov (United States)

    Dehais, Frédéric; Causse, Mickaël; Vachon, François; Tremblay, Sébastien

    2012-05-01

    The review of literature in sociology and distributed artificial intelligence reveals that the occurrence of conflict is a remarkable precursor to the disruption of multi-agent systems. The study of this concept could be applied to human factors concerns, as man-system conflict appears to provoke perseveration behavior and to degrade attentional abilities with a trend to excessive focus. Once entangled in such conflicts, the human operator will do anything to succeed in his current goal even if it jeopardizes the mission. In order to confirm these findings, an experimental setup, composed of a real unmanned ground vehicle, a ground station is developed. A scenario involving an authority conflict between the participants and the robot is proposed. Analysis of the effects of the conflict on the participants' cognition and arousal is assessed through heart-rate measurement (reflecting stress level) and eye-tracking techniques (index of attentional focus). Our results clearly show that the occurrence of the conflict leads to perseveration behavior and can induce higher heart rate as well as excessive attentional focus. These results are discussed in terms of task commitment issues and increased arousal. Moreover, our results suggest that individual differences may predict susceptibility to perseveration behavior.

  18. Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.

    Science.gov (United States)

    Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan

    2013-04-01

    This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.

  19. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging

    Directory of Open Access Journals (Sweden)

    Daniel A Sternberg

    2013-06-01

    Full Text Available Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity’s collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance.

  20. The influence of goal-directed fluid therapy on the prognosis of elderly patients with hypertension and gastric cancer surgery

    Directory of Open Access Journals (Sweden)

    Zeng K

    2014-10-01

    Full Text Available Kai Zeng,* Yanzhen Li,* Min Liang, Youguang Gao, Hongda Cai, Caizhu LinDepartment of Anesthesia, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China*These authors contributed equally to this workPurpose: We aimed to investigate the influence of perioperative goal-directed fluid therapy (GDFT on the prognosis of elderly patients with gastric cancer and hypertension. Methods: Sixty elderly patients (>60 years old with primary hypertension who received gastric cancer radical surgery and who were American Society of Anesthesiologists (ASA class II or III were enrolled in the current study. Selected patients were divided randomly into two arms, comprising a conventional intraoperative fluid management arm (arm C, n=30 and a GDFT arm (arm G, n=30. Patients in arm C were infused with crystalloids or colloids according to the methods of Miller’s Anesthesia (6th edition, while those in arm G were infused with 200 mL hydroxyethyl starch over 15 minutes under the FloTrac/Vigileo monitoring system, with stroke volume variation between 8% and 13%. Hemodynamics and tissue perfusion laboratory indicators in patients were recorded continuously from 30 minutes before the operation to 24 hours after the operation. Results: Compared with arm C, the average intraoperative intravenous infusion quantity in arm G was significantly reduced (2,732±488 mL versus 3,135±346 mL, P<0.05, whereas average colloid fluid volume was significantly increased (1,235±360 mL versus 760±280 mL, P<0.05. In addition, there were more patients exhibiting intraoperatively and postoperatively stable hemodynamics and less patients with low blood pressure in arm G. Postoperative complications were less frequent, and the time of postoperative hospital stay shorter, in arm G. No significant differences were observed in mortality between the two arms.Conclusion: Our research showed that GDFT stabilized perioperative hemodynamics and reduced the

  1. The Neuro-Mechanical Processes That Underlie Goal-Directed Medio-Lateral APA during Gait Initiation

    Science.gov (United States)

    Honeine, Jean-Louis; Schieppati, Marco; Crisafulli, Oscar; Do, Manh-Cuong

    2016-01-01

    Gait initiation (GI) involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP) towards the future swing foot and of the center of mass (CoM) in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA) allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral (ML) APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial ML displacement of the CoP and to the calibration of the first step. Fourteen subjects initiated gait starting from three different initial stance widths of 15 cm (Small), 30 cm (Medium), and 45 cm (Large). Optoelectronic, force platform and electromyogram (EMG) measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior (TA) activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg TA was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae (TFL) was also active during APA. Across subjects, when stance-leg tibialis activity was low, TFL activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact (FC) were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at FC remained close to the sagittal plane in all

  2. The Neuro-Mechanical Processes That Underlie Goal-Directed Medio-Lateral APA during Gait Initiation.

    Science.gov (United States)

    Honeine, Jean-Louis; Schieppati, Marco; Crisafulli, Oscar; Do, Manh-Cuong

    2016-01-01

    Gait initiation (GI) involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP) towards the future swing foot and of the center of mass (CoM) in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA) allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral (ML) APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial ML displacement of the CoP and to the calibration of the first step. Fourteen subjects initiated gait starting from three different initial stance widths of 15 cm (Small), 30 cm (Medium), and 45 cm (Large). Optoelectronic, force platform and electromyogram (EMG) measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior (TA) activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg TA was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae (TFL) was also active during APA. Across subjects, when stance-leg tibialis activity was low, TFL activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact (FC) were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at FC remained close to the sagittal plane in all

  3. The neuro-mechanical processes that underlie goal-directed medio-lateral APA during gait initiation

    Directory of Open Access Journals (Sweden)

    Jean-Louis HONEINE

    2016-08-01

    Full Text Available Gait initiation involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP towards the future swing foot and of the center of mass (CoM in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial medio-lateral (ML displacement of the CoP and to the calibration of the first step. Nine subjects initiated gait starting from three different initial stance widths of 15 cm (Small, 30 cm (Medium, and 45 cm (Large. Optoelectronic, force platform and EMG measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg tibialis anterior was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae was also active during APA. Across subjects, when stance-leg tibialis activity was low, tensor fasciae latae activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at foot contact remained close to the

  4. What’s blocking sustainability? Human nature, cognition, and denial

    Directory of Open Access Journals (Sweden)

    William Rees

    2010-10-01

    Full Text Available In 1992, 1,700 of the world’s top scientists issued a public statement titled The World Scientists’ Warning to Humanity. They reported that “a great change in our stewardship of the Earth and the life on it is required if vast human misery is to be avoided and our global home on this planet is not to be irretrievably mutilated.” More than a decade later, the authors of the Millennium Ecosystem Assessment were moved to echo the scientists’ warning asserting that “[h]uman activity is putting such a strain on the natural functions of the Earth that the ability of the planet’s ecosystems to sustain future generations can no longer be taken for granted.” Ours is allegedly a science-based culture. For decades, our best science has suggested that staying on our present growth-based path to global development implies catastrophe for billions of people and undermines the possibility of maintaining a complex global civilization. Yet there is scant evidence that national governments, the United Nations, or other official international organizations have begun seriously to contemplate the implications for humanity of the scientists’ warnings, let alone articulate the kind of policy responses the science evokes. The modern world remains mired in a swamp of cognitive dissonance and collective denial seemingly dedicated to maintaining the status quo. We appear, in philosopher Martin Heidegger’s words, to be “in flight from thinking.” Just what is going on here? I attempt to answer this question by exploring the distal, biosocial causes of human economic behavior. My working hypothesis is that modern H. sapiens is unsustainable by nature—unsustainability is an inevitable emergent property of the systemic interaction between contemporary technoindustrial society and the ecosphere. I trace this conundrum to humanity’s once-adaptive, subconscious, genetic predisposition to expand (shared with all other species, a tendency reinforced by

  5. Action and language integration: from humans to cognitive robots.

    Science.gov (United States)

    Borghi, Anna M; Cangelosi, Angelo

    2014-07-01

    The topic is characterized by a highly interdisciplinary approach to the issue of action and language integration. Such an approach, combining computational models and cognitive robotics experiments with neuroscience, psychology, philosophy, and linguistic approaches, can be a powerful means that can help researchers disentangle ambiguous issues, provide better and clearer definitions, and formulate clearer predictions on the links between action and language. In the introduction we briefly describe the papers and discuss the challenges they pose to future research. We identify four important phenomena the papers address and discuss in light of empirical and computational evidence: (a) the role played not only by sensorimotor and emotional information but also of natural language in conceptual representation; (b) the contextual dependency and high flexibility of the interaction between action, concepts, and language; (c) the involvement of the mirror neuron system in action and language processing; (d) the way in which the integration between action and language can be addressed by developmental robotics and Human-Robot Interaction.

  6. Functional relations and cognitive psychology: Lessons from human performance and animal research.

    Science.gov (United States)

    Proctor, Robert W; Urcuioli, Peter J

    2016-02-01

    We consider requirements for effective interdisciplinary communication and explore alternative interpretations of "building bridges between functional and cognitive psychology." If the bridges are intended to connect radical behaviourism and cognitive psychology, or functional contextualism and cognitive psychology, the efforts are unlikely to be successful. But if the bridges are intended to connect functional relationships and cognitive theory, no construction is needed because the bridges already exist within cognitive psychology. We use human performance and animal research to illustrate the latter point and to counter the claim that the functional approach is unique in offering a close relationship between science and practice. Effective communication will be enhanced and, indeed, may only occur if the goal of functional contextualism extends beyond just "the advancement of functional contextual cognitive and behavioral science and practice" to "the advancement of cognitive and behavioral science and practice" without restriction.

  7. Applying the model of Goal-Directed Behavior, including descriptive norms, to physical activity intentions: A contribution to improving the Theory of Planned Behavior

    Science.gov (United States)

    The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contributed to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) ap...

  8. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients : a prospective randomized multicentre study

    NARCIS (Netherlands)

    Scheeren, Thomas W. L.; Wiesenack, Christoph; Gerlach, Herwig; Marx, Gernot

    2013-01-01

    Perioperative hemodynamic optimisation improves postoperative outcome for patients undergoing high-risk surgery (HRS). In this prospective randomized multicentre study we studied the effects of an individualized, goal-directed fluid management based on continuous stroke volume variation (SVV) and st

  9. Goal-directed fluid management based on stroke volume variation and stroke volume optimization during high-risk surgery : a pilot multicentre randomized controlled trial

    NARCIS (Netherlands)

    Scheeren, Thomas; Wiesenack, Christoph; Gerlach, H.; Marx, G.

    2011-01-01

    Introduction: Perioperative hemodynamic optimization has been shown to be useful to improve the postoperative outcome of patients undergoing major surgery. We designed a pilot study in patients undergoing major abdominal, urologic or vascular surgery to investigate the effects of a goal-directed (GD

  10. The hemodynamic "target": a visual tool of goal-directed therapy for septic patients Alvo hemodinâmico: uma ferramenta visual de terapia "goal-directed" para pacientes sépticos

    Directory of Open Access Journals (Sweden)

    Fabrice Vallée

    2007-01-01

    Full Text Available OBJECTIVE: To improve understanding of the hemodynamic status of patients with sepsis by nursing teams through the attainment of hemodynamic parameters using a pentaxial "target" diagram as a clinical tool. Parameters include cardiac index (CI, arterial oxygen saturation (SaO2, mean arterial pressure (MAP, arterial blood lactate, and central venous oxygen saturation (ScvO2. METHODS: Design: Prospective descriptive study. Setting: The intensive care unit of a university hospital. Patients: During a 6-month period, 38 intubated septic shock patients were included in the study. Survivors and nonsurvivors were compared. Interventions: MAP, CI, SaO2, ScvO2 and lactate were measured at 0, 6, 12, 24, 36, and 48 h. Measurements were recorded on the target diagram along with the norepinephrine infusion rate and the hemoglobin (Hb level. The number of lactate and ScvO2 measurements achieved during the target period were compared to a 6-month retrospective control period just before starting the protocol. We assessed the nurse knowledge status prior to the introduction of target diagram. We then performed a post-test after implementing the new recording technique. MEASUREMENTS AND RESULTS: The nursing team expressed a positive attitude toward the target concept. The mean number of lactate and ScvO2 measurements performed for each patient during the control period was significantly lower than during the target period, and those values were rarely used as goal values before the introduction of the target diagram. At 24 hours, 46% of the survivors had achieved all the goal parameter values of the target diagram, compared to only 10% of nonsurvivors (P = .01. CONCLUSION: The target diagram is a visual multiparametric tool involving all the medical and nursing team that helps achieve goal-directed therapy for septic patients. The number of goal values reached at each time point during the first 48 hours was closely linked to mortality.OBJETIVO: Melhorar a

  11. Robot Enhancement of Cognitive and Ethical Capabilities of Humans

    NARCIS (Netherlands)

    Fosch Villaronga, Eduard; Kalipalya-Mruthyunjaya, Vishwas; Seibt, Johanna; Norskov, Marco; Andersen, Soren Schack

    2016-01-01

    The aim of this paper is to mold and materialize the future of learning. The paper introduces a Modular Cognitive Educator System (MCES), which aims to help people learn cognitive and ethical capabilities to face one of the indirect impacts of the robot revolution, namely, its impact on the educatio

  12. Human cognitive flexibility depends on dopamine D2 receptor signaling

    NARCIS (Netherlands)

    Holstein, M.G.A. van; Aarts, E.; Schaaf, M.E. van der; Geurts, D.E.M.; Verkes, R.J.; Franke, B.; Schouwenburg, M.R. van; Cools, R.

    2011-01-01

    RATIONALE: Accumulating evidence indicates that the cognitive effects of dopamine depend on the subtype of dopamine receptor that is activated. In particular, recent work with animals as well as current theorizing has suggested that cognitive flexibility depends on dopamine D2 receptor signaling.

  13. [The physician's cognition during cardiopulmonary resuscitation of the human].

    Science.gov (United States)

    Meyer, W; Balck, F; Speidel, H

    1994-09-01

    The cognitions of 20 emergency-physicians while working on a mobile resuscitation unit were examined by means of questionnaire in over 260 situations of resuscitation. A pattern of cognitions could be detected: Emergency physicians appear not to think very much during resuscitation. If there are thoughts, these usually concern the obvious, or what is immediately present in the situation, i.e. the patient or the patient's relatives; repression may also play a role. Cognitions which are reflective of self are rare and only develop late in the situation, depending on the surroundings and the amount of stress. The cognitions concerning the relatives are frequent in those situations with direct physician-relative contact. The physicians often report in retrospect having felt compelled to a decision for resuscitation by the presence of the relatives; nevertheless, the decision itself appears to be a result, rather, of their cognitions of the relatives. Distancing by means of cognition was ubiquitously employed as a coping strategy by physicians when in situations which were perceived as not having a positive outcome. Thoughts about "own death" or "about the patient" are specific, however, for certain groups of doctors. Results of the present investigation suggest that physicians have cognitions about relatives during the process of decision making, and cognitions about the patient during the resuscitation manoeuvre.

  14. The Human Stain: Why Cognitivism Can't Tell Us What Cognition Is & What It Does

    NARCIS (Netherlands)

    Keijzer, F.; Lyon, P.; B. Wallace,

    2007-01-01

    What is cognition? It is now common knowledge that, so far, no one has a ready answer. It is much less generally acknowledged that this is a matter of strong concern when it comes to the further development of the cognitive sciences. We discuss how cognitivism provided a strongly human orientation o

  15. The Human Stain: Why Cognitivism Can't Tell Us What Cognition Is & What It Does

    NARCIS (Netherlands)

    Keijzer, F.; Lyon, P.; B. Wallace,

    2007-01-01

    What is cognition? It is now common knowledge that, so far, no one has a ready answer. It is much less generally acknowledged that this is a matter of strong concern when it comes to the further development of the cognitive sciences. We discuss how cognitivism provided a strongly human orientation o

  16. Plasticity of human spatial cognition: Spatial language and cognition covary across cultures

    NARCIS (Netherlands)

    Haun, D.B.M.; Rapold, C.J.; Janzen, G.; Levinson, S.C.

    2011-01-01

    The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate

  17. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2013-07-01

    Full Text Available OBJECTIVES: This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. METHODS: Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. RESULTS: The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. CONCLUSION: The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting in thoracic surgery patients requiring one-lung ventilation.

  18. Modelling Human Cognitive Development with Explanation-Based Learning in Soar

    Science.gov (United States)

    1990-02-02

    of Pittsburgh BEST AVAILABLE COPY AXpprovedI for public rleaw4: distributimi unintilieu. 90 Z:L 0 Q3 7 MODELLING HUMAN COGNITIVE DEVELOPMENT WITH...NO. No. ACCESSION NO N/A N/A N/A N/A I I TITLE (*XcA* SecsaiY O7fiCatl) Modelling human cognitive development with explanation-bsed learning in Soar...P I cognitive development Soar I I I j~n--qq~ learning 19. ABSTRACT (Continue on reverse if noeessary and identy by block -number) SEE REVERSE SIDE 20

  19. BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly - evidence from auditory distraction.

    Science.gov (United States)

    Getzmann, Stephan; Gajewski, Patrick D; Hengstler, Jan G; Falkenstein, Michael; Beste, Christian

    2013-01-01

    Aging affects the ability to focus attention on a given task and to ignore distractors. These functions subserve response control processes for which fronto-striatal networks have been shown to play an important role. Within these networks, the brain-derived-neurotrophic-factor (BDNF), which is known to underlie aging effects, plays a pivotal role. We investigated how cognitive subprocesses constituting a cycle of distraction, orientation and refocusing of attention are affected by the functional BDNF Val66Met polymorphism using event-related potentials (ERPs) in 122 healthy elderly. Using an auditory distraction paradigm we found that the Val/Val genotype confers a disadvantage to its carriers. This disadvantage was partly compensated by intensified attentional shifting mechanisms. It could be based on response selection processes being more vulnerable against interference from distractors in this genotype group. Processes reflecting transient sensory memory processes, or the re-orientation of attention were not affected by the BDNF Val66Met polymorphism, suggesting a higher importance of BDNF for mechanisms related to response control, than stimulus processing. The results add on recent literature showing that the Met allele confers some benefit to its carriers. We suggest an account for unifying different results of BDNF Val66Met association studies in executive functions, based on the role of BDNF in fronto-striatal circuits.

  20. Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning

    NARCIS (Netherlands)

    Erlhagen, W.; Mukovskiy, A.; Bicho, E.; Panin, G.; Kiss, C.; Knoll, A.; Schie, H.T. van; Bekkering, H.

    2006-01-01

    In this paper we present a robot control architecture for learning by imitation which takes inspiration from recent discoveries in action observation/execution experiments with humans and other primates. The architecture implements two basic processing principles: (1) imitation is primarily directed

  1. Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning

    NARCIS (Netherlands)

    Erlhagen, W.; Mukovskiy, A.; Bicho, E.; Panin, G.; Kiss, C.; Knoll, A.; Schie, H.T. van; Bekkering, H.

    2006-01-01

    In this paper we present a robot control architecture for learning by imitation which takes inspiration from recent discoveries in action observation/execution experiments with humans and other primates. The architecture implements two basic processing principles: (1) imitation is primarily directed

  2. Neonatal lesions of orbital frontal areas 11/13 in monkeys alter goal-directed behavior but spare fear conditioning and safety signal learning.

    Directory of Open Access Journals (Sweden)

    Andy M Kazama

    2014-03-01

    Full Text Available Recent studies in monkeys have demonstrated that damage to the lateral subfields of orbital frontal cortex (OFC areas 11/13 yields profound changes in flexible modulation of goal-directed behaviors and a lack in fear regulation. Yet, little consideration has been placed on its role in emotional and social development throughout life. The current study investigated the effects of neonatal lesions of the OFC on the flexible modulation of goal-directed behaviors and fear responses in monkeys. Infant monkeys received neonatal lesions of OFC areas 11/13 or sham-lesions during the first post-natal week. Modulation of goal-directed behaviors was measured with a devaluation task at 3-4 years and 6-7 years. Modulation of fear reactivity by safety signals was assessed with the AX+/BX- potentiated-startle paradigm at 6-7 years. Similar to adult-onset OFC lesions, selective neonatal lesions of OFC areas 11/13 yielded a failure to modulate behavioral responses guided by changes in reward value, but spared the ability to modulate fear responses in the presence of safety signals. These results suggest that these areas play a critical role in the development of behavioral adaptation during goal-directed behaviors, but not, or less so, in the development of the ability to process emotionally salient stimuli and to modulate emotional reactivity using environmental contexts, which could be supported by other OFC subfields, such as the most ventromedial subfields (i.e. areas 14/25. Given similar impaired decision-making abilities and spared modulation of fear followed both neonatal lesions of either OFC areas 11 and 13 or amygdala (Kazama et al., 2012; Kazama & Bachevalier, 2013, the present results suggest that interactions between these two neural structures play a critical role in the development of behavioral adaptation; an ability essential for the self-regulation of emotion and behavior that assures the maintenance of successful social relationships.

  3. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    Directory of Open Access Journals (Sweden)

    Sakyasingha eDasgupta

    2014-10-01

    Full Text Available Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning and operant conditioning (reward-based learning. A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point towards their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  4. Bridging Human Reliability Analysis and Psychology, Part 2: A Cognitive Framework to Support HRA

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jing Xing

    2012-06-01

    This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entirety of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.

  5. MAGELLAN: a cognitive map-based model of human wayfinding.

    Science.gov (United States)

    Manning, Jeremy R; Lew, Timothy F; Li, Ningcheng; Sekuler, Robert; Kahana, Michael J

    2014-06-01

    In an unfamiliar environment, searching for and navigating to a target requires that spatial information be acquired, stored, processed, and retrieved. In a study encompassing all of these processes, participants acted as taxicab drivers who learned to pick up and deliver passengers in a series of small virtual towns. We used data from these experiments to refine and validate MAGELLAN, a cognitive map-based model of spatial learning and wayfinding. MAGELLAN accounts for the shapes of participants' spatial learning curves, which measure their experience-based improvement in navigational efficiency in unfamiliar environments. The model also predicts the ease (or difficulty) with which different environments are learned and, within a given environment, which landmarks will be easy (or difficult) to localize from memory. Using just 2 free parameters, MAGELLAN provides a useful account of how participants' cognitive maps evolve over time with experience, and how participants use the information stored in their cognitive maps to navigate and explore efficiently.

  6. Recombinant human erythropoietin to target cognitive dysfunction in bipolar disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla Woznica; Ehrenreich, Hannelore; Christensen, Ellen M

    2014-01-01

    OBJECTIVE: Available drug treatments for bipolar disorder fail to reverse patients' cognitive deficits. Erythropoietin has neurotrophic actions and aids neurocognitive function. The aim of the study was to investigate the potential of erythropoietin to treat cognitive dysfunction in bipolar......; secondary outcomes were sustained attention and facial expression recognition; and tertiary outcomes were attention, executive function, subjective cognitive function, and mood. Analysis was by intention to treat, using repeated-measures analysis of covariance adjusted for stratification variables and mood...... in erythropoietin versus saline groups (P = .10). However, erythropoietin enhanced sustained attention (P = .001), recognition of happy faces (P = .03), and speed of complex information processing across learning, attention, and executive function (P = .01). These effects occurred in absence of changes in simple...

  7. THE IMPACT OF ANXIETY UPON COGNITION: PERSPECTIVES FROM HUMAN THREAT OF SHOCK STUDIES

    Directory of Open Access Journals (Sweden)

    Oliver Joe Robinson

    2013-05-01

    Full Text Available Anxiety disorders constitute a sizeable worldwide health burden with profound social and economic consequences. The symptoms are wide-ranging; from hyperarousal to difficulties with concentrating. This latter effect falls under the broad category of altered cognitive performance; in this review we examine studies quantifying such impacts of anxiety on cognition. Specifically, we focus on the translational threat of unpredictable shock paradigm, a method previously used to characterize emotional responses and defensive mechanisms that is now emerging as valuable tool for examining the interaction between anxiety and cognition. In particular, we compare the impact of threat of shock on cognition in humans to that of pathological anxiety disorders. We highlight that both threat of shock and anxiety disorders promote mechanisms associated with harm avoidance across multiple levels of cognition (from perception to attention to learning and executive function – a ‘hot’ cognitive function which can be both adaptive and maladaptive depending upon the circumstances. This mechanism comes at a cost to other functions such as working memory, but leaves some functions, such as planning, unperturbed. We also highlight a number of cognitive effects that differ across anxiety disorders and threat of shock. These discrepant effects are largely seen in ‘cold’ cognitive functions involving control mechanisms and may reveal boundaries between adaptive (e.g. response to threat and maladaptive (e.g. pathological anxiety. We conclude by raising a number of unresolved questions regarding the role of anxiety in cognition that may provide fruitful avenues for future research.

  8. Empirical Network Model of Human Higher Cognitive Brain Functions

    Science.gov (United States)

    1990-03-31

    EEG potentials during cognition. Science. 1981. 213: 918-921- and mental activity in juvenile delinquents. Electroenceph. Gevns, .A.S.. Schafier. R.F...their latency and topography depend on the moda - litv. intensity, and other physical properties of the stimulus. The P100 and NIO0 peaks are also

  9. Interaction between force production and cognitive performance in humans

    NARCIS (Netherlands)

    Zijdewind, Inge; van Duinen, Hiske; Zielman, R; Lorist, MM

    2006-01-01

    Objective: A dual task paradigm was used to examine the effects of the generation of force on cognitive performance. Methods: Subjects (n = 22) were asked to respond to auditory stimuli with their left middle or index finger and concurrently maintain a sub-maximal contraction with their right index

  10. Regulating emotions uniquely modifies reaction time, rate of force production, and accuracy of a goal-directed motor action.

    Science.gov (United States)

    Beatty, Garrett F; Fawver, Bradley; Hancock, Gabriella M; Janelle, Christopher M

    2014-02-01

    We investigated how emotion regulation (ER) strategies influence the execution of a memory guided, ballistic pinch grip. Participants (N=33) employed ER strategies (expressive suppression, emotional expression, and attentional deployment) while viewing emotional stimuli (IAPS images). Upon stimulus offset, participants produced a targeted pinch force aimed at 10% of their maximum voluntary contraction. Performance measures included reaction time (RT), rate of force production, and performance accuracy. As hypothesized, attentional deployment resulted in the slowest RT, largest rate of force production, and poorest performance accuracy. In contrast, expressive suppression reduced the rate of force production and increased performance accuracy relative to emotional expression and attentional deployment. Findings provide evidence that emotion regulation strategies uniquely influence human movement. Future work should further delineate the interacting role that emotion regulation strategies have in modulating both affective experience and motor performance.

  11. Cognitive neuroscience 2.0: building a cumulative science of human brain function.

    Science.gov (United States)

    Yarkoni, Tal; Poldrack, Russell A; Van Essen, David C; Wager, Tor D

    2010-11-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. The animal and human neuroendocrinology of social cognition, motivation and behavior.

    Science.gov (United States)

    McCall, Cade; Singer, Tania

    2012-04-15

    Extensive animal and recent human research have helped inform neuroendocrinological models of social cognition, motivation and behavior. In this review, we first summarize important findings regarding oxytocin, arginine vasopressin and testosterone in the domains of affiliation, social cognition, aggression and stress/anxiety. We then suggest ways in which human research can continue to profit from animal research, particularly by exploring the interactive nature of neuromodulatory effects at neurochemical, organismic and contextual levels. We further propose methods inspired by the animal literature for the ecologically valid assessment of affiliative behavior in humans. We conclude with suggestions for how human research could advance by directly assessing specific social cognitive and motivational mechanisms as intermediate variables. We advocate a more comprehensive look at the distinct networks identified by social neuroscience and the importance of a motivational state, in addition to approach and avoidance, associated with quiescence and homeostatic regulation.

  13. Humanity in the Digital Age: Cognitive, Social, Emotional, and Ethical Implications

    Science.gov (United States)

    Yamamoto, Junko; Ananou, Simeon

    2015-01-01

    Even though technology has brought great benefits to current society, there are also indications that the manner in which people use technology has undermined their humanity in some respects. In this article the authors frame human nature in terms of four dimensions: cognition, social interaction, emotion, and ethics. We argue that while basic…

  14. Integrating Theory, Research, and Practice in Human Performance Technology: Examples from Behavioral, Cognitive, and Constructivist Theories.

    Science.gov (United States)

    Brethower, Dale M.

    2000-01-01

    Considers how to integrate theory, research, and practice in human performance technology. Discusses human learning; market pull versus knowledge push; using inquiry to connect theory, research, and practice; constructivist examples; behavioral and cognitive approaches; and differences in research methodologies. (Contains 13 references.) (LRW)

  15. Integrating Theory, Research, and Practice in Human Performance Technology: Examples from Behavioral, Cognitive, and Constructivist Theories.

    Science.gov (United States)

    Brethower, Dale M.

    2000-01-01

    Considers how to integrate theory, research, and practice in human performance technology. Discusses human learning; market pull versus knowledge push; using inquiry to connect theory, research, and practice; constructivist examples; behavioral and cognitive approaches; and differences in research methodologies. (Contains 13 references.) (LRW)

  16. Recombinant human growth hormone improves cognitive capacity in a pain patient exposed to chronic opioids.

    Science.gov (United States)

    Rhodin, A; von Ehren, M; Skottheim, B; Grönbladh, A; Ortiz-Nieto, F; Raininko, R; Gordh, T; Nyberg, F

    2014-07-01

    During recent decades, the increasing use of opioids for chronic non-cancer pain has raised concerns regarding tolerance, addiction, and importantly cognitive dysfunction. Current research suggests that the somatotrophic axis could play an important role in cognitive function. Administration of growth hormone (GH) to GH-deficient humans and experimental animals has been shown to result in significant improvements in cognitive capacity. In this report, a patient with cognitive disabilities resulting from chronic treatment with opioids for neuropathic pain received recombinant human growth hormone (rhGH) replacement therapy. A 61-year-old man presented with severe cognitive dysfunction after long-term methadone treatment for intercostal neuralgia and was diagnosed with GH insufficiency by GH releasing hormone-arginine testing. The effect of rhGH replacement therapy on his cognitive capacity and quality of life was investigated. The hippocampal volume was measured using magnetic resonance imaging, and the ratios of the major metabolites were calculated using proton magnetic resonance spectroscopy. Cognitive testing revealed significant improvements in visuospatial cognitive function after rhGH. The hippocampal volume remained unchanged. In the right hippocampus, the N-acetylaspartate/creatine ratio (reflecting nerve cell function) was initially low but increased significantly during rhGH treatment, as did subjective cognitive, physical and emotional functioning. This case report indicates that rhGH replacement therapy could improve cognitive behaviour and well-being, as well as hippocampal metabolism and functioning in opioid-treated patients with chronic pain. The idea that GH could affect brain function and repair disabilities induced by long-term exposure to opioid analgesia is supported.

  17. [Association of the insulin-like growth factor II (IGF2) gene with human cognitive functions].

    Science.gov (United States)

    Alfimova, M V; Lezheĭko, T V; Gritsenko, I K; Golimbet, V E

    2012-08-01

    Active search for candidate genes whose polymorphisms are associated with human cognitive functions has been in progress in the past years. The study focused on the role that the insulin-like growth factor II (IGF2) gene may play in the variation of cognitive processes related to executive functions. The ApaI polymorphism of the IGF2 gene was tested for association with selective attention during visual search, working memory/mental control, and semantic verbal fluency in a group of 182 healthy individuals. The ApaI polymorphism was associated with the general cognitive index and selective attention measure. Carriers of genotype AA displayed higher values of the two parameters than carriers of genotype GG. It was assumed that the ApaI polymorphism of the IGF2 gene influences the human cognitive functions, acting possibly via modulation of the IGF-II level in the central nervous system.

  18. Active glass-type human augmented cognition system considering attention and intention

    Science.gov (United States)

    Kim, Bumhwi; Ojha, Amitash; Lee, Minho

    2015-10-01

    Human cognition is the result of an interaction of several complex cognitive processes with limited capabilities. Therefore, the primary objective of human cognitive augmentation is to assist and expand these limited human cognitive capabilities independently or together. In this study, we propose a glass-type human augmented cognition system, which attempts to actively assist human memory functions by providing relevant, necessary and intended information by constantly assessing intention of the user. To achieve this, we exploit selective attention and intention processes. Although the system can be used in various real-life scenarios, we test the performance of the system in a person identity scenario. To detect the intended face, the system analyses the gaze points and change in pupil size to determine the intention of the user. An assessment of the gaze points and change in pupil size together indicates that the user intends to know the identity and information about the person in question. Then, the system retrieves several clues through speech recognition system and retrieves relevant information about the face, which is finally displayed through head-mounted display. We present the performance of several components of the system. Our results show that the active and relevant assistance based on users' intention significantly helps the enhancement of memory functions.

  19. Early Postnatal Protein-Calorie Malnutrition and Cognition: A Review of Human and Animal Studies

    Science.gov (United States)

    Laus, Maria Fernanda; Vales, Lucas Duarte Manhas Ferreira; Costa, Telma Maria Braga; Almeida, Sebastião Sousa

    2011-01-01

    Malnutrition continues to be recognized as the most common and serious form of children’s dietary disease in the developing countries and is one of the principal factors affecting brain development. The purpose of this paper is to review human and animal studies relating malnutrition to cognitive development, focusing in correlational and interventional data, and to provide a discussion of possible mechanisms by which malnutrition affects cognition. PMID:21556206

  20. Early Postnatal Protein-Calorie Malnutrition and Cognition: A Review of Human and Animal Studies

    Directory of Open Access Journals (Sweden)

    Sebastião Sousa Almeida

    2011-02-01

    Full Text Available Malnutrition continues to be recognized as the most common and serious form of children’s dietary disease in the developing countries and is one of the principal factors affecting brain development. The purpose of this paper is to review human and animal studies relating malnutrition to cognitive development, focusing in correlational and interventional data, and to provide a discussion of possible mechanisms by which malnutrition affects cognition.

  1. Brain activation in complex partial seizures during switching from a the goal-directed task to a resting state: comparison of fMRI maps to the default mode network.

    Science.gov (United States)

    Karmonik, Christof; Dulay, Mario; Verma, Amit; Yen, Christopher; Grossman, Robert G

    2010-01-01

    The default mode network (DMN) has been previously identified as a set of brain regions activated during internally directed cognition. The objective of this study was to investigate patterns of brain activation during switching between a goal-directed task and a rest period obtained from clinical functional magnetic resonance imaging (fMRI) paradigms in complex partial seizures (CPS) and age-matched controls. As part of pre-surgical evaluation with fMRI, a visually presented block-design language task was performed by eight subjects (4 CPS, 4 age-matched controls). Single subject fMRI maps were calculated and transferred into Talairach space for an atlas-based analysis. For the rest state, total volumes of activation, brain regions with largest volume of activation and regions commonly activated in the CPS and the control group were identified. A voxel-by-voxel comparison was conducted to reveal inter-group statistically significant differences. Average volume of activation in the CPS group was significantly higher (32,080 mm(3)) than in the control group (7,915 mm(3), p-value 〈 0.03). In both groups, most of the common activation volume (81% in the CPS group and 98 % in the control group) was located in cognitive regions of the frontal lobe and temporal lobes as well as anterior cingulate cortex, precuneus and cuneus. The remaining 19% in the CPS group included regions in the precentral gyrus, the superior and medial occipital gyrus, the parahippocampal gyrus, the inferior parietal lobule and the angular gyrus. The voxel-by-voxel comparison showed larger areas of activation mostly in the frontal and temporal lobes in the CPS group (as well as in the cuneus and precuneus), while regions with larger activation in the control group were found mostly in the parietal lobe. Our findings implicate that switching from goal-directed behavior to the default mode in CPS patients is impaired. Information contained in clinical fMRI block-design image data can be used to

  2. Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action.

    Science.gov (United States)

    Furlong, Teri M; Supit, Alva S A; Corbit, Laura H; Killcross, Simon; Balleine, Bernard W

    2017-01-01

    Addiction is characterized by a persistent loss of behavioral control resulting in insensitivity to negative feedback and abnormal decision-making. Here, we investigated the influence of methamphetamine (METH)-paired contextual cues on decision-making in rats. Choice between goal-directed actions was sensitive to outcome devaluation in a saline-paired context but was impaired in the METH-paired context, a deficit that was also found when negative feedback was provided. Reductions in c-Fos-related immunoreactivity were found in dorsomedial striatum (DMS) but not dorsolateral striatum after exposure to the METH context suggesting this effect reflected a loss specifically in goal-directed control in the METH context. This reduction in c-Fos was localized to non-enkephalin-expressing neurons in the DMS, likely dopamine D1-expressing direct pathway neurons, suggesting a relative change in control by the D1-direct versus D2-indirect pathways originating in the DMS may have been induced by METH-context exposure. To test this suggestion, we infused the adenosine 2A receptor antagonist ZM241385 into the DMS prior to test to reduce activity in D2 neurons relative to D1 neurons in the hope of reducing the inhibitory output from this region of the striatum. We found that this treatment fully restored sensitivity to negative feedback in a test conducted in the METH-paired context. These results suggest that drug exposure alters decision-making by downregulation of the circuitry mediating goal-directed action, an effect that can be ameliorated by acute A2A receptor inhibition in this circuit.

  3. The nucleus accumbens as a nexus between values and goals in goal-directed behaviour: a review and a new hypothesis

    Directory of Open Access Journals (Sweden)

    Francesco eMannella

    2013-10-01

    Full Text Available Goal-directed behaviour is a fundamental means by which animals can flexibly solve the challenges posed by variable external and internal conditions. Recently, the processes and brain mechanisms underlying such behaviour have been extensively studied from behavioural, neuroscientific and computational perspectives. This research has highlighted the processes underlying goal-directed behaviour and associated brain systems including prefrontal cortex, basal ganglia and, in particular therein, the nucleus accumbens. This paper focusses on one particular process at the core of goal-directed behaviour: how motivational value is assigned to goals on the basis of internal states and environmental stimuli, and how this supports goal selection processes. Various biological and computational accounts have been given of this problem and of related multiple neural and behaviour phenomena, but we still lack an integrated hypothesis on the generation and use of value for goal selection. This paper proposes an hypothesis that aims to solve this problem and is based on this key elements: (a amygdala and hippocampus establish the motivational value of stimuli and goals; (b prefrontal cortex encodes various types of action outcomes; (c nucleus accumbens integrates different sources of value, representing them in terms of a common currency with the aid of dopamine, and thereby plays a major role in selecting action outcomes within prefrontal cortex. The ‘goals’ pursued by the organism are the outcomes selected by these processes. The hypothesis is developed in the context of a critical review of relevant biological and computational literature which offer it support. The paper shows how the hypothesis has the potential to integrate existing interpretations of motivational value and goal selection.

  4. Learning and Chaining of Motor Primitives for Goal-directed Locomotion of a Snake-Like Robot with Screw-Drive Units

    DEFF Research Database (Denmark)

    Chatterjee, Sromona; Nachstedt, Timo; Tamosiunaite, Minija

    2015-01-01

    Motor primitives provide a modular organization to complex behaviours in both vertebrates and invertebrates. Inspired by this, here we generate motor primitives for a complex snake-like robot with screw-drive units, and thence chain and combine them, in order to provide a versatile, goal-directed......Motor primitives provide a modular organization to complex behaviours in both vertebrates and invertebrates. Inspired by this, here we generate motor primitives for a complex snake-like robot with screw-drive units, and thence chain and combine them, in order to provide a versatile, goal...

  5. Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity.

    Science.gov (United States)

    Natsubori, Akiyo; Tsutsui-Kimura, Iku; Nishida, Hiroshi; Bouchekioua, Youcef; Sekiya, Hiroshi; Uchigashima, Motokazu; Watanabe, Masahiko; de Kerchove d'Exaerde, Alban; Mimura, Masaru; Takata, Norio; Tanaka, Kenji F

    2017-03-08

    The ventral striatum is involved in motivated behavior. Akin to the dorsal striatum, the ventral striatum contains two parallel pathways: the striatomesencephalic pathway consisting of dopamine receptor Type 1-expressing medium spiny neurons (D1-MSNs) and the striatopallidal pathway consisting of D2-MSNs. These two genetically identified pathways are thought to encode opposing functions in motivated behavior. It has also been reported that D1/D2 genetic selectivity is not attributed to the anatomical discrimination of two pathways. We wanted to determine whether D1- and D2-MSNs in the ventral striatum functioned in an opposing manner as previous observations claimed, and whether D1/D2 selectivity corresponded to a functional segregation in motivated behavior of mice. To address this question, we focused on the lateral portion of ventral striatum as a region implicated in food-incentive, goal-directed behavior, and recorded D1 or D2-MSN activity by using a gene-encoded ratiometric Ca(2+) indicator and by constructing a fiberphotometry system, and manipulated their activities via optogenetic inhibition during ongoing behaviors. We observed concurrent event-related compound Ca(2+) elevations in ventrolateral D1- and D2-MSNs, especially at trial start cue-related and first lever press-related times. D1 or D2 selective optogenetic inhibition just after the trial start cue resulted in a reduction of goal-directed behavior, indicating a shared coding of motivated behavior by both populations at this time. Only D1-selective inhibition just after the first lever press resulted in the reduction of behavior, indicating D1-MSN-specific coding at that specific time. Our data did not support opposing encoding by both populations in food-incentive, goal-directed behavior.SIGNIFICANCE STATEMENT An opposing role of dopamine receptor Type 1 or Type 2-expressing medium spiny neurons (D1-MSNs or D2-MSNs) on striatum-mediated behaviors has been widely accepted. However, this idea has

  6. Neutrophil gelatinase-associated lipocalin and albuminuria as predictors of acute kidney injury in patients treated with goal-directed haemodynamic therapy after major abdominal surgery.

    LENUS (Irish Health Repository)

    Cullen, Mr

    2013-10-11

    Neutrophil gelatinase-associated lipocalin (NGAL) is emerging as a new biomarker for the early identification of acute kidney injury (AKI). There is also increasing evidence of an association between urinary albumin\\/creatinine ratio (ACR) and AKI. The primary aim of this study was to evaluate the clinical utility of these biomarkers to predict AKI in a population of perioperative patients treated with goal-directed haemodynamic therapy (GDHT). Secondary aims were to examine NGAL and ACR as sensitive biomarkers to detect the effects of GDHT and to investigate the association of these biomarkers with secondary outcomes.

  7. Hemodynamic management of septic shock: is it time for "individualized goal-directed hemodynamic therapy" and for specifically targeting the microcirculation?

    Science.gov (United States)

    Saugel, Bernd; Trepte, Constantin J; Heckel, Kai; Wagner, Julia Y; Reuter, Daniel A

    2015-06-01

    Septic shock is a life-threatening condition in both critically ill medical patients and surgical patients during the perioperative phase. In septic shock, specific alterations in global cardiovascular dynamics (i.e., the macrocirculation) and in the microcirculatory blood flow (i.e., the microcirculation) have been described. However, the presence and degree of microcirculatory failure are in part independent from systemic macrohemodynamic variables. Macrocirculatory and microcirculatory failure can independently induce organ dysfunction. We review current diagnostic and therapeutic approaches for the assessment and optimization of both the macrocirculation and the microcirculation in septic shock. There are various technologies for the determination of macrocirculatory hemodynamic variables. We discuss the data on early goal-directed therapy for the resuscitation of the macrocirculation. In addition, we describe the concept of "individualized goal-directed hemodynamic therapy." Technologies to assess the local microcirculation are also available. However, adequate resuscitation goals for the optimization of the microcirculation still need to be defined. At present, we are not ready to specifically monitor and target the microcirculation in clinical routine outside studies. In the future, concepts for an integrative approach for individualized hemodynamic management of the macrocirculation and in parallel the microcirculation might constitute a huge opportunity to define additional resuscitation end points in septic shock.

  8. Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth.

    Science.gov (United States)

    Masson, Justine; Darmon, Michèle; Conjard, Agnès; Chuhma, Nao; Ropert, Nicole; Thoby-Brisson, Muriel; Foutz, Arthur S; Parrot, Sandrine; Miller, Gretchen M; Jorisch, Renée; Polan, Jonathan; Hamon, Michel; Hen, René; Rayport, Stephen

    2006-04-26

    Neurotransmitter glutamate has been thought to derive mainly from glutamine via the action of glutaminase type 1 (GLS1). To address the importance of this pathway in glutamatergic transmission, we knocked out GLS1 in mice. The insertion of a STOP cassette by homologous recombination produced a null allele that blocked transcription, encoded no immunoreactive protein, and abolished GLS1 enzymatic activity. Null mutants were slightly smaller, were deficient in goal-directed behavior, hypoventilated, and died in the first postnatal day. No gross or microscopic defects were detected in peripheral organs or in the CNS. In cultured neurons from the null mutants, miniature EPSC amplitude and duration were normal; however, the amplitude of evoked EPSCs decayed more rapidly with sustained 10 Hz stimulation, consistent with an observed reduction in depolarization-evoked glutamate release. Because of this activity-dependent impairment in glutamatergic transmission, we surmised that respiratory networks, which require temporal summation of synaptic input, would be particularly affected. We found that the amplitude of inspirations was decreased in vivo, chemosensitivity to CO2 was severely altered, and the frequency of pacemaker activity recorded in the respiratory generator in the pre-Bötzinger complex, a glutamatergic brainstem network that can be isolated in vitro, was increased. Our results show that although alternate pathways to GLS1 glutamate synthesis support baseline glutamatergic transmission, the GLS1 pathway is essential for maintaining the function of active synapses, and thus the mutation is associated with impaired respiratory function, abnormal goal-directed behavior, and neonatal demise.

  9. Oxytonergic circuitry sustains and enables creative cognition in humans

    NARCIS (Netherlands)

    De Dreu, Carsten K. W.; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J.; Ebstein, Richard P.; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G.

    2014-01-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increa

  10. Oxytonergic circuitry sustains and enables creative cognition in humans

    NARCIS (Netherlands)

    De Dreu, Carsten K. W.; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J.; Ebstein, Richard P.; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G.

    2014-01-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increa

  11. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex

    Science.gov (United States)

    Humphreys, Gina F.; Lambon Ralph, Matthew A.

    2015-01-01

    How is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex. This aim was achieved through a large-scale activation likelihood estimation (ALE) analysis of 386 studies (3952 activation peaks) covering 8 cognitive domains. A tripartite, domain-general neuroanatomical division and 5 principles of cognitive organization were established, and these are discussed with respect to a unified theory of parietal functional organization. PMID:25205661

  12. A natural history of the human mind: tracing evolutionary changes in brain and cognition

    Science.gov (United States)

    Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W

    2008-01-01

    Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300–400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species’ cognitive and linguistic abilities. PMID:18380864

  13. A Social Cognitive Neuroscience Stance on Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Chaminade Thierry

    2011-12-01

    Full Text Available Robotic devices, thanks to the controlled variations in their appearance and behaviors, provide useful tools to test hypotheses pertaining to social interactions. These agents were used to investigate one theoretical framework, resonance, which is defined, at the behavioral and neural levels, as an overlap between first- and third- person representations of mental states such as motor intentions or emotions. Behaviorally, we found a reduced, but significant, resonance towards a humanoid robot displaying biological motion, compared to a human. Using neuroimaging, we've reported that while perceptual processes in the human occipital and temporal lobe are more strongly engaged when perceiving a humanoid robot than a human action, activity in areas involved in motor resonance depends on attentional modulation for artificial agent more strongly than for human agents. Altogether, these studies using artificial agents offer valuable insights into the interaction of bottom-up and top-down processes in the perception of artificial agents.

  14. Reflections of other minds: how primate social cognition can inform the function of mirror neurons

    Science.gov (United States)

    Lyons, Derek E; Santos, Laurie R; Keil, Frank C

    2006-01-01

    Mirror neurons, located in the premotor cortex of macaque monkeys, are activated both by the performance and the passive observation of particular goal-directed actions. Although this property would seem to make them the ideal neural substrate for imitation, the puzzling fact is that monkeys simply do not imitate. Indeed, imitation appears to be a uniquely human ability. We are thus left with a fascinating question: if not imitation, what are mirror neurons for? Recent advances in the study of non-human primate social cognition suggest a surprising potential answer. PMID:16564687

  15. Modeling cognitive loads for evolving shared mental models in human-agent collaboration.

    Science.gov (United States)

    Fan, Xiaocong; Yen, John

    2011-04-01

    Recent research on human-centered teamwork highly demands the design of cognitive agents that can model and exploit human partners' cognitive load to enhance team performance. In this paper, we focus on teams composed of human-agent pairs and develop a system called Shared Mental Models for all--SMMall. SMMall implements a hidden Markov model (HMM)-based cognitive load model for an agent to predict its human partner's instantaneous cognitive load status. It also implements a user interface (UI) concept called shared belief map, which offers a synergic representation of team members' information space and allows them to share beliefs. An experiment was conducted to evaluate the HMM-based load models. The results indicate that the HMM-based load models are effective in helping team members develop a shared mental model (SMM), and the benefit of load-based information sharing becomes more significant as communication capacity increases. It also suggests that multiparty communication plays an important role in forming/evolving team SMMs, and when a group of agents can be partitioned into subteams, splitting messages by their load status can be more effective for developing subteam SMMs.

  16. Steps to a formal analysis of the cognitive-energetic model of stress and human performance

    NARCIS (Netherlands)

    P.C.M. Molenaar; M.W. van der Molen

    1986-01-01

    A. F. Sanders's cognitive-energetic model of stress and human performance attempts to bridge linear stage and capacity models of information processing. It is argued that the identifiability of effects of variations of some subset of component processes can only be properly evaluated through an appr

  17. Cognitive Analysis of Chinese-English Metaphors of Animal and Human Body Part Words

    Science.gov (United States)

    Song, Meiying

    2009-01-01

    Metaphorical cognition arises from the mapping of two conceptual domains onto each other. According to the "Anthropocentrism", people tend to know the world first by learning about their bodies including Apparatuses. Based on that, people begin to know the material world, and the human body part metaphorization emerges as the times…

  18. Adaptive work-centered and human-aware support agents for augmented cognition in tactical environments

    NARCIS (Netherlands)

    Neef, R.M.; Maanen, P.P. van; Petiet, P.; Spoelstra, M.

    2009-01-01

    We introduce a support system concept that offers both work-centered and human-aware support for operators in tactical command and control environments. The support system augments the cognitive capabilities of the operator by offering instant, personalized task and work support. The operator obtain

  19. Cognitive engineering for long duration missions: Human-machine collaboration on the moon and mars

    NARCIS (Netherlands)

    Neerincx, M.A.; Lindenberg, J.; Smets, N.; Grant, T.; Bos, A.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2006-01-01

    For manned long-duration missions to the Moon and Mars, there is a need for a Mission Execution Crew Assistant (MECA) that empowers the cognitive capacities of human-machine teams during planetary exploration missions in order to cope autonomously with unexpected, complex and potentially hazardous s

  20. Effects of HIV-1 on Cognition in Humanized NSG Mice

    Science.gov (United States)

    Akhter, Sidra Pervez

    Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.

  1. Human performance cognitive-behavioral modeling: a benefit for occupational safety

    Science.gov (United States)

    Gore, Brian F.

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  2. TOWARDS A PHILOSOPHY OF HUMAN TECHNOLOGY: Outlook on cognitive enhancements in Avatar/ Virtual Reality schizophrenia therapy

    OpenAIRE

    Gerner, Alexander

    2016-01-01

    This article hinges on a complex and interdisciplinary field of study named “Philosophy of Human Technology” in which a first non-exhaustive map of ethical, legal and social, technological issues is presented: Technologies constitute, magnify, amplify human experiences, but can also enslave or put human experience and life at risk for example what concerns the right to a “private Life”. The second part of this paper proposes to think three possible interfaces of the topic of Human Cognitive E...

  3. The Tractable Cognition thesis

    National Research Council Canada - National Science Library

    Rooij, I.J.E.I. van

    2008-01-01

    ...: Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories of cognition...

  4. The Difference in Cognition Consistency Between the Sciences and Humanities

    Institute of Scientific and Technical Information of China (English)

    Jianzhang Zhou

    2003-01-01

    @@ It is reasonable that the strict sciences represented by mathematics, physics and chemistry have nearly been a kind of substitutional belief of humans after"the Death of God". To conclude theoretically, the significant attraction or the extremely great power of science is, in a word, the validity of thinking and action. From the viewpoint of human action or practice, science is the only really effective means we have to deal with nature (the other) that speaks the language of power. Being a creature that maybe has no competitive advantage in biological sense except the brain, men could not live in the world without power, and the subjective human power represented and embodied in science can be considered as the only secret by whic h we could stand above all the other beings on the earth.

  5. Neurolinguistic Relativity: How Language Flexes Human Perception and Cognition.

    Science.gov (United States)

    Thierry, Guillaume

    2016-09-01

    The time has come, perhaps, to go beyond merely acknowledging that language is a core manifestation of the workings of the human mind and that it relates interactively to all aspects of thinking. The issue, thus, is not to decide whether language and human thought may be ineluctably linked (they just are), but rather to determine what the characteristics of this relationship may be and to understand how language influences-and may be influenced by-nonverbal information processing. In an attempt to demystify linguistic relativity, I review neurolinguistic studies from our research group showing a link between linguistic distinctions and perceptual or conceptual processing. On the basis of empirical evidence showing effects of terminology on perception, language-idiosyncratic relationships in semantic memory, grammatical skewing of event conceptualization, and unconscious modulation of executive functioning by verbal input, I advocate a neurofunctional approach through which we can systematically explore how languages shape human thought.

  6. The future of future-oriented cognition in non-humans: theory and the empirical case of the great apes.

    Science.gov (United States)

    Osvath, Mathias; Martin-Ordas, Gema

    2014-11-05

    One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not 'real' future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes 'truly' future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. From humans to computers cognition through visual perception

    CERN Document Server

    Alexandrov, Viktor Vasilievitch

    1991-01-01

    This book considers computer vision to be an integral part of the artificial intelligence system. The core of the book is an analysis of possible approaches to the creation of artificial vision systems, which simulate human visual perception. Much attention is paid to the latest achievements in visual psychology and physiology, the description of the functional and structural organization of the human perception mechanism, the peculiarities of artistic perception and the expression of reality. Computer vision models based on these data are investigated. They include the processes of external d

  8. Human preferences for symmetry: subjective experience, cognitive conflict and cortical brain activity.

    Directory of Open Access Journals (Sweden)

    David W Evans

    Full Text Available This study examines the links between human perceptions, cognitive biases and neural processing of symmetrical stimuli. While preferences for symmetry have largely been examined in the context of disorders such as obsessive-compulsive disorder and autism spectrum disorders, we examine various these phenomena in non-clinical subjects and suggest that such preferences are distributed throughout the typical population as part of our cognitive and neural architecture. In Experiment 1, 82 young adults reported on the frequency of their obsessive-compulsive spectrum behaviors. Subjects also performed an emotional Stroop or variant of an Implicit Association Task (the OC-CIT developed to assess cognitive biases for symmetry. Data not only reveal that subjects evidence a cognitive conflict when asked to match images of positive affect with asymmetrical stimuli, and disgust with symmetry, but also that their slowed reaction times when asked to do so were predicted by reports of OC behavior, particularly checking behavior. In Experiment 2, 26 participants were administered an oddball Event-Related Potential task specifically designed to assess sensitivity to symmetry as well as the OC-CIT. These data revealed that reaction times on the OC-CIT were strongly predicted by frontal electrode sites indicating faster processing of an asymmetrical stimulus (unparallel lines relative to a symmetrical stimulus (parallel lines. The results point to an overall cognitive bias linking disgust with asymmetry and suggest that such cognitive biases are reflected in neural responses to symmetrical/asymmetrical stimuli.

  9. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review.

    Science.gov (United States)

    Skvarc, David R; Dean, Olivia M; Byrne, Linda K; Gray, Laura; Lane, Stephen; Lewis, Matthew; Fernandes, Brisa S; Berk, Michael; Marriott, Andrew

    2017-07-01

    Oxidative stress, neuroinflammation and neurogenesis are commonly implicated as cognitive modulators across a range of disorders. N-acetylcysteine (NAC) is a glutathione precursor with potent antioxidant, pro-neurogenesis and anti-inflammatory properties and a favourable safety profile. A systematic review of the literature specifically examining the effect of NAC administration on human cognition revealed twelve suitable articles for inclusion: four examining Alzheimer's disease; three examining healthy participants; two examining physical trauma; one examining bipolar disorder, one examining schizophrenia, and one examining ketamine-induced psychosis. Heterogeneity of studies, insufficiently powered studies, infrequency of cognition as a primary outcome, heterogeneous methodologies, formulations, co-administered treatments, administration regimes, and assessment confounded the drawing of firm conclusions. The available data suggested statistically significant cognitive improvements following NAC treatment, though the paucity of NAC-specific research makes it difficult to determine if this effect is meaningful. While NAC may have a positive cognitive effect in a variety of contexts; larger, targeted studies are warranted, specifically evaluating its role in other clinical disorders with cognitive sequelae resulting from oxidative stress and neuroinflammation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Categorial compositionality: a category theory explanation for the systematicity of human cognition.

    Science.gov (United States)

    Phillips, Steven; Wilson, William H

    2010-07-22

    Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.

  11. The effects of wearing respirators on human fine motor, visual, and cognitive performance.

    Science.gov (United States)

    AlGhamri, Anas A; Murray, Susan L; Samaranayake, V A

    2013-01-01

    When selecting a respirator, it is important to understand how employees' motor, visual and cognitive abilities are impacted by the personal protective equipment. This study compares dust, powered-air-purifying and full-face, negative-pressure respirators. Thirty participants performed three varied tasks. Each participant performed each task without a respirator and while wearing the three respirator types. The tasks included a hand tool dexterity test, the Motor-Free Visual Perception Test and the Serial Sevens Test to evaluate fine motor, visual and cognitive performance, respectively. The time required for task completion and the errors made were measured. Analysis showed no significant effect due to respirator use on the task completion time. A significant increase was found in the error rate when participants performed the cognitive test wearing the full-face, negative-pressure respirator. Participants had varying respirator preferences. They indicated a potential for full-face, negative-pressure respirators to negatively affect jobs demanding high cognitive skills such as problem solving and decision-making. while respirators are life-saving personal protective equipment (PPE), they can unintentionally reduce human performance, especially if job characteristics are not considered during PPE selection. An experiment was conducted to compare three respirators (dust respirator, powered-air-purifying respirators and full-face respirator) for varying task types. The full-face respirator was found to affect human cognitive performance negatively.

  12. Congenital prosopagnosia--a common hereditary cognitive dysfunction in humans.

    Science.gov (United States)

    Kennerknecht, Ingo; Pluempe, Nina; Welling, Brigitte

    2008-01-01

    The apparent selectivity of agnosia for faces is termed prosopagnosia or face blindness. This cognitive dysfunction can be seen after traumatic events--involving at least the right occipital temporal region--or very frequently congenital in the absence of any detectable lesions. The familiarity of congenital prosopagnosia was studied in two independently ascertained collections of subjects with prosopagnosia. One was an unselected group of pupils and students who underwent a questionnaire based screening. The others were self reported subjects after having heard for the first time about the phenomenon of prosopagnosia from mass media citing our studies and/or from our homepage (www.prosopagnosia.de). Those who agreed with consecutive studies of their family members had mostly one or more prosopagnosic first degree relatives. The segregation patterns derived from 39 families are compatible with autosomal dominant inheritance. Hence, mutation(s) in one gene are sufficient for manifestation of the phenotype. Still fitting the concept of autosomal dominant inheritance, we have evidence for a slightly reduced penetrance (4 normal transmitters from distinct families) and one or two de novo mutations.

  13. Immanuel Kant's Account of Cognitive Experience and Human Rights Education

    Science.gov (United States)

    Bynum, Gregory Lewis

    2012-01-01

    In this essay Gregory Bynum seeks to show that Immanuel Kant's thought, which was conceived in an eighteenth-century context of new, and newly widespread, pressures for nationally institutionalized human rights-based regimes (the American and French revolutions being the most prominent examples), can help us think in new and appreciative ways…

  14. Selecting Human Error Types for Cognitive Modelling and Simulation

    NARCIS (Netherlands)

    Mioch, T.; Osterloh, J.P.; Javaux, D.

    2010-01-01

    This paper presents a method that has enabled us to make a selection of error types and error production mechanisms relevant to the HUMAN European project, and discusses the reasons underlying those choices. We claim that this method has the advantage that it is very exhaustive in determining the re

  15. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    Joshi, Peter K.; Esko, Tonu; Mattsson, Hannele; Eklund, Niina; Gandin, Ilaria; Nutile, Teresa; Jackson, Anne U.; Schurmann, Claudia; Smith, Albert V.; Zhang, Weihua; Okada, Yukinori; Stancakova, Alena; Faul, Jessica D.; Zhao, Wei; Bartz, Traci M.; Concas, Maria Pina; Franceschini, Nora; Enroth, Stefan; Vitart, Veronique; Trompet, Stella; Guo, Xiuqing; Chasman, Daniel I.; O'Connel, Jeffrey R.; Corre, Tanguy; Nongmaithem, Suraj S.; Chen, Yuning; Mangino, Massimo; Ruggiero, Daniela; Traglia, Michela; Farmaki, Aliki-Eleni; Kacprowski, Tim; Bjonnes, Andrew; van der Spek, Ashley; Wu, Ying; Giri, Anil K.; Yanek, Lisa R.; Wang, Lihua; Hofer, Edith; Rietveld, Cornelius A.; McLeod, Olga; Cornelis, Marilyn C.; Pattaro, Cristian; Verweij, Niek; Baumbach, Clemens; Abdellaoui, Abdel; Warren, Helen R.; Vuckovic, Dragana; Mei, Hao; Bouchard, Claude; Perry, John R. B.; Cappellani, Stefania; Mirza, Saira S.; Benton, Miles C.; Broeckel, Ulrich; Medland, Sarah E.; Lind, PenelopeA.; Malerba, Giovanni; Drong, Alexander; Yengo, Loic; Bielak, Lawrence F.; Zhi, Degui; van der Most, Peter J.; Shriner, Daniel; Maegi, Reedik; Hemani, Gibran; Karaderi, Tugce; Wang, Zhaoming; Liu, Tian; Demuth, Ilja; Zhao, Jing Hua; Meng, Weihua; Lataniotis, Lazaros; van der Laan, Sander W.; Bradfield, Jonathan P.; Wood, Andrew R.; Bonnefond, Amelie; Ahluwalia, Tarunveer S.; Hall, LeanneM.; Salvi, Erika; Yazar, Seyhan; Carstensen, Lisbeth; de Haan, Hugoline G.; Abney, Mark; Afzal, Uzma; Allison, Matthew A.; Amin, Najaf; Asselbergs, Folkert W.; Bakker, Stephan J. L.; Barr, R. Graham; Baumeister, Sebastian E.; Benjamin, Daniel J.; Bergmann, Sven; Boerwinkle, Eric; Bottinger, Erwin P.; Campbell, Archie; Chakravarti, Aravinda; Chan, Yingleong; Chanock, Stephen J.; Chen, Constance; Chen, Y. -D. Ida; Collins, Francis S.; Connell, John; Correa, Adolfo; Cupples, L. Adrienne; Smith, George Davey; Davies, Gail; Doerr, Marcus; Ehret, Georg; Ellis, Stephen B.; Feenstra, Bjarke; Feitosa, Mary F.; Ford, Ian; Fox, Caroline S.; Frayling, Timothy M.; Friedrich, Nele; Geller, Frank; Scotland, Generation; Gillham-Nasenya, Irina; Gottesman, Omri; Graff, Misa; Grodstein, Francine; Gu, Charles; Haley, Chris; Hammond, Christopher J.; Harris, Sarah E.; Harris, Tamara B.; Hastie, Nicholas D.; Heard-Costa, Nancy L.; Heikkila, Kauko; Hocking, Lynne J.; Homuth, Georg; Hottenga, Jouke-Jan; Huang, Jinyan; Huffman, Jennifer E.; Hysi, Pirro G.; Ikram, M. Arfan; Ingelsson, Erik; Joensuu, Anni; Johansson, Asa; Jousilahti, Pekka; Jukema, J. Wouter; Kahonen, Mika; Kamatani, Yoichiro; Kanoni, Stavroula; Kerr, Shona M.; Khan, Nazir M.; Koellinger, Philipp; Koistinen, Heikki A.; Kooner, Manraj K.; Kubo, Michiaki; Kuusisto, Johanna; Lahti, Jari; Launer, Lenore J.; Lea, Rodney A.; Lehne, Benjamin; Lehtimaki, Terho; Liewald, David C. M.; Lind, Lars; Loh, Marie; Lokki, Marja-Liisa; London, Stephanie J.; Loomis, Stephanie J.; Loukola, Anu; Lu, Yingchang; Lumley, Thomas; Lundqvist, Annamari; Mannisto, Satu; Marques-Vidal, Pedro; Masciullo, Corrado; Matchan, Angela; Mathias, Rasika A.; Matsuda, Koichi; Meigs, James B.; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Mentch, Frank D.; Mihailov, Evelin; Milani, Lili; Montasser, May E.; Montgomery, GrantW.; Morrison, Alanna; Myers, Richard H.; Nadukuru, Rajiv; Navarro, Pau; Nelis, Mari; Nieminen, Markku S.; Nolte, Ilja M.; O'Connor, George T.; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R.; Pankow, James S.; Patarcic, Inga; Pavani, Francesca; Peyser, Patricia A.; Pietilainen, Kirsi; Poulter, Neil; Prokopenko, Inga; Ralhan, Sarju; Redmond, Paul; Rich, Stephen S.; Rissanen, Harri; Robino, Antonietta; Rose, Lynda M.; Rose, Richard; Sala, Cinzia; Salako, Babatunde; Salomaa, Veikko; Sarin, Antti-Pekka; Saxena, Richa; Schmidt, Helena; Scott, Laura J.; Scott, William R.; Sennblad, Bengt; Seshadri, Sudha; Sever, Peter; Shrestha, Smeeta; Smith, Blair H.; Smith, Jennifer A.; Soranzo, Nicole; Sotoodehnia, Nona; Southam, Lorraine; Stanton, Alice V.; Stathopoulou, Maria G.; Strauch, Konstantin; Strawbridge, Rona J.; Suderman, Matthew J.; Tandon, Nikhil; Tang, Sian-Tsun; Taylor, Kent D.; Tayo, Bamidele O.; Toeglhofer, Anna Maria; Tomaszewski, Maciej; Tsernikova, Natalia; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vaidya, Dhananjay; Vlieg, Astrid van Hylckama; van Setten, Jessica; Vasankari, Tuula; Vedantam, Sailaja; Vlachopoulou, Efthymia; Vozzi, Diego; Vuoksimaa, Eero; Waldenberger, Melanie; Ware, Erin B.; Wentworth-Shields, William; Whitfield, John B.; Wild, Sarah; Willemsen, Gonneke; Yajnik, Chittaranjan S.; Yao, Jie; Zaza, Gianluigi; Zhu, Xiaofeng; Salem, Rany M.; Melbye, Mads; Bisgaard, Hans; Samani, Nilesh J.; Cusi, Daniele; Mackey, David A.; Cooper, Richard S.; Froguel, Philippe; Pasterkamp, Gerard; Grant, Struan F. A.; Hakonarson, Hakon; Ferrucci, Luigi; Scott, Robert A.; Morris, Andrew D.; Palmer, Colin N. A.; Dedoussis, George; Deloukas, Panos; Bertram, Lars; Lindenberger, Ulman; Berndt, Sonja I.; Lindgren, Cecilia M.; Timpson, Nicholas J.; Toenjes, Anke; Munroe, Patricia B.; Sorensen, Thorkild I. A.; Rotimi, Charles N.; Arnett, Donna K.; Oldehinkel, Albertine J.; Kardia, Sharon L. R.; Balkau, Beverley; Gambaro, Giovanni; Morris, Andrew P.; Eriksson, Johan G.; Wright, Margie J.; Martin, Nicholas G.; Hunt, Steven C.; Starr, John M.; Deary, Ian J.; Griffiths, Lyn R.; Tiemeier, Henning; Pirastu, Nicola; Kaprio, Jaakko; Wareham, Nicholas J.; Perusse, Louis; Wilson, James G.; Girotto, Giorgia; Caulfield, Mark J.; Raitakari, Olli; Boomsma, Dorret I.; Gieger, Christian; van der Harst, Pim; Hicks, Andrew A.; Kraft, Peter; Sinisalo, Juha; Knekt, Paul; Johannesson, Magnus; Magnusson, Patrik K. E.; Hamsten, Anders; Schmidt, Reinhold; Borecki, Ingrid B.; Vartiainen, Erkki; Becker, Diane M.; Bharadwaj, Dwaipayan; Mohlke, Karen L.; Boehnke, Michael; van Duijn, Cornelia M.; Sanghera, Dharambir K.; Teumer, Alexander; Zeggini, Eleftheria; Metspalu, Andres; Gasparini, Paolo; Ulivi, Sheila; Ober, Carole; Toniolo, Daniela; Rudan, Igor; Porteous, David J.; Ciullo, Marina; Spector, Tim D.; Hayward, Caroline; Dupuis, Josee; Loos, Ruth J. F.; Wright, Alan F.; Chandak, Giriraj R.; Vollenweider, Peter; Shuldiner, Alan R.; Ridker, Paul M.; Rotter, Jerome I.; Sattar, Naveed; Gyllensten, Ulf; North, Kari E.; Pirastu, Mario; Psaty, Bruce M.; Weir, David R.; Laakso, Markku; Gudnason, Vilmundur; Takahashi, Atsushi; Chambers, John C.; Kooner, Jaspal S.; Strachan, David P.; Campbell, Harry; Hirschhorn, Joel N.; Perola, Markus; Polasek, Ozren; Wilson, James F.

    2015-01-01

    Homozygosity has long been associated with rare, often devastating, Mendelian disorders(1), and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness(2). However, the effect of the more distant parental relatedness that is common in modern human populations is less we

  16. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    P.K. Joshi (Peter); T. Esko (Tõnu); H. Mattsson (Hannele); N. Eklund (Niina); I. Gandin (Ilaria); T. Nutile; A.U. Jackson (Anne); C. Schurmann (Claudia); G.D. Smith; W. Zhang (Weihua); Y. Okada (Yukinori); A. Stancáková (Alena); J.D. Faul (Jessica D.); W. Zhao (Wei); T.M. Bartz (Traci M.); M.P. Concas; N. Franceschini (Nora); S. Enroth (Stefan); V. Vitart (Veronique); S. Trompet (Stella); X. Guo (Xiuqing); D.I. Chasman (Daniel); J.R. O'Connel (Jeffrey R.); T. Corre (Tanguy); S.S. Nongmaithem (Suraj S.); Y. Chen (Yuning); M. Mangino (Massimo); D. Ruggiero; M. Traglia (Michela); A.-E. Farmaki (Aliki-Eleni); T. Kacprowski (Tim); A. Bjonnes (Andrew); A. van der Spek (Ashley); Y. Wu (Ying); A.K. Giri (Anil K.); L.R. Yanek (Lisa); L. Wang (Lihua); E. Hofer (Edith); C.A. Rietveld (Niels); O. McLeod (Olga); M. Cornelis (Marilyn); C. Pattaro (Cristian); N. Verweij (Niek); C. Baumbach (Clemens); M. Abdellaoui (Mohammed); H. Warren (Helen); D. Vuckovic (Dragana); H. Mei (Hao); C. Bouchard (Claude); J.R.B. Perry (John); S. Cappellani (Stefania); S.S. Mirza (Saira S.aeed); M.C. Benton (Miles C.); U. Broeckel (Ulrich); S.E. Medland (Sarah Elizabeth); P.A. Lind (Penelope); G. Malerba (Giovanni); A. Drong (Alexander); L. Yengo (Loic); L.F. Bielak (Lawrence F.); D. Zhi (Degui); P.J. van der Most (Peter); D. Shriner (Daniel); R. Mägi (Reedik); G. Hemani; T. Karaderi (Tugce); Z. Wang (Zhaoming); T. Liu (Tian); I. Demuth (Ilja); J.H. Zhao; W. Meng (Weihua); L. Lataniotis (Lazaros); S.W. Van Der Laan (Sander W.); J.P. Bradfield (Jonathan); A.R. Wood (Andrew); A. Bonnefond (Amélie); T.S. Ahluwalia (Tarunveer Singh); L.M. Hall (Leanne M.); E. Salvi (Erika); S. Yazar (Seyhan); L. Carstensen (Lisbeth); H.G. De Haan (Hugoline G.); M. Abney (Mark); U. Afzal (Uzma); M.A. Allison (Matthew); N. Amin (Najaf); F.W. Asselbergs (Folkert W.); S.J.L. Bakker (Stephan); R.G. Barr (Graham); S.E. Baumeister (Sebastian); D.J. Benjamin (Daniel J.); S. Bergmann (Sven); E.A. Boerwinkle (Eric); E.P. Bottinger (Erwin P.); A. Campbell (Archie); A. Chakravarti (Aravinda); Y. Chan (Yingleong); S.J. Chanock (Stephen); C. Chen (Constance); Y.-D.I. Chen (Y.-D. Ida); F.S. Collins (Francis); J. Connell (John); A. Correa (Adolfo); L.A. Cupples (Adrienne); G.D. Smith; G. Davies (Gail); M. Dörr (Marcus); G.B. Ehret (Georg); S.B. Ellis (Stephen B.); B. Feenstra (Bjarke); M.F. Feitosa (Mary Furlan); I. Ford; C.S. Fox (Caroline); T.M. Frayling (Timothy); N. Friedrich (Nele); F. Geller (Frank); G. Scotland (Generation); I. Gillham-Nasenya (Irina); R.F. Gottesman (Rebecca); M.J. Graff (Maud J.L.); F. Grodstein (Francine); C. Gu (Charles); C. Haley (Chris); C.J. Hammond (Christopher); S.E. Harris (Sarah); T.B. Harris (Tamara); N. Hastie (Nick); N.L. Heard-Costa (Nancy); K. Heikkilä (Kauko); L.J. Hocking (Lynne); G. Homuth (Georg); J.J. Hottenga (Jouke Jan); J. Huang (Jian); J.E. Huffman (Jennifer); P.G. Hysi (Pirro); M.A. Ikram (Arfan); E. Ingelsson (Erik); A. Joensuu (Anni); A. Johansson (Åsa); P. Jousilahti (Pekka); J.W. Jukema (Jan Wouter); M. Kähönen (Mika); Y. Kamatani (Yoichiro); S. Kanoni (Stavroula); S.M. Kerr (Shona); N.M. Khan (Nazir M.); Ph.D. Koellinger (Philipp); H.A. Koistinen (Heikki A.); M.K. Kooner (Manraj K.); M. Kubo (Michiaki); J. Kuusisto (Johanna); J. Lahti (Jari); L.J. Launer (Lenore); R.A. Lea (Rodney A.); B. Lehne (Benjamin); T. Lehtimäki (Terho); D.C. Liewald (David C.); L. Lind (Lars); M. Loh (Marie); M.L. Lokki; S.J. London (Stephanie J.); S.J. Loomis (Stephanie J.); A. Loukola (Anu); Y. Lu (Yingchang); T. Lumley (Thomas); A. Lundqvist (Annamari); S. Männistö (Satu); P. Marques-Vidal (Pedro); C. Masciullo (Corrado); A. Matchan (Angela); J. Mathias (Jasmine); K. Matsuda (Koichi); J.B. Meigs (James); C. Meisinger (Christa); T. Meitinger (Thomas); C. Menni (Cristina); F.D. Mentch (Frank); E. Mihailov (Evelin); L. Milani (Lili); M.E. Montasser (May E.); G.W. Montgomery (Grant); A.C. Morrison (Alanna); R.H. Myers (Richard); R. Nadukuru (Rajiv); P. Navarro (Pau); M. Nalis (Mari); M.S. Nieminen (Markku S.); I.M. Nolte (Ilja M.); G.T. O'Connor (George); A. Ogunniyi (Adesola); S. Padmanabhan (Sandosh); W. Palmas (Walter); J.S. Pankow (James); I. Patarcic (Inga); F. Pavani (Francesca); P.A. Peyser (Patricia A.); K.H. Pietilainen (Kirsi Hannele); N.R. Poulter (Neil); I. Prokopenko (Inga); S. Ralhan (Sarju); P. Redmond (Paul); S.S. Rich (Stephen S.); H. Rissanen (Harri); A. Robino (Antonietta); L.M. Rose (Lynda M.); R.J. Rose (Richard J.); C. Sala (Cinzia); B. Salako (Babatunde); V. Salomaa (Veikko); A.-P. Sarin; R. Saxena (Richa); R. Schmidt (Reinhold); L.J. Scott (Laura); W.R. Scott (William R.); B. Sennblad (Bengt); S. Seshadri (Sudha); P. Sever (Peter); S. Shrestha (Smeeta); B.H. Smith (Blair); J.A. Smith (Jennifer A); N. Soranzo (Nicole); N. Sotoodehnia (Nona); L. Southam (Lorraine); A. Stanton (Alice); M.G. Stathopoulou (Maria G); K. Strauch (Konstantin); R.J. Strawbridge (Rona); M.J. Suderman (Matthew J.); N. Tandon (Nikhil); S.-T. Tang (Sian-Tsun); K.D. Taylor (Kent D.); B. Tayo (Bamidele); A.M. Töglhofer (Anna Maria); M. Tomaszewski (Maciej); N. Tsernikova (Natalia); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André G.); D. Vaidya (Dhananjay); A. van Hylckama Vlieg (Astrid); J. van Setten (Jessica); T. Vasankari (Tuula); S. Vedantam (Sailaja); E. Vlachopoulou (Efthymia); D. Vozzi (Diego); E. Vuoksimaa (Eero); M. Waldenberger (Melanie); E.B. Ware (Erin B.); W. Wentworth-Shields (William); J. Whitfield (John); S. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); C.S. Yajnik (Chittaranjan S.); J. Yao (Jie); G. Zaza (Gianluigi); X. Zhu (Xiaofeng); R.M. Salem (Rany); M. Melbye (Mads); H. Bisgaard; N.J. Samani (Nilesh); D. Cusi (Daniele); D.A. Mackey (David A.); R.S. Cooper (Richard S.); P. Froguel (Philippe); G. Pasterkamp (Gerard); S.F.A. Grant (Struan F.A.); H. Hakonarson (Hakon); L. Ferrucci (Luigi); R.A. Scott (Robert); A.D. Morris (Andrew); C.N.A. Palmer (Colin); G.V. Dedoussis (George V.); P. Deloukas (Panagiotis); L. Bertram (Lars); U. Lindenberger (Ulman); S.I. Berndt (Sonja); C.M. Lindgren (Cecilia); N. Timpson (Nicholas); A. Tönjes (Anke); P. Munroe (Patricia); T.I.A. Sørensen (Thorkild I.A.); C. Rotimi (Charles); D.K. Arnett (Donna); A.J. Oldehinkel (Albertine); S.L.R. Kardia (Sharon); B. Balkau (Beverley); G. Gambaro (Giovanni); A.P. Morris (Andrew); J.G. Eriksson (Johan G.); M.J. Wright (Margaret); N.G. Martin (Nicholas); S.C. Hunt (Steven); J.M. Starr (John); I.J. Deary (Ian J.); L.R. Griffiths (Lyn R.); H.W. Tiemeier (Henning); N. Pirastu (Nicola); J. Kaprio (Jaakko); N.J. Wareham (Nick); L. Perusse (Louis); J.G. Wilson (James); S. Girotto; M. Caulfield (Mark); O.T. Raitakari (Olli T.); D.I. Boomsma (Dorret); C. Gieger (Christian); P. van der Harst; A.A. Hicks (Andrew); P. Kraft (Peter); J. Sinisalo (Juha); P. Knekt; M. Johannesson (Magnus); P.K.E. Magnusson (Patrik K. E.); A. Hamsten (Anders); R. Schmidt (Reinhold); I.B. Borecki (Ingrid); E. Vartiainen (Erkki); D.M. Becker (Diane); D. Bharadwaj (Dwaipayan); K.L. Mohlke (Karen); M. Boehnke (Michael); C.M. van Duijn (Cock); D.K. Sanghera (Dharambir); A. Teumer (Alexander); E. Zeggini (Eleftheria); A. Metspalu (Andres); P. Gasparini (Paolo); S. Ulivi (Shelia); C. Ober (Carole); D. Toniolo (Daniela); I. Rudan (Igor); D.J. Porteous (David J.); M. Ciullo; T.D. Spector (Timothy); C. Hayward (Caroline); J. Dupuis (Josée); R.J.F. Loos (Ruth); A. Wright (Alan); G.R. Chandak (Giriraj); P. Vollenweider (Peter); A.R. Shuldiner (Alan); P.M. Ridker (Paul); J.I. Rotter (Jerome I.); N. Sattar (Naveed); U. Gyllensten (Ulf); K.E. North (Kari); M. Pirastu (Mario); B.M. Psaty (Bruce); D.R. Weir (David); M. Laakso (Markku); V. Gudnason (Vilmundur); A. Takahashi (Atsushi); J.C. Chambers (John C.); J.S. Kooner (Jaspal S.); D.P. Strachan (David P.); H. Campbell (Harry); J.N. Hirschhorn (Joel N.); M. Perola (Markus); O. Polasek (Ozren); J.F. Wilson (James)

    2015-01-01

    textabstractHomozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is l

  17. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    Joshi, Peter K.; Esko, Tonu; Mattsson, Hannele; Eklund, Niina; Gandin, Ilaria; Nutile, Teresa; Jackson, Anne U.; Schurmann, Claudia; Smith, Albert V.; Zhang, Weihua; Okada, Yukinori; Stancakova, Alena; Faul, Jessica D.; Zhao, Wei; Bartz, Traci M.; Concas, Maria Pina; Franceschini, Nora; Enroth, Stefan; Vitart, Veronique; Trompet, Stella; Guo, Xiuqing; Chasman, Daniel I.; O'Connel, Jeffrey R.; Corre, Tanguy; Nongmaithem, Suraj S.; Chen, Yuning; Mangino, Massimo; Ruggiero, Daniela; Traglia, Michela; Farmaki, Aliki-Eleni; Kacprowski, Tim; Bjonnes, Andrew; van der Spek, Ashley; Wu, Ying; Giri, Anil K.; Yanek, Lisa R.; Wang, Lihua; Hofer, Edith; Rietveld, Cornelius A.; McLeod, Olga; Cornelis, Marilyn C.; Pattaro, Cristian; Verweij, Niek; Baumbach, Clemens; Abdellaoui, Abdel; Warren, Helen R.; Vuckovic, Dragana; Mei, Hao; Bouchard, Claude; Perry, John R. B.; Cappellani, Stefania; Mirza, Saira S.; Benton, Miles C.; Broeckel, Ulrich; Medland, Sarah E.; Lind, PenelopeA.; Malerba, Giovanni; Drong, Alexander; Yengo, Loic; Bielak, Lawrence F.; Zhi, Degui; van der Most, Peter J.; Shriner, Daniel; Maegi, Reedik; Hemani, Gibran; Karaderi, Tugce; Wang, Zhaoming; Liu, Tian; Demuth, Ilja; Zhao, Jing Hua; Meng, Weihua; Lataniotis, Lazaros; van der Laan, Sander W.; Bradfield, Jonathan P.; Wood, Andrew R.; Bonnefond, Amelie; Ahluwalia, Tarunveer S.; Hall, LeanneM.; Salvi, Erika; Yazar, Seyhan; Carstensen, Lisbeth; de Haan, Hugoline G.; Abney, Mark; Afzal, Uzma; Allison, Matthew A.; Amin, Najaf; Asselbergs, Folkert W.; Bakker, Stephan J. L.; Barr, R. Graham; Baumeister, Sebastian E.; Benjamin, Daniel J.; Bergmann, Sven; Boerwinkle, Eric; Bottinger, Erwin P.; Campbell, Archie; Chakravarti, Aravinda; Chan, Yingleong; Chanock, Stephen J.; Chen, Constance; Chen, Y. -D. Ida; Collins, Francis S.; Connell, John; Correa, Adolfo; Cupples, L. Adrienne; Smith, George Davey; Davies, Gail; Doerr, Marcus; Ehret, Georg; Ellis, Stephen B.; Feenstra, Bjarke; Feitosa, Mary F.; Ford, Ian; Fox, Caroline S.; Frayling, Timothy M.; Friedrich, Nele; Geller, Frank; Scotland, Generation; Gillham-Nasenya, Irina; Gottesman, Omri; Graff, Misa; Grodstein, Francine; Gu, Charles; Haley, Chris; Hammond, Christopher J.; Harris, Sarah E.; Harris, Tamara B.; Hastie, Nicholas D.; Heard-Costa, Nancy L.; Heikkila, Kauko; Hocking, Lynne J.; Homuth, Georg; Hottenga, Jouke-Jan; Huang, Jinyan; Huffman, Jennifer E.; Hysi, Pirro G.; Ikram, M. Arfan; Ingelsson, Erik; Joensuu, Anni; Johansson, Asa; Jousilahti, Pekka; Jukema, J. Wouter; Kahonen, Mika; Kamatani, Yoichiro; Kanoni, Stavroula; Kerr, Shona M.; Khan, Nazir M.; Koellinger, Philipp; Koistinen, Heikki A.; Kooner, Manraj K.; Kubo, Michiaki; Kuusisto, Johanna; Lahti, Jari; Launer, Lenore J.; Lea, Rodney A.; Lehne, Benjamin; Lehtimaki, Terho; Liewald, David C. M.; Lind, Lars; Loh, Marie; Lokki, Marja-Liisa; London, Stephanie J.; Loomis, Stephanie J.; Loukola, Anu; Lu, Yingchang; Lumley, Thomas; Lundqvist, Annamari; Mannisto, Satu; Marques-Vidal, Pedro; Masciullo, Corrado; Matchan, Angela; Mathias, Rasika A.; Matsuda, Koichi; Meigs, James B.; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Mentch, Frank D.; Mihailov, Evelin; Milani, Lili; Montasser, May E.; Montgomery, GrantW.; Morrison, Alanna; Myers, Richard H.; Nadukuru, Rajiv; Navarro, Pau; Nelis, Mari; Nieminen, Markku S.; Nolte, Ilja M.; O'Connor, George T.; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R.; Pankow, James S.; Patarcic, Inga; Pavani, Francesca; Peyser, Patricia A.; Pietilainen, Kirsi; Poulter, Neil; Prokopenko, Inga; Ralhan, Sarju; Redmond, Paul; Rich, Stephen S.; Rissanen, Harri; Robino, Antonietta; Rose, Lynda M.; Rose, Richard; Sala, Cinzia; Salako, Babatunde; Salomaa, Veikko; Sarin, Antti-Pekka; Saxena, Richa; Schmidt, Helena; Scott, Laura J.; Scott, William R.; Sennblad, Bengt; Seshadri, Sudha; Sever, Peter; Shrestha, Smeeta; Smith, Blair H.; Smith, Jennifer A.; Soranzo, Nicole; Sotoodehnia, Nona; Southam, Lorraine; Stanton, Alice V.; Stathopoulou, Maria G.; Strauch, Konstantin; Strawbridge, Rona J.; Suderman, Matthew J.; Tandon, Nikhil; Tang, Sian-Tsun; Taylor, Kent D.; Tayo, Bamidele O.; Toeglhofer, Anna Maria; Tomaszewski, Maciej; Tsernikova, Natalia; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vaidya, Dhananjay; Vlieg, Astrid van Hylckama; van Setten, Jessica; Vasankari, Tuula; Vedantam, Sailaja; Vlachopoulou, Efthymia; Vozzi, Diego; Vuoksimaa, Eero; Waldenberger, Melanie; Ware, Erin B.; Wentworth-Shields, William; Whitfield, John B.; Wild, Sarah; Willemsen, Gonneke; Yajnik, Chittaranjan S.; Yao, Jie; Zaza, Gianluigi; Zhu, Xiaofeng; Salem, Rany M.; Melbye, Mads; Bisgaard, Hans; Samani, Nilesh J.; Cusi, Daniele; Mackey, David A.; Cooper, Richard S.; Froguel, Philippe; Pasterkamp, Gerard; Grant, Struan F. A.; Hakonarson, Hakon; Ferrucci, Luigi; Scott, Robert A.; Morris, Andrew D.; Palmer, Colin N. A.; Dedoussis, George; Deloukas, Panos; Bertram, Lars; Lindenberger, Ulman; Berndt, Sonja I.; Lindgren, Cecilia M.; Timpson, Nicholas J.; Toenjes, Anke; Munroe, Patricia B.; Sorensen, Thorkild I. A.; Rotimi, Charles N.; Arnett, Donna K.; Oldehinkel, Albertine J.; Kardia, Sharon L. R.; Balkau, Beverley; Gambaro, Giovanni; Morris, Andrew P.; Eriksson, Johan G.; Wright, Margie J.; Martin, Nicholas G.; Hunt, Steven C.; Starr, John M.; Deary, Ian J.; Griffiths, Lyn R.; Tiemeier, Henning; Pirastu, Nicola; Kaprio, Jaakko; Wareham, Nicholas J.; Perusse, Louis; Wilson, James G.; Girotto, Giorgia; Caulfield, Mark J.; Raitakari, Olli; Boomsma, Dorret I.; Gieger, Christian; van der Harst, Pim; Hicks, Andrew A.; Kraft, Peter; Sinisalo, Juha; Knekt, Paul; Johannesson, Magnus; Magnusson, Patrik K. E.; Hamsten, Anders; Schmidt, Reinhold; Borecki, Ingrid B.; Vartiainen, Erkki; Becker, Diane M.; Bharadwaj, Dwaipayan; Mohlke, Karen L.; Boehnke, Michael; van Duijn, Cornelia M.; Sanghera, Dharambir K.; Teumer, Alexander; Zeggini, Eleftheria; Metspalu, Andres; Gasparini, Paolo; Ulivi, Sheila; Ober, Carole; Toniolo, Daniela; Rudan, Igor; Porteous, David J.; Ciullo, Marina; Spector, Tim D.; Hayward, Caroline; Dupuis, Josee; Loos, Ruth J. F.; Wright, Alan F.; Chandak, Giriraj R.; Vollenweider, Peter; Shuldiner, Alan R.; Ridker, Paul M.; Rotter, Jerome I.; Sattar, Naveed; Gyllensten, Ulf; North, Kari E.; Pirastu, Mario; Psaty, Bruce M.; Weir, David R.; Laakso, Markku; Gudnason, Vilmundur; Takahashi, Atsushi; Chambers, John C.; Kooner, Jaspal S.; Strachan, David P.; Campbell, Harry; Hirschhorn, Joel N.; Perola, Markus; Polasek, Ozren; Wilson, James F.

    2015-01-01

    Homozygosity has long been associated with rare, often devastating, Mendelian disorders(1), and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness(2). However, the effect of the more distant parental relatedness that is common in modern human populations is less we

  18. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    P.K. Joshi (Peter); T. Esko (Tõnu); H. Mattsson (Hannele); N. Eklund (Niina); I. Gandin (Ilaria); T. Nutile; A.U. Jackson (Anne); C. Schurmann (Claudia); G.D. Smith; W. Zhang (Weihua); Y. Okada (Yukinori); A. Stancáková (Alena); J.D. Faul (Jessica D.); W. Zhao (Wei); T.M. Bartz (Traci M.); M.P. Concas; N. Franceschini (Nora); S. Enroth (Stefan); V. Vitart (Veronique); S. Trompet (Stella); X. Guo (Xiuqing); D.I. Chasman (Daniel); J.R. O'Connel (Jeffrey R.); T. Corre (Tanguy); S.S. Nongmaithem (Suraj S.); Y. Chen (Yuning); M. Mangino (Massimo); D. Ruggiero; M. Traglia (Michela); A.-E. Farmaki (Aliki-Eleni); T. Kacprowski (Tim); A. Bjonnes (Andrew); A. van der Spek (Ashley); Y. Wu (Ying); A.K. Giri (Anil K.); L.R. Yanek (Lisa); L. Wang (Lihua); E. Hofer (Edith); C.A. Rietveld (Niels); O. McLeod (Olga); M. Cornelis (Marilyn); C. Pattaro (Cristian); N. Verweij (Niek); C. Baumbach (Clemens); M. Abdellaoui (Mohammed); H. Warren (Helen); D. Vuckovic (Dragana); H. Mei (Hao); C. Bouchard (Claude); J.R.B. Perry (John); S. Cappellani (Stefania); S.S. Mirza (Saira); M.C. Benton (Miles C.); U. Broeckel (Ulrich); S.E. Medland (Sarah Elizabeth); P.A. Lind (Penelope); G. Malerba (Giovanni); A. Drong (Alexander); L. Yengo (Loic); L.F. Bielak (Lawrence F.); D. Zhi (Degui); P.J. van der Most (Peter); D. Shriner (Daniel); R. Mägi (Reedik); G. Hemani; T. Karaderi (Tugce); Z. Wang (Zhaoming); T. Liu (Tian); I. Demuth (Ilja); J.H. Zhao; W. Meng (Weihua); L. Lataniotis (Lazaros); S.W. Van Der Laan (Sander W.); J.P. Bradfield (Jonathan); A.R. Wood (Andrew); A. Bonnefond (Amélie); T.S. Ahluwalia (Tarunveer Singh); L.M. Hall (Leanne M.); E. Salvi (Erika); S. Yazar (Seyhan); L. Carstensen (Lisbeth); H.G. De Haan (Hugoline G.); M. Abney (Mark); U. Afzal (Uzma); M.A. Allison (Matthew); N. Amin (Najaf); F.W. Asselbergs (Folkert W.); S.J.L. Bakker (Stephan); R.G. Barr (Graham); S.E. Baumeister (Sebastian); D.J. Benjamin (Daniel J.); S. Bergmann (Sven); E.A. Boerwinkle (Eric); E.P. Bottinger (Erwin P.); A. Campbell (Archie); A. Chakravarti (Aravinda); Y. Chan (Yingleong); S.J. Chanock (Stephen); C. Chen (Constance); Y.-D.I. Chen (Y.-D. Ida); F.S. Collins (Francis); J. Connell (John); A. Correa (Adolfo); L.A. Cupples (Adrienne); G.D. Smith; G. Davies (Gail); M. Dörr (Marcus); G.B. Ehret (Georg); S.B. Ellis (Stephen B.); B. Feenstra (Bjarke); M.F. Feitosa (Mary Furlan); I. Ford; C.S. Fox (Caroline); T.M. Frayling (Timothy); N. Friedrich (Nele); F. Geller (Frank); G. Scotland (Generation); I. Gillham-Nasenya (Irina); R.F. Gottesman (Rebecca); M.J. Graff (Maud J.L.); F. Grodstein (Francine); C. Gu (Charles); C. Haley (Chris); C.J. Hammond (Christopher); S.E. Harris (Sarah); T.B. Harris (Tamara); N. Hastie (Nick); N.L. Heard-Costa (Nancy); K. Heikkilä (Kauko); L.J. Hocking (Lynne); G. Homuth (Georg); J.J. Hottenga (Jouke Jan); J. Huang (Jian); J.E. Huffman (Jennifer); P.G. Hysi (Pirro); M.A. Ikram (Arfan); E. Ingelsson (Erik); A. Joensuu (Anni); A. Johansson (Åsa); P. Jousilahti (Pekka); J.W. Jukema (Jan Wouter); M. Kähönen (Mika); Y. Kamatani (Yoichiro); S. Kanoni (Stavroula); S.M. Kerr (Shona); N.M. Khan (Nazir M.); Ph.D. Koellinger (Philipp); H.A. Koistinen (Heikki A.); M.K. Kooner (Manraj K.); M. Kubo (Michiaki); J. Kuusisto (Johanna); J. Lahti (Jari); L.J. Launer (Lenore); R.A. Lea (Rodney A.); B. Lehne (Benjamin); T. Lehtimäki (Terho); D.C. Liewald (David C.); L. Lind (Lars); M. Loh (Marie); M.L. Lokki; S.J. London (Stephanie J.); S.J. Loomis (Stephanie J.); A. Loukola (Anu); Y. Lu (Yingchang); T. Lumley (Thomas); A. Lundqvist (Annamari); S. Männistö (Satu); P. Marques-Vidal (Pedro); C. Masciullo (Corrado); A. Matchan (Angela); J. Mathias (Jasmine); K. Matsuda (Koichi); J.B. Meigs (James); C. Meisinger (Christa); T. Meitinger (Thomas); C. Menni (Cristina); F.D. Mentch (Frank); E. Mihailov (Evelin); L. Milani (Lili); M.E. Montasser (May E.); G.W. Montgomery (Grant); A.C. Morrison (Alanna); R.H. Myers (Richard); R. Nadukuru (Rajiv); P. Navarro (Pau); M. Nalis (Mari); M.S. Nieminen (Markku S.); I.M. Nolte (Ilja M.); G.T. O'Connor (George); A. Ogunniyi (Adesola); S. Padmanabhan (Sandosh); W. Palmas (Walter); J.S. Pankow (James); I. Patarcic (Inga); F. Pavani (Francesca); P.A. Peyser (Patricia A.); K.H. Pietilainen (Kirsi Hannele); N.R. Poulter (Neil); I. Prokopenko (Inga); S. Ralhan (Sarju); P. Redmond (Paul); S.S. Rich (Stephen S.); H. Rissanen (Harri); A. Robino (Antonietta); L.M. Rose (Lynda M.); R.J. Rose (Richard J.); C. Sala (Cinzia); B. Salako (Babatunde); V. Salomaa (Veikko); A.-P. Sarin; R. Saxena (Richa); R. Schmidt (Reinhold); L.J. Scott (Laura); W.R. Scott (William R.); B. Sennblad (Bengt); S. Seshadri (Sudha); P. Sever (Peter); S. Shrestha (Smeeta); B.H. Smith (Blair); J.A. Smith (Jennifer A); N. Soranzo (Nicole); N. Sotoodehnia (Nona); L. Southam (Lorraine); A. Stanton (Alice); M.G. Stathopoulou (Maria G); K. Strauch (Konstantin); R.J. Strawbridge (Rona); M.J. Suderman (Matthew J.); N. Tandon (Nikhil); S.-T. Tang (Sian-Tsun); K.D. Taylor (Kent D.); B. Tayo (Bamidele); A.M. Töglhofer (Anna Maria); M. Tomaszewski (Maciej); N. Tsernikova (Natalia); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); D. Vaidya (Dhananjay); A. van Hylckama Vlieg (Astrid); J. van Setten (Jessica); T. Vasankari (Tuula); S. Vedantam (Sailaja); E. Vlachopoulou (Efthymia); D. Vozzi (Diego); E. Vuoksimaa (Eero); M. Waldenberger (Melanie); E.B. Ware (Erin B.); W. Wentworth-Shields (William); J. Whitfield (John); S. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); C.S. Yajnik (Chittaranjan S.); J. Yao (Jie); G. Zaza (Gianluigi); X. Zhu (Xiaofeng); R.M. Salem (Rany); M. Melbye (Mads); H. Bisgaard; N.J. Samani (Nilesh); D. Cusi (Daniele); D.A. Mackey (David A.); R.S. Cooper (Richard S.); P. Froguel (Philippe); G. Pasterkamp (Gerard); S.F.A. Grant (Struan F.A.); H. Hakonarson (Hakon); L. Ferrucci (Luigi); R.A. Scott (Robert); A.D. Morris (Andrew); C.N.A. Palmer (Colin); G.V. Dedoussis (George V.); P. Deloukas (Panagiotis); L. Bertram (Lars); U. Lindenberger (Ulman); S.I. Berndt (Sonja); C.M. Lindgren (Cecilia); N. Timpson (Nicholas); A. Tönjes (Anke); P. Munroe (Patricia); T.I.A. Sørensen (Thorkild I.A.); C. Rotimi (Charles); D.K. Arnett (Donna); A.J. Oldehinkel (Albertine); S.L.R. Kardia (Sharon); B. Balkau (Beverley); G. Gambaro (Giovanni); A.P. Morris (Andrew); J.G. Eriksson (Johan G.); M.J. Wright (Margaret); N.G. Martin (Nicholas); S.C. Hunt (Steven); J.M. Starr (John); I.J. Deary (Ian J.); L.R. Griffiths (Lyn R.); H.W. Tiemeier (Henning); N. Pirastu (Nicola); J. Kaprio (Jaakko); N.J. Wareham (Nick); L. Perusse (Louis); J.G. Wilson (James); S. Girotto; M. Caulfield (Mark); O.T. Raitakari (Olli T.); D.I. Boomsma (Dorret); C. Gieger (Christian); P. van der Harst; A.A. Hicks (Andrew); P. Kraft (Peter); J. Sinisalo (Juha); P. Knekt; M. Johannesson (Magnus); P.K.E. Magnusson (Patrik K. E.); A. Hamsten (Anders); R. Schmidt (Reinhold); I.B. Borecki (Ingrid); E. Vartiainen (Erkki); D.M. Becker (Diane); D. Bharadwaj (Dwaipayan); K.L. Mohlke (Karen); M. Boehnke (Michael); C.M. van Duijn (Cock); D.K. Sanghera (Dharambir); A. Teumer (Alexander); E. Zeggini (Eleftheria); A. Metspalu (Andres); P. Gasparini (Paolo); S. Ulivi (Shelia); C. Ober (Carole); D. Toniolo (Daniela); I. Rudan (Igor); D.J. Porteous (David J.); M. Ciullo; T.D. Spector (Timothy); C. Hayward (Caroline); J. Dupuis (Josée); R.J.F. Loos (Ruth); A. Wright (Alan); G.R. Chandak (Giriraj); P. Vollenweider (Peter); A.R. Shuldiner (Alan); P.M. Ridker (Paul); J.I. Rotter (Jerome I.); N. Sattar (Naveed); U. Gyllensten (Ulf); K.E. North (Kari); M. Pirastu (Mario); B.M. Psaty (Bruce); D.R. Weir (David); M. Laakso (Markku); V. Gudnason (Vilmundur); A. Takahashi (Atsushi); J.C. Chambers (John C.); J.S. Kooner (Jaspal S.); D.P. Strachan (David P.); H. Campbell (Harry); J.N. Hirschhorn (Joel N.); M. Perola (Markus); O. Polasek (Ozren); J.F. Wilson (James)

    2015-01-01

    textabstractHomozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is l

  19. Immanuel Kant's Account of Cognitive Experience and Human Rights Education

    Science.gov (United States)

    Bynum, Gregory Lewis

    2012-01-01

    In this essay Gregory Bynum seeks to show that Immanuel Kant's thought, which was conceived in an eighteenth-century context of new, and newly widespread, pressures for nationally institutionalized human rights-based regimes (the American and French revolutions being the most prominent examples), can help us think in new and appreciative ways…

  20. Directional dominance on stature and cognition in diverse human populations

    NARCIS (Netherlands)

    P.K. Joshi (Peter); T. Esko (Tõnu); H. Mattsson (Hannele); N. Eklund (Niina); I. Gandin (Ilaria); T. Nutile; A.U. Jackson (Anne); C. Schurmann (Claudia); G.D. Smith; W. Zhang (Weihua); Y. Okada (Yukinori); A. Stancáková (Alena); J.D. Faul (Jessica D.); W. Zhao (Wei); T.M. Bartz (Traci M.); M.P. Concas; N. Franceschini (Nora); S. Enroth (Stefan); V. Vitart (Veronique); S. Trompet (Stella); X. Guo (Xiuqing); D.I. Chasman (Daniel); J.R. O'Connel (Jeffrey R.); T. Corre (Tanguy); S.S. Nongmaithem (Suraj S.); Y. Chen (Yuning); M. Mangino (Massimo); D. Ruggiero; M. Traglia (Michela); A.-E. Farmaki (Aliki-Eleni); T. Kacprowski (Tim); A. Bjonnes (Andrew); A. van der Spek (Ashley); Y. Wu (Ying); A.K. Giri (Anil K.); L.R. Yanek (Lisa); L. Wang (Lihua); E. Hofer (Edith); C.A. Rietveld (Niels); O. McLeod (Olga); M. Cornelis (Marilyn); C. Pattaro (Cristian); N. Verweij (Niek); C. Baumbach (Clemens); M. Abdellaoui (Mohammed); H. Warren (Helen); D. Vuckovic (Dragana); H. Mei (Hao); C. Bouchard (Claude); J.R.B. Perry (John); S. Cappellani (Stefania); S.S. Mirza (Saira); M.C. Benton (Miles C.); U. Broeckel (Ulrich); S.E. Medland (Sarah Elizabeth); P.A. Lind (Penelope); G. Malerba (Giovanni); A. Drong (Alexander); L. Yengo (Loic); L.F. Bielak (Lawrence F.); D. Zhi (Degui); P.J. van der Most (Peter); D. Shriner (Daniel); R. Mägi (Reedik); G. Hemani; T. Karaderi (Tugce); Z. Wang (Zhaoming); T. Liu (Tian); I. Demuth (Ilja); J.H. Zhao; W. Meng (Weihua); L. Lataniotis (Lazaros); S.W. Van Der Laan (Sander W.); J.P. Bradfield (Jonathan); A.R. Wood (Andrew); A. Bonnefond (Amélie); T.S. Ahluwalia (Tarunveer Singh); L.M. Hall (Leanne M.); E. Salvi (Erika); S. Yazar (Seyhan); L. Carstensen (Lisbeth); H.G. De Haan (Hugoline G.); M. Abney (Mark); U. Afzal (Uzma); M.A. Allison (Matthew); N. Amin (Najaf); F.W. Asselbergs (Folkert W.); S.J.L. Bakker (Stephan); R.G. Barr (Graham); S.E. Baumeister (Sebastian); D.J. Benjamin (Daniel J.); S. Bergmann (Sven); E.A. Boerwinkle (Eric); E.P. Bottinger (Erwin P.); A. Campbell (Archie); A. Chakravarti (Aravinda); Y. Chan (Yingleong); S.J. Chanock (Stephen); C. Chen (Constance); Y.-D.I. Chen (Y.-D. Ida); F.S. Collins (Francis); J. Connell (John); A. Correa (Adolfo); L.A. Cupples (Adrienne); G.D. Smith; G. Davies (Gail); M. Dörr (Marcus); G.B. Ehret (Georg); S.B. Ellis (Stephen B.); B. Feenstra (Bjarke); M.F. Feitosa (Mary Furlan); I. Ford; C.S. Fox (Caroline); T.M. Frayling (Timothy); N. Friedrich (Nele); F. Geller (Frank); G. Scotland (Generation); I. Gillham-Nasenya (Irina); R.F. Gottesman (Rebecca); M.J. Graff (Maud J.L.); F. Grodstein (Francine); C. Gu (Charles); C. Haley (Chris); C.J. Hammond (Christopher); S.E. Harris (Sarah); T.B. Harris (Tamara); N. Hastie (Nick); N.L. Heard-Costa (Nancy); K. Heikkilä (Kauko); L.J. Hocking (Lynne); G. Homuth (Georg); J.J. Hottenga (Jouke Jan); J. Huang (Jian); J.E. Huffman (Jennifer); P.G. Hysi (Pirro); M.A. Ikram (Arfan); E. Ingelsson (Erik); A. Joensuu (Anni); A. Johansson (Åsa); P. Jousilahti (Pekka); J.W. Jukema (Jan Wouter); M. Kähönen (Mika); Y. Kamatani (Yoichiro); S. Kanoni (Stavroula); S.M. Kerr (Shona); N.M. Khan (Nazir M.); Ph.D. Koellinger (Philipp); H.A. Koistinen (Heikki A.); M.K. Kooner (Manraj K.); M. Kubo (Michiaki); J. Kuusisto (Johanna); J. Lahti (Jari); L.J. Launer (Lenore); R.A. Lea (Rodney A.); B. Lehne (Benjamin); T. Lehtimäki (Terho); D.C. Liewald (David C.); L. Lind (Lars); M. Loh (Marie); M.L. Lokki; S.J. London (Stephanie J.); S.J. Loomis (Stephanie J.); A. Loukola (Anu); Y. Lu (Yingchang); T. Lumley (Thomas); A. Lundqvist (Annamari); S. Männistö (Satu); P. Marques-Vidal (Pedro); C. Masciullo (Corrado); A. Matchan (Angela); J. Mathias (Jasmine); K. Matsuda (Koichi); J.B. Meigs (James); C. Meisinger (Christa); T. Meitinger (Thomas); C. Menni (Cristina); F.D. Mentch (Frank); E. Mihailov (Evelin); L. Milani (Lili); M.E. Montasser (May E.); G.W. Montgomery (Grant); A.C. Morrison (Alanna); R.H. Myers (Richard); R. Nadukuru (Rajiv); P. Navarro (Pau); M. Nalis (Mari); M.S. Nieminen (Markku S.); I.M. Nolte (Ilja M.); G.T. O'Connor (George); A. Ogunniyi (Adesola); S. Padmanabhan (Sandosh); W. Palmas (Walter); J.S. Pankow (James); I. Patarcic (Inga); F. Pavani (Francesca); P.A. Peyser (Patricia A.); K.H. Pietilainen (Kirsi Hannele); N.R. Poulter (Neil); I. Prokopenko (Inga); S. Ralhan (Sarju); P. Redmond (Paul); S.S. Rich (Stephen S.); H. Rissanen (Harri); A. Robino (Antonietta); L.M. Rose (Lynda M.); R.J. Rose (Richard J.); C. Sala (Cinzia); B. Salako (Babatunde); V. Salomaa (Veikko); A.-P. Sarin; R. Saxena (Richa); R. Schmidt (Reinhold); L.J. Scott (Laura); W.R. Scott (William R.); B. Sennblad (Bengt); S. Seshadri (Sudha); P. Sever (Peter); S. Shrestha (Smeeta); B.H. Smith (Blair); J.A. Smith (Jennifer A); N. Soranzo (Nicole); N. Sotoodehnia (Nona); L. Southam (Lorraine); A. Stanton (Alice); M.G. Stathopoulou (Maria G); K. Strauch (Konstantin); R.J. Strawbridge (Rona); M.J. Suderman (Matthew J.); N. Tandon (Nikhil); S.-T. Tang (Sian-Tsun); K.D. Taylor (Kent D.); B. Tayo (Bamidele); A.M. Töglhofer (Anna Maria); M. Tomaszewski (Maciej); N. Tsernikova (Natalia); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); D. Vaidya (Dhananjay); A. van Hylckama Vlieg (Astrid); J. van Setten (Jessica); T. Vasankari (Tuula); S. Vedantam (Sailaja); E. Vlachopoulou (Efthymia); D. Vozzi (Diego); E. Vuoksimaa (Eero); M. Waldenberger (Melanie); E.B. Ware (Erin B.); W. Wentworth-Shields (William); J. Whitfield (John); S. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); C.S. Yajnik (Chittaranjan S.); J. Yao (Jie); G. Zaza (Gianluigi); X. Zhu (Xiaofeng); R.M. Salem (Rany); M. Melbye (Mads); H. Bisgaard; N.J. Samani (Nilesh); D. Cusi (Daniele); D.A. Mackey (David A.); R.S. Cooper (Richard S.); P. Froguel (Philippe); G. Pasterkamp (Gerard); S.F.A. Grant (Struan F.A.); H. Hakonarson (Hakon); L. Ferrucci (Luigi); R.A. Scott (Robert); A.D. Morris (Andrew); C.N.A. Palmer (Colin); G.V. Dedoussis (George V.); P. Deloukas (Panagiotis); L. Bertram (Lars); U. Lindenberger (Ulman); S.I. Berndt (Sonja); C.M. Lindgren (Cecilia); N.J. Timpson (Nicholas); A. Tönjes (Anke); P. Munroe (Patricia); T.I.A. Sørensen (Thorkild I.A.); C. Rotimi (Charles); D.K. Arnett (Donna); A.J. Oldehinkel (Albertine); S.L.R. Kardia (Sharon); B. Balkau (Beverley); G. Gambaro (Giovanni); A.P. Morris (Andrew); J.G. Eriksson (Johan G.); M.J. Wright (Margaret); N.G. Martin (Nicholas); S.C. Hunt (Steven); J.M. Starr (John); I.J. Deary (Ian J.); L.R. Griffiths (Lyn R.); H.W. Tiemeier (Henning); N. Pirastu (Nicola); J. Kaprio (Jaakko); N.J. Wareham (Nick); L. Perusse (Louis); J.G. Wilson (James); S. Girotto; M. Caulfield (Mark); O.T. Raitakari (Olli T.); D.I. Boomsma (Dorret); C. Gieger (Christian); P. van der Harst; A.A. Hicks (Andrew); P. Kraft (Peter); J. Sinisalo (Juha); P. Knekt; M. Johannesson (Magnus); P.K.E. Magnusson (Patrik K. E.); A. Hamsten (Anders); R. Schmidt (Reinhold); I.B. Borecki (Ingrid); E. Vartiainen (Erkki); D.M. Becker (Diane); D. Bharadwaj (Dwaipayan); K.L. Mohlke (Karen); M. Boehnke (Michael); C.M. van Duijn (Cock); D.K. Sanghera (Dharambir); A. Teumer (Alexander); E. Zeggini (Eleftheria); A. Metspalu (Andres); P. Gasparini (Paolo); S. Ulivi (Shelia); C. Ober (Carole); D. Toniolo (Daniela); I. Rudan (Igor); D.J. Porteous (David J.); M. Ciullo; T.D. Spector (Timothy); C. Hayward (Caroline); J. Dupuis (Josée); R.J.F. Loos (Ruth); A. Wright (Alan); G.R. Chandak (Giriraj); P. Vollenweider (Peter); A.R. Shuldiner (Alan); P.M. Ridker (Paul); J.I. Rotter (Jerome I.); N. Sattar (Naveed); U. Gyllensten (Ulf); K.E. North (Kari); M. Pirastu (Mario); B.M. Psaty (Bruce); D.R. Weir (David); M. Laakso (Markku); V. Gudnason (Vilmundur); A. Takahashi (Atsushi); J.C. Chambers (John C.); J.S. Kooner (Jaspal S.); D.P. Strachan (David P.); H. Campbell (Harry); J.N. Hirschhorn (Joel N.); M. Perola (Markus); O. Polasek (Ozren); J.F. Wilson (James)

    2015-01-01

    textabstractHomozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is

  1. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational...... and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role...... in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We...

  2. Neuromodulatory Adaptive Combination of Correlation-based Learning in Cerebellum and Reward-based Learning in Basal Ganglia for Goal-directed Behavior Control

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role...... envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model...... of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level...

  3. Five-year experience with the peri-operative goal directed management for surgical repair of traumatic aortic injury in the eastern province, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Haytham Z Al-Gameel

    2014-01-01

    Full Text Available Context: Traumatic aortic injury (TAI accounts for 1/3 of all trauma victims. Aim: We aimed to investigate the efficacy of the adopted standardized immediate pre-operative and intra-operative hemodynamic goal directed control, anesthetic technique and organs protection on the morbidity and mortality in patients presented with TAI. Settings and Design: An observational retrospective study at a single university teaching hospital. Materials and Methods: Following ethical approval, we recruited the data of 44 patients admitted to the King Fahd Hospital of the University, Al Khobar, Saudi Arabia, with formal confirmation of diagnosis of blunt TAI during a 5-year period from February 2008 to April 2013 from the hospital medical records. Statistical Analysis: descriptive analysis. Results: A total of 44 victims (41 men, median (range age 29 (22-34 years with TAI who underwent surgical repair were recruited. Median (range post-operative chest tube output was 700 (200-1100 ml necessitated transfusion in 5 (11.4% of cases. Post-operative complications included transient renal failure (13.6%, pneumonia (6.8%, acute lung injury/distress syndrome (20.5%, sepsis (4.5%, wound infection (47.7% and air leak (6.8%. No patient developed end stage renal failure or spinal cord injury. Median intensive care unit stay was 6 (4-30 days and in-hospital mortality was 9.1%. Conclusion: We found that the implementation of a standardized early goal directed hemodynamic control for the peri-operative management of patients with TAI reduces the post-operative morbidity and mortality after surgical repair.

  4. Goal-Directed Fluid Therapy Using Stroke Volume Variation Does Not Result in Pulmonary Fluid Overload in Thoracic Surgery Requiring One-Lung Ventilation

    Directory of Open Access Journals (Sweden)

    Sebastian Haas

    2012-01-01

    Full Text Available Background. Goal-directed fluid therapy (GDT guided by functional parameters of preload, such as stroke volume variation (SVV, seems to optimize hemodynamics and possibly improves clinical outcome. However, this strategy is believed to be rather fluid aggressive, and, furthermore, during surgery requiring thoracotomy, the ability of SVV to predict volume responsiveness has raised some controversy. So far it is not known whether GDT is associated with pulmonary fluid overload and a deleterious reduction in pulmonary function in thoracic surgery requiring one-lung-ventilation (OLV. Therefore, we assessed the perioperative course of extravascular lung water index (EVLWI and paO2/FiO2-ratio during and after thoracic surgery requiring lateral thoracotomy and OLV to evaluate the hypothesis that fluid therapy guided by SVV results in pulmonary fluid overload. Methods. A total of 27 patients (group T were enrolled in this prospective study with 11 patients undergoing lung surgery (group L and 16 patients undergoing esophagectomy (group E. Goal-directed fluid management was guided by SVV (SVV 0.05 in EVLWI during the observation period (BL: 7.8 ± 2.5, 24postop: 8.1 ± 2.4 mL/kg. A subgroup analysis for group L and group E also did not reveal significant changes of EVLWI. The paO2/FiO2-ratio decreased significantly during the observation period (group L: BL: 462 ± 140, OLVterm15: 338 ± 112 mmHg; group E: BL: 389 ± 101, 24postop: 303 ± 74 mmHg but remained >300 mmHg except during OLV. Conclusions. SVV-guided fluid management in thoracic surgery requiring lateral thoracotomy and one-lung ventilation does not result in pulmonary fluid overload. Although oxygenation was reduced, pulmonary function remained within a clinically acceptable range.

  5. Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH)

    Science.gov (United States)

    2010-10-01

    endoscope. 2. Bi-channel Stereo Scope: Intuitive Surgical’s da Vinci ® Surgical System is a robotic surgical platform. As such, it is capable of handling...with two separate lenses embedded inside a single tube. The da Vinci ® Surgical System incorporates high-definition technology at a resolution of...data of using the software on the Da vinci and Vista laparoscopes. The models used are human phantom models. In the table the test is done via two

  6. Behind Human Error: Cognitive Systems, Computers and Hindsight

    Science.gov (United States)

    1994-12-01

    squeeze became on the powers of the operator.... And as Norbert Wiener noted some years later (1964, p. 63): The gadget-minded people often have the...for one exception see Woods and Elias , 1988). This failure to develop representations that reveal change and highlight events in the monitored...Woods, D. D., and Elias , G. (1988). Significance messages: An inte- gral display concept. In Proceedings of the 32nd Annual Meeting of the Human

  7. Human Experience Modeler: context-driven cognitive retraining to facilitate transfer of learning.

    Science.gov (United States)

    Fidopiastis, C M; Stapleton, C B; Whiteside, J D; Hughes, C E; Fiore, S M; Martin, G A; Rolland, J P; Smith, E M

    2006-04-01

    We describe a cognitive rehabilitation mixed-reality system that allows therapists to explore natural cuing, contextualization, and theoretical aspects of cognitive retraining, including transfer of training. The Human Experience Modeler (HEM) mixed-reality environment allows for a contextualized learning experience with the advantages of controlled stimuli, experience capture and feedback that would not be feasible in a traditional rehabilitation setting. A pilot study for testing the integrated components of the HEM is discussed where the participant presents with working memory impairments due to an aneurysm.

  8. [Advances in the experimental analysis of behavior: issues of choice behavior, comparative cognition, and human language].

    Science.gov (United States)

    Sakagami, T; Yamamoto, J; Jitsumori, M

    1994-12-01

    As the opportunity to contact with related areas has increased, the study of of the experimental analysis of behavior has experienced revolutionary changes. Some of the most active and important areas-studies of choice, comparative cognition, and human language--are reviewed to acquaint readers. Studies of CHOICE have linked to the molar theories of behavioral economics and behavioral ecology, which promoted research of choice by animals under uncertainty conditions. Further approach has been made to integrate the molar and molecular analyses on the basis of the ideas of behavior dynamics. COMPARATIVE COGNITION is a part of a larger field including cognitive science, behavioral neuroscience, and biological science. Recent developments, aided with a comparative perspective, made significant contributions to our understanding of the phylogeny and ontogeny of cognition. Advances in analysis of human behavior provided tools to study behavioral aspects of semantics, syntax, and pragmatics of HUMAN LANGUAGE. Using the paradigm of stimulus equivalence, the emergence of stimulus relations, stimulus-stimulus networks, hierarchical structure of verbal behavior, and other language-related behaviors have been investigated.

  9. Effects of student ontological position on cognition of human origins

    Science.gov (United States)

    Ervin, Jeremy Alan

    In this study, the narratives from a hermeneutical dialectic cycle of three high school students were analyzed to understand the influences of ontological position on the learning of human origins. The interpretation of the narratives provides the reader an opportunity to consider the learning process from the perspective of worldview and conceptual change theories. Questions guiding this research include: Within a context of a worldview, what is the range of ontological positions among a high school AP biology class? To what extent does ontological position influence the learning of scientific concepts about human origins? If a student's ontological position is contradictory to scientific explanation of human origins, how will learning strategies and motivations change? All consenting students in an AP biology class were interviewed in order to select three students who represented three different ontological positions of a worldview: No Supernatural, Supernatural Without Impact, or Supernatural Impact. The issue of worldview is addressed at length in this work. Consenting students had completed the graduation requirements in biology, but were taking an additional biology course in preparation for college. Enrollment in an AP biology course was assumed to indicate that the selected students have an understanding of the concept of human origins at a comprehensive level, but not necessarily at an apprehension level, both being needed for conceptual change. Examination of the narratives reveals that students may alternate between two ontological positions in order to account for inconsistencies within a situation. This relativity enables the range of ontological positions to vary depending on concepts being considered. Not all Supernatural Impact positions conflict with biological understanding of human origins due to the ability of some to create a dichotomy between religion and school. Any comprehended concepts within this dichotomy lead to plagiaristic knowledge

  10. Niche construction, social cognition, and language: hypothesizing the human as the production of place.

    Science.gov (United States)

    Davies, Oliver

    2016-01-01

    New data is emerging from evolutionary anthropology and the neuroscience of social cognition on our species-specific hyper-cooperation (HC). This paper attempts an integration of third-person archaeological and second-person, neuroscientific perspectives on the structure of HC, through a post-Ricoeurian development in hermeneutical phenomenology. We argue for the relatively late evolution of advanced linguistic consciousness (ALC) (Hiscock in Biological Theory 9:27-41, 2014), as a reflexive system based on the 'in-between' or 'cognitive system' as reported by Vogeley et al. (in: Interdisziplinäre anthropologie, Heidelberg, Springer, 2014) of face-to-face social cognition, as well as tool use. The possibility of a positive or negative tension between the more recent ALC and the more ancient, pre-thematic, self-organizing 'in-between' frames an 'internal' niche construction. This indexes the internal structure of HC as 'convergence', where complex, engaged, social reasoning in ALC mirrors the cognitive structure of the pre-thematic 'in-between', extending the bio-energy of our social cognition, through reflexive amplification, in the production of 'social place' as 'humanized space'. If individual word/phrase acquisition, in contextual actuality, is the distinctive feature of human language (Hurford in European Reviews 12:551-565, 2004), then human language is a hyperbolic, species-wide training in particularized co-location, developing consciousness of a shared world. The humanization of space and production of HC, through co-location, requires the 'disarming' of language as a medium of control, and a foregrounding of the materiality of the sign. The production of 'hyper-place' as solidarity beyond the face-to-face, typical of world religions, becomes possible where internal niche construction as convergence with the 'in-between' (world in us) combines with religious cosmologies reflecting an external 'cosmic' niche construction (world outside us).

  11. The Role of Consciousness in Human Cognitive Activity

    Directory of Open Access Journals (Sweden)

    Victor M. Allakhverdov

    2009-01-01

    Full Text Available The problem of consciousness is examined in the article. It is argued that all the existing approaches to consciousness do not explain the role consciousness plays in human life. An attempt of revealing and describing the principles of the mind’s work is made. Experimental phenomena observed by the author and his followers, particularly, the tendency of previously non-realized ideas not to be realized subsequently, are reviewed. The discussion of these phenomena allows to formulate a novel view on the nature of consciousness.

  12. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    Science.gov (United States)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  13. Information is not a Virus, and Other Consequences of Human Cognitive Limits

    CERN Document Server

    Lerman, Kristina

    2016-01-01

    The many decisions people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual's social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: (i) information generally fails to spread in social media and (ii) highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other...

  14. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  15. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-08-31

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions

  16. Rhythmic Cognition in Humans and Animals: Distinguishing Meter and Pulse Perception

    Directory of Open Access Journals (Sweden)

    W Tecumseh eFitch

    2013-10-01

    Full Text Available This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or 'tactus' from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of 'strength', or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g. to dance. Rhythms, from this metrical perspective, constitute 'trees in time'. Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques. The results from this new animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  17. Evaluation technology of human behavior cognition; Ningen kodo ninchi hyoka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For human engineering and improvement of the living environment, the evaluation technology of human behavior cognition was studied. For the future reformation and creation of economic structure, the following are required: establishment of safe and affluent communities, further improvement of the safety and harmonious balance of people, lives and society, and R & D close to people and social needs. Introduction of Product Liability law and a fail-safe concept are examples of such efforts. However, since many accidents are found in the human society, the relation between human errors and human characteristics should be studied in detail. The cognitive science of human behavior is an objective evaluation technology from the viewpoint of human being, object, environment and society. Based on these social and technological background, the feasibility of the evaluation technology is studied, and the future trend and skeleton of this project are clarified. The domestic and foreign trends of technologies concerned are thus surveyed, and the important points, features, skeleton and ripple effect of the technology are summarized. 500 refs., 70 figs., 5 tabs.

  18. Declined Neural Efficiency in Cognitively Stable Human Immunodeficiency Virus Patients

    Science.gov (United States)

    Ernst, Thomas; Yakupov, Renat; Nakama, Helenna; Crocket, Grace; Cole, Michael; Watters, Michael; Ricardo-Dukelow, Mary Lynn; Chang, Linda

    2009-01-01

    Objective To determine whether brain activation changes in clinically and neurocognitively normal human immunodeficiency virus (HIV)–infected and in HIV-seronegative control (SN) participants over a 1-year period. Methods Functional magnetic resonance imaging (fMRI) was performed in 32 SN and 31 HIV patients (all with stable combination antiretroviral treatment) at baseline and after 1 year. Each participant performed a set of visual attention tasks with increasing attentional load (from tracking two, three, or four balls). All HIV and SN participants had normal neuropsychological function at both examinations. Results Over 1 year, HIV patients showed no change in their neurocognitive status or in task performance during fMRI. However, HIV patients showed significant 1-year increases in fMRI signals in the prefrontal and posterior parietal cortices for the more difficult tasks, whereas SN control participants showed only decreases in brain activation in these regions. This resulted in significant interactions between HIV status and time of study in left insula, left parietal, left temporal, and several frontal regions (left and right middle frontal gyrus, and anterior cingulate). Interpretation Because fMRI task performance remained unchanged in both groups, the HIV patients appeared to maintain performance by increasing usage of the attention network, whereas the control participants reduced usage of the attention network after 1 year. These findings suggest improved efficiency or a practice effect in the SN participants but declined efficiency of the neural substrate in HIV patients, possibly because of ongoing brain injury associated with the HIV infection, despite their apparent stable clinical course. PMID:19334060

  19. Rapid instructed task learning: A new window into the human brain’s unique capacity for flexible cognitive control

    Science.gov (United States)

    Cole, Michael W.; Laurent, Patryk; Stocco, Andrea

    2012-01-01

    The human ability to flexibly adapt to novel circumstances is extraordinary. Perhaps the most illustrative yet underappreciated form of this cognitive flexibility is rapid instructed task learning (RITL) – the ability to rapidly reconfigure our minds to perform new tasks from instruction. This ability is important for everyday life (e.g., learning to use new technologies), and is used to instruct participants in nearly every study of human cognition. We review the development of RITL as a circumscribed domain of cognitive neuroscience investigation, culminating in recent demonstrations that RITL is implemented via brain circuits centered on lateral prefrontal cortex. We then build on this and other insights to develop an integrative theory of cognitive flexibility and cognitive control, identifying theoretical principles and mechanisms that may make RITL possible in the human brain. Insights gained from this new theoretical account have important implications for further developments and applications of RITL research. PMID:23065743

  20. 50-60 Hz electric and magnetic field effects on cognitive function in humans: A review

    Energy Technology Data Exchange (ETDEWEB)

    Crasson, M

    2003-07-01

    This paper reviews the effect of 50-60 Hz weak electric, magnetic and combined electric and magnetic field exposure on cognitive functions such as memory, attention, information processing and time perception, as determined by electroencephalographic methods and performance measures. Overall, laboratory studies, which have investigated the acute effects of power frequency fields on cognitive functioning in humans are heterogeneous, in terms of both electric and magnetic field (EMF) exposure and the experimental design and measures used. Results are inconsistent and difficult to interpret with regard to functional relevance for possible health risks. Statistically significant differences between field and control exposure, when they are found, are small, subtle, transitory, without any clear dose-response relationship and difficult to reproduce. The human performance or event related potentials (ERPs) measures that might specifically be affected by EMF exposure, as well as a possible cerebral structure or function that could be more sensitive to EMF, cannot be better determined. (author)

  1. Understanding and sharing intentions: the origins of cultural cognition.

    Science.gov (United States)

    Tomasello, Michael; Carpenter, Malinda; Call, Josep; Behne, Tanya; Moll, Henrike

    2005-10-01

    We propose that the crucial difference between human cognition and that of other species is the ability to participate with others in collaborative activities with shared goals and intentions: shared intentionality. Participation in such activities requires not only especially powerful forms of intention reading and cultural learning, but also a unique motivation to share psychological states with others and unique forms of cognitive representation for doing so. The result of participating in these activities is species-unique forms of cultural cognition and evolution, enabling everything from the creation and use of linguistic symbols to the construction of social norms and individual beliefs to the establishment of social institutions. In support of this proposal we argue and present evidence that great apes (and some children with autism) understand the basics of intentional action, but they still do not participate in activities involving joint intentions and attention (shared intentionality). Human children's skills of shared intentionality develop gradually during the first 14 months of life as two ontogenetic pathways intertwine: (1) the general ape line of understanding others as animate, goal-directed, and intentional agents; and (2) a species-unique motivation to share emotions, experience, and activities with other persons. The developmental outcome is children's ability to construct dialogic cognitive representations, which enable them to participate in earnest in the collectivity that is human cognition.

  2. Linguistic embodiment and verbal constraints: human cognition and the scales of time

    DEFF Research Database (Denmark)

    Cowley, Stephen

    2014-01-01

    Using radical embodied cognitive science, the paper offers the hypothesis that language is symbiotic: its agent-environment dynamics arise as linguistic embodiment is managed under verbal constraints. As a result, co-action grants human agents the ability to use a unique form of phenomenal......, linguistic symbiosis grants access to diachronic resources. On this distributed-ecological view, language can thus be redefined as: “activity in which wordings play a part.”...

  3. Towards a semio-cognitive theory of human-computer interaction

    OpenAIRE

    Scolari, Carlos Alberto

    2001-01-01

    The research here presented is theoretical and introduces a critical analysis of instrumental approaches in Human-Computer Interaction (HCI). From a semiotic point of view interfaces are not "natural" or "neutral" instruments, but rather complex sense production devices. Interaction, in other words, is far from being a "transparent" process.In this abstract we present the fundaments of a theoretical model that combines Semiotics with Cognitive Science approaches.

  4. A recommended early goal-directed management guideline for the prevention of hypothermia-related transfusion, morbidity, and mortality in severely injured trauma patients.

    Science.gov (United States)

    Perlman, Ryan; Callum, Jeannie; Laflamme, Claude; Tien, Homer; Nascimento, Barto; Beckett, Andrew; Alam, Asim

    2016-04-20

    Hypothermia is present in up to two-thirds of patients with severe injury, although it is often disregarded during the initial resuscitation. Studies have revealed that hypothermia is associated with mortality in a large percentage of trauma cases when the patient's temperature is below 32 °C. Risk factors include the severity of injury, wet clothing, low transport unit temperature, use of anesthesia, and prolonged surgery. Fortunately, associated coagulation disorders have been shown to completely resolve with aggressive warming. Selected passive and active warming techniques can be applied in damage control resuscitation. While treatment guidelines exist for acidosis and bleeding, there is no evidence-based approach to managing hypothermia in trauma patients. We synthesized a goal-directed algorithm for warming the severely injured patient that can be directly incorporated into current Advanced Trauma Life Support guidelines. This involves the early use of warming blankets and removal of wet clothing in the prehospital phase followed by aggressive rewarming on arrival at the hospital if the patient's injuries require damage control therapy. Future research in hypothermia management should concentrate on applying this treatment algorithm and should evaluate its influence on patient outcomes. This treatment strategy may help to reduce blood loss and improve morbidity and mortality in this population of patients.

  5. Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions.

    Science.gov (United States)

    Parkes, Shauna L; Balleine, Bernard W

    2013-05-15

    Choice between goal-directed actions is determined by the relative value of their consequences. Such values are encoded during incentive learning and later retrieved to guide performance. Although the basolateral amygdala (BLA) and the gustatory region of insular cortex (IC) have been implicated in these processes, their relative contribution is still a matter of debate. Here we assessed whether these structures interact during incentive learning and retrieval to guide choice. In these experiments, rats were trained on two actions for distinct outcomes after which one of the two outcomes was devalued by specific satiety immediately before a choice extinction test. We first confirmed that, relative to appropriate controls, outcome devaluation recruited both the BLA and IC based on activation of the immediate early gene Arc; however, we found that infusion of the NMDAr antagonist ifenprodil into the BLA only abolished outcome devaluation when given before devaluation. In contrast, ifenprodil infusion into the IC was effective whether made before devaluation or test. We hypothesized that the BLA encodes and the IC retrieves incentive value for choice and, to test this, developed a novel sequential disconnection procedure. Blocking NMDAr activation unilaterally in the BLA before devaluation and then contralaterally in the IC before test abolished selective devaluation. In contrast, reversing the order of these infusions left devaluation intact. These results confirm that the BLA and IC form a circuit mediating the encoding and retrieval of outcome values, with the BLA encoding and the IC retrieving such values to guide choice.

  6. Applying the Model of Goal-Directed Behavior, Including Descriptive Norms, to Physical Activity Intentions: A Contribution to Improving the Theory of Planned Behavior.

    Science.gov (United States)

    Esposito, Gabriele; van Bavel, René; Baranowski, Tom; Duch-Brown, Néstor

    2016-08-01

    The theory of planned behavior (TPB) has received its fair share of criticism lately, including calls for it to retire. We contribute to improving the theory by testing extensions such as the model of goal-directed behavior (MGDB, which adds desire and anticipated positive and negative emotions) applied to physical activity (PA) intention. We also test the inclusion of a descriptive norms construct as an addition to the subjective norms construct, also applied to PA, resulting in two additional models: TPB including descriptive norms (TPB + DN) and MGDB including descriptive norms (MGDB + DN). The study is based on an online survey of 400 young adult Internet users, previously enrolled in a subject pool. Confirmatory factor analysis (CFA) showed that TPB and TPB + DN were not fit for purpose, while MGDB and MGDB + DN were. Structural equation modelling (SEM) conducted on MGDB and MGDB + DN showed that the inclusion of descriptive norms took over the significance of injunctive norms, and increased the model's account of total variance in intention to be physically active.

  7. Influence of specific training on spatio-temporal parameters at the onset of goal-directed reaching in infants: a controlled trial

    Directory of Open Access Journals (Sweden)

    Andréa B. Cunha

    2013-07-01

    Full Text Available BACKGROUND: There is evidence that long-term experience can promote functional changes in infants. However, much remains unknown about how a short-term experience affects performance of a task. OBJECTIVE: This study aims to investigate the influence of a single training session at the onset of goal-directed reaching on the spatio-temporal parameters of reaching and whether there are differences in the effects of training across different reaching positions. METHOD: Thirty-three infants were divided into three groups: 1 a control group; 2 a group that was reach trained in a reclined position; and 3 a group trained in the supine position. The infants were submitted to two assessments (pre- and post-training in two testing positions (supine and reclined at 45°. RESULTS: The short-duration training sessions were effective in promoting shorter reaches in the specific position in which the training was conducted. Training in the reclined position was associated with shorter and faster reaches upon assessment in the reclined position. CONCLUSIONS: A few minutes of reach training are effective in facilitating reaching behavior in infants at the onset of reaching. The improvements in reaching were specific to the position in which the infants were trained.

  8. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

    Science.gov (United States)

    Cacciapaglia, Fabio; Saddoris, Michael P; Wightman, R Mark; Carelli, Regina M

    2012-04-01

    Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.

  9. Epidural anaesthesia with goal-directed administration of ropivacaine improves haemodynamic stability when combined with general anaesthesia in elderly patients undergoing major abdominal surgery.

    Science.gov (United States)

    Zhou, Q H; Xiao, W P; Yun, X

    2013-01-01

    The use of epidural ropivacaine may result in significant haemodynamic fluctuations during combined epidural and general anaesthesia. We designed this study to investigate whether epidural anaesthesia with a goal-directed approach, when combined with general anaesthesia, improved haemodynamic stability in elderly patients undergoing major abdominal surgery. Seventy-five elderly patients undergoing major abdominal surgery were randomly and evenly assigned to one of three groups receiving intraoperative epidural anaesthesia with either ropivacaine 0.1% (Group 1), ropivacaine 0.375% (Group 2) or ropivacaine 0.375% for abdominal wall pain and ropivacaine 0.1% for visceral pain (Group 3). General anaesthesia was induced using a target-controlled infusion of combined propofol and remifentanil. The remifentanil target concentration was adjusted according to the mean arterial pressure and heart rate, and vasoactive agents were administered to maintain stable haemodynamics. The need for vasoactive drug administrations was 1.4 (standard deviation 0.9) in Group 3 (n=24), representing a significantly lower frequency of administration compared with Groups 1 (n=24) and 2 (n=24) (P epidural anaesthesia with different ropivacaine concentrations can improve haemodynamic stability when combined with general anaesthesia for elderly patients undergoing major abdominal surgery.

  10. Goal-directed outpatient rehabilitation following TBI: a pilot study of programme effectiveness and comparison of outcomes in home and day hospital settings.

    Science.gov (United States)

    Doig, Emmah; Fleming, Jennifer; Kuipers, Pim; Cornwell, Petrea; Khan, Asad

    2011-01-01

    To determine (i) the effectiveness of a goal-directed, environment-focused occupational therapy intervention and (ii) to compare rehabilitation gains across a day hospital (outpatient) setting and home setting. Repeated measures cross-over design with pre-post test measures and a baseline control period, random allocation to a treatment setting sequence and an independent outcome assessor who was blinded to treatment sequence. Descriptive and non-parametric comparative analyses employed. Fourteen participants with severe traumatic brain injury completed a 12 week outpatient occupational therapy programme. The programme was directed by the participant's chosen goals, which were established using a client-centred, structured, goal-planning process. Outcome measures included Goal attainment scaling, the Canadian Occupational Performance Measure, the Sydney Psychosocial Reintegration Scale, the Mayo-Portland Adaptability Index, the Craig Hospital Inventory of Environmental Factors and self-rated satisfaction with therapy. The therapy programme resulted in significant improvements in goal attainment, occupational performance, psychosocial reintegration and ability and adjustment levels, compared with baseline. Differences in gains made in home vs day hospital settings were not statistically significant, with the exception of higher levels of patient satisfaction with therapy at home. To assist further with decision-making about where to conduct therapy, further research is needed to compare the outcomes and determine the cost effectiveness of therapy at home and in day hospital settings.

  11. White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals.

    Science.gov (United States)

    Gongvatana, Assawin; Schweinsburg, Brian C; Taylor, Michael J; Theilmann, Rebecca J; Letendre, Scott L; Alhassoon, Omar M; Jacobus, Joanna; Woods, Steven P; Jernigan, Terry L; Ellis, Ronald J; Frank, Lawrence R; Grant, Igor

    2009-04-01

    Approximately half of those infected with the human immunodeficiency virus (HIV) exhibit cognitive impairment, which has been related to cerebral white matter damage. Despite the effectiveness of antiretroviral treatment, cognitive impairment remains common even in individuals with undetectable viral loads. One explanation for this may be subtherapeutic concentrations of some antiretrovirals in the central nervous system (CNS). We utilized diffusion tensor imaging and a comprehensive neuropsychological evaluation to investigate the relationship of white matter integrity to cognitive impairment and antiretroviral treatment variables. Participants included 39 HIV-infected individuals (49% with acquired immunodeficiency syndrome [AIDS]; mean CD4 = 529) and 25 seronegative subjects. Diffusion tensor imaging indices were mapped onto a common whole-brain white matter tract skeleton, allowing between-subject voxelwise comparisons. The total HIV-infected group exhibited abnormal white matter in the internal capsule, inferior longitudinal fasciculus, and optic radiation; whereas those with AIDS exhibited more widespread damage, including in the internal capsule and the corpus callosum. Cognitive impairment in the HIV-infected group was related to white matter injury in the internal capsule, corpus callosum, and superior longitudinal fasciculus. White matter injury was not found to be associated with HIV viral load or estimated CNS penetration of antiretrovirals. Diffusion tensor imaging was useful in identifying changes in white matter tracts associated with more advanced HIV infection. Relationships between diffusion alterations in specific white matter tracts and cognitive impairment support the potential utility of diffusion tensor imaging in examining the anatomical underpinnings of HIV-related cognitive impairment. The study also confirms that CNS injury is evident in persons infected with HIV despite effective antiretroviral treatment.

  12. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    Energy Technology Data Exchange (ETDEWEB)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring; James Y. H. Chang; Song-Hua Shen; Ali Mosleh; Johanna H. Oxstrand; John A. Forester; Dana L. Kelly; Erasmia L. Lois

    2010-06-01

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.

  13. Human biovibrations: assessment of human life signs, motor activity, and cognitive performance using wrist-mounted actigraphy.

    Science.gov (United States)

    Russo, Michael B; Vo, Alexander; Labutta, Robert; Black, Ian; Campbell, William; Greene, Jody; McGhee, James; Redmond, Daniel

    2005-07-01

    The application of miniature motion sensors (accelerometers) to study the macro- (gross) and micro- (barely discernible) activities associated with human motion has been termed actigraphy. In countless human sleep studies, actigraphy has mostly been applied to distinguish between when a person is asleep or awake. Use of sleep/wake information has been applied to the development of mathematical models that aim to predict aspects of cognitive performance. However, wrist-mounted actigraphy potentially has many more applications to cognitive and physical assessment beyond sleep/wake discrimination. For example, studies reveal that micro-miniature accelerometric sensors can discriminate heart rate, breathing, and life cessation (death) via actigraphically measured biovibration signals. This paper briefly reviews the development of wrist-mounted actigraphy; presents the data showing wrist-monitored ballistocardioimpulses, respirations, and life-signs signals; discusses the application of sophisticated signal processing for new clinical, operational, and cognitive-assessment-related applications; and concludes with recommendations for further research for demodulating the complex actigram signal.

  14. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective

    Directory of Open Access Journals (Sweden)

    Aline W. ede Borst

    2015-05-01

    Full Text Available Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, animations, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the Uncanny Valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations.

  15. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective.

    Science.gov (United States)

    de Borst, Aline W; de Gelder, Beatrice

    2015-01-01

    Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations.

  16. Human brain evolution: harnessing the genomics (r)evolution to link genes, cognition, and behavior.

    Science.gov (United States)

    Konopka, Genevieve; Geschwind, Daniel H

    2010-10-21

    The evolution of the human brain has resulted in numerous specialized features including higher cognitive processes such as language. Knowledge of whole-genome sequence and structural variation via high-throughput sequencing technology provides an unprecedented opportunity to view human evolution at high resolution. However, phenotype discovery is a critical component of these endeavors and the use of nontraditional model organisms will also be critical for piecing together a complete picture. Ultimately, the union of developmental studies of the brain with studies of unique phenotypes in a myriad of species will result in a more thorough model of the groundwork the human brain was built upon. Furthermore, these integrative approaches should provide important insights into human diseases. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging.

    Science.gov (United States)

    Aarts, Esther; Roelofs, Ardi; Franke, Barbara; Rijpkema, Mark; Fernández, Guillén; Helmich, Rick C; Cools, Roshan

    2010-08-01

    Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.

  18. Cognitive and tactile factors affecting human haptic performance in later life.

    Directory of Open Access Journals (Sweden)

    Tobias Kalisch

    Full Text Available BACKGROUND: Vision and haptics are the key modalities by which humans perceive objects and interact with their environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary. Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or cognitive capacity. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the haptic performance of 81 older adults by means of a cross-modal object recognition test. Additionally, we assessed the subjects' tactile acuity with an apparatus-based two-point discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly correlated with male subjects' haptic performance. CONCLUSIONS: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration of complex, unfamiliar objects. Our data support a disproportionately higher impact of cognition on haptic performance as compared to the impact of tactile acuity. Our findings are in agreement with studies reporting an increase in co-variation between individual sensory performance and general cognitive functioning in old age.

  19. The impact of social context on learning and cognitive demands for interactive virtual human simulations

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    2014-05-01

    Full Text Available Interactive virtual human (IVH simulations offer a novel method for training skills involving person-to-person interactions. This article examines the effectiveness of an IVH simulation for teaching medical students to assess rare cranial nerve abnormalities in both individual and small-group learning contexts. Individual (n = 26 and small-group (n = 30 interaction with the IVH system was manipulated to examine the influence on learning, learner engagement, perceived cognitive demands of the learning task, and instructional efficiency. Results suggested the IVH activity was an equally effective and engaging instructional tool in both learning structures, despite learners in the group learning contexts having to share hands-on access to the simulation interface. Participants in both conditions demonstrated a significant increase in declarative knowledge post-training. Operation of the IVH simulation technology imposed moderate cognitive demand but did not exceed the demands of the task content or appear to impede learning.

  20. Validating cognitive support for operators of complex human-machine systems

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J. [Brookhaven National Lab., Upton, NY (United States); Wachtel, J. [US Nuclear Regulatory Commission, Washington, DC (United States)

    1995-10-01

    Modem nuclear power plants (NPPs) are complex systems whose performance is the result of an intricate interaction of human and system control. A complex system may be defined as one which supports a dynamic process involving a large number of elements that interact in many different ways. Safety is addressed through defense-in-depth design and preplanning; i.e., designers consider the types of failures that are most likely to occur and those of high consequence, and design their solutions in advance. However, complex interactions and their failure modes cannot always be anticipated by the designer and may be unfamiliar to plant personnel. These situations may pose cognitive demands on plant personnel, both individually and as a crew. Other factors may contribute to the cognitive challenges of NPP operation as well, including hierarchal processes, dynamic pace, system redundancy and reliability, and conflicting objectives. These factors are discussed in this paper.

  1. Computational methods to extract meaning from text and advance theories of human cognition.

    Science.gov (United States)

    McNamara, Danielle S

    2011-01-01

    Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA.

  2. Androgen responsiveness to competition in humans: the role of cognitive variables

    Directory of Open Access Journals (Sweden)

    Oliveira GA

    2014-02-01

    Full Text Available Gonçalo A Oliveira,1 Rui F Oliveira1,2 1Unidade de Investigação em Eco-Etologia, ISPA – Instituto Universitário, Lisbon, Portugal; 2Champalimaud Neuroscience Program, Instituto Gulbenkian de Ciência, Oeiras, Portugal Abstract: Although androgens are commonly seen as male sex hormones, it has been established over the years that in both sexes, androgens also respond to social challenges. To explain the socially driven changes in androgens, two theoretical models have been proposed: the biosocial model and the challenge hypothesis. These models are typically seen as partly overlapping; however, they generate different predictions that are clarified here. In humans, sports competition and nonmetabolic competitive tasks have been used in the laboratory setting, as a proxy for agonistic interactions in animals. The results reviewed here show that the testosterone (T response to competition in humans is highly variable – the studies present postcompetition T levels and changes in T that depend on the contest outcome and that cannot be predicted by the current theoretical models. These conflicting results bring to the foreground the importance of considering cognitive factors that could moderate the androgen response to competition. Among these variables, we elect cognitive appraisal and its components as a key candidate modulating factor. It is known that T also modulates the cognitive processes that are relevant to performance in competition. In this article, we reviewed the evidence arising from studies investigating the effect of administering exogenous T and compare those results with the findings from studies that measured endogenous T levels. Finally, we summarized the importance of also considering the interaction between androgens and other hormones, such as cortisol, when investigating the social modulation of T, as proposed by the dual-hormone hypothesis. Keywords: testosterone, challenge hypothesis, biosocial model, cognitive

  3. Cognitive neuroscience in forensic science: understanding and utilizing the human element.

    Science.gov (United States)

    Dror, Itiel E

    2015-08-01

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour.

  4. Cognitive neuroscience in forensic science: understanding and utilizing the human element

    Science.gov (United States)

    Dror, Itiel E.

    2015-01-01

    The human element plays a critical role in forensic science. It is not limited only to issues relating to forensic decision-making, such as bias, but also relates to most aspects of forensic work (some of which even take place before a crime is ever committed or long after the verification of the forensic conclusion). In this paper, I explicate many aspects of forensic work that involve the human element and therefore show the relevance (and potential contribution) of cognitive neuroscience to forensic science. The 10 aspects covered in this paper are proactive forensic science, selection during recruitment, training, crime scene investigation, forensic decision-making, verification and conflict resolution, reporting, the role of the forensic examiner, presentation in court and judicial decisions. As the forensic community is taking on the challenges introduced by the realization that the human element is critical for forensic work, new opportunities emerge that allow for considerable improvement and enhancement of the forensic science endeavour. PMID:26101281

  5. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    Directory of Open Access Journals (Sweden)

    Maria Priestley

    Full Text Available Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence, content that has been submitted by particularly liked or respected users (model-based bias, content that constitutes evolutionarily salient or relevant information (content bias, and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world.

  6. Long Pentraxin 3 as a Predictive Marker of Mortality in Severe Septic Patients Who Received Successful Early Goal-Directed Therapy

    Science.gov (United States)

    Kim, Sun Bean; Lee, Kyoung Hwa; Lee, Ji Un; Ann, Hea Won; Ahn, Jin Young; Jeon, Yong Duk; Kim, Jung Ho; Ku, Nam Su; Choi, Jun Yong; Song, Young Goo; Kim, June Myung

    2017-01-01

    Purpose Pentraxin 3 (PTX3) has been suggested to be a prognostic marker of mortality in severe sepsis. Currently, there are limited data on biomarkers including PTX3 that can be used to predict mortality in severe sepsis patients who have undergone successful initial resuscitation through early goal-directed therapy (EGDT). Materials and Methods A prospective cohort study was conducted among 83 severe sepsis patients with fulfillment of all EGDT components and the achievement of final goal. Plasma PTX3 levels were measured by sandwich ELISA on hospital day (HD) 0, 3, and 7. The data for procalcitonin, C-reactive protein and delta neutrophil index were collected by electric medical record. The primary outcome was 28-day all-cause mortality. Results 28-day all-cause mortality was 19.3% and the median (interquartile range) APHCH II score of total patients was 16 (13–19). The non-survivors (n=16) had significantly higher PTX3 level at HD 0 [201.4 (56.9–268.6) ng/mL vs. 36.5 (13.7–145.3) ng/mL, p=0.008]. PTX3 had largest AUCROC value for the prediction of mortality among PTX3, procalcitonin, delta neutrophil index, CRP and APACHE II/SOFA sore at HD 0 [0.819, 95% confidence interval (CI) 0.677–0.961, p=0.008]. The most valid cut-off level of PTX3 at HD 0 was 140.28 ng/mL (sensitivity 66.7%, specificity 73.8%). The PTX3 and procalcitonin at HD 0 showed strong correlation (r=0.675, p<0.001). However, PTX3 at HD 0 was the only independent predictive marker in Cox's proportional hazards model (≥140 ng/mL; hazard rate 7.16, 95% CI 2.46–15.85, p=0.001). Conclusion PTX3 at HD 0 could be a powerful predictive biomarker of 28-day all-cause mortality in severe septic patients who have undergone successful EGDT. PMID:28120568

  7. Early goal-directed therapy reduces mortality in adult patients with severe sepsis and septic shock: Systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Legese Chelkeba

    2015-01-01

    Full Text Available Introduction: Survival sepsis campaign guidelines have promoted early goal-directed therapy (EGDT as a means for reduction of mortality. On the other hand, there were conflicting results coming out of recently published meta-analyses on mortality benefits of EGDT in patients with severe sepsis and septic shock. On top of that, the findings of three recently done randomized clinical trials (RCTs showed no survival benefit by employing EGDT compared to usual care. Therefore, we aimed to do a meta-analysis to evaluate the effect of EGDT on mortality in severe sepsis and septic shock patients. Methodology: We included RCTs that compared EGDT with usual care in our meta-analysis. We searched in Hinari, PubMed, EMBASE, and Cochrane central register of controlled trials electronic databases and other articles manually from lists of references of extracted articles. Our primary end point was overall mortality. Results: A total of nine trails comprising 4783 patients included in our analysis. We found that EGDT significantly reduced mortality in a random-effect model (RR, 0.86; 95% confidence interval [CI], 0.72–0.94; P = 0.008;   I 2 =50%. We also did subgroup analysis stratifying the studies by the socioeconomic status of the country where studies were conducted, risk of bias, the number of sites where the trials were conducted, setting of trials, publication year, and sample size. Accordingly, trials carried out in low to middle economic income countries (RR, 0.078; 95% CI, 0.67–0.91; P = 0.002; I2 = 34% significantly reduced mortality compared to those in higher income countries (RR, 0.93; 95% CI, 0.33–1.06; P = 0.28; I2 = 29%. On the other hand, patients receiving EGDT had longer length of hospital stay compared to the usual care (mean difference, 0.49; 95% CI, –0.04–1.02; P = 0.07; I2 = 0%. Conclusion: The result of our study showed that EGDT significantly reduced mortality in patients with severe sepsis and septic shock. Paradoxically

  8. Imagination in human social cognition, autism, and psychotic-affective conditions.

    Science.gov (United States)

    Crespi, Bernard; Leach, Emma; Dinsdale, Natalie; Mokkonen, Mikael; Hurd, Peter

    2016-05-01

    Complex human social cognition has evolved in concert with risks for psychiatric disorders. Recently, autism and psychotic-affective conditions (mainly schizophrenia, bipolar disorder, and depression) have been posited as psychological 'opposites' with regard to social-cognitive phenotypes. Imagination, considered as 'forming new ideas, mental images, or concepts', represents a central facet of human social evolution and cognition. Previous studies have documented reduced imagination in autism, and increased imagination in association with psychotic-affective conditions, yet these sets of findings have yet to be considered together, or evaluated in the context of the diametric model. We first review studies of the components, manifestations, and neural correlates of imagination in autism and psychotic-affective conditions. Next, we use data on dimensional autism in healthy populations to test the hypotheses that: (1) imagination represents the facet of autism that best accounts for its strongly male-biased sex ratio, and (2) higher genetic risk of schizophrenia is associated with higher imagination, in accordance with the predictions of the diametric model. The first hypothesis was supported by a systematic review and meta-analysis showing that Imagination exhibits the strongest male bias of all Autism Quotient (AQ) subscales, in non-clinical populations. The second hypothesis was supported, for males, by associations between schizophrenia genetic risk scores, derived from a set of single-nucleotide polymorphisms, and the AQ Imagination subscale. Considered together, these findings indicate that imagination, especially social imagination as embodied in the default mode human brain network, mediates risk and diametric dimensional phenotypes of autism and psychotic-affective conditions.

  9. Causal cognition in human and nonhuman animals: a comparative, critical review.

    Science.gov (United States)

    Penn, Derek C; Povinelli, Daniel J

    2007-01-01

    In this article, we review some of the most provocative experimental results to have emerged from comparative labs in the past few years, starting with research focusing on contingency learning and finishing with experiments exploring nonhuman animals' understanding of causal-logical relations. Although the theoretical explanation for these results is often inchoate, a clear pattern nevertheless emerges. The comparative evidence does not fit comfortably into either the traditional associationist or inferential alternatives that have dominated comparative debate for many decades now. Indeed, the similarities and differences between human and nonhuman causal cognition seem to be much more multifarious than these dichotomous alternatives allow.

  10. Human cognitive and perceptual factors in JDL level 4 hard/soft data fusion

    Science.gov (United States)

    Rimland, Jeffrey C.; Hall, David L.; Graham, Jacob L.

    2012-06-01

    Utilization of human participants as "soft sensors" is becoming increasingly important for gathering information related to a wide range of phenomena including natural and man-made disasters, environmental changes over time, crime prevention, and other roles of the "citizen scientist." The ubiquity of advanced mobile devices is facilitating the role of humans as "hybrid sensor platforms", allowing them to gather data (e.g. video, still images, GPS coordinates), annotate it based on their intuitive human understanding, and upload it using existing infrastructure and social networks. However, this new paradigm presents many challenges related to source characterization, effective tasking, and utilization of massive quantities of physical sensor, human-based, and hybrid hard/soft data in a manner that facilitates decision making instead of simply amplifying information overload. In the Joint Directors of Laboratories (JDL) data fusion process model, "level 4" fusion is a meta-process that attempts to improve performance of the entire fusion system through effective source utilization. While there are well-defined approaches for tasking and categorizing physical sensors, these methods fall short when attempting to effectively utilize a hybrid group of physical sensors and human observers. While physical sensor characterization can rely on statistical models of performance (e.g. accuracy, reliability, specificity, etc.) under given conditions, "soft" sensors add the additional challenges of characterizing human performance, tasking without inducing bias, and effectively balancing strengths and weaknesses of both human and physical sensors. This paper addresses the challenges of the evolving human-centric fusion paradigm and presents cognitive, perceptual, and other human factors that help to understand, categorize, and augment the roles and capabilities of humans as observers in hybrid systems.

  11. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  12. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  13. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  14. A cortical network model of cognitive and emotional influences in human decision making.

    Science.gov (United States)

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change.

  15. Multimodality Inferring of Human Cognitive States Based on Integration of Neuro-Fuzzy Network and Information Fusion Techniques

    Directory of Open Access Journals (Sweden)

    P. Bhattacharya

    2007-11-01

    Full Text Available To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i casual or contextual feature, (ii contact feature, (iii contactless feature, and (iv performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA, is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue. We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.

  16. A narrative review of physical activity, nutrition, and obesity to cognition and scholastic performance across the human lifespan.

    Science.gov (United States)

    Burkhalter, Toni M; Hillman, Charles H

    2011-03-01

    We reviewed studies that examine the relationship of energy consumption, storage, and expenditure to cognition and scholastic performance. Specifically, the literature base on nutrient intake, body mass, and physical activity is described relative to cognitive development and academic achievement. The review of literature regarding the overconsumption of energy and excess body mass suggests poorer academic achievement during development and greater decay of brain structure and function accompanied by increased cognitive aging during older adulthood. The review of literature regarding energy expenditure through the adoption of increased physical activity participation suggests increased cognitive health and function. Although this area of study is in its infancy, the preliminary data are promising and matched with the declining physical health of industrialized nations; this area of science could provide insight aimed at improving brain health and cognitive function across the human lifespan.

  17. Do Human-Figure Drawings of Children and Adolescents Mirror Their Cognitive Style and Self-Esteem?

    Science.gov (United States)

    Dey, Anindita; Ghosh, Paromita

    2016-01-01

    The investigation probed relationships among human-figure drawing, field-dependent-independent cognitive style and self-esteem of 10-15 year olds. It also attempted to predict human-figure drawing scores of participants based on their field-dependence-independence and self-esteem. Area, stratified and multi-stage random sampling were used to…

  18. Do Human-Figure Drawings of Children and Adolescents Mirror Their Cognitive Style and Self-Esteem?

    Science.gov (United States)

    Dey, Anindita; Ghosh, Paromita

    2016-01-01

    The investigation probed relationships among human-figure drawing, field-dependent-independent cognitive style and self-esteem of 10-15 year olds. It also attempted to predict human-figure drawing scores of participants based on their field-dependence-independence and self-esteem. Area, stratified and multi-stage random sampling were used to…

  19. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees......, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy...... metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized...

  20. Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework

    Science.gov (United States)

    Staal, Mark A.

    2004-01-01

    The following literature review addresses the effects of various stressors on cognition. While attempting to be as inclusive as possible, the review focuses its examination on the relationships between cognitive appraisal, attention, memory, and stress as they relate to information processing and human performance. The review begins with an overview of constructs and theoretical perspectives followed by an examination of effects across attention, memory, perceptual-motor functions, judgment and decision making, putative stressors such as workload, thermals, noise, and fatigue and closes with a discussion of moderating variables and related topics. In summation of the review, a conceptual framework for cognitive process under stress has been assembled. As one might imagine, the research literature that addresses stress, theories governing its effects on human performance, and experimental evidence that supports these notions is large and diverse. In attempting to organize and synthesize this body of work, I was guided by several earlier efforts (Bourne & Yaroush, 2003; Driskell, Mullen, Johnson, Hughes, & Batchelor, 1992; Driskell & Salas, 1996; Haridcock & Desmond, 2001; Stokes & Kite, 1994). These authors should be credited with accomplishing the monumental task of providing focused reviews in this area and their collective efforts laid the foundation for this present review. Similarly, the format of this review has been designed in accordance with these previous exemplars. However, each of these previous efforts either simply reported general findings, without sufficient experimental illustration, or narrowed their scope of investigation to the extent that the breadth of such findings remained hidden from the reader. Moreover, none of these examinations yielded an architecture that adequately describes or explains the inter-relations between information processing elements under stress conditions.

  1. Psychedelics and cognitive liberty: Reimagining drug policy through the prism of human rights.

    Science.gov (United States)

    Walsh, Charlotte

    2016-03-01

    This paper reimagines drug policy--specifically psychedelic drug policy--through the prism of human rights. Challenges to the incumbent prohibitionist paradigm that have been brought from this perspective to date--namely by calling for exemptions from criminalisation on therapeutic or religious grounds--are considered, before the assertion is made that there is a need to go beyond such reified constructs, calling for an end to psychedelic drug prohibitions on the basis of the more fundamental right to cognitive liberty. This central concept is explicated, asserted as being a crucial component of freedom of thought, as enshrined within Article 9 of the European Convention on Human Rights (ECHR). It is argued that the right to cognitive liberty is routinely breached by the existence of the system of drug prohibition in the United Kingdom (UK), as encoded within the Misuse of Drugs Act 1971 (MDA). On this basis, it is proposed that Article 9 could be wielded to challenge the prohibitive system in the courts. This legal argument is supported by a parallel and entwined argument grounded in the political philosophy of classical liberalism: namely, that the state should only deploy the criminal law where an individual's actions demonstrably run a high risk of causing harm to others. Beyond the courts, it is recommended that this liberal, rights-based approach also inform psychedelic drug policy activism, moving past the current predominant focus on harm reduction, towards a prioritization of benefit maximization. How this might translate in to a different regulatory model for psychedelic drugs, a third way, distinct from the traditional criminal and medical systems of control, is tentatively considered. However, given the dominant political climate in the UK--with its move away from rights and towards a more authoritarian drug policy--the possibility that it is only through underground movements that cognitive liberty will be assured in the foreseeable future is

  2. A Simple ERP Method for Quantitative Analysis of Cognitive Workload in Myoelectric Prosthesis Control and Human-Machine Interaction

    OpenAIRE

    Sean Deeny; Caitlin Chicoine; Levi Hargrove; Todd Parrish; Arun Jayaraman

    2014-01-01

    Common goals in the development of human-machine interface (HMI) technology are to reduce cognitive workload and increase function. However, objective and quantitative outcome measures assessing cognitive workload have not been standardized for HMI research. The present study examines the efficacy of a simple event-related potential (ERP) measure of cortical effort during myoelectric control of a virtual limb for use as an outcome tool. Participants trained and tested on two methods of contro...

  3. Cognitive theories as reinforcement history surrogates: the case of likelihood ratio models of human recognition memory.

    Science.gov (United States)

    Wixted, John T; Gaitan, Santino C

    2002-11-01

    B. F. Skinner (1977) once argued that cognitive theories are essentially surrogates for the organism's (usually unknown) reinforcement history. In this article, we argue that this notion applies rather directly to a class of likelihood ratio models of human recognition memory. The point is not that such models are fundamentally flawed or that they are not useful and should be abandoned. Instead, the point is that the role of reinforcement history in shaping memory decisions could help to explain what otherwise must be explained by assuming that subjects are inexplicably endowed with the relevant distributional information and computational abilities. To the degree that a role for an organism's reinforcement history is appreciated, the importance of animal memory research in understanding human memory comes into clearer focus. As Skinner was also fond of pointing out, it is only in the animal laboratory that an organism's history of reinforcement can be precisely controlled and its effects on behavior clearly understood.

  4. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    AChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major...... concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory-enhancing effects seen in animal...... models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain regions, and may hamper...

  5. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    Directory of Open Access Journals (Sweden)

    Jörn M. Horschig

    2014-06-01

    Full Text Available Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g. communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works.

  6. Increasing cognitive load attenuates right arm swing in healthy human walking

    Science.gov (United States)

    Killeen, Tim; Easthope, Christopher S.; Filli, Linard; Lőrincz, Lilla; Schrafl-Altermatt, Miriam; Brugger, Peter; Linnebank, Michael; Curt, Armin; Zörner, Björn; Bolliger, Marc

    2017-01-01

    Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

  7. The impacts of nature experience on human cognitive function and mental health.

    Science.gov (United States)

    Bratman, Gregory N; Hamilton, J Paul; Daily, Gretchen C

    2012-02-01

    Scholars spanning a variety of disciplines have studied the ways in which contact with natural environments may impact human well-being. We review the effects of such nature experience on human cognitive function and mental health, synthesizing work from environmental psychology, urban planning, the medical literature, and landscape aesthetics. We provide an overview of the prevailing explanatory theories of these effects, the ways in which exposure to nature has been considered, and the role that individuals' preferences for nature may play in the impact of the environment on psychological functioning. Drawing from the highly productive but disparate programs of research in this area, we conclude by proposing a system of categorization for different types of nature experience. We also outline key questions for future work, including further inquiry into which elements of the natural environment may have impacts on cognitive function and mental health; what the most effective type, duration, and frequency of contact may be; and what the possible neural mechanisms are that could be responsible for the documented effects. © 2012 New York Academy of Sciences.

  8. Perioperative utility of goal-directed therapy in high-risk cardiac patients undergoing coronary artery bypass grafting: “A clinical outcome and biomarker-based study”

    Science.gov (United States)

    Kapoor, Poonam Malhotra; Magoon, Rohan; Rawat, Rajinder; Mehta, Yatin

    2016-01-01

    Goal-directed therapy (GDT) encompasses guidance of intravenous (IV) fluid and vasopressor/inotropic therapy by cardiac output or similar parameters to help in early recognition and management of high-risk cardiac surgical patients. With the aim of establishing the utility of perioperative GDT using robust clinical and biochemical outcomes, we conducted the present study. This multicenter randomized controlled study included 130 patients of either sex, with European system for cardiac operative risk evaluation ≥3 undergoing coronary artery bypass grafting on cardiopulmonary bypass. The patients were randomly divided into the control and GDT group. All the participants received standardized care; arterial pressure monitored through radial artery, central venous pressure (CVP) through a triple lumen in the right internal jugular vein, electrocardiogram, oxygen saturation, temperature, urine output per hour, and frequent arterial blood gas (ABG) analysis. In addition, cardiac index (CI) monitoring using FloTrac™ and continuous central venous oxygen saturation (ScVO2) using PreSep™ were used in patients in the GDT group. Our aim was to maintain the CI at 2.5–4.2 L/min/m2, stroke volume index 30–65 ml/beat/m2, systemic vascular resistance index 1500–2500 dynes/s/cm5/m2, oxygen delivery index 450–600 ml/min/m2, continuous ScVO2 >70%, and stroke volume variation 30%, and urine output >1 ml/kg/h. The aims were achieved by altering the administration of IV fluids and doses of inotropes or vasodilators. The data of sixty patients in each group were analyzed in view of ten exclusions. The average duration of ventilation (19.89 ± 3.96 vs. 18.05 ± 4.53 h, P = 0.025), hospital stay (7.94 ± 1.64 vs. 7.17 ± 1.93 days, P = 0.025), and Intensive Care Unit (ICU) stay (3.74 ± 0.59 vs. 3.41 ± 0.75 days, P = 0.012) was significantly less in the GDT group, compared to the control group. The extra volume added and the number of inotropic dose adjustments were

  9. Perioperative utility of goal-directed therapy in high-risk cardiac patients undergoing coronary artery bypass grafting: “A clinical outcome and biomarker-based study”

    Directory of Open Access Journals (Sweden)

    Poonam Malhotra Kapoor

    2016-01-01

    Full Text Available Goal-directed therapy (GDT encompasses guidance of intravenous (IV fluid and vasopressor/inotropic therapy by cardiac output or similar parameters to help in early recognition and management of high-risk cardiac surgical patients. With the aim of establishing the utility of perioperative GDT using robust clinical and biochemical outcomes, we conducted the present study. This multicenter randomized controlled study included 130 patients of either sex, with European system for cardiac operative risk evaluation ≥3 undergoing coronary artery bypass grafting on cardiopulmonary bypass. The patients were randomly divided into the control and GDT group. All the participants received standardized care; arterial pressure monitored through radial artery, central venous pressure (CVP through a triple lumen in the right internal jugular vein, electrocardiogram, oxygen saturation, temperature, urine output per hour, and frequent arterial blood gas (ABG analysis. In addition, cardiac index (CI monitoring using FloTrac™ and continuous central venous oxygen saturation (ScVO2 using PreSep™ were used in patients in the GDT group. Our aim was to maintain the CI at 2.5–4.2 L/min/m2, stroke volume index 30–65 ml/beat/m2, systemic vascular resistance index 1500–2500 dynes/s/cm5/m2, oxygen delivery index 450–600 ml/min/m2, continuous ScVO2 >70%, and stroke volume variation 30%, and urine output >1 ml/kg/h. The aims were achieved by altering the administration of IV fluids and doses of inotropes or vasodilators. The data of sixty patients in each group were analyzed in view of ten exclusions. The average duration of ventilation (19.89 ± 3.96 vs. 18.05 ± 4.53 h, P = 0.025, hospital stay (7.94 ± 1.64 vs. 7.17 ± 1.93 days, P = 0.025, and Intensive Care Unit (ICU stay (3.74 ± 0.59 vs. 3.41 ± 0.75 days, P = 0.012 was significantly less in the GDT group, compared to the control group. The extra volume added and the number of inotropic dose adjustments were

  10. Human melody singing by bullfinches (Pyrrhula pyrrula) gives hints about a cognitive note sequence processing.

    Science.gov (United States)

    Nicolai, Jürgen; Gundacker, Christina; Teeselink, Katharina; Güttinger, Hans Rudolf

    2014-01-01

    We studied human melody perception and production in a songbird in the light of current concepts from the cognitive neuroscience of music. Bullfinches are the species best known for learning melodies from human teachers. The study is based on the historical data of 15 bullfinches, raised by 3 different human tutors and studied later by Jürgen Nicolai (JN) in the period 1967-1975. These hand-raised bullfinches learned human folk melodies (sequences of 20-50 notes) accurately. The tutoring was interactive and variable, starting before fledging and JN continued it later throughout the birds' lives. All 15 bullfinches learned to sing alternately melody modules with JN (alternate singing). We focus on the aspects of note sequencing and timing studying song variability when singing the learned melody alone and the accuracy of listening-singing interactions during alternatively singing with JN by analyzing song recordings of 5 different males. The following results were obtained as follows: (1) Sequencing: The note sequence variability when singing alone suggests that the bullfinches retrieve the note sequence from the memory as different sets of note groups (=modules), as chunks (sensu Miller in Psychol Rev 63:81-87, 1956). (2) Auditory-motor interactions, the coupling of listening and singing the human melody: Alternate singing provides insights into the bird's brain melody processing from listening to the actually whistled part of the human melody by JN to the bird's own accurately singing the consecutive parts. We document how variable and correctly bullfinches and JN alternated in their singing the note sequences. Alternate singing demonstrates that melody-singing bullfinches did not only follow attentively the just whistled note contribution of the human by auditory feedback, but also could synchronously anticipate singing the consecutive part of the learned melody. These data suggest that both listening and singing may depend on a single learned human melody

  11. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility.

    Science.gov (United States)

    Park, Junchol; Moghaddam, Bita

    2017-03-14

    Anxiety often is studied as a stand-alone construct in laboratory models. But in the context of coping with real-life anxiety, its negative impacts extend beyond aversive feelings and involve disruptions in ongoing goal-directed behaviors and cognitive functioning. Critical examples of cognitive constructs affected by anxiety are cognitive flexibility and decision making. In particular, anxiety impedes the ability to shift flexibly between strategies in response to changes in task demands, as well as the ability to maintain a strategy in the presence of distractors. The brain region most critically involved in behavioral flexibility is the prefrontal cortex (PFC), but little is known about how anxiety impacts PFC encoding of internal and external events that are critical for flexible behavior. Here we review animal and human neurophysiological and neuroimaging studies implicating PFC neural processing in anxiety-induced deficits in cognitive flexibility. We then suggest experimental and analytical approaches for future studies to gain a better mechanistic understanding of impaired cognitive inflexibility in anxiety and related disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Evolutive standard base excess and serum lactate level in severe sepsis and septic shock patients resuscitated with early goal-directed therapy: still outcome markers? Standard base excess e o nível sérico de lactato evolutivos nos pacientes com sepse grave e choque séptico reanimados com o early goal directed therapy: ainda discriminadores de mortalidade?

    Directory of Open Access Journals (Sweden)

    Marcelo Park

    2006-02-01

    Full Text Available PURPOSE: To compare the evolution of standard base excess and serum lactate level between surviving and non surviving patients with severe sepsis and septic shock resuscitated with early goal-directed therapy. METHODS: This is a retrospective study in an intensive care unit of a university tertiary hospital where 65 consecutive severe sepsis and septic shock patients were observed without any intervention in the treatment by the authors of this report. RESULTS: In our study, the mortality of severe sepsis and septic shock patients was 38%. The central venous oxygen saturation of both groups was above 70% after the resuscitative period, excluding the second day of the non survivors group (69.8%. After the second day, the central venous oxygen saturation was significantly higher in the survivors group (P OBJETIVO: Comparar a evolução do "standard base excess" e o nível de lactato sérico entre pacientes sobreviventes e não sobreviventes com sepse grave ou choque séptico reanimados com o "early goal directed therapy". MÉTODOS: Estudo retrospectivo em uma unidade de terapia intensiva de um hospital escola onde sessenta e cinco pacientes com sepse grave e choque séptico foram observados sem intervenções. RESULTADOS: Em nosso estudo, a mortalidade na sepse grave e choque séptico foi de 38%. A saturação venosa central de oxigênio nos dois grupos foi maior que 70% depois da reanimação, exceto no segundo dia no grupo dos pacientes não sobreviventes (69,8%. Depois do segundo dia, a saturação venosa central foi significantemente maior no grupo dos sobreviventes (p<0.001. O "standard base excess" foi inicialmente baixo em ambos os grupos, mas a partir do segundo dia a recuperação do "standard base excess" foi significantemente mais importante e linear no grupo dos sobreviventes (p<0.001. Os níveis de lactato foram similares na evolução dos dois grupos. DISCUSSÃO: O "standard base excess" e o lactato são ainda considerados como

  13. The flexible nature of unconsicous cognition

    NARCIS (Netherlands)

    Wokke, M.E.; van Gaal, S.; Scholte, H.S.; Ridderinkhof, K.R.; Lamme, V.A.F.

    2011-01-01

    The cognitive signature of unconscious processes is hotly debated recently. Generally, consciousness is thought to mediate flexible, adaptive and goal-directed behavior, but in the last decade unconscious processing has rapidly gained ground on traditional conscious territory. In this study we

  14. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness

    DEFF Research Database (Denmark)

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng;

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees......, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy...

  15. High frequency oscillations are associated with cognitive processing in human recognition memory.

    Science.gov (United States)

    Kucewicz, Michal T; Cimbalnik, Jan; Matsumoto, Joseph Y; Brinkmann, Benjamin H; Bower, Mark R; Vasoli, Vincent; Sulc, Vlastimil; Meyer, Fred; Marsh, W R; Stead, S M; Worrell, Gregory A

    2014-08-01

    High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and

  16. Cognitive work analysis: An influential legacy extending beyond human factors and engineering.

    Science.gov (United States)

    Naikar, Neelam

    2017-03-01

    Jens Rasmussen's multifaceted legacy includes cognitive work analysis (CWA), a framework for the analysis, design, and evaluation of complex sociotechnical systems. After considering the framework's origins, this paper reviews its progress, predictably covering experimental research on ecological interface design, case studies of the application of CWA to human factors and engineering problems in industry, and methods and modelling tools for CWA. Emphasis is placed, however, on studying the nexus between some of the recent results obtained with CWA and the original field studies of human problem-solving that motivated the framework's development. Of particular interest is a case study of the use of CWA for military doctrine development, a problem commonly regarded as lying outside the fields of human factors and engineering. It is concluded that the value of CWA, even for such diverse problems, is likely to result from its conceptual grounding in empirical observations of patterns of human reasoning in complex systems. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Human likeness: cognitive and affective factors affecting adoption of robot-assisted learning systems

    Science.gov (United States)

    Yoo, Hosun; Kwon, Ohbyung; Lee, Namyeon

    2016-07-01

    With advances in robot technology, interest in robotic e-learning systems has increased. In some laboratories, experiments are being conducted with humanoid robots as artificial tutors because of their likeness to humans, the rich possibilities of using this type of media, and the multimodal interaction capabilities of these robots. The robot-assisted learning system, a special type of e-learning system, aims to increase the learner's concentration, pleasure, and learning performance dramatically. However, very few empirical studies have examined the effect on learning performance of incorporating humanoid robot technology into e-learning systems or people's willingness to accept or adopt robot-assisted learning systems. In particular, human likeness, the essential characteristic of humanoid robots as compared with conventional e-learning systems, has not been discussed in a theoretical context. Hence, the purpose of this study is to propose a theoretical model to explain the process of adoption of robot-assisted learning systems. In the proposed model, human likeness is conceptualized as a combination of media richness, multimodal interaction capabilities, and para-social relationships; these factors are considered as possible determinants of the degree to which human cognition and affection are related to the adoption of robot-assisted learning systems.

  18. Recent Clinical History and Cognitive Dysfunction for Attention and Executive Function among Human Immunodeficiency Virus-Infected Patients

    Science.gov (United States)

    Tate, David F.; DeLong, Allison; McCaffrey, Daniel E.; Kertesz, Kinga; Paul, Robert H.; Conley, Jared; Russell, Troy; Coop, Kathleen; Gillani, Fizza; Flanigan, Timothy; Tashima, Karen; Hogan, Joseph W.

    2011-01-01

    This study examined the association between recent trends in CD4 and viral loads and cognitive test performance with the expectation that recent history could predict cognitive performance. Eighty-three human immunodeficiency virus (HIV)-infected patients with a mean CD4 count of 428 copies/ml were examined in this study (62% with undetectable plasma viral load [PVL]). We investigated the relationships between nadir CD4 cell count, 1-year trends in immunologic function/PVLs, and cognitive performance across several domains using linear regression models. Nadir CD4 cell count was predictive of current executive function (p = .004). One year clinical history for CD4 cell counts and/or PVLs were predictive of executive function, attention/working memory, and learning/memory measures (p < .05). Models that combined recent clinical history trends and nadir CD4 cell counts suggested that recent clinical trends were more important in predicting current cognitive performance for all domains except executive function. This research suggests that recent CD4 and viral load history is an important predictor of current cognitive function across several cognitive domains. If validated, clinical variables and cognitive dysfunction models may improve our understanding of the dynamic relationships between disease evolution and progression and CNS involvement. PMID:21873325

  19. Decision Support System Requirements Definition for Human Extravehicular Activity Based on Cognitive Work Analysis.

    Science.gov (United States)

    Miller, Matthew James; McGuire, Kerry M; Feigh, Karen M

    2017-06-01

    The design and adoption of decision support systems within complex work domains is a challenge for cognitive systems engineering (CSE) practitioners, particularly at the onset of project development. This article presents an example of applying CSE techniques to derive design requirements compatible with traditional systems engineering to guide decision support system development. Specifically, it demonstrates the requirements derivation process based on cognitive work analysis for a subset of human spaceflight operations known as extravehicular activity. The results are presented in two phases. First, a work domain analysis revealed a comprehensive set of work functions and constraints that exist in the extravehicular activity work domain. Second, a control task analysis was performed on a subset of the work functions identified by the work domain analysis to articulate the translation of subject matter states of knowledge to high-level decision support system requirements. This work emphasizes an incremental requirements specification process as a critical component of CSE analyses to better situate CSE perspectives within the early phases of traditional systems engineering design.

  20. Increasing our understanding of human cognition through the study of Fragile X Syndrome.

    Science.gov (United States)

    Cook, Denise; Nuro, Erin; Murai, Keith K

    2014-02-01

    Fragile X Syndrome (FXS) is considered the most common form of inherited intellectual disability. It is caused by reductions in the expression level or function of a single protein, the Fragile X Mental Retardation Protein (FMRP), a translational regulator which binds to approximately 4% of brain messenger RNAs. Accumulating evidence suggests that FXS is a complex disorder of cognition, involving interactions between genetic and environmental influences, leading to difficulties in acquiring key life skills including motor skills, language, and proper social behaviors. Since many FXS patients also present with one or more features of autism spectrum disorders (ASDs), insights gained from studying the monogenic basis of FXS could pave the way to a greater understanding of underlying features of multigenic ASDs. Here we present an overview of the FXS and FMRP field with the goal of demonstrating how loss of a single protein involved in translational control affects multiple stages of brain development and leads to debilitating consequences on human cognition. We also focus on studies which have rescued or improved FXS symptoms in mice using genetic or therapeutic approaches to reduce protein expression. We end with a brief description of how deficits in translational control are implicated in FXS and certain cases of ASDs, with many recent studies demonstrating that ASDs are likely caused by increases or decreases in the levels of certain key synaptic proteins. The study of FXS and its underlying single genetic cause offers an invaluable opportunity to study how a single gene influences brain development and behavior.

  1. Consciousness, plasticity, and connectomics: the role of intersubjectivity in human cognition.

    Science.gov (United States)

    Allen, Micah; Williams, Gary

    2011-01-01

    Consciousness is typically construed as being explainable purely in terms of either private, raw feels or higher-order, reflective representations. In contrast to this false dichotomy, we propose a new view of consciousness as an interactive, plastic phenomenon open to sociocultural influence. We take up our account of consciousness from the observation of radical cortical neuroplasticity in human development. Accordingly, we draw upon recent research on macroscopic neural networks, including the "default mode," to illustrate cases in which an individual's particular "connectome" is shaped by encultured social practices that depend upon and influence phenomenal and reflective consciousness. On our account, the dynamically interacting connectivity of these networks bring about important individual differences in conscious experience and determine what is "present" in consciousness. Further, we argue that the organization of the brain into discrete anti-correlated networks supports the phenomenological distinction of prereflective and reflective consciousness, but we emphasize that this finding must be interpreted in light of the dynamic, category-resistant nature of consciousness. Our account motivates philosophical and empirical hypotheses regarding the appropriate time-scale and function of neuroplastic adaptation, the relation of high and low-frequency neural activity to consciousness and cognitive plasticity, and the role of ritual social practices in neural development and cognitive function.

  2. Emotion Evaluation and Response Slowing in a Non-Human Primate: New Directions for Cognitive Bias Measures of Animal Emotion?

    Directory of Open Access Journals (Sweden)

    Emily J. Bethell

    2016-01-01

    Full Text Available The cognitive bias model of animal welfare assessment is informed by studies with humans demonstrating that the interaction between emotion and cognition can be detected using laboratory tasks. A limitation of cognitive bias tasks is the amount of training required by animals prior to testing. A potential solution is to use biologically relevant stimuli that trigger innate emotional responses. Here; we develop a new method to assess emotion in rhesus macaques; informed by paradigms used with humans: emotional Stroop; visual cueing and; in particular; response slowing. In humans; performance on a simple cognitive task can become impaired when emotional distractor content is displayed. Importantly; responses become slower in anxious individuals in the presence of mild threat; a pattern not seen in non-anxious individuals; who are able to effectively process and disengage from the distractor. Here; we present a proof-of-concept study; demonstrating that rhesus macaques show slowing of responses in a simple touch-screen task when emotional content is introduced; but only when they had recently experienced a presumably stressful veterinary inspection. Our results indicate the presence of a subtle “cognitive freeze” response; the measurement of which may provide a means of identifying negative shifts in emotion in animals.

  3. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience.

    Science.gov (United States)

    Gabrieli, John D E; Ghosh, Satrajit S; Whitfield-Gabrieli, Susan

    2015-01-07

    Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet, however, propelled changes in educational or medical practices that improve people's lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict future education, learning, and performance in children and adults; criminality; health-related behaviors; and responses to pharmacological or behavioral treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures. With further advances in study designs and analyses, neuromarkers may offer opportunities to personalize educational and clinical practices that lead to better outcomes for people. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Implications of Oxytocin in Human Linguistic Cognition: From Genome to Phenome

    Science.gov (United States)

    Theofanopoulou, Constantina

    2016-01-01

    The neurohormone oxytocin (OXT) has been found to mediate the regulation of complex socioemotional cognition in multiple ways both in humans and other animals. Recent studies have investigated the effects of OXT in different levels of analysis (from genetic to behavioral) chiefly targeting its impact on the social component and only indirectly indicating its implications in other components of our socio-interactive abilities. This article aims at shedding light onto how OXT might be modulating the multimodality that characterizes our higher-order linguistic abilities (vocal-auditory-attentional-memory-social systems). Based on evidence coming from genetic, EEG, fMRI, and behavioral studies, I attempt to establish the promises of this perspective with the goal of stressing the need for neuropeptide treatments to enter clinical practice. PMID:27378840

  5. The evolution of religious belief in humans: a brief review with a focus on cognition

    Indian Academy of Sciences (India)

    DHAIRYYA SINGH; GARGA CHATTERJEE

    2017-07-01

    Religion has been a widely present feature of human beings. This review explores developments in the evolutionary cognitive psychology of religion and provides critical evaluation of the different theoretical positions. Generally scholars have either believed religion is adaptive, a by-product of adaptive psychological features or maladaptive and varying amounts of empiricalevidence supports each position. The adaptive position has generated the costly signalling theory of religious ritual and the group selection theory. The by-product position has identified psychologicalmachinery that has been co-opted by religion. The maladaptive position has generated the meme theory of religion. The review concludes that the by-product camp enjoys the most support in thescientific community and suggests ways forward for an evolutionarily significant study of religion.

  6. Effects of Cannabis Use on Human Behavior, Including Cognition, Motivation, and Psychosis: A Review.

    Science.gov (United States)

    Volkow, Nora D; Swanson, James M; Evins, A Eden; DeLisi, Lynn E; Meier, Madeline H; Gonzalez, Raul; Bloomfield, Michael A P; Curran, H Valerie; Baler, Ruben

    2016-03-01

    With a political debate about the potential risks and benefits of cannabis use as a backdrop, the wave of legalization and liberalization initiatives continues to spread. Four states (Colorado, Washington, Oregon, and Alaska) and the District of Columbia have passed laws that legalized cannabis for recreational use by adults, and 23 others plus the District of Columbia now regulate cannabis use for medical purposes. These policy changes could trigger a broad range of unintended consequences, with profound and lasting implications for the health and social systems in our country. Cannabis use is emerging as one among many interacting factors that can affect brain development and mental function. To inform the political discourse with scientific evidence, the literature was reviewed to identify what is known and not known about the effects of cannabis use on human behavior, including cognition, motivation, and psychosis.

  7. Architecture of cognitive flexibility revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2013-11-15

    Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n=149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism-Extraversion-Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R(2)=0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Connecting a cognitive architecture to robotic perception

    Science.gov (United States)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2012-06-01

    We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.

  9. Une approche pragmatique cognitive de l'interaction personne/système informatisé A Cognitive Pragmatic Approach of Human/Computer Interaction

    Directory of Open Access Journals (Sweden)

    Madeleine Saint-Pierre

    1998-06-01

    Full Text Available Dans cet article, nous proposons une approche inférentielle de l'interaction humain/ordinateur. C'est par la prise en compte de l'activité cognitive de l'utilisateur pendant son travail avec un système que nous voulons comprendre ce type d'interaction. Ceci mènera à une véritable évaluation des interfaces/utilisateurs et pourra servir de guide pour des interfaces en développement. Nos analyses décrivent le processus inférentiel impliqué dans le contexte dynamique d'exécution de tâche, grâce à une catégorisation de l'activité cognitive issue des verbalisations recueillies auprès d'utilisateurs qui " pensent à haute voix " en travaillant. Nous présentons des instruments méthodologiques mis au point dans notre recherche pour l'analyses et la catégorisation des protocoles. Les résultats sont interprétés dans le cadre de la théorie de la pertinence de Sperber et Wilson (1995 en termes d'effort cognitif dans le traitement des objets (linguistique, iconique, graphique... apparaissant à l'écran et d'effet cognitif de ces derniers. Cette approche est généralisable à tout autre contexte d'interaction humain/ordinateur comme, par exemple, le télé-apprentissage.This article proposes an inferential approach for the study of human/computer interaction. It is by taking into account the user's cognitive activity while working at a computer that we propose to understand this interaction. This approach leads to a real user/interface evaluation and, hopefully, will serve as guidelines for the design of new interfaces. Our analysis describe the inferential process involved in the dynamics of task performance. The cognitive activity of the user is grasped by the mean of a " thinking aloud " method through which the user is asked to verbalize while working at the computer. Tools developped by our research team for the categorization of the verbal protocols are presented. The results are interpreted within the relevance theory

  10. Multidimensional human capital formation in a developing country: Health, cognition and locus of control in the Philippines.

    Science.gov (United States)

    Villa, Kira M

    2017-07-08

    Economic success depends on multiple human capital stocks whose production is interrelated and occurs over many life stages. Yet, much empirical work fails to account for human capital's multidimensional nature and limits its focus to specific childhood stages. Using longitudinal data from the Philippines, I estimate a model of multidimensional human capital formation from birth through adulthood where health, cognitive, and noncognitive dimensions are jointly produced. I examine during which developmental stages parental investment is most influential and address the endogeneity of investment using a policy function where investment depends on child characteristics, exogenous conditions at birth and local prices. Findings imply that not only will early human capital disparities persist into adulthood without early remediation but also that cognitive gains yielded from early remediation will be lost without complementary investment in adolescence. Findings further suggest that interventions will be undervalued if their multidimensional effects are not accounted for. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. HOMOLOGOUS MEASURES OF COGNITIVE FUNCTION IN HUMAN INFANTS AND LABORATORY ANIMALS TO IDENTIFY ENVIRONMENTAL HEALTH RISKS TO CHILDREN

    Science.gov (United States)

    The importance of including neurodevelopmental endpoints in environmental studies is clear. A validated measure of cognitive fucntion in human infants that also has a parallel test in laboratory animal studies will provide a valuable approach for largescale studies. Such a ho...

  12. HOMOLOGOUS MEASURES OF COGNITIVE FUNCTION IN HUMAN INFANTS AND LABORATORY ANIMALS TO IDENTIFY ENVIRONMENTAL HEALTH RISKS TO CHILDREN

    Science.gov (United States)

    The importance of including neurodevelopmental endpoints in environmental studies is clear. A validated measure of cognitive fucntion in human infants that also has a parallel test in laboratory animal studies will provide a valuable approach for largescale studies. Such a ho...

  13. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates

    Science.gov (United States)

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2017-01-01

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490

  14. Education and Health in Late-Life among High School Graduates: Cognitive versus Psychological Aspects of Human Capital

    Science.gov (United States)

    Herd, Pamela

    2010-01-01

    Just as postsecondary schooling serves as a dividing line between the advantaged and disadvantaged on outcomes like income and marital status, it also serves as a dividing line between the healthy and unhealthy. Why are the better educated healthier? Human capital theory posits that education makes one healthier via cognitive (skill improvements)…

  15. Education and Health in Late-Life among High School Graduates: Cognitive versus Psychological Aspects of Human Capital

    Science.gov (United States)

    Herd, Pamela

    2010-01-01

    Just as postsecondary schooling serves as a dividing line between the advantaged and disadvantaged on outcomes like income and marital status, it also serves as a dividing line between the healthy and unhealthy. Why are the better educated healthier? Human capital theory posits that education makes one healthier via cognitive (skill improvements)…

  16. How does enhancing cognition affect human values? How does this translate into social responsibility?

    Science.gov (United States)

    Cabrera, Laura Y

    2015-01-01

    The past decade has seen a rise in the use of different technologies aimed at enhancing cognition of normal healthy individuals. While values have been acknowledged to be an important aspect of cognitive enhancement practices, the discussion has predominantly focused on just a few values, such as safety, peer pressure, and authenticity. How are values, in a broader sense, affected by enhancing cognitive abilities? Is this dependent on the type of technology or intervention used to attain the enhancement, or does the cognitive domain targeted play a bigger role in how values are affected? Values are not only likely to be affected by cognitive enhancement practices; they also play a crucial role in defining the type of interventions that are likely to be undertaken. This paper explores the way values affect and are affected by enhancing cognitive abilities. Furthermore, it argues that knowledge of the interplay between values and cognitive enhancement makes a strong case for social responsibility around cognitive enhancement practices.

  17. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy

    OpenAIRE

    Kaale Helga K; Moe-Nilssen Rolf; Sorsdahl Anne; Rieber Jannike; Strand Liv

    2010-01-01

    Abstract Background The effects of intensive training for children with cerebral palsy (CP) remain uncertain. The aim of the study was to investigate the impact on motor function, quality of movements and everyday activities of three hours of goal-directed activity-focused physiotherapy in a group setting, five days a week for a period of three weeks. Methods A repeated measures design was applied with three baseline and two follow up assessments; immediately and three weeks after interventio...

  18. When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans.

    Science.gov (United States)

    Nierat, Marie-Cécile; Demiri, Suela; Dupuis-Lozeron, Elise; Allali, Gilles; Morélot-Panzini, Capucine; Similowski, Thomas; Adler, Dan

    2016-01-01

    Human breathing stems from automatic brainstem neural processes. It can also be operated by cortico-subcortical networks, especially when breathing becomes uncomfortable because of external or internal inspiratory loads. How the "irruption of breathing into consciousness" interacts with cognition remains unclear, but a case report in a patient with defective automatic breathing (Ondine's curse syndrome) has shown that there was a cognitive cost of breathing when the respiratory cortical networks were engaged. In a pilot study of putative breathing-cognition interactions, the present study relied on a randomized design to test the hypothesis that experimentally loaded breathing in 28 young healthy subjects would have a negative impact on cognition as tested by "timed up-and-go" test (TUG) and its imagery version (iTUG). Progressive inspiratory threshold loading resulted in slower TUG and iTUG performance. Participants consistently imagined themselves faster than they actually were. However, progressive inspiratory loading slowed iTUG more than TUG, a finding that is unexpected with regard to the known effects of dual tasking on TUG and iTUG (slower TUG but stable iTUG). Insofar as the cortical networks engaged in response to inspiratory loading are also activated during complex locomotor tasks requiring cognitive inputs, we infer that competition for cortical resources may account for the breathing-cognition interference that is evidenced here.

  19. Predictive modeling of human operator cognitive state via sparse and robust support vector machines.

    Science.gov (United States)

    Zhang, Jian-Hua; Qin, Pan-Pan; Raisch, Jörg; Wang, Ru-Bin

    2013-10-01

    The accurate prediction of the temporal variations in human operator cognitive state (HCS) is of great practical importance in many real-world safety-critical situations. However, since the relationship between the HCS and electrophysiological responses of the operator is basically unknown, complicated and uncertain, only data-based modeling method can be employed. This paper is aimed at constructing a data-driven computationally intelligent model, based on multiple psychophysiological and performance measures, to accurately estimate the HCS in the context of a safety-critical human-machine system. The advanced least squares support vector machines (LS-SVM), whose parameters are optimized by grid search and cross-validation techniques, are adopted for the purpose of predictive modeling of the HCS. The sparse and weighted LS-SVM (WLS-SVM) were proposed by Suykens et al. to overcome the deficiency of the standard LS-SVM in lacking sparseness and robustness. This paper adopted those two improved LS-SVM algorithms to model the HCS based solely on a set of physiological and operator performance data. The results showed that the sparse LS-SVM can obtain HCS models with sparseness with almost no loss of modeling accuracy, while the WLS-SVM leads to models which are robust in case of noisy training data. Both intelligent system modeling approaches are shown to be capable of capturing the temporal fluctuation trends of the HCS because of their superior generalization performance.

  20. Human Respiration Rate Estimation Using Ultra-wideband Distributed Cognitive Radar System

    Institute of Scientific and Technical Information of China (English)

    Yifan Chen; Predrag Rapajic

    2008-01-01

    It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems,which shows promise in home healthcare, rescue, and security applications. In this paper, we first present a multi-ray propagation model for UWB signal, which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces. A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently,a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs. We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture.

  1. A cognitive neuroscience perspective on embodied language for human-robot cooperation.

    Science.gov (United States)

    Madden, Carol; Hoen, Michel; Dominey, Peter Ford

    2010-03-01

    This article addresses issues in embodied sentence processing from a "cognitive neural systems" approach that combines analysis of the behavior in question, analysis of the known neurophysiological bases of this behavior, and the synthesis of a neuro-computational model of embodied sentence processing that can be applied to and tested in the context of human-robot cooperative interaction. We propose a Hybrid Comprehension Model that links compact propositional representations of sentences and discourse with their temporal unfolding in situated simulations, under the control of grammar. The starting point is a model of grammatical construction processing which specifies the neural mechanisms by which language is a structured inventory of mappings from sentence to meaning. This model is then "embodied" in a perceptual-motor system (robot) which allows it access to sentence-perceptual representation pairs, and interaction with the world providing the basis for language acquisition. We then introduce a "simulation" capability, such that the robot has an internal representation of its interaction with the world. The control of this simulator and the associated representations present a number of interesting "neuro-technical" issues. First, the "simulator" has been liberated from real-time. It can run without being connected to current sensory motor experience. Second, "simulations" appear to be represented at different levels of detail. Our paper provides a framework for beginning to address the questions: how does language and its grammar control these aspects of simulation, what are the neurophysiological bases, and how can this be demonstrated in an artificial yet embodied cognitive system. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Human nicotine conditioning requires explicit contingency knowledge: is addictive behaviour cognitively mediated?

    Science.gov (United States)

    Hogarth, Lee; Duka, Theodora

    2006-03-01

    Two seemingly contrary theories describe the learning mechanisms that mediate human addictive behaviour. According to the classical incentive theories of addiction, addictive behaviour is motivated by a Pavlovian conditioned appetitive emotional response elicited by drug-paired stimuli. Expectancy theory, on the other hand, argues that addictive behaviour is mediated by an expectancy of the drug imparted by cognitive knowledge of the Pavlovian (predictive) contingency between stimuli (S+) and the drug and of the instrumental (causal) contingency between instrumental behaviour and the drug. The present paper reviewed human-nicotine-conditioning studies to assess the role of appetitive emotional conditioning and explicit contingency knowledge in mediating addictive behaviour. The studies reviewed here provided evidence for both the emotional conditioning and the expectancy accounts. The first source of evidence is that nicotine-paired S+ elicit an appetitive emotional conditioned response (CR), albeit only in participants who expect nicotine. Furthermore, the magnitude of this emotional state is modulated by nicotine deprivation/satiation. However, the causal status of the emotional response in driving other forms of conditioned behaviour remains undemonstrated. The second source of evidence is that other nicotine CRs, including physiological responses, self-administration, attentional bias and subjective craving, are also dependent on participants possessing explicit knowledge of the Pavlovian contingencies arranged in the experiment. In addition, several of the nicotine CRs can be brought about or modified by instructed contingency knowledge, demonstrating the causal status of this knowledge. Collectively, these data suggest that human nicotine conditioned effects are mediated by an explicit expectancy of the drug coupled with an appetitive emotional response that reflects the positive biological value of the drug. The implication of this conclusion is that

  3. Common exonic missense variants in the C2 domain of the human KIBRA protein modify lipid binding and cognitive performance.

    Science.gov (United States)

    Duning, K; Wennmann, D O; Bokemeyer, A; Reissner, C; Wersching, H; Thomas, C; Buschert, J; Guske, K; Franzke, V; Flöel, A; Lohmann, H; Knecht, S; Brand, S-M; Pöter, M; Rescher, U; Missler, M; Seelheim, P; Pröpper, C; Boeckers, T M; Makuch, L; Huganir, R; Weide, T; Brand, E; Pavenstädt, H; Kremerskothen, J

    2013-06-18

    The human KIBRA gene has been linked to human cognition through a lead intronic single-nucleotide polymorphism (SNP; rs17070145) that is associated with episodic memory performance and the risk to develop Alzheimer's disease. However, it remains unknown how this relates to the function of the KIBRA protein. Here, we identified two common missense SNPs (rs3822660G/T [M734I], rs3822659T/G [S735A]) in exon 15 of the human KIBRA gene to affect cognitive performance, and to be in almost complete linkage disequilibrium with rs17070145. The identified SNPs encode variants of the KIBRA C2 domain with distinct Ca(2+) dependent binding preferences for monophosphorylated phosphatidylinositols likely due to differences in the dynamics and folding of the lipid-binding pocket. Our results further implicate the KIBRA protein in higher brain function and provide direction to the cellular pathways involved.

  4. Common exonic missense variants in the C2 domain of the human KIBRA protein modify lipid binding and cognitive performance

    Science.gov (United States)

    Duning, K; Wennmann, D O; Bokemeyer, A; Reissner, C; Wersching, H; Thomas, C; Buschert, J; Guske, K; Franzke, V; Flöel, A; Lohmann, H; Knecht, S; Brand, S-M; Pöter, M; Rescher, U; Missler, M; Seelheim, P; Pröpper, C; Boeckers, T M; Makuch, L; Huganir, R; Weide, T; Brand, E; Pavenstädt, H; Kremerskothen, J

    2013-01-01

    The human KIBRA gene has been linked to human cognition through a lead intronic single-nucleotide polymorphism (SNP; rs17070145) that is associated with episodic memory performance and the risk to develop Alzheimer's disease. However, it remains unknown how this relates to the function of the KIBRA protein. Here, we identified two common missense SNPs (rs3822660G/T [M734I], rs3822659T/G [S735A]) in exon 15 of the human KIBRA gene to affect cognitive performance, and to be in almost complete linkage disequilibrium with rs17070145. The identified SNPs encode variants of the KIBRA C2 domain with distinct Ca2+ dependent binding preferences for monophosphorylated phosphatidylinositols likely due to differences in the dynamics and folding of the lipid-binding pocket. Our results further implicate the KIBRA protein in higher brain function and provide direction to the cellular pathways involved. PMID:23778582

  5. A functional MiR-124 binding-site polymorphism in IQGAP1 affects human cognitive performance.

    Directory of Open Access Journals (Sweden)

    Lixin Yang

    Full Text Available As a product of the unique evolution of the human brain, human cognitive performance is largely a collection of heritable traits. Rather surprisingly, to date there have been no reported cases to highlight genes that underwent adaptive evolution in humans and which carry polymorphisms that have a marked effect on cognitive performance. IQ motif containing GTPase activating protein 1 (IQGAP1, a scaffold protein, affects learning and memory in a dose-dependent manner. Its expression is regulated by miR-124 through the binding sites in the 3'UTR, where a SNP (rs1042538 exists in the core-binding motif. Here we showed that this SNP can influence the miR-target interaction both in vitro and in vivo. Individuals carrying the derived T alleles have higher IQGAP1 expression in the brain as compared to the ancestral A allele carriers. We observed a significant and male-specific association between rs1042538 and tactile performances in two independent cohorts. Males with the derived allele displayed higher tactual performances as compared to those with the ancestral allele. Furthermore, we found a highly diverged allele-frequency distribution of rs1042538 among world human populations, likely caused by natural selection and/or recent population expansion. These results suggest that current human populations still carry sequence variations that affect cognitive performances and that these genetic variants may likely have been subject to comparatively recent natural selection.

  6. Cognitive model of trust dynamics predicts human behavior within and between two games of strategic interaction with computerized confederate agents

    Directory of Open Access Journals (Sweden)

    Michael Gordon Collins

    2016-02-01

    Full Text Available When playing games of strategic interaction, such as iterated Prisoner’s Dilemma and iterated Chicken Game, people exhibit specific within-game learning (e.g., learning a game’s optimal outcome as well as transfer of learning between games (e.g., a game’s optimal outcome occurring at a higher proportion when played after another game. The reciprocal trust players develop during the first game is thought to mediate transfer of learning effects. Recently, a computational cognitive model using a novel trust mechanism has been shown to account for human behavior in both games, including the transfer between games. We present the results of a study in which we evaluate the model’s a priori predictions of human learning and transfer in 16 different conditions. The model’s predictive validity is compared against five model variants that lacked a trust mechanism. The results suggest that a trust mechanism is necessary to explain human behavior across multiple conditions, even when a human plays against a non-human agent. The addition of a trust mechanism to the other learning mechanisms within the cognitive architecture, such as sequence learning, instance-based learning, and utility learning, leads to better prediction of the empirical data. It is argued that computational cognitive modeling is a useful tool for studying trust development, calibration, and repair.

  7. Cognitive Model of Trust Dynamics Predicts Human Behavior within and between Two Games of Strategic Interaction with Computerized Confederate Agents.

    Science.gov (United States)

    Collins, Michael G; Juvina, Ion; Gluck, Kevin A

    2016-01-01

    When playing games of strategic interaction, such as iterated Prisoner's Dilemma and iterated Chicken Game,