WorldWideScience

Sample records for human glycosyltransferase family

  1. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    Science.gov (United States)

    Mendonça-Mattos, Patricia Jeanne de Souza; Harada, Maria Lúcia

    2016-01-01

    Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i) the selective pressure on the GT6 paralogs genes in primates; (ii) the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii) the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions. PMID:28044107

  2. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    Directory of Open Access Journals (Sweden)

    Eliane Evanovich

    2016-01-01

    Full Text Available Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i the selective pressure on the GT6 paralogs genes in primates; (ii the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.

  3. Unique motifs identify PIG-A proteins from glycosyltransferases of the GT4 family

    Directory of Open Access Journals (Sweden)

    Bhattacharya Alok

    2008-06-01

    Full Text Available Abstract Background The first step of GPI anchor biosynthesis is catalyzed by PIG-A, an enzyme that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol. This protein is present in all eukaryotic organisms ranging from protozoa to higher mammals, as part of a larger complex of five to six 'accessory' proteins whose individual roles in the glycosyltransferase reaction are as yet unclear. The PIG-A gene has been shown to be an essential gene in various eukaryotes. In humans, mutations in the protein have been associated with paroxysomal noctural hemoglobuinuria. The corresponding PIG-A gene has also been recently identified in the genome of many archaeabacteria although genes of the accessory proteins have not been discovered in them. The present study explores the evolution of PIG-A and the phylogenetic relationship between this protein and other glycosyltransferases. Results In this paper we show that out of the twelve conserved motifs identified by us eleven are exclusively present in PIG-A and, therefore, can be used as markers to identify PIG-A from newly sequenced genomes. Three of these motifs are absent in the primitive eukaryote, G. lamblia. Sequence analyses show that seven of these conserved motifs are present in prokaryote and archaeal counterparts in rudimentary forms and can be used to differentiate PIG-A proteins from glycosyltransferases. Using partial least square regression analysis and data involving presence or absence of motifs in a range of PIG-A and glycosyltransferases we show that (i PIG-A may have evolved from prokaryotic glycosyltransferases and lipopolysaccharide synthases, members of the GT4 family of glycosyltransferases and (ii it is possible to uniquely classify PIG-A proteins versus glycosyltransferases. Conclusion Besides identifying unique motifs and showing that PIG-A protein from G. lamblia and some putative PIG-A proteins from archaebacteria are evolutionarily closer to

  4. Generation of monoclonal antibodies to native active human glycosyltransferases

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Bennett, Eric Paul; Clausen, Henrik;

    2013-01-01

    using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating...

  5. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family

    NARCIS (Netherlands)

    Uitdehaag, Joost C.M.; Veen, Bart A. van der; Dijkhuizen, Lubbert; Dijkstra, Bauke W.

    2002-01-01

    The catalytic mechanism of cyclodextrin glycosyltransferase, a member of the α-amylase family, is reviewed. The focus is put on the bond cleavage mechanism, the nature of the transition state and of the covalent intermediate, and on the stereo-electronic and lateral protonation contributions to cata

  6. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the alpha-amylase family

    NARCIS (Netherlands)

    Uitdehaag, JCM; van der Veen, BA; Dijkhuizen, L; Dijkstra, BW

    2002-01-01

    The catalytic mechanism of cyclodextrin glycosyltransferase, a member of the a-amylase family, is reviewed. The focus is put on the bond cleavage mechanism, the nature of the transition state and of the covalent intermediate, and on the stereo-electronic and lateral protonation contributions to cata

  7. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the alpha-amylase family

    NARCIS (Netherlands)

    Uitdehaag, JCM; Mosi, R; Kalk, KH; Dijkhuizen, L; Withers, SG; Dijkstra, BW

    Cyclodextrin glycosyltransferase (CGTase) is an enzyme of the alpha-amylase family, which uses a double displacement mechanism to process alpha-linked glucose polymers. We have determined two X-ray structures of CGTase complexes, one with an intact substrate at 2.1 Angstrom resolution, and the other

  8. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus

    OpenAIRE

    2014-01-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated ...

  9. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  10. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    Directory of Open Access Journals (Sweden)

    Barvkar Vitthal T

    2012-05-01

    Full Text Available Abstract Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L. is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N. Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST, microarray data and reverse transcription quantitative real time PCR (RT-qPCR. Seventy-three per cent of these genes (100 out of 137 showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot

  11. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in Charophycean green algae.

    Directory of Open Access Journals (Sweden)

    Rahil Taujale

    Full Text Available The glycosyltransferase family 43 (GT43 has been suggested to be involved in the synthesis of xylans in plant cell walls and proteoglycans in animals. Very recently GT43 family was also found in Charophycean green algae (CGA, the closest relatives of extant land plants. Here we present evidence that non-plant and non-animal early eukaryotes such as fungi, Haptophyceae, Choanoflagellida, Ichthyosporea and Haptophyceae also have GT43-like genes, which are phylogenetically close to animal GT43 genes. By mining RNA sequencing data (RNA-Seq of selected plants, we showed that CGA have evolved three major groups of GT43 genes, one orthologous to IRX14 (IRREGULAR XYLEM14, one orthologous to IRX9/IRX9L and the third one ancestral to all land plant GT43 genes. We confirmed that land plant GT43 has two major clades A and B, while in angiosperms, clade A further evolved into three subclades and the expression and motif pattern of A3 (containing IRX9 are fairly different from the other two clades likely due to rapid evolution. Our in-depth sequence analysis contributed to our overall understanding of the early evolution of GT43 family and could serve as an example for the study of other plant cell wall-related enzyme families.

  12. Novel UDP-GalNAc Derivative Structures Provide Insight into the Donor Specificity of Human Blood Group Glycosyltransferase.

    Science.gov (United States)

    Wagner, Gerd K; Pesnot, Thomas; Palcic, Monica M; Jørgensen, Rene

    2015-12-25

    Two closely related glycosyltransferases are responsible for the final step of the biosynthesis of ABO(H) human blood group A and B antigens. The two enzymes differ by only four amino acid residues, which determine whether the enzymes transfer GalNAc from UDP-GalNAc or Gal from UDP-Gal to the H-antigen acceptor. The enzymes belong to the class of GT-A folded enzymes, grouped as GT6 in the CAZy database, and are characterized by a single domain with a metal dependent retaining reaction mechanism. However, the exact role of the four amino acid residues in the specificity of the enzymes is still unresolved. In this study, we report the first structural information of a dual specificity cis-AB blood group glycosyltransferase in complex with a synthetic UDP-GalNAc derivative. Interestingly, the GalNAc moiety adopts an unusual yet catalytically productive conformation in the binding pocket, which is different from the "tucked under" conformation previously observed for the UDP-Gal donor. In addition, we show that this UDP-GalNAc derivative in complex with the H-antigen acceptor provokes the same unusual binding pocket closure as seen for the corresponding UDP-Gal derivative. Despite this, the two derivatives show vastly different kinetic properties. Our results provide a important structural insight into the donor substrate specificity and utilization in blood group biosynthesis, which can very likely be exploited for the development of new glycosyltransferase inhibitors and probes.

  13. Transcriptional regulation of proteoglycans and glycosaminoglycan chain-synthesizing glycosyltransferases by UV irradiation in cultured human dermal fibroblasts.

    Science.gov (United States)

    Shin, Jeong-Eun; Oh, Jang-Hee; Kim, Yeon Kyung; Jung, Ji-Yong; Chung, Jin Ho

    2011-03-01

    Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm(2) of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, β1,3-glucuronyltransferase-1, β1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of β1,3-galactosyltransferase-6, β1,4-galactosyltransferase-3, -7, β-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.

  14. The functional glycosyltransferase signature sequence of the human beta 1,3-glucuronosyltransferase is a XDD motif.

    Science.gov (United States)

    Gulberti, Sandrine; Fournel-Gigleux, Sylvie; Mulliert, Guillermo; Aubry, André; Netter, Patrick; Magdalou, Jacques; Ouzzine, Mohamed

    2003-08-22

    The human beta 1,3-glucuronosyltransferase I (GlcAT-I) is the key enzyme responsible for the completion of glycosaminoglycan-protein linkage tetrasaccharide of proteoglycans (GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta 1-O-serine). We have investigated the role of aspartate residues Asp194-Asp195-Asp196 corresponding to the glycosyltransferase DXD signature motif, in GlcAT-I function by UDP binding experiments, kinetic analyses, and site-directed mutagenesis. We presented the first evidence that Mn2+ is not only essential for GlcAT-I activity but is also required for cosubstrate binding. In agreement, kinetic studies were consistent with a metal-activated enzyme model whereby activation probably occurs via binding of a Mn2+.UDP-GlcA complex to the enzyme. Mutational analysis showed that the Asp194-Asp195-Asp196 motif is a major element of the UDP/Mn2+ binding site. Furthermore, determination of the individual role of each aspartate showed that substitution of Asp195 as well as Asp196 to alanine strongly impaired GlcAT-I activity, whereas Asp194 replacement produced only a moderate alteration of the enzyme activity. These findings along with molecular modeling and three-dimensional structure comparison of the GlcAT-I catalytic center with that of the Bacillus subtilis glycosyltransferase SpsA provided evidence that the interactions of Asp195 with the ribose moiety of UDP and of Asp196 with the metal cation Mn2+ were crucial for GlcAT-I function. Altogether, these results indicated that, similarly to the SpsA enzyme, the nucleotide binding site of GlcAT-I contains a XDD motif rather than a DXD motif.

  15. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    Science.gov (United States)

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs.

  16. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans

    DEFF Research Database (Denmark)

    Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan

    2016-01-01

    enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth...... rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole......BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few...

  17. Regulation of glycosyltransferases and Lewis antigens expression by IL-1β and IL-6 in human gastric cancer cells.

    Science.gov (United States)

    Padró, Mercè; Mejías-Luque, Raquel; Cobler, Lara; Garrido, Marta; Pérez-Garay, Marta; Puig, Sònia; Peracaula, Rosa; de Bolós, Carme

    2011-02-01

    Inflammation of stomach mucosa has been postulated as initiator of gastric carcinogenesis and the presence of pro-inflammatory cytokines can regulate specific genes involved in this process. The cellular expression pattern of glycosyltransferases and Lewis antigens detected in the normal mucosa changed during the neoplassic transformation. The aim of this work was to determine the regulation of specific fucosyltransferases and sialyltransferases by IL-1β and IL-6 pro-inflammatory cytokines in MKN45 gastric cancer cells. IL-1β induced significant increases in the mRNA levels of FUT1, FUT2 and FUT4, and decreases of FUT3 and FUT5. In IL-6 treatments, enhanced FUT1 and lower FUT3 and FUT5 mRNA expression were detected. No substantial changes were observed in the levels of ST3GalIII and ST3GalIV. The activation of FUT1, FUT2 and FUT4 by IL-1β is through the NF-κB pathway and the down-regulation of FUT3 and FUT5 by IL-6 is through the gp130/STAT-3 pathway, since they are inhibited specifically by panepoxydone and AG490, respectively. The levels of Lewis antigens after IL-1β or IL-6 stimulation decreased for sialyl-Lewis x, and no significant differences were found in the rest of the Lewis antigens analyzed, as it was also observed in subcutaneous mice tumors from MKN45 cells treated with IL-1β or IL-6. In addition, in 61 human intestinal-type gastric tumors, sialyl-Lewis x was highly detected in samples from patients that developed metastasis. These results indicate that the expression of the fucosyltransferases involved in the synthesis of Lewis antigens in gastric cancer cells can be specifically modulated by IL-1β and IL-6 inflammatory cytokines.

  18. Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach (Prunus persica L. Batsch)

    Science.gov (United States)

    Wu, Boping; Gao, Liuxiao; Gao, Jie; Xu, Yaying; Liu, Hongru; Cao, Xiangmei; Zhang, Bo; Chen, Kunsong

    2017-01-01

    Peach (Prunus persica L. Batsch) is a commercial grown fruit trees, important because of its essential nutrients and flavor promoting secondary metabolites. The glycosylation processes mediated by UDP-glycosyltransferases (UGTs) play an important role in regulating secondary metabolites availability. Identification and characterization of peach UGTs is therefore a research priority. A total of 168 peach UGT genes that distributed unevenly across chromosomes were identified based on their conserved PSPG motifs. Phylogenetic analysis of these genes with plant UGTs clustered them into 16 groups (A–P). Comparison of the patterns of intron–extron and their positions within genes revealed one highly conserved intron insertion event in peach UGTs. Tissue specificity, temporal expression patterns in peach fruit during development and ripening, and in response to abiotic stress UV-B irradiation was investigated using RNA-seq strategy. The relationship between UGTs transcript levels and concentrations of glycosylated volatiles was examined to select candidates for functional analysis. Heterologous expressing these candidate genes in Escherichia coli identified UGTs that were involved in the in vitro volatile glycosylation. Our results provide an important source for the identification of functional UGT genes to potential manipulate secondary biosynthesis in peach. PMID:28382047

  19. Effector glycosyltransferases in Legionella

    Directory of Open Access Journals (Sweden)

    Yury eBelyi

    2011-04-01

    Full Text Available Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP-glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells. In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA, which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure-function relationship of Lgt glucosyltransferases.

  20. Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression.

    Science.gov (United States)

    Jeong, Yeon Tae; Choi, One; Lim, Hye Rim; Son, Young Dok; Kim, Hong Jin; Kim, Jung Hoe

    2008-12-01

    Sialylation, the attachment of sialic acid residues to a protein, can affect the biological activity and in vivo circulatory half-life of glycoproteins. Human alpha2,3- sialyltransferase (alpha2,3-ST) and beta1,4-galactosyltransferase (beta1,4-GT) are responsible for terminal sialylation and galactosylation, respectively. Enhanced sialylation of human erythropoietin (EPO) by the expression of alpha2,3-ST and beta1,4-GT was achieved using recombinant Chinese hamster ovary (CHO) cells (EC1). The sialic acid content and sialylation of N-glycans were evaluated by HPLC. When alpha2,3-ST was expressed in CHO cells (EC1-ST2), the sialic acid content (moles of sialic acid/mole of EPO) increased from 6.7 to 7.5. In addition, the amount of trisialylated glycans increased from 17.3% to 26.1%. When alpha2,3-ST and beta1,4-GT were coexpressed in CHO cells (EC1-GTST15), the degree of sialylation was greater than that in EC1-ST2 cells. In the case of EC1-GTST15 cells, the sialic acid content increased to 8.2 and the proportion of trisialylated glycans was markedly increased from 17.3% to 35.5%. Interestingly, the amount of asialoglycans decreased only in the case of GTST15 cells (21.4% to 14.2%). These results show that coexpression of alpha2,3- ST and beta1,4-GT is more effective than the expression of alpha2,3-ST alone. Coexpression of alpha2,3-ST and beta1,4-GT did not affect CHO cell growth and metabolism or EPO production. Thus, coexpression of alpha2,3-ST and beta1,4-GT may be beneficial for producing therapeutic glycoproteins with enhanced sialylation in CHO cells.

  1. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2017-06-01

    Full Text Available Sterol glycosyltransferases (SGTs catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic

  2. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum).

    Science.gov (United States)

    Ono, Nadia N; Qin, Xiaoqiong; Wilson, Alexander E; Li, Gang; Tian, Li

    2016-01-01

    Hydrolyzable tannins (HTs) play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose) by a UDP-glucosyltransferase (UGT) activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum), of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate) accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose) was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.

  3. Two UGT84 Family Glycosyltransferases Catalyze a Critical Reaction of Hydrolyzable Tannin Biosynthesis in Pomegranate (Punica granatum.

    Directory of Open Access Journals (Sweden)

    Nadia N Ono

    Full Text Available Hydrolyzable tannins (HTs play important roles in plant herbivore deterrence and promotion of human health. A critical step in HT production is the formation of 1-O-galloyl-β-D-glucopyranoside (β-glucogallin, ester-linked gallic acid and glucose by a UDP-glucosyltransferase (UGT activity. We cloned and biochemically characterized four candidate UGTs from pomegranate (Punica granatum, of which only UGT84A23 and UGT84A24 exhibited β-glucogallin forming activities in enzyme assays. Although overexpression and single RNAi knockdown pomegranate hairy root lines of UGT84A23 or UGT84A24 did not lead to obvious alterations in punicalagin (the prevalent HT in pomegranate accumulation, double knockdown lines of the two UGTs resulted in largely reduced levels of punicalagins and bis-hexahydroxydiphenyl glucose isomers. An unexpected accumulation of galloyl glucosides (ether-linked gallic acid and glucose was also detected in the double knockdown lines, suggesting that gallic acid was utilized by an unidentified UGT activity for glucoside formation. Transient expression in Nicotiana benthamiana leaves and immunogold labeling in roots of pomegranate seedlings collectively indicated cytosolic localization of UGT84A23 and UGT84A24. Overall, functional characterization and localization of UGT84A23 and UGT84A24 open up opportunities for further understanding the regulatory control of HT metabolism in plants and its coordination with other biochemical pathways in the metabolic network.

  4. Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.

    Science.gov (United States)

    Babst, Benjamin A; Chen, Han-Yi; Wang, Hong-Qiang; Payyavula, Raja S; Thomas, Tina P; Harding, Scott A; Tsai, Chung-Jui

    2014-08-01

    The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues.

  5. Engineering of hydrolysis reaction specificity in the transglycosylase cyclodextrin glycosyltransferase

    NARCIS (Netherlands)

    Leemhuis, H; Dijkhuizen, L

    2003-01-01

    Cyclodextrin glycosyltransferase (CGTase) is a member of the alpha-amylase family, a large group of enzymes that act on alpha-glycosidic bonds in starch and related compounds. Over twenty different reaction and product specificities have been found in this family. Although three-dimensional structur

  6. Bacterial Glycosyltransferases: Challenges and opportunities of a highly diverse enzyme class toward tailoring natural products

    Directory of Open Access Journals (Sweden)

    Jochen eSchmid

    2016-02-01

    Full Text Available The enzyme subclass of glycosyltransferases (EC 2.4 currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition glycosyltransferases also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial glycosyltransferases show a higher sequence similarity in comparison to mammalian ones. Even when most glycosyltransferases are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial glycosyltransferases, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.

  7. Fluorometric In Situ Monitoring of an Escherichia coli Cell Factory with Cytosolic Expression of Human Glycosyltransferase GalNAcT2: Prospects and Limitations

    Directory of Open Access Journals (Sweden)

    Karen Schwab

    2016-11-01

    Full Text Available The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics, but is a critical process parameter. Therefore, it has to be monitored closely. This study evaluates fluorometric in situ monitoring as option to access this critical process parameter during complex E. coli fermentations. Partial least square regression (PLS models were built based on the fluorometric data recorded during the EnPresso® B fermentations. Capable models for the prediction of glucose and acetate concentrations were built for these fermentations with rout mean squared errors for prediction (RMSEP of 0.19 g·L−1 and 0.08 g·L−1, as well as for the prediction of the optical density (RMSEP 0.24. In situ monitoring of soluble enzyme to cell dry weight ratios (RMSEP 5.5 × 10−4 µg w/w and specific activity of the glycosyltransferase (RMSEP 33.5 pmol·min−1·µg−1 proved to be challenging, since HisDapGalNAcT2 had to be extracted from the cells and purified. However, fluorescence spectroscopy, in combination with PLS modeling, proved to be feasible for in situ monitoring of complex expression systems.

  8. Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins.

    Directory of Open Access Journals (Sweden)

    Wouter L W Hazenbos

    Full Text Available Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR. The prototype member of this family is clumping factor A (ClfA, a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.

  9. Glycosyltransferases as Markers for Early Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Ulrich Andergassen

    2015-01-01

    Full Text Available Background. Glycosylation is the most frequent posttranslational modification of proteins and lipids influencing inter- and intracellular communication and cell adhesion. Altered glycosylation patterns are characteristically observed in tumour cells. Normal and altered carbohydrate chains are transferred to their acceptor structures via glycosyltransferases. Here, we present the correlation between the presence of three different glycosyltransferases and tumour characteristics. Methods. 235 breast cancer tissue samples were stained immunohistochemically for the glycosyltransferases N-acetylgalactosaminyltransferase 6 (GALNT6, β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2, and ST6 (α-N-acetyl-neuraminyl-2,3-β-galactosyl-1,3-N-acetylgalactosamine α-2,6-sialyltransferase 1 (ST6GALNac1. Staining was evaluated by light microscopy and was correlated to different tumour characteristics by statistical analysis. Results. We found a statistically significant correlation for the presence of glycosyltransferases and tumour size and grading. Specifically smaller tumours with low grading revealed the highest incidences of glycosyltransferases. Additionally, Her4-expression but not pHer4-expression is correlated with the presence of glycosyltransferases. All other investigated parameters could not uncover any statistically significant reciprocity. Conclusion. Here we show, that glycosyltransferases can identify small tumours with well-differentiated cells; hence, glycosylation patterns could be used as a marker for early tumourigenesis. This assumption is supported by the fact that Her4 is also correlated to glycosylation, whereas the activated form of Her4 does not show such a connection with glycosylation.

  10. Financing Human Capital: Families & Society

    Directory of Open Access Journals (Sweden)

    Neantro Saavedra-Rivano

    2016-10-01

    Full Text Available The Organization for Economic Cooperation and Development (OECD describes human capital as “knowledge, skills, competencies and attributes embodied in individuals that facilitate the creation of personal, social and economic wellbeing.”* It follows from this interpretation that investment in human capital includes the sum of all costs that allow a new being to reach economic autonomy. In this paper we analyze the family and social dimensions of human capital and discuss how decisions on human capital formation are taken and how its associated costs are shared. The discussion leads us to identify an important paradox underlying human capital formation, namely the fact that while families are its main contributors the benefits of such investment go primarily to society as a whole. This paradox and its consequences are central to two very important current issues. The first issue, one that is common to many developed countries, is low female fertility which is the source, in particular, of population aging. The second issue, affecting chiefly developing countries, is the inequality of opportunities, a problem lying at the root of underdevelopment. Two options are discussed to respond to this dilemma, one based on redistributive programs and another on market solutions. The paper discusses the limits inherent to redistributive programs and goes on to present at length the alternative market solution. In a nutshell this consists of securitizing the human capital of individuals so as to finance the expenses leading to their upbringing, from birth to adulthood. In addition to describing this scheme the paper analyzes its advantages as well as the difficulties associated with its implementation. It concludes by exploring possible interpretations of the scheme and feasible routes for its adoption.

  11. Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer.

    Science.gov (United States)

    Khorolragchaa, Altanzul; Kim, Yu-Jin; Rahimi, Shadi; Sukweenadhi, Johan; Jang, Moon-Gi; Yang, Deok-Chun

    2014-02-15

    Glycosyltransferases are members of the multigene family of plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and few have been functionally characterized in detail. Korean ginseng (Panax ginseng Meyer), belonging to Araliaceae, has been well known as a popular mysterious medicinal herb in East Asia for over 2,000 years. A total of 704 glycosyltransferase unique sequences have been found from a ginseng expressed sequence tag (EST) library, and these sequences encode enzymes responsible for the secondary metabolite biosynthesis. Finally, twelve UDP glycosyltransferases (UGTs) were selected as the candidates most likely to be involved in triterpenoid synthesis. In this study, we classified the candidate P. ginseng UGTs (PgUGTs) into proper families and groups, which resulted in eight UGT families and six UGT groups. We also investigated those gene candidates encoding for glycosyltransferases by analysis of gene expression in methyl jasmonate (MeJA)-treated ginseng adventitious roots and different tissues from four-year-old ginseng using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). For organ-specific expression, most of PgUGT transcription levels were higher in leaves and roots compared with flower buds and stems. The transcription of PgUGTs in adventitious roots treated with MeJA increased as compared with the control. PgUGT1 and PgUGT2, which belong to the UGT71 family genes expressed in MeJA-treated adventitious roots, were especially sensitive, showing 33.32 and 38.88-fold expression increases upon 24h post-treatments, respectively. © 2013 Elsevier B.V. All rights reserved.

  12. Structure of the Glycosyltransferase Ktr4p from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Dominik D D Possner

    Full Text Available In the yeast Saccharomyces cerevisiae, members of the Kre2/Mnt1 protein family have been shown to be α-1,2-mannosyltransferases or α-1,2-mannosylphosphate transferases, utilising an Mn2+-coordinated GDP-mannose as the sugar donor and a variety of mannose derivatives as acceptors. Enzymes in this family are localised to the Golgi apparatus, and have been shown to be involved in both N- and O-linked glycosylation of newly-synthesised proteins, including cell wall glycoproteins. Our knowledge of the nine proteins in this family is however very incomplete at present. Only one family member, Kre2p/Mnt1p, has been studied by structural methods, and three (Ktr4p, Ktr5p, Ktr7p are completely uncharacterised and remain classified only as putative glycosyltransferases. Here we use in vitro enzyme activity assays to provide experimental confirmation of the predicted glycosyltransferase activity of Ktr4p. Using GDP-mannose as the donor, we observe activity towards the acceptor methyl-α-mannoside, but little or no activity towards mannose or α-1,2-mannobiose. We also present the structure of the lumenal catalytic domain of S. cerevisiae Ktr4p, determined by X-ray crystallography to a resolution of 2.2 Å, and the complex of the enzyme with GDP to 1.9 Å resolution.

  13. Characterization of three terpenoid glycosyltransferase genes in 'Valencia' sweet orange (Citrus sinensis L. Osbeck).

    Science.gov (United States)

    Fan, Jing; Chen, Chunxian; Yu, Qibin; Li, Zheng-Guo; Gmitter, Frederick G

    2010-10-01

    Three putative terpenoid UDP-glycosyltransferase (UGT) genes, designated CsUGT1, CsUGT2, and CsUGT3, were isolated and characterized in 'Valencia' sweet orange (Citrus sinensis L. Osbeck). CsUGT1 consisted of 1493 nucleotides with an open reading frame encoding 492 amino acids, CsUGT2 consisted of 1727 nucleotides encoding 504 amino acids, and CsUGT3 consisted of 1705 nucleotides encoding 468 amino acids. CsUGT3 had a 145 bp intron at 730-874, whereas CsUGT1 and CsUGT2 had none. The three deduced glycosyltransferase proteins had a highly conserved plant secondary product glycosyltransferase motif in the C terminus. Phylogenetic analysis showed that CsUGT1 and CsUGT3 were classified into group L of glycosyltransferase family 1, and CsUGT2 was classified into group D. Through Southern blotting analysis, CsUGT1 was found to have two copies in the sweet orange genome, whereas CsUGT2 and CsUGT3 had at least seven and nine copies, respectively. CsUGT1, CsUGT2, and CsUGT3 were constitutively expressed in leaf, flower, and fruit tissues. The results facilitate further investigation of the function of terpenoid glycosyltransferases in citrus and the biosynthesis of terpenoid glycosides in vitro.

  14. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... GETVAXED print ads go to GETVAXED.ORG cme Immunizations HPV (Human Papillomavirus) One family's struggles with HPV ... not possible without a visit to your doctor. Immunizations stop disease from spreading. Check with your family ...

  15. The Drosophila gene brainiac encodes a glycosyltransferase putatively involved in glycosphingolipid synthesis

    DEFF Research Database (Denmark)

    Schwientek, Tilo; Keck, Birgit; Levery, Steven B

    2002-01-01

    The Drosophila genes fringe and brainiac exhibit sequence similarities to glycosyltransferases. Drosophila and mammalian fringe homologs encode UDP-N-acetylglucosamine:fucose-O-Ser beta1,3-N-acetylglucosaminyltransferases that modulate the function of Notch family receptors. The biological function...

  16. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... sq how to do kids infect kids links & resources M.O.V.E. parents for prevention ... go to GETVAXED.ORG cme Immunizations HPV (Human Papillomavirus) One family's struggles with HPV We provide ...

  17. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... sq how to do kids infect kids links & resources M.O.V.E. parents for prevention ... go to GETVAXED.ORG cme Immunizations HPV (Human Papillomavirus) One family's struggles with HPV We provide ...

  18. Golgi Localization of Glycosyltransferases Requires a Vps74p Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Karl R.; Liu, Jingxuan; Li, Shiqing; Setty, Thanuja Gangi; Wood, Christopher S.; Burd, Christopher G.; Ferguson, Kathryn M. (UPENN-MED)

    2010-02-19

    The mechanism of glycosyltransferase localization to the Golgi apparatus is a long-standing question in secretory cell biology. All Golgi glycosyltransferases are type II membrane proteins with small cytosolic domains that contribute to Golgi localization. To date, no protein has been identified that recognizes the cytosolic domains of Golgi enzymes and contributes to their localization. Here, we report that yeast Vps74p directly binds to the cytosolic domains of cis and medial Golgi mannosyltransferases and that loss of this interaction correlates with loss of Golgi localization of these enzymes. We have solved the X-ray crystal structure of Vps74p and find that it forms a tetramer, which we also observe in solution. Deletion of a critical structural motif disrupts tetramer formation and results in loss of Vps74p localization and function. Vps74p is highly homologous to the human GMx33 Golgi matrix proteins, suggesting a conserved function for these proteins in the Golgi enzyme localization machinery.

  19. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  20. Apoptosis of human breast carcinoma cells in the presence of cis-platin and L-/D-PPMP: IV. Modulation of replication complexes and glycolipid: Glycosyltransferases.

    Science.gov (United States)

    Boyle, Patrick J; Ma, Rui; Tuteja, Narendra; Banerjee, Sipra; Basu, Subhash

    2006-05-01

    Apoptosis of human breast carcinoma cells (SKBR-3, MCF-7, and MDA-468) has been observed after treatment of these cells with anti-cancer drug cis-platin and glycosphingolipid biosynthesis inhibitor L- and D-PPMP, respectively. These drugs initiated apoptosis in a dose-dependent manner as measured by phenotypic morphological changes, by binding of a fluorescent phophatidyl serine-specific dye (PSS-380) onto the outer leaflet of the cell membranes, and by activation of caspases, -3, -8, and -9. It was observed that in two hours very little apoptotic process had started but predominant biochemical changes occurred after 6 h. DNA degradation started after 24 hours of drug treatment. However, very little is known about the stability of the ';Replication Complexes'' during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during its replication, repair, and recombination processes. Previously, DNA helicase-III was characterized as a component of the replication complexes isolated from embryonic chicken brains as well as breast and colon carcinoma cells. Helicase activities were measured by a novel method (ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of the nicked ACT-DNA, by determining values obtained from +/- aphidicolin-treated incubation mixtures. In all three breast carcinoma cell lines, a common trend was observed: a decrease of activities of DNA polymerase-alpha and Helicase III. A sharp decrease of activities of the glycolipid sialyltransferases: SAT-2 (CMP-NeuAc; GD3 alpha2-8 sialyltransferase) and SAT-4 (CMP-NeuAc: GM1a alpha2-3 sialyltransferase) was observed in the apoptotic carcinoma cells treated with L-PPMP compared with cis-platin.

  1. The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin.

    Directory of Open Access Journals (Sweden)

    Kyoung-Jae Choi

    Full Text Available The Haemophilus influenzae HMW1 adhesin is an important virulence exoprotein that is secreted via the two-partner secretion pathway and is glycosylated at multiple asparagine residues in consensus N-linked sequons. Unlike the heavily branched glycans found in eukaryotic N-linked glycoproteins, the modifying glycan structures in HMW1 are mono-hexoses or di-hexoses. Recent work demonstrated that the H. influenzae HMW1C protein is the glycosyltransferase responsible for transferring glucose and galactose to the acceptor sites of HMW1. An Actinobacillus pleuropneumoniae protein designated ApHMW1C shares high-level homology with HMW1C and has been assigned to the GT41 family, which otherwise contains only O-glycosyltransferases. In this study, we demonstrated that ApHMW1C has N-glycosyltransferase activity and is able to transfer glucose and galactose to known asparagine sites in HMW1. In addition, we found that ApHMW1C is able to complement a deficiency of HMW1C and mediate HMW1 glycosylation and adhesive activity in whole bacteria. Initial structure-function studies suggested that ApHMW1C consists of two domains, including a 15-kDa N-terminal domain and a 55-kDa C-terminal domain harboring glycosyltransferase activity. These findings suggest a new subfamily of HMW1C-like glycosyltransferases distinct from other GT41 family O-glycosyltransferases.

  2. Enzymatic circularization of a malto-octaose linear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase

    NARCIS (Netherlands)

    Uitdehaag, Joost C.M.; Veen, Bart A. van der; Dijkhuizen, Lubbert; Elber, Ron; Dijkstra, Bauke W.

    2001-01-01

    Cyclodextrin glycosyltransferase (CGTase) is an enzyme belonging to the ol-amylase family that forms cyclodextrins (circularly linked oligosaccharides) from starch. X-ray work has indicated that this cyclization reaction of CGTase involves a 23-Angstrom movement of the nonreducing end of a linear ma

  3. Revisiting the human polypeptide GalNAc-T1 and T13 paralogs

    DEFF Research Database (Denmark)

    Festari, María Florencia; Trajtenberg, Felipe; Berois, Nora

    2017-01-01

    Polypeptide GalNAc-transferases (GalNAc-Ts) constitute a family of 20 human glycosyltransferases (comprising 9 subfamilies), which initiate mucin-type O-glycosylation. The O-glycoproteome is thought to be differentially regulated via the different substrate specificities and expression patterns o...

  4. Reg gene family and human diseases

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Zhang; Liu-Song Ding; Mao-De Lai

    2003-01-01

    Regenerating gene (Reg or REG) family, within the superfamily of C-type lectin, is mainly involved in the liver,pancreatic, gastric and intestinal cell proliferation or differentiation. Considerable attention has focused on Reg family and its structurally related molecules. Over the last 15 years, 17 members of the Reg family have been cloned and sequenced. They have been considered as members of a conserved protein family sharing structural and some functional properties being involved in injury, inflammation,diabetes and carcinogenesis. We previously identified Reg Ⅳ as a strong candidate for a gene that was highly expressed in colorectal adenoma when compared to normal mucosa based on suppression subtractive hybridization (SSH),reverse Northern blot, semi-quantitative reverse transcriptase PCR (RT-PCR)and Northern blot. In situ hybridization results further support that overexpression of Reg Ⅳ may be an early event in colorectal carcinogenesis. We suggest that detection of Reg Ⅳ overexpression might be useful in the early diagnosis of carcinomatous transformation of adenoma.This review summarizes the roles of Reg family in diseases in the literature as well as our recent results of Reg Ⅳ in colorectal cancer. The biological properties of Reg family and its possible roles in human diseases are discussed. We particularly focus on the roles of Reg family as sensitive reactants of tissue injury, prognostic indicators of tumor survival and early biomarkers of carcinogenesis. In addition to our current understanding of Reg gene functions, we postulate that there might be relationships between Reg family and microsatellite instability, apoptosis and cancer with a poor prognosis. Investigation of the correlation between tumor Reg expression and survival rate, and analysis of the Reg gene status in human maliganancies, are required to elucidate the biologic consequences of Reg gene expression, the implications for Reg gene regulation of cell growth, tumorigenesis

  5. Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type

    Science.gov (United States)

    Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V.

    2005-12-01

    Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. Type O individuals have α-fucose(1→2)galactose disaccharides [O(H) structures] on their cell surfaces while in type A or B individuals, the O antigen is capped by the addition of an α- N -acetylgalactosamine or α-galactose residue, respectively. The addition of these monosaccharides is catalyzed by glycosyltransferase A (GTA) or glycosyltransferase B (GTB). These are homologous enzymes differing by only 4 amino acids out of 354 that change the specificity from GTA to GTB. In this review the chemistry of the blood group ABO system and the role of GTA, GTB, and the four critical amino acids in determining blood group status are discussed. See JCE Featured Molecules .

  6. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins.

    Science.gov (United States)

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T; Goss, Rebecca J M; Field, Robert A; Osbourn, Anne

    2013-02-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.

  7. Glycosyltransferases from Oat (Avena) Implicated in the Acylation of Avenacins*

    Science.gov (United States)

    Owatworakit, Amorn; Townsend, Belinda; Louveau, Thomas; Jenner, Helen; Rejzek, Martin; Hughes, Richard K.; Saalbach, Gerhard; Qi, Xiaoquan; Bakht, Saleha; Roy, Abhijeet Deb; Mugford, Sam T.; Goss, Rebecca J. M.; Field, Robert A.; Osbourn, Anne

    2013-01-01

    Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid. PMID:23258535

  8. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... Tos Ferina AAP CME ask your doctor brochure family stories faq meet dr. gary freed meet keri ... media video/audio pneumonia tb overview links & resources families advocacy about civil rights kids' rights sample school ...

  9. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... Tos Ferina AAP CME ask your doctor brochure family stories faq meet dr. gary freed meet keri ... media video/audio pneumonia tb overview links & resources families advocacy about civil rights kids' rights sample school ...

  10. Nonradioactive glycosyltransferase and sulfotransferase assay to study glycosaminoglycan biosynthesis.

    Science.gov (United States)

    Ethen, Cheryl M; Machacek, Miranda; Prather, Brittany; Tatge, Timothy; Yu, Haixiao; Wu, Zhengliang L

    2015-01-01

    Glycosaminoglycans (GAGs) are linear polysaccharides with repeating disaccharide units. GAGs include heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronan. All GAGs, except for hyaluronan, are usually sulfated. GAGs are polymerized by mono- or dual-specific glycosyltransferases and sulfated by various sulfotransferases. To further our understanding of GAG chain length regulation and synthesis of specific sulfation motifs on GAG chains, it is imperative to understand the kinetics of GAG synthetic enzymes. Here, nonradioactive colorimetric enzymatic assays are described for these glycosyltransferases and sulfotransferases. In both cases, the leaving nucleotides or nucleosides are hydrolyzed using specific phosphatases, and the released phosphate is subsequently detected using malachite reagents.

  11. Structural and Functional Analysis of a New Subfamily of Glycosyltransferases Required for Glycosylation of Serine-rich Streptococcal Adhesins

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fan; Erlandsen, Heidi; Ding, Lei; Li, Jingzhi; Huang, Ying; Zhou, Meixian; Liang, Xiaobo; Ma, Jinbiao; Wu, Hui (UAB)

    2011-09-16

    Serine-rich repeat glycoproteins (SRRPs) are a growing family of bacterial adhesins found in many streptococci and staphylococci; they play important roles in bacterial biofilm formation and pathogenesis. Glycosylation of this family of adhesins is essential for their biogenesis. A glucosyltransferase (Gtf3) catalyzes the second step of glycosylation of a SRRP (Fap1) from an oral streptococcus, Streptococcus parasanguinis. Although Gtf3 homologs are highly conserved in SRRP-containing streptococci, they share minimal homology with functionally known glycosyltransferases. We report here the 2.3 {angstrom} crystal structure of Gtf3. The structural analysis indicates that Gtf3 forms a tetramer and shares significant structural homology with glycosyltransferases from GT4, GT5, and GT20 subfamilies. Combining crystal structural analysis with site-directed mutagenesis and in vitro glycosyltransferase assays, we identified residues that are required for UDP- or UDP-glucose binding and for oligomerization of Gtf3 and determined their contribution to the enzymatic activity of Gtf3. Further in vivo studies revealed that the critical amino acid residues identified by the structural analysis are crucial for Fap1 glycosylation in S. parasanguinis in vivo. Moreover, Gtf3 homologs from other streptococci were able to rescue the gtf3 knock-out mutant of S. parasanguinis in vivo and catalyze the sugar transfer to the modified SRRP substrate in vitro, demonstrating the importance and conservation of the Gtf3 homologs in glycosylation of SRRPs. As the Gtf3 homologs only exist in SRRP-containing streptococci, we conclude that the Gtf3 homologs represent a unique subfamily of glycosyltransferases.

  12. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism.

    Directory of Open Access Journals (Sweden)

    Brock Schuman

    Full Text Available Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated. The binding of metal-nucleotide-sugars between inverting and retaining enzymes is conformationally unique and requires the donor substrate to occupy two different orientations in the two types of glycosyltransferases. The available structures of retaining glycosyltransferases lack appropriately positioned enzymatic dipolar residues to initiate or stabilize the intermediates of a dissociative mechanism. Further, available structures show that the acceptor nucleophile and anomeric carbon of the donor sugar are in close proximity. Structural features support orthogonal (front-side attack from a position lying ≤ 90° from the C1-O phosphate bond for retaining enzymes. These structural conclusions are consistent with the geometric conclusions of recent kinetic and computational studies.

  13. Comparing Families of Suicide Attempters, Human ...

    African Journals Online (AJOL)

    separation, divorce and other mental and social pathologies.[4]. Acquired ... parent-child relationships and childhood adversities such as abuse, violence, wrong ..... families are not satisfied with the quality of their family content and indicators ... Sohrabi F, Rasouli F. A survey of style and meta‑marital sexual relationships ...

  14. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... de la Tos Ferina AAP CME ask your doctor brochure family stories faq meet dr. gary freed ... trials disclosing to kids estate planning find a doctor find health information helpful articles antibiotics colds fevers ...

  15. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... tb overview links & resources families advocacy about civil rights kids' rights sample school policies school letter someone you know ... organizations wishing to create their own end slates. Right-click any link to download to your computer. ...

  16. Human Capital Development: A Family Objective.

    Science.gov (United States)

    Hildebrand, Verna

    1995-01-01

    Examines the concept of human capital as an economic construct. Suggests that human capital contributes to economic development, as do physical capital or natural resources, in that its development reinforces individuals' future economic output. Suggests that this perspective may prove useful for human service professionals because funding…

  17. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  18. One Family's Struggles with HPV (Human Papillomavirus)

    Medline Plus

    Full Text Available ... advice of the physician who cares for your child. All medical advice and information should be considered to be incomplete without a physical exam, which is not possible without a visit to your doctor. Immunizations stop disease from spreading. Check with your family ...

  19. Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity.

    Science.gov (United States)

    Chang, Aram; Singh, Shanteri; Helmich, Kate E; Goff, Randal D; Bingman, Craig A; Thorson, Jon S; Phillips, George N

    2011-10-25

    Glycosyltransferases are useful synthetic catalysts for generating natural products with sugar moieties. Although several natural product glycosyltransferase structures have been reported, design principles of glycosyltransferase engineering for the generation of glycodiversified natural products has fallen short of its promise, partly due to a lack of understanding of the relationship between structure and function. Here, we report structures of all four calicheamicin glycosyltransferases (CalG1, CalG2, CalG3, and CalG4), whose catalytic functions are clearly regiospecific. Comparison of these four structures reveals a conserved sugar donor binding motif and the principles of acceptor binding region reshaping. Among them, CalG2 possesses a unique catalytic motif for glycosylation of hydroxylamine. Multiple glycosyltransferase structures in a single natural product biosynthetic pathway are a valuable resource for understanding regiospecific reactions and substrate selectivities and will help future glycosyltransferase engineering.

  20. Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Aram; Singh, Shanteri; Helmich, Kate E.; Goff, Randal D.; Bingman, Craig A.; Thorson, Jon S.; Phillips, Jr., George N. (UW)

    2012-03-15

    Glycosyltransferases are useful synthetic catalysts for generating natural products with sugar moieties. Although several natural product glycosyltransferase structures have been reported, design principles of glycosyltransferase engineering for the generation of glycodiversified natural products has fallen short of its promise, partly due to a lack of understanding of the relationship between structure and function. Here, we report structures of all four calicheamicin glycosyltransferases (CalG1, CalG2, CalG3, and CalG4), whose catalytic functions are clearly regiospecific. Comparison of these four structures reveals a conserved sugar donor binding motif and the principles of acceptor binding region reshaping. Among them, CalG2 possesses a unique catalytic motif for glycosylation of hydroxylamine. Multiple glycosyltransferase structures in a single natural product biosynthetic pathway are a valuable resource for understanding regiospecific reactions and substrate selectivities and will help future glycosyltransferase engineering.

  1. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize.

    Science.gov (United States)

    Hayward, Andrew P; Moreno, Maria A; Howard, Thomas P; Hague, Joel; Nelson, Kimberly; Heffelfinger, Christopher; Romero, Sandra; Kausch, Albert P; Glauser, Gaétan; Acosta, Ivan F; Mottinger, John P; Dellaporta, Stephen L

    2016-10-01

    Sex determination in maize involves the production of staminate and pistillate florets from an initially bisexual floral meristem. Pistil elimination in staminate florets requires jasmonic acid signaling, and functional pistils are protected by the action of the silkless 1 (sk1) gene. The sk1 gene was identified and found to encode a previously uncharacterized family 1 uridine diphosphate glycosyltransferase that localized to the plant peroxisomes. Constitutive expression of an sk1 transgene protected all pistils in the plant, causing complete feminization, a gain-of-function phenotype that operates by blocking the accumulation of jasmonates. The segregation of an sk1 transgene was used to effectively control the production of pistillate and staminate inflorescences in maize plants.

  2. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis.

    Science.gov (United States)

    Gantt, Richard W; Peltier-Pain, Pauline; Singh, Shanteri; Zhou, Maoquan; Thorson, Jon S

    2013-05-07

    We described the integration of the general reversibility of glycosyltransferase-catalyzed reactions, artificial glycosyl donors, and a high throughput colorimetric screen to enable the engineering of glycosyltransferases for combinatorial sugar nucleotide synthesis. The best engineered catalyst from this study, the OleD Loki variant, contained the mutations P67T/I112P/T113M/S132F/A242I compared with the OleD wild-type sequence. Evaluated against the parental sequence OleD TDP16 variant used for screening, the OleD Loki variant displayed maximum improvements in k(cat)/K(m) of >400-fold and >15-fold for formation of NDP-glucoses and UDP-sugars, respectively. This OleD Loki variant also demonstrated efficient turnover with five variant NDP acceptors and six variant 2-chloro-4-nitrophenyl glycoside donors to produce 30 distinct NDP-sugars. This study highlights a convenient strategy to rapidly optimize glycosyltransferase catalysts for the synthesis of complex sugar nucleotides and the practical synthesis of a unique set of sugar nucleotides.

  3. Study of relationship between variation of ABO blood group and B glycosyltransferase%ABO血型变异与B糖基转移酶关系研究

    Institute of Scientific and Technical Information of China (English)

    金飞

    2014-01-01

    Objective To study the relationship between Bw phenotypes in the B subtype system of ABO blood group and B glycosyltransferase .Methods The Bw phenotypes in 2 cases of ABO blood group in 1 family were identified by the blood type serological identification technique .glycosyltraferases 1-7 exons of ABO gene were am-plified and directly sequenced after PCR amplified fragments .Results The direct sequencing found that genotypes of 2 cases of ABO group were Bw/O ,in which the C> T tranform of B glycosyltransferase gene at position 721 caused the transform of glycosyltransferase polypeptide chain Arg241Trp .Conclusion The mutation of 721 C> T in the gly-cosyltransferase gene induces the disappearance or attenuation of glycosyltransferase activity and leads to Bw pheno-type .%目的:研究ABO血型B亚型系统Bw亚型与B糖基转移酶的关系。方法运用血型血清学鉴定方法鉴定1个家庭2例ABO血型的Bw亚型,运用聚合酶链式反应的方法扩增糖基转移酶1~7号外显子,送到试剂公司测序。结果直接测序发现2例ABO血型的Bw亚型,其中B糖基转移酶基因第721位C> T的转变,导致糖基转移酶多肽链Arg241Trp的转变。结论糖基转移酶基因第721位的C> T的突变引起糖基转移酶活性的消失或者减弱,导致Bw亚型。

  4. Update of human and mouse forkhead box (FOX gene families

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2010-06-01

    Full Text Available Abstract The forkhead box (FOX proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6. Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.

  5. Ganglioside glycosyltransferases are S-acylated at conserved cysteine residues involved in homodimerisation.

    Science.gov (United States)

    Chumpen Ramirez, Sabrina; Ruggiero, Fernando M; Daniotti, Jose Luis; Valdez Taubas, Javier

    2017-08-07

    Ganglioside glycosyltransferases (GGTs) are type II membrane proteins bearing a short N-terminal cytoplasmic tail, a transmembrane domain (TMD), and a lumenal catalytic domain. The expression and activity of these enzymes largely determine the quality of the glycolipids that decorate mammalian cell membranes. Many glycosyltransferases (GTs) are themselves glycosylated, and this is important for their proper localisation, but few if any other post-translational modifications of these proteins have been reported. Here, we show that the GGTs, ST3Gal-V, ST8Sia-I, and β4GalNAcT-I are S-acylated at conserved cysteine residues located close to the cytoplasmic border of their TMDs. ST3Gal-II, a GT that sialylates glycolipids and glycoproteins, is also S-acylated at a conserved cysteine located in the N-terminal cytoplasmic tail. Many other GTs also possess cysteine residues in their cytoplasmic regions, suggesting that this modification occurs also on these GTs. S-acylation, commonly known as palmitoylation, is catalysed by a family of palmitoyltransferases (PATs) that are mostly localised at the Golgi complex but also at the endoplasmic reticulum (ER) and the plasma membrane. Using GT ER retention mutants, we found that S-acylation of β4GalNAcT-I and ST3Gal-II takes place at different compartments, suggesting that these enzymes are not substrates of the same PAT. Finally, we found that cysteines that are the target of S-acylation on β4GalNAcT-I and ST3Gal-II are involved in the formation of homodimers through disulphide bonds. We observed an increase in ST3Gal-II dimers in the presence of the PAT inhibitor 2-bromopalmitate, suggesting that GT homodimerisation may be regulating S-acylation. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants.

    Science.gov (United States)

    Ito, Takamitsu; Fujimoto, Shunsuke; Suito, Fumiaki; Shimosaka, Makoto; Taguchi, Goro

    2017-04-02

    Citrus plants accumulate many kinds of flavonoids, including di-C-glucosyl flavonoids, which have attracted considerable attention owing to their health benefits. However, biosynthesis of di-C-glucosyl flavonoids has not been elucidated at the molecular level. Here, we identified the C-glycosyltransferases (CGTs) FcCGT (UGT708G1) and CuCGT (UGT708G2) as the primary enzymes involved in the biosynthesis of di-C-glucosyl flavonoids in the citrus plants kumquat (Fortunella crassifolia) and satsuma mandarin (Citrus unshiu), respectively. The amino acid sequences of these CGTs were 98% identical, indicating that CGT genes are highly conserved in the citrus family. The recombinant enzymes FcCGT and CuCGT utilized 2-hydroxyflavanones, dihydrochalcone, and their mono-C-glucosides as sugar acceptors and produced corresponding di-C-glucosides. The Km and kcat values of FcCGT toward phloretin were C-glucosylphloretin) were 14.4 μM and 5.3 s(-1) , respectively; these values are comparable to those of other glycosyltransferases reported to date. Transcripts of both CGT genes were found to concentrate in various plant organs, and particularly in leaves. Our results suggest that di-C-glucosyl flavonoid biosynthesis proceeds via a single enzyme using either 2-hydroxyflavanones or phloretin as a substrate in citrus plants. In addition, Escherichia coli cells expressing CGT genes were found to be capable of producing di-C-glucosyl flavonoids, which is promising for commercial production of these valuable compounds. This article is protected by copyright. All rights reserved.

  7. Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.

    Science.gov (United States)

    Yakhnina, Anastasiya A; Gitai, Zemer

    2013-10-01

    The essential process of peptidoglycan synthesis requires two enzymatic activities, transpeptidation and transglycosylation. While the PBP2 and PBP3 transpeptidases perform highly specialized functions that are widely conserved, the specific roles of different glycosyltransferases are poorly understood. For example, Caulobacter crescentus encodes six glycosyltransferase paralogs of largely unknown function. Using genetic analyses, we found that Caulobacter glycosyltransferases are primarily redundant but that PbpX is responsible for most of the essential glycosyltransferase activity. Cells containing PbpX as their sole glycosyltransferase are viable, and the loss of pbpX leads to a general defect in the integrity of the cell wall structure even in the presence of the other five glycosyltransferases. However, neither PbpX nor any of its paralogs is required for the specific processes of cell elongation or division, while the cell wall synthesis required for stalk biogenesis is only partially disrupted in several of the glycosyltransferase mutants. Despite their genetic redundancy, Caulobacter glycosyltransferases exhibit different subcellular localizations. We suggest that these enzymes have specialized roles and normally function in distinct subcomplexes but retain the ability to substitute for one another so as to ensure the robustness of the peptidoglycan synthesis process.

  8. The Lectin Domain of the Polypeptide GalNAc Transferase Family of Glycosyltransferases (ppGalNAc Ts) Acts as a Switch Directing Glycopeptide Substrate Glycosylation in an N- or C-terminal Direction, Further Controlling Mucin Type O-Glycosylation

    DEFF Research Database (Denmark)

    Gerken, Thomas A; Revoredo, Leslie; Thome, Joseph J C

    2013-01-01

    Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain...... relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides...

  9. The human PDI family: Versatility packed into a single fold

    DEFF Research Database (Denmark)

    Appenzeller-Herzog, Christian; Ellgaard, Lars

    2007-01-01

    in promoting oxidative protein folding in the ER has been extended in recent years to include roles in other processes such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, antigen presentation and virus entry. Some of these functions are performed by non-catalytic members of the family...... that lack the active-site cysteines. Regardless of their function, all human PDIs contain at least one domain of approximately 100 amino acid residues with structural homology to thioredoxin. As we learn more about the individual proteins of the family, a complex picture is emerging that emphasizes as much...... their differences as their similarities, and underlines the versatility of the thioredoxin fold. Here, we primarily explore the diversity of cellular functions described for the human PDIs. Udgivelsesdato: 2007-Dec-3...

  10. Update of human and mouse matrix metalloproteinase families

    OpenAIRE

    Jackson Brian C; Nebert Daniel W; Vasiliou Vasilis

    2010-01-01

    Abstract Matrix metalloproteinases (MMPs) are a family of zinc proteases that degrade most of the components of the extracellular matrix (ECM). MMPs also have a number of non-traditional roles in processing factors related to cell growth/proliferation, inflammation and more. There are 23 human MMPs and 23 mouse MMPs, most of which share orthology among most vertebrates; other examples have been found in invertebrates and plants. MMPs are named in order of discovery, but also have been grouped...

  11. Pediococcus parvulus gtf gene encoding the GTF glycosyltransferase and its application for specific PCR detection of beta-D-glucan-producing bacteria in foods and beverages.

    Science.gov (United States)

    Werning, Maria Laura; Ibarburu, Idoia; Dueñas, Maria Teresa; Irastorza, Ana; Navas, Jesús; López, Paloma

    2006-01-01

    Exopolysaccharide production by lactic acid bacteria is beneficial in the dairy and oat-based food industries and is used to improve the texture of the fermented products. However, beta-D-glucan-producing bacteria are considered spoilage microorganisms in alcoholic beverages because their secreted exopolysaccharides alter the viscosity of cider, wine, and beer, rendering them unpalatable. The plasmidic glycosyltransferase (gtf) gene of the Pediococcus parvulus 2.6 strain isolated from ropy cider has been cloned and sequenced, and its GTF product was functionally expressed in Streptococcus pneumoniae. The GTF protein, which has glycosyltransferase activity, belongs to the COG1215 membrane-bound glycosyltransferase family, and agglutination tests revealed that the enzyme enables S. pneumoniae to synthesize beta-D-glucan. PCR amplification and Southern blot hybridization showed that the gtf gene is also present at different genomic locations in the beta-D-glucan producers Lactobacillus diolivorans G77 and Oenococcus oeni I4 strains, also isolated from ropy cider. A PCR assay has been developed for the detection of exopolysaccharide-producing bacteria. Forward and reverse primers, included respectively in the coding sequences of the putative glycosyltransferase domain and the fifth trans-membrane segment of the GTF, were designed. Analysis of 76 ropy and nonropy lactic acid bacteria validated the method for specific detection of beta-D-glucan homopolysaccharide producer Pediococcus, Lactobacillus, and Oenococcus strains. The limit of the assay in cider was 3 X 10(2) CFU/ml. This molecular method can be useful for the detection of ropy bacteria in cider before spoilage occurs, as well as for isolation of new exopolysaccharide-producing strains of industrial interest.

  12. Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases

    Science.gov (United States)

    Yamamoto, Miyako; Cid, Emili; Yamamoto, Fumiichiro

    2017-01-01

    A and B alleles at the ABO genetic locus specify A and B glycosyltransferases that catalyze the biosynthesis of A and B oligosaccharide antigens, respectively, of blood group ABO system which is important in transfusion and transplantation medicine. GBGT1 gene encodes Forssman glycolipid synthase (FS), another glycosyltransferase that produces Forssman antigen (FORS1). Humans are considered to be Forssman antigen-negative species without functional FS. However, rare individuals exhibiting Apae phenotype carry a dominant active GBGT1 gene and express Forssman antigen on RBCs. Accordingly, FORS system was recognized as the 31st blood group system. Mouse ABO gene encodes a cis-AB transferase capable of producing both A and B antigens. This murine enzyme contains the same GlyGlyAla tripeptide sequence as FSs at the position important for the determination of sugar specificity. We, therefore, transfected the expression construct into appropriate recipient cells and examined whether mouse cis-AB transferase may also exhibit FS activity. The result was positive, confirming the crosstalk between the ABO and FORS systems. Further experiments have revealed that the introduction of this tripeptide sequence to human A transferase conferred some, although weak, FS activity, suggesting that it is also involved in the recognition/binding of acceptor substrates, in addition to donor nucleotide-sugars. PMID:28134301

  13. Glycosyltransferases and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Zhan, Yu-Tao; Su, Hai-Ying; An, Wei

    2016-02-28

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and its incidence is increasing worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. Glycosyltransferases (GTs) are a diverse class of enzymes involved in catalyzing the transfer of one or multiple sugar residues to a wide range of acceptor molecules. GTs mediate a wide range of functions from structure and storage to signaling, and play a key role in many fundamental biological processes. Therefore, it is anticipated that GTs have a role in the pathogenesis of NAFLD. In this article, we present an overview of the basic information on NAFLD, particularly GTs and glycosylation modification of certain molecules and their association with NAFLD pathogenesis. In addition, the effects and mechanisms of some GTs in the development of NAFLD are summarized.

  14. Neobiosynthesis of glycosphingolipids by plasma membrane-associated glycosyltransferases.

    Science.gov (United States)

    Crespo, Pilar M; Demichelis, Vanina Torres; Daniotti, José L

    2010-09-17

    Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.

  15. Scattered Families : Transnational family life of Afghan refugees in the Netherlands in the light of the human rights based protection of the family

    NARCIS (Netherlands)

    Muller, P.H.A.M

    2009-01-01

    This study focuses on family life of Afghan refugees in the Netherlands, within and across borders. While family life constitutes a foundation in the lives of human beings, the disruption of the family through external causes has a huge impact on the people involved. In the case of refugees, many of

  16. Scattered Families : Transnational family life of Afghan refugees in the Netherlands in the light of the human rights based protection of the family

    NARCIS (Netherlands)

    Muller, P.H.A.M|info:eu-repo/dai/nl/165624647

    2009-01-01

    This study focuses on family life of Afghan refugees in the Netherlands, within and across borders. While family life constitutes a foundation in the lives of human beings, the disruption of the family through external causes has a huge impact on the people involved. In the case of refugees, many of

  17. Glycemic response to corn starch modified with cyclodextrin glycosyltransferase and its relationship to physical properties

    Science.gov (United States)

    Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...

  18. Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge

    NARCIS (Netherlands)

    Leemhuis, H; Rozeboom, HJ; Dijkstra, BW; Dijkhuizen, L; Dijkstra, Bauke W.

    2004-01-01

    Cyclodextrin glycosyltransferase (CGTase) catalyzes the formation of cyclodextrins from starch. Among the CGTases with known three-dimensional structure, Thennoanaerobacterium thermosulfurigenes CGTase has the highest thermostability. By replacing amino acid residues in the B-domain of Bacillus circ

  19. Attitudes about human papillomavirus vaccine among family physicians.

    Science.gov (United States)

    Riedesel, J M; Rosenthal, S L; Zimet, G D; Bernstein, D I; Huang, B; Lan, D; Kahn, J A

    2005-12-01

    Human papillomavirus (HPV) vaccines will soon be available for clinical use, and the effectiveness of vaccine delivery programs will depend largely upon whether providers recommend the vaccine. The objectives of this study were to examine family physicians' attitudes about HPV immunization and to identify predictors of intention to recommend immunization. Cross-sectional survey instrument assessing provider and practice characteristics, knowledge about HPV, attitudes about HPV vaccination, and intention to administer two hypothetical HPV vaccines. Surveys were mailed to a national random sample of 1,000 American Academy of Family Physicians (AAFP) members. Intention to administer two hypothetical HPV vaccines (a cervical cancer/genital wart vaccine and a cervical cancer vaccine) to boys and girls of different ages. One hundred fifty-five surveys (15.5%) were returned and 145 were used in the final sample. Participants reported higher intention to recommend both hypothetical HPV vaccines to girls vs. boys (P HPV, belief that organizations such as the AAFP would endorse vaccination, and fewer perceived barriers to vaccination. Female gender, knowledge about HPV, and attitudes about vaccination were independently associated with family physicians' intention to recommend HPV vaccines. Vaccination initiatives directed toward family physicians should focus on modifiable predictors of intention to vaccinate, such as HPV knowledge and attitudes about vaccination.

  20. Computational insights into active site shaping for substrate specificity and reaction regioselectivity in the EXTL2 retaining glycosyltransferase.

    Science.gov (United States)

    Mendoza, Fernanda; Lluch, José M; Masgrau, Laura

    2017-09-14

    Glycosyltransferases are enzymes that catalyze a monosaccharide transfer reaction from a donor to an acceptor substrate with the synthesis of a new glycosidic bond. They are highly substrate specific and regioselective, even though the acceptor substrate often presents multiple reactive groups. Currently, many efforts are dedicated to the development of biocatalysts for glycan synthesis and, therefore, a better understanding of how natural enzymes achieve this goal can be of valuable help. To gain a deeper insight into the catalytic strategies used by retaining glycosyltransferases, the wild type EXTL2 (CAZy family GT64) and four mutant forms (at positions 293 and 246) were studied using QM(DFT)/MM calculations and molecular dynamics simulations. Existing hypotheses on the roles of Arg293, an enigmatic residue in the CAZy family GT64 that seemed to contradict a mechanism through an oxocarbenium intermediate, and of Asp246 have been tested. We also provide a molecular interpretation for the results of site-directed mutagenesis experiments. Moreover, we have investigated why an Asp, and not a Glu like in the family GT6, is found on the β-face of the transferred GlcNAc. It is predicted that an Asp246Glu mutant of EXTL2 would be unable to catalyze the α-1,4 transfer. The results herein presented clarify the roles that Arg293, Asp246 and Leu213 have at different stages of the catalytic process (for binding but also for efficient chemical reaction). Altogether, we provide a molecular view that connects the identity and conformation of these residues to the substrate specificity and regioselectivity of the enzyme, illustrating a delicate interplay between all these aspects.

  1. Human Sexuality Education in Marriage and Family Therapy Graduate Programs.

    Science.gov (United States)

    Zamboni, Brian D; Zaid, Samantha J

    2017-02-20

    Given the likelihood that marriage and family therapists will encounter clients with sexual concerns, it is important to know how graduate training programs are preparing future clinicians to work with this domain of life. Sixty-nine marriage and family therapy (MFT) program directors completed an online survey to examine how sexual health education is integrated into graduate training programs. Findings indicate that while the majority of program directors value sexuality curriculum, and most programs require at least one course in this area, there are barriers to privileging sex topics in MFT graduate programs. Barriers include few MFT faculties with expertise in human sexuality and marginalized sexual health topics. Implications for training MFT graduate students and their work with future clients are discussed.

  2. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    Science.gov (United States)

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource.

  3. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics.

    Science.gov (United States)

    Nikolovski, Nino; Rubtsov, Denis; Segura, Marcelo P; Miles, Godfrey P; Stevens, Tim J; Dunkley, Tom P J; Munro, Sean; Lilley, Kathryn S; Dupree, Paul

    2012-10-01

    The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.

  4. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  5. Meeting the family: promoting humanism in gross anatomy.

    Science.gov (United States)

    Crow, Sheila M; O'Donoghue, Dan; Vannatta, Jerry B; Thompson, Britta M

    2012-01-01

    Human dissection commonly occurs early in the undergraduate medical school curriculum, thus presenting an immediate opportunity for educators to teach and encourage humanistic qualities of respect, empathy, and compassion. The purpose of this study was to measure the impact of the Donor Luncheon, a unique program in which medical students meet the families of the anatomical donor prior to dissection in the anatomy course at the University of Oklahoma College of Medicine. Students were randomized into groups of 8 to attend the luncheon and either met with family of the donor or attended the luncheon with no donor family present. A questionnaire measured students' attitudes at 2 weeks, 6 weeks, and at the conclusion of the anatomy course. Factor analysis revealed 5 scales. Analysis revealed statistically significant differences across time for Donor as Person, Dissection Process, and Donor as Patient and statistically significant differences between groups for Donor as Person and Donor as Patient. These results suggest that this program can provide students with the opportunity to maintain more humanistic attitudes at the beginning of their medical education career.

  6. Specificity of botulinum protease for human VAMP family proteins.

    Science.gov (United States)

    Yamamoto, Hideyuki; Ida, Tomoaki; Tsutsuki, Hiroyasu; Mori, Masatoshi; Matsumoto, Tomoko; Kohda, Tomoko; Mukamoto, Masafumi; Goshima, Naoki; Kozaki, Shunji; Ihara, Hideshi

    2012-04-01

    The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT.

  7. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis.

    Science.gov (United States)

    Yu, Han-Song; Ma, Lan-Qing; Zhang, Ji-Xing; Shi, Guang-Lu; Hu, Yao-Hui; Wang, You-Nian

    2011-06-01

    Salidroside, the 8-O-β-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing production of salidroside by biotechnological manipulations. In this study, two putative UDP-glycosyltransferase (UGT) cDNAs, UGT72B14 and UGT74R1, were isolated from roots and cultured cells of methyl jasmonate (MeJA)-treated R. sachalinensis, respectively. The level of sequence identity between their deduced amino acid sequences was ca. 20%. RNA gel-blot analysis established that UGT72B14 transcripts were more abundant in roots, and UGT74R1 was highly expressed in the calli, but not in roots. Functional analysis indicated that recombinant UGT72B14 had the highest level of activity for salidroside production, and that the catalytic efficiency (Vmax/Km) of UGT72B14 was 620% higher than that of UGT74R1. The salidroside contents of the UGT72B14 and UGT74R1 transgenic hairy root lines of R. sachalinensis were also ∼420% and ∼50% higher than the controls, respectively. UGT72B14 transcripts were mainly detected in roots, and UGT72B14 had the highest level of activity for salidroside production in vitro and in vivo.

  8. Catalytic and thermodynamic properties of glycosylated Bacillus cereus cyclodextrin glycosyltransferase.

    Science.gov (United States)

    Abdel-Naby, Mohamed A; Fouad, Ahmed A; El-Refai, H A

    2015-05-01

    Cyclodextrin glycosyltransferase (CGTase) was covalently coupled to five oxidized polysaccharides differing in structure and chemical nature. The conjugates were evaluated for the retained activity, kinetic and thermodynamic stability. The conjugated CGTase with oxidized dextran (MW 47000) had the highest retained specific activity (70.05%) and the highest half-life (T1/2) at 80°C. Compared to the native enzyme, the conjugated preparation exhibited higher optimum temperature, lower activation energy (Ea), lower deactivation constant rate (kd), higher T1/2, and higher D values (decimal reduction time) within the temperature range of 60-80°C. The values of thermodynamic parameters for irreversible inactivation of native and conjugated CGTase indicated that conjugation significantly decreased entropy (ΔS*) and enthalpy of deactivation (ΔH*). The results of thermodynamic analysis for cyclodextrin production from starch indicated that The enthalpy of activation (ΔH*) and free energy of activation (ΔG*), (free energy of transition state) ΔG*E-T and (free energy of substrate binding) ΔG*E-S values were lower for the conjugated CGTase. Similarly, there was significant impact on improvement of kcat, kcat/Km values. Both native and conjugated enzyme produce α-cyclodextrin from starch.

  9. Molecular cloning of a fourth member of a human alpha (1,3)fucosyltransferase gene family. Multiple homologous sequences that determine expression of the Lewis x, sialyl Lewis x, and difucosyl sialyl Lewis x epitopes.

    Science.gov (United States)

    Weston, B W; Smith, P L; Kelly, R J; Lowe, J B

    1992-12-05

    We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.

  10. Glycosyltransferases:key players involved in the modification of plant secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Jun WANG; Bingkai HOU

    2009-01-01

    Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules,resulting in the glycosylation of plant compounds.Although the activities of many glycosyltransferases and their products have been recognized for a long time,only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail.Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites,and plays a key role in maintaining cell homeostasis,thus likely participating in the regulation of plant growth,development and in defense responses to stress environments.With advances in plant genome projects and the development of novel technologies in analyzing gene function,significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases,and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops.In this review,we summarize the current research,highlighting the possible biological roles,of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.

  11. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type O-glycosylation.

    Science.gov (United States)

    Gerken, Thomas A; Revoredo, Leslie; Thome, Joseph J C; Tabak, Lawrence A; Vester-Christensen, Malene Bech; Clausen, Henrik; Gahlay, Gagandeep K; Jarvis, Donald L; Johnson, Roy W; Moniz, Heather A; Moremen, Kelley

    2013-07-01

    Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.

  12. Modelling familial dysautonomia in human induced pluripotent stem cells.

    Science.gov (United States)

    Lee, Gabsang; Studer, Lorenz

    2011-08-12

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of such phenotypes using genetic or pharmacological approaches. Finally, the system needs to be scalable for use in modern drug discovery. Here, we will discuss these points in the context of modelling familial dysautonomia (FD, Riley-Day syndrome, hereditary sensory and autonomic neuropathy III (HSAN-III)), a rare genetic disorder in the peripheral nervous system. We have demonstrated three disease-specific phenotypes in FD-iPS-derived cells that can be partially rescued by treating cells with the plant hormone kinetin. Here, we will discuss how to use FD-iPS cells further in high throughput drug discovery assays, in modelling disease severity and in performing mechanistic studies aimed at understanding disease pathogenesis. FD is a rare disease but represents an important testing ground for exploring the potential of iPS cell technology in modelling and treating human disease.

  13. Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions.

    Science.gov (United States)

    Gantt, Richard W; Peltier-Pain, Pauline; Cournoyer, William J; Thorson, Jon S

    2011-08-21

    We report that simple glycoside donors can drastically shift the equilibria of glycosyltransferase-catalyzed reactions, transforming NDP-sugar formation from an endothermic to an exothermic process. To demonstrate the utility of this thermodynamic adaptability, we highlight the glycosyltransferase-catalyzed synthesis of 22 sugar nucleotides from simple aromatic sugar donors, as well as the corresponding in situ formation of sugar nucleotides as a driving force in the context of glycosyltransferase-catalyzed reactions for small-molecule glycodiversification. These simple aromatic donors also enabled a general colorimetric assay for glycosyltransfer, applicable to drug discovery, protein engineering and other fundamental sugar nucleotide-dependent investigations. This study directly challenges the general notion that NDP-sugars are 'high-energy' sugar donors when taken out of their traditional biological context.

  14. Human-animal bonds II: the role of pets in family systems and family therapy.

    Science.gov (United States)

    Walsh, Froma

    2009-12-01

    The vast majority of pet owners regard their companion animals as family members, yet the role of pets in family systems and family therapy has received little attention in research, training, and practice. This article first notes the benefits of family pets and their importance for resilience. It then examines their role in couple and family processes and their involvement in relational dynamics and tensions. Next, it addresses bereavement in the loss of a cherished pet, influences complicating grief, and facilitation of mourning and adaptation. Finally, it explores the ways that clients' pets and the use of therapists' companion animals in animal-assisted therapy can inform and enrich couple and family therapy as valuable resources in healing.

  15. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production

    NARCIS (Netherlands)

    Uitdehaag, JCM; Penninga, D; van Alebeek, GJWM; Smith, LM; Dijkstra, BW; Dijkhuizen, L

    2000-01-01

    Cyclodextrin glycosyltransferases (CGTase) (EC;2.4.1.19) are extracellular bacterial enzymes that generate cyclodextrins from starch. All known CGTases produce mixtures of alpha, beta, and gamma-cyclodextrins. A maltononaose inhibitor bound to the active site of the CGTase from Bacillus circulans st

  16. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251

    NARCIS (Netherlands)

    Penninga, Dirk; Veen, Bart A. van der; Knegtel, Ronald M.A.; Hijum, Sacha A.F.T. van; Rozeboom, Henriëtte J.; Kalk, Kor H.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert

    1996-01-01

    The E-domain of cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) from Bacillus circulans strain 251 is a putative raw starch binding domain. Analysis of the maltose-dependent CGTase crystal structure revealed that each enzyme molecule contained three maltose molecules, situated at contact

  17. Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation*

    Science.gov (United States)

    Valiente, Esmeralda; Bouché, Laura; Hitchen, Paul; Faulds-Pain, Alexandra; Songane, Mario; Dawson, Lisa F.; Donahue, Elizabeth; Stabler, Richard A.; Panico, Maria; Morris, Howard R.; Bajaj-Elliott, Mona; Logan, Susan M.; Dell, Anne; Wren, Brendan W.

    2016-01-01

    Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439–25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains. PMID:27703012

  18. Jewish Family and Children's Services: a pioneering human service organization (1850-2008).

    Science.gov (United States)

    Schwartz, Sara L; Austin, Michael J

    2011-01-01

    Jewish Family and Children's Services of San Francisco, the Peninsula, Marin, and Sonoma Counties is a pioneering nonprofit human service organization that has delivered services for 157 years. Over the course of its history, the organization has transformed itself from an all-volunteer agency delivering aid to immigrant families during the Gold Rush era to a $30 million nonprofit human service organization offering a full-range of services to adults, children, and families. The history of Jewish Family and Children's Services sheds light on the importance of strong leadership, strategic planning, external relationships, and strong donor support.

  19. The family and the ontogenesis of human life: An appraisal ...

    African Journals Online (AJOL)

    The problem of auto-transcendence still baffles philosophers and scholars of ... role of the family, in a man's journey on earth beginning from his origins through his ... fundamental features of man, namely: Facticity, existentiality and falleness.

  20. Different glycosyltransferases are involved in lipid glycosylation and protein N-glycosylation in the halophilic archaeon Haloferax volcanii.

    Science.gov (United States)

    Naparstek, Shai; Vinagradov, Evguenii; Eichler, Jerry

    2010-07-01

    Both the lipid and the protein components of biological membranes can be modified by the covalent addition of polysaccharides. Whereas eukaryal and bacterial pathways of lipid and protein glycosylation are relatively well defined, considerably less is known of the parallel processes in Archaea. Recent efforts have identified glycosyltransferases involved in N-glycosylation of the surface-layer glycoprotein of the halophilic archaeon Haloferax volcanii. In the present study, the involvement of these same glycosyltransferases in the biosynthesis of Hfx. volcanii glycolipids was considered by performing nuclear magnetic resonance analysis of the glycolipid fraction of Hfx. volcanii cells deleted of genes encoding those glycosyltransferases, as well as the oligosaccharyltransferase, AglB. The results reveal that different glycosyltransferases are involved in the biosynthesis of N-linked glycoproteins and glycolipids in Archaea.

  1. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms

    NARCIS (Netherlands)

    Veen, Bart A. van der; Alebeek, Gert-Jan W.M. van; Uitdehaag, Joost C.M.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert

    2000-01-01

    Cyclodextrin glycosyltransferase (CGTase) catalyzes three transglycosylation reactions via a double displacement mechanism involving a covalent enzyme-intermediate complex (substituted-enzyme intermediate). Characterization of the three transglycosylation reactions, however, revealed that they diffe

  2. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed.

  3. Language, Mind, Practice: Families of Recursive Thinking in Human Reasoning

    Science.gov (United States)

    Josephson, Marika

    2011-01-01

    In 2002, Chomsky, Hauser, and Fitch asserted that recursion may be the one aspect of the human language faculty that makes human language unique in the narrow sense--unique to language and unique to human beings. They also argue somewhat more quietly (as do Pinker and Jackendoff 2005) that recursion may be possible outside of language: navigation,…

  4. Language, Mind, Practice: Families of Recursive Thinking in Human Reasoning

    Science.gov (United States)

    Josephson, Marika

    2011-01-01

    In 2002, Chomsky, Hauser, and Fitch asserted that recursion may be the one aspect of the human language faculty that makes human language unique in the narrow sense--unique to language and unique to human beings. They also argue somewhat more quietly (as do Pinker and Jackendoff 2005) that recursion may be possible outside of language: navigation,…

  5. p53 Family: Role of Protein Isoforms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Jinxiong Wei

    2012-01-01

    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  6. The right to family unification : between migration control and human rights

    NARCIS (Netherlands)

    Klaassen, Mark Arnoldus Karel

    2015-01-01

    The central question in this book is whether there is a human right to family unification. This book identifies the key elements of the right to family unification. By investigating different sources of international, European and domestic law, it assesses whether and how the different legal systems

  7. Human capital in family businesses: an exploratory analysis in Spanish firms

    Directory of Open Access Journals (Sweden)

    Antonio José Carrasco Hernández

    2014-07-01

    Full Text Available The purpose of this paper is to analyze how family firms identify, develop and protect their human capital. From an exploratoryperspective based on the resource-based view, the key human resource practices are examined in a sample of 433Spanish companies. Specifically, we examine the orientation and idiosyncrasies that family firms confer to the selection andpromotion mechanism, to the training and developing practices, to the design of compensation and executive paymentsand, finally, to the process of succession

  8. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  9. Expansion of the protein repertoire in newly explored environments: human gut microbiome specific protein families.

    Directory of Open Access Journals (Sweden)

    Kyle Ellrott

    2010-06-01

    Full Text Available The microbes that inhabit particular environments must be able to perform molecular functions that provide them with a competitive advantage to thrive in those environments. As most molecular functions are performed by proteins and are conserved between related proteins, we can expect that organisms successful in a given environmental niche would contain protein families that are specific for functions that are important in that environment. For instance, the human gut is rich in polysaccharides from the diet or secreted by the host, and is dominated by Bacteroides, whose genomes contain highly expanded repertoire of protein families involved in carbohydrate metabolism. To identify other protein families that are specific to this environment, we investigated the distribution of protein families in the currently available human gut genomic and metagenomic data. Using an automated procedure, we identified a group of protein families strongly overrepresented in the human gut. These not only include many families described previously but also, interestingly, a large group of previously unrecognized protein families, which suggests that we still have much to discover about this environment. The identification and analysis of these families could provide us with new information about an environment critical to our health and well being.

  10. HUMANIZATION VISIT FAMILY IN AN ADULT ICU SOUTHEAST OF MATO GROSSO

    Directory of Open Access Journals (Sweden)

    Vagner Nascimento

    2012-01-01

    Full Text Available This is a pilot project, using the theoretical and philosophical Leininger. The project will be developed in a municipality hospital in southeastern of Mato Grosso, in the period between January and March 2012, in order to humanize the family visits of the internal customers of Adult Intensive Care Unit. To carry out the project activities will use the listing of the original guidelines proposed by the Paulista School of Medicine of sectors closed to visitors. The need to intervene in this dynamic, customer-service family, there was a lack of humane view of the team with the family, sometimes for not recognizing the family as a therapeutic tool in intensive care. Thus, neglecting the health of the family, who likewise, need special care, intensive care.

  11. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.

    Science.gov (United States)

    Okajima, Tetsuya; Matsuura, Aiko; Matsuda, Tsukasa

    2008-07-01

    Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. Well-known examples of such modification are O-linked fucose (O-fucose) and O-linked glucose (O-glucose) glycans on epidermal growth factor (EGF) domains. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as urinary-type plasminogen activator and Notch receptors. Two glycosyltransferases catalyze the initiation and elongation of O-fucose glycans. The initiation process is catalyzed by O-fucosyltransferase 1, which is essential for Notch signalling in both Drosophila and mice. O-fucosyltransferase 1 can affect the folding, ligand interaction and endocytosis of Notch receptors, and both the glycosyltransferase and non-catalytic activities of O-fucosyltransferase 1 have been reported. The elongation of O-fucose monosaccharide is catalyzed by Fringe-related genes, which differentially modulate the interaction between Notch and two classes of ligands, namely, Delta and Serrate/Jagged. In this article, we have reviewed the recent reports addressing the distinctive features of the glycosyltransferases and O-glycans present on the EGF domains.

  12. Arabinogalactan Glycosyltransferases: Enzyme Assay, Protein-Protein Interaction, Subcellular Localization, and Perspectives for Application

    Directory of Open Access Journals (Sweden)

    Naomi Geshi

    2014-01-01

    Full Text Available Arabinogalactan proteins (AGPs are abundant extracellular proteoglycans that are found in most plant species and involved in many cellular processes, such as cell proliferation and survival, pattern formation, and growth, and in plant microbe interaction. AGPs are synthesized by posttranslational O-glycosylation of proteins and attached glycan part often constitutes greater than 90% of the molecule. Subtle altered glycan structures during development have been considered to function as developmental markers on the cell surface, but little is known concerning the molecular mechanisms. My group has been working on glycosylation enzymes (glycosyltransferases of AGPs to investigate glycan function of the molecule. This review summarizes the recent findings from my group as for AtGalT31A, AtGlcAT14A-C, and AtGalT29A of Arabidopsis thaliana with a specific focus on the (i biochemical enzyme activities; (ii subcellular compartments targeted by the glycosyltransferases; and (iii protein-protein interactions. I also discuss application aspect of glycosyltransferase in improving AGP-based product used in industry, for example, gum arabic.

  13. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue

    DEFF Research Database (Denmark)

    Egelund, Jack; Obel, Nicolai; Ulvskov, Peter

    2007-01-01

    Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas...... identified and characterized at the molecular and biochemical level. Monosaccharide compositional analyses of cell wall material isolated from the meristematic region showed a ca. 20% reduction in the arabinose content in the insoluble/undigested cell wall residue after enzymatic removal of xyloglucan...... and pectic polysaccharides. These data indicate that both RRA-1 and -2 play a role in the arabinosylation of cell wall component(s)....

  14. Teaching Humanities in Medicine: The University of Massachusetts Family Medicine Residency Program Experience

    Science.gov (United States)

    Silk, Hugh; Shields, Sara

    2012-01-01

    Humanities in medicine (HIM) is an important aspect of medical education intended to help preserve humanism and a focus on patients. At the University of Massachusetts Family Medicine Residency Program, we have been expanding our HIM curriculum for our residents including orientation, home visit reflective writing, didactics and a department-wide…

  15. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Science.gov (United States)

    Davies, Mark R; Broadbent, Sarah E; Harris, Simon R; Thomson, Nicholas R; van der Woude, Marjan W

    2013-06-01

    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions.

  16. Impact of human bocavirus on children and their families

    NARCIS (Netherlands)

    Esposito, Susanna; Bosis, Samantha; Niesters, Hubert G M; Tremolati, Elena; Sabatini, Caterina; Porta, Alessandro; Fossali, Emilio; Osterhaus, Albert D M E; Principi, Nicola

    2008-01-01

    This study was planned to investigate the prevalence and clinical features of the illnesses associated with human bocavirus (hBoV) in children with acute disease. We prospectively enrolled all subjects aged less than 15 years attending an emergency room in Milan, Italy, on Wednesdays and Sundays bet

  17. Impact of human bocavirus on children and their families

    NARCIS (Netherlands)

    S. Esposito (Susanna); S. Bosis (Samantha); H.G.M. Niesters (Bert); E. Tremolati (Elena); C. Sabatini (Caterina); A. Porta (Alessandro); E. Fossali (Emilio); A.D.M.E. Osterhaus (Albert); N. Principi (Nicola)

    2008-01-01

    textabstractThis study was planned to investigate the prevalence and clinical features of the illnesses associated with human bocavirus (hBoV) in children with acute disease. We prospectively enrolled all subjects aged less than 15 years attending an emergency room in Milan, Italy, on Wednesdays and

  18.  Human carcinoembryonic antygen family proteins, structure and function

    Directory of Open Access Journals (Sweden)

    Hanna Czepczyńska-Krężel

    2012-07-01

    Full Text Available  The CEA related cell adhesion molecules (CEACAM contain variable and constant immunoglobulin-like domains and are classified as a member of the immunoglobulin supergene family, IgSF. The seven CEACAM (CD66 antigens (CEACAM1, CEACAM3, CEACAM4, CEA, CEACAM6, CEACAM7 and CEACAM8 differ in the number of Ig-like domains, sugar content, presence of isoforms, tissue distribution and form of membrane attachment (transmembrane region or GPI anchor. CEACAMs with a transmembrane region possess a cytoplasmic domain with or without the immunoreceptor motifs. The structural diversity of CEACAMs results in their multifunctionality, especially displayed in calcium independent homo- and heterotypic adhesion interactions. The scientific data, collected mainly for CEA, strongly confirm involvement of this molecule in colorectal cancer. Recent research also indicates that CEACAMs play an important role in signal transduction, recognition and binding of pathogenic bacteria belonging to Neisseria and Escherichia genera.

  19. Human and animal vaccination delivery to remote nomadic families, Chad.

    Science.gov (United States)

    Schelling, Esther; Bechir, Mahamat; Ahmed, Mahamat Abdoulaye; Wyss, Kaspar; Randolph, Thomas F; Zinsstag, Jakob

    2007-03-01

    Vaccination services for people and livestock often fail to achieve sufficient coverages in Africa's remote rural settings because of financial, logistic, and service delivery constraints. In Chad from 2000 through 2005, we demonstrated the feasibility of combining vaccination programs for nomadic pastoralists and their livestock. Sharing of transport logistics and equipment between physicians and veterinarians reduced total costs. Joint delivery of human and animal health services is adapted to and highly valued by hard-to-reach pastoralists. In intervention zones, for the first time approximately 10% of nomadic children (> 1-11 months of age) were fully immunized annually and more children and women were vaccinated per day during joint vaccination rounds than during vaccination of persons only and not their livestock (130 vs. 100, p < 0.001). By optimizing use of limited logistical and human resources, public health and veterinary services both become more effective, especially at the district level.

  20. Horizontally acquired glycosyltransferase operons drive salmonellae lipopolysaccharide diversity.

    Directory of Open Access Journals (Sweden)

    Mark R Davies

    2013-06-01

    Full Text Available The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions.

  1. Horizontally Acquired Glycosyltransferase Operons Drive Salmonellae Lipopolysaccharide Diversity

    Science.gov (United States)

    Davies, Mark R.; Broadbent, Sarah E.; Harris, Simon R.; Thomson, Nicholas R.; van der Woude, Marjan W.

    2013-01-01

    The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysaccharide diversity is generally associated with sequence variation in the lipopolysaccharide biosynthesis operon, extraneous genetic factors such as those encoded by the glucosyltransferase (gtr) operons provide further structural heterogeneity by adding additional sugars onto the O-antigen component of the lipopolysaccharide. Here we identify and examine the O-antigen modifying glucosyltransferase genes from the genomes of Salmonella enterica and Salmonella bongori serovars. We show that Salmonella generally carries between 1 and 4 gtr operons that we have classified into 10 families on the basis of gtrC sequence with apparent O-antigen modification detected for five of these families. The gtr operons localize to bacteriophage-associated genomic regions and exhibit a dynamic evolutionary history driven by recombination and gene shuffling events leading to new gene combinations. Furthermore, evidence of Dam- and OxyR-dependent phase variation of gtr gene expression was identified within eight gtr families. Thus, as O-antigen modification generates significant intra- and inter-strain phenotypic diversity, gtr-mediated modification is fundamental in assessing Salmonella strain variability. This will inform appropriate vaccine and diagnostic approaches, in addition to contributing to our understanding of host-pathogen interactions. PMID:23818865

  2. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  3. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    Science.gov (United States)

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  4. mRNA related to insulin family in human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  5. Family Aggregation of Human T-Lymphotropic Virus 1-Associated Diseases: A Systematic Review

    Science.gov (United States)

    Alvarez, Carolina; Gotuzzo, Eduardo; Vandamme, Anne-Mieke; Verdonck, Kristien

    2016-01-01

    Human T-lymphotropic virus 1 (HTLV-1) is a retrovirus that produces a persistent infection. Two transmission routes (from mother to child and via sexual intercourse) favor familial clustering of HTLV-1. It is yet unknown why most HTLV-1 carriers remain asymptomatic while about 10% of them develop complications. HTLV-1 associated diseases were originally described as sporadic entities, but familial presentations have been reported. To explore what is known about family aggregation of HTLV-1-associated diseases we undertook a systematic review. We aimed at answering whether, when, and where family aggregation of HTLV-1-associated diseases was reported, which relatives were affected and which hypotheses were proposed to explain aggregation. We searched MEDLINE, abstract books of HTLV conferences and reference lists of selected papers. Search terms used referred to HTLV-1 infection, and HTLV-1-associated diseases, and family studies. HTLV-1-associated diseases considered are adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), HTLV-1-associated uveitis, and infective dermatitis. Seventy-four records reported HTLV-1-associated diseases in more than one member of the same family and were included. Most reports came from HTLV-1-endemic countries, mainly Japan (n = 30) and Brazil (n = 10). These reports described a total of 270 families in which more than one relative had HTLV-1-associated diseases. In most families, different family members suffered from the same disease (n = 223). The diseases most frequently reported were ATLL (115 families) and HAM/TSP (102 families). Most families (n = 144) included two to four affected individuals. The proportion of ATLL patients with family history of ATLL ranged from 2 to 26%. The proportion of HAM/TSP patients with family history of HAM/TSP ranged from 1 to 48%. The predominant cluster types for ATLL were clusters of siblings and parent-child pairs and for HAM/TSP, an affected

  6. Comparative Study on Sequence–Structure–Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family

    OpenAIRE

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Ou...

  7. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model

    Science.gov (United States)

    Bissig-Choisat, Beatrice; Wang, Lili; Legras, Xavier; Saha, Pradip K.; Chen, Leon; Bell, Peter; Pankowicz, Francis P.; Hill, Matthew C.; Barzi, Mercedes; Leyton, Claudia Kettlun; Leung, Hon-Chiu Eastwood; Kruse, Robert L.; Himes, Ryan W.; Goss, John A.; Wilson, James M.; Chan, Lawrence; Lagor, William R.; Bissig, Karl-Dimiter

    2015-01-01

    Diseases of lipid metabolism are a major cause of human morbidity, but no animal model entirely recapitulates human lipoprotein metabolism. Here we develop a xenograft mouse model using hepatocytes from a patient with familial hypercholesterolaemia caused by loss-of-function mutations in the low-density lipoprotein receptor (LDLR). Like familial hypercholesterolaemia patients, our familial hypercholesterolaemia liver chimeric mice develop hypercholesterolaemia and a 'humanized‘ serum profile, including expression of the emerging drug targets cholesteryl ester transfer protein and apolipoprotein (a), for which no genes exist in mice. We go on to replace the missing LDLR in familial hypercholesterolaemia liver chimeric mice using an adeno-associated virus 9-based gene therapy and restore normal lipoprotein profiles after administration of a single dose. Our study marks the first time a human metabolic disease is induced in an experimental animal model by human hepatocyte transplantation and treated by gene therapy. Such xenograft platforms offer the ability to validate human experimental therapies and may foster their rapid translation into the clinic. PMID:26081744

  8. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    Directory of Open Access Journals (Sweden)

    Tomáš Trnka

    2015-04-01

    Full Text Available The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi. The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  9. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    Science.gov (United States)

    Trnka, Tomáš; Kozmon, Stanislav; Tvaroška, Igor; Koča, Jaroslav

    2015-04-01

    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  10. Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life.

    Science.gov (United States)

    Magidovich, Hilla; Eichler, Jerry

    2009-11-01

    The ability of Eukarya, Bacteria and Archaea to perform N-glycosylation underlies the importance and possible antiquity of this post-translational protein modification. However, in contrast to the relatively well-studied eukaryal and bacterial pathways, the archaeal N-glycosylation process is less understood. To remedy this disparity, the following study has examined 56 available archaeal genomes with the aim of identifying glycosyltransferases and oligosaccharyltransferases, including those putatively catalyzing this post-translational processing event. This analysis reveals that while oligosaccharyltransferases, central components of the N-glycosylation pathway, are found across the range of archaeal phenotypes, the N-glycosylation machinery of hyperthermophilic Archaea may well rely on fewer components than do the parallel systems of nonhyperthermophilic Archaea. Moreover, genes encoding predicted glycosyltransferases of hyperthermophilic Archaea tend to be far more scattered within the genome than is the case with nonhyperthermophilic species, where putative glycosyltransferase genes are often clustered around identified oligosaccharyltransferase-encoding sequences.

  11. Novel Path Towards Colistin Resistance In Pseudomonas Aeruginosa During Chronic Infection Involves Polymorphisms In Uncharacterized Glycosyltransferase Gene

    DEFF Research Database (Denmark)

    Hermansen, Grith Miriam Maigaard; Jelsbak, Lars

    2015-01-01

    Introduction: Antibiotic resistance development in the gram-negative bacterium Pseudomonas aeruginosa is an increasing problem. The effect of colistin, one of the few last resort drugs commonly given to cystic fibrosis (CF) patients, is dependent on the lipopolysaccharide (LPS) structure. We have....... The results indicate that this glycosyltransferase polymorphism is needed for the clinical strain to be fully virulent. However, introducing the SNP into PAO1 did not result in altered phenotypes. These results reveal this uncharacterized glycosyltransferase as a novel in vivo path to colistin resistance...... by LPS modification. Conclusions: Colistin resistance development in vivo occurs via multiple paths. Here a novel pathway for the development of colistin resistance was described. It involves mutations in a hitherto uncharacterized glycosyltransferase....

  12. Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence.

    Science.gov (United States)

    Schwarz, Flavio; Fan, Yao-Yun; Schubert, Mario; Aebi, Markus

    2011-10-07

    N-Linked glycosylation is a frequent protein modification that occurs in all three domains of life. This process involves the transfer of a preassembled oligosaccharide from a lipid donor to asparagine side chains of polypeptides and is catalyzed by the membrane-bound oligosaccharyltransferase (OST). We characterized an alternative bacterial pathway wherein a cytoplasmic N-glycosyltransferase uses nucleotide-activated monosaccharides as donors to modify asparagine residues of peptides and proteins. N-Glycosyltransferase is an inverting glycosyltransferase and recognizes the NX(S/T) consensus sequence. It therefore exhibits similar acceptor site specificity as eukaryotic OST, despite the unrelated predicted structural architecture and the apparently different catalytic mechanism. The identification of an enzyme that integrates some of the features of OST in a cytoplasmic pathway defines a novel class of N-linked protein glycosylation found in pathogenic bacteria.

  13. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  14. Human subtelomeric WASH genes encode a new subclass of the WASP family.

    Directory of Open Access Journals (Sweden)

    Elena V Linardopoulou

    2007-12-01

    Full Text Available Subtelomeres are duplication-rich, structurally variable regions of the human genome situated just proximal of telomeres. We report here that the most terminally located human subtelomeric genes encode a previously unrecognized third subclass of the Wiskott-Aldrich Syndrome Protein family, whose known members reorganize the actin cytoskeleton in response to extracellular stimuli. This new subclass, which we call WASH, is evolutionarily conserved in species as diverged as Entamoeba. We demonstrate that WASH is essential in Drosophila. WASH is widely expressed in human tissues, and human WASH protein colocalizes with actin in filopodia and lamellipodia. The VCA domain of human WASH promotes actin polymerization by the Arp2/3 complex in vitro. WASH duplicated to multiple chromosomal ends during primate evolution, with highest copy number reached in humans, whose WASH repertoires vary. Thus, human subtelomeres are not genetic junkyards, and WASH's location in these dynamic regions could have advantageous as well as pathologic consequences.

  15. Situational Analysis of Human Resources in Family Physician Program: Survey from Iran

    Science.gov (United States)

    Kalhor, Rohollah; Azmal, Mohammad; Kiaei, Mohammad Zakaria; Eslamian, Maryam; Tabatabaee, Seyed Saeed; Jafari, Mehdi

    2014-01-01

    Introduction: Family physician is the increasing efforts to promote physician and other human resources in the health care systems. Goal: Investigate Human resources situation of the family physician program in six pilot cities in Khuzestan province in the southwest of Iran. Methods: A cross-sectional descriptive study was conducted to examine the family physician program in 2011. In this study, 15 healthcare teams in six pilot cities in Iran were assessed. Data was compiled from family physician officer document in vice treatment of Ahwaz University of medical sciences. National instructions of family physician was used to identify current gaps. Results: The survey findings indicated that there is a doctor’s shortage about 36% in the health team that deployed in the first level of referral system. Also on the team, the 34% shortage of nurses and 60% shortages of nutrition personnel are seen. Specialists with offices in cities of second referral level, there have not welcomed the program. Conclusions: It seems that to facilitate patient access to physicians under contract with family physician program and the referral system in level two and level three, adopting arrangements to attract specialists and improving their maintenance is necessary. PMID:25126016

  16. DDX11L: a novel transcript family emerging from human subtelomeric regions

    Directory of Open Access Journals (Sweden)

    D'Urso Michele

    2009-05-01

    Full Text Available Abstract Background The subtelomeric regions of human chromosomes exhibit an extraordinary plasticity. To date, due to the high GC content and to the presence of telomeric repeats, the subtelomeric sequences are underrepresented in the genomic libraries and consequently their sequences are incomplete in the finished human genome sequence, and still much remains to be learned about subtelomere organization, evolution and function. Indeed, only in recent years, several studies have disclosed, within human subtelomeres, novel gene family members. Results During a project aimed to analyze genes located in the telomeric region of the long arm of the human X chromosome, we have identified a novel transcript family, DDX11L, members of which map to 1pter, 2q13/14.1, 2qter, 3qter, 6pter, 9pter/9qter, 11pter, 12pter, 15qter, 16pter, 17pter, 19pter, 20pter/20qter, Xpter/Xqter and Yqter. Furthermore, we partially sequenced the underrepresented subtelomeres of human chromosomes showing a common evolutionary origin. Conclusion Our data indicate that an ancestral gene, originated as a rearranged portion of the primate DDX11 gene, and propagated along many subtelomeric locations, is emerging within subtelomeres of human chromosomes, defining a novel gene family. These findings support the possibility that the high plasticity of these regions, sites of DNA exchange among different chromosomes, could trigger the emergence of new genes.

  17. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood.

    Science.gov (United States)

    Li, Quanzi; Min, Douyong; Wang, Jack Peng-Yu; Peszlen, Ilona; Horvath, Laszlo; Horvath, Balazs; Nishimura, Yufuko; Jameel, Hasan; Chang, Hou-Min; Chiang, Vincent L

    2011-02-01

    Members of glycosyltransferase protein families GT8, GT43 and GT47 are implicated in the biosynthesis of xylan in the secondary cell walls of Arabidopsis. The Arabidopsis mutant irx8 has a 60% reduction in xylan. However, over-expression of an ortholog of Arabidopsis IRX8, poplar PoGT8D, in Arabidopsis irx8 mutant could not restore xylan synthesis. The functions of tree GT8D genes remain unclear. We identified two GT8 gene homologs, PtrGT8D1 and PtrGT8D2, in Populus trichocarpa. They are the only two GT8D members and are abundantly and specifically expressed in the differentiating xylem of P. trichocarpa. PtrGT8D1 transcript abundance was >7 times that of PtrGT8D2. To elucidate the genetic function of GT8D in P. trichocarpa, the expression of PtrGT8D1 and PtrGT8D2 was simultaneously knocked down through RNAi. Four transgenic lines had 85-94% reduction in transcripts of PtrGT8D1 and PtrGT8D2, resulting in 29-36% reduction in stem wood xylan content. Xylan reduction had essentially no effect on cellulose quantity but caused an 11-25% increase in lignin. These transgenics exhibit a brittle wood phenotype, accompanied by increased vessel diameter and thinner fiber cell walls in stem xylem. Stem modulus of elasticity and modulus of rupture were reduced by 17-29% and 16-23%, respectively, and were positively correlated with xylan content but negatively correlated with lignin quantity. These results suggest that PtrGT8Ds play key roles in xylan biosynthesis in wood. Xylan may be a more important factor than lignin affecting the stiffness and fracture strength of wood.

  18. Problems and Solutions in Human Resources Management of Family Business: A Research in Konya City

    Directory of Open Access Journals (Sweden)

    Sefa CETIN

    2016-06-01

    Full Text Available The constant progress of the socio-economic development in our time has triggered competition worldwide which makes industrial and commercial establishments divert to human resources in order to distinguish themselves and survive. Family businesses both in Turkey and other countries, therefore, apply to HRM so as to overcome such problems deriving from their structures. This study tackles the family business that faces the problems in HRM and finds the solution to these problems. Studies show that companies who efficiently benefit from the principles of human resources have made remarkable headway. Additionally the family businesses which benefit from HRM and functions can solve the structural problems and catch the successful and institutionalized line.

  19. European gene mapping project (EUROGEM) : Breakpoint panels for human chromosomes based on the CEPH reference families

    NARCIS (Netherlands)

    Attwood, J; Bryant, SP; Bains, R; Povey, R; Povey, S; Rebello, M; Kapsetaki, M; Moschonas, NK; Grzeschik, KH; Otto, M; Dixon, M; Sudworth, HE; Kooy, RF; Wright, A; Teague, P; Terrenato, L; Vergnaud, G; Monfouilloux, S; Weissenbach, J; Alibert, O; Dib, C; Faure, S; Bakker, E; Pearson, NM; Vossen, RHAM; Gal, A; MuellerMyhsok, B; Cann, HM; Spurr, NK

    1996-01-01

    Meiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17; 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels

  20. The contribution of animals to human well-being: a veterinary family practice perspective.

    Science.gov (United States)

    Timmins, Richard P

    2008-01-01

    There is considerable evidence that humans can benefit both physically and emotionally from a relationship with companion animals, a phenomenon known as the human-animal bond (HAB). This has not only increased the demand for veterinary services to meet the needs of these non-human family members and their owners, but it has also transformed the nature of those services from reactive medicine and surgery to proactive prevention and wellness. The emotional component of the HAB requires the veterinarian to have a solid understanding of the nature of the attachment between client and pet, and an ability to educate the client about proper care of the animal in order to optimize the relationship. Paying attention to the relationship between client and patient also positions the veterinary family practitioner to refer the client to appropriate community resources for physical, emotional, or other needs of the client that may become apparent during the veterinarian-client interaction. By achieving physical and mental health objectives for patients and collaborating with human health care services, the veterinary family practitioner contributes to the well-being of both patient and client. This new face of veterinary family practice requires research and education in fields that have not traditionally been a part of veterinary training.

  1. The family myth: its deconstruction and replacement with a balanced humanized narrative.

    Science.gov (United States)

    Kradin, Richard

    2009-04-01

    According to Carl Jung the mythopoeic activities of the collective unconscious contribute to the trajectory of personal individuation (Segal 1998). The 'family myth' represents an imaginal narrative that emphasizes the importance of the family's founders, its collective values, and its position with respect to 'outsiders'. Sigmund Freud identified the importance of the Oedipal myth as the basis of nuclear family dynamics (Rudnytsky 1992); however, the 'myth of the family' represents in reality a 'family of myths', each emphasizing different elements of potential interpersonal dynamics. But whereas some myths foster the child's optimal separation from parental influence and promote the process of individuation, others tend to hinder development. One potentially deleterious form of the family myth tends to serve the narcissistic wishes of parents in their bid to maintain influence over the child by fostering the archetypal features of their role. The children who are the targets of the myth are thwarted in their psychological development by virtue of the fact that they are denied the opportunity to humanize their archetypal projections onto their parent(s). The result is a persistence of childlike attitude with respect to people and situations that they encounter outside the nuclear family. The persistent constellation of the child archetype is evidenced by features of the puer aeternus, with deficits in the ability to work, form stable adult relationships, and create a separate nuclear family. The significance of this type of family myth in the inappropriate preservation of puerile attitudes is examined and the desire of the offending parent(s) to promote their own immortality is explored. The contribution of the myth to the transference and transference resistance is explicated and suggestions are offered with respect to how to approach this critical issue in analysis.

  2. Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan.

    Science.gov (United States)

    Berg, Stefan; Starbuck, James; Torrelles, Jordi B; Vissa, Varalakshmi D; Crick, Dean C; Chatterjee, Delphi; Brennan, Patrick J

    2005-02-18

    D-Arabinans, composed of D-arabinofuranose (D-Araf), dominate the structure of mycobacterial cell walls in two settings, as part of lipoarabinomannan (LAM) and arabinogalactan, each with markedly different structures and functions. Little is known of the complexity of their biosynthesis. beta-D-Arabinofuranosyl-1-monophosphoryldecaprenol is the only known sugar donor. EmbA, EmbB, and EmbC, products of the paralogous genes embA, embB, and embC, the sites of resistance to the anti-tuberculosis drug ethambutol (EMB), are the only known implicated enzymes. EmbA and -B apparently contribute to the synthesis of arabinogalactan, whereas EmbC is reserved for the synthesis of LAM. The Emb proteins show no overall similarity to any known proteins beyond Mycobacterium and related genera. However, functional motifs, equivalent to a proline-rich motif of several bacterial polysaccharide co-polymerases and a superfamily of glycosyltransferases, were found. Site-directed mutagenesis in glycosyltransferase superfamily C resulted in complete ablation of LAM synthesis. Point mutations in three amino acids of the proline motif of EmbC resulted in marked reduction of LAM-arabinan synthesis and accumulation of an unknown intermediate and of the known precursor lipomannan. Yet the pattern of the differently linked d-Araf units observed in wild type LAM-arabinan was largely retained in the proline motif mutants. The results allow for the presentation of a unique model of arabinan synthesis.

  3. Cloning and characterization of a novel member of human β-1,4-galactosyltransferase gene family

    Institute of Scientific and Technical Information of China (English)

    范玉新; 余龙; 张琪; 江萤; 戴方彦; 陈驰原; 屠强; 毕安定; 许月芳; 赵寿元

    1999-01-01

    By using the EST strategy for identifying novel members belonging to homologous gene families, a novel full-length cDNA encoding a protein significantly homologous to UDP-Gal: N-acetylglucosamine β-1, 4-galactosyltransferase (GAlT) was isolated from a human testis cDNA library. A nucleotide sequence of 2 173 bp long was determined to contain an open reading frame of 1032 nucleotides (344 amino acids). In view of the homology to members of the galactosyltransferase gene family and especially the closest relationship to Gallus gallus GalT type I (CK I), the predicted product of the novel cDNA was designated as human β-1, 4-galactosyltransferase homolog I (HumGT-H1). Its mRNA is present in different degrees in 16 tissues examined. Southern analysis of human genomic DNA revealed its locus on chromosome 3.

  4. Evolutionary divergence and functions of the human acyl-CoA thioesterase gene (ACOT family

    Directory of Open Access Journals (Sweden)

    Brocker Chad

    2010-08-01

    Full Text Available Abstract The acyl-CoA thioesterase gene (ACOT family encodes enzymes that catalyse the hydrolysis of acyl-CoA thioester compounds, also known as activated fatty acids, to their corresponding non-esterified (free fatty acid and coenzyme A (CoASH. These enzymes play a very important role in lipid metabolism by maintaining cellular levels and proper ratios of free and activated fatty acids, as well as CoASH. Within the acyl-CoA family there are two distinct subgroups, type I and type II. Despite catalysing the same reaction, the two groups are not structurally similar and do not share sequence homology, strongly suggesting convergent evolution. This suggestion is further supported if one compares the human with the mouse and rat ACOT gene families. To date, four human type I ACOTs have been identified which belong to the α/β-hydrolase fold enzyme superfamily. Type II ACOTs fall into the 'hot dog' fold superfamily. There are currently six human type II genes; however, two homologous proteins, thioesterase superfamily members 4 (THEM4 and 5 (THEM5 share common type II structural features and, in the case of THEM4, acyl-CoA thioesterase activity -- suggesting that the family may be larger than previously realised. Although recent studies have greatly expanded the current understanding of these proteins and their physiological importance, there are a number of members whose functions are relatively unexplored and which warrant further investigation.

  5. Human embryonic stem cells express elevated levels of multiple pro-apoptotic BCL-2 family members.

    Directory of Open Access Journals (Sweden)

    David T Madden

    Full Text Available Two of the greatest challenges in regenerative medicine today remain (1 the ability to culture human embryonic stem cells (hESCs at a scale sufficient to satisfy clinical demand and (2 the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes. Understanding the pathways governing apoptosis in hESCs may provide a means to address these issues. Limiting apoptosis could aid scaling efforts, whereas triggering selective apoptosis in hESCs could eliminate unwanted teratoma-forming cells. We focus here on the BCL-2 family of proteins, which regulate mitochondrial-dependent apoptosis. We used quantitative PCR to compare the steady-state expression profile of all human BCL-2 family members in hESCs with that of human primary cells from various origins and two cancer lines. Our findings indicate that hESCs express elevated levels of the pro-apoptotic BH3-only BCL-2 family members NOXA, BIK, BIM, BMF and PUMA when compared with differentiated cells and cancer cells. However, compensatory expression of pro-survival BCL-2 family members in hESCs was not observed, suggesting a possible explanation for the elevated rates of apoptosis observed in proliferating hESC cultures, as well as a mechanism that could be exploited to limit hESC-derived neoplasms.

  6. X-ray Structure of Cyclodextrin Glycosyltransferase Complexed with Acarbose. Implications for the Catalytic Mechanism of Glycosidases

    NARCIS (Netherlands)

    STROKOPYTOV, B; PENNINGA, D; ROZEBOOM, HJ; KALK, KH; DIJKHUIZEN, L; DIJKSTRA, BW

    1995-01-01

    Crystals of cyclodextrin glycosyltransferase (CGTase) from Bacillus circulans strain 251 were soaked in buffer solutions containing the pseudotetrasaccharide acarbose, a strong amylase- and CGTase inhibitor. The X-ray structure of the complex was elucidated at 2.5-Angstrom resolution with a final

  7. Selection against glycosylation sites in potential target proteins of the general HMWC N-glycosyltransferase in Haemophilus influenzae.

    Science.gov (United States)

    Gawthorne, Jayde A; Tan, Nikki Y; Bailey, Ulla-Maja; Davis, Margaret R; Wong, Linette W; Naidu, Ranjitha; Fox, Kate L; Jennings, Michael P; Schulz, Benjamin L

    2014-03-14

    The HMWABC system of non-typeable Haemophilus influenzae (NTHi) encodes the HMWA adhesin glycoprotein, which is glycosylated by the HMWC glycosyltransferase. HMWC is a cytoplasmic N-glycosyltransferase, homologues of which are widespread in the Pasteurellaceae. We developed an assay for nonbiased detection of glycoproteins in NTHi based on metabolic engineering of the Leloir pathway and growth in media containing radiolabelled monosaccharides. The only glycoprotein identified in NTHi by this assay was HMWA. However, glycoproteomic analyses ex vivo in Escherichia coli showed that HMWC of NTHi was a general glycosyltransferase capable of glycosylating selected asparagines in proteins other than its HMWA substrate, including Asn78 in E. coli 30S ribosomal protein S5. The equivalent residue in S5 homologues in H. influenzae or other sequenced Pasteurellaceae genomes is not asparagine, and these organisms also showed significantly fewer than expected potential sites of glycosylation in general. Expression of active HMWC in E. coli resulted in growth inhibition compared with expression of inactive enzyme, consistent with glycosylation by HMWC detrimentally affecting the function of some E. coli proteins. Together, this supports the presence of a selective pressure in the Pasteurellaceae against glycosylation sites that would be modified by the general N-glycosyltransferase activity of HMWC.

  8. Alternative spliced variants in the pantetheinase family of genes expressed in human neutrophils.

    Science.gov (United States)

    Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-12-15

    Pantetheinase (EC 3.5.1.92) is an enzyme that hydrolyzes pantetheine, an intermediate metabolite of coenzyme A, into pantothenic acid (vitamin B(5)) and cysteamine, a potent antioxidant. The pantetheinase gene family consists of three independent genes, pantetheinase/vanin-1/VNN1, GPI-80/VNN2 and vanin-3/VNN3 that are each composed of seven exons. We herein report that human neutrophils express transcripts encoding at least nine splice variants of VNN3 and four splice variants of GPI-80/VNN2. Analysis of the DNA sequence of the human VNN3 gene demonstrated that the VNN3 locus in the human genome as well as the sequence of cDNA clones obtained in this study does not encode the complete VNN3 protein, as previously reported due to a frame shift caused by lack of one nucleotide. Moreover, the VNN3 locus indeed encodes smaller peptides compared to the proteins encoded by the mouse orthologous gene, vanin-3. The anti-GPI-80 monoclonal antibody 3H9 recognized amino acids 120-179 of the GPI-80/VNN2 protein as shown by the results of immunoblotting with recombinant GPI-80/VNN2 variant proteins. Immunoblotting with human neutrophil lysate suggests that the GPI-80/VNN2 variants exist in human neutrophils. The existence of splice variants in the pantetheinase gene family suggests the possibility of alternative roles in addition to canonical enzymatic activity in human neutrophils.

  9. The juspuniendi at the roman home and the humanization of the family relationships

    Directory of Open Access Journals (Sweden)

    Alvaro Garcé García y Santos

    2014-06-01

    Full Text Available The family is one of the legal institutions that has most evolved through the time. Its historical tracking allows not only the comprehension of its transformation as an institute, but much of the general process of humanization of the Law. The family evolution is due to the modification in kinship systems. Gradually, blood links have been incorporated as a basic element and has been developed a legal regulation that aims parity inside the home. Under the growing influence of Christianity, the Roman law was attenuating the disciplinary powers of the paterfamilias, in particular the right to freely arrange the death of the wife and children without the intervention of judges (jus vitae necisque. In this historical context, this paper summarizes the development of private jus puniendi and the ethical and legal progress associated to the transformation of the family.

  10. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L

    2011-03-01

    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  11. Human Capital of Family and Social Mobility in Rural Areas-Evidence from China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-hua; YU Mei-lian; WU Fang-wei; CHEN Wei

    2013-01-01

    This research focuses on the impact of family’s human capital on social mobility in China’s rural community. Empirical research is conducted based on data from surveying a typical rural community in the past 20 yr. The study indicates that social mobility in rural area is active in the past 20 yr, and the human capital of family, represented by primary labor’s education level, has played an essential role in mobility of low social class. Meanwhile, socio-economic development and the change of supply and demand in labor market dims the signaling role of degree education, but the impact of occupational training is increasingly remarkable. Therefore, the change from sole degree education to multi-leveled education including occupational education and training is a main way for China’s rural families in low class to realize social mobility.

  12. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases.

    Science.gov (United States)

    Hindsgaul, O; Kaur, K J; Srivastava, G; Blaszczyk-Thurin, M; Crawley, S C; Heerze, L D; Palcic, M M

    1991-09-25

    The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are

  13. Human Infestation with Dermanyssus gallinae (Acari: Dermanyssidae) in a Family Referred with Pruritus and Skin Lesions.

    OpenAIRE

    Mohammad Abdigoudarzi; Mahmoud S Mirafzali; Hamid Belgheiszadeh

    2014-01-01

    The poultry red mite, Dermanyssus gallinae is one of the most economically important ectoparasites in hens and some species of mammals worldwide. Cases of human infestation have been reported worldwide. In this study we report infestation in three members of a family referred with pruritus and allergic dermatitis rash. They have collected very small animals and carried them to the laboratory which later was confirmed as D. gallinae. They claimed that they had been bitten with this ectoparasit...

  14. Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization

    Directory of Open Access Journals (Sweden)

    Scheffzek Klaus

    2005-10-01

    Full Text Available Abstract Background Compartmentalization is a key feature of eukaryotic cells, but its evolution remains poorly understood. GTPases are the oldest enzymes that use nucleotides as substrates and they participate in a wide range of cellular processes. Therefore, they are ideal tools for comparative genomic studies aimed at understanding how aspects of biological complexity such as cellular compartmentalization evolved. Results We describe the identification and characterization of a unique family of circularly permuted GTPases represented by the human orthologue of yeast Lsg1p. We placed the members of this family in the phylogenetic context of the YlqF Related GTPase (YRG family, which are present in Eukarya, Bacteria and Archea and include the stem cell regulator Nucleostemin. To extend the computational analysis, we showed that hLsg1 is an essential GTPase predominantly located in the endoplasmic reticulum and, in some cells, in Cajal bodies in the nucleus. Comparison of localization and siRNA datasets suggests that all members of the family are essential GTPases that have increased in number as the compartmentalization of the eukaryotic cell and the ribosome biogenesis pathway have evolved. Conclusion We propose a scenario, consistent with our data, for the evolution of this family: cytoplasmic components were first acquired, followed by nuclear components, and finally the mitochondrial and chloroplast elements were derived from different bacterial species, in parallel with the formation of the nucleolus and the specialization of nuclear components.

  15. Human Infestation with Dermanyssus gallinae (Acari: Dermanyssidae in a Family Referred with Pruritus and Skin Lesions.

    Directory of Open Access Journals (Sweden)

    Mohammad Abdigoudarzi

    2014-06-01

    Full Text Available The poultry red mite, Dermanyssus gallinae is one of the most economically important ectoparasites in hens and some species of mammals worldwide. Cases of human infestation have been reported worldwide. In this study we report infestation in three members of a family referred with pruritus and allergic dermatitis rash. They have collected very small animals and carried them to the laboratory which later was confirmed as D. gallinae. They claimed that they had been bitten with this ectoparasite. This is the first case report of human infestation owing to D. gallinae from Iran.

  16. Human Infestation with Dermanyssus gallinae (Acari: Dermanyssidae) in a Family Referred with Pruritus and Skin Lesions.

    Science.gov (United States)

    Abdigoudarzi, Mohammad; Mirafzali, Mahmoud S; Belgheiszadeh, Hamid

    2014-01-01

    The poultry red mite, Dermanyssus gallinae is one of the most economically important ectoparasites in hens and some species of mammals worldwide. Cases of human infestation have been reported worldwide. In this study we report infestation in three members of a family referred with pruritus and allergic dermatitis rash. They have collected very small animals and carried them to the laboratory which later was confirmed as D. gallinae. They claimed that they had been bitten with this ectoparasite. This is the first case report of human infestation owing to D. gallinae from Iran.

  17. Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers.

    Science.gov (United States)

    Larochelle, Andre; Savona, Michael; Wiggins, Michael; Anderson, Stephanie; Ichwan, Brian; Keyvanfar, Keyvan; Morrison, Sean J; Dunbar, Cynthia E

    2011-02-03

    Various combinations of antibodies directed to cell surface markers have been used to isolate human and rhesus macaque hematopoietic stem cells (HSCs). These protocols result in poor enrichment or require multiple complex steps. Recently, a simple phenotype for HSCs based on cell surface markers from the signaling lymphocyte activation molecule (SLAM) family of receptors has been reported in the mouse. We examined the possibility of using the SLAM markers to facilitate the isolation of highly enriched populations of HSCs in humans and rhesus macaques. We isolated SLAM (CD150(+)CD48(-)) and non-SLAM (not CD150(+)CD48(-)) cells from human umbilical cord blood CD34(+) cells as well as from human and rhesus macaque mobilized peripheral blood CD34(+) cells and compared their ability to form colonies in vitro and reconstitute immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 γc receptor(null), NSG) mice. We found that the CD34(+) SLAM population contributed equally or less to colony formation in vitro and to long-term reconstitution in NSG mice compared with the CD34(+) non-SLAM population. Thus, SLAM family markers do not permit the same degree of HSC enrichment in humans and rhesus macaques as in mice.

  18. Human capital identification process: linkage for family medicine and community medicine to mobilize the community.

    Science.gov (United States)

    Tanasugarn, Chanuantong; Thongbunjob, Krid

    2012-06-01

    Community diagnosis and approach has shifted from a professional focus to a community focus. The information system has also been developed to reflect socio-cultural information. This new system has been established throughout the country and is being recorded in the computer system. However these data still lack human capital information to promote community mobilization. The present study aims to develop a process which reflects human capital from the insider and outsider points of view and which builds on the existing work system of primary care service, family medicine, and community medicine. The present study applies the participatory action research design with mixed methods including community grand-tour, household survey socio-metric questionnaire and focus group discussion in order to gather insider view of human capital. A key instrument developed in the present study is the socio-metric questionnaire which was designed according to the community grand tour and household survey results. The findings indicate that the process is feasible and the insider point of view given a longer evidence based list of the human capital. The model enhanced a closer relationship between professional and community people and suggested the realistic community mobilizer name list. Human capital identification process is feasible and should be recommended to integrate in the existing work process of the health staff in family and community practice.

  19. Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter

    Indian Academy of Sciences (India)

    Virupapuram Vijaybhaskar; Veeraputhiran Subbiah; Jagreet Kaur; Pagadala Vijayakumari; Imran Siddiqi

    2008-06-01

    A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding -glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes.

  20. Probing the Catalytic Promiscuity of a Regio- and Stereospecific C-Glycosyltransferase from Mangifera indica.

    Science.gov (United States)

    Chen, Dawei; Chen, Ridao; Wang, Ruishan; Li, Jianhua; Xie, Kebo; Bian, Chuancai; Sun, Lili; Zhang, Xiaolin; Liu, Jimei; Yang, Lin; Ye, Fei; Yu, Xiaoming; Dai, Jungui

    2015-10-19

    The catalytic promiscuity of the novel benzophenone C-glycosyltransferase, MiCGT, which is involved in the biosynthesis of mangiferin from Mangifera indica, was explored. MiCGT exhibited a robust capability to regio- and stereospecific C-glycosylation of 35 structurally diverse druglike scaffolds and simple phenolics with UDP-glucose, and also formed O- and N-glycosides. Moreover, MiCGT was able to generate C-xylosides with UDP-xylose. The OGT-reversibility of MiCGT was also exploited to generate C-glucosides with simple sugar donor. Three aryl-C-glycosides exhibited potent SGLT2 inhibitory activities with IC50  values of 2.6×, 7.6×, and 7.6×10(-7)  M, respectively. These findings demonstrate for the first time the significant potential of an enzymatic approach to diversification through C-glycosidation of bioactive natural and unnatural products in drug discovery.

  1. From "glycosyltransferase" to "congenital muscular dystrophy": integrating knowledge from NCBI Entrez Gene and the Gene Ontology.

    Science.gov (United States)

    Sahoo, Satya S; Zeng, Kelly; Bodenreider, Olivier; Sheth, Amit

    2007-01-01

    Entrez Gene (EG), Online Mendelian Inheritance in Man (OMIM) and the Gene Ontology (GO) are three complementary knowledge resources that can be used to correlate genomic data with disease information. However, bridging between genotype and phenotype through these resources currently requires manual effort or the development of customized software. In this paper, we argue that integrating EG and GO provides a robust and flexible solution to this problem. We demonstrate how the Resource Description Framework (RDF) developed for the Semantic Web can be used to represent and integrate these resources and enable seamless access to them as a unified resource. We illustrate the effectiveness of our approach by answering a real-world biomedical query linking a specific molecular function, glycosyltransferase, to the disorder congenital muscular dystrophy.

  2. Heterologous expression of plant cell wall glycosyltransferases in Pichia, pea and tobacco

    DEFF Research Database (Denmark)

    Petersen, Bent Larsen; Damager, Iben; Faber, Kirsten

    to participate in plant CW biosynthesis, has been achieved in only a few cases. We have previously reported the characterisation of two highly homologous plant-specific membrane-bound GTs, which when expressed as secreted tagged soluble proteins in the baculo virus system, catalysed the transfer of xylose from......The plant cell wall (CW) consists of numerous complex and uniqe carbohydrate polymer structures. Although the structure (sugar composition) of the various plant CW components are known in some detail, functional characterisation of of the more than 300 glycosyltransferases (GTs), that are believed...... UDP-xylose on to the monosaccharide sugar fucose. Partly based on these data, the two genes were proposed to function in the biosynthesis of pectic rhamnogalacturonan II (RG-II) and designated RhamnoGalacturonan XylosylTransferase 1 and -2 (RGXT1 and -2), accordingly (Egelund et al. 2006, The Plant...

  3. Differential expression of CD150 (SLAM) family receptors by human hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Sintes, Jordi; Romero, Xavier; Marin, Pedro; Terhorst, Cox; Engel, Pablo

    2008-09-01

    Human hematopoietic stem cell (HSC)-containing grafts are most commonly used to treat various blood diseases, including leukemias and autoimmune disorders. CD150 (SLAM) family receptors have recently been shown to be differentially expressed by mouse HSC and progenitor cells. Members of the CD150 family are key regulators of leukocyte activation and differentiation. The goal of the present study is to analyze the expression patterns of the CD150 receptors CD48, CD84, CD150 (SLAM), CD229 (Ly9), and CD244 (2B4) on the different sources of human hematopoietic stem and progenitor cells. Expression of CD150 receptors was analyzed on human mobilized peripheral blood CD133(+)-isolated cells and CD34(+) bone marrow (BM) and umbilical cord blood (CB) cells using multicolor flow cytometry. CD244 was present on most CD133(+)Lin(-)-mobilized cells and CD34(+)Lin(-) BM and CB cells, including virtually all CD38(-)Lin(-) primitive progenitor cells. CD48 had a restricted expression pattern on CD133(+)Lin(-)CD38(-) cells, while its levels were significantly higher in CD34(+)Lin(-) BM and CB cells. In addition, CD84 was present on a significant number of CD133(+)Lin(-) cells, but only on a small fraction of CD133(+)Lin(-)CD38(-) peripheral blood mobilized cells. In contrast, CD84 was expressed on practically all CD34(+)Lin(-) BM cells. No CD150 expression was observed in mobilized peripheral blood CD133(+)Lin(-) or CD34(+)Lin(-) BM and CB cells. Furthermore, only a small fraction of CD34(+)Lin(-) BM and CB cells expressed CD229. Our results show that CD150 family molecules are present on human hematopoietic stem and progenitor cells and that their expression patterns differ between humans and mice.

  4. Identification of putative rhamnogalacturonan-II specific glycosyltransferases in Arabidopsis using a combination of bioinformatics approaches.

    Science.gov (United States)

    Voxeur, Aline; André, Aurélie; Breton, Christelle; Lerouge, Patrice

    2012-01-01

    Rhamnogalacturonan-II (RG-II) is a complex plant cell wall polysaccharide that is composed of an α(1,4)-linked homogalacturonan backbone substituted with four side chains. It exists in the cell wall in the form of a dimer that is cross-linked by a borate di-ester. Despite its highly complex structure, RG-II is evolutionarily conserved in the plant kingdom suggesting that this polymer has fundamental functions in the primary wall organisation. In this study, we have set up a bioinformatics strategy aimed at identifying putative glycosyltransferases (GTs) involved in RG-II biosynthesis. This strategy is based on the selection of candidate genes encoding type II membrane proteins that are tightly coexpressed in both rice and Arabidopsis with previously characterised genes encoding enzymes involved in the synthesis of RG-II and exhibiting an up-regulation upon isoxaben treatment. This study results in the final selection of 26 putative Arabidopsis GTs, including 10 sequences already classified in the CAZy database. Among these CAZy sequences, the screening protocol allowed the selection of α-galacturonosyltransferases involved in the synthesis of α4-GalA oligogalacturonides present in both homogalacturonans and RG-II, and two sialyltransferase-like sequences previously proposed to be involved in the transfer of Kdo and/or Dha on the pectic backbone of RG-II. In addition, 16 non-CAZy GT sequences were retrieved in the present study. Four of them exhibited a GT-A fold. The remaining sequences harbored a GT-B like fold and a fucosyltransferase signature. Based on homologies with glycosyltransferases of known functions, putative roles in the RG-II biosynthesis are proposed for some GT candidates.

  5. The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer.

    Science.gov (United States)

    Huang, Qin; Miller, Michael R; Schappet, James; Henry, Michael D

    2015-01-01

    Reductions in both expression of the dystroglycan core protein and functional glycosylation of the α-dystroglycan (αDG) subunit have been reported in a number of cancers and may contribute to disease progression. In the case of prostate cancer, one mechanism that contributes to αDG hypoglycosylation is transcriptional down-regulation of LARGE2 (GYLTY1B), a glycosyltransferase that produces the functional (laminin-binding) glycan on αDG, but the mechanism(s) underlying reduction of LARGE2 mRNA remain unclear. Here, we show that αDG hypoglycosylation is associated with epithelial-to-mesenchymal transition (EMT)-like status. We examined immunoreactivity for both functionally-glycosylated αDG and E-cadherin by flow cytometry and the relative expression of ZEB1 mRNA and the αDG glycosyltransferase LARGE2 mRNA in prostate and other cancer cell lines by quantitative RT-PCR. To study the role of ZEB1 and other transcription factors in the regulation of LARGE2, we employed overexpression and knockdown approaches. Snail- or ZEB1-driven EMT caused αDG hypoglycosylation by repressing expression of the LARGE2 mRNA, with both ZEB1-dependent and -independent mechanisms contributing to Snail-mediated LARGE2 repression. To examine the direct regulation of LARGE2 by Snail and ZEB1 we employed luciferase reporter and chromatin immunoprecipitation assays. Snail and ZEB1 were found to bind directly to the LARGE2 promoter, specifically to E/Z-box clusters. Furthermore, analysis of gene expression profiles of clinical samples in The Cancer Genome Atlas reveals negative correlation of LARGE2 and ZEB1 expression in various cancers. Collectively, our results suggest that LARGE2 is negatively regulated by Snail and/or ZEB1, revealing a mechanistic basis for αDG hypoglycosylation during prostate cancer progression and metastasis.

  6. SLAM family predicting the initiation potential of human acute lymphoblastic leukemia in NOD/SCID mice

    Institute of Scientific and Technical Information of China (English)

    WANG Na; ZHOU Jian-feng; HUANG Liang; XIAO Fei; LIU Jin-ping; WANG Di; GENG Zhe; WANG Jin; MA Shu-yan; SHU Li-li; CHEN Tai-ping

    2011-01-01

    Background The SLAM family recently has been reported to show an important biological role in lymphocyte development and immunological function, and it is efficient to highly purify hematopoietic stem cells using a simple combination of SLAM family members. To elucidate the presence of this family on acute lymphoblastic leukemia (ALL),as well as its relationship with the leukemia-initiating potential, we analyzed the expression pattern of this family members on human ALL progenitor cells, combined with serial xenotransplantation assay.Methods Expression analysis was carried out by flow cytometry. We combined the expression pattern of human CD150,CD244 and CD48 with serial xenotransplantation of B-ALL progenitor cells to indicate their relationship.Results CD48 and CD244 were expressed on most B-ALL progenitor cells, the percentage being (93.08±6.46)% and (63.37±29.31)%, respectively. Interestingly, the proportion of CD150+ cells declined obviously in engrafted cases ((24.94±7.32)%) compared with non-engrafted cases ((77.54±5.93)%, P <0.01), which indicated that only blast cells with low percentage of CD150+ population were able to reconstitute leukemia into primary, secondary and tertiary NOD/SCID mice.Conclusions SLAM family members are present on B-ALL progenitor cells and the leukemia-initiating potential of leukemic blasts is correlated negatively with the proportion of CD150+ cells, the percentage of which can serve as a useful predictor for engraftment success of B-ALL to immune deficient mice.

  7. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family

    DEFF Research Database (Denmark)

    Hansen, Martin A; Nielsen, John E; Retelska, Dorota

    2008-01-01

    Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search...... with the murine SPANX gene and the CYPT family may share a common ancestor. Finally, we present evidence that VCX/Y and SPANX may be paralogs with a similar protein structure consisting of C terminal acidic repeats of variable lengths....

  8. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, D.R.; Sapp, P.; O`Regan, J.; McKenna-Yasek, D.; Schlumpf, K.S.; Haines, J.L.; Gusella, J.F.; Horvitz, H.R.; Brown, R.H. Jr. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1994-05-15

    Amyotrophic lateral sclerosis (ALS; Lou Gehrig`s Disease) is a lethal neurodegenerative disease of upper and lower motorneurons in the brain and spinal cord. We previously reported linkage of a gene for familial ALS (FALS) to human chromosome 21 using 4 restriction fragment length polymorphism DNA markers and identified disease-associated mutations in the superoxide dismutase (SOD)-1 gene in some ALS families. We report here the genetic linkage data that led us to examine the SOD-1 gene for mutations. We also report a new microsatellite DNA marker for D21S63, derived from the cosmid PW517. Ten microsatellite DNA markers, including the new marker D21S63, were used to reinvestigate linkage of FALS to chromosome 21. Genetic linkage analysis performed with 13 ALS familes for these 10 DNA markers confirmed the presence of a FALS gene on chromosome 21. The highest total 2-point LOD score for all families was 4.33, obtained at a distance of 10 cM from the marker D21S223. For 5 ALS families linked to chromosome 21, a peak 2-point LOD score of 5.94 was obtained at the DNA marker D21S223. A multipoint score of 6.50 was obtained with the markers D21S213, D21S223, D21S167, and FALS for 5 chromosome 21-linked ALS families. The haplotypes of these families for the 10 DNA markers reveal recombination events that further refined the location of the FALS gene to a segment of approximately 5 megabases (Mb) between D21S213 and D21S219. The only characterized gene within this segment was SOD-1, the structural gene for Cu, Zn SOD. 30 refs., 4 figs., 4 tabs.

  9. CYCLODEXTRIN FORMATION BY THE THERMOSTABLE ALPHA-AMYLASE OF THERMOANAEROBACTERIUM THERMOSULFURIGENES EM1 AND RECLASSIFICATION OF THE ENZYME AS A CYCLODEXTRIN GLYCOSYLTRANSFERASE

    NARCIS (Netherlands)

    WIND, RD; LIEBL, W; BUITELAAR, RM; PENNINGA, D; SPREINAT, A; DIJKHUIZEN, L; BAHL, H

    Extensive characterization of the thermostable alpha-amylase of Clostridium thermosulfurogenes EM1, recently reclassified as Thermoanaerobacterium thermosulfurigenes, clearly demonstrated that the enzyme is a cyclodextrin glycosyltransferase (CGTase). Product analysis after incubation of the enzyme

  10. Data Resources for Biodemographic Studies on Familial Clustering of Human Longevity

    Directory of Open Access Journals (Sweden)

    1999-09-01

    Full Text Available The main cause that hampered many previous biodemographic studies of human longevity is the lack of appropriate data. At the same time, many existing data resources (millions of genealogical records are under-utilized, because their very existence is not widely known, let alone the quality and scientific value of these data sets are not yet validated. The purpose of this work is to review the data resources that could be used in familial studies of human longevity. This is an extended and supplemented version of the previous study made by the authors upon the request of the National Institute on Aging (1998 NIH Professional Service Contract. The review describes: (1 data resources developed for biodemographic studies, (2 data collected in the projects on historical demography, (3 data resources for long lived individuals and their families, (4 publicly available computerized genealogical data resources, (5 published genealogical and family history data. The review also contains the description of databases developed by the participants of the Research Workshops "Genes, Genealogies, and Longevity" organized by the Max Planck Institute for Demographic Research.

  11. Parent-offspring conflict theory: an evolutionary framework for understanding conflict within human families.

    Science.gov (United States)

    Schlomer, Gabriel L; Del Giudice, Marco; Ellis, Bruce J

    2011-07-01

    Decades of research demonstrate that conflict shapes and permeates a broad range of family processes. In the current article, we argue that greater insight, integration of knowledge, and empirical achievement in the study of family conflict can be realized by utilizing a powerful theory from evolutionary biology that is barely known within psychology: parent-offspring conflict theory (POCT). In the current article, we articulate POCT for psychological scientists, extend its scope by connecting it to the broader framework of life history theory, and draw out its implications for understanding conflict within human families. We specifically apply POCT to 2 instances of early mother-offspring interaction (prenatal conflict and weaning conflict); discuss the effects of genetic relatedness on behavioral conflict between parents, children, and their siblings; review the emerging literature on parent-offspring conflict over the choice of mates and spouses; and examine parent-offspring conflict from the perspective of imprinted genes. This review demonstrates the utility of POCT, not only for explaining what is known about conflict within families but also for generating novel hypotheses, suggesting new lines of research, and moving us toward the "big picture" by integrating across biological and psychological domains of knowledge.

  12. Expanding human immunodeficiency virus testing and counseling to reach tuberculosis clients' partners and families.

    Science.gov (United States)

    Courtenay-Quirk, C; Date, A; Bachanas, P; Baggaley, R; Getahun, H; Nelson, L; Granich, R

    2015-12-01

    Recent years have shown important increases in human immunodeficiency virus (HIV) testing and counseling (HTC), diagnosis, and coverage of antiretroviral therapy (ART) among HIV-infected tuberculosis (TB) patients. Expansion of HTC for partners and families are critical next steps to increase earlier HIV diagnoses and access to ART, and to achieve international goals for reduced TB and HIV-related morbidity, mortality, transmission and costs. TB and HIV programs should develop and evaluate feasible and effective strategies to increase access to HTC among the partners and families of TB patients, and ensure that newly diagnosed people living with HIV and HIV-infected TB patients who complete anti-tuberculosis treatment are successfully linked to ongoing HIV clinical care.

  13. Changes in human gut flora with age: an Indian familial study

    Directory of Open Access Journals (Sweden)

    Marathe Nachiket

    2012-09-01

    Full Text Available Abstract Background The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Results Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22 of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. Conclusion There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian

  14. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  15. Studies of the mechanism of the cyclisation reaction catalysed by the wildtype and a truncated alpha-cyclodextrin glycosyltransferase from Klebsiella pneumoniae strain M 5 al, and the beta-cyclodextrin glycosyltransferase from Bacillus circulans strain 8.

    Science.gov (United States)

    Bender, H

    1990-10-10

    The actions of the wildtype and a truncated alpha-cyclodextrin glycosyltransferase from Klebsiella pneumoniae strain M 5 al on malto-oligosaccharides showed no significant differences, and there was marked dependence of the kinetic parameters on the chain lengths of the substrate. The action of the beta-cyclodextrin glycosyltransferase from Bacillus circulans was less dependent on the chain length of the substrate, but Vmax of the initial cyclisation with the longer malto-oligosaccharides was only 28% of that determined for the enzyme of K. pneumoniae. The rate parameters suggested that the active site of each enzyme spans nine glucosyl residues, and that the catalytic sites are situated between subsites three and four for the K. pneumoniae enzymes and between subsites two and three for the B. circulans enzyme. The molecular binding affinities and the affinities of the 9th subsite were calculated from the rate parameters. The primary and tertiary structures of alpha-amylases and cyclodextrin glycosyltransferases are compared in the context of the reaction mechanism of the latter enzymes.

  16. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development.

    Science.gov (United States)

    Qin, Li-Xia; Rao, Yue; Li, Long; Huang, Jun-Feng; Xu, Wen-Liang; Li, Xue-Bao

    2013-01-01

    Arabinogalactan proteins (AGPs), are a group of highly glycosylated proteins that are found throughout the plant kingdom. To date, glycosyltransferases that glycosylate AGP backbone have remained largely unknown. In this study, a gene (GhGalT1) encoding a putative β-1,3-galactosyltransferase (GalT) was identified in cotton. GhGalT1, belonging to CAZy GT31 family, is the type II membrane protein that contains an N-terminal transmembrane domain and a C-terminal galactosyltransferase functional domain. A subcellular localization assay demonstrated that GhGalT1 was localized in the Golgi apparatus. RT-PCR analysis revealed that GhGalT1 was expressed at relatively high levels in hypocotyls, roots, fibers and ovules. Overexpression of GhGalT1 in Arabidopsis promoted plant growth and metabolism. The transgenic seedlings had much longer primary roots, higher chlorophyll content, higher photosynthetic efficiency, the increased biomass, and the enhanced tolerance to exogenous D-arabinose and D-galactose. In addition, gas chromatography (GC) analysis of monosaccharide composition of cell wall fractions showed that pectin was changed in the transgenic plants, compared with that of wild type. Three genes (GAUT8, GAUT9 and xgd1) involved in pectin biosynthesis were dramatically up-regulated in the transgenic lines. These data suggested that GhGalT1 may be involved in regulation of pectin biosynthesis required for plant development.

  17. Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum (Chickpea) genome.

    Science.gov (United States)

    Sharma, Ranu; Rawat, Vimal; Suresh, C G

    2014-01-01

    UDP-glycosyltransferases (EC 2.4.1.x; UGTs) are enzymes coded by an important gene family of higher plants. They are involved in the modification of secondary metabolites, phytohormones, and xenobiotics by transfer of sugar moieties from an activated nucleotide molecule to a wide range of acceptors. This modification regulates various functions like detoxification of xenobiotics, hormone homeostasis, and biosynthesis of secondary metabolites. Here, we describe the identification of 96 UGT genes in Cicer arietinum (CaUGT) and report their tissue-specific differential expression based on publically available RNA-seq and expressed sequence tag data. This analysis has established medium to high expression of 84 CaUGTs and low expression of 12 CaUGTs. We identified several closely related orthologs of CaUGTs in other genomes and compared their exon-intron arrangement. An attempt was made to assign functional specificity to chickpea UGTs by comparing substrate binding sites with experimentally determined specificity. These findings will assist in precise selection of candidate genes for various applications and understanding functional genomics of chickpea.

  18. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  19. Subcellular localization of the five members of the human steroid 5α-reductase family

    Directory of Open Access Journals (Sweden)

    Antonella Scaglione

    2017-06-01

    We report the cloning and transient expression in HeLa cells of the five members of the human steroid 5α-reductase family as both N- and C-terminus green fluorescent protein tagged protein constructs. Following the intrinsic fluorescence of the tag, we have determined that the subcellular localization of these enzymes is in the endoplasmic reticulum, upon expression in HeLa cells. The presence of the tag at either end of the polypeptide chain can affect protein expression and, in the case of trans enoyl-CoA reductase, it induces the formation of protein aggregates.

  20. The Human Laminin Receptor is a Member of the Integrin Family of Cell Adhesion Receptors

    Science.gov (United States)

    Gehlsen, Kurt R.; Dillner, Lena; Engvall, Eva; Ruoslahti, Erkki

    1988-09-01

    A receptor for the adhesive basement membrane protein, laminin, was isolated from human glioblastoma cells by affinity chromatography on laminin. This receptor has a heterodimeric structure similar to that of receptors for other extracellular matrix proteins such as fibronectin and vitronectin. Incorporation of the laminin receptor into liposomal membranes makes it possible for liposomes to attach to surfaces coated with laminin. The receptor liposomes also attached to some extent to surfaces coated with fibronectin, but not with other matrix proteins. These properties identify the laminin receptor as a member of the integrin family of cell adhesion receptors.

  1. Simulating the evolution of the human family: cooperative breeding increases in harsh environments.

    Science.gov (United States)

    Smaldino, Paul E; Newson, Lesley; Schank, Jeffrey C; Richerson, Peter J

    2013-01-01

    Verbal and mathematical models that consider the costs and benefits of behavioral strategies have been useful in explaining animal behavior and are often used as the basis of evolutionary explanations of human behavior. In most cases, however, these models do not account for the effects that group structure and cultural traditions within a human population have on the costs and benefits of its members' decisions. Nor do they consider the likelihood that cultural as well as genetic traits will be subject to natural selection. In this paper, we present an agent-based model that incorporates some key aspects of human social structure and life history. We investigate the evolution of a population under conditions of different environmental harshness and in which selection can occur at the level of the group as well as the level of the individual. We focus on the evolution of a socially learned characteristic related to individuals' willingness to contribute to raising the offspring of others within their family group. We find that environmental harshness increases the frequency of individuals who make such contributions. However, under the conditions we stipulate, we also find that environmental variability can allow groups to survive with lower frequencies of helpers. The model presented here is inevitably a simplified representation of a human population, but it provides a basis for future modeling work toward evolutionary explanations of human behavior that consider the influence of both genetic and cultural transmission of behavior.

  2. Simulating the evolution of the human family: cooperative breeding increases in harsh environments.

    Directory of Open Access Journals (Sweden)

    Paul E Smaldino

    Full Text Available Verbal and mathematical models that consider the costs and benefits of behavioral strategies have been useful in explaining animal behavior and are often used as the basis of evolutionary explanations of human behavior. In most cases, however, these models do not account for the effects that group structure and cultural traditions within a human population have on the costs and benefits of its members' decisions. Nor do they consider the likelihood that cultural as well as genetic traits will be subject to natural selection. In this paper, we present an agent-based model that incorporates some key aspects of human social structure and life history. We investigate the evolution of a population under conditions of different environmental harshness and in which selection can occur at the level of the group as well as the level of the individual. We focus on the evolution of a socially learned characteristic related to individuals' willingness to contribute to raising the offspring of others within their family group. We find that environmental harshness increases the frequency of individuals who make such contributions. However, under the conditions we stipulate, we also find that environmental variability can allow groups to survive with lower frequencies of helpers. The model presented here is inevitably a simplified representation of a human population, but it provides a basis for future modeling work toward evolutionary explanations of human behavior that consider the influence of both genetic and cultural transmission of behavior.

  3. A Plea for the traditional family: Situating marriage within John Paul II's realist, or personalist, perspective of human freedom.

    Science.gov (United States)

    Schumacher, Michele M

    2014-11-01

    This article is an attempt to defend the rights of the traditional family: not simply against the redefinition of marriage, but more fundamentally against a re-conceptualization of human freedom and human rights. To this end, it contrasts what Saint John Paul II calls an individualistic understanding of freedom and a personalistic notion of the same in order to argue that human freedom is called by the Creator to be in service of, and not in opposition to, the good of the human family. From this perspective-that of the social doctrine of the Catholic Church-it argues for the harmony between natural marriage and the respect of fundamental human rights, and it presents the social dimension of marriage as fundamental with respect to the legal and social protection of the family.

  4. The concept of milk kinship in Islam: issues raised when offering preterm infants of Muslim families donor human milk.

    Science.gov (United States)

    El-Khuffash, Afif; Unger, Sharon

    2012-05-01

    Research has documented health benefits associated with donor human milk (DHM). Offering DHM to people of the Muslim faith raises important religious concerns for these families. Knowledge of these beliefs and an understanding of the rationale for these beliefs enable the health care team to establish rapport and build a foundation of trust with patients and their families, thereby paving the way to developing a treatment plan that is in the best interest of the patients without compromising care. This article describes the issues and a rationale for them and provides physicians caring for preterm infants of Muslim families with information to facilitate advocating DHM to those families.

  5. Humanization in the Intensive Care: perception of family and healthcare professionals.

    Science.gov (United States)

    Luiz, Flavia Feron; Caregnato, Rita Catalina Aquino; Costa, Márcia Rosa da

    2017-01-01

    Understanding perceptions of family members and healthcare professionals about humanization at the Intensive Care Unit (ICU) to direct it to an educational action. Exploratory descriptive and qualitative study conducted in an ICU level 3 of a public hospital in Porto Alegre, RS, Brazil, with fourteen subjects, eight family members and six healthcare professionals. Data collection carried out through semi-structured interviews and focus group. Content Analysis was used. Emerged categories were: welcoming; communication; ethical and sensible professionalism; unfavorable aspects; perception on humanization; and religiosity/spirituality. Although the subjects have expressed their perceptions about humanization in different ways, both groups pointed out the same needs and priorities to improve humanization in Intensive Care. From the results, we created a reflective manual of humanizing assistance practices for professionals, a board to facilitate communication of these professionals with patients and a guideline book for family members. Compreender as percepções de familiares e profissionais de saúde sobre humanização na Unidade Terapia Intensiva (UTI) para direcionar a uma ação educativa. Estudo exploratório-descritivo qualitativo, realizado em uma UTI nível III de um hospital público de Porto Alegre/RS com 14 sujeitos, sendo oito familiares e seis profissionais de saúde. Coleta de dados realizada por meio de: entrevistas semiestruturadas e grupo focal. Utilizou-se Análise de Conteúdo. As categorias emergidas foram: acolhida; comunicação; profissionalismo ético e sensível; aspectos desfavoráveis; percepção sobre humanização; e religiosidade/espiritualidade. Apesar dos sujeitos expressarem de maneiras distintas suas percepções sobre humanização, os dois grupos comparados elencaram iguais necessidades e prioridades para o aprimoramento da humanização na Terapia Intensiva. A partir dos resultados, criou-se um Manual Reflexivo de pr

  6. Hereditary Spherocytosis Unmasked by Human Parvovirus B19 Induced Aplastic Crisis in a Family

    Directory of Open Access Journals (Sweden)

    Samin Alavi

    2015-09-01

    Full Text Available Human parvovirus (HPV B19 induced aplastic crisis in a family leading to the diagnosis of hereditary spherocytosis (HS is a very rare condition being barely reported in the literature. We herein report a 4-year-old girl, her brother, and their mother who all presented with progressive pallor and jaundice after a febrile illness. The HPV B19 was diagnosed using polymerase chain reaction (PCR and positive serology for specific anti-HPV B19 IgM. They were further diagnosed with having HS. The clinical importance of this report is that in the case of an abrupt onset of unexplained severe anemia and jaundice, one should consider underlying hemolytic anemias mostly hereditary spherocytosis complicated by HPV B19 aplastic crisis. Herein, we report the occurrence of this condition, simultaneously in three members of a family. The distinguished feature of this report is that all affected family members developed some degrees of transient pancytopenia, not only anemia, all simultaneously in the course of their disease.

  7. Hereditary Spherocytosis Unmasked by Human Parvovirus B19 Induced Aplastic Crisis in a Family.

    Science.gov (United States)

    Alavi, Samin; Arabi, Nahid; Yazdi, Mohammad Kaji; Arzanian, Mohammad Taghi; Zohrehbandian, Farahnaz

    2015-09-01

    Human parvovirus (HPV) B19 induced aplastic crisis in a family leading to the diagnosis of hereditary spherocytosis (HS) is a very rare condition being barely reported in the literature. We herein report a 4-year-old girl, her brother, and their mother who all presented with progressive pallor and jaundice after a febrile illness. The HPV B19 was diagnosed using polymerase chain reaction (PCR) and positive serology for specific anti-HPV B19 IgM. They were further diagnosed with having HS. The clinical importance of this report is that in the case of an abrupt onset of unexplained severe anemia and jaundice, one should consider underlying hemolytic anemias mostly hereditary spherocytosis complicated by HPV B19 aplastic crisis. Herein, we report the occurrence of this condition, simultaneously in three members of a family. The distinguished feature of this report is that all affected family members developed some degrees of transient pancytopenia, not only anemia, all simultaneously in the course of their disease.

  8. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    Energy Technology Data Exchange (ETDEWEB)

    Duangtum, Natapol [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Junking, Mutita; Sawasdee, Nunghathai [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Cheunsuchon, Boonyarit [Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai, E-mail: limjindaporn@yahoo.com [Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2011-09-16

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  9. Do positive affectivity and boundary preferences matter for work-family enrichment? A study of human service workers.

    Science.gov (United States)

    McNall, Laurel A; Scott, Lindsay D; Nicklin, Jessica M

    2015-01-01

    More individuals than ever are managing work and family roles, but relatively little research has been done exploring whether boundary preferences help individuals benefit from multiple role memberships. Drawing on Greenhaus and Powell's (2006) work-family enrichment theory, along with Boundary Theory (Ashforth, Kreiner, & Fugate, 2000) and Conservation of Resources Theory (Hobfoll, 2002), we explore the impact of personal characteristics as enablers of work-family enrichment, and in turn, work outcomes relevant to human service workers: turnover intentions and emotional exhaustion. In a 2-wave study of 161 human service employees, we found that individuals high in positive affectivity were more likely to experience both work-to-family and family to-work enrichment, whereas those with preferences toward integration were more likely to experience work-to-family enrichment (but not family to-work enrichment). In turn, work-to-family enrichment (but not family to-work enrichment) was related to lower turnover intentions and emotional exhaustion. Enrichment served as a mediating mechanism for only some of the hypothesized relationships. Implications for theory and practice are discussed.

  10. A human RNA polymerase II subunit is encoded by a recently generated multigene family

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2001-11-01

    Full Text Available Abstract Background The sequences encoding the yeast RNA polymerase II (RPB subunits are single copy genes. Results While those characterized so far for the human (h RPB are also unique, we show that hRPB subunit 11 (hRPB11 is encoded by a multigene family, mapping on chromosome 7 at loci p12, q11.23 and q22. We focused on two members of this family, hRPB11a and hRPB11b: the first encodes subunit hRPB11a, which represents the major RPB11 component of the mammalian RPB complex ; the second generates polypeptides hRPB11bα and hRPB11bβ through differential splicing of its transcript and shares homologies with components of the hPMS2L multigene family related to genes involved in mismatch-repair functions (MMR. Both hRPB11a and b genes are transcribed in all human tissues tested. Using an inter-species complementation assay, we show that only hRPB11bα is functional in yeast. In marked contrast, we found that the unique murine homolog of RPB11 gene maps on chromosome 5 (band G, and encodes a single polypeptide which is identical to subunit hRPB11a. Conclusions The type hRPB11b gene appears to result from recent genomic recombination events in the evolution of primates, involving sequence elements related to the MMR apparatus.

  11. Upregulation of human heme oxygenase gene expression by Ets-family proteins.

    Science.gov (United States)

    Deramaudt, B M; Remy, P; Abraham, N G

    1999-03-01

    Overexpression of human heme oxygenase-1 has been shown to have the potential to promote EC proliferation and angiogenesis. Since Ets-family proteins have been shown to play an important role in angiogenesis, we investigated the presence of ETS binding sites (EBS), GGAA/T, and ETS protein contributing to human HO-1 gene expression. Several chloramphenicol acetyltransferase constructs were examined in order to analyze the effect of ETS family proteins on the transduction of HO-1 in Xenopus oocytes and in microvessel endothelial cells. Heme oxygenase promoter activity was up-regulated by FLI-1ERGETS-1 protein(s). Chloramphenicol acetyltransferase (CAT) assays demonstrated that the promoter region (-1500 to +19) contains positive and negative control elements and that all three members of the ETS protein family were responsible for the up-regulation of HHO-1. Electrophoretic mobility shift assays (EMSA), performed with nuclear extracts from endothelial cells overexpressing HHO-1 gene, and specific HHO-1 oligonucleotides probes containing putative EBS resulted in a specific and marked bandshift. Synergistic binding was observed in EMSA between AP-1 on the one hand, FLI-1, ERG, and ETS-1 protein on the other. Moreover, 5'-deletion analysis demonstrated the existence of a negative control element of HHO-1 expression located between positions -1500 and -120 on the HHO-1 promoter. The presence of regulatory sequences for transcription factors such as ETS-1, FLI-1, or ERG, whose activity is associated with cell proliferation, endothelial cell differentiation, and matrix metalloproteinase transduction, may be an indication of the important role that HO-1 may play in coronary collateral circulation, tumor growth, angiogenesis, and hemoglobin-induced endothelial cell injuries.

  12. The effectiveness of cognitive behavioral stress management training on mental health, social interaction and family function in adolescents of families with one Human Immunodeficiency Virus (HIV) positive member*

    Science.gov (United States)

    Keypour, Maryam; Arman, Soroor; Maracy, Mohammad Reza

    2011-01-01

    BACKGROUND: This study evaluated stress management training to improve mental health, social interaction and family function among adolescents of families with one Human Immunodeficiency Virus (HIV) positive member. METHODS: There were 34 adolescents (13-18 years old) with at least one family member living with HIV from whom finally 15 attended the study and participated in 8 weekly sessions of stress management training. The tests used in this study were: Strengths and Difficulties Questionnaire (self and parent report), General Health Questionnare-28 (GHQ-28) and Family Assessment Device (FAD), conducted before, after and three months after the intervention. The collected data were analyzed by repeated measure test using SPSS software (Version 18.0). RESULTS: Adolescents with one HIV positive family member showed high level of emotional problem (40%) and conduct problem (33.3%). There was a significant difference between before, after and 3months after intervention based on GHQ-28 mean scores and FAD mean sores (p < 0.001). There was a significant difference between mean scores of peers’ relationship based on SDQ (self report and parents report forms) before and after intervention, but there was no significant difference between mean scores of pro social behavior based on SDQ (self report and parents report forms) in all three stages (before, after and three months after intervention). CONCLUSIONS: Stress management training is effective in improving mental health, family function and social interaction among adolescents living with parents infected with HIV/AIDS. PMID:22091302

  13. The effectiveness of cognitive behavioral stress management training on mental health, social interaction and family function in adolescents of families with one Human Immunodeficiency Virus (HIV positive member

    Directory of Open Access Journals (Sweden)

    Maryam Keypour

    2011-01-01

    Full Text Available Background: This study evaluated stress management training to improve mental health, social interaction and family function among adolescents of families with one Human Immunodeficiency Virus (HIV positive member. Methods: There were 34 adolescents (13-18 years old with at least one family member living with HIV from whom finally 15 attended the study and participated in 8 weekly sessions of stress management training. The tests used in this study were: Strengths and Difficulties Questionnaire (self and parent report, General Health Questionnare-28 (GHQ-28 and Family Assessment Device (FAD, conducted before, after and three months after the intervention. The collected data were analyzed by repeated measure test using SPSS software (Version 18.0. Results: Adolescents with one HIV positive family member showed high level of emotional problem (40% and conduct problem (33.3%. There was a significant difference between before, after and 3months after intervention based on GHQ-28 mean scores and FAD mean sores (p < 0.001. There was a significant difference between mean scores of peers′ relationship based on SDQ (self report and parents report forms before and after intervention, but there was no significant difference between mean scores of pro social behavior based on SDQ (self report and parents report forms in all three stages (before, after and three months after intervention. Conclusions: Stress management training is effective in improving mental health, family function and social interaction among adolescents living with parents infected with HIV/AIDS.

  14. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  15. Family Privilege

    Science.gov (United States)

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  16. Family Privilege

    Science.gov (United States)

    Seita, John R.

    2014-01-01

    Family privilege is defined as "strengths and supports gained through primary caring relationships." A generation ago, the typical family included two parents and a bevy of kids living under one roof. Now, every variation of blended caregiving qualifies as family. But over the long arc of human history, a real family was a…

  17. The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean.

    Science.gov (United States)

    Sayama, Takashi; Ono, Eiichiro; Takagi, Kyoko; Takada, Yoshitake; Horikawa, Manabu; Nakamoto, Yumi; Hirose, Aya; Sasama, Hiroko; Ohashi, Mihoko; Hasegawa, Hisakazu; Terakawa, Teruhiko; Kikuchi, Akio; Kato, Shin; Tatsuzaki, Nana; Tsukamoto, Chigen; Ishimoto, Masao

    2012-05-01

    Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.

  18. A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour

    Directory of Open Access Journals (Sweden)

    Sheila Lorena de Araújo Coelho

    2016-03-01

    Full Text Available Abstract Cyclodextrin glycosyltransferase (CGTase catalyzes the conversion of starch into non-reducing cyclic sugars, cyclodextrins, which have several industrial applications. This study aimed to establish optimal culture conditions for β-CGTase production by Bacillus sp. SM-02, isolated from soil of cassava industries waste water lake. The optimization was performed by Central Composite Design (CCD 2, using cassava flour and corn steep liquor as substrates. The maximum production of 1087.9 U mL−1 was obtained with 25.0 g L−1 of cassava flour and 3.5 g L−1 of corn steep after 72 h by submerged fermentation. The enzyme showed optimum activity at pH 5.0 and temperature 55 °C, and maintained thermal stability at 55 °C for 3 h. The enzymatic activity was stimulated in the presence of Mg+2, Ca+2, EDTA, K+, Ba+2 and Na+ and inhibited in the presence of Hg+2, Cu+2, Fe+2 and Zn+2. The results showed that Bacillus sp. SM-02 have good potential for β-CGTase production.

  19. UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides.

    Science.gov (United States)

    Mohamed, Amal A A; Ceunen, Stijn; Geuns, Jan M C; Van den Ende, Wim; De Ley, Marc

    2011-07-01

    A short-term experiment was designed to measure the transcript levels of downstream genes contributing to the biosynthesis of steviol glycosides. Stevia rebaudiana plants were subjected to long- and short-day conditions for different time intervals. Samples from both lower and upper leaves were collected. Using quantitative real-time polymerase chain reaction, the transcript levels of three UDP-dependent glycosyltransferases, UGT85C2, UGT74G1 and UGT76G1, were studied. The results were compared with the steviol glycoside contents measured in the leaves, which were quantified by reversed phase HPLC. In the same daylength condition, steviol glycoside concentration and the transcript levels of the three UGT genes were higher in upper leaves than in lower leaves. Steviol glycosides accumulated more in plants under short-day conditions. Under these conditions, a highly significant correlation was found between UGT85C2 transcription and total steviol glycoside accumulation in the upper leaves. This suggests that the glycosylation of steviol to form steviolmonoside is the rate-limiting step in the glycosylation pathway of steviol glycosides. In these upper leaves, a relatively high accumulation of rebaudioside A compared to stevioside was also observed, however, without correlation with the transcription of UGT76G1.

  20. Expression of B4GALNT1, an essential glycosyltransferase for the synthesis of complex gangliosides, suppresses BACE1 degradation and modulates APP processing

    Science.gov (United States)

    Yamaguchi, Tokiaki; Yamauchi, Yoshio; Furukawa, Keiko; Ohmi, Yuhsuke; Ohkawa, Yuki; Zhang, Qing; Okajima, Tetsuya; Furukawa, Koichi

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent form of dementia characterized by the extracellular accumulation of amyloid β (Aβ) peptides, which are produced by proteolytic cleavages of amyloid precursor protein (APP). Gangliosides are involved in AD pathophysiology including Aβ deposition and APP processing, yet the detailed mechanisms are not fully understood. Here we examined how changes in the carbohydrate moiety of gangliosides alter APP processing in human melanoma cells, neuroectoderm-derived cells. We showed that forced expression of GD2, GM2 or GM1 (by introducing B4GALNT1 cDNA into cells not expressing this glycosyltransferase) results in increases of α- and β-site cleavages of APP with a prominent increase in β-cleavage. We also showed that β-site APP cleaving enzyme 1 (BACE1) protein is highly protected from the degradation in cells expressing these gangliosides, thereby increasing the expression of this protein. Unexpectedly, adding gangliosides exogenously altered neither BACE1 levels nor β-site cleavage. The stabilisation of BACE1 protein led to the increase of this protein in lipid rafts, where BACE1 processes APP. Based on the current results, we propose a hitherto undisclosed link between ganglioside expression and AD; the expression of B4GALNT1 positively regulates the β-site cleavage by mainly inhibiting the lysosomal degradation of BACE1 protein. PMID:27687691

  1. Structures of complexes of a metal-independent glycosyltransferase GT6 from Bacteroides ovatus with UDP-N-acetylgalactosamine (UDP-GalNAc) and its hydrolysis products.

    Science.gov (United States)

    Pham, Tram T K; Stinson, Brittany; Thiyagarajan, Nethaji; Lizotte-Waniewski, Michelle; Brew, Keith; Acharya, K Ravi

    2014-03-21

    Mammalian members of glycosyltransferase family 6 (GT6) of the CAZy database have a GT-A fold containing a conserved Asp-X-Asp (DXD) sequence that binds an essential metal cofactor. Bacteroides ovatus GT6a represents a GT6 clade found in more than 30 Gram-negative bacteria that is similar in sequence to the catalytic domains of mammalian GT6, but has an Asn(95)-Ala-Asn(97) (NXN) sequence substituted for the DXD motif and metal-independent catalytic activity. Co-crystals of a low activity mutant of BoGT6a (E192Q) with UDP-GalNAc contained protein complexes with intact UDP-GalNAc and two forms with hydrolysis products (UDP plus GalNAc) representing an initial closed complex and later open form primed for product release. Two cationic residues near the C terminus of BoGT6a, Lys(231) and Arg(243), interact with the diphosphate moiety of UDP-GalNAc, but only Lys(231) interacts with the UDP product and may function in leaving group stabilization. The amide group of Asn(95), the first Asn of the NXN motif, interacts with the ribose moiety of the substrate. This metal-independent GT6 resembles its metal-dependent homologs in undergoing conformational changes on binding UDP-GalNAc that arise from structuring the C terminus to cover this substrate. It appears that in the GT6 family, the metal cofactor functions specifically in binding the UDP moiety in the donor substrate and transition state, actions that can be efficiently performed by components of the polypeptide chain.

  2. Human brain factor 1, a new member of the fork head gene family

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, D.B.; Wiese, S.; Burfeind, P. [Institut fuer Humangenetik, Goettingen (Germany)] [and others

    1994-06-01

    Analysis of cDNA clones that cross-hybridized with the fork head domain of the rat HNF-3 gene family revealed 10 cDNAs from human fetal brain and human testis cDNA libraries containing this highly conserved DNA-binding domain. Three of these cDNAs (HFK1, HFK2, and HFK3) were further analyzed. The cDNA HFK1 has a length of 2557 nucleotides and shows strong homology at the nucleotide level (91.2%) to brain factor 1 (BF-1) from rat. The HFK1 cDNA codes for a putative 476 amino acid protein. The homology to BF-1 from rat in the coding region at the amino acid level is 87.5%. The fork head homologous region includes 111 amino acids starting at amino acid 160 and has a 97.5% homology to BF-1. Southern hybridization revealed that HFK1 is highly conserved among mammalian species and possibly birds. Northern analysis with total RNA from human tissues and poly(A)-rich RNA from mouse revealed a 3.2-kb transcript that is present in human and mouse fetal brain and in adult mouse brain. In situ hybridization with sections of mouse embryo and human fetal brain reveals that HFK1 expression is restricted to the neuronal cells in the telencepthalon, with strong expression being observed in the developing dentate gyrus and hippocampus. HFK1 was chromosomally localized by in situ hybridization to 14q12. The cDNA clones HFK2 and HFK3 were analyzed by restriction analysis and sequencing. HFK2 and HFK3 were found to be closely related but different from HFK1. Therefore, it would appear that HFK1, HFK2, HFK3, and BF-1 form a new fork head related subfamily. 33 refs., 6 figs.

  3. Human papillomavirus detection in cervical scrapes from women attended in the Family Health Program

    Directory of Open Access Journals (Sweden)

    Everton Faccini Augusto

    2014-01-01

    Full Text Available OBJECTIVES: to survey the prevalence of human papillomavirus, associated risk factors and genotype distribution in women who were referred to cervical cancer screening when attended in a Family Health Program. METHOD: we conducted a cross-sectional survey, investigating 351 women. Polymerase chain reaction for DNA amplification and restriction fragment length polymorphism analysis were used to detect and typify the papillomavirus. RESULTS: virus infection was detected in 8.8% of the samples. Among the 21 different genotypes identified in this study, 14 were high risk for cervical cancer, and the type 16 was the most prevalent type. The infection was associated with women who had non-stable sexual partners. Low risk types were associated with younger women, while the high risk group was linked to altered cytology. CONCLUSION: in this sample attended a Family Health Program, we found a low rate of papillomavirus infection. Virus frequency was associated to sexual behavior. However, the broad range of genotypes detected deserves attention regarding the vaccine coverage, which includes only HPV prevalent types.

  4. Entamoeba histolytica Phagocytosis of Human Erythrocytes Involves PATMK, a Member of the Transmembrane Kinase Family

    Science.gov (United States)

    Boettner, Douglas R; Huston, Christopher D; Linford, Alicia S; Buss, Sarah N; Houpt, Eric; Sherman, Nicholas E; Petri, William A

    2008-01-01

    Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMKΔ932). Expression of the carboxy-truncation of PATMKΔ932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection. PMID:18208324

  5. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Directory of Open Access Journals (Sweden)

    Douglas R Boettner

    2008-01-01

    Full Text Available Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK, was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i incubation of ameba with anti-PATMK antibodies; (ii PATMK mRNA knock-down using a novel shRNA expression system; and (iii expression of a carboxy-truncation of PATMK (PATMK(delta932. Expression of the carboxy-truncation of PATMK(delta932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  6. Psychological problems of families and health workers dealing with people infected with human immunodeficiency virus 1.

    Science.gov (United States)

    Maj, M

    1991-03-01

    The psychological problems of the families of human immunodeficiency virus 1 (HIV-1)-infected people, and of the health workers taking care of them, have been addressed in a few empirical studies and in several anecdotal reports and theoretical contributions. Apparently, HIV-1 infection and acquired immunodeficiency syndrome (AIDS) are able to elicit a wide range of emotional reactions, from rejection and refusal to provide care to immersion in the infected person's needs and burnout. Since irrational fears and attitudes play an important role in conditioning these reactions, education may not be sufficient to change behaviour. Counselling sessions and mutual support groups are often the most appropriate contexts where fears and concerns can receive an individually tailored response, and where formal and informal caregivers can be helped to manage stress.

  7. Familial Alzheimer's disease: genetic analysis related to disease heterogeneity, Down syndrome and human brain evolution.

    Science.gov (United States)

    Schapiro, M B; Rapoport, S I

    1989-01-01

    Etiologically heterogeneous subgroups of patients with Alzheimer's disease (AD) exist and need to be distinguished so as to better identify genetic causes of familial cases. Furthermore, the presence of AD neuropathology in Down syndrome (trisomy 21) subjects older than 35 years suggests that AD in some cases is caused by dysregulation of expression of genes on chromosome 21. Cerebral metabolic abnormalities in life, and the distribution of AD neuropathology in the post-mortem brain, indicate that AD involves the association neocortices and subcortical regions with which they evolved during evolution of the human brain. Accordingly, understanding the molecular basis of this evolution should elucidate the genetic basis of AD, whereas knowing the genetics of AD should be informative about the genomic changes which promoted brain evolution.

  8. The selective footprints of viral pressures at the human RIG-I-like receptor family.

    Science.gov (United States)

    Vasseur, Estelle; Patin, Etienne; Laval, Guillaume; Pajon, Sandra; Fornarino, Simona; Crouau-Roy, Brigitte; Quintana-Murci, Lluis

    2011-11-15

    The RIG-I-like receptors (RLRs)--RIG-I, IFIH1 (or MDA5) and LGP2--are thought to be key actors in the innate immune system, as they play a major role in sensing RNA viruses in the cytosol of host cells. Despite the increasingly recognized importance of the RLR family in antiviral immunity, no population genetic studies have yet attempted to compare the evolutionary history of its different members in humans. Here, we characterized the levels of naturally occurring genetic variation in the RLRs in a panel of individuals of different ethnic origins, to assess to what extent natural selection has acted on this family of microbial sensors. Our results show that amino acid-altering variation at RIG-I, particularly in the helicase domain, has been under stronger evolutionary constraint than that at IFIH1 and LGP2, reflecting an important role for RIG-I in sensing numerous RNA viruses and/or functional constraints related to the binding of viral substrates. Such evolutionary constraints have been much more relaxed at IFIH1 and LGP2, which appear to have evolved adaptively in specific human populations. Notably, we identified several mutations showing signatures of positive selection, including two non-synonymous polymorphisms in IFIH1 (R460H and R843H) and one in LGP2 (Q425R), suggesting a selective advantage related to the sensing of RNA viruses by IFIH and to the regulatory functions of LGP2. In light of the fact that some of these mutations have been associated with altered risks of developing autoimmune disorders, our study provides an additional example of the evolutionary conflict between infection and autoimmunity.

  9. Identification through bioinformatics of cDNAs encoding human thymic shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family.

    Science.gov (United States)

    Capone, M C; Gorman, D M; Ching, E P; Zlotnik, A

    1996-08-01

    The Ly-6 family of cell surface molecules includes many members that have been characterized in the mouse. Until recently, very few Ly-6 family members had been described in the human. A significant development with important implications for novel gene discovery has been the growth of the public Expressed Sequence Tag (EST) database. Here we report that, through the application of bioinformatics analysis to the dbEST database, we obtained the sequence of human TSA-1/SCA-2, a new member of the human Ly-6 family. In addition, we identified full-length clones encoding this molecule as well as expression data in various tissues. Sequencing of the clones identified this way confirmed the sequence predicted through bioinformatics. This study constitutes an example of the application of bioinformatics to the analysis of the recently expanded databases for the identification of genes of potential importance in the immune system.

  10. Seeing the other through the screen: movies, humanization of medical education and Family and Community Medicine

    Directory of Open Access Journals (Sweden)

    Gustavo de Araújo Porto Landsberg

    2010-11-01

    Full Text Available The unprecedented technological development observed in the last century and beginning of this one has expanded the horizons of the medical science exponentially, making the content to be envisaged by the colleges practically unfeasible. The incorporation of this knowledge in the curricula took place in detriment to human sciences, formerly included as a routine in the schools of medicine all over the world. Negligence of the humanization of medical education may keep from endowing future physicians with the affective resources necessary to the establishment of a satisfactory physical-patient relationship. This study proposes evaluating the use of motion pictures in the humanization of the way graduates see patients, providing them with capability and empathy toward their patients. Three documentaries that correlate indirectly with themes relative to Family and Community Medicine were selected: worker’s mental and community health. After screening to small groups of students, there was a multidisciplinary discussion covering all the several themes relevant to the medical practice. Finally, questionnaires were applied where the students evaluated the importance of the experience in their education, as well as replied to questions about their contact with arts and personal interests. All the students considered the level of correlation of the motion pictures chosen as a good or excellent medical practice. Questioned on the relevance of the themes covered in their education, 94,1% of them answered good or fine. The same percentage considered the curricular inclusion of methodology also good or fine. It was observed that the students evaluated read less than the national average, and a considerable amount of them is not interested in or has never been to a theater, an art exposition or a dance show. The movies, however, proved to be very popular - confirming its potential as a humanizing teaching resource.

  11. Different Expression of mRNA in B4GalT Glycosyltransferase Family Between Mouse Hepatocellular Carcinoma and Normal Liver Tissues and its Influence on Relevant Sugar Chain of Membrane%小鼠肝癌及肝正常组织B4GalT糖基转移酶家族mRNA表达差异及其对细胞膜相关糖链的影响

    Institute of Scientific and Technical Information of China (English)

    马汝海; 王冬青; 潘忠诚; 王天骄; 何群; 赵雨杰

    2012-01-01

    探讨肝癌模型鼠与正常小鼠肝组织B4GalT(β-1,4-半乳糖转移酶)家族mRNA表达差异以及对细胞膜相关糖链的影响.采用RT-PCR方法检测肝癌模型鼠和正常对照小鼠肝癌组织中B4GalT家族7个成员以及唾液酸α-2,3转移酶ST3GalⅢ、ST3GalⅣ、ST3GalⅥ、α-1,6-岩藻糖转移酶FUT8 mRNA表达差异,应用凝集素芯片检测细胞膜表面半乳糖、岩藻糖、唾液酸表达情况.结果显示:与正常对照组相比,肝癌模型鼠肝组织中B4GalT-1和B4GalT-3、ST3GalⅣ和ST3GalⅥ、FUT8呈现高表达,肝癌细胞膜半乳糖、岩藻糖、唾液酸类型糖链增加,提示B4GalT-1和B4GalT-3与肝癌细胞膜半乳糖链增加相关.由于细胞Galβ-1,4-GlcNAc糖表位在ST3GalⅢ、ST3GalⅣ或ST3GalⅥ催化下与唾液酸α-2,3连接生成s-lewisx抗原前体,本实验中B4GalT-1和B4GalT-3与ST3GalⅣ、ST3Gal V、FUT8 mRNA表达具有相关性,提示B4GalT-1和B4GalT-3可能与ST3GalⅣ、ST3GalⅥ以及FUT4协同作用,导致肝癌细胞膜半乳糖、岩藻糖、唾液酸类型糖链增加.%To investigate different expression of mRNA in B4GalT (β-1, 4-Galactosyltransferase) family between mouse hepatocellular carcinoma and normal liver tissues and its influence on relevant sugar chain of membrane. The different expression of mRNAs in 7 members of B4GalT family and α-2, 3 sialyltransferase ST3Gal I, ST3Gal IV, ST3Gal VI and fucosyltransferase FUT8 were detected with RT-PCR. The expression levels of galactose, fucose and sialic acid on cell membrane surface were analyzed by lectin array. The results showed that compared with normal mouse tissues, B4GalT-l, B4GalT-3, ST3Gal IV, ST3Gal VI and FUT8 in mouse hepatocellular carcinoma were identified highly expressed. Galactose, fucose and sialic acid on cell membrane surface were increased, indicating that B4GalT-l and B4GalT-3 are related with the increasing of the galactose epitope. Because sialic acids were added to Galβ-1, 4-GlcNAc epitopes to

  12. Two family members with a syndrome of headache and rash caused by human parvovirus B19

    Directory of Open Access Journals (Sweden)

    Antonio Carlos M. Pereira

    Full Text Available Human parvovirus B19 infection can cause erythema infectiosum (EI and several other clinical presentations. Central nervous system (CNS involvement is rare, and only a few reports of encephalitis and aseptic meningitis have been published. Here, we describe 2 cases of B19 infection in a family presenting different clinical features. A 30 year old female with a 7-day history of headache, malaise, myalgias, joint pains, and rash was seen. Physical examination revealed a maculopapular rash on the patient's body, and arthritis of the hands. She completely recovered in 1 week. Two days before, her 6 year old son had been admitted to a clinic with a 1-day history of fever, headache, abdominal pain and vomiting. On admission, he was alert, and physical examination revealed neck stiffness, Kerning and Brudzinski signs, and a petechial rash on his trunk and extremities. Cerebrospinal fluid analysis was normal. He completely recovered in 5 days. Acute and convalescent sera of both patients were positive for specific IgM antibody to B19. Human parvovirus B19 should be considered in the differential diagnosis of aseptic meningitis, particularly during outbreaks of erythema infectiosum. The disease may mimic meningococcemia and bacterial meningitis.

  13. Two family members with a syndrome of headache and rash caused by human parvovirus B19

    Directory of Open Access Journals (Sweden)

    Antonio Carlos M. Pereira

    2001-02-01

    Full Text Available Human parvovirus B19 infection can cause erythema infectiosum (EI and several other clinical presentations. Central nervous system (CNS involvement is rare, and only a few reports of encephalitis and aseptic meningitis have been published. Here, we describe 2 cases of B19 infection in a family presenting different clinical features. A 30 year old female with a 7-day history of headache, malaise, myalgias, joint pains, and rash was seen. Physical examination revealed a maculopapular rash on the patient's body, and arthritis of the hands. She completely recovered in 1 week. Two days before, her 6 year old son had been admitted to a clinic with a 1-day history of fever, headache, abdominal pain and vomiting. On admission, he was alert, and physical examination revealed neck stiffness, Kerning and Brudzinski signs, and a petechial rash on his trunk and extremities. Cerebrospinal fluid analysis was normal. He completely recovered in 5 days. Acute and convalescent sera of both patients were positive for specific IgM antibody to B19. Human parvovirus B19 should be considered in the differential diagnosis of aseptic meningitis, particularly during outbreaks of erythema infectiosum. The disease may mimic meningococcemia and bacterial meningitis.

  14. Effect of the endothelin family of peptides on human coronary artery smooth-muscle cell migration.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Kano, H; Minami, M; Yoshikawa, J

    1998-01-01

    The migration of coronary artery medial smooth-muscle cells (SMCs) is one of the key events in the process of intimal thickening in coronary atherosclerotic lesions. The objectives of the present study were to determine whether any of the three isoforms of endothelin (ET), ET-1, ET-2, and ET-3, or an intermediate form of ET, big ET-1, induces migration of human coronary artery SMCs, and to investigate the possible interaction of ET peptides and well-known migration-stimulatory factors, platelet-derived growth factor (PDGF)-BB and angiotensin II (Ang II), on SMC migration by the Boyden's chamber method. None of the ET peptides alone induced SMC migration between 10(-9) and 10(-7) mol/L. In contrast, ET-1 and ET-2 significantly induced SMC migration in the presence of low concentrations of PDGF-BB (0.5 ng/mL) or Ang II (10(-9) mol/L), although ET-3 was less active (ET-1 = ET-2 > ET-3). In contrast, big ET-1 was without significant activity on PDGF-BB-or Ang II-induced SMC migration. The potentiation of SMC migration by ET peptides was clearly inhibited by the ETA receptor antagonist BG-123 in a concentration-dependent manner. These results suggest that the ET family of peptides, especially ET-1 and ET-2, can induce human coronary artery SMC migration in combination with PDGF-BB or Ang II, probably via ETA receptors. Taken together with the finding that the concentrations of ET, PDGF-BB and Ang II are locally increased at sites of endothelial injury, this indicates that ET may be an initial stimulus for human coronary artery medial SMC recruitment during coronary atherosclerosis, possibly in combination with PDGF-BB or Ang II.

  15. Utilizing the O-antigen lipopolysaccharide biosynthesis pathway in Escherichia coli to interrogate the substrate specificities of exogenous glycosyltransferase genes in a combinatorial approach.

    Science.gov (United States)

    Johansen, Eric B; Szoka, Francis C; Zaleski, Anthony; Apicella, Michael A; Gibson, Bradford W

    2010-06-01

    In previous work, our laboratory generated novel chimeric lipopolysaccharides (LPS) in Escherichia coli transformed with a plasmid containing exogenous lipooligosaccharide synthesis genes (lsg) from Haemophilus influenzae. Analysis of these novel oligosaccharide-LPS chimeras allowed characterization of the carbohydrate structures generated by several putative glycosyltransferase genes within the lsg locus. Here, we adapted this strategy to construct a modular approach to study the synthetic properties of individual glycosyltransferases expressed alone and in combinations. To this end, a set of expression vectors containing one to four putative glycosyltransferase genes from the lsg locus, lsgC-F, were transformed into E. coli K12 (XL-1) which is defective in LPS O-antigen biosynthesis. This strategy relied on the inclusion of the H. influenzae gene product lsgG in every plasmid construct, which partially rescues the E. coli LPS biosynthesis defect by priming uridine diphosphate-undecaprenyl in the WecA-dependent O-antigen synthetic pathway with N-acetyl-glucosamine (GlcNAc). This GlcNAc-undecaprenyl then served as an acceptor substrate for further carbohydrate extension by transformed glycosyltransferases. The resultant LPS-linked chimeric glycans were isolated from their E. coli constructs and characterized by mass spectrometry, methylation analysis and enzyme-linked immunosorbent assays. These structural data allowed the specificity of various glycosyltransferases to be unambiguously assigned to individual genes. LsgF was found to transfer a galactose (Gal) to terminal GlcNAc. LsgE was found to transfer GlcNAc to Gal-GlcNAc, and both LsgF and LsgD were found to transfer Gal to GlcNAc-Gal-GlcNAc but with differing linkage specificities. This method can be generalized and readily adapted to study the substrate specificity of other putative or uncharacterized glycosyltransferases.

  16. [Community center for human development: program for African-Colombian families based on the participatory action research approach].

    Science.gov (United States)

    Barreto-Zorza, Yenny M; Velasquez-Gutierrez, Vilma F

    2016-01-01

    To describe the process of construction of a program of Primary Health Care (PHC) for African-Colombian families in Guapi, Cauca. Participatory action research (PAR). The PHC program is a collective construction between the IAP Group and the Commission for Support and Follow-up (CAS), carried out in four phases: 1. Field preparation; 2. Approximation to the universe of the African-Colombian families of Guapi; 3. Building the program "Center for Human Development: with strength, joy and love we go 'pa'lante' families"; and 4. Evaluation and socialization of results. The collective construction of the program was conducted from the perspective of PHC, PAR and the cultural context, where the experts are the community, health professionals and institutions who have the ability to examine, reflect and participate in the transformation of reality based on their everyday life and view of the world. The starting point involves planning, developing and evaluating actions in healthy environments, relating not only to the physical space, but also to the work with families and community, taking into account needs, perceptions, beliefs, and actions towards health. The "Human Development Center Community" program allows a process of community participation towards achieving healthy environments to improve the health of the African-Colombian population, through the active participation of families, community, institutions and health professionals who, based on reality and knowledge exchange, generate actions directed to health of the large families of Guapi.

  17. iFish: predicting the pathogenicity of human nonsynonymous variants using gene-specific/family-specific attributes and classifiers.

    Science.gov (United States)

    Wang, Meng; Wei, Liping

    2016-08-16

    Accurate prediction of the pathogenicity of genomic variants, especially nonsynonymous single nucleotide variants (nsSNVs), is essential in biomedical research and clinical genetics. Most current prediction methods build a generic classifier for all genes. However, different genes and gene families have different features. We investigated whether gene-specific and family-specific customized classifiers could improve prediction accuracy. Customized gene-specific and family-specific attributes were selected with AIC, BIC, and LASSO, and Support Vector Machine classifiers were generated for 254 genes and 152 gene families, covering a total of 5,985 genes. Our results showed that the customized attributes reflected key features of the genes and gene families, and the customized classifiers achieved higher prediction accuracy than the generic classifier. The customized classifiers and the generic classifier for other genes and families were integrated into a new tool named iFish (integrated Functional inference of SNVs in human, http://ifish.cbi.pku.edu.cn). iFish outperformed other methods on benchmark datasets as well as on prioritization of candidate causal variants from whole exome sequencing. iFish provides a user-friendly web-based interface and supports other functionalities such as integration of genetic evidence. iFish would facilitate high-throughput evaluation and prioritization of nsSNVs in human genetics research.

  18. Participatory Assessment of a Matched Savings Program for Human Trafficking Survivors and their Family Members in the Philippines

    Directory of Open Access Journals (Sweden)

    Laura Cordisco Tsai

    2017-05-01

    Full Text Available Survivors of human trafficking often experience considerable financial difficulties upon exiting human trafficking, including pressure to provide financially for their families, challenges securing employment, lack of savings, and familial debt. Few evaluations have been conducted of reintegration support interventions addressing financial vulnerability among trafficking survivors. In this article, we present findings from a participatory assessment of the BARUG program, a matched savings and financial capability program for survivors of human trafficking and their family members in the Philippines. Photovoice was used to understand the experiences of two cohorts of BARUG participants. Survivors collaborated with research team members in conducting thematic analysis of transcripts from the photovoice sessions. Themes included: the positive emotional impact of financial wellness, overcoming the challenges of saving, applying financial management skills in daily decision making, developing a habit of savings, building a future-oriented mindset, receiving guidance and enlightenment, the learning process, and the change process. Findings reinforce the importance of interventions to support trafficked persons and their family members in getting out of debt and accumulating emergency savings, while also providing emotional support to survivors in coping with family financial pressures. The study also highlights the value of using participatory research methods to understand the experiences of trafficked persons. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1702116

  19. Oncogenic intra-p53 family member interactions in human cancers

    Directory of Open Access Journals (Sweden)

    Maria eFerraiuolo

    2016-03-01

    Full Text Available The p53 gene family members p53, p73 and p63 display several isoforms derived from the presence of internal promoters and alternative splicing events. They are structural homologues but hold peculiar functional properties. p53, p73 and p63 are tumor suppressor genes that promote differentiation, senescence and apoptosis. p53, unlike p73 and p63, is frequently mutated in cancer often displaying oncogenic gain of function (GOF activities correlated with the induction of proliferation, invasion, chemoresistance and genomic instability in cancer cells. These oncogenic functions are promoted either by the aberrant transcriptional cooperation of mutant p53 (mutp53 with transcription cofactors (e.g., NF-Y, E2F1, Vitamin D Receptor (VDR, Ets-1, NF-kB and YAP or by the interaction with the p53 family members, p73 and p63, determining their functional inactivation. The instauration of these aberrant transcriptional networks leads to increased cell growth, low activation of DNA damage response pathways (DNA damage response (DDR, DNA double-strand breaks (DSBs response, enhanced invasion and high chemoresistance to different conventional chemotherapeutic treatments. Several studies have clearly shown that different cancers harboring mutant p53 proteins exhibit a poor prognosis when compared to those carrying wild type p53 (wt-p53 protein. The interference of mutantp53/p73 and/or mutantp53/p63 interactions, thereby restoring p53, p73 and p63 tumor suppression functions, could be among the potential therapeutic strategies for the treatment of mutant p53 human cancers.

  20. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils

    DEFF Research Database (Denmark)

    Volck, B; Price, P A; Johansen, J S;

    1998-01-01

    YKL-40, also called human cartilage glycoprotein-39 (HC gp-39), is a member of family 18 glycosyl hydrolases. YKL-40 is secreted by chondrocytes, synovial cells, and macrophages, and recently it has been reported that YKL-40 has a role as an autoantigen in rheumatoid arthritis (RA). The function ...

  1. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam Anders Edvin

    2011-01-01

    -coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also...

  2. Human tolerogenic dendritic cells produce IL-35 in the absence of other IL-12 family members.

    Science.gov (United States)

    Dixon, Karen O; van der Kooij, Sandra W; Vignali, Dario A A; van Kooten, Cees

    2015-06-01

    IL-35 is a cytokine of the IL-12 family, existing as a heterodimer of IL-12p35 and Ebi3. IL-35 has anti-inflammatory properties and is produced by regulatory T cells in humans and mice, where it is required for optimal suppression of immune responses. Distinct from other IL-12 cytokines, the expression of IL-35 has not been described in antigen-presenting cells. In view of the immune-regulatory properties of IL-35, we investigated the expression, regulation, and function of IL-12p35 and Ebi3 in human monocyte-derived dendritic cells and tolerogenic DCs (tolDCs). These tolDCs do not produce IL-12p70 or the homodimer IL-12p40. We demonstrate that tolDCs completely lack transcriptional expression of IL-12p40. However, tolDCs maintain mRNA expression of IL-12p35 and Ebi3. Using intracellular flow cytometry and Western blot analysis, we show that tolDCs produce Ebi3 and IL-12p35, and both can be enhanced upon stimulation with IFN-γ, LPS, or CD40L. tolDCs supernatants have the capacity to suppress T-cell activation. Using IL12A silencing, we demonstrate that IL-12p35 is required for tolDCs to reach their full suppressive potential. Taken together, our results indicate that tolDCs produce IL-35, providing an additional novel mechanism by which tolDCs elicit their tolerogenic potential.

  3. Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs).

    Science.gov (United States)

    Martín, Mariana; Wayllace, Nahuel Z; Valdez, Hugo A; Gomez-Casati, Diego F; Busi, María V

    2013-10-01

    Glycogen and starch, the major storage carbohydrate in most living organisms, result mainly from the action of starch or glycogen synthases (SS or GS, respectively, EC 2.4.1.21). SSIII from Arabidopsis thaliana is an SS isoform with a particular modular organization: the C-terminal highly conserved glycosyltransferase domain is preceded by a unique specific region (SSIII-SD) which contains three in tandem starch binding domains (SBDs, named D1, D2 and D3) characteristic of polysaccharide degrading enzymes. N-terminal SBDs have a probed regulatory role in SSIII activity, showing starch binding ability and modulating the catalytic properties of the enzyme. On the other hand, GS from Agrobacterium tumefaciens has a simple primary structure organization, characterized only by the highly conserved glycosyltransferase domain and lacking SBDs. To further investigate the functional role of A. thaliana SSIII-SD, three chimeric proteins were constructed combining the SBDs from A. thaliana with the GS from A. tumefaciens. Recombinant proteins were expressed in and purified to homogeneity from Escherichia coli cells in order to be kinetically characterized. Furthermore, we tested the ability to restore in vivo glycogen biosynthesis in transformed E. coli glgA(-) cells, deficient in GS. Results show that the D3-GS chimeric enzyme showed increased capacity of glycogen synthesis in vivo with minor changes in its kinetics parameters compared to GS.

  4. Agl16, a thermophilic glycosyltransferase mediating the last step of N-Glycan biosynthesis in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Meyer, Benjamin H; Peyfoon, Elham; Dietrich, Carsten; Hitchen, Paul; Panico, Maria; Morris, Howard R; Dell, Anne; Albers, Sonja-Verena

    2013-05-01

    Recently, the S-layer protein of Sulfolobus acidocaldarius was shown to be N-linked with a tribranched hexasaccharide, composed of Man2Glc1GlcNAc2 and a sulfated sugar called sulfoquinovose. To identify genes involved in the biosynthesis and attachment of this glycan, markerless in-frame deletions of genes coding for predicted glycosyltransferases were created. The successful deletion of agl16, coding for a glycosyltransferase, resulted in the S-layer protein and archaellins having reduced molecular weights, as visualized by Coomassie staining or immunoblotting. This analysis indicated a change in the N-glycan composition. Nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses confirmed that the glycan of the S-layer protein from the agl16 deletion mutant was a pentasaccharide, which was missing a terminal hexose residue. High-performance liquid chromatography (HPLC) analyses of the hydrolyzed N-glycan indicated that the missing hexose is a glucose residue. A physiological characterization of the agl16 deletion mutant revealed a significant effect on the growth at elevated salt concentrations. At 300 mM NaCl, the doubling time of the Δagl16 mutant was increased 2-fold compared to that of the background strain. Furthermore, the incomplete glycan structure of the Δagl16 deletion strain affected the assembly and function of the archaellum, as exemplified by semisolid Gelrite plate analysis, in which the motility is decreased according to the N-glycan size.

  5. Antiviral Mechanism and biochemical basis of the human APOBEC3 family

    Directory of Open Access Journals (Sweden)

    Mayumi eImahashi

    2012-07-01

    Full Text Available The human APOBEC3 (A3 family (A, B, C, DE, F, G, and H comprises host defense factors that potently inhibit the replication of diverse retroviruses, retrotransposons, and the other viral pathogens. HIV-1 has a counterstrategy that includes expressing the Vif protein to abrogate A3 antiviral function. Without Vif, A3 proteins, particularly APOBEC3G (A3G and APOBEC3F (A3F, inhibit HIV-1 replication by blocking reverse transcription and/or integration and hypermutating nascent viral cDNA. The molecular mechanisms of this antiviral activity have been primarily attributed to two biochemical characteristics common to A3 proteins: catalyzing cytidine deamination in single-stranded DNA (ssDNA and a nucleic acid-binding capability that is specific to ssDNA or ssRNA. Recent advances suggest that unique property of A3G dimer/oligomer formations, is also important for the modification of antiviral activity. In this review article we summarize how A3 proteins, particularly A3G, inhibit viral replication based on the biochemical and structural characteristics of the A3G protein.

  6. Prognostic Significance of Apoptosis Related Gene Family bcl-2 in Human Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the prognostic effect of bcl-2 oncogene and its gene family members bax, bcl-x expression in breast cancer patients. Methods: expression of bcl-2, bax proteins in 91 human breast cancer tissue sections were studied by immunohistochemical method. Bcl-x1 mRNA expression in frozen tissues from 16 breast cancer patients were detected using Northern blot method. Results: bcl-2 protein positivity was found in 60/91 (65.9%) patients, and bax positivity 59/91 (64.8%). Bcl-2 and bax expression levels were associated with apoptotic index(AI), histological grade, axillary lymph node metastasis, postoperative local recurrence and metastasis. Bcl-2 expression was related to ER positivity. In univariate analysis for disease free survival (DFS), bcl-2 and bax protein levels, and Al were all found to have prognostic value. The result of Cox's model multivariate analysis showed that bcl-2 protein level was an independent prognostic factor. In 16 frozen breast cancer tissues, 8/16(50%) had higher level of bcl-x1 mRNA, which showed correlation with bcl-2 protein expression and axillary lymph node metastasis. Conclusion: The findings indicate that dysregulated expressions of bcl-2, bax and bcl-x1 apoptosis-related genes, suggestive of serious deregulation of apoptotic process, may contribute to the biologic aggressiveness of breast cancer. Bcl-2 protein is an independent indicator of prognosis in breast cancer patients.

  7. Molecular basis of human transcobalamin II deficiency in an affected family

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Seetharam, S.; Seetharam, B. [Medical College of Wisconsin, Milwaukee, WI (United States)] [and others

    1994-09-01

    Transcobalamin II (TC II) deficiency is an autosomal recessive disease leading to cobalamin (Cbl, Vitamin B{sub 12}) deficiency. Patients with this disorder fail to absorb and transport Cbl across cellular membranes and develop Cbl deficiency, symptoms of which include failure to thrive, megaloblastic anemia, impaired immunodefence and neurological disorders. The molecular basis for this disease is not known. By means of Southern blotting and sequence analysis of TC II, cDNA amplified from fibroblasts of an affected child and his parents, we have identified two mutant TC II alleles. The maternally derived allele had a gross deletion, while the paternally derived allele had a 4-nucleotide ({sup 1023}TCTG) deletion which caused a reading frame shift and generation of a premature termination codon, 146 nucleotides downstream from the deletion. Both these deletions caused markedly reduced levels of TC II mRNA and protein. In addition, these two deletions were unique to this family and were not detected in four other unrelated TC II deficient patients who also exhibited the same (TC II protein/mRNA deficiency) phenotypes. Based on this study we suggest, (1) that the molecular defect in the most common form of human TC II deficiency (lack of immunoprecipitable plasma TC II) is heterogeneous and (2) these mutations cause TC II mRNA and protein deficiency leading to defective plasma transport of Cbl and the development of Cbl deficiency.

  8. Parasitological and Molecular Observations on a Little Family Outbreak of Human Fasciolosis Diagnosed in Italy

    Directory of Open Access Journals (Sweden)

    Simona Gabrielli

    2014-01-01

    Full Text Available In the year 2010, three children who were born in a Romanian cattle farmer family went to Italy to join their mother. One of them was admitted to an Italian pediatric hospital for severe anemia that, when she was in her country, had been treated with blood transfusion. Blood tests and an abdominal ultrasound study triggered the suspicion of biliary parasitosis. The child underwent a cholangiopancreatography that caused the release of parasitic material microscopically identified as Fasciola hepatica. All children and their mother were submitted to coproparasitological analyses, which identified F. hepatica eggs only in the patient and in her twin sister. Parasitic materials recovered and flatworm specimens by us ad hoc obtained from Italian and Romanian cattle were genetically (ITS and COI genes analyzed, and their sequences were compared with those deposited in GenBank. Specimens from children clustered with the Romanian strain examined and showed remarkable genetic differences with flatworm specimens from Italy. Anamnesis, parasite biology, and genetic data strongly suggest that twin sisters became infected in Romania; however, human fasciolosis is an emerging sanitary problem, favored by climate changes and global drivers; therefore, it deserves more attention on behalf of physicians working in both developing and developed countries.

  9. A Novel Cyclodextrin Glycosyltransferase from Alkaliphilic Amphibacillus sp. NPST-10: Purification and Properties

    Directory of Open Access Journals (Sweden)

    Garabed Antranikian

    2012-08-01

    Full Text Available Screening for cyclodextrin glycosyltransferase (CGTase-producing alkaliphilic bacteria from samples collected from hyper saline soda lakes (Wadi Natrun Valley, Egypt, resulted in isolation of potent CGTase producing alkaliphilic bacterium, termed NPST-10. 16S rDNA sequence analysis identified the isolate as Amphibacillus sp. CGTase was purified to homogeneity up to 22.1 fold by starch adsorption and anion exchange chromatography with a yield of 44.7%. The purified enzyme was a monomeric protein with an estimated molecular weight of 92 kDa using SDS-PAGE. Catalytic activities of the enzyme were found to be 88.8 U mg−1 protein, 20.0 U mg−1 protein and 11.0 U mg−1 protein for cyclization, coupling and hydrolytic activities, respectively. The enzyme was stable over a wide pH range from pH 5.0 to 11.0, with a maximal activity at pH 8.0. CGTase exhibited activity over a wide temperature range from 45 °C to 70 °C, with maximal activity at 50 °C and was stable at 30 °C to 55 °C for at least 1 h. Thermal stability of the purified enzyme could be significantly improved in the presence of CaCl2. Km and Vmax values were estimated using soluble starch as a substrate to be 1.7 ± 0.15 mg/mL and 100 ± 2.0 μmol/min, respectively. CGTase was significantly inhibited in the presence of Co2+, Zn2+, Cu2+, Hg2+, Ba2+, Cd2+, and 2-mercaptoethanol. To the best of our knowledge, this is the first report of CGTase production by Amphibacillus sp. The achieved high conversion of insoluble raw corn starch into cyclodextrins (67.2% with production of mainly β-CD (86.4%, makes Amphibacillus sp. NPST-10 desirable for the cyclodextrin production industry.

  10. A Novel Cyclodextrin Glycosyltransferase from Alkaliphilic Amphibacillus sp. NPST-10: Purification and Properties

    Science.gov (United States)

    Ibrahim, Abdelnasser S. S.; Al-Salamah, Ali A.; El-Tayeb, Mohamed A.; El-Badawi, Yahya B.; Antranikian, Garabed

    2012-01-01

    Screening for cyclodextrin glycosyltransferase (CGTase)-producing alkaliphilic bacteria from samples collected from hyper saline soda lakes (Wadi Natrun Valley, Egypt), resulted in isolation of potent CGTase producing alkaliphilic bacterium, termed NPST-10. 16S rDNA sequence analysis identified the isolate as Amphibacillus sp. CGTase was purified to homogeneity up to 22.1 fold by starch adsorption and anion exchange chromatography with a yield of 44.7%. The purified enzyme was a monomeric protein with an estimated molecular weight of 92 kDa using SDS-PAGE. Catalytic activities of the enzyme were found to be 88.8 U mg−1 protein, 20.0 U mg−1 protein and 11.0 U mg−1 protein for cyclization, coupling and hydrolytic activities, respectively. The enzyme was stable over a wide pH range from pH 5.0 to 11.0, with a maximal activity at pH 8.0. CGTase exhibited activity over a wide temperature range from 45 °C to 70 °C, with maximal activity at 50 °C and was stable at 30 °C to 55 °C for at least 1 h. Thermal stability of the purified enzyme could be significantly improved in the presence of CaCl2. Km and Vmax values were estimated using soluble starch as a substrate to be 1.7 ± 0.15 mg/mL and 100 ± 2.0 μmol/min, respectively. CGTase was significantly inhibited in the presence of Co2+, Zn2+, Cu2+, Hg2+, Ba2+, Cd2+, and 2-mercaptoethanol. To the best of our knowledge, this is the first report of CGTase production by Amphibacillus sp. The achieved high conversion of insoluble raw corn starch into cyclodextrins (67.2%) with production of mainly β-CD (86.4%), makes Amphibacillus sp. NPST-10 desirable for the cyclodextrin production industry. PMID:22949876

  11. Monoterpenyl Glycosyltransferases Differentially Contribute to Production of Monoterpenyl Glycosides in Two Aromatic Vitis vinifera Varieties.

    Science.gov (United States)

    Li, Xiang-Yi; Wen, Ya-Qin; Meng, Nan; Qian, Xu; Pan, Qiu-Hong

    2017-01-01

    HIGHLIGHTS A similar trend on accumulation of glycosidically bound monoterpenes was observed in both varietiesTwo VvGT7 alleles mutations occurred at key sites in Muscat blanc à PetitVvGT14 exerted a major role in production of monoterpenyl glycosides in both varieties Terpenoids are the major aroma components and generally exist as both free and glycosidically-bound forms, of which nonvolatile glycosides account for a large fraction in grape berries. Our previous study has indicated that differential accumulation of monoterpenyl glycosides in Vitis vinifera "Muscat blanc à Petit" between two regions is closely correlated to monoterpenyl glucosyltransferase (VvGT14, XM_002285734.2) transcript abundance. However, it has not been determined yet whether this correlation also exists in other Vitis vinifera varieties. This study investigated the evolution of free and glycosidically bound monoterpenes in two Vitis vinifera variety "Muscat blanc à Petit" and "Gewurztraminer" under two vintages, and further assessed the relation between the accumulation of bound monoterpenes and two monoterpenyl glycosyltransferase transcript levels. Results showed that free monoterpenes exhibited three evolution patterns in both varieties during berry development of two vintages, whereas glycosidically bound monoterpenes showed a concentration elevation with berry maturation. The Cis-rose oxide and geraniol were major components contributing to the aroma odors of "Gewürztraminer" grapes while linalool was major aroma contributor to the "Muscat blanc à Petit grain" grapes. The accumulation of glycosidically bound monoterpenes in both varieties was accompanied with the high expression of VvGT7 (XM_002276510.2) and VvGT14. Only one allele of VvGT7 was found in the variety "Gewürztraminer" and no mutation was observed in its enzyme active sites. XB-VvGT7-4 and XB-VvGT7-5 were two alleles of VvGT7 detected in "Muscat blanc à Petit grain." The mutation on its enzyme active site inhibited

  12. Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus

    Energy Technology Data Exchange (ETDEWEB)

    Lopes-Cendes, I. [Montreal General Hospital (Canada); Mulley, J.C. [Alelaide Children`s Hospital (Canada); Andermann, E. [Montreal Neurological Institute and Hospital, Quebec (Canada)] [and others

    1994-09-01

    Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region of mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.

  13. Topology of nucleotide-sugar:dolichyl phosphate glycosyltransferases involved in the dolichol pathway for protein glycosylation in native rat liver microsomes.

    Science.gov (United States)

    Bossuyt, X; Blanckaert, N

    1993-01-01

    Activities of nucleotide-sugar:dolichyl phosphate glycosyltransferases (UDP-N-acetylglucosamine:dolichyl phosphate N-acetylglucosaminyl 1-phosphotransferase, UDP-glucose:dolichyl phosphate glucosyltransferase and GDP-mannose:dolichyl phosphate mannosyltransferase) are not fully expressed in native microsomes and can be enhanced by pretreatment of the microsomes with detergent. To examine whether the latency of dolichyl phosphate glycosyltransferases in native microsomes reflects a lumenal orientation of the catalytic centre, we examined the effect of proteinase treatment of native microsomes on enzymic activity and investigated the relationship between enzymic activity and alteration of the permeability of the microsomal membrane barrier. The enzymic activities catalysing transfer of N-acetylglucosamine and glucose to lipid acceptors were proteinase-sensitive in native sealed microsomes. When various detergents were used to disrupt the membrane barrier, we found no relationship between activity of dolichyl phosphate glycosyltransferases and the latency of mannose-6-phosphatase, which is a marker of the permeability properties of the microsomal membrane. Permeabilization of the endoplasmic reticulum membrane by the pore-forming Staphylococcus aureus alpha-toxin did not affect glycosyltransferase activities. These results do not support the hypothesis that latency of the transferase activities is dependent on the permeability properties of the endoplasmic-reticulum membrane. Collectively our findings can best be explained by postulating that the active centres of the transferases are cytoplasmically oriented, while activation by detergent may be conformation-dependent. PMID:8280060

  14. The remote substrate binding subsite-6 in cyclodextrin-glycosyltransferase controls the transferase activity of the enzyme via an induced-fit mechanism

    NARCIS (Netherlands)

    Leemhuis, H; Uitdehaag, JCM; Rozeboom, HJ; Dijkstra, BW; Dijkhuizen, L; Dijkstra, Bauke W.

    2002-01-01

    Cyclodextrin-glycosyltransferase (CGTase) catalyzes the formation of alpha-, beta-, and gamma-cyclodextrins (cyclic alpha-(1,4)-linked oligosaccharides of 6, 7, or 8 glucose residues, respectively) from starch. Nine substrate binding subsites were observed in an x-ray structure of the CGTase from

  15. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 - Implications for product inhibition and product specificity

    NARCIS (Netherlands)

    van der Veen, Bart A.; Uitdehaag, J C M; Dijkstra, B W; Dijkhuizen, L

    2000-01-01

    Cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) is used for the industrial production of cyclodextrins. Its application, however, is hampered by the limited cyclodextrin product specificity and the strong inhibitory effect of cyclodextrins on CGTase activity. Recent structural studies have i

  16. ASSISTED HUMAN REPRODUCTION EMPLOYED AS A MEANS FOR THE FORMATION OF HOMOAFFECTIVE FAMILIES

    OpenAIRE

    Ferrari, Geala Geslaine; Faculdade Catuaí de Cambé; França, Loreanne Manuella Castro; Universidade Estadual de Londrina; Capelari, Rogério Sato; Faculdade Pitagoras

    2014-01-01

    The 1988 Brazilian Federal Constitution brought about a widening in the concept of the family due to the acknowledgement of new familial entities besides those produced by marriage. Henceforth the family has been defined as a plural institution based on dignity, equality and solidarity, aiming at affection, regardless of sexual choice. After the decision of the Supreme Federal Court in making equivalent the homoaffective stable union to heterosexual marriage, new rights have been guaranteed t...

  17. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  18. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.

    Directory of Open Access Journals (Sweden)

    Daniel Menendez

    2011-03-01

    Full Text Available In recent years the functions that the p53 tumor suppressor plays in human biology have been greatly extended beyond "guardian of the genome." Our studies of promoter response element sequences targeted by the p53 master regulatory transcription factor suggest a general role for this DNA damage and stress-responsive regulator in the control of human Toll-like receptor (TLR gene expression. The TLR gene family mediates innate immunity to a wide variety of pathogenic threats through recognition of conserved pathogen-associated molecular motifs. Using primary human immune cells, we have examined expression of the entire TLR gene family following exposure to anti-cancer agents that induce the p53 network. Expression of all TLR genes, TLR1 to TLR10, in blood lymphocytes and alveolar macrophages from healthy volunteers can be induced by DNA metabolic stressors. However, there is considerable inter-individual variability. Most of the TLR genes respond to p53 via canonical as well as noncanonical promoter binding sites. Importantly, the integration of the TLR gene family into the p53 network is unique to primates, a recurrent theme raised for other gene families in our previous studies. Furthermore, a polymorphism in a TLR8 response element provides the first human example of a p53 target sequence specifically responsible for endogenous gene induction. These findings-demonstrating that the human innate immune system, including downstream induction of cytokines, can be modulated by DNA metabolic stress-have many implications for health and disease, as well as for understanding the evolution of damage and p53 responsive networks.

  19. Ecology of the Family as a Context for Human Development: Research Perspectives.

    Science.gov (United States)

    Bronfenbrenner, Urie

    1986-01-01

    Discusses the influence of external environments on the functioning of families as contexts for child development. Describes studies on the interaction of genetics and environment, on relationships between the family and hospital care, day care, peers, schools, parental employment and support networks, the community, and major transition life…

  20. Hispanic Families. Critical Issues for Policy and Programs in Human Services.

    Science.gov (United States)

    Montiel, Miguel, Ed.

    Historical processes, cultural values and socioeconomic conditions that contribute to the current status of Hispanic families are examined in this book. The eight papers in the collection focus on selected aspects of the diverse roles and impacts of the family in Hispanic communities and explore the implications of these roles and impact for…

  1. The Fundamental Human Right to Marry and to Family Life and their Protection in the Legal Framework of the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    MSc. Albana Metaj-Stojanova

    2017-06-01

    Full Text Available The right to family life is a fundamental human right, recognized by a series of international and European acts, which not only define and ensure its protection, but also emphasize the social importance of the family unit and the institution of marriage. The right to family life has evolved rapidly, since it was first introduced as an international human right by the Universal Declaration of Human Rights (UDHR. The family structure and the concept of family life have changed dramatically over the last few decades, influenced by the everchanging social reality of our time and the decline of the institution of marriage. Aside from the traditional European nuclear family composed of two married persons of opposite sex and their marital children, new forms of family structures have arisen. LGTB families are at the centre of the ongoing debate on re-defining marriage and the concept of family life. The aim of this paper is to analyse the degree of protection accorded to family life and to the right to marry, which has long been recognized as one of the vital personal rights essential to the pursuit of happiness by free men by both, international acts ratified by the Republic of Macedonia and the legal system of the country. The methodology applied is qualitative research and use of the analytical, historical and comparative methods. The paper concludes that in general Republic of Macedonia has a solid legal framework, in compliance with the international law, that protects and promotes the right to family life.

  2. A novel permutation test for case-only analysis identifies epistatic effects on human longevity in the FOXO gene family

    DEFF Research Database (Denmark)

    Tan, Qihua; Sørensen, Mette; Kruse, Torben A;

    2013-01-01

    interaction in the regulation and expression of the FOXO gene family could contribute to the human longevity phenotype. Genotype data was collected from 1088 individuals from the Danish 1905 birth cohort aged over 92/93 years with 12 SNPs in the FOXO1a and 15 SNPs in the FOXO3a genes. Our analysis detected....... This article is protected by copyright. All rights reserved....

  3. Cisplatin resistance by induction of aldo-keto reductase family 1 member C2 in human bladder cancer cells

    OpenAIRE

    Shirato, Akitomi; KIKUGAWA, TADAHIKO; Miura, Noriyoshi; Tanji, Nozomu; Takemori, Nobuaki; Higashiyama, Shigeki; Yokoyama, Masayoshi

    2013-01-01

    Cisplatin is currently the most effective anti-tumor agent available against bladder cancer. To clarify the mechanism underlying cisplatin resistance in bladder cancer, the present study examined the role of the aldo-keto reductase family 1 member C2 (AKR1C2) protein on chemoresistance using a human bladder cancer cell line. The function of AKR1C2 in chemoresistance was studied using the human HT1376 bladder cancer cell line and the cisplatin-resistant HT1376-CisR subline. AKR1C2 was expresse...

  4. Human prion disease with a G114V mutation and epidemiological studies in a Chinese family: a case series

    Directory of Open Access Journals (Sweden)

    Ye Jing

    2008-10-01

    Full Text Available Abstract Introduction Transmissible spongiform encephalopathies are a group of neurodegenerative diseases of humans and animals. Genetic Creutzfeldt-Jakob diseases, in which mutations in the PRNP gene predispose to disease by causing the expression of abnormal PrP protein, include familial Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. Case presentation A 47-year-old Han-Chinese woman was hospitalized with a 2-year history of progressive dementia, tiredness, lethargy and mild difficulty in falling asleep. On neurological examination, there was severe apathy, spontaneous myoclonus of the lower limbs, generalized hyperreflexia and bilateral Babinski signs. A missense mutation (T to G was identified at the position of nt 341 in one PRNP allele, leading to a change from glycine (Gly to valine (Val at codon 114. PK-resistant PrPSc was detected in brain tissues by Western blotting and immunohistochemical assays. Information on pedigree was collected notably by interviews with family members. A further four suspected patients in five consecutive generations of the family have been identified. One of them was hospitalized for progressive memory impairment at the age of 32. On examination, he had impairment of memory, calculation and comprehension, mild ataxia of the limbs, tremor and a left Babinski sign. He is still alive. Conclusion This family with G114V inherited prion disease is the first to be described in China and represents the second family worldwide in which this mutation has been identified. Three other suspected cases have been retrospectively identified in this family, and a further case with suggestive clinical manifestations has been shown by gene sequencing to have the causal mutation.

  5. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs.

    Science.gov (United States)

    Mölleken, Katja; Schmidt, Eleni; Hegemann, Johannes H

    2010-11-01

    Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.

  6. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes.

    Science.gov (United States)

    Heintz-Buschart, Anna; May, Patrick; Laczny, Cédric C; Lebrun, Laura A; Bellora, Camille; Krishna, Abhimanyu; Wampach, Linda; Schneider, Jochen G; Hogan, Angela; de Beaufort, Carine; Wilmes, Paul

    2016-10-10

    The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease.

  7. Comparative case control study of clinical features and human leukocyte antigen susceptibility between familial and nonfamilial vitiligo

    Directory of Open Access Journals (Sweden)

    Misri Rachita

    2009-01-01

    Full Text Available Background: Various studies worldwide suggest that human leukocyte antigen (HLA region may be involved in the genetic susceptibility of vitiligo but little information is available from India. Aim: To find the HLA associated susceptibility to develop vitiligo in Indian patients and to detect role of HLA in familial vitiligo. Methods: This was a case controlled study which included all patients suffering from vitiligo over a period of one and half years. Clinical details were noted and sera collected from these patients were screened for the presence of HLA class I antibodies. The clinical features and HLA antigens were assessed and comparison was made between patients with familial and nonfamilial vitiligo. Results: Out of 114 patients studied, 84 had family history and 30 had no family history. Patients with family history of vitiligo have higher chances of acquiring vitiligo if first degree relatives are affected compared to if second degree relatives are affected. Family history of vitiligo is associated with an early onset of vitiligo (< 20 years. There was no statistically significant difference in the type, stability, and severity of vitiligo in both the groups. HLA results in both the groups revealed increase in HLA A2, A11, A31, A33, B17, B35, B40, and B44 alleles while HLA A9, B13, and B53 alleles were decreased. Family history was associated with HLA A2, A28, A31, and B44 alleles. Early onset of vitiligo (< 20 years was significantly associated with HLA A2, A11, B17, B35, and B44 alleles. The patients with severe affection (> 10% area showed in significant association with HLA A10 and B8. Conclusion: Family history of vitiligo is associated with an early onset of vitiligo. There is no correlation of family history with the type of vitiligo, stability of lesions, and areas involved. Severity is not associated with family history. Apart from other alleles, alleles A2, and B44 play a significant role in vitiligo in the Indian patients.

  8. Crystal Structures of Glycosyltransferase UGT78G1 Reveal the Molecular Basis for Glycosylation and Deglycosylation of (Iso)flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, Luzia V.; Li, Lenong; Pan, Haiyun; Blount, Jack W.; Dixon, Richard A.; Wang, Xiaoqiang; (SRNF)

    2010-09-21

    The glycosyltransferase UGT78G1 from Medicago truncatula catalyzes the glycosylation of various (iso)flavonoids such as the flavonols kaempferol and myricetin, the isoflavone formononetin, and the anthocyanidins pelargonidin and cyanidin. It also catalyzes a reverse reaction to remove the sugar moiety from glycosides. The structures of UGT78G1 bound with uridine diphosphate or with both uridine diphosphate and myricetin were determined at 2.1 {angstrom} resolution, revealing detailed interactions between the enzyme and substrates/products and suggesting a distinct binding mode for the acceptor/product. Comparative structural analysis and mutagenesis identify glutamate 192 as a key amino acid for the reverse reaction. This information provides a basis for enzyme engineering to manipulate substrate specificity and to design effective biocatalysts with glycosylation and/or deglycosylation activity.

  9. Im"plant"ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Kajiura, Hiroyuki; Fujiyama, Kazuhito

    2015-01-01

    Enzymatic activity assay of exogenous glycosyltransferase (GT) and glycosylhydrolase (GH) expressed in plants is an important analysis for determination of the expression of the gene of interest. However, generations and establishment of in planta transgenic lines are time-consuming. Furthermore, the expression levels and the activities of the exogenous GTs and GHs are quite low and weak, the radiolabeled donor substrate had to be used to analyze the enzymatic activity. Here, we describe a protocol for the generation of transgenic plants using suspension-cultured cells and a high sensitive assay for GT, especially β1,4-galactosyltransferase, using microsomal fraction from plant cells and fluorescent-labeled sugar chains as an acceptor substrate. This method enables less-time-consuming preparation of stable transgenic plants, non-radiolabeled, high-throughput detail analysis which includes mass spectrometric analysis and exo-glycosidase digestions.

  10. Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    Directory of Open Access Journals (Sweden)

    Ganguly Amit

    2001-11-01

    Full Text Available Abstract Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3 and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus.

  11. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide

    Directory of Open Access Journals (Sweden)

    Neha eDabral

    2015-06-01

    Full Text Available Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s containing mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.

  12. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida

    Directory of Open Access Journals (Sweden)

    Wei eSun

    2016-03-01

    Full Text Available The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs. In our previous study, a cDNA clone (Fh3GT1 encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4'- and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida.

  13. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide.

    Science.gov (United States)

    Dabral, Neha; Jain-Gupta, Neeta; Seleem, Mohamed N; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2015-01-01

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.

  14. Organization and sequence of the human P gene and identification of a new family of transport proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.T.; Fukai, K.; Spritz, R.A. [Univ. of Wisconsin School of Medicine, Madison, WI (United States)] [and others

    1995-03-20

    We have determined the structure, nucleotide sequence, and polymorphisms of the human P gene. Mutations of the P gene result in type H oculocutaneous albinism (OCA2) in humans and pink-eyed dilution (p) in mice. We find that the human P gene is quite large, consisting of 25 exons spanning 250 to 600 kb in chromosome segment 15q11-q13. The P polypeptide appears to define a novel family of small molecule transporters and may be involved in transport of tyrosine, the precursor to melanin synthesis, within the melanocyte. These results provide the basis for analyses of patients with OCA2 and may point toward eventual pharmacologic treatment of this and related disorders of pigmentation. 40 refs., 5 figs., 3 tabs.

  15. (TG/CAn repeats in human gene families: abundance and selective patterns of distribution according to function and gene length

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2005-06-01

    Full Text Available Abstract Background Creation of human gene families was facilitated significantly by gene duplication and diversification. The (TG/CAn repeats exhibit length variability, display genome-wide distribution, and are abundant in the human genome. Accumulation of evidences for their multiple functional roles including regulation of transcription and stimulation of recombination and splicing elect them as functional elements. Here, we report analysis of the distribution of (TG/CAn repeats in human gene families. Results The 1,317 human gene families were classified into six functional classes. Distribution of (TG/CAn repeats were analyzed both from a global perspective and from a stratified perspective based on their biological properties. The number of genes with repeats decreased with increasing repeat length and several genes (53% had repeats of multiple types in various combinations. Repeats were positively associated with the class of Signaling and communication whereas, they were negatively associated with the classes of Immune and related functions and of Information. The proportion of genes with (TG/CAn repeats in each class was proportional to the corresponding average gene length. The repeat distribution pattern in large gene families generally mirrored the global distribution pattern but differed particularly for Collagen gene family, which was rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high conservation in the Chimpanzee genome. However the majority of these repeats displayed length polymorphism. Conclusion Positive association of repeats with genes of Signaling and communication points to their role in modulation of transcription. Negative association of repeats in genes of Information relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In genes of Immune and related functions negative association of repeats perhaps relates to the smaller gene

  16. Mechanistic insights into a Ca2+-dependent family of α-mannosidases in a human gut symbiont

    Science.gov (United States)

    Zhu, Yanping; Suits, Michael D. L.; Thompson, Andrew J.; Chavan, Sambhaji; Dinev, Zoran; Dumon, Claire; Smith, Nicola; Moremen, Kelley W.; Xiang, Yong; Siriwardena, Aloysius; Williams, Spencer J.; Gilbert, Harry J.; Davies, Gideon J.

    2014-01-01

    Colonic bacteria, exemplified by Bacteroides thetaiotaomicron, play a key role in maintaining human health by harnessing large families of glycoside hydrolases (GHs) to exploit dietary polysaccharides and host glycans as nutrients. Such GH family expansion is exemplified by the 23 family GH92 glycosidases encoded by the B. thetaiotaomicron genome. Here we show that these are α-mannosidases that act via a single displacement mechanism to utilize host N-glycans. The three-dimensional structure of two GH92 mannosidases defines a family of two-domain proteins in which the catalytic center is located at the domain interface, providing acid (glutamate) and base (aspartate) assistance to hydrolysis in a Ca2+-dependent manner. The three-dimensional structures of the GH92s in complex with inhibitors provide insight into the specificity, mechanism and conformational itinerary of catalysis. Ca2+ plays a key catalytic role in helping distort the mannoside away from its ground-state 4C1 chair conformation toward the transition state. PMID:20081828

  17. Application of the Workload Indicators of Staffing Need method to predict nursing human resources at a Family Health Service

    Directory of Open Access Journals (Sweden)

    Daiana Bonfim

    2016-01-01

    Full Text Available Objective verify the application of the Workload Indicators of Staffing Need method in the prediction of nursing human resources at a Family Health service. Method descriptive and quantitative study, undertaken at a Family Health service in the city of São Paulo. The set of sequential operations recommended in the Workload Indicators of Staffing Need method was used: definition of the professional category, type of health service and calculation of Available Work Time; definition of workload components; identification of mean time for workload components; dimensioning of staff needs based on the method, application and interpretation of the data. Result the workload proposed in the Workload Indicators of Staffing Need method to nursing technicians/auxiliary nurses was balanced with the number of professionals available at the Family Health service. The Workload Indicators of Staffing Need index amounted to 0.6 for nurses and 1.0 for nursing technicians/auxiliary nurses. Conclusion the application of the Workload Indicators of Staffing Need method was relevant to identify the components of the nursing professionals' workload. Therefore, it is recommendable as a nursing staffing tool at Family Health services, contributing to the access and universal health coverage.

  18. Definition of the Cattle Killer Cell Ig–like Receptor Gene Family: Comparison with Aurochs and Human Counterparts

    Science.gov (United States)

    Sanderson, Nicholas D.; Norman, Paul J.; Guethlein, Lisbeth A.; Ellis, Shirley A.; Williams, Christina; Breen, Matthew; Park, Steven D. E.; Magee, David A.; Babrzadeh, Farbod; Warry, Andrew; Watson, Mick; Bradley, Daniel G.; MacHugh, David E.; Parham, Peter

    2014-01-01

    Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig–like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle. PMID:25398326

  19. Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts.

    Science.gov (United States)

    Sanderson, Nicholas D; Norman, Paul J; Guethlein, Lisbeth A; Ellis, Shirley A; Williams, Christina; Breen, Matthew; Park, Steven D E; Magee, David A; Babrzadeh, Farbod; Warry, Andrew; Watson, Mick; Bradley, Daniel G; MacHugh, David E; Parham, Peter; Hammond, John A

    2014-12-15

    Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle. Copyright © 2014 The Authors.

  20. Molecular characterization of UGT94F2 and UGT86C4, two glycosyltransferases from Picrorhiza kurrooa: comparative structural insight and evaluation of substrate recognition.

    Directory of Open Access Journals (Sweden)

    Wajid Waheed Bhat

    Full Text Available Uridine diphosphate glycosyltransferases (UGTs are pivotal in the process of glycosylation for decorating natural products with sugars. It is one of the versatile mechanisms in determining chemical complexity and diversity for the production of suite of pharmacologically active plant natural products. Picrorhiza kurrooa is a highly reputed medicinal herb known for its hepato-protective properties which are attributed to a novel group of iridoid glycosides known as picrosides. Although the plant is well studied in terms of its pharmacological properties, very little is known about the biosynthesis of these important secondary metabolites. In this study, we identified two family-1 glucosyltransferases from P. kurrooa. The full length cDNAs of UGT94F4 and UGT86C4 contained open reading frames of 1455 and 1422 nucleotides, encoding polypeptides of 484 and 473 amino acids respectively. UGT94F2 and UGT86C4 showed differential expression pattern in leaves, rhizomes and inflorescence. To elucidate whether the differential expression pattern of the two Picrorhiza UGTs correlate with transcriptional regulation via their promoters and to identify elements that could be recognized by known iridoid-specific transcription factors, upstream regions of each gene were isolated and scanned for putative cis-regulatory elements. Interestingly, the presence of cis-regulatory elements within the promoter regions of each gene correlated positively with their expression profiles in response to different phytohormones. HPLC analysis of picrosides extracted from different tissues and elicitor-treated samples showed a significant increase in picroside levels, corroborating well with the expression profile of UGT94F2 possibly indicating its implication in picroside biosynthesis. Using homology modeling and molecular docking studies, we provide an insight into the donor and acceptor specificities of both UGTs identified in this study. UGT94F2 was predicted to be an iridoid

  1. Complementing or Conflicting Human Rights Conventions? Realising an Inclusive Approach to Families with a Young Person with a Disability and Challenging Behaviour

    Science.gov (United States)

    Muir, Kristy; Goldblatt, Beth

    2011-01-01

    United Nation's conventions exist to help facilitate and protect vulnerable people's human rights: including people with disabilities (Convention on the Rights of Persons with Disabilities, 2006) and children (Convention on the Rights of the Child, 1989). However, for some families where a family member has a disability, there may be inherent…

  2. Glycosyltransferases Involved in Xylan Biosynthesis in Plant Cell Walls%参与植物细胞壁半纤维素木聚糖合成的糖基转移酶

    Institute of Scientific and Technical Information of China (English)

    秦丽霞; 张德静; 李龙; 李学宝; 许文亮

    2011-01-01

    Xylans are the major hemicelluloses in secondary cell walls of dicots and are critical for normal plant growth and development. Xylan-containing lignocellulosic secondary cell walls are the most abundant repository of biomass on earth and are widely used for energy, pulping, paper-making and textiles. However, the pen-tose composition of xylans makes them difficult to be used efficiently. Thus, understanding the detailed mechanism of xylan biosynthesis may lead to new strategies to manipulate the xylan composition in cell walls and to modify their structures. To date the characterization of various xylan-deficient Arabidopsis mutants has identified many genes encoding members of glycosyltransferase family GT43, GT8 and GT47 that are involved in biosynthesis of xylan backbone, reducing end sequence and side chains. In this review, we summarize the recent progress on glycosyltransferases involved in xylan biosynthesis.%木聚糖是双子叶植物次生细胞壁中最主要的半纤维素,合有木聚糖的次生壁是最丰富的植物生物质,广泛应用于能源、制浆、造纸和纺织业中,但其主要组分戊糖对细胞壁生物质利用具有较大影响.揭示木聚糖合成的分子机制,为遗传修饰细胞壁组成,更好地利用细胞壁生物质提供新的策略.近年来对模式植物拟南芥中多个木聚糖合成有缺陷的突变体的分析表明:GT43家族的IRX9、IRX9-L、IRX14、IRX14-L,GT47家族的FRA8、F8H、IRX10、IRX10-L,GT8家族的IRX8、PARVUS、QUA1、GUX1、GUX2等参与了木聚糖主链、还原末端序列和侧链的合成.本文主要对这些研究进展做一综述,并讨论了木聚糖合成的机制及亟待解决的问题,展望了其发展趋势.

  3. Biochemical analysis of the human ENA/VASP-family proteins, MENA, VASP and EVL, in homologous recombination.

    Science.gov (United States)

    Takaku, Motoki; Ueno, Hiroyuki; Kurumizaka, Hitoshi

    2011-06-01

    MENA, VASP and EVL are members of the ENA/VASP family of proteins and are involved in cytoplasmic actin remodeling. Previously, we found that EVL directly interacts with RAD51, an essential protein in the homologous recombinational repair of double-strand breaks (DSBs) and stimulates the RAD51-mediated recombination reactions in vitro. The EVL-knockdown MCF7 cells exhibited a clear reduction in RAD51-foci formation, suggesting that EVL may function in the DSB repair pathway through RAD51-mediated homologous recombination. However, the DSB repair defects were less significant in the EVL-knockdown cells, implying that two EVL paralogues, MENA and VASP, may complement the EVL function in human cells. Therefore, in the present study, we purified human MENA, VASP and EVL as recombinant proteins, and compared their biochemical activities in vitro. We found that all three proteins commonly exhibited the RAD51 binding, DNA binding and DNA-annealing activities. Stimulation of the RAD51-mediated homologous pairing was also observed with all three proteins. In addition, surface plasmon resonance analyses revealed that MENA, VASP and EVL mutually interacted. These results support the ideas that the ENA/VASP-family proteins are functionally redundant in homologous recombination, and that all three may be involved in the DSB repair pathway in humans.

  4. Love, Safety, and Companionship: The Human-Animal Bond and Latino Families

    Science.gov (United States)

    Faver, Catherine A.; Cavazos, Alonzo M., Jr.

    2008-01-01

    A survey found that 69.2% of a sample of 208 Latino university students in south Texas owned companion animals. Dogs were the most commonly owned companion animals, and 92% of dog and cat guardians regarded their companion animals as family members. Over 80% of the dog and cat guardians specified companionship and unconditional love as benefits…

  5. Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells.

    Science.gov (United States)

    Wang, Wang-Xia; Danaher, Robert J; Miller, Craig S; Berger, Joseph R; Nubia, Vega G; Wilfred, Bernard S; Neltner, Janna H; Norris, Christopher M; Nelson, Peter T

    2014-02-01

    The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs), sharing a 5' AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively). In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS). In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs). Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  6. Characterization of RbmD (glycosyltransferase in ribostamycin gene cluster) through neomycin production reconstituted from the engineered Streptomyces fradiae BS1.

    Science.gov (United States)

    Nepal, Keshav Kumar; Oh, Tae-Jin; Subba, Bimala; Yoo, Jin Cheol; Sohng, Jae Kyung

    2009-01-31

    Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.

  7. ABCC4与人类肿瘤%ATP-binding cassette transporter family class C4 and human cancer

    Institute of Scientific and Technical Information of China (English)

    石妮; 赵晓航

    2011-01-01

    ATP-binding cassette transporter family class C4 (ABCC4) is known as a member of the ATP-binding cassette transporter super-family, involved in the active transport of endogenous anions and xenobiotic, which is not normally produced or expected to be present in human, such as antibiotics. Recently it has been found that the copy number variations of Abcc4 gene and overexpression of ABCC4 protein in many kinds of human cancers, which might involved in tumorigenesis, progress and chemotherapeutic response. This review will focus on the ectopic expression of Abcc4 in human cancer and the potential role of ABCC4 in tumorigenesis and progress.%ABCC4(ATP-binding cassette transporter family class C4,ABCC4)是ABC蛋白家族成员,主要参与转运机体物质代谢中产生的有机阴离子和一些异型生物质等生物学功能.近年研究发现某些人类肿瘤存在Abcc4基因的拷贝数变异,主要表现为Abcc4基因拷贝数增加和ABCC4蛋白过表达,这些改变与肿瘤发生发展、耐药,以及治疗疗效具有相关性.该文综述了Abcc4基因的拷贝数变异和异常表达与肿瘤生物学特性的关系,探讨ABCC4在肿瘤发生发展中的作用机制.

  8. Two novel human members of an emerging mammalian gene family related to mono-ADP-ribosylating bacterial toxins

    Energy Technology Data Exchange (ETDEWEB)

    Koch-Nolte, F.; Haag, F.; Braren, R. [Univ. Hospital, Hamburg (Germany)] [and others

    1997-02-01

    Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designated ART3 and ART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32-41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and by in situ hybridization, we have mapped the two genes to human chromosomes 4p14-p15.l and 12q13.2- q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the {open_quotes}tip of an iceberg,{close_quote} i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 35 refs., 4 figs.

  9. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils

    DEFF Research Database (Denmark)

    Volck, B; Price, P A; Johansen, J S;

    1998-01-01

    YKL-40, also called human cartilage glycoprotein-39 (HC gp-39), is a member of family 18 glycosyl hydrolases. YKL-40 is secreted by chondrocytes, synovial cells, and macrophages, and recently it has been reported that YKL-40 has a role as an autoantigen in rheumatoid arthritis (RA). The function...... of YKL-40 is unknown, but the pattern of its expression in normal and disease states suggests that it could function in remodeling or degradation of the extracellular matrix. High levels of YKL-40 are found in synovial fluid from patients with active RA. Neutrophils are abundant in synovial fluid...

  10. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors.

    Science.gov (United States)

    Bjarnadóttir, Thóra K; Fredriksson, Robert; Höglund, Pär J; Gloriam, David E; Lagerström, Malin C; Schiöth, Helgi B

    2004-07-01

    The adhesion G-protein-coupled receptors (GPCRs) (also termed LN-7TM or EGF-7TM receptors) are membrane-bound proteins with long N-termini containing multiple domains. Here, 2 new human adhesion-GPCRs, termed GPR133 and GPR144, have been found by searches done in the human genome databases. Both GPR133 and GPR144 have a GPS domain in their N-termini, while GPR144 also has a pentraxin domain. The phylogenetic analyses of the 2 new human receptors show that they group together without close relationship to the other adhesion-GPCRs. In addition to the human genes, mouse orthologues to those 2 and 15 other mouse orthologues to human were identified (GPR110, GPR111, GPR112, GPR113, GPR114, GPR115, GPR116, GPR123, GPR124, GPR125, GPR126, GPR128, LEC1, LEC2, and LEC3). Currently the total number of human adhesion-GPCRs is 33. The mouse and human sequences show a clear one-to-one relationship, with the exception of EMR2 and EMR3, which do not seem to have orthologues in mouse. EST expression charts for the entire repertoire of adhesion-GPCRs in human and mouse were established. Over 1600 ESTs were found for these receptors, showing widespread distribution in both central and peripheral tissues. The expression patterns are highly variable between different receptors, indicating that they participate in a number of physiological processes. Copyright 2003 Elsevier Inc.

  11. Functional Differentiation of the Glycosyltransferases That Contribute to the Chemical Diversity of Bioactive Flavonol Glycosides in Grapevines (Vitis vinifera)[W][OA

    Science.gov (United States)

    Ono, Eiichiro; Homma, Yu; Horikawa, Manabu; Kunikane-Doi, Satoshi; Imai, Haruna; Takahashi, Seiji; Kawai, Yosuke; Ishiguro, Masaji; Fukui, Yuko; Nakayama, Toru

    2010-01-01

    We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-O-glucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities. PMID:20693356

  12. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.

    Science.gov (United States)

    Bennett, Eric P; Mandel, Ulla; Clausen, Henrik; Gerken, Thomas A; Fritz, Timothy A; Tabak, Lawrence A

    2012-06-01

    Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.

  13. An account of phytochemicals from Plumbago zeylanica (Family: Plumbaginaceae: A natural gift to human being #

    Directory of Open Access Journals (Sweden)

    Navneet Kishore

    2012-01-01

    Full Text Available The semi-climbing sub-shrub Plumbago zeylanica (family: Plumbaginaceae is a widely accepted ethnomedicine around the world including India, Pakistan, Bangladesh, Sri Lanka, and Australia. The plant is credited with potential therapeutic properties including antiatherogenic, cardiotonic, hepatoprotective, and neuroprotective properties. The present review highlights the various medicinal and pharmacological aspects along with recent updates on phytochemical contents of the plant.

  14. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.

    Directory of Open Access Journals (Sweden)

    Jorge Luis Ayala-Lujan

    Full Text Available The serine protease autotransporter from Enterobacteriaceae (SPATE family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system.

  15. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells.

    Science.gov (United States)

    Shatz, Maria; Menendez, Daniel; Resnick, Michael A

    2012-08-15

    The transcription factor p53 regulates genes associated with a wide range of functions, including the Toll-like receptor (TLR) set of innate immunity genes, suggesting that p53 also modulates the human immune response. The TLR family comprises membrane glycoproteins that recognize pathogen-associated molecular patterns (PAMP) and mediate innate immune responses, and TLR agonists are being used as adjuvants in cancer treatments. Here, we show that doxorubicin, 5-fluorouracil, and UV and ionizing radiation elicit changes in TLR expression that are cell line- and damage-specific. Specifically, treatment-induced expression changes led to increased downstream cytokine expression in response to ligand stimulation. The effect of DNA stressors on TLR expression was mainly mediated by p53, and several p53 cancer-associated mutants dramatically altered the pattern of TLR gene expression. In all cell lines tested, TLR3 induction was p53-dependent, whereas induction of TLR9, the most stress-responsive family member, was less dependent on status of p53. In addition, each of the 10 members of the innate immune TLR gene family tested was differentially inducible. Our findings therefore show that the matrix of p53 status, chromosome stress, and responsiveness of individual TLRs should be considered in TLR-based cancer therapies.

  16. Opa+ Neisseria gonorrhoeae exhibits reduced survival in human neutrophils via Src family kinase-mediated bacterial trafficking into mature phagolysosomes.

    Science.gov (United States)

    Johnson, M Brittany; Ball, Louise M; Daily, Kylene P; Martin, Jennifer N; Columbus, Linda; Criss, Alison K

    2015-05-01

    During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity-associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa- and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine-treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non-oxidative components, particularly neutrophil proteases and the bactericidal/permeability-increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa- Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils' full antimicrobial arsenal.

  17. A Familial Cluster of Human Brucellosis Attributable to Contact with Imported Infected Goats in Shuyang, Jiangsu Province, China, 2013.

    Science.gov (United States)

    Tan, Zhongming; Huang, Yong; Liu, Genyan; Zhou, Weizhong; Xu, Xilou; Zhang, Zibing; Shen, Qing; Tang, Fenyang; Zhu, Yefei

    2015-10-01

    Brucellosis remains a serious public health issue in developing countries, including China. On August 8, 2013, four cases of brucellosis from one extended family were reported at Shuyang County, Jiangsu Province, China. Active case finding was performed to identify the source and the risk factors of the infection and to prevent additional cases. Multiple-locus variable number tandem repeat analysis (MLVA) was used for molecular subtyping analysis. Six people from two extended families met the case definition for brucellosis infection; four were blood culture positive for Brucella melitensis biotype 3. Four additional family members were found seropositive by using a serological test. Isolates from the four patients were indistinguishable by MLVA profiling, displaying a unique type for Jiangsu Province. Field epidemiological data combined with MLVA genotyping supported a common source of the isolates from the different patients. We recommend stronger reinforcement measures for animal quarantine practices, enhanced cooperation with veterinary service organizations, and implementation of measures that strengthen public education on brucellosis to prevent further human outbreaks in Jiangsu Province.

  18. Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius.

    Science.gov (United States)

    Lu, Chao; Zhao, Shoujing; Wei, Guanning; Zhao, Huijuan; Qu, Qingling

    2017-02-01

    Panax ginseng (Asian ginseng) and Panax quinquefolius (American ginseng) have been used as medicinal and functional herbal remedies worldwide. Different properties of P. ginseng and P. quinquefolius were confirmed not only in clinical findings, but also at cellular and molecular levels. The major pharmacological ingredients of P. ginseng and P. quinquefolius are the triterpene saponins known as ginsenosides. The P. ginseng roots contain a higher ratio of ginsenoside Rg1:Rb1 than that in P. quinquefolius. In ginseng plants, various ginsenosides are synthesized via three key reactions: cyclization, hydroxylation and glycosylation. To date, several genes including dammarenediol synthase (DS), protopanaxadiol synthase and protopanaxatriol synthase have been isolated in P. ginseng and P. quinquefolius. Although some glycosyltransferase genes have been isolated and identified association with ginsenoside synthesis in P. ginseng, little is known about the glycosylation mechanism in P. quinquefolius. In this paper, we cloned and identified a UDP-glycosyltransferase gene named Pq3-O-UGT2 from P. quinquefolius (GenBank accession No. KR106207). In vitro enzymatic activity experiments biochemically confirmed that Pq3-O-UGT2 catalyzed the glycosylation of Rh2 and F2 to produce Rg3 and Rd, and the chemical structure of the products were confirmed susing high performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS). High sequence similarity between Pq3-O-UGT2 and PgUGT94Q2 indicated a close evolutionary relationship between P. ginseng and P. quinquefolius. Moreover, we established both P. ginseng and P. quinquefolius RNAi transgenic roots lines. RNA interference of Pq3-O-UGT2 and PgUGT94Q2 led to reduce levels of ginsenoside Rd, protopanaxadiol-type and total ginsenosides. Expression of key genes including protopanaxadiol and protopanaxatriol synthases was up-regulated in RNAi lines, while expression of dammarenediol synthase gene

  19. Arabinogalactan glycosyltransferases target to a unique subcellular compartment that may function in unconventional secretion in plants

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter; Dilokpimol, Adiphol; Mouille, Grégory

    2014-01-01

    (At1g32930)] was found in the small compartments, of which, 45 and 40% of AtGALT29A [Arabidopsis thaliana galactosyltransferase from family 29 (At1g08280)] and AtGlcAT14A [Arabidopsis thaliana glucuronosyltransferase from family 14 (At5g39990)] colocalized with AtGALT31A, respectively; in contrast, N...... colocalized with neither SYP61 (syntaxin of plants 61), a marker for trans-Golgi network (TGN), nor FM4-64-stained endosomes. However, 41% colocalized with EXO70E2 (Arabidopsis thaliana exocyst protein Exo70 homolog 2), a marker for exocyst-positive organelles, and least affected by Brefeldin A and Wortmannin...

  20. Expression and regulation of Schlafen (SLFN family members in primary human monocytes, monocyte-derived dendritic cells and T cells

    Directory of Open Access Journals (Sweden)

    Alexander Puck

    2015-01-01

    Full Text Available Schlafen (SLFN/Slfn family members have been investigated for their involvement in fundamental cellular processes including growth regulation, differentiation and control of viral replication. However, most research has been focused on the characterization of Slfns within the murine system or in human cell lines. Since little is known about SLFNs in primary human immune cells, we set out to analyze the expression and regulation of the six human SLFN genes in monocytes, monocyte-derived dendritic cells (moDCs and T cells. Comparison of SLFN gene expression across these three cell types showed high mRNA expression of SLFN11 in monocytes and moDCs and high SLFN5 expression in T cells, indicating functional importance within these cell types. Differentiation of monocytes to moDCs leads to the gradual upregulation of SLFN12L and SLFN13 while SLFN12 levels were decreased by differentiation stimuli. Stimulation of moDCs via human rhinovirus, lipopolysaccharide, or IFN-α lead to strong upregulation of SLFN gene expression, while peptidoglycan poorly stimulated regulation of both SLFNs and the classical interferon-stimulated gene MxA. T cell activation was found to downregulate the expression of SLFN5, SLFN12 and SLFN12L, which was reversible upon addition of exogenous IFN-α. In conclusion, we demonstrate, that SLFN gene upregulation is mainly dependent on autocrine type I interferon signaling in primary human immune cells. Rapid decrease of SLFN expression levels following T cell receptor stimulation indicates a role of SLFNs in the regulation of human T cell quiescence.

  1. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  2. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites.

    Science.gov (United States)

    Moreira, Cristina K; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites.

  3. Two Glycosyltransferase Genes of Haemophilus parasuis SC096 Implicated in Lipo-oligosaccharide Biosynthesis, Serum Resistance, Adherence and Invasion

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2016-09-01

    Full Text Available Haemophilus parasuis is a common opportunistic pathogen known for its ability to colonize healthy piglets and causes Glässer’s disease. The lipooligosaccharide (LOS of H. parasuis is a potential virulence-associated factor. In this study, two putative glycosyltransferases that might be involved in LOS synthesis in H. parasuis SC096 were identified (lgtB and lex-1. Mutants were constructed to investigate the roles of the lgtB and lex-1 genes. The LOS from the ΔlgtB or Δlex-1 mutant showed truncated structure on silver-stained SDS-PAGE gel compared to the wild-type strain. The ΔlgtB and Δlex-1 mutants were significantly more sensitive to 50% porcine serum, displaying 15.0% and 54.46% survival rates, respectively. Complementation of the lex-1 mutant restored the serum-resistant phenotype. Additionally, the ΔlgtB and Δlex-1 strains showed impaired ability to adhere to and invade porcine kidney epithelial cells (PK-15. The above results suggested that the lgtB and lex-1 genes of the H. parasuis SC096 strain participated in LOS synthesis and were involved in serum resistance, adhesion and invasion.

  4. Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Claudio Muheim

    2016-01-01

    Full Text Available WaaG is a glycosyltransferase that is involved in the biosynthesis of lipopolysaccharide in Gram-negative bacteria. Inhibitors of WaaG are highly sought after as they could be used to inhibit the biosynthesis of the core region of lipopolysaccharide, which would improve the uptake of antibiotics. Herein, we establish an activity assay for WaaG using 14C-labeled UDP-glucose and LPS purified from a ∆waaG strain of Escherichia coli. We noted that addition of the lipids phosphatidylglycerol (PG and cardiolipin (CL, as well as the detergent 3-[(3-cholamidopropyldimethylammonio]-1-propanesulfonate (CHAPS increased activity. We then use the assay to determine if three molecular scaffolds, which bind to WaaG, could inhibit its activity in vitro. We show that 4-(2-amino-1,3-thiazol-4-ylphenol inhibits WaaG (IC50 1.0 mM, but that the other scaffolds do not. This study represents an important step towards an inhibitor of WaaG by fragment-based lead discovery.

  5. [Improving maltodextrin specificity by site-saturation engineering of subsite +1 in cyclodextrin glycosyltransferase from Paenibacillus macerans].

    Science.gov (United States)

    Xu, Qiaoyan; Han, Ruizhi; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    By engineering the subsite +1 of cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans, we improved its maltodextrin specificity for 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) synthesis. Specifically, we conducted site-saturation mutagenesis on Leu194, Ala230, and His233 in subsite +1 separately and gained 3 mutants L194N (leucine --> asparagine), A230D (alanine --> aspartic acid), and H233E (histidine --> glutamic acid) produced higher AA-2G yield than the wild-type and the other mutant CGTases. Therefore, the 3 mutants L194N, A230D, and H233E were further used to construct the double and triple mutations. Among the 7 obtained combinational mutants, the triple mutant L194N/A230D/H233E produced the highest AA-2G titer of 1.95 g/L, which was increased by 62.5% compared with that produced by the wild-type CGTase. Then, we modeled the reaction kinetics of all the mutants and found a substrate inhibition by high titer of L-AA for the mutants. The optimal temperature, pH, and reaction time of all the mutants were also determined. The structure modeling indicated that the enhanced maltodextrin specificity may be related with the changes of hydrogen bonding interactions between the side chain of residue at the three positions (194, 230 and 233) and the substrate sugars.

  6. Downregulation of dystroglycan glycosyltransferases LARGE2 and ISPD associate with increased mortality in clear cell renal cell carcinoma.

    Science.gov (United States)

    Miller, Michael R; Ma, Deqin; Schappet, James; Breheny, Patrick; Mott, Sarah L; Bannick, Nadine; Askeland, Eric; Brown, James; Henry, Michael D

    2015-07-30

    Dystroglycan (DG) is a cell-surface laminin receptor that links the cytoskeleton to the extracellular matrix in a variety of epithelial tissues. Its function as a matrix receptor requires extensive glycosylation of its extracellular subunit αDG, which involves at least 13 distinct genes. Prior work has shown loss of αDG glycosylation in an assortment of carcinomas, including clear cell renal cell carcinoma (ccRCC) though the cause (s) and functional consequences of this loss are still unclear. Using The Cancer Genome Atlas (TCGA) database, we analyzed the DG glycosylation pathway to identify changes in mRNA expression and correlation with clinical outcomes. We validated our findings with a cohort of 65 patients treated with radical nephrectomy by analyzing DG glycosylation via immunohistochemistry and gene expression via qRT-PCR. Analysis of TCGA database revealed frequent dysregulation of a subset of DG glycosyltransferases. Most notably, there was a frequent, significant downregulation of GYLTL1B (LARGE2) and ISPD. DG glycosylation is frequently impaired in ccRCC patient samples and most strongly associates with downregulation of GYLTL1B. Reduced levels of GYLTL1B and ISPD mRNA associated with increased patient mortality and are the likely cause of αDG hypoglycosylation in ccRCC.

  7. Cloning and expression of cyclodextrin glycosyltransferase gene from Paenibacillus sp. T16 isolated from hot spring soil in northern Thailand.

    Science.gov (United States)

    Charoensakdi, Ratiya; Murakami, Shuichiro; Aoki, Kenji; Rimphanitchayakit, Vichien; Limpaseni, Tipaporn

    2007-05-31

    Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower K(m) for coupling reaction using cellobiose and cyclodextrins as substrates.

  8. Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance.

    Directory of Open Access Journals (Sweden)

    Solmaz Sobhanifar

    2016-12-01

    Full Text Available In recent years, there has been a growing interest in teichoic acids as targets for antibiotic drug design against major clinical pathogens such as Staphylococcus aureus, reflecting the disquieting increase in antibiotic resistance and the historical success of bacterial cell wall components as drug targets. It is now becoming clear that β-O-GlcNAcylation of S. aureus wall teichoic acids plays a major role in both pathogenicity and antibiotic resistance. Here we present the first structure of S. aureus TarS, the enzyme responsible for polyribitol phosphate β-O-GlcNAcylation. Using a divide and conquer strategy, we obtained crystal structures of various TarS constructs, mapping high resolution overlapping N-terminal and C-terminal structures onto a lower resolution full-length structure that resulted in a high resolution view of the entire enzyme. Using the N-terminal structure that encapsulates the catalytic domain, we furthermore captured several snapshots of TarS, including the native structure, the UDP-GlcNAc donor complex, and the UDP product complex. These structures along with structure-guided mutants allowed us to elucidate various catalytic features and identify key active site residues and catalytic loop rearrangements that provide a valuable platform for anti-MRSA drug design. We furthermore observed for the first time the presence of a trimerization domain composed of stacked carbohydrate binding modules, commonly observed in starch active enzymes, but adapted here for a poly sugar-phosphate glycosyltransferase.

  9. Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production

    Directory of Open Access Journals (Sweden)

    Feiyan Xue

    2016-01-01

    Full Text Available Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold and an equivalently high activity as demonstrated by similar kinetic parameters (KM and Vmax, compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14.

  10. Expression of Codon-Optimized Plant Glycosyltransferase UGT72B14 in Escherichia coli Enhances Salidroside Production.

    Science.gov (United States)

    Xue, Feiyan; Guo, Huili; Hu, Yingying; Liu, Ran; Huang, Lina; Lv, Heshu; Liu, Chunmei; Yang, Mingfeng; Ma, Lanqing

    2016-01-01

    Salidroside, a plant secondary metabolite in Rhodiola, has been demonstrated to have several adaptogenic properties as a medicinal herb. Due to the limitation of plant source, microbial production of salidroside by expression of plant uridine diphosphate glycosyltransferase (UGT) is promising. However, glycoside production usually remains hampered by poor expression of plant UGTs in microorganisms. Herein, we achieved salidroside production by expression of Rhodiola UGT72B14 in Escherichia coli (E. coli) and codon optimization was accordingly applied. UGT72B14 expression was optimized by changing 278 nucleotides and decreasing the G+C content to 51.05% without altering the amino acid sequence. The effect of codon optimization on UGT72B14 catalysis for salidroside production was assessed both in vitro and in vivo. In vitro, salidroside production by codon-optimized UGT72B14 is enhanced because of a significantly improved protein yield (increased by 4.8-fold) and an equivalently high activity as demonstrated by similar kinetic parameters (K M and V max), compared to that by wild-type protein. In vivo, both batch and fed-batch cultivation using the codon-optimized gene resulted in a significant increase in salidroside production, which was up to 6.7 mg/L increasing 3.2-fold over the wild-type UGT72B14.

  11. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase.

    Science.gov (United States)

    Schmölzer, Katharina; Lemmerer, Martin; Gutmann, Alexander; Nidetzky, Bernd

    2017-04-01

    Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/gcell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 gproduct /L, 86% yield (based on UDP), and a total turnover number of 103 gUDP-glc /gcell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera

    Science.gov (United States)

    Singh, Gaurav; Tiwari, Manish; Singh, Surendra Pratap; Singh, Surendra; Trivedi, Prabodh Kumar; Misra, Pratibha

    2016-01-01

    Sterol glycosyltransferases (SGTs) catalyse transfer of glycon moiety to sterols and their related compounds to produce diverse glyco-conjugates or steryl glycosides with different biological and pharmacological activities. Functional studies of SGTs from Withania somnifera indicated their role in abiotic stresses but details about role under biotic stress are still unknown. Here, we have elucidated the function of SGTs by silencing SGTL1, SGTL2 and SGTL4 in Withania somnifera. Down-regulation of SGTs by artificial miRNAs led to the enhanced accumulation of withanolide A, withaferin A, sitosterol, stigmasterol and decreased content of withanoside V in Virus Induced Gene Silencing (VIGS) lines. This was further correlated with increased expression of WsHMGR, WsDXR, WsFPPS, WsCYP710A1, WsSTE1 and WsDWF5 genes, involved in withanolide biosynthesis. These variations of withanolide concentrations in silenced lines resulted in pathogen susceptibility as compared to control plants. The infection of Alternaria alternata causes increased salicylic acid, callose deposition, superoxide dismutase and H2O2 in aMIR-VIGS lines. The expression of biotic stress related genes, namely, WsPR1, WsDFS, WsSPI and WsPR10 were also enhanced in aMIR-VIGS lines in time dependent manner. Taken together, our observations revealed that a positive feedback regulation of withanolide biosynthesis occurred by silencing of SGTLs which resulted in reduced biotic tolerance. PMID:27146059

  13. "Do positive affectivity and boundary preferences matter for work-family enrichment? A study of human service workers": Correction to McNall, Scott, and Nicklin (2015).

    Science.gov (United States)

    2016-07-01

    Reports an error in "Do positive affectivity and boundary preferences matter for work-family enrichment? A study of human service workers" by Laurel A. McNall, Lindsay D. Scott and Jessica M. Nicklin (Journal of Occupational Health Psychology, 2015[Jan], Vol 20[1], 93-104). In the article there was an error in Figure 1. The lower left bubble should read "Boundary Preference Toward Segmentation" instead of "Boundary Preference Toward Integration." (The following abstract of the original article appeared in record 2014-44477-001.) More individuals than ever are managing work and family roles, but relatively little research has been done exploring whether boundary preferences help individuals benefit from multiple role memberships. Drawing on Greenhaus and Powell's (2006) work-family enrichment theory, along with Boundary Theory (Ashforth, Kreiner, & Fugate, 2000) and Conservation of Resources Theory (Hobfoll, 2002), we explore the impact of personal characteristics as enablers of work-family enrichment, and in turn, work outcomes relevant to human service workers: turnover intentions and emotional exhaustion. In a 2-wave study of 161 human service employees, we found that individuals high in positive affectivity were more likely to experience both work-to-family and family to-work enrichment, whereas those with preferences toward integration were more likely to experience work-to-family enrichment (but not family to-work enrichment). In turn, work-to-family enrichment (but not family to-work enrichment) was related to lower turnover intentions and emotional exhaustion. Enrichment served as a mediating mechanism for only some of the hypothesized relationships. Implications for theory and practice are discussed. (PsycINFO Database Record

  14. IMMUNOAFFINITY PURIFICATION AND RECONSTITUTION OF THE HUMAN BILIRUBIN PHENOL UDP-GLUCURONOSYLTRANSFERASE FAMILY

    NARCIS (Netherlands)

    SEPPEN, J; JANSEN, PLM; ELFERINK, RPJO

    1995-01-01

    When membrane proteins are solubilized and subjected to purification procedures, the loss of lipids surrounding the protein often results in irreversible inactivation. We describe a procedure for the immunoaffinity purification of the membrane protein UDP-glucuronosyltransferase from human liver. Th

  15. Familial hypercholesterolaemic downsized pig with human-like coronary atherosclerosis: a model for preclinical studies

    DEFF Research Database (Denmark)

    Thim, Troels; Hagensen, Mette; Drouet, L.

    2010-01-01

    site-specifically by inflicting coronary artery balloon injury. Both spontaneously developed and balloon accelerated coronary plaques mirrored pertinent human plaque features, including a large necrotic core covered by a thin and inflamed fibrous cap as seen in the most common type of thrombosis...

  16. The Plasmodium falciparum blood stages acquire factor H family proteins to evade destruction by human complement.

    Science.gov (United States)

    Rosa, Thiago F A; Flammersfeld, Ansgar; Ngwa, Che J; Kiesow, Meike; Fischer, Rainer; Zipfel, Peter F; Skerka, Christine; Pradel, Gabriele

    2016-04-01

    The acquisition of regulatory proteins is a means of blood-borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL-1 and CFHR-1 to their surface, and FH binding is trypsin-resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH-mediated protection via anti-FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.

  17. Familial occurrence of subacute thyroiditis associated with human leukocyte antigen-B35

    NARCIS (Netherlands)

    Kramer, AB; Roozendaal, C; Dullaart, RPF

    2004-01-01

    Subacute thyroiditis (SAT) is a spontaneously remitting inflammatory disorder of the thyroid, associated with human leukocyte antigen (HLA)-B35, and may be virally induced in genetically predisposed individuals. A 57-year-old Caucasian man presented with symptoms of hyperthyroidism as well as enlarg

  18. Does social capital affect investment in human capital? Family ties and schooling decisions

    NARCIS (Netherlands)

    Di Falco, Salvatore; Bulte, E.H.

    2015-01-01

    We analyse whether traditional sharing norms within kinship networks affect education decisions of poor black households in KwaZulu-Natal. Theory predicts that the size of the kinship network ambiguously impacts on the incentive to invest in human capital (due to opposing ‘empathy’ and ‘free-rider’

  19. Does social capital affect investment in human capital? Family ties and schooling decisions

    NARCIS (Netherlands)

    Falco, Di Salvatore; Bulte, Erwin

    2015-01-01

    We analyse whether traditional sharing norms within kinship networks affect education decisions of poor black households in KwaZulu-Natal. Theory predicts that the size of the kinship network ambiguously impacts on the incentive to invest in human capital (due to opposing ‘empathy’ and ‘free-ride

  20. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells.

    Science.gov (United States)

    Wyles, Saranya P; Li, Xing; Hrstka, Sybil C; Reyes, Santiago; Oommen, Saji; Beraldi, Rosanna; Edwards, Jessica; Terzic, Andre; Olson, Timothy M; Nelson, Timothy J

    2016-01-15

    Dilated cardiomyopathy (DCM) is a leading cause of heart failure. In families with autosomal-dominant DCM, heterozygous missense mutations were identified in RNA-binding motif protein 20 (RBM20), a spliceosome protein induced during early cardiogenesis. Dermal fibroblasts from two unrelated patients harboring an RBM20 R636S missense mutation were reprogrammed to human induced pluripotent stem cells (hiPSCs) and differentiated to beating cardiomyocytes (CMs). Stage-specific transcriptome profiling identified differentially expressed genes ranging from angiogenesis regulator to embryonic heart transcription factor as initial molecular aberrations. Furthermore, gene expression analysis for RBM20-dependent splice variants affected sarcomeric (TTN and LDB3) and calcium (Ca(2+)) handling (CAMK2D and CACNA1C) genes. Indeed, RBM20 hiPSC-CMs exhibited increased sarcomeric length (RBM20: 1.747 ± 0.238 µm versus control: 1.404 ± 0.194 µm; P < 0.0001) and decreased sarcomeric width (RBM20: 0.791 ± 0.609 µm versus control: 0.943 ± 0.166 µm; P < 0.0001). Additionally, CMs showed defective Ca(2+) handling machinery with prolonged Ca(2+) levels in the cytoplasm as measured by greater area under the curve (RBM20: 814.718 ± 94.343 AU versus control: 206.941 ± 22.417 AU; P < 0.05) and higher Ca(2+) spike amplitude (RBM20: 35.281 ± 4.060 AU versus control:18.484 ± 1.518 AU; P < 0.05). β-adrenergic stress induced with 10 µm norepinephrine demonstrated increased susceptibility to sarcomeric disorganization (RBM20: 86 ± 10.5% versus control: 40 ± 7%; P < 0.001). This study features the first hiPSC model of RBM20 familial DCM. By monitoring human cardiac disease according to stage-specific cardiogenesis, this study demonstrates RBM20 familial DCM is a developmental disorder initiated by molecular defects that pattern maladaptive cellular mechanisms of pathological cardiac remodeling. Indeed, hiPSC-CMs recapitulate RBM20 familial DCM phenotype in a dish and establish a tool

  1. Evolutionary divergence and functions of the human interleukin (IL gene family

    Directory of Open Access Journals (Sweden)

    Brocker Chad

    2010-10-01

    Full Text Available Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term 'interleukin' (IL has been used to describe a group of cytokines with complex immunomodulatory functions -- including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host's immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. Determining evolutionary relationships between ILs therefore can be confusing. More recently, crystallographic data and the identification of common structural motifs have led to a more accurate classification system. To date, the known ILs can be divided into four major groups based on distinguishing structural features. These groups include the genes encoding the IL1-like cytokines, the class I helical cytokines (IL4-like, γ-chain and IL6/12-like, the class II helical cytokines (IL10-like and IL28-like and the IL17-like cytokines. In addition, there are a number of ILs that do not fit into any of the above groups, due either to their unique structural features or lack of structural information. This suggests that the gene family organisation may be subject to further change in the near future.

  2. Evolutionary divergence and functions of the human interleukin (IL) gene family

    Science.gov (United States)

    2010-01-01

    Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term 'interleukin' (IL) has been used to describe a group of cytokines with complex immunomodulatory functions -- including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host's immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. Determining evolutionary relationships between ILs therefore can be confusing. More recently, crystallographic data and the identification of common structural motifs have led to a more accurate classification system. To date, the known ILs can be divided into four major groups based on distinguishing structural features. These groups include the genes encoding the IL1-like cytokines, the class I helical cytokines (IL4-like, γ-chain and IL6/12-like), the class II helical cytokines (IL10-like and IL28-like) and the IL17-like cytokines. In addition, there are a number of ILs that do not fit into any of the above groups, due either to their unique structural features or lack of structural information. This suggests that the gene family organisation may be subject to further change in the near future. PMID:21106488

  3. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria

    Science.gov (United States)

    Fry, Andrew E.; Griffiths, Michael J.; Auburn, Sarah; Diakite, Mahamadou; Forton, Julian T.; Green, Angela; Richardson, Anna; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Peshu, Norbert; Williams, Thomas N.; Marsh, Kevin; Molyneux, Malcolm E.; Taylor, Terrie E.; Rockett, Kirk A.; Kwiatkowski, Dominic P.

    2009-01-01

    There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across 3 African populations. Using population- and family-based tests we demonstrated that alleles producing functional ABO enzymes are associated with greater risk of severe malaria phenotypes (particularly malarial anemia) in comparison with the frameshift deletion underlying blood group O: Case-control allelic odds ratio (OR) 1.2, 95% confidence interval (CI) 1.09 – 1.32, P=0.0003; Family-studies allelic OR 1.19, CI 1.08 – 1.32, P=0.001; Pooled across all studies allelic OR 1.18, CI 1.11 - 1.26, P=2×10−7. Analyzing the family trios we found suggestive evidence of a parent-of-origin effect at the ABO locus. Non-O haplotypes inherited from mothers, but not fathers, are significantly associated with severe malaria (likelihood ratio test of Weinberg, P=0.046). Finally we used HapMap data to demonstrate a region of low FST (−0.001) between the three main HapMap population groups across the ABO locus, an outlier in the empirical distribution of FST across chromosome 9 (~99.5 – 99.9th centile). This low FST region may be a signal of longstanding balancing selection at the ABO locus, caused by multiple infectious pathogens including P. falciparum. PMID:18003641

  4. hSmad5 gene, a human hSmad family member: its full length cDNA, genomic structure, promoter region and mutation analysis in human tumors.

    Science.gov (United States)

    Gemma, A; Hagiwara, K; Vincent, F; Ke, Y; Hancock, A R; Nagashima, M; Bennett, W P; Harris, C C

    1998-02-19

    hSmad (mothers against decapentaplegic)-related proteins are important messengers within the Transforming Growth Factor-beta1 (TGF-beta1) superfamily signal transduction pathways. To further characterize a member of this family, we obtained a full length cDNA of the human hSmad5 (hSmad5) gene by rapid amplification of cDNA ends (RACE) and then determined the genomic structure of the gene. There are eight exons and two alternative transcripts; the shorter transcript lacks exon 2. We identified the hSmad5 promoter region from a human genomic YAC clone by obtaining the nucleotide sequence extending 1235 base pairs upstream of the 5' end of the cDNA. We found a CpG island consistent with a promoter region, and we demonstrated promoter activity in a 1232 bp fragment located upstream of the transcription initiation site. To investigate the frequency of somatic hSmad5 mutations in human cancers, we designed intron-based primers to examine coding regions by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. Neither homozygous deletions or point mutations were found in 40 primary gastric tumors and 51 cell lines derived from diverse types of human cancer including 20 cell lines resistant to the growth inhibitory effects of TGF-beta1. These results suggest that the hSmad5 gene is not commonly mutated and that other genetic alterations mediate the loss of TGF-beta1 responsiveness in human cancers.

  5. Herpesviruses dUTPases: A New Family of Pathogen-Associated Molecular Pattern (PAMP Proteins with Implications for Human Disease

    Directory of Open Access Journals (Sweden)

    Marshall V. Williams

    2016-12-01

    Full Text Available The human herpesviruses are ubiquitous viruses and have a prevalence of over 90% in the adult population. Following a primary infection they establish latency and can be reactivated over a person’s lifetime. While it is well accepted that human herpesviruses are implicated in numerous diseases ranging from dermatological and autoimmune disease to cancer, the role of lytic proteins in the pathophysiology of herpesvirus-associated diseases remains largely understudies. Only recently have we begun to appreciate the importance of lytic proteins produced during reactivation of the virus, in particular the deoxyuridine triphosphate nucleotidohydrolases (dUTPase, as key modulators of the host innate and adaptive immune responses. In this review, we provide evidence from animal and human studies of the Epstein–Barr virus as a prototype, supporting the notion that herpesviruses dUTPases are a family of proteins with unique immunoregulatory functions that can alter the inflammatory microenvironment and thus exacerbate the immune pathology of herpesvirus-related diseases including myalgic encephalomyelitis/chronic fatigue syndrome, autoimmune diseases, and cancer.

  6. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Israel S. [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Ständker, Ludger [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Hannover Medical School, Center of Pharmacology, 30625 Hannover (Germany); Forssmann, Wolf-Georg [Hannover Medical School, Center of Pharmacology, 30625 Hannover (Germany); Giménez-Gallego, Guillermo; Romero, Antonio, E-mail: romero@cib.csic.es [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.

  7. A collection of glycosyltransferases from rice (Oryza sativa) exposed to atrazine.

    Science.gov (United States)

    Lu, Yi Chen; Yang, Sheng Ning; Zhang, Jing Jing; Zhang, Jia Jun; Tan, Li Rong; Yang, Hong

    2013-12-01

    The rice (Oryza sativa) GTs belong to a super family possibly with hundreds of members. However, which GTs are involved in plant response to toxic chemicals is unknown. Here, we demonstrated 59 novel GT genes screened from our recent genome-wide sequencing datasets of rice crops exposed to atrazine (a herbicide persistent in ecosystems). Analysis of GT genes showed that most of the GTs contain functional domains typically found in proteins transferring glycosyl moieties to their target compounds. A phylogenetic analysis revealed that many GT genes from different families have diverse cis-elements necessary for response to biotic and environmental stresses. Experimental validation for the GTs was undertaken through a microarray, and 36 GT genes were significantly detected with an expression pattern similar to that from deep-sequencing datasets. Furthermore, 12 GT genes were randomly selected and confirmed by quantitative real-time RT-PCR. Finally, the special activity of total GTs was determined in rice roots and shoots, with an increased activity under the atrazine exposure. This response was closely associated with atrazine absorption in the rice tissues. These results indicate that exposure to atrazine can trigger specific GT genes and enzyme activities in rice.

  8. Human cytomegalovirus UL7, a homologue of the SLAM-family receptor CD229, impairs cytokine production.

    Science.gov (United States)

    Engel, Pablo; Pérez-Carmona, Natàlia; Albà, M Mar; Robertson, Kevin; Ghazal, Peter; Angulo, Ana

    2011-10-01

    Human cytomegalovirus (HCMV), the β-herpesvirus prototype, has evolved a wide spectrum of mechanisms to counteract host immunity. Among them, HCMV uses cellular captured genes encoding molecules capable of interfering with the original host function or of fulfilling new immunomodulatory tasks. Here, we report on UL7, a novel HCMV heavily glycosylated transmembrane protein, containing an Ig-like domain that exhibits remarkable amino acid similarity to CD229, a cell-surface molecule of the signalling lymphocyte-activation molecule (SLAM) family involved in leukocyte activation. The UL7 Ig-like domain, which is well-preserved in all HCMV strains, structurally resembles the SLAM-family N-terminal Ig-variable domain responsible for the homophilic and heterophilic interactions that trigger signalling. UL7 is transcribed with early-late kinetics during the lytic infectious cycle. Using a mAb generated against the viral protein, we show that it is constitutively shed, through its mucine-like stalk, from the cell-surface. Production of soluble UL7 is enhanced by PMA and reduced by a broad-spectrum metalloproteinase inhibitor. Although UL7 does not hold the ability to interact with CD229 or other SLAM-family members, it shares with them the capacity to mediate adhesion to leukocytes, specifically to monocyte-derived DCs. Furthermore, we demonstrate that UL7 expression attenuates the production of proinflammatory cytokines TNF, IL-8 and IL-6 in DCs and myeloid cell lines. Thus, the ability of UL7 to interfere with cellular proinflammatory responses may contribute to viral persistence. These results enhance our understanding of those HCMV-encoded molecules involved in sustaining the balance between HCMV and the host immune system.

  9. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  10. Differential effect of the overexpression of Rad2/XPG family endonucleases on genome integrity in yeast and human cells.

    Science.gov (United States)

    Jimeno, Sonia; Herrera-Moyano, Emilia; Ortega, Pedro; Aguilera, Andrés

    2017-09-01

    Eukaryotic cells possess several DNA endonucleases that are necessary to complete different steps in DNA metabolism. Rad2/XPG and Rad27/FEN1 belong to a group of evolutionary conserved proteins that constitute the Rad2 family. Given the important roles carried out by these nucleases in DNA repair and their capacity to create DNA breaks, we have investigated the effect that in vivo imbalance of these nucleases and others of the family have on genome integrity and cell proliferation. We show that overexpression of these nucleases causes genetic instability in both yeast and human cells. Interestingly, the type of recombination event and DNA damage induced suggest specific modes and timing of action of each nuclease that are beyond their known DNA repair function and are critical to preserve genome integrity. In addition to identifying new sources of genome instability, a hallmark of cancer cells, this study provides new genetic tools for studies of genome dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases. PMID:27764212

  12. Characterization of cDNA encoding human placental anticoagulant protein (PP4): Homology with the lipocortin family

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Abel, K.J.; Bohn, H.; Loebermann, H.; Lottspeich, F.; Kuepper, H. (Research Institutes, Postfach (West Germany))

    1988-06-01

    A cDNA library prepared from human placenta was screened for sequences encoding the placental protein 4 (PP4). PP4 is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. Partial amino acid sequence information from PP4-derived cyanogen bromide fragments was used to design three oligonucleotide probes for screening the library. From 10{sup 6} independent recombinants, 18 clones were identified that hybridized to all three probes. These 18 recombinants contained cDNA inserts encoding a protein of 320 amino acid residues. In addition to the PP4 cDNA the authors identified 9 other recombinants encoding a protein with considerable similarity (74%) to PP4, which was termed PP4-X. PP4 and PP4-X belong to the lipocortin family, as judged by their homology to lipocortin I and calpactin I.

  13. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine.

    Science.gov (United States)

    Pool, Martin; de Boer, H Rudolf; Hooge, Marjolijn N Lub-de; van Vugt, Marcel A T M; de Vries, Elisabeth G E

    2017-01-01

    Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.

  14. Mycobacterium tuberculosis phylogeography in the context of human migration and pathogen's pathobiology: Insights from Beijing and Ural families.

    Science.gov (United States)

    Mokrousov, Igor

    2015-06-01

    Here, I review the population structure and phylogeography of the two contrasting families of Mycobacterium tuberculosis, Beijing and Ural, in the context of strain pathobiology and human history and migration. Proprietary database (12-loci MIRU-VNTR profiles of 3067 Beijing genotype isolates) was subjected to phylogenetic and statistical analysis. The highest rate (90%) and diversity (HGI 0.80-0.95) of the Beijing genotype in North China suggest it to be its area of origin. Under VNTR-based MDS analysis the interpopulation genetic distances correlated with geography over uninterrupted landmasses. In contrast, large water distances together with long time generated remarkable outliers. Weak and less expected affinities of the distant M. tuberculosis populations may reflect hidden epidemiological links due to unknown migration. Association with drug-resistance or increased virulence/transmissibility along with particular human migration flows shape global dissemination of some Beijing clones. The paucity of data on the Ural genotype prevents from high-resolution analysis that was mainly based on the available spoligotyping data. The North/East Pontic area marked with the highest prevalence of the Ural family may have been the area of its origin and primary dispersal in Eurasia. Ural strains are not marked by increased pathogenic capacities, increased transmissibility and association with drug resistance (but most recent reports describe an alarming increase of MDR Ural strains in some parts of eastern Europe and northwestern Russia). Large-scale SNP or WGS population-based studies targeting strains from indigenous populations and, eventually, analysis of ancient DNA will better test these hypotheses. Host genetics factors likely play the most prominent role in differential dissemination of particular M. tuberculosis genotypes.

  15. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects.

    Science.gov (United States)

    Stepensky, Polina; Keller, Baerbel; Buchta, Mary; Kienzler, Anne-Kathrin; Elpeleg, Orly; Somech, Raz; Cohen, Sivan; Shachar, Idit; Miosge, Lisa A; Schlesier, Michael; Fuchs, Ilka; Enders, Anselm; Eibel, Hermann; Grimbacher, Bodo; Warnatz, Klaus

    2013-02-01

    Profound combined immunodeficiency can present with normal numbers of T and B cells, and therefore the functional defect of the cellular and humoral immune response is often not recognized until the first severe clinical manifestation. Here we report a patient of consanguineous descent presenting at 13 months of age with hypogammaglobulinemia, Pneumocystis jirovecii pneumonia, and a suggestive family history. We sought to identify the genetic alteration in a patient with combined immunodeficiency and characterize human caspase recruitment domain family, member 11 (CARD11), deficiency. Molecular, immunologic, and functional assays were performed. The immunologic characterization revealed only subtle changes in the T-cell and natural killer cell compartment, whereas B-cell differentiation, although normal in number, was distinctively blocked at the transitional stage. Genetic evaluation revealed a homozygous deletion of exon 21 in CARD11 as the underlying defect. This deletion abrogated protein expression and activation of the canonical nuclear factor κB (NF-κB) pathway in lymphocytes after antigen receptor or phorbol 12-myristate 13-acetate stimulation, whereas CD40 signaling in B cells was preserved. The abrogated activation of the canonical NF-κB pathway was associated with severely impaired upregulation of inducible T-cell costimulator, OX40, cytokine production, proliferation of T cells, and B cell-activating factor receptor expression on B cells. Thus in patients with CARD11 deficiency, the combination of impaired activation and especially upregulation of inducible T-cell costimulator on T cells, together with severely disturbed peripheral B-cell differentiation, apparently leads to a defective T-cell/B-cell cooperation and probably germinal center formation and clinically results in severe immunodeficiency. This report discloses the crucial and nonredundant role of canonical NF-κB activation and specifically CARD11 in the antigen-specific immune response

  16. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families.

    Science.gov (United States)

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-02-23

    Histone deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases, and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective histone deacetylase inhibitors (HDACIs). To facilitate the process, we constructed maximal unbiased benchmarking data sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs cover all four classes including Class III (Sirtuins family) and 14 HDAC isoforms, composed of 631 inhibitors and 24609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of "artificial enrichment" and "analogue bias". We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets and demonstrate that our MUBD-HDACs are unique in that they can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the "2D bias" and "LBVS favorable" effect within the benchmarking sets. In summary, MUBD-HDACs are the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that are available so far. MUBD-HDACs are freely available at http://www.xswlab.org/ .

  17. Qualitative changes in human γ-secretase underlie familial Alzheimer’s disease

    Science.gov (United States)

    Szaruga, Maria; Veugelen, Sarah; Benurwar, Manasi; Lismont, Sam; Sepulveda-Falla, Diego; Lleo, Alberto; Ryan, Natalie S.; Lashley, Tammaryn; Fox, Nick C.; Murayama, Shigeo; Gijsen, Harrie

    2015-01-01

    Presenilin (PSEN) pathogenic mutations cause familial Alzheimer’s disease (AD [FAD]) in an autosomal-dominant manner. The extent to which the healthy and diseased alleles influence each other to cause neurodegeneration remains unclear. In this study, we assessed γ-secretase activity in brain samples from 15 nondemented subjects, 22 FAD patients harboring nine different mutations in PSEN1, and 11 sporadic AD (SAD) patients. FAD and control brain samples had similar overall γ-secretase activity levels, and therefore, loss of overall (endopeptidase) γ-secretase function cannot be an essential part of the pathogenic mechanism. In contrast, impaired carboxypeptidase-like activity (γ-secretase dysfunction) is a constant feature in all FAD brains. Significantly, we demonstrate that pharmacological activation of the carboxypeptidase-like γ-secretase activity with γ-secretase modulators alleviates the mutant PSEN pathogenic effects. Most SAD cases display normal endo- and carboxypeptidase-like γ-secretase activities. However and interestingly, a few SAD patient samples display γ-secretase dysfunction, suggesting that γ-secretase may play a role in some SAD cases. In conclusion, our study highlights qualitative shifts in amyloid-β (Aβ) profiles as the common denominator in FAD and supports a model in which the healthy allele contributes with normal Aβ products and the diseased allele generates longer aggregation-prone peptides that act as seeds inducing toxic amyloid conformations. PMID:26481686

  18. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Thornin Ear

    2017-01-01

    Full Text Available Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs, as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1 involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention.

  19. Companion piece: Needs, rights, and the human family: a bio-psycho-social-spiritual perspective.

    Science.gov (United States)

    Sister Ann Patrick Conrad

    2010-01-01

    This article sets forth a bio-psycho-social-spiritual perspective on the needs and rights of children. Consideration is first given to the philosophical nature of need. The nature of rights is then examined in relation to need as a basis for social justice claims. Various need paradigms, such as human development needs, socially constructed needs, and needs hierarchies, are considered and compared to the rights paradigm presented in the Convention on the Rights of the Child. Rationale for ratification is then presented.

  20. VAM-1: a new member of the MAGUK family binds to human Veli-1 through a conserved domain.

    Science.gov (United States)

    Tseng, T C; Marfatia, S M; Bryant, P J; Pack, S; Zhuang, Z; O'Brien, J E; Lin, L; Hanada, T; Chishti, A H

    2001-04-16

    The MAGUKs (membrane-associated guanylate kinase homologues) constitute a family of peripheral membrane proteins that function in tumor suppression and receptor clustering by forming multiprotein complexes containing distinct sets of transmembrane, cytoskeletal, and cytoplasmic signaling proteins. Here, we report the characterization of the human vam-1 gene that encodes a novel member of the p55 subfamily of MAGUKs. The complete cDNA sequence of VAM-1, tissue distribution of its mRNA, genomic structure, chromosomal localization, and Veli-1 binding properties are presented. The vam-1 gene is composed of 12 exons and spans approx. 115 kb. By fluorescence in situ hybridization the vam-1 gene was localized to 7p15-21, a chromosome region frequently disrupted in some human cancers. VAM-1 mRNA was abundant in human testis, brain, and kidney with lower levels detectable in other tissues. The primary structure of VAM-1, predicted from cDNA sequencing, consists of 540 amino acids including a single PDZ domain near the N-terminus, a central SH3 domain, and a C-terminal GUK (guanylate kinase-like) domain. Sequence alignment, heterologous transfection, GST pull-down experiments, and blot overlay assays revealed a conserved domain in VAM-1 that binds to Veli-1, the human homologue of the LIN-7 adaptor protein in Caenorhabditis. LIN-7 is known to play an essential role in the basolateral localization of the LET-23 tyrosine kinase receptor, by linking the receptor to LIN-2 and LIN-10 proteins. Our results therefore suggest that VAM-1 may function by promoting the assembly of a Veli-1 containing protein complex in neuronal as well as epithelial cells.

  1. LINE-1 family member GCRG123 gene is up-regulated in human gastric signet-ring cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Gang-Shi Wang; Meng-Wei Wang; Ben-Yan Wu; Xin-Yan Yang; Wei-Hua Wang; Wei-Di You

    2008-01-01

    AIM:To analyze the expression profiles of a human gastric-cancer-related gene,GCRG123,in human gastric signet-ring cell carcinoma tissues,and to perform bioinformatics analysis on GCRG123.METHODS:In situ hybridization was used to explore the GCRG123 expression pattern in paraffin-embedded gastric tissues,including 15 cases of signet-ring cell carcinoma,15 of intestinal-type adenocarcinoma,and 15 of normal gastric mucosa.Northnem blotting was used to analyze the differences in GCRG123 expression between stomach signet-ring cell carcinoma and intestinal-type adenocarcinoma tissues.Online software,including BLAST,Multalin and BLAT,were applied for bioinformatics analysis.National Center for Biotechnology Information (NCBI) and the University of California Santa Cruz (UCSC) databases were used for the analyses.RESULTS:The in situ hybridization signal appeared as blue precipitates restricted to the cytoplasm.Ten out of 15 cases of gastric signet ring cell carcinoma,normal gastric mucosal epithelium and pyloric glands showed high GCRG123 expression.Low GCRG123 expressionv was observed in gastric intestinal-type adenocarcinoma and normal gastric glands.Northern blotting revealed that GCRG123 was up-regulated in signet-ring cell carcinoma tissue but down-regulated in intestinal-type adenocarcinoma tissue.BLAST and Multalin analyses revealed that the GCRG123 sequence had 92% similarity with the ORF2 sequence of human long interspersed nuclear element retrotransposons (LINE-1,L1).BLAT analysis indicated that GCRG123 mapped to all chromosomes.GCRG123 was found to integrate in the intron-17 and -23 of Rb,5' flanking region of IL-2 and clotting factor IX genes.CONCLUSION:GCRG123,an active member of the L1family,was up-regulated in human gastric signet-ring cell carcinoma.

  2. Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans

    Directory of Open Access Journals (Sweden)

    Hunter Gary R

    2008-08-01

    Full Text Available Abstract Background The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG storage using quantitative complementation procedures in Drosophila melanogaster. Based on our results from Drosophila, we performed a human population-based association study to investigate the effect of natural variation in LAMA5 gene on body composition in humans. Results We identified four candidate genes that contributed to differences in TAG storage between two strains of D. melanogaster, including Laminin A (LanA, which is a member of the α subfamily of laminin chains. We confirmed the effects of this gene using a viable LanA mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. Drosophila LanA is closely related to human LAMA5 gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs in the human LAMA5 gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA and African American (AA descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: P = 0.008; AA: P = 0.05 and lean mass (EA: P= 0.003; AA: P = 0.03. We also found this SNP to be associated with height (P = 0.01, total fat mass (P = 0.01, and HDL-cholesterol (P = 0.003 but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (P = 0.02 and HDL-cholesterol (P = 0.03 were observed in AA women. Conclusion Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.

  3. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis.

    Science.gov (United States)

    Goubet, Florence; Barton, Christopher J; Mortimer, Jennifer C; Yu, Xiaolan; Zhang, Zhinong; Miles, Godfrey P; Richens, Jenny; Liepman, Aaron H; Seffen, Keith; Dupree, Paul

    2009-11-01

    Mannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development. To determine whether the CSLA proteins are responsible for glucomannan synthesis in vivo, we characterised insertion mutants in each of the nine Arabidopsis CSLA genes and several double and triple mutant combinations. csla9 mutants showed substantially reduced glucomannan, and triple csla2csla3csla9 mutants lacked detectable glucomannan in stems. Nevertheless, these mutants showed no alteration in stem development or strength. Overexpression of CSLA2, CSLA7 and CSLA9 increased the glucomannan content in stems. Increased glucomannan synthesis also caused defective embryogenesis, leading to delayed development and occasional embryo death. The embryo lethality of csla7 was complemented by overexpression of CSLA9, suggesting that the glucomannan products are similar. We conclude that CSLA2, CSLA3 and CSLA9 are responsible for the synthesis of all detectable glucomannan in Arabidopsis stems, and that CSLA7 synthesises glucomannan in embryos. These results are inconsistent with a substantial role for glucomannan in wall strength in Arabidopsis stems, but indicate that glucomannan levels affect embryogenesis. Together with earlier heterologous expression studies, the glucomannan deficiency observed in csla mutant plants demonstrates that the CSLA family encodes glucomannan synthases.

  4. A global survey of CRM1-dependent nuclear export sequences in the human deubiquitinase family.

    Science.gov (United States)

    García-Santisteban, Iraia; Bañuelos, Sonia; Rodríguez, Jose A

    2012-01-01

    The mechanisms that regulate the nucleocytoplasmic localization of human deubiquitinases remain largely unknown. The nuclear export receptor CRM1 binds to specific amino acid motifs termed NESs (nuclear export sequences). By using in silico prediction and experimental validation of candidate sequences, we identified 32 active NESs and 78 inactive NES-like motifs in human deubiquitinases. These results allowed us to evaluate the performance of three programs widely used for NES prediction, and to add novel information to the recently redefined NES consensus. The novel NESs identified in the present study reveal a subset of 22 deubiquitinases bearing motifs that might mediate their binding to CRM1. We tested the effect of the CRM1 inhibitor LMB (leptomycin B) on the localization of YFP (yellow fluorescent protein)- or GFP (green fluorescent protein)-tagged versions of six NES-bearing deubiquitinases [USP (ubiquitin-specific peptidase) 1, USP3, USP7, USP21, CYLD (cylindromatosis) and OTUD7B (OTU-domain-containing 7B)]. YFP-USP21 and, to a lesser extent, GFP-OTUD7B relocated from the cytoplasm to the nucleus in the presence of LMB, revealing their nucleocytoplasmic shuttling capability. Two sequence motifs in USP21 had been identified during our survey as active NESs in the export assay. Using site-directed mutagenesis, we show that one of these motifs mediates USP21 nuclear export, whereas the second motif is not functional in the context of full-length USP21.

  5. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  6. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  7. Involvement of FGF and BMP family proteins and VEGF in early human kidney development.

    Science.gov (United States)

    Carev, Dominko; Saraga, Marijan; Saraga-Babic, Mirna

    2008-07-01

    The spatial and temporal pattern of the appearance of the fibroblast growth factor proteins (FGF-8 and FGF-10), the bone morphogenetic proteins (BMP-2/4 subfamily and BMP-7) and the vascular endothelial growth factor protein (VEGF) was investigated in the human mesonephros and metanephros of the 5-9 week-old conceptuses. In the mesonephros, both FGF's and BMP's were found in all structures and their expression slightly decreased in the early fetal period. VEGF positivity appeared in all mesonephric structures, and increased in the fetal period coincidently with formation of the mesonephric blood vessel network. In the metanephros, FGF-8 first appeared only in the metanephric mesenchyme, but from the 7th week on, its reactivity increased and spread to other metanephric structures. FGF-10 positive cells appeared in all metanephric structures already in the 5th week, and slightly intensified with progression of development. Cell survival and nephrogenesis in the permanent kidney might be associated with the appearance of both growth factors. Both BMP-2/4 and BMP-7 displayed a similar pattern of reactivity in all metanephric structures, and their reactivity intensified with advancing development. Alterations in their pattern of appearance might lead to the formation of small and dysplastic kidneys. Already in the earliest developmental stages, VEGF protein appeared in all metanephric structures. At later stages, VEGF showed more intense reaction in the collecting system than in the differentiating nephrons and interstitium. Due to VEGF involvement in vasculogenesis and angiogenesis, abnormal VEGF appearance might lead to impaired formation of the blood vessel network in the human permanent kidney.

  8. Towards glycoengineering in archaea: replacement of Haloferax volcanii AglD with homologous glycosyltransferases from other halophilic archaea.

    Science.gov (United States)

    Calo, Doron; Eilam, Yael; Lichtenstein, Rachel G; Eichler, Jerry

    2010-09-01

    Like eukarya and bacteria, archaea also perform N-glycosylation. However, the N-linked glycans of archaeal glycoproteins present a variety not seen elsewhere. Archaea accordingly rely on N-glycosylation pathways likely involving a broad range of species-specific enzymes. To harness the enormous applied potential of such diversity for the generation of glycoproteins bearing tailored N-linked glycans, the development of an appropriate archaeal glycoengineering platform is required. With a sequenced genome, a relatively well-defined N-glycosylation pathway, and molecular tools for gene manipulation, the haloarchaeon Haloferax volcanii (Hfx. volcanii) represents a promising candidate. Accordingly, cells lacking AglD, a glycosyltransferase involved in adding the final hexose of a pentasaccharide N-linked to the surface (S)-layer glycoprotein, were transformed to express AglD homologues from other haloarchaea. The introduction of nonnative versions of AglD led to the appearance of an S-layer glycoprotein similar to the protein from the native strain. Indeed, mass spectrometry confirmed that AglD and its homologues introduce the final hexose to the N-linked S-layer glycoprotein pentasaccharide. Heterologously expressed haloarchaeal AglD homologues contributed to N-glycosylation in Hfx. volcanii despite an apparent lack of AglD function in those haloarchaea from where the introduced homologues came. For example, although functional in Hfx. volcanii, no transcription of the Halobacterium salinarum aglD homologue, OE1482, was detected in cells of the native host grown under various conditions. Thus, at least one AglD homologue works more readily in Hfx. volcanii than in the native host. These results warrant the continued assessment of Hfx. volcanii as a glycosylation "workshop."

  9. The expanding roles of the Sd(a)/Cad carbohydrate antigen and its cognate glycosyltransferase B4GALNT2.

    Science.gov (United States)

    Dall'Olio, Fabio; Malagolini, Nadia; Chiricolo, Mariella; Trinchera, Marco; Harduin-Lepers, Anne

    2014-01-01

    The histo-blood group antigens are carbohydrate structures present in tissues and body fluids, which contribute to the definition of the individual immunophenotype. One of these, the Sd(a) antigen, is expressed on the surface of erythrocytes and in secretions of the vast majority of the Caucasians and other ethnic groups. We describe the multiple and unsuspected aspects of the biology of the Sd(a) antigen and its biosynthetic enzyme β1,4-N-acetylgalactosaminyltransferase 2 (B4GALNT2) in various physiological and pathological settings. The immunodominant sugar of the Sd(a) antigen is a β1,4-linked N-acetylgalactosamine (GalNAc). Its cognate glycosyltransferase B4GALNT2 displays a restricted pattern of tissue expression, is regulated by unknown mechanisms - including promoter methylation, and encodes at least two different proteins, one of which with an unconventionally long cytoplasmic portion. In different settings, the Sd(a) antigen plays multiple and unsuspected roles. 1) In colon cancer, its dramatic down-regulation plays a potential role in the overexpression of sialyl Lewis antigens, increasing metastasis formation. 2) It is involved in the lytic function of murine cytotoxic T lymphocytes. 3) It prevents the development of muscular dystrophy in various dystrophic murine models, when overexpressed in muscular fibers. 4) It regulates the circulating half-life of the von Willebrand factor (vWf), determining the onset of a bleeding disorder in a murine model. The expression of the Sd(a) antigen has a wide impact on the physiology and the pathology of different biological systems. © 2013.

  10. Integral use of amaranth starch to obtain cyclodextrin glycosyltransferase, by Bacillus megaterium, to produce β-cyclodextrin.

    Directory of Open Access Journals (Sweden)

    María Belem Arce-Vázquez

    2016-09-01

    Full Text Available Cyclodextrin glycosyltransferase (CGTase is an enzyme that produces cyclodextrins (CDs from starch and related carbohydrates, producing a mixture of α-, β-, and γ-CDs in different amounts. CGTase production, mainly by Bacillus sp., depends on fermentation conditions such as pH, temperature, concentration of nutrients, carbon and nitrogen sources, among others. Bacillus megaterium CGTase produces those three types of CDs, however, β-CD should prevail. Although waxy corn starch (CS is used industrially to obtain CGTase and CDs because of its high amylopectin content, alternative sources such as amaranth starch (AS could be used to accomplish those purposes. AS has high susceptibility to the amylolytic activity of CGTase because of its 80% amylopectin content. Therefore, the aim of this work was evaluate the AS as carbon source for CGTase production by B. megaterium in a submerged fermentation. Afterwards, the CGTase was purified partially and its activity to synthesize α-, β- and γ-CDs was evaluated using 1% AS as substrate. B. megaterium produced a 66 kDa CGTase (Topt=50°C; pHopt=8.0, from the early exponential growth phase which lasted 36 h. The maximum CGTase specific activity (106.62±8.33 U/mg protein was obtained after 36 h of culture. CGTase obtained with a Km=0.152 mM and a Vmax=13.4 µM/min yielded 40.47% total CDs using AS which was roughly twice as much as that of corn starch (CS; 24.48%. High costs to produce CDs in the pharmaceutical and food industries might be reduced by using AS because of its higher α-, β- and γ-CDs production (12.81%, 17.94% and 9.92%, respectively in a shorter time than that needed for CS.

  11. Purification and properties of a novel raw starch degrading-cyclodextrin glycosyltransferase from Klebsiella pneumoniae AS- 22.

    Science.gov (United States)

    Gawande, B N.; Patkar, A Y.

    2001-06-07

    A novel raw starch degrading alpha-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5-9.0 whereas it was most stable in the pH range 6-9. The CGTase was most active in the temperature range 35-50 degrees C. This CGTase is inherently temperature labile and rapidly loses activity above 30 degrees C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40 degrees C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30 degrees C for a month. The K(m) and k(cat) values for the pure enzyme were 1.35 mg ml(-1) and 249 &mgr;M mg(-1) min(-1), respectively, with soluble starch as the substrate. The enzyme predominantly produced alpha-cyclodextrin without addition of any complexing agents. The conditions employed for maximum alpha-cyclodextrin production were 100 g l(-1) gelatinized soluble starch or 125 g l(-1) raw wheat starch at an enzyme concentration of 10 U g(-1) of starch. The alpha:beta:gamma-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.

  12. Integral Use of Amaranth Starch to Obtain Cyclodextrin Glycosyltransferase, by Bacillus megaterium, to Produce β-Cyclodextrin

    Science.gov (United States)

    Arce-Vázquez, María Belem; Ponce-Alquicira, Edith; Delgado-Fornué, Ezequiel; Pedroza-Islas, Ruth; Díaz-Godínez, Gerardo; Soriano-Santos, J.

    2016-01-01

    Cyclodextrin glycosyltransferase (CGTase) is an enzyme that produces cyclodextrins (CDs) from starch and related carbohydrates, producing a mixture of α-, β-, and γ-CDs in different amounts. CGTase production, mainly by Bacillus sp., depends on fermentation conditions such as pH, temperature, concentration of nutrients, carbon and nitrogen sources, among others. Bacillus megaterium CGTase produces those three types of CDs, however, β-CD should prevail. Although, waxy corn starch (CS) is used industrially to obtain CGTase and CDs because of its high amylopectin content, alternative sources such as amaranth starch (AS) could be used to accomplish those purposes. AS has high susceptibility to the amylolytic activity of CGTase because of its 80% amylopectin content. Therefore, the aim of this work was evaluate the AS as carbon source for CGTase production by B. megaterium in a submerged fermentation. Afterwards, the CGTase was purified partially and its activity to synthesize α-, β-, and γ-CDs was evaluated using 1% AS as substrate. B. megaterium produced a 66 kDa CGTase (Topt = 50°C; pHopt = 8.0), from the early exponential growth phase which lasted 36 h. The maximum CGTase specific activity (106.62 ± 8.33 U/mg protein) was obtained after 36 h of culture. CGTase obtained with a Km = 0.152 mM and a Vmax = 13.4 μM/min yielded 40.47% total CDs using AS which was roughly twice as much as that of corn starch (CS; 24.48%). High costs to produce CDs in the pharmaceutical and food industries might be reduced by using AS because of its higher α-, β- and γ-CDs production (12.81, 17.94, and 9.92%, respectively) in a shorter time than that needed for CS. PMID:27721811

  13. Position 228 in Paenibacillus macerans cyclodextrin glycosyltransferase is critical for 2-O-d-glucopyranosyl-l-ascorbic acid synthesis.

    Science.gov (United States)

    Chen, Sheng; Xiong, Yanjun; Su, Lingqia; Wang, Lei; Wu, Jing

    2017-04-10

    The markedly stable l-ascorbic acid (L-AA) derivative 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) has been widely used in the fields of food, medicine, cosmetics, and husbandry. Cyclodextrin glycosyltransferase (CGTase) is considered suitable for the large-scale production of AA-2G. In this work, Paenibacillus macerans CGTase was used to produce AA-2G and the production was 13.5g/l. An amino-acid sequence alignment of α-, β-, and α⁄β-CGTase indicated that the Phe at position 228 of P. macerans CGTase was different from the amino acids at this position in other CGTases (Met, Val, or Ile). In addition, the CGTases from Anaerobranca gottschalkii and Bacillus circulans 251, which have Val and Met at position 228, were shown to produce 28.9 and 35.7g/l AA-2G, respectively, which verified the importance of this position for AA-2G synthesis. Subsequently, P. macerans CGTase mutants F228M and F228V were constructed and shown to produce 24.8g/l and 24.0g/l AA-2G, respectively, which are 84% and 78% higher than that of wild-type P. macerans CGTase, respectively. Kinetic analysis of AA-2G synthesis showed that affinities of the two mutants for L-AA and the catalytic efficiencies increased. Meanwhile, the mutants had lower cyclization activity but higher disproportionation activities, which is beneficial for AA-2G synthesis. All these results indicated that amino acid at position 228 of P. macerans CGTase is crucial to AA-2G synthesis.

  14. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Ichiyanagi

    2016-04-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disorder. Although its neuropathology is well understood, the cellular and molecular mechanisms are yet to be elucidated due to limitations in the currently available human genetic data. In this study, we generated induced pluripotent stem cells (iPSC from two familial ALS (FALS patients with a missense mutation in the fused-in sarcoma (FUS gene carrying the heterozygous FUS H517D mutation, and isogenic iPSCs with the homozygous FUS H517D mutation by genome editing technology. These cell-derived motor neurons mimicked several neurodegenerative phenotypes including mis-localization of FUS into cytosolic and stress granules under stress conditions, and cellular vulnerability. Moreover, exon array analysis using motor neuron precursor cells (MPCs combined with CLIP-seq datasets revealed aberrant gene expression and/or splicing pattern in FALS MPCs. These results suggest that iPSC-derived motor neurons are a useful tool for analyzing the pathogenesis of human motor neuron disorders.

  15. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin.

    Science.gov (United States)

    Metze, D; Bhardwaj, R; Amann, U; Eades-Perner, A M; Neumaier, M; Wagener, C; Jantscheff, P; Grunert, F; Luger, T A

    1996-01-01

    The carcinoembryonic antigen (CEA) family comprises a group of glycoproteins including the classical CEA, nonspecific cross-reacting antigens (NCA), and biliary glycoprotein (BGP). CEA glycoproteins have been identified in many glandular and mucosal tissues. In view of their putative role in cell adhesion, protein sorting, and signal transduction, CEA glycoproteins are thought to be involved in embryogenesis, architectual integrity, and secretory mechanisms of glandular epithelia. Since there are few data available on the expression of CEA-like proteins in human skin, the aim of this study was to immunohistochemically specify and localize the CEA glycoproteins in cutaneous adult and fetal glands using a panel of well-characterized antibodies. The secretory parts of eccrine sweat glands expressed CEA, NCA-90, and BGP, whereas apocrine glands remained unreactive for CEA glycoproteins. The ductal epithelia of both eccrine and apocrine glands contained CEA and NCA-90. Sebaceous glands were stained for BGP only. Electron microscopy of sweat glands showed CEA glycoprotein expression in cytoplasmic organelles and on microvilli lining the ductal surface. In sebaceous glands, BGP were demonstrated in small vesicles and along the cell membranes of differentiating sebocytes. Fetal development of cutaneous glands was associated with early expression of CEA glycoproteins. Additionally, mice transgenic for human CEA were shown to express CEA in sweat glands. The overall distribution of CEA glycoproteins in cutaneous glands was consistent with that in epithelia of other glandular tissues.

  16. Molecular cloning and characterization of six novel isoforms of human Bim, a member of the proapoptotic Bcl-2 family.

    Science.gov (United States)

    U, M; Miyashita, T; Shikama, Y; Tadokoro, K; Yamada, M

    2001-11-30

    Bim protein is one of the BH3-only proteins, members of the Bcl-2 family that have only one of the Bcl-2 homology regions, BH3. BH3-only proteins are essential initiators of apoptotic cell death. Thus far, three isoforms of Bim have been reported, i.e. Bim(EL), Bim(L) and Bim(S). Here we report the cloning and characterization of six novel isoforms of human Bim, designated as Bimalpha1, alpha2, and beta1-beta4, which are generated by alternative splicing. Unlike the three known isoforms, none of these novel isoforms contained a C-terminal hydrophobic region. Among the novel isoforms, only Bimalpha1 and alpha2 contained a BH3 domain and were proapoptotic, although less potent than the classical isoforms. These two isoforms localized, at least in part, in mitochondria when transiently expressed in HeLa cells as a green fluorescent protein-fused form. These results suggest that the BH3 domain is necessary for induction of apoptosis and mitochondrial localization but not sufficient for the full proapoptotic activity. While the classical isoforms were always predominantly expressed in transformed cells, expression profiles of bim isoforms were highly variable among normal tissues at least in humans, suggesting a tissue-specific transcriptional regulation of bim.

  17. Identification of Phylogenetic Position in the Chlamydiaceae Family for Chlamydia Strains Released from Monkeys and Humans with Chlamydial Pathology

    Directory of Open Access Journals (Sweden)

    Alexander Karaulov

    2010-01-01

    Full Text Available Based on the results of the comparative analysis concerning relatedness and evolutional difference of the 16S–23S nucleotide sequences of the middle ribosomal cluster and 23S rRNA I domain, and based on identification of phylogenetic position for Chlamydophila pneumoniae and Chlamydia trichomatis strains released from monkeys, relatedness of the above stated isolates with similar strains released from humans and with strains having nucleotide sequences presented in the GenBank electronic database has been detected for the first time ever. Position of these isolates in the Chlamydiaceae family phylogenetic tree has been identified. The evolutional position of the investigated original Chlamydia and Chlamydophila strains close to analogous strains from the Gen-Bank electronic database has been demonstrated. Differences in the 16S–23S nucleotide sequence of the middle ribosomal cluster and 23S rRNA I domain of plasmid and nonplasmid Chlamydia trachomatis strains released from humans and monkeys relative to different genotype groups (group B-B, Ba, D, Da, E, L1, L2, L2a; intermediate group-F, G, Ga have been revealed for the first time ever. Abnormality in incA chromosomal gene expression resulting in Chlamydia life development cycle disorder, and decrease of Chlamydia virulence can be related to probable changes in the nucleotide sequence of the gene under consideration

  18. Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines.

    Science.gov (United States)

    Große-Kreul, Jan; Busch, Maike; Winter, Claudia; Pikos, Stefanie; Stephan, Harald; Dünker, Nicole

    2016-01-01

    Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma.

  19. Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines

    Science.gov (United States)

    Winter, Claudia; Pikos, Stefanie; Stephan, Harald; Dünker, Nicole

    2016-01-01

    Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma. PMID:27626280

  20. Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms.

    Science.gov (United States)

    Yeo, Giles S H; Lank, Emma J; Farooqi, I Sadaf; Keogh, Julia; Challis, Benjamin G; O'Rahilly, Stephen

    2003-03-01

    Mutations in the melanocortin-4 receptor gene (MC4R) represent the commonest monogenic cause of human obesity. However, information regarding the precise effects of such mutations on receptor function is very limited. We examined the functional properties of 12 different mutations in human MC4R that result in severe, familial, early-onset obesity. Of the nine missense mutants studied, four were completely unable to generate cAMP in response to ligand and five were partially impaired. Four showed evidence of impaired cell surface expression and six of reduced binding affinity for ligand. One mutation in the C-terminal tail, I316S, showed reduced affinity for alpha-MSH but retained normal affinity for the antagonist AgRP. None of the mutations inhibited signaling through co-transfected wild-type receptors. Thus, in the most comprehensive study to date of the functional properties of naturally occurring MC4R mutations we have (1) established that defective expression on the cell surface is a common mechanism impairing receptor function, (2) identified mutations which specifically affect ligand binding affinity thus aiding the definition of receptor structure-function relationships, (3) provided evidence against the notion that these receptor mutants act as dominant-negatives, and (4) identified a potentially novel molecular mechanism of receptor dysfunction whereby a mutation alters the relative affinities of a receptor for its natural agonist versus antagonist.

  1. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Gui-Zhi; Jin, Shang-Hui; Jiang, Xiao-Yi; Dong, Rui-Rui; Li, Pan; Li, Yan-Jie; Hou, Bing-Kai

    2016-01-01

    The formation of auxin glucose conjugate is proposed to be one of the molecular modifications controlling auxin homeostasis. However, the involved mechanisms and relevant physiological significances are largely unknown or poorly understood. In this study, Arabidopsis UGT75D1 was at the first time identified to be an indole-3-butyric acid (IBA) preferring glycosyltransferase. Assessment of enzyme activity and IBA conjugates in transgenic plants ectopically expressing UGT75D1 indicated that the UGT75D1 catalytic specificity was maintained in planta. It was found that the expression pattern of UGT75D1 was specific in germinating seeds. Consistently, we found that transgenic seedlings with over-produced UGT75D1 exhibited smaller cotyledons and cotyledon epidermal cells than the wild type. In addition, UGT75D1 was found to be up-regulated under mannitol, salt and ABA treatments and the over-expression lines were tolerant to osmotic and salt stresses during germination, resulting in an increased germination rate. Quantitative RT-PCR analysis revealed that the mRNA levels of ABA INSENSITIVE 3 (ABI3) and ABI5 gene in ABA signaling were substantially down-regulated in the transgenic lines under stress treatments. Interestingly, AUXIN RESPONSE FACTOR 16 (ARF16) gene of transgenic lines was also dramatically down-regulated under the same stress conditions. Since ARF16 functions as an activator of ABI3 transcription, we supposed that UGT75D1 might play a role in stress tolerance during germination through modulating ARF16-ABI3 signaling. Taken together, our work indicated that, serving as the IBA preferring glycosyltransferase but distinct from other auxin glycosyltransferases identified so far, UGT75D1 might be a very important player mediating a crosstalk between cotyledon development and stress tolerance of germination at the early stage of plant growth.

  2. Leloir Glycosyltransferases and Natural Product Glycosylation: Biocatalytic Synthesis of the C-Glucoside Nothofagin, a Major Antioxidant of Redbush Herbal Tea.

    Science.gov (United States)

    Bungaruang, Linda; Gutmann, Alexander; Nidetzky, Bernd

    2013-10-11

    Nothofagin is a major antioxidant of redbush herbal tea and represents a class of bioactive flavonoid-like C-glycosidic natural products. We developed an efficient enzymatic synthesis of nothofagin based on a one-pot coupled glycosyltransferase-catalyzed transformation that involves perfectly selective 3'-C-β-d-glucosylation of naturally abundant phloretin and applies sucrose as expedient glucosyl donor. C-Glucosyltransferase from Oryza sativa (rice) was used for phloretin C-glucosylation from uridine 5'-diphosphate (UDP)-glucose, which was supplied continuously in situ through conversion of sucrose and UDP catalyzed by sucrose synthase from Glycine max (soybean). In an evaluation of thermodynamic, kinetic, and stability parameters of the coupled enzymatic reactions, poor water solubility of the phloretin acceptor substrate was revealed as a major bottleneck of conversion efficiency. Using periodic feed of phloretin controlled by reaction progress, nothofagin concentrations (45 mM; 20 g l(-1)) were obtained that vastly exceed the phloretin solubility limit (5-10 mM). The intermediate UDP-glucose was produced from catalytic amounts of UDP (1.0 mM) and was thus recycled 45 times in the process. Benchmarked against comparable glycosyltransferase-catalyzed transformations (e.g., on quercetin), the synthesis of nothofagin has achieved intensification in glycosidic product formation by up to three orders of magnitude (μM→mM range). It thus makes a strong case for the application of Leloir glycosyltransferases in biocatalytic syntheses of glycosylated natural products as fine chemicals.

  3. [Expression of TGFbeta family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems].

    Science.gov (United States)

    Lifantseva, N V; Kol'tsova, A M; Polianskaia, G G; Gordeeva, O F

    2013-01-01

    Mouse and human embryonic stem cells are in different states of pluripotency (naive/ground and primed states). Mechanisms of signaling regulation in cells with ground and primed states of pluripotency are considerably different. In order to understand the contribution of endogenous and exogenous factors in the maintenance of a metastable state of the cells in different phases ofpluripotency, we examined the expression of TGFbeta family factors (ActivinA, Nodal, Leftyl, TGFbeta1, GDF3, BMP4) and FGF2 initiating the appropriate signaling pathways in mouse and human embryonic stem cells (mESCs, hESCs) and supporting feeder cells. Quantitative real-time PCR analysis of gene expression showed that the expression patterns of endogenous factors studied were considerably different in mESCs and hESCs. The most significant differences were found in the levels of endogenous expression of TGFbeta1, BMP4 and ActivinA. The sources of exogenous factors ActivnA, TGFbeta1, and FGF2 for hESCs are feeder cells (mouse and human embryonic fibroblasts) expressing high levels of these factors, as well as low levels of BMP4. Thus, our data demonstrated that the in vitro maintenance of metastable state of undifferentiated pluripotent cells is achieved in mESCs and hESCs using different schemes of the regulations of ActivinA/Nodal/Lefty/Smad2/3BMP/Smad1/5/8 endogenous branches of TGFbeta signaling. The requirement for exogenous stimulation or inhibition of these signaling pathways is due to different patterns of endogenous expression of TGFbeta family factors and FGF2 in the mESCs and hESCs. For the hESCs, enhanced activity of ActivinA/Nodal/Lefty/Smad2/3 signaling by exogenous factor stimulation is necessary to mitigate the effects of BMP/Smadl/5/8 signaling pathways that promote cell differentiation into the extraembryonic structures. Significant differences in endogenous FGF2 expression in the cells in the ground and primary states of pluripotency demonstrate diverse involvement of this

  4. Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB.

    Science.gov (United States)

    Li, S; Liu, Z C; Yin, S J; Chen, Y T; Yu, H L; Zeng, J; Zhang, Q; Zhu, F

    2013-09-05

    Numerous studies have shown that human endogenous retrovirus W family (HERV-W) envelope gene (env) is related to various diseases but the underlying mechanism has remained poorly understood. Our previous study showed that there was abnormal expression of HERV-W env in sera of patients with schizophrenia. In this paper, we reported that overexpression of the HERV-W env elevated the levels of small conductance Ca(2+)-activated K(+) channel protein 3 (SK3) in human neuroblastoma cells. Using a luciferase reporter system and RNA interference method, we found that functional cAMP response element site was required for the expression of SK3 triggered by HERV-W env. In addition, it was also found that the SK3 channel was activated by HERV-W env. Further study indicated that cAMP response element-binding protein (CREB) was required for the activation of the SK3 channel. Thus, a novel signaling mechanism of how HERV-W env influences neuronal activity and contributes to mental illnesses such as schizophrenia was proposed.

  5. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R; Geyer, John W; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Aris, John P [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shifrin, Roger Y, E-mail: wbolch@ufl.edu [Department of Radiology, University of Florida, Gainesville, FL (United States)

    2011-08-07

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR(TM) and then imported to the 3D modeling software package Rhinoceros(TM) for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations

  6. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    Science.gov (United States)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  7. New member of the guanosine triphosphatase activating protein family in the human epididymis

    Institute of Scientific and Technical Information of China (English)

    Xiangqi Li; Qiang Liu; Shigui Liu; Jinsong Zhang; Yonglian Zhang

    2008-01-01

    The effect of the guanosine triphosphatase activating proteins (GAPs) on spermatogenesis has been studied for years,though no GAPs have been explored in epididymis, an essential organ for sperm maturation. In this study, a new GAP member, designated as MacGAP, was cloned in human epididymis. The MacGAP gene encodes a protein of 618 amino acids with a putative size of 70 kDa and harbors the conservedRhoGAPdomain. The N-terminal and C-terminal peptides of MacGAP were expressed and their corresponding antiserawere prepared. The antisera against N-terminal peptide could detect antigen as low as 0.3 ng, and its specificity was alsoconfirmed. However, the antisera against C-terminal peptide failed to detect its antigen because of its low sensitivity.Immunohistochemistry showed that the MacGAP protein was dependent on epididymis and had a region-specific expression pattern, with high expression in the epithelial cells' basal section in the caput region. The results have created a foundation for further interpretation of the biological effects of GAPs in sperm maturation.

  8. Amino acids and peptides activate at least five members of the human bitter taste receptor family.

    Science.gov (United States)

    Kohl, Susann; Behrens, Maik; Dunkel, Andreas; Hofmann, Thomas; Meyerhof, Wolfgang

    2013-01-09

    Amino acids and peptides represent important flavor molecules eliciting various taste sensations. Here, we present a comprehensive assessment of the interaction of various peptides and all proteinogenic amino acids with the 25 human TAS2Rs expressed in cell lines. L-Phenylalanine and L-tryptophan activate TAS2R1 and TAS2R4, respectively, whereas TAS2R4 and TAS2R39 responded to D-tryptophan. Structure-function analysis uncovered the basis for the lack of stereoselectivity of TAS2R4. The same three TAS2Rs or subsets thereof were also sensitive to various dipeptides containing L-tryptophan, L-phenylalanine, or L-leucine and to Trp-Trp-Trp, whereas Leu-Leu-Leu specifically activated TAS2R4. Trp-Trp-Trp also activated TAS2R46 and TAS2R14. Two key bitter peptides from Gouda cheese, namely, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn-Ser and Leu-Val-Tyr-Pro-Phe-Pro-Gly-Pro-Ile-His-Asn, both activated TAS2R1 and TAS2R39. Thus, the data demonstrate that the bitterness of amino acids and peptides is not mediated by specifically tuned TAS2Rs but rather is brought about by an unexpectedly complex pattern of sensitive TAS2Rs.

  9. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart.

    Science.gov (United States)

    Kakimoto, Yu; Tanaka, Masayuki; Kamiguchi, Hiroshi; Hayashi, Hideki; Ochiai, Eriko; Osawa, Motoki

    2016-05-15

    Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Crystal structure of amylomaltase from thermus aquaticus, a glycosyltransferase catalysing the production of large cyclic glucans.

    Science.gov (United States)

    Przylas, I; Tomoo, K; Terada, Y; Takaha, T; Fujii, K; Saenger, W; Sträter, N

    2000-02-25

    Amylomaltase is involved in the metabolism of starch, one of the most important polysaccharides in nature. A unique feature of amylomaltase is its ability to catalyze the formation of cyclic amylose. In contrast to the well studied cyclodextrin glucanotransferases (CGTases), which synthesize cycloamylose with a ring size (degree of polymerization or DP) of 6-8, the amylomaltase from Thermus aquaticus produces cycloamyloses with a DP of 22 and higher. The crystal structure of amylomaltase from Thermus aquaticus was determined to 2.0 A resolution. It is a member of the alpha-amylase superfamily of enzymes, whose core structure consists of a (beta, alpha)(8) barrel. In amylomaltase, the 8-fold symmetry of this barrel is disrupted by several insertions between the barrel strands. The largest insertions are between the third and fifth barrel strands, where two insertions form subdomain B1, as well as between the second and third barrel strands, forming the alpha-helical subdomain B2. Whereas part of subdomain B1 is also present in other enzyme structures of the alpha-amylase superfamily, subdomain B2 is unique to amylomaltase. Remarkably, the C-terminal domain C, which is present in all related enzymes of the alpha-amylase family, is missing in amylomaltase. Amylomaltase shows a similar arrangement of the catalytic side-chains (two Asp residues and one Glu residue) as in previously characterized members of the alpha-amylase superfamily, indicating similar mechanisms of the glycosyl transfer reaction. In amylomaltase, a conserved loop of around eight amino acid residues is partially shielding the active center. This loop, which is well conserved among other amylomaltases, may sterically hinder the formation of small cyclic products.

  11. Phenothiazine-based CaaX competitive inhibitors of human farnesyltransferase bearing a cysteine, methionine, serine or valine moiety as a new family of antitumoral compounds.

    Science.gov (United States)

    Dumitriu, Gina-Mirabela; Bîcu, Elena; Belei, Dalila; Rigo, Benoît; Dubois, Joëlle; Farce, Amaury; Ghinet, Alina

    2015-10-15

    A new family of CaaX competitive inhibitors of human farnesyltransferase based on phenothiazine and carbazole skeleton bearing a l-cysteine, l-methionine, l-serine or l-valine moiety was designed, synthesized and biologically evaluated. Phenothiazine derivatives proved to be more active than carbazole-based compounds. Phenothiazine 1b with cysteine residue was the most promising inhibitor of human farnesyltransferase in the current study.

  12. Increased mortality exposure within the family rather than individual mortality experiences triggers faster life-history strategies in historic human populations

    NARCIS (Netherlands)

    Störmer, Charlotte; Lummaa, Virpi

    2014-01-01

    impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within th

  13. Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells

    NARCIS (Netherlands)

    van den Boom, Vincent; Rozenveld-Geugien, Marjan; Bonardi, Francesco; Malanga, Donatella; van Gosliga, Djoke; Heyink, Anne Margriet; Viglietto, Giuseppe; Morrone, Giovanni; Fusetti, Fabrizia; Vellenga, Edo; Schuringa, Jan Jacob

    2013-01-01

    The Polycomb group (PcG) protein BMI1 is a key factor in regulating hematopoietic stem cell (HSC) and leukemic stem cell self-renewal and functions in the context of the Polycomb repressive complex 1 (PRC1). In humans, each of the 5 subunits of PRC1 has paralog family members of which many reside in

  14. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells.

    Science.gov (United States)

    Zong, Wen; Jiang, Yan; Zhao, Jing; Zhang, Jian; Gao, Jian-gang

    2015-10-01

    The lysyl oxidase (LOX) family encodes the copper-dependent amine oxidases that play a key role in determining the tensile strength and structural integrity of connective tissues by catalyzing the crosslinking of elastin or collagen. Estrogen may upregulate the expression of LOX and lysyl oxidase-like 1 (LOXL1) in the vagina. The objective of this study was to determine the effect of estrogen on the expression of all LOX family genes in the urogenital tissues of accelerated ovarian aging mice and human Ishikawa cells. Mice and Ishikawa cells treated with estradiol (E2) showed increased expression of LOX family genes and transforming growth factor β1 (TGF-β1). Ishikawa cells treated with TGF-β1 also showed increased expression of LOX family genes. The Ishikawa cells were then treated with either E2 plus the TGF-β receptor (TGFBR) inhibitor SB431542 or E2 alone. The expression of LOX family genes induced by E2 was reduced in the Ishikawa cells treated with TGFBR inhibitor. Our results showed that E2 increased the expression of the LOX family genes, and suggest that this induction may be mediated by the TGF-β signal pathway. E2 may play a role in regulating the expression of LOX family genes.

  15. Targeting O-glycosyltransferase (OGT) to promote healing of diabetic skin wounds.

    Science.gov (United States)

    Runager, Kasper; Bektas, Meryem; Berkowitz, Paula; Rubenstein, David S

    2014-02-28

    Non-healing wounds are a significant source of morbidity. This is particularly true for diabetic patients, who tend to develop chronic skin wounds. O-GlcNAc modification of serine and threonine residues is a common regulatory post-translational modification analogous to protein phosphorylation; increased intracellular protein O-GlcNAc modification has been observed in diabetic and hyperglycemic states. Two intracellular enzymes, UDP-N-acetylglucosamine-polypeptide β-N-acetylglucosaminyl transferase (OGT) and O-GlcNAc-selective N-acetyl-β-D-glucosaminidase (OGA), mediate addition and removal, respectively, of N-acetylglucosamine (GlcNAc) from intracellular protein substrates. Alterations in O-GlcNAc modification of intracellular proteins is linked to diabetes, and the increased levels of protein O-GlcNAc modification observed in diabetic tissues may in part explain some of the observed underlying pathophysiology that contributes to delayed wound healing. We have previously shown that increasing protein O-GlcNAc modification by overexpression of OGT in murine keratinocytes results in elevated protein O-GlcNAc modification and a hyperadhesive phenotype. This study was undertaken to explore the hypothesis that increased O-GlcNAc modification of cellular proteins in diabetic skin could contribute to the delayed wound healing observed in patients with diabetic skin ulcers. In the present study, we show that human keratinocytes cultured under hyperglycemic conditions display increased levels of O-GlcNAc modification as well as a delay in the rate of wound closure in vitro. We further show that specific knockdown of OGT by RNA interference (RNAi) reverses this effect, thereby opening up the opportunity for OGT-targeted therapies to promote wound healing in diabetic patients.

  16. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid.

    Science.gov (United States)

    Koç, Cengiz; Gerlach, David; Beck, Sebastian; Peschel, Andreas; Xia, Guoqing; Stehle, Thilo

    2015-04-10

    Anionic glycopolymers known as wall teichoic acids (WTAs) functionalize the peptidoglycan layers of many Gram-positive bacteria. WTAs play central roles in many fundamental aspects of bacterial physiology, and they are important determinants of pathogenesis and antibiotic resistance. A number of enzymes that glycosylate WTA in Staphylococcus aureus have recently been identified. Among these is the glycosyltransferase TarM, a component of the WTA de novo biosynthesis pathway. TarM performs the synthesis of α-O-N-acetylglycosylated poly-5'-phosphoribitol in the WTA structure. We have solved the crystal structure of TarM at 2.4 Å resolution, and we have also determined a structure of the enzyme in complex with its substrate UDP-GlcNAc at 2.8 Å resolution. The protein assembles into a propeller-like homotrimer in which each blade contains a GT-B-type glycosyltransferase domain with a typical Rossmann fold. The enzymatic reaction retains the stereochemistry of the anomeric center of the transferred GlcNAc-moiety on the polyribitol backbone. TarM assembles into a trimer using a novel trimerization domain, here termed the HUB domain. Structure-guided mutagenesis experiments of TarM identify residues critical for enzyme activity, assign a putative role for the HUB in TarM function, and allow us to propose a likely reaction mechanism.

  17. Biosynthesis of natural and novel C-glycosylflavones utilising recombinant Oryza sativa C-glycosyltransferase (OsCGT) and Desmodium incanum root proteins.

    Science.gov (United States)

    Hao, B; Caulfield, J C; Hamilton, M L; Pickett, J A; Midega, C A O; Khan, Z R; Wang, J; Hooper, A M

    2016-05-01

    The rice C-glycosyltransferase (OsCGT) is one of only a small number of characterised plant C-glycosyltransferases (CGT) known. The enzyme C-glucosylates a 2-hydroxyflavanone substrate with UDP-glucose as the sugar donor to produce C-glucosyl-2-hydroxyflavanones. We tested substrate specificity of the enzyme, using synthetic 2-hydroxyflavanones, and showed it has the potential to generate known natural CGFs that have been isolated from rice and also other plants. In addition, we synthesised novel, unnatural 2-hydroxyflavanone substrates to test the B-ring chemical space of substrate accepted by the OsCGT and demonstrated the OsCGT capacity as a synthetic reagent to generate significant quantities of known and novel CGFs. Many B-ring analogues are tolerated within a confined steric limit. Finally the OsCGT was used to generate novel mono-C-glucosyl-2-hydroxyflavanones as putative biosynthetic intermediates to examine the potential of Desmodium incanum biosynthetic CGTs to produce novel di-C-glycosylflavones, compounds implicated in the allelopathic biological activity of Desmodium against parasitic weeds from the Striga genus.

  18. Expression of the familial Mediterranean fever gene and activity of the C5a inhibitor in human primary fibroblast cultures.

    Science.gov (United States)

    Matzner, Y; Abedat, S; Shapiro, E; Eisenberg, S; Bar-Gil-Shitrit, A; Stepensky, P; Calco, S; Azar, Y; Urieli-Shoval, S

    2000-07-15

    Familial Mediterranean fever (FMF) is an inherited disease whose manifestations are acute but reversible attacks of sterile inflammation affecting synovial and serosal spaces. The FMF gene (MEFV) was recently cloned, and it codes for a protein (pyrin/marenostrin) homologous to known nuclear factors. We previously reported the deficient activity of a C5a/interleukin (IL)-8 inhibitor, a physiologic regulator of inflammatory processes, in FMF serosal and synovial fluids. We now describe the concomitant expression of MEFV and C5a/IL-8-inhibitor activity in primary cultures of human fibroblasts. Fibroblasts grown from synovial and peritoneal tissues displayed C5a/IL-8-inhibitor activity that could be further induced with phorbol myristate acetate (PMA) and IL-1 beta. Very low levels of chemotactic inhibitor were evident in skin fibroblast cultures or in peritoneal and skin fibroblasts obtained from FMF patients. MEFV was expressed in peritoneal and skin fibroblasts at a lower level than in neutrophils and could be further induced by PMA and IL-1 beta. In the FMF cultures, the MEFV transcript carried the M694V mutation, consistent with the genetic defect found in patients with this disease. MEFV was also expressed in other cell lines that do not produce C5a/IL-8 inhibitor. These findings suggest that human primary fibroblast cultures express MEFV and produce C5a/IL-8-inhibitor activity. The interrelationship between pyrin, the MEFV product, and the C5a/IL-8 inhibitor requires further investigation. (Blood. 2000;96:727-731)

  19. Ruthenibacterium lactatiformans gen. nov., sp. nov., an anaerobic, lactate-producing member of the family Ruminococcaceae isolated from human faeces.

    Science.gov (United States)

    Shkoporov, Andrei N; Chaplin, Andrei V; Shcherbakova, Victoria A; Suzina, Natalia E; Kafarskaia, Lyudmila I; Bozhenko, Vladimir K; Efimov, Boris A

    2016-08-01

    Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1T and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1ω9, C18 : 1ω9 aldehyde, C16 : 0 and C16 : 1ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4-56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans FaeT, 91.3/91.2 % with Gemmiger formicilis ATCC 27749T and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768T. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae, for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1T (=DSM 100348T=VKM B-2901T).

  20. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    Faris Azzouni

    2012-01-01

    Full Text Available Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.

  1. Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family

    Directory of Open Access Journals (Sweden)

    Chaikuad Apirat

    2012-06-01

    Full Text Available Abstract Backround Aspartyl aminopeptidase (DNPEP, with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.

  2. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  3. Seeking Pathways to a Coordinated System of Health and Human Services for High-risk Urban Children and Families: The Rochester, New York Experience.

    Science.gov (United States)

    Weitzman, M; Doniger, A S; Partner, S F

    1994-01-01

    The Rochester, New York community has undergone major changes over the past 20 years. Like many other industrial areas, it has seen an erosion of its manufacturing base and a flight of employment opportunities and population from the city to the suburbs. While commonly misperceived as an affluent, white-collar community, in reality there are many families, particularly within the city of Rochester, that are afflicted by some of the most devastating health and social problems facing the United States today.(1) It was against this backdrop that, in 1991, an ongoing effort was begun to develop a system of coordinated health and human services to more effectively address the needs of Rochester's children and families. As a first step, a study was conducted to obtain a detailed picture of the current service system in Rochester; lay out a series of recommendations to improve collaboration and communication; and foster coordinated and integrated services for high-risk youth and families in the community. Key indicators of child and family health were collected, collated, and analyzed, and extensive interviews were conducted with humanservice and medical providers, government officials, education professionals, and parents. This paper describes the process that was used in the study and the recommendations that were included in the final report, which is intended to create a framework for the creation of a comprehensive, needs-based health care system for impoverished and at-risk children and families, including the effective integration of health services into the human service network.

  4. The multiple sclerosis-associated retrovirus and its HERV-W endogenous family: a biological interface between virology, genetics, and immunology in human physiology and disease.

    Science.gov (United States)

    Dolei, Antonina; Perron, Hervé

    2009-01-01

    This mini-review summarizes current knowledge of MSRV (multiple sclerosis-associated retrovirus), founder member of the type W family of human endogenous retroviruses (HERVs), its pathogenic potential and association with diseases. As retrotransposable elements, HERVs behave differently from stable genes, and cannot be studied with "Mendelian genetics" concepts only. They also display complex interactions with other HERV families, and with classical viruses. These concepts may contribute to unravelling the etiopathogenesis of complex diseases such as multiple sclerosis, schizophrenia, and other chronic multifactorial diseases.

  5. The miR-200 family and its targets regulate type II cell differentiation in human fetal lung.

    Science.gov (United States)

    Benlhabib, Houda; Guo, Wei; Pierce, Brianne M; Mendelson, Carole R

    2015-09-11

    Type II cell differentiation and expression of the major surfactant protein, SP-A, in mid-gestation human fetal lung (HFL) are induced by cAMP and inhibited by TGF-β. cAMP induction of SP-A promoter activity is mediated by increased phosphorylation and DNA binding of thyroid transcription factor-1 (TTF-1/Nkx2.1), a master regulator of lung development. To further define mechanisms for developmental induction of surfactant synthesis in HFL, herein, we investigated the potential roles of microRNAs (miRNAs, miRs). To identify and characterize differentially regulated miRNAs in mid-gestation HFL explants during type II pneumocyte differentiation in culture, we performed miRNA microarray of RNA from epithelial cells isolated from mid-gestation HFL explants before and after culture with or without Bt2cAMP. Interestingly, the miR-200 family was significantly up-regulated during type II cell differentiation; miR-200 induction was inversely correlated with expression of known targets, transcription factors ZEB1/2 and TGF-β2. miR-200 antagonists inhibited TTF-1 and surfactant proteins and up-regulated TGF-β2 and ZEB1 expression in type II cells. Overexpression of ZEB1 in type II cells decreased DNA binding of endogenous TTF-1, blocked cAMP stimulation of surfactant proteins, and inhibited miR-200 expression, whereas cAMP markedly inhibited ZEB1/2 and TGF-β. Importantly, overexpression of ZEB1 or miR-200 antagonists in HFL type II cells also inhibited LPCAT1 and ABCA3, enzymes involved in surfactant phospholipid synthesis and trafficking, and blocked lamellar body biogenesis. Our findings suggest that the miR-200 family and ZEB1, which exist in a double-negative feedback loop regulated by TGF-β, serve important roles in the developmental regulation of type II cell differentiation and function in HFL. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with the penicillin-binding protein 3 (PBP3), FtsW and FtsN

    NARCIS (Netherlands)

    Derouaux, Adeline; Wolf, Benoît; Fraipont, Claudine; Breukink, E.J.; Nguyen-Distèche, Martine; Terrak, Mohammed

    2008-01-01

    The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three

  7. The gene encoding human intestinal trefoil factor (TFF3) is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family

    Energy Technology Data Exchange (ETDEWEB)

    Chinery, R. [Royal College of Surgeons of England, London (United Kingdom); Williamson, J.; Poulsom, R. [Imperial Cancer Research Fund, London (United Kingdom)

    1996-03-01

    The gene coding for human intestinal trefoil factor (hITF), a recently described cellular motogen produced by gastrointestinal goblet cells and epithelia elsewhere, is a member of the rapidly growing trefoil peptide family. In a rodent-human somatic cell hybrid panel, the hITF (HGMW-approved symbol TFF3) genomic locus segregated with human chromosome 21q. Fluorescence in situ hybridization with a 2.1-kb genomic probe of the hITF gene mapped this locus more precisely to the q22.3 region. Triple fluorescence in situ hybridization, together with physical mapping of human genomic DNA using pulsed-field gel electrophoresis, revealed that the hITF gene is tightly linked to those encoding the other known human trefoil peptides, namely the breast cancer estrogen-inducable gene pS2 (BCEI) and human spasmolytic polypeptide (hSP/SML1). This gene family could become a useful marker for the genetic and physical mapping of chromosome 21 and for a better definition of the region involved in the clinical phenotype of several genetic diseases. 17 refs., 2 figs.

  8. Modification of Pseudomonas aeruginosa Pa5196 type IV Pilins at multiple sites with D-Araf by a novel GT-C family Arabinosyltransferase, TfpW.

    Science.gov (United States)

    Kus, Julianne V; Kelly, John; Tessier, Luc; Harvey, Hanjeong; Cvitkovitch, Dennis G; Burrows, Lori L

    2008-11-01

    Pseudomonas aeruginosa Pa5196 produces type IV pilins modified with unusual alpha1,5-linked d-arabinofuranose (alpha1,5-D-Araf) glycans, identical to those in the lipoarabinomannan and arabinogalactan cell wall polymers from Mycobacterium spp. In this work, we identify a second strain of P. aeruginosa, PA7, capable of expressing arabinosylated pilins and use a combination of site-directed mutagenesis, electrospray ionization mass spectrometry (MS), and electron transfer dissociation MS to identify the exact sites and extent of pilin modification in strain Pa5196. Unlike previously characterized type IV pilins that are glycosylated at a single position, those from strain Pa5196 were modified at multiple sites, with modifications of alphabeta-loop residues Thr64 and Thr66 being important for normal pilus assembly. Trisaccharides of alpha1,5-D-Araf were the principal modifications at Thr64 and Thr66, with additional mono- and disaccharides identified on Ser residues within the antiparallel beta sheet region of the pilin. TfpW was hypothesized to encode the pilin glycosyltransferase based on its genetic linkage to the pilin, weak similarity to membrane-bound GT-C family glycosyltransferases (which include the Mycobacterium arabinosyltransferases EmbA/B/C), and the presence of characteristic motifs. Loss of TfpW or mutation of key residues within the signature GT-C glycosyltransferase motif completely abrogated pilin glycosylation, confirming its involvement in this process. A Pa5196 pilA mutant complemented with other Pseudomonas pilins containing potential sites of modification expressed nonglycosylated pilins, showing that TfpW's pilin substrate specificity is restricted. TfpW is the prototype of a new type IV pilin posttranslational modification system and the first reported gram-negative member of the GT-C glycosyltransferase family.

  9. Human IgG1 Responses to Surface Localised Schistosoma mansoni Ly6 Family Members Drop following Praziquantel Treatment

    Science.gov (United States)

    Chalmers, Iain W.; Fitzsimmons, Colin M.; Brown, Martha; Pierrot, Christine; Jones, Frances M.; Wawrzyniak, Jakub M.; Fernandez-Fuentes, Narcis; Tukahebwa, Edridah M.; Dunne, David W.; Khalife, Jamal; Hoffmann, Karl F.

    2015-01-01

    Background The heptalaminate-covered, syncytial tegument is an important anatomical adaptation that enables schistosome parasites to maintain long-term, intravascular residence in definitive hosts. Investigation of the proteins present in this surface layer and the immune responses elicited by them during infection is crucial to our understanding of host/parasite interactions. Recent studies have revealed a number of novel tegumental surface proteins including three (SmCD59a, SmCD59b and Sm29) containing uPAR/Ly6 domains (renamed SmLy6A SmLy6B and SmLy6D in this study). While vaccination with SmLy6A (SmCD59a) and SmLy6D (Sm29) induces protective immunity in experimental models, human immunoglobulin responses to representative SmLy6 family members have yet to be thoroughly explored. Methodology/Principal Findings Using a PSI-BLAST-based search, we present a comprehensive reanalysis of the Schistosoma mansoni Ly6 family (SmLy6A-K). Our examination extends the number of members to eleven (including three novel proteins) and provides strong evidence that the previously identified vaccine candidate Sm29 (renamed SmLy6D) is a unique double uPAR/Ly6 domain-containing representative. Presence of canonical cysteine residues, signal peptides and GPI-anchor sites strongly suggest that all SmLy6 proteins are cell surface-bound. To provide evidence that SmLy6 members are immunogenic in human populations, we report IgG1 (as well as IgG4 and IgE) responses against two surface-bound representatives (SmLy6A and SmLy6B) within a cohort of S. mansoni-infected Ugandan males before and after praziquantel treatment. While pre-treatment IgG1 prevalence for SmLy6A and SmLy6B differs amongst the studied population (7.4% and 25.3% of the cohort, respectively), these values are both higher than IgG1 prevalence (2.7%) for a sub-surface tegumental antigen, SmTAL1. Further, post-treatment IgG1 levels against surface-associated SmLy6A and SmLy6B significantly drop (p = 0.020 and p < 0

  10. Human IgG1 Responses to Surface Localised Schistosoma mansoni Ly6 Family Members Drop following Praziquantel Treatment.

    Directory of Open Access Journals (Sweden)

    Iain W Chalmers

    Full Text Available The heptalaminate-covered, syncytial tegument is an important anatomical adaptation that enables schistosome parasites to maintain long-term, intravascular residence in definitive hosts. Investigation of the proteins present in this surface layer and the immune responses elicited by them during infection is crucial to our understanding of host/parasite interactions. Recent studies have revealed a number of novel tegumental surface proteins including three (SmCD59a, SmCD59b and Sm29 containing uPAR/Ly6 domains (renamed SmLy6A SmLy6B and SmLy6D in this study. While vaccination with SmLy6A (SmCD59a and SmLy6D (Sm29 induces protective immunity in experimental models, human immunoglobulin responses to representative SmLy6 family members have yet to be thoroughly explored.Using a PSI-BLAST-based search, we present a comprehensive reanalysis of the Schistosoma mansoni Ly6 family (SmLy6A-K. Our examination extends the number of members to eleven (including three novel proteins and provides strong evidence that the previously identified vaccine candidate Sm29 (renamed SmLy6D is a unique double uPAR/Ly6 domain-containing representative. Presence of canonical cysteine residues, signal peptides and GPI-anchor sites strongly suggest that all SmLy6 proteins are cell surface-bound. To provide evidence that SmLy6 members are immunogenic in human populations, we report IgG1 (as well as IgG4 and IgE responses against two surface-bound representatives (SmLy6A and SmLy6B within a cohort of S. mansoni-infected Ugandan males before and after praziquantel treatment. While pre-treatment IgG1 prevalence for SmLy6A and SmLy6B differs amongst the studied population (7.4% and 25.3% of the cohort, respectively, these values are both higher than IgG1 prevalence (2.7% for a sub-surface tegumental antigen, SmTAL1. Further, post-treatment IgG1 levels against surface-associated SmLy6A and SmLy6B significantly drop (p = 0.020 and p < 0.001, respectively when compared to rising Ig

  11. Does human resource management improve family planning service quality? Analysis from the Kenya Service Provision Assessment 2010.

    Science.gov (United States)

    Thatte, Nandita; Choi, Yoonjoung

    2015-04-01

    Human resource (HR) management is a priority for health systems strengthening in developing countries, yet few studies have empirically examined associations with service quality. The purpose of this study was to assess the relationship between HR management and family planning (FP) service quality. Data came from the 2010 Kenya Service Provision Assessment, a nationally representative health facility assessment. In total, 912 FP consultations from 301 facilities were analysed. Four indices were created to measure quality on reproductive history taking, physical examination, sexually transmitted infections prevention and pill/injectable specific counselling. HR management variables included training in the past year, any and supportive (i.e. with feedback, technical updates and discussion) in-person supervision in the past 6 months and having a written job description. Multivariate linear regression analyses were conducted to estimate coefficients of HR management variables on each of the four quality indices, adjusting for background characteristics of clients, provider and facilities. The level of service quality ranged from 16 to 53 out of a maximum score of 100 across the indices. Fifty-two per cent of consultations were done by providers who received supportive in-person supervision in the previous 6 months. In 23% and 38% of consultations, the provider was trained in the past year and had a written job description, respectively. Multivariate analyses indicated that having a written job description was associated with higher service quality in history taking, physical examination and the pill/injectable specific counselling. Other HR management variables were not significantly associated with service quality. Having a written job description was significantly associated with higher service quality and may be a useful tool for strengthening management practices. The details of such job descriptions and the quality of other management indicators should be

  12. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Qin FU; Chen HE; Zheng-rong MAO

    2013-01-01

    Epstein-Barr virus (EBV),a human gammaherpesvirus carried by more than 90% of the world's population,is associated with malignant tumors such as Burkitt's lymphoma (BL),Hodgkin lymphoma,post-transplant lymphoma,extra-nodal natural killer/T cell lymphoma,and nasopharyngeal and gastric carcinomas in immune-compromised patients.In the process of infection,EBV faces challenges:the host cell environment is harsh,and the survival and apoptosis of host cells are precisely regulated.Only when host cells receive sufficient survival signals may they immortalize.To establish efficiently a lytic or long-term latent infection,EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways.This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors,which decide the fate of the host cell.The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown.Still,EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host.We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.

  13. Functional analysis of human Na~+/K~+-ATPase familial or sporadic hemiplegic migraine mutations expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Susan; Spiller; Thomas; Friedrich

    2014-01-01

    AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit’s C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.

  14. Increased expression of atrogenes and TWEAK family members after severe burn injury in nonburned human skeletal muscle.

    Science.gov (United States)

    Merritt, Edward K; Thalacker-Mercer, Anna; Cross, James M; Windham, Samuel T; Thomas, Steven J; Bamman, Marcas M

    2013-01-01

    Severe burn induces rapid skeletal muscle proteolysis after the injury, which persists for up to 1 year and results in skeletal muscle atrophy despite dietary and rehabilitative interventions. The purpose of this research was to determine acute changes in gene expression of skeletal muscle mass regulators postburn injury. Specimens were obtained for biopsy from the vastus lateralis of a nonburned leg of eight burned subjects (6M, 2F: 34.8 ± 2.7 years: 29.9 ± 3.1% TBSA burn) at 5.1 ± 1.1 days postburn injury and from matched controls. mRNA expression of cytokines and receptors in the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) families, and the ubiquitin proteasome E3 ligases, atrogin-1 and MuRF-1, was determined. TNF receptor 1A was over 3.5-fold higher in burn. Expression of TNF-like weak inducer of apoptosis and its receptor were over 1.6 and 6.0-fold higher in burn. IL-6, IL-6 receptor, and glycoprotein 130 were elevated in burned subjects with IL-6 receptor over 13-fold higher. The level of suppressor of cytokine signaling-3 was also increased nearly 6-fold in burn. Atrogin-1 and MuRF-1 were more than 4- and 3-fold higher in burn. These results demonstrate for the first time that severe burn in humans has a remarkable impact on gene expression in skeletal muscle of a nonburned limb of genes that promote inflammation and proteolysis. Because these changes likely contribute to the acute skeletal muscle atrophy in areas not directly affected by the burn, in the future it will be important to determine the responsible systemic cues.

  15. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  16. Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R

    NARCIS (Netherlands)

    Passtoors, W.M.; Boer, J.M.; Goeman, J.G.; Van den Akker, E.B.; Deelen, J.; Zwaan, B.J.; Scarborough, A.; Van der Breggen, R.; Vossen, R.H.A.M.; et al.

    2012-01-01

    The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial longevity and healthy aging, we performed a genome-wide gene ex

  17. Expression analysis of the CLCA gene family in mouse and human with emphasis on the nervous system

    NARCIS (Netherlands)

    M. Piirsoo (Marko); D. Meijer (Daniëlle); T. Timmusk (Tnis)

    2009-01-01

    textabstractBackground. Members of the calcium-activated chloride channel (CLCA) gene family have been suggested to possess a variety of functions including cell adhesion and tumor suppression. Expression of CLCA family members has mostly been analyzed in non-neural tissues. Here we describe the exp

  18. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  19. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases

    Energy Technology Data Exchange (ETDEWEB)

    Marcotte, Douglas J.; Liu, Yu-Ting; Arduini, Robert M.; Hession, Catherine A.; Miatkowski, Konrad; Wildes, Craig P.; Cullen, Patrick F.; Hong, Victor; Hopkins, Brian T.; Mertsching, Elisabeth; Jenkins, Tracy J.; Romanowski, Michael J.; Baker, Darren P.; Silvian, Laura F. (Sunesis); (Biogen)

    2010-11-15

    Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 {angstrom} resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 {angstrom} resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.

  20. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  1. Comparative analysis of GT14/GT14-like family genes in Arabidopsis, Oryza, Populus, Sorghum and Vitis

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Chuyu [ORNL; Li, Ting [ORNL; Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Yang, Xiaohan [ORNL

    2011-01-01

    Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.

  2. Identification of a single cytosine base insertion mutation at Arg-597 of the beta subunit of the human epithelial sodium channel in a family with Liddle's disease.

    Science.gov (United States)

    Inoue, T; Okauchi, Y; Matsuzaki, Y; Kuwajima, K; Kondo, H; Horiuchi, N; Nakao, K; Iwata, M; Yokogoshi, Y; Shintani, Y; Bando, H; Saito, S

    1998-06-01

    We describe a family with Liddle's disease caused by a novel mutation of the beta subunit of the human epithelial sodium channel (ENaC). A 15-year-old Japanese female was referred to our outclinic because of hypertension. The physical examination showed no abnormal findings except mild hypertension, but the laboratory data revealed low levels of plasma renin activity, plasma aldosterone and serum potassium. A comprehensive analysis of steroid hormones showed only high levels of urinary free cortisol and 17-hydroxycorticosteroids. During loading tests, blood pressure and serum potassium responded well to triamterene and slightly to spironolactone, but did not respond to dexamethasone. In addition, the normal ratio of tetrahydrocortisol plus 5alpha-tetrahydrocortisol to tetrahydrocortisone in a 24 h urinary excretion test strongly suggested a diagnosis of Liddle's disease rather than apparent mineralocorticoid excess syndrome. DNA sequence analysis of members of this family revealed a single cytosine base insertion at Arg-597 of the beta human ENaC in the proband and her mother, leading to a loss of the last 34 amino acids from the normally encoded protein as the result of a frameshift. We conclude that a de novo cytosine insertion into the final exon of the C-terminus of the beta human ENaC is responsible for Liddle's disease in this Japanese family.

  3. Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations.

    Science.gov (United States)

    Ardèvol, Albert; Rovira, Carme

    2015-06-24

    Carbohydrate-active enzymes such as glycoside hydrolases (GHs) and glycosyltransferases (GTs) are of growing importance as drug targets. The development of efficient competitive inhibitors and chaperones to treat diseases related to these enzymes requires a detailed knowledge of their mechanisms of action. In recent years, sophisticated first-principles modeling approaches have significantly advanced in our understanding of the catalytic mechanisms of GHs and GTs, not only the molecular details of chemical reactions but also the significant implications that just the conformational dynamics of a sugar ring can have on these mechanisms. Here we provide an overview of the progress that has been made in the past decade, combining molecular dynamics simulations with density functional theory to solve these sweet mysteries of nature.

  4. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica.

    Science.gov (United States)

    Chen, Dawei; Sun, Lili; Chen, Ridao; Xie, Kebo; Yang, Lin; Dai, Jungui

    2016-04-18

    A green and cost-effective process for the convenient synthesis of acylphloroglucinol 3-C-glucosides from 2-O-glucosides was exploited using a novel C-glycosyltransferase (MiCGTb) from Mangifera indica. Compared with previously characterized CGTs, MiCGTb exhibited unique de-O-glucosylation promiscuity and high regioselectivity toward structurally diverse 2-O-glucosides of acylphloroglucinol and achieved high yields of C-glucosides even with a catalytic amount of uridine 5'-diphosphate (UDP). These findings demonstrate for the first time the significant potential of a single-enzyme approach to the synthesis of bioactive C-glucosides from both natural and unnatural acylphloroglucinol 2-O-glucosides.

  5. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge.

    Science.gov (United States)

    Nol, Pauline; Olsen, Steven C; Rhyan, Jack C; Sriranganathan, Nammalwar; McCollum, Matthew P; Hennager, Steven G; Pavuk, Alana A; Sprino, Phillip J; Boyle, Stephen M; Berrier, Randall J; Salman, Mo D

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosyltransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further, work is needed for development of an effective brucellosis vaccine for use in elk.

  6. The Schistosoma mansoni tegumental-allergen-like (TAL protein family: influence of developmental expression on human IgE responses.

    Directory of Open Access Journals (Sweden)

    Colin M Fitzsimmons

    Full Text Available BACKGROUND: A human IgE response to Sm22.6 (a dominant IgE target in Schistosoma mansoni is associated with the development of partial immunity. Located inside the tegument, the molecule belongs to a family of proteins from parasitic platyhelminths, the Tegument-Allergen-Like proteins (TALs. In addition to containing dynein-light-chain domains, these TALs also contain EF-hand domains similar to those found in numerous EF-hand allergens. METHODOLOGY/PRINCIPAL FINDINGS: S. mansoni genome searches revealed 13 members (SmTAL1-13 within the species. Recent microarray data demonstrated they have a wide range of life-cycle transcriptional profiles. We expressed SmTAL1 (Sm22.6, SmTAL2, 3, 4, 5 and 13 as recombinant proteins and measured IgE and IgG4 in 200 infected males (7-60 years from a schistosomiasis endemic region in Uganda. For SmTAL1 and 3 (transcribed in schistosomula through adult-worms and adult-worms, respectively and SmTAL5 (transcribed in cercariae through adult-worms, detectable IgE responses were rare in 7-9 year olds, but increased with age. At all ages, IgE to SmTAL2 (expressed constitutively, was rare while anti-SmTAL2 IgG4 was common. Levels of IgE and IgG4 to SmTAL4 and 13 (transcribed predominantly in the cercariae/skin stage were all low. CONCLUSIONS: We have not measured SmTAL protein abundance or exposure in live parasites, but the antibody data suggests to us that, in endemic areas, there is priming and boosting of IgE to adult-worm SmTALs by occasional death of long-lived worms, desensitization to egg SmTALs through continuous exposure to dying eggs and low immunogenicity of larval SmTALs due to immunosuppression in the skin by the parasite. Of these, it is the gradual increase in IgE to the worm antigens that parallels age-dependent immunity seen in endemic areas.

  7. Absence of mutations in four genes encoding for congenital cataract and expressed in the human brain in Tunisian families with cataract and mental retardation

    Directory of Open Access Journals (Sweden)

    Chograni Manèl

    2011-11-01

    Full Text Available Abstract Background To identify the genetic defect associated with autosomal recessive congenital cataract (ARCC, mental retardation (MR and ARCC, MR and microcephaly present in most patients in four Tunisian consanguineous families. Methods We screened four genes implicated in congenital cataract by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Among its three genes PAX6, PITX3 and HSF4 are expressed in human brain and one gene LIM2 encodes for the protein MP20 that interact with the protein galectin-3 expressed in human brain and plays a crucial role in its development. All genes were screened by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Results We report no mutation in the four genes of congenital cataract and its flanking regions. Only variations that did not segregate with the studied phenotypes (ARCC associated to MR, ARCC associated with MR and microcephaly are reported. We detected three intronic variations in PAX6 gene: IVS4 -274insG (intron 4, IVS12 -174G>A (intron12 in the four studied families and IVS4 -195G>A (intron 4 in two families. Two substitutions polymorphisms in PITX3 gene: c.439 C>T (exon 3 and c.930 C>A (exon4 in one family. One intronic variation in HSF4 gene: IVS7 +93C>T (intron 7 identified in one family. And three intronic substitutions in LIM2 gene identified in all four studied families: IVS2 -24A>G (intron 2, IVS4 +32C>T (intron 4 and c.*15A>C (3'-downstream sequence. Conclusion Although the role of the four studied genes: PAX6, PITX3, HSF4 and LIM2 in both ocular and central nervous system development, we report the absence of mutations in all studied genes in four families with phenotypes associating cataract, MR and microcephaly.

  8. Marriage and family therapists' comfort working with lesbian and gay male clients: the influence of religious practices and support for lesbian and gay male human rights.

    Science.gov (United States)

    Green, Mary S; Murphy, Megan J; Blumer, Markie L C

    2010-01-01

    The purpose of this study was to explore potential influences on marriage and family therapists' comfort level when working with lesbian and gay male clients, including sex, age, race, sexual orientation, political orientation, religious practices of the therapist, as well as the level of support for lesbian and gay male human rights. Participants in this study were 199 experienced therapists. Results indicated that higher levels of religious practices were related to lower levels of support for lesbian and gay male human rights and to lower levels of comfort working with lesbian and gay male clients. When support for lesbian and gay male human rights was considered, the level of religious practices was no longer predictive of comfort working with lesbian and gay male clients.

  9. Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells.

    Science.gov (United States)

    Falco, Michela; Marcenaro, Emanuela; Romeo, Elisa; Bellora, Francesca; Marras, Daniele; Vély, Frédéric; Ferracci, Géraldine; Moretta, Lorenzo; Moretta, Alessandro; Bottino, Cristina

    2004-06-01

    NK-T-B antigen (NTBA) is a CD2 family member that functions as a coreceptor in human NK cell activation. Several receptor/ligand interactions occur between different members of this molecular family. In this study, in order to identify the natural ligand of NTBA, we produced a chimeric protein formed by the NTBA extracellular region fused with the Fc portion of human IgG1 (termed NTBA-Fc*). NTBA-Fc* specifically binds to NTBA cell transfectants but not to cells transfected with other CD2 family members including CD2, CD48, CD84, CD150, CD229, and CD244. Moreover, NTBA-Fc* also binds to NTBA(+) but not to NTBA(-) T cell lines. Enzyme-linked immunosorbent assays, plasmon resonance analysis, as well as NTBA-Fc*-mediated down-regulation of NTBA surface expression further confirmed the occurrence of NTBA/NTBA homophilic interaction. Functionally, in NK cells, NTBA-Fc* promoted a strong production of IFN-gamma and TNF-alpha. Moreover, NTBA-transfected targets displayed increased susceptibility to NK-mediated killing as compared to untransfected cells and this effect was specifically inhibited by anti-NTBA mAb. Altogether our data indicate that NTBA is characterized by self recognition.

  10. Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets.

    Science.gov (United States)

    Ezumi, Y; Shindoh, K; Tsuji, M; Takayama, H

    1998-07-20

    We have previously shown that uncharacterized glycoprotein VI (GPVI), which is constitutively associated and coexpressed with Fc receptor gamma chain (FcRgamma) in human platelets, is essential for collagen-stimulated tyrosine phosphorylation of FcRgamma, Syk, and phospholipase Cgamma2 (PLCgamma2), leading to platelet activation. Here we investigated involvement of the Src family in the proximal signals through the GPVI-FcRgamma complex, using the snake venom convulxin from Crotalus durissus terrificus, which specifically recognizes GPVI and activates platelets through cross-linking GPVI. Convulxin-coupled beads precipitated the GPVI-FcRgamma complex from platelet lysates. Collagen and convulxin induced tyrosine phosphorylation of FcRgamma, Syk, and PLCgamma2 and recruited tyrosine-phosphorylated Syk to the GPVI-FcRgamma complex. Using coprecipitation methods with convulxin-coupled beads and antibodies against FcRgamma and the Src family, we showed that Fyn and Lyn, but not Yes, Src, Fgr, Hck, and Lck, were physically associated with the GPVI-FcRgamma complex irrespective of stimulation. Furthermore, Fyn was rapidly activated by collagen or cross-linking GPVI. The Src family-specific inhibitor PP1 dose-dependently inhibited collagen- or convulxin-induced tyrosine phosphorylation of proteins including FcRgamma, Syk, and PLCgamma2, accompanied by a loss of aggregation and ATP release reaction. These results indicate that the Src family plays a critical role in platelet activation via the collagen receptor GPVI-FcRgamma complex.

  11. A Comprehensive Catalog of Human KRAB-associated Zinc Finger Genes: Insights into the Evolutionary History of a Large Family of Transcriptional Repressors

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, S; Baggott, D M; Hamilton, A T; Tran-Gyamfi, M; Yang, S; Kim, J; Gordon, L; Branscomb, E; Stubbs, L

    2005-09-30

    Krueppel-type zinc finger (ZNF) motifs are prevalent components of transcription factor proteins in all eukaryotic species. In mammals, most ZNF proteins comprise a single class of transcriptional repressors in which a chromatin interaction domain, called the Krueppel-associated box (KRAB) is attached to a tandem array of DNA-binding zinc-finger motifs. KRAB-ZNF loci are specific to tetrapod vertebrates, but have expanded dramatically in numbers through repeated rounds of segmental duplication to create a gene family with hundreds of members in mammals. To define the full repertoire of human KRAB-ZNF proteins, we searched the human genome for key motifs and used them to construct and manually curate gene models. The resulting KRAB-ZNF gene catalog includes 326 known genes, 243 of which were structurally corrected by manual annotation, and 97 novel KRAB-ZNF genes; this single family therefore comprises 20% of all predicted human transcription factor genes. Many of the genes are alternatively spliced, yielding a total of 743 distinct predicted proteins. Although many human KRAB-ZNF genes are conserved in mammals, at least 136 and potentially more than 200 genes of this type are primate-specific including many recent segmental duplicates. KRAB-ZNF genes are active in a wide variety of human tissues suggesting roles in many key biological processes, but most member genes remain completely uncharacterized. Because of their sheer numbers, wide-ranging tissue-specific expression patterns, and remarkable evolutionary divergence we predict that KRAB-ZNF transcription factors have played critical roles in crafting many aspects of human biology, including both deeply conserved and primate-specific traits.

  12. Families and family therapy in Hong Kong.

    Science.gov (United States)

    Tse, Samson; Ng, Roger M K; Tonsing, Kareen N; Ran, Maosheng

    2012-04-01

    Family therapy views humans not as separate entities, but as embedded in a network of relationships, highlighting the reciprocal influences of one's behaviours on one another. This article gives an overview of family demographics and the implementation of family therapy in Hong Kong. We start with a review of the family demographics in Hong Kong and brief notes on families in mainland China. Demographics show that the landscape has changed markedly in the past decade, with more cross-border marriages, an increased divorce rate, and an ageing overall population - all of which could mean that there is increasing demand for professional family therapy interventions. However, only a limited number of professionals are practising the systems-based approach in Hong Kong. Some possible reasons as to why family therapy is not well disseminated and practised are discussed. These reasons include a lack of mental health policy to support family therapy, a lack of systematic family therapy training, and a shortage of skilled professionals. Furthermore, challenges in applying the western model in Chinese culture are also outlined. We conclude that more future research is warranted to investigate how family therapy can be adapted for Chinese families.

  13. Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library

    NARCIS (Netherlands)

    Hageman, Jurre; Kampinga, Harm H.

    In this manuscript, we describe the generation of a gene library for the expression of HSP110/HSPH, HSP70/HSPA and HSP40/DNAJ members. First, the heat shock protein (HSP) genes were collected from the gene databases and the gene families were analyzed for expression patterns, heat inducibility,

  14. Dissolved families

    DEFF Research Database (Denmark)

    Christoffersen, Mogens

    The situation in the family preceding a family separation is studied here, to identify risk factors for family dissolution. Information registers covering prospective statistics about health aspects, demographic variables, family violence, self-destructive behaviour, unemployment, and the spousal...

  15. Dissolved families

    DEFF Research Database (Denmark)

    Christoffersen, Mogens

    The situation in the family preceding a family separation is studied here, to identify risk factors for family dissolution. Information registers covering prospective statistics about health aspects, demographic variables, family violence, self-destructive behaviour, unemployment, and the spousal...

  16. Family Life

    Science.gov (United States)

    ... With Family and Friends > Family Life Request Permissions Family Life Approved by the Cancer.Net Editorial Board , ... your outlook on the future. Friends and adult family members The effects of cancer on your relationships ...

  17. Evidence of human papillomavirus vaccine effectiveness in reducing genital warts: an analysis of California public family planning administrative claims data, 2007-2010.

    Science.gov (United States)

    Bauer, Heidi M; Wright, Glenn; Chow, Joan

    2012-05-01

    Because of the rapid development of genital warts (GW) after infection, monitoring GW trends may provide early evidence of population-level human papillomavirus (HPV) vaccine effectiveness. Trends in GW diagnoses were assessed using public family planning administrative data. Between 2007 and 2010, among females younger than 21 years, these diagnoses decreased 35% from 0.94% to 0.61% (P(trend) < .001). Decreases were also observed among males younger than 21 years (19%); and among females and males ages 21-25 (10% and 11%, respectively). The diagnoses stabilized or increased among older age groups. HPV vaccine may be preventing GW among young people.

  18. Human Capital Spillovers in Families: Do Parents Learn from or Lean on Their Children? NBER Working Paper No. 17235

    Science.gov (United States)

    Kuziemko, Ilyana

    2011-01-01

    I develop a model in which a child's acquisition of a given form of human capital incentivizes adults in his household to either learn from him (if children act as teachers then adults' cost of learning the skill falls) or lean on him (if children's human capital substitutes for that of adults in household production then adults' benefit of…

  19. Cloning of human RTEF-1, a transcriptional enhancer factor-1-related gene preferentially expressed in skeletal muscle: evidence for an ancient multigene family.

    Science.gov (United States)

    Stewart, A F; Richard, C W; Suzow, J; Stephan, D; Weremowicz, S; Morton, C C; Adra, C N

    1996-10-01

    Transcriptional Enhancer Factor-1 (TEF-1) is a transcription factor required for cardiac muscle gene activation. Since ablation of TEF-1 does not abolish cardiac gene expression, we sought to identify a human gene related to TEF-1 (RTEF-1) that might also participate in cardiac gene regulation. A human heart cDNA library was screened to obtain a full-length RTEF-1 cDNA. Fluorescence in situ hybridization assigned the RTEF-1 gene to chromosome 12p13.2-p13.3. In contrast, PCR screening of human/rodent cell hybrid panels identified TEF-1 on chromosome 11p15.2, between D11S1315 and D11S1334, extending a region of known synteny between human chromosomes 11 and 12 and arguing for an ancient divergence between these two closely related genes. Northern blot analysis revealed a striking similarity in the tissue distribution of RTEF-1 and TEF-1 mRNAs; skeletal muscle showed the highest abundance of both mRNAs, with lower levels detected in pancreas, placenta, and heart. Phylogenetic analysis of all known TEF-1-related proteins identified human RTEF-1 as one of four vertebrate members of this multigene family and further suggests that these genes diverged in the earliest metazoan ancestors.

  20. National Survey of Family Growth

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Survey of Family Growth (NSFG) gathers information on family life, marriage and divorce, pregnancy, infertility, use of contraception, and men's and...

  1. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  2. α环糊精葡萄糖基转移酶催化合成α熊果苷%α-Arbutin synthesis by α-cyclodextrin glycosyltransferase

    Institute of Scientific and Technical Information of China (English)

    赵如奎; 吴剑荣; 詹晓北; 朱莉

    2015-01-01

    以对苯二酚和麦芽糊精为底物,通过α环糊精葡萄糖基转移酶和淀粉葡萄糖苷酶的两步酶法反应体系催化合成α熊果苷。优化后的催化条件:以葡萄糖当量( DE)值为8%~10%的麦芽糊精作为供体底物,麦芽糊精60 g/L,对苯二酚150 mmol/L,缓冲液pH 6�0,在40℃下反应24 h。在此反应条件下,α熊果苷的产量为3�17 g/L,对苯二酚转化率为7�77%。通过萃取法对α熊果苷进行了初步分离,再经高效液相色谱电喷雾串联质谱技术进行了结构测定,确定产物为α熊果苷。%α⁃Arbutin was synthesized by α⁃cyclodextrin glycosyltransferase and amyloglucosidase, with hydroquinone and maltodextrin as substrates. The reactions were carried out in an aqueous system containing hydroquinone as acceptor and maltodextrin as donor substrate molecules. A two⁃step enzymatic reaction system comprising of α⁃cyclodextrin glycosyltransferase and amyloglucosidase helped to attain a high yield ofα⁃arbutin. The reaction conditions were optimized with single factor experiments. The optimal conditions for catalysis were obtained:hydrolysis of maltodextrin dextrose equivalent ( DE) value between 8% and 10% as donor substrate, hydroquinone 150 mmol/L, maltodextrin 60 g/L, buffer pH 6�0, incubation at 40 ℃ for 24 h. The yield of α⁃arbutin was 3�17 g/L under the optimized reaction conditions ,the yield of hydroquinone was 7�77%.α⁃arbutin was purified by organic solvent extraction and the major glycoside product was identified as α⁃arbutin on the basis of high performance liquid chromatography⁃electrospray tandem mass spectrometry.

  3. Tensin3 is a negative regulator of cell migration and all four Tensin family members are downregulated in human kidney cancer.

    Directory of Open Access Journals (Sweden)

    Danuta Martuszewska

    Full Text Available BACKGROUND: The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4 are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC, as well as probed the biological function of Tensin3. PRINCIPAL FINDINGS: Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50-100% reduction versus normal kidney cortex; P<0.001. Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration. CONCLUSIONS: Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring

  4. Human endogenous retrovirus family HERV-K(HML-2) RNA transcripts are selectively packaged into retroviral particles produced by the human germ cell tumor line Tera-1 and originate mainly from a provirus on chromosome 22q11.21.

    Science.gov (United States)

    Ruprecht, Klemens; Ferreira, Humberto; Flockerzi, Aline; Wahl, Silke; Sauter, Marlies; Mayer, Jens; Mueller-Lantzsch, Nikolaus

    2008-10-01

    The human germ cell tumor line Tera-1 produces retroviral particles which are encoded by the human endogenous retrovirus family HERV-K(HML-2). We show here, by quantitative reverse transcriptase PCR, that HML-2 gag and env RNA transcripts are selectively packaged into Tera-1 retroviral particles, whereas RNAs from cellular housekeeping genes and from other HERV families (HERV-H and HERV-W) are nonselectively copackaged. Assignment of cloned HML-2 gag and env cDNAs from Tera-1 retroviral particles to individual HML-2 loci in the human genome demonstrated that HML-2 RNA transcripts packaged into Tera-1 retroviral particles originate almost exclusively from an HML-2 provirus on chromosome 22q11.21. Based on relative cloning frequencies, this provirus was the most active among a total of eight transcribed HML-2 loci identified in Tera-1 cells. These data suggest that at least one HML-2 element, that is, the HML-2 provirus on 22q11.21, has retained the capacity for packaging RNA into HML-2-encoded retroviral particles. Given its elevated transcriptional activity and the presence of a full-length Gag open reading frame, the 22q11.21 HML-2 provirus may also significantly contribute to Gag protein and thus particle production in Tera-1 cells. Our findings provide important clues to the generation and biological properties of HML-2-encoded particles. In addition, copackaging of non-HML-2 HERV transcripts in HML-2-encoded particles should inform the debate about endogenous retroviral particles putatively encoded by non-HML-2 HERV families that have previously been described for other human diseases, such as multiple sclerosis.

  5. Physical and Functional Association of the Src Family Kinases Fyn and Lyn with the Collagen Receptor Glycoprotein VI-Fc Receptor γ Chain Complex on Human Platelets

    Science.gov (United States)

    Ezumi, Yasuharu; Shindoh, Keisuke; Tsuji, Masaaki; Takayama, Hiroshi

    1998-01-01

    We have previously shown that uncharacterized glycoprotein VI (GPVI), which is constitutively associated and coexpressed with Fc receptor γ chain (FcRγ) in human platelets, is essential for collagen-stimulated tyrosine phosphorylation of FcRγ, Syk, and phospholipase Cγ2 (PLCγ2), leading to platelet activation. Here we investigated involvement of the Src family in the proximal signals through the GPVI–FcRγ complex, using the snake venom convulxin from Crotalus durissus terrificus, which specifically recognizes GPVI and activates platelets through cross-linking GPVI. Convulxin-coupled beads precipitated the GPVI–FcRγ complex from platelet lysates. Collagen and convulxin induced tyrosine phosphorylation of FcRγ, Syk, and PLCγ2 and recruited tyrosine-phosphorylated Syk to the GPVI–FcRγ complex. Using coprecipitation methods with convulxin-coupled beads and antibodies against FcRγ and the Src family, we showed that Fyn and Lyn, but not Yes, Src, Fgr, Hck, and Lck, were physically associated with the GPVI–FcRγ complex irrespective of stimulation. Furthermore, Fyn was rapidly activated by collagen or cross-linking GPVI. The Src family–specific inhibitor PP1 dose-dependently inhibited collagen- or convulxin-induced tyrosine phosphorylation of proteins including FcRγ, Syk, and PLCγ2, accompanied by a loss of aggregation and ATP release reaction. These results indicate that the Src family plays a critical role in platelet activation via the collagen receptor GPVI–FcRγ complex. PMID:9670039

  6. Recombinant vacuolar iron transporter family homologue PfVIT from human malaria-causing Plasmodium falciparum is a Fe2+/H+exchanger

    Science.gov (United States)

    Labarbuta, Paola; Duckett, Katie; Botting, Catherine H.; Chahrour, Osama; Malone, John; Dalton, John P.; Law, Christopher J.

    2017-01-01

    Vacuolar iron transporters (VITs) are a poorly understood family of integral membrane proteins that can function in iron homeostasis via sequestration of labile Fe2+ into vacuolar compartments. Here we report on the heterologous overexpression and purification of PfVIT, a vacuolar iron transporter homologue from the human malaria-causing parasite Plasmodium falciparum. Use of synthetic, codon-optimised DNA enabled overexpression of functional PfVIT in the inner membrane of Escherichia coli which, in turn, conferred iron tolerance to the bacterial cells. Cells that expressed PfVIT had decreased levels of total cellular iron compared with cells that did not express the protein. Qualitative transport assays performed on inverted vesicles enriched with PfVIT revealed that the transporter catalysed Fe2+/H+ exchange driven by the proton electrochemical gradient. Furthermore, the PfVIT transport function in this system did not require the presence of any Plasmodium-specific factor such as post-translational phosphorylation. PfVIT purified as a monomer and, as measured by intrinsic protein fluorescence quenching, bound Fe2+ in detergent solution with low micromolar affinity. This study of PfVIT provides material for future detailed biochemical, biophysical and structural studies to advance understanding of the vacuolar iron transporter family of membrane proteins from important human pathogens. PMID:28198449

  7. Identification and functional analysis of three distinct mutations in the human galactose-1-phosphate uridyltransferase gene associated with galactosemia in a single family

    Energy Technology Data Exchange (ETDEWEB)

    Fridovich-Keil, J.L.; Langley, S.D.; Mazur, L.A.; Lennon, J.C.; Dembure, P.O.; Elsas, L.J. II [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We have identified three mutations associated with transferase-deficiency galactosemia in a three-generation family including affected members in two generations and have modeled all three mutations in a yeast-expression system. A sequence of pedigree, biochemical, and molecular analyses of the galactose-1-phosphate uridyltransferase (GALT) enzyme and genetic locus in both affected and carrier individuals revealed three distinct base substitutions in this family, two (Q188R and S135L) that had been reported previously and one (V151A) that was novel. Biochemical analyses of red-blood-cell lysates from the relevant family members suggested that each of these mutations was associated with dramatic impairment of GALT activity in these cells. While this observation was consistent with our previous findings concerning the Q188R mutation expressed both in humans and in a yeast-model system, it was at odds with a report by Reichardt and colleagues, indicating that in their COS cell-expression system the S135L substitution behaved as a neutral polymorphism. To address this apparent paradox, as well as to investigate the functional significance of the newly identified V151A substitution, all three mutations were recreated by site-directed mutagenesis of the otherwise wild-type human GALT sequence and were expressed both individually and in the appropriate allelic combinations in a GALT-deficient strain of the yeast Saccharomyces cerevisiae. The results of these yeast-modeling studies were fully consistent with the patient data, leading us to conclude that, at least within the context of the cell types studied, in the homozygous state Q188R is a mutation that eliminates GALT activity, and S135L and V151A are both mutations that impair GALT activity to <6% of wild-type values. 22 refs., 5 figs.

  8. Numidum massiliense gen. nov., sp. nov., a new member of the Bacillaceae family isolated from the human gut.

    Science.gov (United States)

    Tidjani Alou, M; Nguyen, T-T; Armstrong, N; Rathored, J; Khelaifia, S; Raoult, D; Fournier, P-E; Lagier, J-C

    2016-07-01

    Numidum massiliense gen. nov., sp. nov., strain mt3(T) is the type strain of Numidum gen. nov., a new genus within the family Bacillaceae. This strain was isolated from the faecal flora of a Tuareg boy from Algeria. We describe this Gram-positive facultative anaerobic rod and provide its complete annotated genome sequence according to the taxonogenomics concept. Its genome is 3 755 739 bp long and contains 3453 protein-coding genes and 64 RNA genes, including eight rRNA genes.

  9. Numidum massiliense gen. nov., sp. nov., a new member of the Bacillaceae family isolated from the human gut

    OpenAIRE

    Tidjani Alou, M.; T.-T. Nguyen; Armstrong, N.; Rathored, J.; Khelaifia, S.; Raoult, D.; P.-E. Fournier; J.-C. Lagier

    2016-01-01

    Numidum massiliense gen. nov., sp. nov., strain mt3T is the type strain of Numidum gen. nov., a new genus within the family Bacillaceae. This strain was isolated from the faecal flora of a Tuareg boy from Algeria. We describe this Gram-positive facultative anaerobic rod and provide its complete annotated genome sequence according to the taxonogenomics concept. Its genome is 3 755 739 bp long and contains 3453 protein-coding genes and 64 RNA genes, including eight rRNA genes.

  10. Numidum massiliense gen. nov., sp. nov., a new member of the Bacillaceae family isolated from the human gut

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-07-01

    Full Text Available Numidum massiliense gen. nov., sp. nov., strain mt3T is the type strain of Numidum gen. nov., a new genus within the family Bacillaceae. This strain was isolated from the faecal flora of a Tuareg boy from Algeria. We describe this Gram-positive facultative anaerobic rod and provide its complete annotated genome sequence according to the taxonogenomics concept. Its genome is 3755739 bp long and contains 3453 protein-coding genes and 64 RNA genes, including eight rRNA genes.

  11. Overexpression of a glycosyltransferase gene SrUGT74G1 from Stevia improved growth and yield of transgenic Arabidopsis by catechin accumulation.

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2014-03-01

    Steviol glycoside and gibberellin biosynthetic routes are known as divergent branches of a common origin in Stevia. A UDP-glycosyltransferase encoded by SrUGT74G1 catalyses the conversion of steviolbioside into stevioside in Stevia rebaudiana leaves. In the present study, transgenic Arabidopsis thaliana overexpressing SrUGT74G1 cDNA from Stevia were developed to check the probability of stevioside biosynthesis in them. However, stevioside accumulation was not evident in transgenics. Also, the transgenic Arabidopsis showed no change in GA3 content on SrUGT74G1 overexpression. Surprisingly, significant accumulation of catechin was noticed in transgenics. The transgenics showed a considerable increase in shoot length, root length and rosette area. An increase in free radical scavenging activity of transgenics was noticed. Moreover, the seed yield of transgenics was also increased by 6-15% than control. Additionally, variation in trichome branching pattern on leaf surface of transgenics was observed. The trichome branching pattern was also validated by exogenous catechin exposure (10, 50, 100 ng ml(-1)) to control plants. Hence, present study reports the probable role of SrUGT74G1 from Stevia in catechin accumulation of transgenic Arabidopsis thaliana. Thus, detailed study in present perspective has revealed the role of Stevia SrUGT74G1 gene in trichome branching pattern, improved vegetative growth, scavenging potential and seed yield by catechin accumulation in transgenic Arabidopsis.

  12. Expression and Purification of Glycosyltransferases in Pichia Pastoris: Towards Improving the Migration of Stem Cells by Enhancing Surface Expression of Sialyl Lewis X

    KAUST Repository

    Al-Amoodi, Asma S.

    2017-05-01

    Recruitment of circulating cells towards target sites is primarily dependent on E-selectin receptor/ligand adhesive interactions. Glycosyltransferase (GTs) are involved in the creation of E-selectin ligands. A sialofucosylated terminal tetrasaccharide like glycan structure known as sialyl Lewis x (sLex), is the most recognized ligand by selectins. This structure is found on the surface of cancer cells and leukocytes but is often absent on the surface of many adult stem cell populations. In order to synthesize sLex, GTs must be endogenously expressed and remain active within the cells. Generally, these stem cells express terminal sialylated lactosamine structures on their glycoproteins which require the addition of alpha-(1,3)-fucose to be converted into an E-selectin ligand. There are a number of fucosyltransferases (FUTs) that are able to modify terminal lactosamine structures to create sLex such as FUT6. In this work we focused on expressing and purifying active recombinant FUTs as a tool to help create sLex structures on the surface of adult stem cells in order to enhance their migration.

  13. The neomycin biosynthetic gene cluster of Streptomyces fradiae NCIMB 8233: genetic and biochemical evidence for the roles of two glycosyltransferases and a deacetylase.

    Science.gov (United States)

    Fan, Qingzhi; Huang, Fanglu; Leadlay, Peter F; Spencer, Jonathan B

    2008-09-21

    An efficient protocol has been developed for the genetic manipulation of Streptomyces fradiae NCIMB 8233, which produces the 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic neomycin. This has allowed the in vivo analysis of the respective roles of the glycosyltransferases Neo8 and Neo15, and of the deacetylase Neo16 in neomycin biosynthesis. Specific deletion of each of the neo8, neo15 and neo16 genes confirmed that they are all essential for neomycin biosynthesis. The pattern of metabolites produced by feeding putative pathway intermediates to these mutants provided unambiguous support for a scheme in which Neo8 and Neo15, whose three-dimensional structures are predicted to be highly similar, have distinct roles: Neo8 catalyses transfer of N-acetylglucosamine to 2-DOS early in the pathway, while Neo15 catalyses transfer of the same aminosugar to ribostamycin later in the pathway. The in vitro substrate specificity of Neo15, purified from recombinant Escherichia coli, was fully consistent with these findings. The in vitro activity of Neo16, the only deacetylase so far recognised in the neo gene cluster, showed that it is capable of acting in tandem with both Neo8 and Neo15 as previously proposed. However, the deacetylation of N-acetylglucosaminylribostamycin was still observed in a strain deleted of the neo16 gene and fed with suitable pathway precursors, providing evidence for the existence of a second enzyme in S. fradiae with this activity.

  14. A putative bactoprenol glycosyltransferase, CsbB, in Bacillus subtilis activates SigM in the absence of co-transcribed YfhO.

    Science.gov (United States)

    Inoue, Hiromi; Suzuki, Daisuke; Asai, Kei

    2013-06-21

    Bacteria are equipped with complex cell surface structures, such as cell walls. How they maintain cell surface integrity through cell wall metabolism during growth and adaptation to unfavorable environmental conditions is still elusive. In the Gram-positive soil bacterium Bacillus subtilis, one extracytoplasmic function (ECF) sigma factor, SigM, is believed to play a primary role in cell surface integrity. Here, we find that expression of CsbB, which is known to be involved in the extracellular stress response, causes constitutive activation of SigM when YfhO, a membrane protein with unknown function, is lost. CsbB has similarity with the well-characterized bactoprenol glucosyltransferase GtrB found in Gram-negative bacteria. Substitution of a single amino acid residue at the putative catalytic site of CsbB abolishes this constitutive activation, and expression of Escherichia coli GtrB in B. subtilis causes similar effects as expression of CsbB, suggesting that SigM is activated by the glycosyltransferase activity of CsbB. A comparison with the Gtr system in Gram-negative bacteria suggests that accumulation of glycosylated bactoprenol catalyzed by CsbB reduces the bactoprenol pool in the absence of YfhO. Reduction of bactoprenol synthesis causes similar effects as expression of CsbB. We propose that it is the shortage of available bactoprenol within a cell that induces SigM activity.

  15. Age distribution patterns of human gene families: divergent for Gene Ontology categories and concordant between different subcellular localizations.

    Science.gov (United States)

    Liu, Gangbiao; Zou, Yangyun; Cheng, Qiqun; Zeng, Yanwu; Gu, Xun; Su, Zhixi

    2014-04-01

    The age distribution of gene duplication events within the human genome exhibits two waves of duplications along with an ancient component. However, because of functional constraint differences, genes in different functional categories might show dissimilar retention patterns after duplication. It is known that genes in some functional categories are highly duplicated in the early stage of vertebrate evolution. However, the correlations of the age distribution pattern of gene duplication between the different functional categories are still unknown. To investigate this issue, we developed a robust pipeline to date the gene duplication events in the human genome. We successfully estimated about three-quarters of the duplication events within the human genome, along with the age distribution pattern in each Gene Ontology (GO) slim category. We found that some GO slim categories show different distribution patterns when compared to the whole genome. Further hierarchical clustering of the GO slim functional categories enabled grouping into two main clusters. We found that human genes located in the duplicated copy number variant regions, whose duplicate genes have not been fixed in the human population, were mainly enriched in the groups with a high proportion of recently duplicated genes. Moreover, we used a phylogenetic tree-based method to date the age of duplications in three signaling-related gene superfamilies: transcription factors, protein kinases and G-protein coupled receptors. These superfamilies were expressed in different subcellular localizations. They showed a similar age distribution as the signaling-related GO slim categories. We also compared the differences between the age distributions of gene duplications in multiple subcellular localizations. We found that the distribution patterns of the major subcellular localizations were similar to that of the whole genome. This study revealed the whole picture of the evolution patterns of gene functional

  16. Cloning and characterization of a human orphan family C G-protein coupled receptor GPRC5D

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, A A; Sheppard, P O

    2001-01-01

    predicted to encode an additional subtype. The full length coding regions of mouse mGprc5d and human GPRC5D were cloned and shown to contain predicted open reading frames of 300 and 345 amino acids, respectively. GPRC5D has seven putative transmembrane segments and is expressed in the cell membrane...

  17. Family and other social factors contributing to differences in human immunodeficiency virus infection between South Africa and Bangladesh

    NARCIS (Netherlands)

    van Ginneken, J.K.S.

    2008-01-01

    The objective of this study is to draw attention to the importance of social, cultural, economic and political factors as causes of the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic in South Africa by comparing the current situation in this country with Banglade

  18. Family and other social factors contributing to differences in human immunodeficiency virus infection between South Africa and Bangladesh

    NARCIS (Netherlands)

    van Ginneken, J.K.S.

    2008-01-01

    The objective of this study is to draw attention to the importance of social, cultural, economic and political factors as causes of the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic in South Africa by comparing the current situation in this country with Banglade

  19. Family Therapy

    Science.gov (United States)

    ... may be credentialed by the American Association for Marriage and Family Therapy (AAMFT). Family therapy is often short term. ... challenging situations in a more effective way. References Marriage and family therapists: The friendly mental health professionals. American Association ...

  20. Familial hypertriglyceridemia

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000397.htm Familial hypertriglyceridemia To use the sharing features on this page, please enable JavaScript. Familial hypertriglyceridemia is a common disorder passed down through families. ...

  1. Family Meals

    Science.gov (United States)

    ... Teaching Kids to Be Smart About Social Media Family Meals KidsHealth > For Parents > Family Meals Print A ... even more important as kids get older. Making Family Meals Happen It can be a big challenge ...

  2. Family Arguments

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Arguments Page Content Article Body We seem to ...

  3. Family History

    Science.gov (United States)

    Your family history includes health information about you and your close relatives. Families have many factors in common, including their genes, ... as heart disease, stroke, and cancer. Having a family member with a disease raises your risk, but ...

  4. Src Family Kinase Inhibitors Antagonize the Toxicity of Multiple Serotypes of Botulinum Neurotoxin in Human Embryonic Stem Cell-Derived Motor Neurons

    Science.gov (United States)

    Burnett, James C.; Nuss, Jonathan E.; Wanner, Laura M.; Peyser, Brian D.; Du, Hao T.; Gomba, Glenn Y.; Kota, Krishna P.; Panchal, Rekha G.; Gussio, Rick; Kane, Christopher D.; Tessarollo, Lino

    2015-01-01

    Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons. PMID:25782580

  5. Familial Dysautonomia (FD Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Directory of Open Access Journals (Sweden)

    Sharon Lefler

    Full Text Available A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD, affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS. Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  6. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation.

    Science.gov (United States)

    Lefler, Sharon; Cohen, Malkiel A; Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.

  7. The transport mechanism of the human sodium/myo-inositol transporter 2 (SMIT2/SGLT6), a member of the LeuT structural family.

    Science.gov (United States)

    Sasseville, Louis J; Longpré, Jean-Philippe; Wallendorff, Bernadette; Lapointe, Jean-Yves

    2014-09-01

    The sodium/myo-inositol transporter 2 (SMIT2) is a member of the SLC5A gene family, which is believed to share the five-transmembrane segment inverted repeat of the LeuT structural family. The two-electrode voltage-clamp (TEVC) technique was used to measure the steady-state and the pre-steady-state currents mediated by human SMIT2 after expression in Xenopus laevis oocytes. Phlorizin is first shown to be a poor inhibitor of pre-steady-state currents for depolarizing voltage pulse. From an up to threefold difference between the apparent ON and OFF transferred charges during a voltage pulse, we also show that a fraction of the transient current recorded for very negative potentials is not a true pre-steady-state current coming from the cotransporter conformational changes. We suggest that this transient current comes from a time-dependent leak current that can reach large amplitudes when external Na(+) concentration is reduced. A kinetic model was generated through a simulated annealing algorithm. This algorithm was used to identify the optimal connectivity among 19 different kinetic models and obtain the numerical values of the associated parameters. The proposed 5-state model includes cooperative binding of Na(+) ions, strong apparent asymmetry of the energy barriers, a rate-limiting step that is likely associated with the translocation of the empty transporter, and a turnover rate of 21 s(-1). The proposed model is a proof of concept for a novel approach to kinetic modeling of electrogenic transporters and allows insight into the transport mechanism of members of the LeuT structural family at the millisecond timescale.

  8. Utilization of the Family and Medical Leave Act in Radiology Practices According to the 2016 ACR Commission on Human Resources Workforce Survey.

    Science.gov (United States)

    Arleo, Elizabeth Kagan; Parikh, Jay R; Wolfman, Darcy; Gridley, Daniel; Bender, Claire; Bluth, Edward

    2016-12-01

    To assess gender utilization of the Family and Medical Leave Act (FMLA) in radiology practices across the United States. The Practice of Radiology Environment Database was utilized to identify U.S. practice leaders, who were asked to complete an electronic survey developed by the ACR Human Resources (HR) Commission. In 2016, new survey questions asked about number of radiologists in each practice who took FMLA, the reasons why, the average number of weeks taken, and how such absences were covered. Thirty-two percent (579/1815) of practice group leaders responded to the survey and of these, 73% (432/579) answered FMLA questions, with 15% of those (64/432) answering affirmatively that a radiologist in their practice had taken FMLA leave. Reasons for this in 2015 included to care for a newborn/adopted child (49%), because of a personal serious health condition (42%), to care for an immediate family member (8%), or for active military duty (1%). Women took a greater number of weeks of FMLA leave than men for all reasons (care of newborn/adopted child: 10.7 versus 4.7; personal serious health condition: 10.3 versus 8.0; care of immediate family member: 9.7 versus 8.7) except for military duty (24 weeks taken, all by men). At least 69% of leave time was paid, irrespective of reason for leave or gender of person taking it. Most practices (82%) made no workforce changes to cover FMLA leave. Both genders of radiologists needed absences from work for FMLA-sanctioned reasons. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Human immunodeficiency virus type 1 gp120 envelope characteristics associated with disease progression differ in family members infected with genetically similar viruses.

    Science.gov (United States)

    Baan, Elly; van der Sluis, Renée M; Bakker, Margreet E; Bekker, Vincent; Pajkrt, Dasja; Jurriaans, Suzanne; Kuijpers, Taco W; Berkhout, Ben; Wolthers, Katja C; Paxton, William A; Pollakis, Georgios

    2013-01-01

    The human immunodeficiency virus type 1 (HIV-1) envelope protein provides the primary contact between the virus and host, and is the main target of the adaptive humoral immune response. The length of gp120 variable loops and the number of N-linked glycosylation events are key determinants for virus infectivity and immune escape, while the V3 loop overall positive charge is known to affect co-receptor tropism. We selected two families in which both parents and two children had been infected with HIV-1 for nearly 10 years, but who demonstrated variable parameters of disease progression. We analysed the gp120 envelope sequence and compared individuals that progressed to those that did not in order to decipher evolutionary alterations that are associated with disease progression when individuals are infected with genetically related virus strains. The analysis of the V3-positive charge demonstrated an association between higher V3-positive charges with disease progression. The ratio between the amino acid length and the number of potential N-linked glycosylation sites was also shown to be associated with disease progression with the healthier family members having a lower ratio. In conclusion in individuals initially infected with genetically linked virus strains the V3-positive charges and N-linked glycosylation are associated with HIV-1 disease progression and follow varied evolutionary paths for individuals with varied disease progression.

  10. Immunocytochemical localization and identification of members of the pancreatic polypeptide (PP)-fold family in human thyroid C cells and medullary carcinomas.

    Science.gov (United States)

    Scopsi, L; Pilotti, S; Rilke, F

    1990-09-10

    An increasing number of regulatory peptides not coded by the calcitonin genes are known to occur in the thyroid C cells. We have now carried out light and electron microscopic immunocytochemical analyses on specimens of normal human thyroids and medullary carcinomas to establish the occurrence of members of the PP-PYY-NPY family in the C cell system. By means of site-directed immunocytochemistry we provide the first evidence that a molecule closely related to proNPY is present in normal and pathologic C cells, and is co-stored with calcitonin in the cytoplasmic dense-core granules. Preliminary observations also suggest that high levels of expression of NPY-gene products help to define a subset of tumours with a less aggressive behaviour.

  11. A cardiac-specific robotized cellular assay identified families of human ligands as inducers of PGC-1α expression and mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    Matthieu Ruiz

    Full Text Available BACKGROUND: Mitochondrial function is dramatically altered in heart failure (HF. This is associated with a decrease in the expression of the transcriptional coactivator PGC-1α, which plays a key role in the coordination of energy metabolism. Identification of compounds able to activate PGC-1α transcription could be of future therapeutic significance. METHODOLOGY/PRINCIPAL FINDINGS: We thus developed a robotized cellular assay to screen molecules in order to identify new activators of PGC-1α in a cardiac-like cell line. This screening assay was based on both the assessment of activity and gene expression of a secreted luciferase under the control of the human PGC-1α promoter, stably expressed in H9c2 cells. We screened part of a library of human endogenous ligands and steroid hormones, B vitamins and fatty acids were identified as activators of PGC-1α expression. The most responsive compounds of these families were then tested for PGC-1α gene expression in adult rat cardiomyocytes. These data highly confirmed the primary screening, and the increase in PGC-1α mRNA correlated with an increase in several downstream markers of mitochondrial biogenesis. Moreover, respiration rates of H9c2 cells treated with these compounds were increased evidencing their effectiveness on mitochondrial biogenesis. CONCLUSIONS/SIGNIFICANCE: Using our cellular reporter assay we could identify three original families, able to activate mitochondrial biogenesis both in cell line and adult cardiomyocytes. This first screening can be extended to chemical libraries in order to increase our knowledge on PGC-1α regulation in the heart and to identify potential therapeutic compounds able to improve mitochondrial function in HF.

  12. Two families with quadrupedalism, mental retardation, no speech, and infantile hypotonia (Uner Tan Syndrome Type-II; a novel theory for the evolutionary emergence of human bipedalism

    Directory of Open Access Journals (Sweden)

    Uner eTan

    2014-04-01

    Full Text Available Two consanguineous families with Uner Tan Syndrome (UTS were analyzed in relation to self-organizing processes in complex systems, and the evolutionary emergence of human bipedalism. The cases had the key symptoms of previously reported cases of UTS, such as quadrupedalism, mental retardation, and dysarthric or no speech, but the new cases also exhibited infantile hypotonia and are designated UTS Type-II. There were 10 siblings in Branch I and 12 siblings in Branch II. Of these, there were seven cases exhibiting habitual quadrupedal locomotion (QL: four deceased and three living. The infantile hypotonia in the surviving cases gradually disappeared over a period of years, so that they could sit by about 10 years, crawl on hands and knees by about 12 years. They began walking on all fours around 14 years, habitually using QL. Neurological examinations showed normal tonus in their arms and legs, no Babinski sign, brisk tendon reflexes especially in the legs, and mild tremor. The patients could not walk in a straight line, but (except in one case could stand up and maintain upright posture with truncal ataxia. Cerebello-vermial hypoplasia and mild gyral simplification were noted in their MRIs. The results of the genetic analysis were inconclusive: no genetic code could be identified as the triggering factor for the syndrome in these families. Instead, the extremely low socio-economic status of the patients was thought to play a role in the emergence of UTS, possibly by epigenetically changing the brain structure and function, with a consequent selection of ancestral neural networks for QL during locomotor development. It was suggested that UTS may be regarded as one of the unpredictable outcomes of self-organization within a complex system. It was also noted that the prominent feature of this syndrome, the diagonal-sequence habitual QL, generated an interference between ipsilateral hands and feet, as in non-human primates. It was suggested that this

  13. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system.

    Directory of Open Access Journals (Sweden)

    Alessia Galgano

    Full Text Available Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3'-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3'-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs.

  14. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system.

    Science.gov (United States)

    Galgano, Alessia; Forrer, Michael; Jaskiewicz, Lukasz; Kanitz, Alexander; Zavolan, Mihaela; Gerber, André P

    2008-09-08

    Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3'-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3'-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs.

  15. YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease.

    Science.gov (United States)

    Wang, Kainan; Degerny, Cindy; Xu, Minghong; Yang, Xiang-Jiao

    2009-02-01

    How extracellular cues are transduced to the nucleus is a fundamental issue in biology. The paralogous WW-domain proteins YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif; also known as WWTR1, for WW-domain containing transcription regulator 1) constitute a pair of transducers linking cytoplasmic signaling events to transcriptional regulation in the nucleus. A cascade composed of mammalian Ste20-like (MST) and large tumor suppressor (LATS) kinases directs multisite phosphorylation, promotes 14-3-3 binding, and hinders nuclear import of YAP and TAZ, thereby inhibiting their transcriptional coactivator and growth-promoting activities. A similar cascade regulates the trafficking and function of Yorkie, the fly orthologue of YAP. Mammalian YAP and TAZ are expressed in various tissues and serve as coregulators for transcriptional enhancer factors (TEFs; also referred to as TEADs, for TEA-domain proteins), runt-domain transcription factors (Runxs), peroxisome proliferator-activated receptor gamma (PPARgamma), T-box transcription factor 5 (Tbx5), and several others. YAP and TAZ play distinct roles during mouse development. Both, and their upstream regulators, are intimately linked to tumorigenesis and other pathogenic processes. Here, we review studies on this family of signal-responsive transcriptional coregulators and emphasize how relative sequence conservation predicates their function and regulation, to provide a conceptual framework for organizing available information and seeking new knowledge about these signal transducers.

  16. Two families with quadrupedalism, mental retardation, no speech, and infantile hypotonia (Uner Tan Syndrome Type-II); a novel theory for the evolutionary emergence of human bipedalism

    Science.gov (United States)

    Tan, Uner

    2014-01-01

    Two consanguineous families with Uner Tan Syndrome (UTS) were analyzed in relation to self-organizing processes in complex systems, and the evolutionary emergence of human bipedalism. The cases had the key symptoms of previously reported cases of UTS, such as quadrupedalism, mental retardation, and dysarthric or no speech, but the new cases also exhibited infantile hypotonia and are designated UTS Type-II. There were 10 siblings in Branch I and 12 siblings in Branch II. Of these, there were seven cases exhibiting habitual quadrupedal locomotion (QL): four deceased and three living. The infantile hypotonia in the surviving cases gradually disappeared over a period of years, so that they could sit by about 10 years, crawl on hands and knees by about 12 years. They began walking on all fours around 14 years, habitually using QL. Neurological examinations showed normal tonus in their arms and legs, no Babinski sign, brisk tendon reflexes especially in the legs, and mild tremor. The patients could not walk in a straight line, but (except in one case) could stand up and maintain upright posture with truncal ataxia. Cerebello-vermial hypoplasia and mild gyral simplification were noted in their MRIs. The results of the genetic analysis were inconclusive: no genetic code could be identified as the triggering factor for the syndrome in these families. Instead, the extremely low socio-economic status of the patients was thought to play a role in the emergence of UTS, possibly by epigenetically changing the brain structure and function, with a consequent selection of ancestral neural networks for QL during locomotor development. It was suggested that UTS may be regarded as one of the unpredictable outcomes of self-organization within a complex system. It was also noted that the prominent feature of this syndrome, the diagonal-sequence habitual QL, generated an interference between ipsilateral hands and feet, as in non-human primates. It was suggested that this may have been

  17. Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection.

    Science.gov (United States)

    Balzarini, Jan; Hatse, Sigrid; Vermeire, Kurt; Princen, Katrien; Aquaro, Stefano; Perno, Carlo-Federico; De Clercq, Erik; Egberink, Herman; Vanden Mooter, Guy; Peumans, Willy; Van Damme, Els; Schols, Dominique

    2004-10-01

    The plant lectins derived from Galanthus nivalis (Snowdrop) (GNA) and Hippeastrum hybrid (Amaryllis) (HHA) selectively inhibited a wide variety of human immunodeficiency virus type 1 (HIV-1) and HIV-2 strains and clinical (CXCR4- and CCR5-using) isolates in different cell types. They also efficiently inhibited infection of T lymphocytes by a variety of mutant virus strains. GNA and HHA markedly prevented syncytium formation between persistently infected HUT-78/HIV cells and uninfected T lymphocytes. The plant lectins did not measurably affect the antiviral activity of other clinically approved anti-HIV drugs used in the clinic when combined with these drugs. Short exposure of the lectins to cell-free virus particles or persistently HIV-infected HUT-78 cells markedly decreased HIV infectivity and increased the protective (microbicidal) activity of the plant lectins. Flow cytometric analysis and monoclonal antibody binding studies and a PCR-based assay revealed that GNA and HHA do not interfere with CD4, CXCR4, CCR5, and DC-SIGN and do not specifically bind with the membrane of uninfected cells. Instead, GNA and HHA likely interrupt the virus entry process by interfering with the virus envelope glycoprotein. HHA and GNA are odorless, colorless, and tasteless, and they are not cytotoxic, antimetabolically active, or mitogenic to human primary T lymphocytes at concentrations that exceed their antivirally active concentrations by 2 to 3 orders of magnitude. GNA and HHA proved stable at high temperature (50 degrees C) and low pH (5.0) for prolonged time periods and can be easily formulated in gel preparations for microbicidal use; they did not agglutinate human erythrocytes and were not toxic to mice when administered intravenously.

  18. Social Learning Theory and Behavioral Therapy: Considering Human Behaviors within the Social and Cultural Context of Individuals and Families.

    Science.gov (United States)

    McCullough Chavis, Annie

    2011-01-01

    This article examines theoretical thoughts of social learning theory and behavioral therapy and their influences on human behavior within a social and cultural context. The article utilizes two case illustrations with applications for consumers. It points out the abundance of research studies concerning the effectiveness of social learning theory, and the paucity of research studies regarding effectiveness and evidence-based practices with diverse groups. Providing a social and cultural context in working with diverse groups with reference to social learning theory adds to the literature for more cultural considerations in adapting the theory to women, African Americans, and diverse groups.

  19. Administration for Children and Families

    Science.gov (United States)

    ... Releases RSS Feeds Speeches Videos What is the Administration for Children & Families? The Administration for Children and Families (ACF) is a division ... Center Blog Press Releases RSS Feeds Speeches Videos Administration for Children & Families U.S. Department of Health & Human ...

  20. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity.

    Directory of Open Access Journals (Sweden)

    Matthias Stein

    Full Text Available BACKGROUND: Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. CONCLUSIONS/SIGNIFICANCE: We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.

  1. 2'-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family.

    Science.gov (United States)

    Werner, Maria; Purta, Elzbieta; Kaminska, Katarzyna H; Cymerman, Iwona A; Campbell, David A; Mittra, Bidyottam; Zamudio, Jesse R; Sturm, Nancy R; Jaworski, Jacek; Bujnicki, Janusz M

    2011-06-01

    The 5' cap of human messenger RNA consists of an inverted 7-methylguanosine linked to the first transcribed nucleotide by a unique 5'-5' triphosphate bond followed by 2'-O-ribose methylation of the first and often the second transcribed nucleotides, likely serving to modify efficiency of transcript processing, translation and stability. We report the validation of a human enzyme that methylates the ribose of the second transcribed nucleotide encoded by FTSJD1, henceforth renamed HMTR2 to reflect function. Purified recombinant hMTr2 protein transfers a methyl group from S-adenosylmethionine to the 2'-O-ribose of the second nucleotide of messenger RNA and small nuclear RNA. Neither N(7) methylation of the guanosine cap nor 2'-O-ribose methylation of the first transcribed nucleotide are required for hMTr2, but the presence of cap1 methylation increases hMTr2 activity. The hMTr2 protein is distributed throughout the nucleus and cytosol, in contrast to the nuclear hMTr1. The details of how and why specific transcripts undergo modification with these ribose methylations remains to be elucidated. The 2'-O-ribose RNA cap methyltransferases are present in varying combinations in most eukaryotic and many viral genomes. With the capping enzymes in hand their biological purpose can be ascertained.

  2. Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Xu, Qingping; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-10-01

    Membrane-attack complex/perforin (MACPF) proteins are transmembrane pore-forming proteins that are important in both human immunity and the virulence of pathogens. Bacterial MACPFs are found in diverse bacterial species, including most human gut-associated Bacteroides species. The crystal structure of a bacterial MACPF-domain-containing protein BT_3439 (Bth-MACPF) from B. thetaiotaomicron, a predominant member of the mammalian intestinal microbiota, has been determined. Bth-MACPF contains a membrane-attack complex/perforin (MACPF) domain and two novel C-terminal domains that resemble ribonuclease H and interleukin 8, respectively. The entire protein adopts a flat crescent shape, characteristic of other MACPF proteins, that may be important for oligomerization. This Bth-MACPF structure provides new features and insights not observed in two previous MACPF structures. Genomic context analysis infers that Bth-MACPF may be involved in a novel protein-transport or nutrient-uptake system, suggesting an important role for these MACPF proteins, which were likely to have been inherited from eukaryotes via horizontal gene transfer, in the adaptation of commensal bacteria to the host environment.

  3. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    Directory of Open Access Journals (Sweden)

    Petr Ponomarenko

    2017-07-01

    Full Text Available While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD. Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP. In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP

  4. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters.

    Science.gov (United States)

    Ponomarenko, Petr; Chadaeva, Irina; Rasskazov, Dmitry A; Sharypova, Ekaterina; Kashina, Elena V; Drachkova, Irina; Zhechev, Dmitry; Ponomarenko, Mikhail P; Savinkova, Ludmila K; Kolchanov, Nikolay

    2017-01-01

    While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: "What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?" Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: "What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?" As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become

  5. Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana-UGTSr involved in the synthesis of rebaudioside A.

    Science.gov (United States)

    Madhav, Harish; Bhasker, Salini; Chinnamma, Mohankumar

    2013-02-01

    The sweetness of honey leaf plant Stevia rebaudiana is attributed to steviol glycosides or steviosides, accumulated in the leaves. Steviol glycosides are diterpenoids derived from steviol as the final step of glycosylation by the marker enzyme Uridine diphosphate glycosyltransferase (UGT). Out of the eight different steviol glycosides, rebaudioside A was detected as the sweetest glycoside with reduced bitter aftertaste. The pattern of glycosylation of steviol has a crucial role in maintaining the sweetness as well as the taste perception of stevioside. Within the 12 UGTs of S. rebaudiana so far elucidated, the functional genomics of three UGTs-UGT76G1, UGT74G1 & UGT85C2 in stevioside synthesis were studied. In the present study a UGT gene of S. rebaudiana named UGTSr showing resemblance with UGT76G1 was structurally analyzed and the functional role of the recombinant UGTSr in the synthesis of rebaudioside A was ascertained. The relative expression of UGTSr by qPCR showed a higher level of expression in mature leaves than in tender. Despite the similarity of nucleotide with UGT76G1, the gene UGTSr exhibits 48 SNPs and 39 associated amino acid substitutions with remarkable variation in the secondary and tertiary structure of the protein. The helical changes, the presence of a new amino acid, novel substitutions of amino acids and the hydrogen bond in the conserved histidine and aspartame residues observed in UGTSr support its functional stability and specificity from that of other UGTs of S. rebaudiana. Based on these features UGTSr exhibits a novel status from other UGTs of S. rebaudiana.

  6. Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation

    Directory of Open Access Journals (Sweden)

    Grohmann Elisabeth

    2011-04-01

    Full Text Available Abstract Background Deletion of the glycosyltransferase bgsA in Enterococcus faecalis leads to loss of diglucosyldiacylglycerol from the cell membrane and accumulation of its precursor monoglucosyldiacylglycerol, associated with impaired biofilm formation and reduced virulence in vivo. Here we analyzed the function of a putative glucosyltransferase EF2890 designated biofilm-associated glycolipid synthesis B (bgsB immediately downstream of bgsA. Results A deletion mutant was constructed by targeted mutagenesis in E. faecalis strain 12030. Analysis of cell membrane extracts revealed a complete loss of glycolipids from the cell membrane. Cell walls of 12030ΔbgsB contained approximately fourfold more LTA, and 1H-nuclear magnetic resonance (NMR spectroscopy suggested that the higher content of cellular LTA was due to increased length of the glycerol-phosphate polymer of LTA. 12030ΔbgsB was not altered in growth, cell morphology, or autolysis. However, attachment to Caco-2 cells was reduced to 50% of wild-type levels, and biofilm formation on polystyrene was highly impaired. Despite normal resistance to cationic antimicrobial peptides, complement and antibody-mediated opsonophagocytic killing in vitro, 12030ΔbgsB was cleared more rapidly from the bloodstream of mice than wild-type bacteria. Overall, the phenotype resembles the respective deletion mutant in the bgsA gene. Our findings suggest that loss of diglucosyldiacylglycerol or the altered structure of LTA in both mutants account for phenotypic changes observed. Conclusions In summary, BgsB is a glucosyltransferase that synthesizes monoglucosyldiacylglycerol. Its inactivation profoundly affects cell membrane composition and has secondary effects on LTA biosynthesis. Both cell-membrane amphiphiles are critical for biofilm formation and virulence of E. faecalis.

  7. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Malcolm [Univ. of Georgia, Athens, GA (United States)

    2015-08-31

    Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae. This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.

  8. Iterative saturation mutagenesis of -6 subsite residues in cyclodextrin glycosyltransferase from Paenibacillus macerans to improve maltodextrin specificity for 2-O-D-glucopyranosyl-L-ascorbic acid synthesis.

    Science.gov (United States)

    Han, Ruizhi; Liu, Long; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-12-01

    2-O-d-Glucopyranosyl-l-ascorbic acid (AA-2G), a stable l-ascorbic acid derivative, is usually synthesized by cyclodextrin glycosyltransferase (CGTase), which contains nine substrate-binding subsites (from +2 to -7). In this study, iterative saturation mutagenesis (ISM) was performed on the -6 subsite residues (Y167, G179, G180, and N193) in the CGTase from Paenibacillus macerans to improve its specificity for maltodextrin, which is a cheap and easily soluble glycosyl donor for AA-2G synthesis. Site saturation mutagenesis of four sites-Y167, G179, G180, and N193-was first performed and revealed that four mutants-Y167S, G179R, N193R, and G180R-produced AA-2G yields higher than those of other mutant and wild-type CGTases. ISM was then conducted with the best positive mutant as a template. Under optimal conditions, mutant Y167S/G179K/N193R/G180R produced the highest AA-2G titer of 2.12 g/liter, which was 84% higher than that (1.15 g/liter) produced by the wild-type CGTase. Kinetics analysis of AA-2G synthesis using mutant CGTases confirmed the enhanced maltodextrin specificity and showed that compared to the wild-type CGTase, the mutants had no cyclization activity but high hydrolysis and disproportionation activities. A possible mechanism for the enhanced substrate specificity was also analyzed through structure modeling of the mutant and wild-type CGTases. These results indicated that the -6 subsite played crucial roles in the substrate binding and catalytic reactions of CGTase and that the obtained CGTase mutants, especially Y167S/G179K/N193R/G180R, are promising starting points for further development through protein engineering.

  9. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.

    Science.gov (United States)

    Wei, Wei; Wang, Pingping; Wei, Yongjun; Liu, Qunfang; Yang, Chengshuai; Zhao, Guoping; Yue, Jianmin; Yan, Xing; Zhou, Zhihua

    2015-09-01

    Ginsenosides, the main pharmacologically active natural compounds in ginseng (Panax ginseng), are mostly the glycosylated products of protopanaxadiol (PPD) and protopanaxatriol (PPT). No uridine diphosphate glycosyltransferase (UGT), which catalyzes PPT to produce PPT-type ginsenosides, has yet been reported. Here, we show that UGTPg1, which has been demonstrated to regio-specifically glycosylate the C20-OH of PPD, also specifically glycosylates the C20-OH of PPT to produce bioactive ginsenoside F1. We report the characterization of four novel UGT genes isolated from P. ginseng, sharing high deduced amino acid identity (>84%) with UGTPg1. We demonstrate that UGTPg100 specifically glycosylates the C6-OH of PPT to produce bioactive ginsenoside Rh1, and UGTPg101 catalyzes PPT to produce F1, followed by the generation of ginsenoside Rg1 from F1. However, UGTPg102 and UGTPg103 were found to have no detectable activity on PPT. Through structural modeling and site-directed mutagenesis, we identified several key amino acids of these UGTs that may play important roles in determining their activities and substrate regio-specificities. Moreover, we constructed yeast recombinants to biosynthesize F1 and Rh1 by introducing the genetically engineered PPT-producing pathway and UGTPg1 or UGTPg100. Our study reveals the possible biosynthetic pathways of PPT-type ginsenosides in Panax plants, and provides a sound manufacturing approach for bioactive PPT-type ginsenosides in yeast via synthetic biology strategies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  10. Primate-specific miR-515 family members inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia.

    Science.gov (United States)

    Zhang, Ming; Muralimanoharan, Sribalasubashini; Wortman, Alison C; Mendelson, Carole R

    2016-10-24

    Dysregulation of human trophoblast invasion and differentiation can result in preeclampsia (PE), a hypertensive disorder of pregnancy with significant morbidity and mortality for mother and offspring. miRNA microarray analysis of RNA from human cytotrophoblasts (CytT), before and after differentiation to syncytiotrophoblast (SynT) in primary culture, revealed that members of miR-515 family-including miR-515-5p, miR-519e-5p, miR-519c-3p, and miR-518f, belonging to the primate- and placenta-specific chromosome 19 miRNA cluster (C19MC)-were significantly down-regulated upon human SynT differentiation. The proto-oncogene, c-MYC, which declines during SynT differentiation, interacted with E-boxes upstream of pri-miR-515-1 and pri-miR-515-2, encoding these mRNAs, to enhance their expression. Predicted targets of miR-515-5p, known to be critical for human SynT differentiation, including hCYP19A1/aromatase P450, glial cells missing 1 (GCM1), frizzled 5 (FZD5), WNT2, Sp1, and estrogen receptor-α (ERα) mRNA, were markedly up-regulated during SynT differentiation. Notably, overexpression of miR-515-5p in cultured primary human trophoblasts impaired SynT differentiation and specifically decreased expression of hCYP19A1, GCM1, and Fzd5, which were validated as its direct targets. Interestingly, miR-515-5p levels were significantly increased in PE placentas, whereas mRNA and protein levels of targets, hCYP19A1, GCM1, and FZD5, were significantly decreased, compared with placentas of normotensive women. Thus, miR-515-5p may serve a key role in human trophoblast differentiation; its aberrant up-regulation may contribute to the pathogenesis of PE.

  11. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families

    Energy Technology Data Exchange (ETDEWEB)

    Suchi, Mariko; Mizuno, Haruo; Tsuboi, Takashi [Nagoya City Univ. Medical School (Japan)] [and others

    1997-03-01

    Uridine monophosphate (UMP) synthase is a bifunctional enzyme catalyzing the last two steps of de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase (OPRT) and orotidine-5{prime}-monophosphate decarboxylase (ODC). Loss of either enzymatic activity results in hereditary orotic aciduria, a rare autosomal recessive disorder characterized by retarded growth, anemia, and excessive urinary excretion of orotic acid. We have isolated the UMP synthase chromosomal gene from a {lambda}EMBL-3 human genomic library and report a single-copy gene spanning {approximately}15 kb. The UMP synthase genomic structure encodes six exons ranging in size from 115 bp to 672 bp, and all splicing junctions adhere to the canonical GT/AG rule. Cognate promoter elements implicated in glucocorticoid- and cAMP-mediated regulation as well as in liver-, myeloid-, and lymphocyte-specific expression are located within the 5{prime} flanking sequence. Molecular investigation of UMP synthase deficiency in a Japanese orotic aciduria patient revealed mutations R96G (A- to-G transition; nt 286) and G429R (G-to-C transversion; nt 1285) in one allele and V109G (T-to-G transversion; nt 326) in the other allele. Expression of human UMP synthase cDNAs containing these mutations in pyrimidine auxotrophic Escherichia coli and in recombinant baculovirus-infected Sf21 cells demonstrates impaired activity presumably associated with the urinary orotic acid substrate accumulations observed in vivo. We further establish the identity of two polymorphisms, G213A ({nu} = .26) and 440 Gpoly ({nu} = .27) located in exons 3 and 6, respectively, which did not significantly compromise either OPRT or ODC function. 76 refs., 5 figs., 7 tabs.

  12. Effect of natriuretic peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells.

    Science.gov (United States)

    Kohno, M; Yokokawa, K; Yasunari, K; Kano, H; Minami, M; Ueda, M; Yoshikawa, J

    1997-10-01

    The migration of medial smooth muscle cells (SMCs) into the intima is proposed to be an important process of intimal thickening in atherosclerotic lesions. The present study examined the possible effect of a novel endothelium-derived relaxing peptide, C-type natriuretic peptide (CNP), on oxidized low-density lipoprotein (LDL)-induced migration of cultured human coronary artery SMCs by the Boyden's chamber method. The effect of CNP was compared with that of atrial and brain natriuretic peptides (ANP and BNP, respectively). Oxidized LDL stimulates SMC migration in a concentration-dependent manner between 20 and 200 micrograms/mL. This stimulation was chemotactic in nature but was not chemokinetic. By contrast, native LDL was without significant activity. CNP-22 clearly inhibited SMC migration stimulated with 200 micrograms/mL oxidized LDL in a concentration-dependent manner between 10(-9) and 10(-6) mol/L. ANP-(1-28) and BNP-32 also inhibited oxidized LDL-induced SMC migration at concentrations of 10(-7) and 10(-6) mol/L, but these effects were weaker than the effect of CNP-22. Such inhibition by these natriuretic peptides was paralleled by an increase in the cellular level of cGMP. Oxidized LDL-induced migration was significantly inhibited by a stable analogue of cGMP, 8-bromo-cGMP, or an activator of the cytosolic guanylate cyclase, sodium nitroprusside. These natriuretic peptides did not suppress the cell adhesion either in the absence or presence of oxidized LDL. These data indicate that oxidized LDL stimulates migration of human coronary artery SMCs and that natriuretic peptides, especially CNP, inhibit this stimulated SMC migration, at least in part, through a cGMP-dependent process. Taken together with the finding that oxidized LDL is present in the intima, CNP may play a role as a local antimigration factor during the process of intimal thickening in hypercholesterolemia-induced coronary atherosclerosis.

  13. Molecular Cloning of a Novel cDNA From Mus Muscular BALB/c Mice Encoding Glycosyl Hydrolase Family 1: A Homolog of HumanLactase-Phlorizin Hydrolase

    Institute of Scientific and Technical Information of China (English)

    WEI HE; ZHEN-YU JI; CHENG-YU HUANG

    2006-01-01

    Objective To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. Methods Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (♂).Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. Results The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosy1 hydrolase family 1 motif important for regulating lactase intolerance. Conclusion BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  14. Destruxin B Isolated from Entomopathogenic Fungus Metarhizium anisopliae Induces Apoptosis via a Bcl-2 Family-Dependent Mitochondrial Pathway in Human Nonsmall Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chun-Chi Wu

    2013-01-01

    Full Text Available Destruxin B, isolated from entomopathogenic fungus Metarhizium anisopliae, is one of the cyclodepsipeptides with insecticidal and anticancer activities. In this study, destruxin B was extracted and purified by ion-exchange chromatography, silica gel chromatography, and semipreparative high-performance liquid chromatography. The potential anticancer effects and molecular mechanisms of destruxin B in human nonsmall cell lung cancer cell lines were characterized. Our results showed that destruxin B induced apoptotic cell death in A549 cells. This event was accompanied by the activation of caspase-2, -3, and -9. Moreover, destruxin B increased the expression level of proapoptotic molecule, PUMA, while decreased antiapoptotic molecule Mcl-1. Additionally, the translocation of Bax from cytosol to mitochondrial membrane was observed upon destruxin B treatment. Knockdown of Bax by shRNA effectively attenuated destruxin-B-triggered apoptosis in A549 cells. Interestingly, similar toxic effects and underlying mechanisms including caspase activation, upregulation of PUMA, and downregulation of Mcl-1 were also observed in a p53-null lung cancer H1299 cell line upon destruxin B treatment. Taken together, our findings suggest that destruxin-B-induced apoptosis in human nonsmall cell lung cancer cells is via a Bcl-2 family-dependent mitochondrial pathway.

  15. Identification of antithrombin-modulating genes. Role of LARGE, a gene encoding a bifunctional glycosyltransferase, in the secretion of proteins?

    Directory of Open Access Journals (Sweden)

    María Eugenia de la Morena-Barrio

    Full Text Available The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families. Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02. Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins.

  16. Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?

    Science.gov (United States)

    de la Morena-Barrio, María Eugenia; Buil, Alfonso; Antón, Ana Isabel; Martínez-Martínez, Irene; Miñano, Antonia; Gutiérrez-Gallego, Ricardo; Navarro-Fernández, José; Aguila, Sonia; Souto, Juan Carlos; Vicente, Vicente; Soria, José Manuel; Corral, Javier

    2013-01-01

    The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins. PMID:23705025

  17. Differential expression of ETS family transcription factors in NCCIT human embryonic carcinoma cells upon retinoic acid-induced differentiation.

    Science.gov (United States)

    Park, Sung-Won; Do, Hyun-Jin; Ha, Woo Tae; Han, Mi-Hee; Song, Hyuk; Uhm, Sang-Jun; Chung, Hak-Jae; Kim, Jae-Hwan

    2014-01-01

    E26 transformation-specific (ETS) transcription factors play important roles in normal and tumorigenic processes during development, differentiation, homeostasis, proliferation, and apoptosis. To identify critical ETS factor(s) in germ cell-derived cancer cells, we examined the expression patterns of the 27 ETS transcription factors in naive and differentiated NCCIT human embryonic carcinoma cells, which exhibit both pluripotent and tumorigenic characteristics. Overall, expression of ETS factors was relatively low in NCCIT cells. Among the 27 ETS factors, polyomavirus enhancer activator 3 (PEA3) and epithelium-specific ETS transcription factor-1 (ESE-1) exhibited the most significant changes in their expression levels. Western blot analysis confirmed these patterns, revealing reduced levels of PEA3 protein and elevated levels of ESE-1 protein in differentiated cells. PEA3 increased the proportion of cells in S-phase and promoted cell growth, whereas ESE-1 reduced proliferation potential. These data suggest that PEA3 and ESE-1 may play important roles in pluripotent and tumorigenic embryonic carcinoma cells. These findings contribute to our understanding of the functions of oncogenic ETS factors in germ cell-derived stem cells during processes related to tumorigenesis and pluripotency.

  18. Polyphenolic glycoconjugates from medical plants of Rosaceae/Asteraceae family protect human lymphocytes against γ-radiation-induced damage.

    Science.gov (United States)

    Szejk, Magdalena; Poplawski, Tomasz; Sarnik, Joanna; Pawlaczyk-Graja, Izabela; Czechowski, Franciszek; Olejnik, Alicja Klaudia; Gancarz, Roman; Zbikowska, Halina Malgorzata

    2017-01-01

    Radioprotective effects of the water-soluble polyphenolic glycoconjugates, isolated from flowers of Sanguisorba officinalis L.(SO) and Erigeron canadensis L.(EC), and from leaves of Fragaria vesca L. (FV) and Rubus plicatus Whe. Et N. E. (RP), against γ-radiation-induced toxicity in human peripheral blood lymphocytes were investigated. Cell treatment with glycoconjugates (1, 5 and 25μg/mL) prior exposure to 10/15Gy radiation resulted in concentration-dependent reduction of DNA damage including oxidative DNA lesions (comet assay), substantial inhibition of lipid peroxidation (TBARS) and restoration of superoxide dismutase and S-glutathione transferase activities. Glycoconjugates isolated from SO and EC ensured better protection versus these from RP and FV, with the SO product potential comparable to that of the reference quercetin. Strong antioxidant/radioprotective activity of the SO and EC glycoconjugates could be attributed to high abundance of syringol-type and ferulic acid units in their matrices, respectively. Moreover, polyphenolic glycoconjugates (25μg/mL), including RP and FV products, significantly decreased DNA damage when applied post-radiation suggesting their modulating effects on DNA repair pathways. Preliminary data on the glycoconjugate phenolic structural units, based on GLC/MS of the products of pyrolysis and in situ methylation, in relation to application of plant products as potential radioprotectors is promising and deserves further investigation.

  19. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer.

    Science.gov (United States)

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-10-13

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.

  20. Another way to teach family: family nursing game

    Directory of Open Access Journals (Sweden)

    Carla Sílvia Neves da Nova Fernandes

    2014-10-01

    Full Text Available Current paper describes the application of an innovative strategy to teach family, within a hospital context, by sensitizing nurses on the family subject through the use of a game. Given the hospitalization of a relative, the family faces changes in its dynamics caused by the crisis it is exposed to. It is the relevance for including the family within the care process. Since nurses are expected to assume a key role for which they need specific competence to intervene in families when experiencing an eventual crisis. The in-service education becomes a strategy of generating new skills and enhances human capital to improve the quality of nursing care. Considering the importance of including family in the care context, a playful tool called Family Nursing Game has been invented for teaching the family, especially by passing a model of family intervention. The strategy is based on the belief of the existence of relationship between game and learning.

  1. Identification and characterization of a new multigene family in the human MHC: A candidate autoimmune disease susceptibility element (3.8-1)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.M.; Venditti, C.P.; Chorney, M.J. [Pennsylvania State Univ. College of Medicine, Hershey, PA (United States)

    1994-09-01

    An association between idiopathic hemochromatosis (HFE) and the HLA-A3 locus has been previously well-established. In an attempt to identify potential HFE candidate genes, a genomic DNA fragment distal to the HLA-A9 breakpoint was used to screen a B cell cDNA library; a member (3.8-1) of a new multigene family, composed of five distinct genomic cross-reactive fragments, was identified. Clone 3.8-1 represents the 3{prime} end of 9.6 kb transcript which is expressed in multiple tissues including the spleen, thymus, lung and kidney. Sequencing and genome database analysis indicate that 3.8-1 is unique, with no homology to any known entries. The genomic residence of 3-8.1, defined by polymorphism analysis and physical mapping using YAC clones, appears to be absent from the genomes of higher primates, although four other cross-reactivities are maintained. The absence of this gene as well as other probes which map in the TNF to HLA-B interval, suggest that this portion of the human HMC, located between the Class I and Class III regions, arose in humans as the result of a post-speciation insertional event. The large size of the 3.8-1 gene and the possible categorization of 3.8-1 as a human-specific gene are significant given the genetic data that place an autoimmune susceptibility element for IDDM and myasthenia gravis in the precise region where this gene resides. In an attempt to isolate the 5{prime} end of this large transcript, we have constructed a cosmid contig which encompasses the genomic locus of this gene and are progressively isolating coding sequences by exon trapping.

  2. Human IFIT1 Inhibits mRNA Translation of Rubulaviruses but Not Other Members of the Paramyxoviridae Family

    Science.gov (United States)

    Young, D. F.; Andrejeva, J.; Li, X.; Inesta-Vaquera, F.; Dong, C.; Cowling, V. H.; Goodbourn, S.

    2016-01-01

    ABSTRACT We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. The IFIT1 sensitivity of PIV5 was not rescued by coinfection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. While the translations of PIV2, PIV5, and MuV mRNAs were directly inhibited by IFIT1, the translations of PIV3, SeV, and CDV mRNAs were not. Using purified human mRNA-capping enzymes, we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5′ guanosine nucleoside cap (which need not be N7 methylated) and that this sensitivity is partly abrogated by 2′O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2′O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2′-O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed. IMPORTANCE Paramyxoviruses cause a wide variety of diseases, and yet most of their genes encode structural proteins and proteins involved in their replication cycle. Thus, the amount of genetic information that determines the type of disease that paramyxoviruses cause is relatively small. One factor that will influence

  3. Regulation of the human ether-a-go-go-related gene (hERG) potassium channel by Nedd4 family interacting proteins (Ndfips).

    Science.gov (United States)

    Kang, Yudi; Guo, Jun; Yang, Tonghua; Li, Wentao; Zhang, Shetuan

    2015-11-15

    The cardiac electrical disorder long QT syndrome (LQTS) pre-disposes affected individuals to ventricular arrhythmias and sudden death. Dysfunction of the human ether-a-go-go-related gene (hERG)-encoded rapidly activating delayed rectifier K(+) channel (IKr) is a major cause of LQTS. The expression of hERG channels is controlled by anterograde trafficking of newly synthesized channels to and retrograde degradation of existing channels from the plasma membrane. We have previously shown that the E3 ubiquitin (Ub) ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2) targets the PY motif of hERG channels to initiate channel degradation. Although both immature and mature hERG channels contain the PY motif, Nedd4-2 selectively mediates the degradation of mature hERG channels. In the present study, we demonstrate that Nedd4-2 is directed to specific cellular compartments by the Nedd4 family interacting proteins, Nedd4 family-interacting protein 1 (Ndfip1) and Ndfip2. Ndfip1 is primarily localized in the Golgi apparatus where it recruits Nedd4-2 to mediate the degradation of mature hERG proteins during channel trafficking to the plasma membrane. Although Ndfip2 directs Nedd4-2 to the Golgi apparatus, it also recruits Nedd4-2 to the multivesicular bodies (MVBs), which may impair MVB function and impede the degradation of mature hERG proteins mediated by Nedd4-2. These findings extend our understanding of hERG channel regulation and provide information which may be useful for the rescue of impaired hERG function in LQTS.

  4. Familial gigantism

    NARCIS (Netherlands)

    W.W. de Herder (Wouter)

    2012-01-01

    textabstractFamilial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.

  5. Familial gigantism

    Directory of Open Access Journals (Sweden)

    Wouter W. de Herder

    2012-01-01

    Full Text Available Familial GH-secreting tumors are seen in association with three separate hereditary clinical syndromes: multiple endocrine neoplasia type 1, Carney complex, and familial isolated pituitary adenomas.

  6. The impact of human leukocyte antigen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family

    Energy Technology Data Exchange (ETDEWEB)

    Bade-Döding, Christina; Theodossis, Alex; Gras, Stephanie; Kjer-Nielsen, Lars; Eiz-Vesper, Britta; Seltsam, Axel; Huyton, Trevor; Rossjohn, Jamie; McCluskey, James; Blasczyk, Rainer (Springe); (Hannover-MED); (Monash); (Melbourne)

    2011-09-28

    Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to a natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal p{Omega} anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide

  7. Familial dermographism.

    Science.gov (United States)

    Jedele, K B; Michels, V V

    1991-05-01

    Urticaria in response to various physical stimuli has been reported in sporadic and familial patterns. The most common of these physical urticarias, dermographism, is a localized urticarial response to stroking or scratching of the skin and has not been reported previously to be familial. A four-generation family with dermographism, probably inherited as an autosomal dominant trait, is presented along with a discussion of sporadic dermographism and other types of familial physical urticarias.

  8. 75 FR 55588 - Family-to-Family Health Information Center Program

    Science.gov (United States)

    2010-09-13

    ... HUMAN SERVICES Health Resources and Services Administration Family-to-Family Health Information Center... Resources and Services Administration (HRSA) will be transferring the Florida Family-to-Family Health Information Center (F2F HIC) grant (H84MC00006) from the Florida Institute of Family Involvement (FIFI) to the...

  9. 75 FR 55587 - Family-to-Family Health Information Center Program

    Science.gov (United States)

    2010-09-13

    ... HUMAN SERVICES Health Resources and Services Administration Family-to-Family Health Information Center... Resources and Services Administration (HRSA) will be transferring the Vermont Family-to-Family Health... Family Network, Inc. (VFN) in Williston, due to an organizational merger involving these entities and to...

  10. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

    NARCIS (Netherlands)

    Thebault, S.C.; Lemonnier, L.; Bidaux, G.; Flourakis, M.; Bavencoffe, A.; Gordienko, D.; Roudbaraki, M.; Delcourt, P.; Panchin, Y.; Shuba, Y.; Skryma, R.; Prevarskaya, N.

    2005-01-01

    Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the pro

  11. Genetic markers of a Munc13 protein family member, BAIAP3, are gender specifically associated with anxiety and benzodiazepine abuse in mice and humans.

    Science.gov (United States)

    Wojcik, Sonja M; Tantra, Martesa; Stepniak, Beata; Man, Kwun-Nok M; Müller-Ribbe, Katja; Begemann, Martin; Ju, Anes; Papiol, Sergi; Ronnenberg, Anja; Gurvich, Artem; Shin, Yong; Augustin, Iris; Brose, Nils; Ehrenreich, Hannelore

    2013-07-24

    Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I-associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders.

  12. [Establishment of breast cancer MDA-MB-231 cell line stably over-expressing human TOX high mobility group box family member 3].

    Science.gov (United States)

    Han, Cuicui; Yue, Liling; Yang, Ying; Jian, Baiyu; Ma, Liwei; Liu, Jicheng

    2014-11-01

    To construct the lentiviral expression vector of human TOX high mobility group box family member 3 (TOX3) gene and the MDA-MB-231 cell line which stably over-expresses TOX3 gene. TOX3 gene was synthesized by the gene synthesis method and amplified by PCR, and then cloned into pLVEF-1a/GFP-Puro vector to construct pLVEF-1a/GFP-Puro-TOX3 lentiviral vector. After restriction enzyme analysis and sequence identification, the lentiviral vector was packaged and the titer was detected. The human breast cancer MDA-MB-231 cells were transfected with the recombinant lentiviral vector and cultured selectively by puromycin to acquire stably transfected cells. MDA-MB-231 cells which expressed GFP were observed by fluorescence microcopy. And the expression levels of TOX3 mRNA and protein in transfected MDA-MB-231 cells were detected by real-time quantitative PCR(qRT-PCR) and Western blotting, respectively. Restriction enzyme digestion and sequence analysis demonstrated that the lentiviral expression vectors of pLVEF-1a/GFP-Puro and pLVEF-1a/GFP-Puro-TOX3 were successfully constructed, and the viral titers were respectively 2×10(8) TU/mL and 1×10(8) TU/mL after lentiviral packaging. And after being transfected, more than 95% cells expressed GFP under a fluorescence microscope. The results of qRT-PCR and Western blotting showed that, when compared with the MDA-MB-231-NC negative control group, the expression of TOX3 mRNA and protein significantly increased in the MDA-MB-231-TOX3 group. The study successfully constructed lentiviral expression vector of TOX3 gene and obtained MDA-MB-231 cell line stably over-expressing TOX3 gene by transfection with the recombinant vector.

  13. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri

    Directory of Open Access Journals (Sweden)

    Li Jinyun

    2012-03-01

    Full Text Available Abstract Background The Gram-negative bacterium Xanthomonas citri subsp. citri (Xac causes citrus canker, one of the most destructive diseases of citrus worldwide. In our previous work, a transposon mutant of Xac strain 306 with an insertion in the XAC3110 locus was isolated in a screening that aimed at identifying genes related to biofilm formation. The XAC3110 locus was named as bdp24 for biofilm-defective phenotype and the mutant was observed to be affected in extracellular polysaccharide (EPS and lipopolysaccharide (LPS biosynthesis and cell motility. In this study, we further characterized the bdp24 (XAC3110 gene (designated as gpsX using genetic complementation assays and expanded the knowledge about the function of the gpsX gene in Xac pathogenesis by investigating the roles of gpsX in EPS and LPS production, cell motility, biofilm formation on host leaves, stress tolerance, growth in planta, and host virulence of the citrus canker bacterium. Results The gpsX gene encodes a putative glycosyltransferase, which is highly conserved in the sequenced strains of Xanthomonas. Mutation of gpsX resulted in a significant reduction of the amount of EPS and loss of two LPS bands visualized on sodium dodecylsulphate- polyacrylamide gels. Biofilm assays revealed that the gpsX mutation affected biofilm formation by Xac on abiotic and biotic surfaces. The gpsX mutant showed delayed bacterial growth and caused reduced development of disease symptoms in susceptible citrus leaves. The gpsX mutant was more sensitive than the wild-type strain to various stresses, including the H2O2 oxidative stress. The mutant also showed attenuated ability in cell motility but not in flagellar formation. Quantitative reverse transcription-PCR assays indicated that mutation of gpsX did not affect the expression of virulence genes such as pthA in Xac strain 306. The affected phenotypes of the gpsX mutant could be complemented to wild-type levels by the intact gpsX gene

  14. A knockin mouse model for human ATP4aR703C mutation identified in familial gastric neuroendocrine tumors recapitulates the premalignant condition of the human disease and suggests new therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Oriol Calvete

    2016-09-01

    Full Text Available By whole exome sequencing, we recently identified a missense mutation (p.R703C in the human ATP4a gene, which encodes the proton pump responsible for gastric acidification. This mutation causes an aggressive familial type I gastric neuroendocrine tumor in homozygous individuals. Affected individuals show an early onset of the disease, characterized by gastric hypoacidity, hypergastrinemia, iron-deficiency anemia, gastric intestinal metaplasia and, in one case, an associated gastric adenocarcinoma. Total gastrectomy was performed as the definitive treatment in all affected individuals. We now describe the generation and characterization of a knockin mouse model for the ATP4aR703C mutation to better understand the tumorigenesis process. Homozygous mice recapitulated most of the phenotypical alterations that were observed in human individuals, strongly suggesting that this mutation is the primary alteration responsible for disease development. Homozygous mice developed premalignant condition with severe hyperplasia, dysplasia and glandular metaplasia in the stomach. Interestingly, gastric acidification in homozygous mice, induced by treatment with 3% HCl acid in the drinking water, prevented (if treated from birth or partially reverted (if treated during adulthood the development of glandular metaplasia and dysplasia in the stomach and partially rescued the abnormal biochemical parameters. We therefore suggest that, in this model, achlorhydria contributes to tumorigenesis to a greater extent than hypergastrinemia. Furthermore, our mouse model represents a unique and novel tool for studying the pathologies associated with disturbances in gastric acid secretion.

  15. IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2012-01-01

    The IL-1 family members IL-1ß, IL-18, and IL-33 are potent cytokines in relationship to amplifying the CD4(+) T cell cytokine production. To evaluate their impact on in vitro-differentiated human Th1 and Th2 cultures, such cultures were established from naive T cells, purified from healthy blood...... donors, and reactivated in the presence of IL-1ß, IL-18, or IL-33. Interestingly, we observe modifying responses in Th1 and Th2 cultures induced by IL-18 or IL-33 but not by IL-1ß, both contributing to amplify production of IL-5, IL-13, and IFN-¿. IL-18 or IL-33 stimulation of Th1 cultures resulted...... in increased IFN-¿ and IL-13 production concurrent with reduced IL-10 gene transcription and secretion even though Th1 cultures, in contrast to IL-18Ra, had low ST2L expression. Furthermore, adding IL-18 to Th1 cultures promoted Tbet mRNA expression and production. Th2 cultures stimulated with IL-18 or IL-33...

  16. Anti-proliferative and apoptotic effects of the derivatives from 4-aryl-4H-chromene family on human leukemia K562 cells.

    Science.gov (United States)

    Aryapour, Hassan; Mahdavi, Majid; Mohebbi, Seyed Reza; Zali, Mohammad Reza; Foroumadi, Alireza

    2012-09-01

    Previous studies suggest that 4-aryl-4H-chromenes are potent apoptosis-inducing agents in various cancer cell lines. In this study, anti-proliferative and apoptotic effects of the derivatives from 4-aryl-4H-chromene family were investigated in the human leukemia K562 cells using [3-(4,5)-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) growth inhibition assay. 3-NC was more active among these compounds with IC₅₀ of 65 nM and was selected for further studies. Apoptosis, as the mechanism of cell death, was investigated morphologically by Hoechst 33258 staining, cell surface expression assay of phosphatidylserine by Annexin V/PI technique, caspase-3 activation assay, as well as the formation of DNA ladder. The K562 cells underwent apoptosis upon a single dose (at IC₅₀ value) of the compound, and also increased caspase-3 activity by more than 2.3-fold, following a 72 h treatment. Caspase-9 was also activated which could be detected 48 hours post-treatment. Furthermore, Western blot analysis revealed that the treatment with the compound down-regulated the expression of certain IAP protein, including survivin. These data further suggest that these derivatives from 4-aryl-4H-chromene may provide a novel therapeutic approach for the treatment of leukemia.

  17. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  18. [The "Bolsa Família" family grant scheme: the interface between professional practice and the human right to adequate food and nutrition].

    Science.gov (United States)

    Ramos, Camila Irigonhé; Cuervo, Maria Rita Macedo

    2012-08-01

    The Human Right to Adequate Nutrition must be ensured through the public policies included in SAN, namely the Food and Nutritional Security campaign. Besides the income transfer geared to ensuring access to basic social rights, the "Bolsa Família" Program (PBF) is included in this context. This study seeks to analyze the operational aspects of the PBF and also ascertain whether or not the health professionals see the program as a core element of the SAN public policy. With this in mind, semi-structured interviews were conducted with primary healthcare workers involved directly both with the PBF and with the families who receive this benefit. By the end of the study, it was possible to perceive the importance of training health professionals who work in this area, because when one dissociates the social reality in which the beneficiaries live from the program objectives, this can lead to the simple mechanization of these practices. In this respect, it should be stressed that health professionals need to understand the proposals of the program as political and social strategies which, in addition to providing immediate relief, strive to overcome the problems related to poverty and hunger.

  19. Preference of the recombination sites involved in the formation of extrachromosomal copies of the human alphoid Sau3A repeat family.

    Science.gov (United States)

    Ohki, R; Oishi, M; Kiyama, R

    1995-01-01

    The human alphoid Sau3A repetitive family DNA is one of the DNA species that are actively amplified to form extrachromosomal circular DNA in several cell lines. The circularization takes place between two of the five approximately 170 bp subunits with an average of 73.1% homology as well as between identical subunits. To investigate the nature of the recombination reaction, we cloned and analyzed the subunits containing recombination junctions. Analysis of a total of 68 junctions revealed that recombination had occurred preferentially at four positions 10-25 (A), 40-50 (B), 85-90 (C) and 135-160 (D) in the 170bp subunit structure. Two regions (B and C) were overlapped with the regions with higher homology between subunits, while other two regions (A and D) cannot be explained solely by the regional homology between the subunits. These regions were located at both junctions of the nucleosomal and the linker region, and overlapped with the binding motifs for alpha protein and CENP-B. Approximately 90% of the recombination occurred between the subunits located next but one (+/- 2 shift), although the frequency of recombination between the adjoining subunits (+/- 1 shift) was approximately 10%. Images PMID:8559653

  20. Galectin-1 as a fusion partner for the production of soluble and folded human {beta}-1,4-galactosyltransferase-T7 in E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Pasek, Marta [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Boeggeman, Elizabeth; Ramakrishnan, Boopathy [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States); Qasba, Pradman K., E-mail: qasba@helix.nih.gov [Structural Glycobiology Section, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Center for Cancer Research, NCI-Frederick, Frederick, MD 2170 (United States)

    2010-04-09

    The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of a large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.

  1. Human Rights and the Family

    Science.gov (United States)

    Cere, Daniel

    2009-01-01

    In this article, the author explores the attempts by academic theorists to replace the conception of marriage as a "natural" institution with the idea that marriage is defined by the state, and is therefore open to whatever transformations the state may choose to impose. This claim, which began in law schools and philosophy departments,…

  2. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  3. My Family

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Everyone has a family.We live in it and feel very warm.There are three persons in my family,my mother,father and I.We live together very happily and there are many interesting stories about my family. My father is a hard-working man.He works as a doctor.He always tries his best to help every,patient and make patients comfortable.But sonetimes he works so hard

  4. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  5. Family literacy

    DEFF Research Database (Denmark)

    Sehested, Caroline

    2012-01-01

    I Projekt familielæsning, der er et samarbejde mellem Nationalt Videncenter for Læsning og Hillerød Bibliotek, arbejder vi med at få kontakt til de familier, som biblioteket ellers aldrig ser som brugere og dermed også de børn, der vokser op i familier, for hvem bøger og oplæsningssituationer ikke...... er en selvfølgelig del af barndommen. Det, vi vil undersøge og ønsker at være med til at udvikle hos disse familier, er det, man kan kalde family literacy....

  6. SIGNIFICANCE OF GALACTINOL AND RAFFINOSE FAMILY OLIGOSACCHARIDE SYNTHESIS IN PLANTS

    Directory of Open Access Journals (Sweden)

    Sonali eSengupta

    2015-08-01

    Full Text Available Abiotic stress induces differential expression of genes responsible for the synthesis of Raffinose series of Oligosaccharides (RFOs in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of Galactinol synthase (GolS; EC 2.4.1.123, a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose and Ajugose are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g. RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrate in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debateand their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

  7. Familial Amyotrophic Lateral Sclerosis-associated Mutations Decrease the Thermal Stability of Distinctly Metallated Species of Human Copper/Zinc Superoxide Dismutase

    National Research Council Canada - National Science Library

    Jorge A. Rodriguez; Joan S. Valentine; Daryl K. Eggers; James A. Roe; Ashutosh Tiwari; Robert H. Brown, Jr; Lawrence J. Hayward

    2002-01-01

    ...) associated with familial amyotrophic lateral sclerosis (FALS). Multiple endothermic unfolding transitions were observed by differential scanning calorimetry for partially metallated SOD1 enzymes isolated from a baculovirus system...

  8. Service Locator - Family Planning Title X

    Data.gov (United States)

    U.S. Department of Health & Human Services — This locator tool will help you find Title X family planning centers that provide high quality and cost-effective family planning and related preventive health...

  9. [Family oriented nursing care].

    Science.gov (United States)

    Lima-Rodríguez, Joaquin Salvador; Lima-Serrano, Marta; Sáez-Bueno, Africa

    2009-01-01

    Nursing has experienced an important methodological development, in which it gives priority to the individual, although at a socioeconomic level a marked interest is seen in the health care of the family unit and the NANDA (North American Nursing Diagnosis Association), NIC (Nursing Interventions Classification) and NOC (Nursing Outcomes Classification) nursing guidelines, using diagnoses, criteria of results and interventions orientated towards this aim. We consider to the family as an opened system consisted of human elements, with a common history, which they form a functional unit been ruled by own procedure. In this paper we look at those aspects that must be taken into account in nursing assessment of families from a systemic perspective, including some tools for data collection and analysis of information. In addition, we identify specific areas of intervention. We believe that the family must be studied from a nursing care point of view with its own characterist